diff options
Diffstat (limited to 'mm/vmalloc.c')
-rw-r--r-- | mm/vmalloc.c | 2635 |
1 files changed, 2635 insertions, 0 deletions
diff --git a/mm/vmalloc.c b/mm/vmalloc.c new file mode 100644 index 00000000..1196c772 --- /dev/null +++ b/mm/vmalloc.c @@ -0,0 +1,2635 @@ +/* + * linux/mm/vmalloc.c + * + * Copyright (C) 1993 Linus Torvalds + * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 + * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 + * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 + * Numa awareness, Christoph Lameter, SGI, June 2005 + */ + +#include <linux/vmalloc.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/highmem.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <linux/debugobjects.h> +#include <linux/kallsyms.h> +#include <linux/list.h> +#include <linux/rbtree.h> +#include <linux/radix-tree.h> +#include <linux/rcupdate.h> +#include <linux/pfn.h> +#include <linux/kmemleak.h> +#include <linux/atomic.h> +#include <asm/uaccess.h> +#include <asm/tlbflush.h> +#include <asm/shmparam.h> + +/*** Page table manipulation functions ***/ + +static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) +{ + pte_t *pte; + + pte = pte_offset_kernel(pmd, addr); + do { + pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); + WARN_ON(!pte_none(ptent) && !pte_present(ptent)); + } while (pte++, addr += PAGE_SIZE, addr != end); +} + +static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) +{ + pmd_t *pmd; + unsigned long next; + + pmd = pmd_offset(pud, addr); + do { + next = pmd_addr_end(addr, end); + if (pmd_none_or_clear_bad(pmd)) + continue; + vunmap_pte_range(pmd, addr, next); + } while (pmd++, addr = next, addr != end); +} + +static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) +{ + pud_t *pud; + unsigned long next; + + pud = pud_offset(pgd, addr); + do { + next = pud_addr_end(addr, end); + if (pud_none_or_clear_bad(pud)) + continue; + vunmap_pmd_range(pud, addr, next); + } while (pud++, addr = next, addr != end); +} + +static void vunmap_page_range(unsigned long addr, unsigned long end) +{ + pgd_t *pgd; + unsigned long next; + + BUG_ON(addr >= end); + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, end); + if (pgd_none_or_clear_bad(pgd)) + continue; + vunmap_pud_range(pgd, addr, next); + } while (pgd++, addr = next, addr != end); +} + +static int vmap_pte_range(pmd_t *pmd, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr) +{ + pte_t *pte; + + /* + * nr is a running index into the array which helps higher level + * callers keep track of where we're up to. + */ + + pte = pte_alloc_kernel(pmd, addr); + if (!pte) + return -ENOMEM; + do { + struct page *page = pages[*nr]; + + if (WARN_ON(!pte_none(*pte))) + return -EBUSY; + if (WARN_ON(!page)) + return -ENOMEM; + set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); + (*nr)++; + } while (pte++, addr += PAGE_SIZE, addr != end); + return 0; +} + +static int vmap_pmd_range(pud_t *pud, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr) +{ + pmd_t *pmd; + unsigned long next; + + pmd = pmd_alloc(&init_mm, pud, addr); + if (!pmd) + return -ENOMEM; + do { + next = pmd_addr_end(addr, end); + if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) + return -ENOMEM; + } while (pmd++, addr = next, addr != end); + return 0; +} + +static int vmap_pud_range(pgd_t *pgd, unsigned long addr, + unsigned long end, pgprot_t prot, struct page **pages, int *nr) +{ + pud_t *pud; + unsigned long next; + + pud = pud_alloc(&init_mm, pgd, addr); + if (!pud) + return -ENOMEM; + do { + next = pud_addr_end(addr, end); + if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) + return -ENOMEM; + } while (pud++, addr = next, addr != end); + return 0; +} + +/* + * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and + * will have pfns corresponding to the "pages" array. + * + * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] + */ +static int vmap_page_range_noflush(unsigned long start, unsigned long end, + pgprot_t prot, struct page **pages) +{ + pgd_t *pgd; + unsigned long next; + unsigned long addr = start; + int err = 0; + int nr = 0; + + BUG_ON(addr >= end); + pgd = pgd_offset_k(addr); + do { + next = pgd_addr_end(addr, end); + err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); + if (err) + return err; + } while (pgd++, addr = next, addr != end); + + return nr; +} + +static int vmap_page_range(unsigned long start, unsigned long end, + pgprot_t prot, struct page **pages) +{ + int ret; + + ret = vmap_page_range_noflush(start, end, prot, pages); + flush_cache_vmap(start, end); + return ret; +} + +int is_vmalloc_or_module_addr(const void *x) +{ + /* + * ARM, x86-64 and sparc64 put modules in a special place, + * and fall back on vmalloc() if that fails. Others + * just put it in the vmalloc space. + */ +#if defined(CONFIG_MODULES) && defined(MODULES_VADDR) + unsigned long addr = (unsigned long)x; + if (addr >= MODULES_VADDR && addr < MODULES_END) + return 1; +#endif + return is_vmalloc_addr(x); +} + +/* + * Walk a vmap address to the struct page it maps. + */ +struct page *vmalloc_to_page(const void *vmalloc_addr) +{ + unsigned long addr = (unsigned long) vmalloc_addr; + struct page *page = NULL; + pgd_t *pgd = pgd_offset_k(addr); + + /* + * XXX we might need to change this if we add VIRTUAL_BUG_ON for + * architectures that do not vmalloc module space + */ + VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); + + if (!pgd_none(*pgd)) { + pud_t *pud = pud_offset(pgd, addr); + if (!pud_none(*pud)) { + pmd_t *pmd = pmd_offset(pud, addr); + if (!pmd_none(*pmd)) { + pte_t *ptep, pte; + + ptep = pte_offset_map(pmd, addr); + pte = *ptep; + if (pte_present(pte)) + page = pte_page(pte); + pte_unmap(ptep); + } + } + } + return page; +} +EXPORT_SYMBOL(vmalloc_to_page); + +/* + * Map a vmalloc()-space virtual address to the physical page frame number. + */ +unsigned long vmalloc_to_pfn(const void *vmalloc_addr) +{ + return page_to_pfn(vmalloc_to_page(vmalloc_addr)); +} +EXPORT_SYMBOL(vmalloc_to_pfn); + + +/*** Global kva allocator ***/ + +#define VM_LAZY_FREE 0x01 +#define VM_LAZY_FREEING 0x02 +#define VM_VM_AREA 0x04 + +struct vmap_area { + unsigned long va_start; + unsigned long va_end; + unsigned long flags; + struct rb_node rb_node; /* address sorted rbtree */ + struct list_head list; /* address sorted list */ + struct list_head purge_list; /* "lazy purge" list */ + struct vm_struct *vm; + struct rcu_head rcu_head; +}; + +static DEFINE_SPINLOCK(vmap_area_lock); +static LIST_HEAD(vmap_area_list); +static struct rb_root vmap_area_root = RB_ROOT; + +/* The vmap cache globals are protected by vmap_area_lock */ +static struct rb_node *free_vmap_cache; +static unsigned long cached_hole_size; +static unsigned long cached_vstart; +static unsigned long cached_align; + +static unsigned long vmap_area_pcpu_hole; + +static struct vmap_area *__find_vmap_area(unsigned long addr) +{ + struct rb_node *n = vmap_area_root.rb_node; + + while (n) { + struct vmap_area *va; + + va = rb_entry(n, struct vmap_area, rb_node); + if (addr < va->va_start) + n = n->rb_left; + else if (addr > va->va_start) + n = n->rb_right; + else + return va; + } + + return NULL; +} + +static void __insert_vmap_area(struct vmap_area *va) +{ + struct rb_node **p = &vmap_area_root.rb_node; + struct rb_node *parent = NULL; + struct rb_node *tmp; + + while (*p) { + struct vmap_area *tmp_va; + + parent = *p; + tmp_va = rb_entry(parent, struct vmap_area, rb_node); + if (va->va_start < tmp_va->va_end) + p = &(*p)->rb_left; + else if (va->va_end > tmp_va->va_start) + p = &(*p)->rb_right; + else + BUG(); + } + + rb_link_node(&va->rb_node, parent, p); + rb_insert_color(&va->rb_node, &vmap_area_root); + + /* address-sort this list so it is usable like the vmlist */ + tmp = rb_prev(&va->rb_node); + if (tmp) { + struct vmap_area *prev; + prev = rb_entry(tmp, struct vmap_area, rb_node); + list_add_rcu(&va->list, &prev->list); + } else + list_add_rcu(&va->list, &vmap_area_list); +} + +static void purge_vmap_area_lazy(void); + +/* + * Allocate a region of KVA of the specified size and alignment, within the + * vstart and vend. + */ +static struct vmap_area *alloc_vmap_area(unsigned long size, + unsigned long align, + unsigned long vstart, unsigned long vend, + int node, gfp_t gfp_mask) +{ + struct vmap_area *va; + struct rb_node *n; + unsigned long addr; + int purged = 0; + struct vmap_area *first; + + BUG_ON(!size); + BUG_ON(size & ~PAGE_MASK); + BUG_ON(!is_power_of_2(align)); + + va = kmalloc_node(sizeof(struct vmap_area), + gfp_mask & GFP_RECLAIM_MASK, node); + if (unlikely(!va)) + return ERR_PTR(-ENOMEM); + +retry: + spin_lock(&vmap_area_lock); + /* + * Invalidate cache if we have more permissive parameters. + * cached_hole_size notes the largest hole noticed _below_ + * the vmap_area cached in free_vmap_cache: if size fits + * into that hole, we want to scan from vstart to reuse + * the hole instead of allocating above free_vmap_cache. + * Note that __free_vmap_area may update free_vmap_cache + * without updating cached_hole_size or cached_align. + */ + if (!free_vmap_cache || + size < cached_hole_size || + vstart < cached_vstart || + align < cached_align) { +nocache: + cached_hole_size = 0; + free_vmap_cache = NULL; + } + /* record if we encounter less permissive parameters */ + cached_vstart = vstart; + cached_align = align; + + /* find starting point for our search */ + if (free_vmap_cache) { + first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); + addr = ALIGN(first->va_end, align); + if (addr < vstart) + goto nocache; + if (addr + size - 1 < addr) + goto overflow; + + } else { + addr = ALIGN(vstart, align); + if (addr + size - 1 < addr) + goto overflow; + + n = vmap_area_root.rb_node; + first = NULL; + + while (n) { + struct vmap_area *tmp; + tmp = rb_entry(n, struct vmap_area, rb_node); + if (tmp->va_end >= addr) { + first = tmp; + if (tmp->va_start <= addr) + break; + n = n->rb_left; + } else + n = n->rb_right; + } + + if (!first) + goto found; + } + + /* from the starting point, walk areas until a suitable hole is found */ + while (addr + size > first->va_start && addr + size <= vend) { + if (addr + cached_hole_size < first->va_start) + cached_hole_size = first->va_start - addr; + addr = ALIGN(first->va_end, align); + if (addr + size - 1 < addr) + goto overflow; + + n = rb_next(&first->rb_node); + if (n) + first = rb_entry(n, struct vmap_area, rb_node); + else + goto found; + } + +found: + if (addr + size > vend) + goto overflow; + + va->va_start = addr; + va->va_end = addr + size; + va->flags = 0; + __insert_vmap_area(va); + free_vmap_cache = &va->rb_node; + spin_unlock(&vmap_area_lock); + + BUG_ON(va->va_start & (align-1)); + BUG_ON(va->va_start < vstart); + BUG_ON(va->va_end > vend); + + return va; + +overflow: + spin_unlock(&vmap_area_lock); + if (!purged) { + purge_vmap_area_lazy(); + purged = 1; + goto retry; + } + if (printk_ratelimit()) + printk(KERN_WARNING + "vmap allocation for size %lu failed: " + "use vmalloc=<size> to increase size.\n", size); + kfree(va); + return ERR_PTR(-EBUSY); +} + +static void __free_vmap_area(struct vmap_area *va) +{ + BUG_ON(RB_EMPTY_NODE(&va->rb_node)); + + if (free_vmap_cache) { + if (va->va_end < cached_vstart) { + free_vmap_cache = NULL; + } else { + struct vmap_area *cache; + cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); + if (va->va_start <= cache->va_start) { + free_vmap_cache = rb_prev(&va->rb_node); + /* + * We don't try to update cached_hole_size or + * cached_align, but it won't go very wrong. + */ + } + } + } + rb_erase(&va->rb_node, &vmap_area_root); + RB_CLEAR_NODE(&va->rb_node); + list_del_rcu(&va->list); + + /* + * Track the highest possible candidate for pcpu area + * allocation. Areas outside of vmalloc area can be returned + * here too, consider only end addresses which fall inside + * vmalloc area proper. + */ + if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) + vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); + + kfree_rcu(va, rcu_head); +} + +/* + * Free a region of KVA allocated by alloc_vmap_area + */ +static void free_vmap_area(struct vmap_area *va) +{ + spin_lock(&vmap_area_lock); + __free_vmap_area(va); + spin_unlock(&vmap_area_lock); +} + +/* + * Clear the pagetable entries of a given vmap_area + */ +static void unmap_vmap_area(struct vmap_area *va) +{ + vunmap_page_range(va->va_start, va->va_end); +} + +static void vmap_debug_free_range(unsigned long start, unsigned long end) +{ + /* + * Unmap page tables and force a TLB flush immediately if + * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free + * bugs similarly to those in linear kernel virtual address + * space after a page has been freed. + * + * All the lazy freeing logic is still retained, in order to + * minimise intrusiveness of this debugging feature. + * + * This is going to be *slow* (linear kernel virtual address + * debugging doesn't do a broadcast TLB flush so it is a lot + * faster). + */ +#ifdef CONFIG_DEBUG_PAGEALLOC + vunmap_page_range(start, end); + flush_tlb_kernel_range(start, end); +#endif +} + +/* + * lazy_max_pages is the maximum amount of virtual address space we gather up + * before attempting to purge with a TLB flush. + * + * There is a tradeoff here: a larger number will cover more kernel page tables + * and take slightly longer to purge, but it will linearly reduce the number of + * global TLB flushes that must be performed. It would seem natural to scale + * this number up linearly with the number of CPUs (because vmapping activity + * could also scale linearly with the number of CPUs), however it is likely + * that in practice, workloads might be constrained in other ways that mean + * vmap activity will not scale linearly with CPUs. Also, I want to be + * conservative and not introduce a big latency on huge systems, so go with + * a less aggressive log scale. It will still be an improvement over the old + * code, and it will be simple to change the scale factor if we find that it + * becomes a problem on bigger systems. + */ +static unsigned long lazy_max_pages(void) +{ + unsigned int log; + + log = fls(num_online_cpus()); + + return log * (32UL * 1024 * 1024 / PAGE_SIZE); +} + +static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); + +/* for per-CPU blocks */ +static void purge_fragmented_blocks_allcpus(void); + +/* + * called before a call to iounmap() if the caller wants vm_area_struct's + * immediately freed. + */ +void set_iounmap_nonlazy(void) +{ + atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); +} + +/* + * Purges all lazily-freed vmap areas. + * + * If sync is 0 then don't purge if there is already a purge in progress. + * If force_flush is 1, then flush kernel TLBs between *start and *end even + * if we found no lazy vmap areas to unmap (callers can use this to optimise + * their own TLB flushing). + * Returns with *start = min(*start, lowest purged address) + * *end = max(*end, highest purged address) + */ +static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, + int sync, int force_flush) +{ + static DEFINE_SPINLOCK(purge_lock); + LIST_HEAD(valist); + struct vmap_area *va; + struct vmap_area *n_va; + int nr = 0; + + /* + * If sync is 0 but force_flush is 1, we'll go sync anyway but callers + * should not expect such behaviour. This just simplifies locking for + * the case that isn't actually used at the moment anyway. + */ + if (!sync && !force_flush) { + if (!spin_trylock(&purge_lock)) + return; + } else + spin_lock(&purge_lock); + + if (sync) + purge_fragmented_blocks_allcpus(); + + rcu_read_lock(); + list_for_each_entry_rcu(va, &vmap_area_list, list) { + if (va->flags & VM_LAZY_FREE) { + if (va->va_start < *start) + *start = va->va_start; + if (va->va_end > *end) + *end = va->va_end; + nr += (va->va_end - va->va_start) >> PAGE_SHIFT; + list_add_tail(&va->purge_list, &valist); + va->flags |= VM_LAZY_FREEING; + va->flags &= ~VM_LAZY_FREE; + } + } + rcu_read_unlock(); + + if (nr) + atomic_sub(nr, &vmap_lazy_nr); + + if (nr || force_flush) + flush_tlb_kernel_range(*start, *end); + + if (nr) { + spin_lock(&vmap_area_lock); + list_for_each_entry_safe(va, n_va, &valist, purge_list) + __free_vmap_area(va); + spin_unlock(&vmap_area_lock); + } + spin_unlock(&purge_lock); +} + +/* + * Kick off a purge of the outstanding lazy areas. Don't bother if somebody + * is already purging. + */ +static void try_purge_vmap_area_lazy(void) +{ + unsigned long start = ULONG_MAX, end = 0; + + __purge_vmap_area_lazy(&start, &end, 0, 0); +} + +/* + * Kick off a purge of the outstanding lazy areas. + */ +static void purge_vmap_area_lazy(void) +{ + unsigned long start = ULONG_MAX, end = 0; + + __purge_vmap_area_lazy(&start, &end, 1, 0); +} + +/* + * Free a vmap area, caller ensuring that the area has been unmapped + * and flush_cache_vunmap had been called for the correct range + * previously. + */ +static void free_vmap_area_noflush(struct vmap_area *va) +{ + va->flags |= VM_LAZY_FREE; + atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); + if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) + try_purge_vmap_area_lazy(); +} + +/* + * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been + * called for the correct range previously. + */ +static void free_unmap_vmap_area_noflush(struct vmap_area *va) +{ + unmap_vmap_area(va); + free_vmap_area_noflush(va); +} + +/* + * Free and unmap a vmap area + */ +static void free_unmap_vmap_area(struct vmap_area *va) +{ + flush_cache_vunmap(va->va_start, va->va_end); + free_unmap_vmap_area_noflush(va); +} + +static struct vmap_area *find_vmap_area(unsigned long addr) +{ + struct vmap_area *va; + + spin_lock(&vmap_area_lock); + va = __find_vmap_area(addr); + spin_unlock(&vmap_area_lock); + + return va; +} + +static void free_unmap_vmap_area_addr(unsigned long addr) +{ + struct vmap_area *va; + + va = find_vmap_area(addr); + BUG_ON(!va); + free_unmap_vmap_area(va); +} + + +/*** Per cpu kva allocator ***/ + +/* + * vmap space is limited especially on 32 bit architectures. Ensure there is + * room for at least 16 percpu vmap blocks per CPU. + */ +/* + * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able + * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess + * instead (we just need a rough idea) + */ +#if BITS_PER_LONG == 32 +#define VMALLOC_SPACE (128UL*1024*1024) +#else +#define VMALLOC_SPACE (128UL*1024*1024*1024) +#endif + +#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) +#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ +#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ +#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) +#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ +#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ +#define VMAP_BBMAP_BITS \ + VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ + VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ + VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) + +#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) + +static bool vmap_initialized __read_mostly = false; + +struct vmap_block_queue { + spinlock_t lock; + struct list_head free; +}; + +struct vmap_block { + spinlock_t lock; + struct vmap_area *va; + struct vmap_block_queue *vbq; + unsigned long free, dirty; + DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); + DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); + struct list_head free_list; + struct rcu_head rcu_head; + struct list_head purge; +}; + +/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ +static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); + +/* + * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block + * in the free path. Could get rid of this if we change the API to return a + * "cookie" from alloc, to be passed to free. But no big deal yet. + */ +static DEFINE_SPINLOCK(vmap_block_tree_lock); +static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); + +/* + * We should probably have a fallback mechanism to allocate virtual memory + * out of partially filled vmap blocks. However vmap block sizing should be + * fairly reasonable according to the vmalloc size, so it shouldn't be a + * big problem. + */ + +static unsigned long addr_to_vb_idx(unsigned long addr) +{ + addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); + addr /= VMAP_BLOCK_SIZE; + return addr; +} + +static struct vmap_block *new_vmap_block(gfp_t gfp_mask) +{ + struct vmap_block_queue *vbq; + struct vmap_block *vb; + struct vmap_area *va; + unsigned long vb_idx; + int node, err; + + node = numa_node_id(); + + vb = kmalloc_node(sizeof(struct vmap_block), + gfp_mask & GFP_RECLAIM_MASK, node); + if (unlikely(!vb)) + return ERR_PTR(-ENOMEM); + + va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, + VMALLOC_START, VMALLOC_END, + node, gfp_mask); + if (IS_ERR(va)) { + kfree(vb); + return ERR_CAST(va); + } + + err = radix_tree_preload(gfp_mask); + if (unlikely(err)) { + kfree(vb); + free_vmap_area(va); + return ERR_PTR(err); + } + + spin_lock_init(&vb->lock); + vb->va = va; + vb->free = VMAP_BBMAP_BITS; + vb->dirty = 0; + bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); + bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); + INIT_LIST_HEAD(&vb->free_list); + + vb_idx = addr_to_vb_idx(va->va_start); + spin_lock(&vmap_block_tree_lock); + err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); + spin_unlock(&vmap_block_tree_lock); + BUG_ON(err); + radix_tree_preload_end(); + + vbq = &get_cpu_var(vmap_block_queue); + vb->vbq = vbq; + spin_lock(&vbq->lock); + list_add_rcu(&vb->free_list, &vbq->free); + spin_unlock(&vbq->lock); + put_cpu_var(vmap_block_queue); + + return vb; +} + +static void free_vmap_block(struct vmap_block *vb) +{ + struct vmap_block *tmp; + unsigned long vb_idx; + + vb_idx = addr_to_vb_idx(vb->va->va_start); + spin_lock(&vmap_block_tree_lock); + tmp = radix_tree_delete(&vmap_block_tree, vb_idx); + spin_unlock(&vmap_block_tree_lock); + BUG_ON(tmp != vb); + + free_vmap_area_noflush(vb->va); + kfree_rcu(vb, rcu_head); +} + +static void purge_fragmented_blocks(int cpu) +{ + LIST_HEAD(purge); + struct vmap_block *vb; + struct vmap_block *n_vb; + struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); + + rcu_read_lock(); + list_for_each_entry_rcu(vb, &vbq->free, free_list) { + + if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) + continue; + + spin_lock(&vb->lock); + if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { + vb->free = 0; /* prevent further allocs after releasing lock */ + vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ + bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); + bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); + spin_lock(&vbq->lock); + list_del_rcu(&vb->free_list); + spin_unlock(&vbq->lock); + spin_unlock(&vb->lock); + list_add_tail(&vb->purge, &purge); + } else + spin_unlock(&vb->lock); + } + rcu_read_unlock(); + + list_for_each_entry_safe(vb, n_vb, &purge, purge) { + list_del(&vb->purge); + free_vmap_block(vb); + } +} + +static void purge_fragmented_blocks_thiscpu(void) +{ + purge_fragmented_blocks(smp_processor_id()); +} + +static void purge_fragmented_blocks_allcpus(void) +{ + int cpu; + + for_each_possible_cpu(cpu) + purge_fragmented_blocks(cpu); +} + +static void *vb_alloc(unsigned long size, gfp_t gfp_mask) +{ + struct vmap_block_queue *vbq; + struct vmap_block *vb; + unsigned long addr = 0; + unsigned int order; + int purge = 0; + + BUG_ON(size & ~PAGE_MASK); + BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); + order = get_order(size); + +again: + rcu_read_lock(); + vbq = &get_cpu_var(vmap_block_queue); + list_for_each_entry_rcu(vb, &vbq->free, free_list) { + int i; + + spin_lock(&vb->lock); + if (vb->free < 1UL << order) + goto next; + + i = bitmap_find_free_region(vb->alloc_map, + VMAP_BBMAP_BITS, order); + + if (i < 0) { + if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { + /* fragmented and no outstanding allocations */ + BUG_ON(vb->dirty != VMAP_BBMAP_BITS); + purge = 1; + } + goto next; + } + addr = vb->va->va_start + (i << PAGE_SHIFT); + BUG_ON(addr_to_vb_idx(addr) != + addr_to_vb_idx(vb->va->va_start)); + vb->free -= 1UL << order; + if (vb->free == 0) { + spin_lock(&vbq->lock); + list_del_rcu(&vb->free_list); + spin_unlock(&vbq->lock); + } + spin_unlock(&vb->lock); + break; +next: + spin_unlock(&vb->lock); + } + + if (purge) + purge_fragmented_blocks_thiscpu(); + + put_cpu_var(vmap_block_queue); + rcu_read_unlock(); + + if (!addr) { + vb = new_vmap_block(gfp_mask); + if (IS_ERR(vb)) + return vb; + goto again; + } + + return (void *)addr; +} + +static void vb_free(const void *addr, unsigned long size) +{ + unsigned long offset; + unsigned long vb_idx; + unsigned int order; + struct vmap_block *vb; + + BUG_ON(size & ~PAGE_MASK); + BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); + + flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); + + order = get_order(size); + + offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); + + vb_idx = addr_to_vb_idx((unsigned long)addr); + rcu_read_lock(); + vb = radix_tree_lookup(&vmap_block_tree, vb_idx); + rcu_read_unlock(); + BUG_ON(!vb); + + vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); + + spin_lock(&vb->lock); + BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); + + vb->dirty += 1UL << order; + if (vb->dirty == VMAP_BBMAP_BITS) { + BUG_ON(vb->free); + spin_unlock(&vb->lock); + free_vmap_block(vb); + } else + spin_unlock(&vb->lock); +} + +/** + * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer + * + * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily + * to amortize TLB flushing overheads. What this means is that any page you + * have now, may, in a former life, have been mapped into kernel virtual + * address by the vmap layer and so there might be some CPUs with TLB entries + * still referencing that page (additional to the regular 1:1 kernel mapping). + * + * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can + * be sure that none of the pages we have control over will have any aliases + * from the vmap layer. + */ +void vm_unmap_aliases(void) +{ + unsigned long start = ULONG_MAX, end = 0; + int cpu; + int flush = 0; + + if (unlikely(!vmap_initialized)) + return; + + for_each_possible_cpu(cpu) { + struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); + struct vmap_block *vb; + + rcu_read_lock(); + list_for_each_entry_rcu(vb, &vbq->free, free_list) { + int i; + + spin_lock(&vb->lock); + i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); + while (i < VMAP_BBMAP_BITS) { + unsigned long s, e; + int j; + j = find_next_zero_bit(vb->dirty_map, + VMAP_BBMAP_BITS, i); + + s = vb->va->va_start + (i << PAGE_SHIFT); + e = vb->va->va_start + (j << PAGE_SHIFT); + flush = 1; + + if (s < start) + start = s; + if (e > end) + end = e; + + i = j; + i = find_next_bit(vb->dirty_map, + VMAP_BBMAP_BITS, i); + } + spin_unlock(&vb->lock); + } + rcu_read_unlock(); + } + + __purge_vmap_area_lazy(&start, &end, 1, flush); +} +EXPORT_SYMBOL_GPL(vm_unmap_aliases); + +/** + * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram + * @mem: the pointer returned by vm_map_ram + * @count: the count passed to that vm_map_ram call (cannot unmap partial) + */ +void vm_unmap_ram(const void *mem, unsigned int count) +{ + unsigned long size = count << PAGE_SHIFT; + unsigned long addr = (unsigned long)mem; + + BUG_ON(!addr); + BUG_ON(addr < VMALLOC_START); + BUG_ON(addr > VMALLOC_END); + BUG_ON(addr & (PAGE_SIZE-1)); + + debug_check_no_locks_freed(mem, size); + vmap_debug_free_range(addr, addr+size); + + if (likely(count <= VMAP_MAX_ALLOC)) + vb_free(mem, size); + else + free_unmap_vmap_area_addr(addr); +} +EXPORT_SYMBOL(vm_unmap_ram); + +/** + * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) + * @pages: an array of pointers to the pages to be mapped + * @count: number of pages + * @node: prefer to allocate data structures on this node + * @prot: memory protection to use. PAGE_KERNEL for regular RAM + * + * Returns: a pointer to the address that has been mapped, or %NULL on failure + */ +void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) +{ + unsigned long size = count << PAGE_SHIFT; + unsigned long addr; + void *mem; + + if (likely(count <= VMAP_MAX_ALLOC)) { + mem = vb_alloc(size, GFP_KERNEL); + if (IS_ERR(mem)) + return NULL; + addr = (unsigned long)mem; + } else { + struct vmap_area *va; + va = alloc_vmap_area(size, PAGE_SIZE, + VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); + if (IS_ERR(va)) + return NULL; + + addr = va->va_start; + mem = (void *)addr; + } + if (vmap_page_range(addr, addr + size, prot, pages) < 0) { + vm_unmap_ram(mem, count); + return NULL; + } + return mem; +} +EXPORT_SYMBOL(vm_map_ram); + +/** + * vm_area_add_early - add vmap area early during boot + * @vm: vm_struct to add + * + * This function is used to add fixed kernel vm area to vmlist before + * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags + * should contain proper values and the other fields should be zero. + * + * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. + */ +void __init vm_area_add_early(struct vm_struct *vm) +{ + struct vm_struct *tmp, **p; + + BUG_ON(vmap_initialized); + for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { + if (tmp->addr >= vm->addr) { + BUG_ON(tmp->addr < vm->addr + vm->size); + break; + } else + BUG_ON(tmp->addr + tmp->size > vm->addr); + } + vm->next = *p; + *p = vm; +} + +/** + * vm_area_register_early - register vmap area early during boot + * @vm: vm_struct to register + * @align: requested alignment + * + * This function is used to register kernel vm area before + * vmalloc_init() is called. @vm->size and @vm->flags should contain + * proper values on entry and other fields should be zero. On return, + * vm->addr contains the allocated address. + * + * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. + */ +void __init vm_area_register_early(struct vm_struct *vm, size_t align) +{ + static size_t vm_init_off __initdata; + unsigned long addr; + + addr = ALIGN(VMALLOC_START + vm_init_off, align); + vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; + + vm->addr = (void *)addr; + + vm_area_add_early(vm); +} + +void __init vmalloc_init(void) +{ + struct vmap_area *va; + struct vm_struct *tmp; + int i; + + for_each_possible_cpu(i) { + struct vmap_block_queue *vbq; + + vbq = &per_cpu(vmap_block_queue, i); + spin_lock_init(&vbq->lock); + INIT_LIST_HEAD(&vbq->free); + } + + /* Import existing vmlist entries. */ + for (tmp = vmlist; tmp; tmp = tmp->next) { + va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); + va->flags = VM_VM_AREA; + va->va_start = (unsigned long)tmp->addr; + va->va_end = va->va_start + tmp->size; + va->vm = tmp; + __insert_vmap_area(va); + } + + vmap_area_pcpu_hole = VMALLOC_END; + + vmap_initialized = true; +} + +/** + * map_kernel_range_noflush - map kernel VM area with the specified pages + * @addr: start of the VM area to map + * @size: size of the VM area to map + * @prot: page protection flags to use + * @pages: pages to map + * + * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size + * specify should have been allocated using get_vm_area() and its + * friends. + * + * NOTE: + * This function does NOT do any cache flushing. The caller is + * responsible for calling flush_cache_vmap() on to-be-mapped areas + * before calling this function. + * + * RETURNS: + * The number of pages mapped on success, -errno on failure. + */ +int map_kernel_range_noflush(unsigned long addr, unsigned long size, + pgprot_t prot, struct page **pages) +{ + return vmap_page_range_noflush(addr, addr + size, prot, pages); +} + +/** + * unmap_kernel_range_noflush - unmap kernel VM area + * @addr: start of the VM area to unmap + * @size: size of the VM area to unmap + * + * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size + * specify should have been allocated using get_vm_area() and its + * friends. + * + * NOTE: + * This function does NOT do any cache flushing. The caller is + * responsible for calling flush_cache_vunmap() on to-be-mapped areas + * before calling this function and flush_tlb_kernel_range() after. + */ +void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) +{ + vunmap_page_range(addr, addr + size); +} +EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); + +/** + * unmap_kernel_range - unmap kernel VM area and flush cache and TLB + * @addr: start of the VM area to unmap + * @size: size of the VM area to unmap + * + * Similar to unmap_kernel_range_noflush() but flushes vcache before + * the unmapping and tlb after. + */ +void unmap_kernel_range(unsigned long addr, unsigned long size) +{ + unsigned long end = addr + size; + + flush_cache_vunmap(addr, end); + vunmap_page_range(addr, end); + flush_tlb_kernel_range(addr, end); +} + +int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) +{ + unsigned long addr = (unsigned long)area->addr; + unsigned long end = addr + area->size - PAGE_SIZE; + int err; + + err = vmap_page_range(addr, end, prot, *pages); + if (err > 0) { + *pages += err; + err = 0; + } + + return err; +} +EXPORT_SYMBOL_GPL(map_vm_area); + +/*** Old vmalloc interfaces ***/ +DEFINE_RWLOCK(vmlist_lock); +struct vm_struct *vmlist; + +static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, + unsigned long flags, void *caller) +{ + vm->flags = flags; + vm->addr = (void *)va->va_start; + vm->size = va->va_end - va->va_start; + vm->caller = caller; + va->vm = vm; + va->flags |= VM_VM_AREA; +} + +static void insert_vmalloc_vmlist(struct vm_struct *vm) +{ + struct vm_struct *tmp, **p; + + vm->flags &= ~VM_UNLIST; + write_lock(&vmlist_lock); + for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { + if (tmp->addr >= vm->addr) + break; + } + vm->next = *p; + *p = vm; + write_unlock(&vmlist_lock); +} + +static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, + unsigned long flags, void *caller) +{ + setup_vmalloc_vm(vm, va, flags, caller); + insert_vmalloc_vmlist(vm); +} + +static struct vm_struct *__get_vm_area_node(unsigned long size, + unsigned long align, unsigned long flags, unsigned long start, + unsigned long end, int node, gfp_t gfp_mask, void *caller) +{ + struct vmap_area *va; + struct vm_struct *area; + + BUG_ON(in_interrupt()); + if (flags & VM_IOREMAP) { + int bit = fls(size); + + if (bit > IOREMAP_MAX_ORDER) + bit = IOREMAP_MAX_ORDER; + else if (bit < PAGE_SHIFT) + bit = PAGE_SHIFT; + + align = 1ul << bit; + } + + size = PAGE_ALIGN(size); + if (unlikely(!size)) + return NULL; + + area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); + if (unlikely(!area)) + return NULL; + + /* + * We always allocate a guard page. + */ + size += PAGE_SIZE; + + va = alloc_vmap_area(size, align, start, end, node, gfp_mask); + if (IS_ERR(va)) { + kfree(area); + return NULL; + } + + /* + * When this function is called from __vmalloc_node_range, + * we do not add vm_struct to vmlist here to avoid + * accessing uninitialized members of vm_struct such as + * pages and nr_pages fields. They will be set later. + * To distinguish it from others, we use a VM_UNLIST flag. + */ + if (flags & VM_UNLIST) + setup_vmalloc_vm(area, va, flags, caller); + else + insert_vmalloc_vm(area, va, flags, caller); + + return area; +} + +struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, + unsigned long start, unsigned long end) +{ + return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, + __builtin_return_address(0)); +} +EXPORT_SYMBOL_GPL(__get_vm_area); + +struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, + unsigned long start, unsigned long end, + void *caller) +{ + return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, + caller); +} + +/** + * get_vm_area - reserve a contiguous kernel virtual area + * @size: size of the area + * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC + * + * Search an area of @size in the kernel virtual mapping area, + * and reserved it for out purposes. Returns the area descriptor + * on success or %NULL on failure. + */ +struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) +{ + return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, + -1, GFP_KERNEL, __builtin_return_address(0)); +} + +struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, + void *caller) +{ + return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, + -1, GFP_KERNEL, caller); +} + +static struct vm_struct *find_vm_area(const void *addr) +{ + struct vmap_area *va; + + va = find_vmap_area((unsigned long)addr); + if (va && va->flags & VM_VM_AREA) + return va->vm; + + return NULL; +} + +/** + * remove_vm_area - find and remove a continuous kernel virtual area + * @addr: base address + * + * Search for the kernel VM area starting at @addr, and remove it. + * This function returns the found VM area, but using it is NOT safe + * on SMP machines, except for its size or flags. + */ +struct vm_struct *remove_vm_area(const void *addr) +{ + struct vmap_area *va; + + va = find_vmap_area((unsigned long)addr); + if (va && va->flags & VM_VM_AREA) { + struct vm_struct *vm = va->vm; + + if (!(vm->flags & VM_UNLIST)) { + struct vm_struct *tmp, **p; + /* + * remove from list and disallow access to + * this vm_struct before unmap. (address range + * confliction is maintained by vmap.) + */ + write_lock(&vmlist_lock); + for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) + ; + *p = tmp->next; + write_unlock(&vmlist_lock); + } + + vmap_debug_free_range(va->va_start, va->va_end); + free_unmap_vmap_area(va); + vm->size -= PAGE_SIZE; + + return vm; + } + return NULL; +} + +static void __vunmap(const void *addr, int deallocate_pages) +{ + struct vm_struct *area; + + if (!addr) + return; + + if ((PAGE_SIZE-1) & (unsigned long)addr) { + WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); + return; + } + + area = remove_vm_area(addr); + if (unlikely(!area)) { + WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", + addr); + return; + } + + debug_check_no_locks_freed(addr, area->size); + debug_check_no_obj_freed(addr, area->size); + + if (deallocate_pages) { + int i; + + for (i = 0; i < area->nr_pages; i++) { + struct page *page = area->pages[i]; + + BUG_ON(!page); + __free_page(page); + } + + if (area->flags & VM_VPAGES) + vfree(area->pages); + else + kfree(area->pages); + } + + kfree(area); + return; +} + +/** + * vfree - release memory allocated by vmalloc() + * @addr: memory base address + * + * Free the virtually continuous memory area starting at @addr, as + * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is + * NULL, no operation is performed. + * + * Must not be called in interrupt context. + */ +void vfree(const void *addr) +{ + BUG_ON(in_interrupt()); + + kmemleak_free(addr); + + __vunmap(addr, 1); +} +EXPORT_SYMBOL(vfree); + +/** + * vunmap - release virtual mapping obtained by vmap() + * @addr: memory base address + * + * Free the virtually contiguous memory area starting at @addr, + * which was created from the page array passed to vmap(). + * + * Must not be called in interrupt context. + */ +void vunmap(const void *addr) +{ + BUG_ON(in_interrupt()); + might_sleep(); + __vunmap(addr, 0); +} +EXPORT_SYMBOL(vunmap); + +/** + * vmap - map an array of pages into virtually contiguous space + * @pages: array of page pointers + * @count: number of pages to map + * @flags: vm_area->flags + * @prot: page protection for the mapping + * + * Maps @count pages from @pages into contiguous kernel virtual + * space. + */ +void *vmap(struct page **pages, unsigned int count, + unsigned long flags, pgprot_t prot) +{ + struct vm_struct *area; + + might_sleep(); + + if (count > totalram_pages) + return NULL; + + area = get_vm_area_caller((count << PAGE_SHIFT), flags, + __builtin_return_address(0)); + if (!area) + return NULL; + + if (map_vm_area(area, prot, &pages)) { + vunmap(area->addr); + return NULL; + } + + return area->addr; +} +EXPORT_SYMBOL(vmap); + +static void *__vmalloc_node(unsigned long size, unsigned long align, + gfp_t gfp_mask, pgprot_t prot, + int node, void *caller); +static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, + pgprot_t prot, int node, void *caller) +{ + const int order = 0; + struct page **pages; + unsigned int nr_pages, array_size, i; + gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; + + nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; + array_size = (nr_pages * sizeof(struct page *)); + + area->nr_pages = nr_pages; + /* Please note that the recursion is strictly bounded. */ + if (array_size > PAGE_SIZE) { + pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, + PAGE_KERNEL, node, caller); + area->flags |= VM_VPAGES; + } else { + pages = kmalloc_node(array_size, nested_gfp, node); + } + area->pages = pages; + area->caller = caller; + if (!area->pages) { + remove_vm_area(area->addr); + kfree(area); + return NULL; + } + + for (i = 0; i < area->nr_pages; i++) { + struct page *page; + gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; + + if (node < 0) + page = alloc_page(tmp_mask); + else + page = alloc_pages_node(node, tmp_mask, order); + + if (unlikely(!page)) { + /* Successfully allocated i pages, free them in __vunmap() */ + area->nr_pages = i; + goto fail; + } + area->pages[i] = page; + } + + if (map_vm_area(area, prot, &pages)) + goto fail; + return area->addr; + +fail: + warn_alloc_failed(gfp_mask, order, + "vmalloc: allocation failure, allocated %ld of %ld bytes\n", + (area->nr_pages*PAGE_SIZE), area->size); + vfree(area->addr); + return NULL; +} + +/** + * __vmalloc_node_range - allocate virtually contiguous memory + * @size: allocation size + * @align: desired alignment + * @start: vm area range start + * @end: vm area range end + * @gfp_mask: flags for the page level allocator + * @prot: protection mask for the allocated pages + * @node: node to use for allocation or -1 + * @caller: caller's return address + * + * Allocate enough pages to cover @size from the page level + * allocator with @gfp_mask flags. Map them into contiguous + * kernel virtual space, using a pagetable protection of @prot. + */ +void *__vmalloc_node_range(unsigned long size, unsigned long align, + unsigned long start, unsigned long end, gfp_t gfp_mask, + pgprot_t prot, int node, void *caller) +{ + struct vm_struct *area; + void *addr; + unsigned long real_size = size; + + size = PAGE_ALIGN(size); + if (!size || (size >> PAGE_SHIFT) > totalram_pages) + goto fail; + + area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, + start, end, node, gfp_mask, caller); + if (!area) + goto fail; + + addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); + if (!addr) + return NULL; + + /* + * In this function, newly allocated vm_struct is not added + * to vmlist at __get_vm_area_node(). so, it is added here. + */ + insert_vmalloc_vmlist(area); + + /* + * A ref_count = 3 is needed because the vm_struct and vmap_area + * structures allocated in the __get_vm_area_node() function contain + * references to the virtual address of the vmalloc'ed block. + */ + kmemleak_alloc(addr, real_size, 3, gfp_mask); + + return addr; + +fail: + warn_alloc_failed(gfp_mask, 0, + "vmalloc: allocation failure: %lu bytes\n", + real_size); + return NULL; +} + +/** + * __vmalloc_node - allocate virtually contiguous memory + * @size: allocation size + * @align: desired alignment + * @gfp_mask: flags for the page level allocator + * @prot: protection mask for the allocated pages + * @node: node to use for allocation or -1 + * @caller: caller's return address + * + * Allocate enough pages to cover @size from the page level + * allocator with @gfp_mask flags. Map them into contiguous + * kernel virtual space, using a pagetable protection of @prot. + */ +static void *__vmalloc_node(unsigned long size, unsigned long align, + gfp_t gfp_mask, pgprot_t prot, + int node, void *caller) +{ + return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, + gfp_mask, prot, node, caller); +} + +void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) +{ + return __vmalloc_node(size, 1, gfp_mask, prot, -1, + __builtin_return_address(0)); +} +EXPORT_SYMBOL(__vmalloc); + +static inline void *__vmalloc_node_flags(unsigned long size, + int node, gfp_t flags) +{ + return __vmalloc_node(size, 1, flags, PAGE_KERNEL, + node, __builtin_return_address(0)); +} + +/** + * vmalloc - allocate virtually contiguous memory + * @size: allocation size + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * + * For tight control over page level allocator and protection flags + * use __vmalloc() instead. + */ +void *vmalloc(unsigned long size) +{ + return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); +} +EXPORT_SYMBOL(vmalloc); + +/** + * vzalloc - allocate virtually contiguous memory with zero fill + * @size: allocation size + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * The memory allocated is set to zero. + * + * For tight control over page level allocator and protection flags + * use __vmalloc() instead. + */ +void *vzalloc(unsigned long size) +{ + return __vmalloc_node_flags(size, -1, + GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); +} +EXPORT_SYMBOL(vzalloc); + +/** + * vmalloc_user - allocate zeroed virtually contiguous memory for userspace + * @size: allocation size + * + * The resulting memory area is zeroed so it can be mapped to userspace + * without leaking data. + */ +void *vmalloc_user(unsigned long size) +{ + struct vm_struct *area; + void *ret; + + ret = __vmalloc_node(size, SHMLBA, + GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, + PAGE_KERNEL, -1, __builtin_return_address(0)); + if (ret) { + area = find_vm_area(ret); + area->flags |= VM_USERMAP; + } + return ret; +} +EXPORT_SYMBOL(vmalloc_user); + +/** + * vmalloc_node - allocate memory on a specific node + * @size: allocation size + * @node: numa node + * + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * + * For tight control over page level allocator and protection flags + * use __vmalloc() instead. + */ +void *vmalloc_node(unsigned long size, int node) +{ + return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, + node, __builtin_return_address(0)); +} +EXPORT_SYMBOL(vmalloc_node); + +/** + * vzalloc_node - allocate memory on a specific node with zero fill + * @size: allocation size + * @node: numa node + * + * Allocate enough pages to cover @size from the page level + * allocator and map them into contiguous kernel virtual space. + * The memory allocated is set to zero. + * + * For tight control over page level allocator and protection flags + * use __vmalloc_node() instead. + */ +void *vzalloc_node(unsigned long size, int node) +{ + return __vmalloc_node_flags(size, node, + GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); +} +EXPORT_SYMBOL(vzalloc_node); + +#ifndef PAGE_KERNEL_EXEC +# define PAGE_KERNEL_EXEC PAGE_KERNEL +#endif + +/** + * vmalloc_exec - allocate virtually contiguous, executable memory + * @size: allocation size + * + * Kernel-internal function to allocate enough pages to cover @size + * the page level allocator and map them into contiguous and + * executable kernel virtual space. + * + * For tight control over page level allocator and protection flags + * use __vmalloc() instead. + */ + +void *vmalloc_exec(unsigned long size) +{ + return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, + -1, __builtin_return_address(0)); +} + +#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) +#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL +#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) +#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL +#else +#define GFP_VMALLOC32 GFP_KERNEL +#endif + +/** + * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) + * @size: allocation size + * + * Allocate enough 32bit PA addressable pages to cover @size from the + * page level allocator and map them into contiguous kernel virtual space. + */ +void *vmalloc_32(unsigned long size) +{ + return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, + -1, __builtin_return_address(0)); +} +EXPORT_SYMBOL(vmalloc_32); + +/** + * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory + * @size: allocation size + * + * The resulting memory area is 32bit addressable and zeroed so it can be + * mapped to userspace without leaking data. + */ +void *vmalloc_32_user(unsigned long size) +{ + struct vm_struct *area; + void *ret; + + ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, + -1, __builtin_return_address(0)); + if (ret) { + area = find_vm_area(ret); + area->flags |= VM_USERMAP; + } + return ret; +} +EXPORT_SYMBOL(vmalloc_32_user); + +/* + * small helper routine , copy contents to buf from addr. + * If the page is not present, fill zero. + */ + +static int aligned_vread(char *buf, char *addr, unsigned long count) +{ + struct page *p; + int copied = 0; + + while (count) { + unsigned long offset, length; + + offset = (unsigned long)addr & ~PAGE_MASK; + length = PAGE_SIZE - offset; + if (length > count) + length = count; + p = vmalloc_to_page(addr); + /* + * To do safe access to this _mapped_ area, we need + * lock. But adding lock here means that we need to add + * overhead of vmalloc()/vfree() calles for this _debug_ + * interface, rarely used. Instead of that, we'll use + * kmap() and get small overhead in this access function. + */ + if (p) { + /* + * we can expect USER0 is not used (see vread/vwrite's + * function description) + */ + void *map = kmap_atomic(p); + memcpy(buf, map + offset, length); + kunmap_atomic(map); + } else + memset(buf, 0, length); + + addr += length; + buf += length; + copied += length; + count -= length; + } + return copied; +} + +static int aligned_vwrite(char *buf, char *addr, unsigned long count) +{ + struct page *p; + int copied = 0; + + while (count) { + unsigned long offset, length; + + offset = (unsigned long)addr & ~PAGE_MASK; + length = PAGE_SIZE - offset; + if (length > count) + length = count; + p = vmalloc_to_page(addr); + /* + * To do safe access to this _mapped_ area, we need + * lock. But adding lock here means that we need to add + * overhead of vmalloc()/vfree() calles for this _debug_ + * interface, rarely used. Instead of that, we'll use + * kmap() and get small overhead in this access function. + */ + if (p) { + /* + * we can expect USER0 is not used (see vread/vwrite's + * function description) + */ + void *map = kmap_atomic(p); + memcpy(map + offset, buf, length); + kunmap_atomic(map); + } + addr += length; + buf += length; + copied += length; + count -= length; + } + return copied; +} + +/** + * vread() - read vmalloc area in a safe way. + * @buf: buffer for reading data + * @addr: vm address. + * @count: number of bytes to be read. + * + * Returns # of bytes which addr and buf should be increased. + * (same number to @count). Returns 0 if [addr...addr+count) doesn't + * includes any intersect with alive vmalloc area. + * + * This function checks that addr is a valid vmalloc'ed area, and + * copy data from that area to a given buffer. If the given memory range + * of [addr...addr+count) includes some valid address, data is copied to + * proper area of @buf. If there are memory holes, they'll be zero-filled. + * IOREMAP area is treated as memory hole and no copy is done. + * + * If [addr...addr+count) doesn't includes any intersects with alive + * vm_struct area, returns 0. + * @buf should be kernel's buffer. Because this function uses KM_USER0, + * the caller should guarantee KM_USER0 is not used. + * + * Note: In usual ops, vread() is never necessary because the caller + * should know vmalloc() area is valid and can use memcpy(). + * This is for routines which have to access vmalloc area without + * any informaion, as /dev/kmem. + * + */ + +long vread(char *buf, char *addr, unsigned long count) +{ + struct vm_struct *tmp; + char *vaddr, *buf_start = buf; + unsigned long buflen = count; + unsigned long n; + + /* Don't allow overflow */ + if ((unsigned long) addr + count < count) + count = -(unsigned long) addr; + + read_lock(&vmlist_lock); + for (tmp = vmlist; count && tmp; tmp = tmp->next) { + vaddr = (char *) tmp->addr; + if (addr >= vaddr + tmp->size - PAGE_SIZE) + continue; + while (addr < vaddr) { + if (count == 0) + goto finished; + *buf = '\0'; + buf++; + addr++; + count--; + } + n = vaddr + tmp->size - PAGE_SIZE - addr; + if (n > count) + n = count; + if (!(tmp->flags & VM_IOREMAP)) + aligned_vread(buf, addr, n); + else /* IOREMAP area is treated as memory hole */ + memset(buf, 0, n); + buf += n; + addr += n; + count -= n; + } +finished: + read_unlock(&vmlist_lock); + + if (buf == buf_start) + return 0; + /* zero-fill memory holes */ + if (buf != buf_start + buflen) + memset(buf, 0, buflen - (buf - buf_start)); + + return buflen; +} + +/** + * vwrite() - write vmalloc area in a safe way. + * @buf: buffer for source data + * @addr: vm address. + * @count: number of bytes to be read. + * + * Returns # of bytes which addr and buf should be incresed. + * (same number to @count). + * If [addr...addr+count) doesn't includes any intersect with valid + * vmalloc area, returns 0. + * + * This function checks that addr is a valid vmalloc'ed area, and + * copy data from a buffer to the given addr. If specified range of + * [addr...addr+count) includes some valid address, data is copied from + * proper area of @buf. If there are memory holes, no copy to hole. + * IOREMAP area is treated as memory hole and no copy is done. + * + * If [addr...addr+count) doesn't includes any intersects with alive + * vm_struct area, returns 0. + * @buf should be kernel's buffer. Because this function uses KM_USER0, + * the caller should guarantee KM_USER0 is not used. + * + * Note: In usual ops, vwrite() is never necessary because the caller + * should know vmalloc() area is valid and can use memcpy(). + * This is for routines which have to access vmalloc area without + * any informaion, as /dev/kmem. + */ + +long vwrite(char *buf, char *addr, unsigned long count) +{ + struct vm_struct *tmp; + char *vaddr; + unsigned long n, buflen; + int copied = 0; + + /* Don't allow overflow */ + if ((unsigned long) addr + count < count) + count = -(unsigned long) addr; + buflen = count; + + read_lock(&vmlist_lock); + for (tmp = vmlist; count && tmp; tmp = tmp->next) { + vaddr = (char *) tmp->addr; + if (addr >= vaddr + tmp->size - PAGE_SIZE) + continue; + while (addr < vaddr) { + if (count == 0) + goto finished; + buf++; + addr++; + count--; + } + n = vaddr + tmp->size - PAGE_SIZE - addr; + if (n > count) + n = count; + if (!(tmp->flags & VM_IOREMAP)) { + aligned_vwrite(buf, addr, n); + copied++; + } + buf += n; + addr += n; + count -= n; + } +finished: + read_unlock(&vmlist_lock); + if (!copied) + return 0; + return buflen; +} + +/** + * remap_vmalloc_range - map vmalloc pages to userspace + * @vma: vma to cover (map full range of vma) + * @addr: vmalloc memory + * @pgoff: number of pages into addr before first page to map + * + * Returns: 0 for success, -Exxx on failure + * + * This function checks that addr is a valid vmalloc'ed area, and + * that it is big enough to cover the vma. Will return failure if + * that criteria isn't met. + * + * Similar to remap_pfn_range() (see mm/memory.c) + */ +int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, + unsigned long pgoff) +{ + struct vm_struct *area; + unsigned long uaddr = vma->vm_start; + unsigned long usize = vma->vm_end - vma->vm_start; + + if ((PAGE_SIZE-1) & (unsigned long)addr) + return -EINVAL; + + area = find_vm_area(addr); + if (!area) + return -EINVAL; + + if (!(area->flags & VM_USERMAP)) + return -EINVAL; + + if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) + return -EINVAL; + + addr += pgoff << PAGE_SHIFT; + do { + struct page *page = vmalloc_to_page(addr); + int ret; + + ret = vm_insert_page(vma, uaddr, page); + if (ret) + return ret; + + uaddr += PAGE_SIZE; + addr += PAGE_SIZE; + usize -= PAGE_SIZE; + } while (usize > 0); + + /* Prevent "things" like memory migration? VM_flags need a cleanup... */ + vma->vm_flags |= VM_RESERVED; + + return 0; +} +EXPORT_SYMBOL(remap_vmalloc_range); + +/* + * Implement a stub for vmalloc_sync_all() if the architecture chose not to + * have one. + */ +void __attribute__((weak)) vmalloc_sync_all(void) +{ +} + + +static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) +{ + pte_t ***p = data; + + if (p) { + *(*p) = pte; + (*p)++; + } + return 0; +} + +/** + * alloc_vm_area - allocate a range of kernel address space + * @size: size of the area + * @ptes: returns the PTEs for the address space + * + * Returns: NULL on failure, vm_struct on success + * + * This function reserves a range of kernel address space, and + * allocates pagetables to map that range. No actual mappings + * are created. + * + * If @ptes is non-NULL, pointers to the PTEs (in init_mm) + * allocated for the VM area are returned. + */ +struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) +{ + struct vm_struct *area; + + area = get_vm_area_caller(size, VM_IOREMAP, + __builtin_return_address(0)); + if (area == NULL) + return NULL; + + /* + * This ensures that page tables are constructed for this region + * of kernel virtual address space and mapped into init_mm. + */ + if (apply_to_page_range(&init_mm, (unsigned long)area->addr, + size, f, ptes ? &ptes : NULL)) { + free_vm_area(area); + return NULL; + } + + return area; +} +EXPORT_SYMBOL_GPL(alloc_vm_area); + +void free_vm_area(struct vm_struct *area) +{ + struct vm_struct *ret; + ret = remove_vm_area(area->addr); + BUG_ON(ret != area); + kfree(area); +} +EXPORT_SYMBOL_GPL(free_vm_area); + +#ifdef CONFIG_SMP +static struct vmap_area *node_to_va(struct rb_node *n) +{ + return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; +} + +/** + * pvm_find_next_prev - find the next and prev vmap_area surrounding @end + * @end: target address + * @pnext: out arg for the next vmap_area + * @pprev: out arg for the previous vmap_area + * + * Returns: %true if either or both of next and prev are found, + * %false if no vmap_area exists + * + * Find vmap_areas end addresses of which enclose @end. ie. if not + * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. + */ +static bool pvm_find_next_prev(unsigned long end, + struct vmap_area **pnext, + struct vmap_area **pprev) +{ + struct rb_node *n = vmap_area_root.rb_node; + struct vmap_area *va = NULL; + + while (n) { + va = rb_entry(n, struct vmap_area, rb_node); + if (end < va->va_end) + n = n->rb_left; + else if (end > va->va_end) + n = n->rb_right; + else + break; + } + + if (!va) + return false; + + if (va->va_end > end) { + *pnext = va; + *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); + } else { + *pprev = va; + *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); + } + return true; +} + +/** + * pvm_determine_end - find the highest aligned address between two vmap_areas + * @pnext: in/out arg for the next vmap_area + * @pprev: in/out arg for the previous vmap_area + * @align: alignment + * + * Returns: determined end address + * + * Find the highest aligned address between *@pnext and *@pprev below + * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned + * down address is between the end addresses of the two vmap_areas. + * + * Please note that the address returned by this function may fall + * inside *@pnext vmap_area. The caller is responsible for checking + * that. + */ +static unsigned long pvm_determine_end(struct vmap_area **pnext, + struct vmap_area **pprev, + unsigned long align) +{ + const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); + unsigned long addr; + + if (*pnext) + addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); + else + addr = vmalloc_end; + + while (*pprev && (*pprev)->va_end > addr) { + *pnext = *pprev; + *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); + } + + return addr; +} + +/** + * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator + * @offsets: array containing offset of each area + * @sizes: array containing size of each area + * @nr_vms: the number of areas to allocate + * @align: alignment, all entries in @offsets and @sizes must be aligned to this + * + * Returns: kmalloc'd vm_struct pointer array pointing to allocated + * vm_structs on success, %NULL on failure + * + * Percpu allocator wants to use congruent vm areas so that it can + * maintain the offsets among percpu areas. This function allocates + * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to + * be scattered pretty far, distance between two areas easily going up + * to gigabytes. To avoid interacting with regular vmallocs, these + * areas are allocated from top. + * + * Despite its complicated look, this allocator is rather simple. It + * does everything top-down and scans areas from the end looking for + * matching slot. While scanning, if any of the areas overlaps with + * existing vmap_area, the base address is pulled down to fit the + * area. Scanning is repeated till all the areas fit and then all + * necessary data structres are inserted and the result is returned. + */ +struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, + const size_t *sizes, int nr_vms, + size_t align) +{ + const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); + const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); + struct vmap_area **vas, *prev, *next; + struct vm_struct **vms; + int area, area2, last_area, term_area; + unsigned long base, start, end, last_end; + bool purged = false; + + /* verify parameters and allocate data structures */ + BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); + for (last_area = 0, area = 0; area < nr_vms; area++) { + start = offsets[area]; + end = start + sizes[area]; + + /* is everything aligned properly? */ + BUG_ON(!IS_ALIGNED(offsets[area], align)); + BUG_ON(!IS_ALIGNED(sizes[area], align)); + + /* detect the area with the highest address */ + if (start > offsets[last_area]) + last_area = area; + + for (area2 = 0; area2 < nr_vms; area2++) { + unsigned long start2 = offsets[area2]; + unsigned long end2 = start2 + sizes[area2]; + + if (area2 == area) + continue; + + BUG_ON(start2 >= start && start2 < end); + BUG_ON(end2 <= end && end2 > start); + } + } + last_end = offsets[last_area] + sizes[last_area]; + + if (vmalloc_end - vmalloc_start < last_end) { + WARN_ON(true); + return NULL; + } + + vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL); + vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL); + if (!vas || !vms) + goto err_free2; + + for (area = 0; area < nr_vms; area++) { + vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); + vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); + if (!vas[area] || !vms[area]) + goto err_free; + } +retry: + spin_lock(&vmap_area_lock); + + /* start scanning - we scan from the top, begin with the last area */ + area = term_area = last_area; + start = offsets[area]; + end = start + sizes[area]; + + if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { + base = vmalloc_end - last_end; + goto found; + } + base = pvm_determine_end(&next, &prev, align) - end; + + while (true) { + BUG_ON(next && next->va_end <= base + end); + BUG_ON(prev && prev->va_end > base + end); + + /* + * base might have underflowed, add last_end before + * comparing. + */ + if (base + last_end < vmalloc_start + last_end) { + spin_unlock(&vmap_area_lock); + if (!purged) { + purge_vmap_area_lazy(); + purged = true; + goto retry; + } + goto err_free; + } + + /* + * If next overlaps, move base downwards so that it's + * right below next and then recheck. + */ + if (next && next->va_start < base + end) { + base = pvm_determine_end(&next, &prev, align) - end; + term_area = area; + continue; + } + + /* + * If prev overlaps, shift down next and prev and move + * base so that it's right below new next and then + * recheck. + */ + if (prev && prev->va_end > base + start) { + next = prev; + prev = node_to_va(rb_prev(&next->rb_node)); + base = pvm_determine_end(&next, &prev, align) - end; + term_area = area; + continue; + } + + /* + * This area fits, move on to the previous one. If + * the previous one is the terminal one, we're done. + */ + area = (area + nr_vms - 1) % nr_vms; + if (area == term_area) + break; + start = offsets[area]; + end = start + sizes[area]; + pvm_find_next_prev(base + end, &next, &prev); + } +found: + /* we've found a fitting base, insert all va's */ + for (area = 0; area < nr_vms; area++) { + struct vmap_area *va = vas[area]; + + va->va_start = base + offsets[area]; + va->va_end = va->va_start + sizes[area]; + __insert_vmap_area(va); + } + + vmap_area_pcpu_hole = base + offsets[last_area]; + + spin_unlock(&vmap_area_lock); + + /* insert all vm's */ + for (area = 0; area < nr_vms; area++) + insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, + pcpu_get_vm_areas); + + kfree(vas); + return vms; + +err_free: + for (area = 0; area < nr_vms; area++) { + kfree(vas[area]); + kfree(vms[area]); + } +err_free2: + kfree(vas); + kfree(vms); + return NULL; +} + +/** + * pcpu_free_vm_areas - free vmalloc areas for percpu allocator + * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() + * @nr_vms: the number of allocated areas + * + * Free vm_structs and the array allocated by pcpu_get_vm_areas(). + */ +void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) +{ + int i; + + for (i = 0; i < nr_vms; i++) + free_vm_area(vms[i]); + kfree(vms); +} +#endif /* CONFIG_SMP */ + +#ifdef CONFIG_PROC_FS +static void *s_start(struct seq_file *m, loff_t *pos) + __acquires(&vmlist_lock) +{ + loff_t n = *pos; + struct vm_struct *v; + + read_lock(&vmlist_lock); + v = vmlist; + while (n > 0 && v) { + n--; + v = v->next; + } + if (!n) + return v; + + return NULL; + +} + +static void *s_next(struct seq_file *m, void *p, loff_t *pos) +{ + struct vm_struct *v = p; + + ++*pos; + return v->next; +} + +static void s_stop(struct seq_file *m, void *p) + __releases(&vmlist_lock) +{ + read_unlock(&vmlist_lock); +} + +static void show_numa_info(struct seq_file *m, struct vm_struct *v) +{ + if (NUMA_BUILD) { + unsigned int nr, *counters = m->private; + + if (!counters) + return; + + memset(counters, 0, nr_node_ids * sizeof(unsigned int)); + + for (nr = 0; nr < v->nr_pages; nr++) + counters[page_to_nid(v->pages[nr])]++; + + for_each_node_state(nr, N_HIGH_MEMORY) + if (counters[nr]) + seq_printf(m, " N%u=%u", nr, counters[nr]); + } +} + +static int s_show(struct seq_file *m, void *p) +{ + struct vm_struct *v = p; + + seq_printf(m, "0x%p-0x%p %7ld", + v->addr, v->addr + v->size, v->size); + + if (v->caller) + seq_printf(m, " %pS", v->caller); + + if (v->nr_pages) + seq_printf(m, " pages=%d", v->nr_pages); + + if (v->phys_addr) + seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); + + if (v->flags & VM_IOREMAP) + seq_printf(m, " ioremap"); + + if (v->flags & VM_ALLOC) + seq_printf(m, " vmalloc"); + + if (v->flags & VM_MAP) + seq_printf(m, " vmap"); + + if (v->flags & VM_USERMAP) + seq_printf(m, " user"); + + if (v->flags & VM_VPAGES) + seq_printf(m, " vpages"); + + show_numa_info(m, v); + seq_putc(m, '\n'); + return 0; +} + +static const struct seq_operations vmalloc_op = { + .start = s_start, + .next = s_next, + .stop = s_stop, + .show = s_show, +}; + +static int vmalloc_open(struct inode *inode, struct file *file) +{ + unsigned int *ptr = NULL; + int ret; + + if (NUMA_BUILD) { + ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); + if (ptr == NULL) + return -ENOMEM; + } + ret = seq_open(file, &vmalloc_op); + if (!ret) { + struct seq_file *m = file->private_data; + m->private = ptr; + } else + kfree(ptr); + return ret; +} + +static const struct file_operations proc_vmalloc_operations = { + .open = vmalloc_open, + .read = seq_read, + .llseek = seq_lseek, + .release = seq_release_private, +}; + +static int __init proc_vmalloc_init(void) +{ + proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); + return 0; +} +module_init(proc_vmalloc_init); +#endif + |