diff options
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r-- | mm/page_alloc.c | 5697 |
1 files changed, 5697 insertions, 0 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c new file mode 100644 index 00000000..716061f4 --- /dev/null +++ b/mm/page_alloc.c @@ -0,0 +1,5697 @@ +/* + * linux/mm/page_alloc.c + * + * Manages the free list, the system allocates free pages here. + * Note that kmalloc() lives in slab.c + * + * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds + * Swap reorganised 29.12.95, Stephen Tweedie + * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 + * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 + * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 + * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 + * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 + * (lots of bits borrowed from Ingo Molnar & Andrew Morton) + */ + +#include <linux/stddef.h> +#include <linux/mm.h> +#include <linux/swap.h> +#include <linux/interrupt.h> +#include <linux/pagemap.h> +#include <linux/jiffies.h> +#include <linux/bootmem.h> +#include <linux/memblock.h> +#include <linux/compiler.h> +#include <linux/kernel.h> +#include <linux/kmemcheck.h> +#include <linux/module.h> +#include <linux/suspend.h> +#include <linux/pagevec.h> +#include <linux/blkdev.h> +#include <linux/slab.h> +#include <linux/ratelimit.h> +#include <linux/oom.h> +#include <linux/notifier.h> +#include <linux/topology.h> +#include <linux/sysctl.h> +#include <linux/cpu.h> +#include <linux/cpuset.h> +#include <linux/memory_hotplug.h> +#include <linux/nodemask.h> +#include <linux/vmalloc.h> +#include <linux/vmstat.h> +#include <linux/mempolicy.h> +#include <linux/stop_machine.h> +#include <linux/sort.h> +#include <linux/pfn.h> +#include <linux/backing-dev.h> +#include <linux/fault-inject.h> +#include <linux/page-isolation.h> +#include <linux/page_cgroup.h> +#include <linux/debugobjects.h> +#include <linux/kmemleak.h> +#include <linux/memory.h> +#include <linux/compaction.h> +#include <trace/events/kmem.h> +#include <linux/ftrace_event.h> +#include <linux/memcontrol.h> +#include <linux/prefetch.h> +#include <linux/page-debug-flags.h> + +#include <asm/tlbflush.h> +#include <asm/div64.h> +#include "internal.h" + +#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID +DEFINE_PER_CPU(int, numa_node); +EXPORT_PER_CPU_SYMBOL(numa_node); +#endif + +#ifdef CONFIG_HAVE_MEMORYLESS_NODES +/* + * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. + * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. + * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() + * defined in <linux/topology.h>. + */ +DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ +EXPORT_PER_CPU_SYMBOL(_numa_mem_); +#endif + +/* + * Array of node states. + */ +nodemask_t node_states[NR_NODE_STATES] __read_mostly = { + [N_POSSIBLE] = NODE_MASK_ALL, + [N_ONLINE] = { { [0] = 1UL } }, +#ifndef CONFIG_NUMA + [N_NORMAL_MEMORY] = { { [0] = 1UL } }, +#ifdef CONFIG_HIGHMEM + [N_HIGH_MEMORY] = { { [0] = 1UL } }, +#endif + [N_CPU] = { { [0] = 1UL } }, +#endif /* NUMA */ +}; +EXPORT_SYMBOL(node_states); + +unsigned long totalram_pages __read_mostly; +unsigned long totalreserve_pages __read_mostly; +/* + * When calculating the number of globally allowed dirty pages, there + * is a certain number of per-zone reserves that should not be + * considered dirtyable memory. This is the sum of those reserves + * over all existing zones that contribute dirtyable memory. + */ +unsigned long dirty_balance_reserve __read_mostly; + +int percpu_pagelist_fraction; +gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; + +#ifdef CONFIG_PM_SLEEP +/* + * The following functions are used by the suspend/hibernate code to temporarily + * change gfp_allowed_mask in order to avoid using I/O during memory allocations + * while devices are suspended. To avoid races with the suspend/hibernate code, + * they should always be called with pm_mutex held (gfp_allowed_mask also should + * only be modified with pm_mutex held, unless the suspend/hibernate code is + * guaranteed not to run in parallel with that modification). + */ + +static gfp_t saved_gfp_mask; + +void pm_restore_gfp_mask(void) +{ + WARN_ON(!mutex_is_locked(&pm_mutex)); + if (saved_gfp_mask) { + gfp_allowed_mask = saved_gfp_mask; + saved_gfp_mask = 0; + } +} + +void pm_restrict_gfp_mask(void) +{ + WARN_ON(!mutex_is_locked(&pm_mutex)); + WARN_ON(saved_gfp_mask); + saved_gfp_mask = gfp_allowed_mask; + gfp_allowed_mask &= ~GFP_IOFS; +} + +bool pm_suspended_storage(void) +{ + if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) + return false; + return true; +} +#endif /* CONFIG_PM_SLEEP */ + +#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE +int pageblock_order __read_mostly; +#endif + +static void __free_pages_ok(struct page *page, unsigned int order); + +/* + * results with 256, 32 in the lowmem_reserve sysctl: + * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) + * 1G machine -> (16M dma, 784M normal, 224M high) + * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA + * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL + * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA + * + * TBD: should special case ZONE_DMA32 machines here - in those we normally + * don't need any ZONE_NORMAL reservation + */ +int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { +#ifdef CONFIG_ZONE_DMA + 256, +#endif +#ifdef CONFIG_ZONE_DMA32 + 256, +#endif +#ifdef CONFIG_HIGHMEM + 32, +#endif + 32, +}; + +EXPORT_SYMBOL(totalram_pages); + +static char * const zone_names[MAX_NR_ZONES] = { +#ifdef CONFIG_ZONE_DMA + "DMA", +#endif +#ifdef CONFIG_ZONE_DMA32 + "DMA32", +#endif + "Normal", +#ifdef CONFIG_HIGHMEM + "HighMem", +#endif + "Movable", +}; + +int min_free_kbytes = 1024; +int min_free_order_shift = 1; + +static unsigned long __meminitdata nr_kernel_pages; +static unsigned long __meminitdata nr_all_pages; +static unsigned long __meminitdata dma_reserve; + +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP +static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; +static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; +static unsigned long __initdata required_kernelcore; +static unsigned long __initdata required_movablecore; +static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; + +/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ +int movable_zone; +EXPORT_SYMBOL(movable_zone); +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + +#if MAX_NUMNODES > 1 +int nr_node_ids __read_mostly = MAX_NUMNODES; +int nr_online_nodes __read_mostly = 1; +EXPORT_SYMBOL(nr_node_ids); +EXPORT_SYMBOL(nr_online_nodes); +#endif + +int page_group_by_mobility_disabled __read_mostly; + +static void set_pageblock_migratetype(struct page *page, int migratetype) +{ + + if (unlikely(page_group_by_mobility_disabled)) + migratetype = MIGRATE_UNMOVABLE; + + set_pageblock_flags_group(page, (unsigned long)migratetype, + PB_migrate, PB_migrate_end); +} + +bool oom_killer_disabled __read_mostly; + +#ifdef CONFIG_DEBUG_VM +static int page_outside_zone_boundaries(struct zone *zone, struct page *page) +{ + int ret = 0; + unsigned seq; + unsigned long pfn = page_to_pfn(page); + + do { + seq = zone_span_seqbegin(zone); + if (pfn >= zone->zone_start_pfn + zone->spanned_pages) + ret = 1; + else if (pfn < zone->zone_start_pfn) + ret = 1; + } while (zone_span_seqretry(zone, seq)); + + return ret; +} + +static int page_is_consistent(struct zone *zone, struct page *page) +{ + if (!pfn_valid_within(page_to_pfn(page))) + return 0; + if (zone != page_zone(page)) + return 0; + + return 1; +} +/* + * Temporary debugging check for pages not lying within a given zone. + */ +static int bad_range(struct zone *zone, struct page *page) +{ + if (page_outside_zone_boundaries(zone, page)) + return 1; + if (!page_is_consistent(zone, page)) + return 1; + + return 0; +} +#else +static inline int bad_range(struct zone *zone, struct page *page) +{ + return 0; +} +#endif + +static void bad_page(struct page *page) +{ + static unsigned long resume; + static unsigned long nr_shown; + static unsigned long nr_unshown; + + /* Don't complain about poisoned pages */ + if (PageHWPoison(page)) { + reset_page_mapcount(page); /* remove PageBuddy */ + return; + } + + /* + * Allow a burst of 60 reports, then keep quiet for that minute; + * or allow a steady drip of one report per second. + */ + if (nr_shown == 60) { + if (time_before(jiffies, resume)) { + nr_unshown++; + goto out; + } + if (nr_unshown) { + printk(KERN_ALERT + "BUG: Bad page state: %lu messages suppressed\n", + nr_unshown); + nr_unshown = 0; + } + nr_shown = 0; + } + if (nr_shown++ == 0) + resume = jiffies + 60 * HZ; + + printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", + current->comm, page_to_pfn(page)); + dump_page(page); + + print_modules(); + dump_stack(); +out: + /* Leave bad fields for debug, except PageBuddy could make trouble */ + reset_page_mapcount(page); /* remove PageBuddy */ + add_taint(TAINT_BAD_PAGE); +} + +/* + * Higher-order pages are called "compound pages". They are structured thusly: + * + * The first PAGE_SIZE page is called the "head page". + * + * The remaining PAGE_SIZE pages are called "tail pages". + * + * All pages have PG_compound set. All tail pages have their ->first_page + * pointing at the head page. + * + * The first tail page's ->lru.next holds the address of the compound page's + * put_page() function. Its ->lru.prev holds the order of allocation. + * This usage means that zero-order pages may not be compound. + */ + +static void free_compound_page(struct page *page) +{ + __free_pages_ok(page, compound_order(page)); +} + +void prep_compound_page(struct page *page, unsigned long order) +{ + int i; + int nr_pages = 1 << order; + + set_compound_page_dtor(page, free_compound_page); + set_compound_order(page, order); + __SetPageHead(page); + for (i = 1; i < nr_pages; i++) { + struct page *p = page + i; + __SetPageTail(p); + set_page_count(p, 0); + p->first_page = page; + } +} + +/* update __split_huge_page_refcount if you change this function */ +static int destroy_compound_page(struct page *page, unsigned long order) +{ + int i; + int nr_pages = 1 << order; + int bad = 0; + + if (unlikely(compound_order(page) != order) || + unlikely(!PageHead(page))) { + bad_page(page); + bad++; + } + + __ClearPageHead(page); + + for (i = 1; i < nr_pages; i++) { + struct page *p = page + i; + + if (unlikely(!PageTail(p) || (p->first_page != page))) { + bad_page(page); + bad++; + } + __ClearPageTail(p); + } + + return bad; +} + +static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) +{ + int i; + + /* + * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO + * and __GFP_HIGHMEM from hard or soft interrupt context. + */ + VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); + for (i = 0; i < (1 << order); i++) + clear_highpage(page + i); +} + +#ifdef CONFIG_DEBUG_PAGEALLOC +unsigned int _debug_guardpage_minorder; + +static int __init debug_guardpage_minorder_setup(char *buf) +{ + unsigned long res; + + if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { + printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); + return 0; + } + _debug_guardpage_minorder = res; + printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); + return 0; +} +__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); + +static inline void set_page_guard_flag(struct page *page) +{ + __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); +} + +static inline void clear_page_guard_flag(struct page *page) +{ + __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); +} +#else +static inline void set_page_guard_flag(struct page *page) { } +static inline void clear_page_guard_flag(struct page *page) { } +#endif + +static inline void set_page_order(struct page *page, int order) +{ + set_page_private(page, order); + __SetPageBuddy(page); +} + +static inline void rmv_page_order(struct page *page) +{ + __ClearPageBuddy(page); + set_page_private(page, 0); +} + +/* + * Locate the struct page for both the matching buddy in our + * pair (buddy1) and the combined O(n+1) page they form (page). + * + * 1) Any buddy B1 will have an order O twin B2 which satisfies + * the following equation: + * B2 = B1 ^ (1 << O) + * For example, if the starting buddy (buddy2) is #8 its order + * 1 buddy is #10: + * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 + * + * 2) Any buddy B will have an order O+1 parent P which + * satisfies the following equation: + * P = B & ~(1 << O) + * + * Assumption: *_mem_map is contiguous at least up to MAX_ORDER + */ +static inline unsigned long +__find_buddy_index(unsigned long page_idx, unsigned int order) +{ + return page_idx ^ (1 << order); +} + +/* + * This function checks whether a page is free && is the buddy + * we can do coalesce a page and its buddy if + * (a) the buddy is not in a hole && + * (b) the buddy is in the buddy system && + * (c) a page and its buddy have the same order && + * (d) a page and its buddy are in the same zone. + * + * For recording whether a page is in the buddy system, we set ->_mapcount -2. + * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. + * + * For recording page's order, we use page_private(page). + */ +static inline int page_is_buddy(struct page *page, struct page *buddy, + int order) +{ + if (!pfn_valid_within(page_to_pfn(buddy))) + return 0; + + if (page_zone_id(page) != page_zone_id(buddy)) + return 0; + + if (page_is_guard(buddy) && page_order(buddy) == order) { + VM_BUG_ON(page_count(buddy) != 0); + return 1; + } + + if (PageBuddy(buddy) && page_order(buddy) == order) { + VM_BUG_ON(page_count(buddy) != 0); + return 1; + } + return 0; +} + +/* + * Freeing function for a buddy system allocator. + * + * The concept of a buddy system is to maintain direct-mapped table + * (containing bit values) for memory blocks of various "orders". + * The bottom level table contains the map for the smallest allocatable + * units of memory (here, pages), and each level above it describes + * pairs of units from the levels below, hence, "buddies". + * At a high level, all that happens here is marking the table entry + * at the bottom level available, and propagating the changes upward + * as necessary, plus some accounting needed to play nicely with other + * parts of the VM system. + * At each level, we keep a list of pages, which are heads of continuous + * free pages of length of (1 << order) and marked with _mapcount -2. Page's + * order is recorded in page_private(page) field. + * So when we are allocating or freeing one, we can derive the state of the + * other. That is, if we allocate a small block, and both were + * free, the remainder of the region must be split into blocks. + * If a block is freed, and its buddy is also free, then this + * triggers coalescing into a block of larger size. + * + * -- wli + */ + +static inline void __free_one_page(struct page *page, + struct zone *zone, unsigned int order, + int migratetype) +{ + unsigned long page_idx; + unsigned long combined_idx; + unsigned long uninitialized_var(buddy_idx); + struct page *buddy; + + if (unlikely(PageCompound(page))) + if (unlikely(destroy_compound_page(page, order))) + return; + + VM_BUG_ON(migratetype == -1); + + page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); + + VM_BUG_ON(page_idx & ((1 << order) - 1)); + VM_BUG_ON(bad_range(zone, page)); + + while (order < MAX_ORDER-1) { + buddy_idx = __find_buddy_index(page_idx, order); + buddy = page + (buddy_idx - page_idx); + if (!page_is_buddy(page, buddy, order)) + break; + /* + * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, + * merge with it and move up one order. + */ + if (page_is_guard(buddy)) { + clear_page_guard_flag(buddy); + set_page_private(page, 0); + __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); + } else { + list_del(&buddy->lru); + zone->free_area[order].nr_free--; + rmv_page_order(buddy); + } + combined_idx = buddy_idx & page_idx; + page = page + (combined_idx - page_idx); + page_idx = combined_idx; + order++; + } + set_page_order(page, order); + + /* + * If this is not the largest possible page, check if the buddy + * of the next-highest order is free. If it is, it's possible + * that pages are being freed that will coalesce soon. In case, + * that is happening, add the free page to the tail of the list + * so it's less likely to be used soon and more likely to be merged + * as a higher order page + */ + if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { + struct page *higher_page, *higher_buddy; + combined_idx = buddy_idx & page_idx; + higher_page = page + (combined_idx - page_idx); + buddy_idx = __find_buddy_index(combined_idx, order + 1); + higher_buddy = page + (buddy_idx - combined_idx); + if (page_is_buddy(higher_page, higher_buddy, order + 1)) { + list_add_tail(&page->lru, + &zone->free_area[order].free_list[migratetype]); + goto out; + } + } + + list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); +out: + zone->free_area[order].nr_free++; +} + +/* + * free_page_mlock() -- clean up attempts to free and mlocked() page. + * Page should not be on lru, so no need to fix that up. + * free_pages_check() will verify... + */ +static inline void free_page_mlock(struct page *page) +{ + __dec_zone_page_state(page, NR_MLOCK); + __count_vm_event(UNEVICTABLE_MLOCKFREED); +} + +static inline int free_pages_check(struct page *page) +{ + if (unlikely(page_mapcount(page) | + (page->mapping != NULL) | + (atomic_read(&page->_count) != 0) | + (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | + (mem_cgroup_bad_page_check(page)))) { + bad_page(page); + return 1; + } + if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) + page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; + return 0; +} + +/* + * Frees a number of pages from the PCP lists + * Assumes all pages on list are in same zone, and of same order. + * count is the number of pages to free. + * + * If the zone was previously in an "all pages pinned" state then look to + * see if this freeing clears that state. + * + * And clear the zone's pages_scanned counter, to hold off the "all pages are + * pinned" detection logic. + */ +static void free_pcppages_bulk(struct zone *zone, int count, + struct per_cpu_pages *pcp) +{ + int migratetype = 0; + int batch_free = 0; + int to_free = count; + + spin_lock(&zone->lock); + zone->all_unreclaimable = 0; + zone->pages_scanned = 0; + + while (to_free) { + struct page *page; + struct list_head *list; + + /* + * Remove pages from lists in a round-robin fashion. A + * batch_free count is maintained that is incremented when an + * empty list is encountered. This is so more pages are freed + * off fuller lists instead of spinning excessively around empty + * lists + */ + do { + batch_free++; + if (++migratetype == MIGRATE_PCPTYPES) + migratetype = 0; + list = &pcp->lists[migratetype]; + } while (list_empty(list)); + + /* This is the only non-empty list. Free them all. */ + if (batch_free == MIGRATE_PCPTYPES) + batch_free = to_free; + + do { + page = list_entry(list->prev, struct page, lru); + /* must delete as __free_one_page list manipulates */ + list_del(&page->lru); + /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ + __free_one_page(page, zone, 0, page_private(page)); + trace_mm_page_pcpu_drain(page, 0, page_private(page)); + } while (--to_free && --batch_free && !list_empty(list)); + } + __mod_zone_page_state(zone, NR_FREE_PAGES, count); + spin_unlock(&zone->lock); +} + +static void free_one_page(struct zone *zone, struct page *page, int order, + int migratetype) +{ + spin_lock(&zone->lock); + zone->all_unreclaimable = 0; + zone->pages_scanned = 0; + + __free_one_page(page, zone, order, migratetype); + __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); + spin_unlock(&zone->lock); +} + +static bool free_pages_prepare(struct page *page, unsigned int order) +{ + int i; + int bad = 0; + + trace_mm_page_free(page, order); + kmemcheck_free_shadow(page, order); + + if (PageAnon(page)) + page->mapping = NULL; + for (i = 0; i < (1 << order); i++) + bad += free_pages_check(page + i); + if (bad) + return false; + + if (!PageHighMem(page)) { + debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); + debug_check_no_obj_freed(page_address(page), + PAGE_SIZE << order); + } + arch_free_page(page, order); + kernel_map_pages(page, 1 << order, 0); + + return true; +} + +static void __free_pages_ok(struct page *page, unsigned int order) +{ + unsigned long flags; + int wasMlocked = __TestClearPageMlocked(page); + + if (!free_pages_prepare(page, order)) + return; + + local_irq_save(flags); + if (unlikely(wasMlocked)) + free_page_mlock(page); + __count_vm_events(PGFREE, 1 << order); + free_one_page(page_zone(page), page, order, + get_pageblock_migratetype(page)); + local_irq_restore(flags); +} + +void __meminit __free_pages_bootmem(struct page *page, unsigned int order) +{ + unsigned int nr_pages = 1 << order; + unsigned int loop; + + prefetchw(page); + for (loop = 0; loop < nr_pages; loop++) { + struct page *p = &page[loop]; + + if (loop + 1 < nr_pages) + prefetchw(p + 1); + __ClearPageReserved(p); + set_page_count(p, 0); + } + + set_page_refcounted(page); + __free_pages(page, order); +} + + +/* + * The order of subdivision here is critical for the IO subsystem. + * Please do not alter this order without good reasons and regression + * testing. Specifically, as large blocks of memory are subdivided, + * the order in which smaller blocks are delivered depends on the order + * they're subdivided in this function. This is the primary factor + * influencing the order in which pages are delivered to the IO + * subsystem according to empirical testing, and this is also justified + * by considering the behavior of a buddy system containing a single + * large block of memory acted on by a series of small allocations. + * This behavior is a critical factor in sglist merging's success. + * + * -- wli + */ +static inline void expand(struct zone *zone, struct page *page, + int low, int high, struct free_area *area, + int migratetype) +{ + unsigned long size = 1 << high; + + while (high > low) { + area--; + high--; + size >>= 1; + VM_BUG_ON(bad_range(zone, &page[size])); + +#ifdef CONFIG_DEBUG_PAGEALLOC + if (high < debug_guardpage_minorder()) { + /* + * Mark as guard pages (or page), that will allow to + * merge back to allocator when buddy will be freed. + * Corresponding page table entries will not be touched, + * pages will stay not present in virtual address space + */ + INIT_LIST_HEAD(&page[size].lru); + set_page_guard_flag(&page[size]); + set_page_private(&page[size], high); + /* Guard pages are not available for any usage */ + __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); + continue; + } +#endif + list_add(&page[size].lru, &area->free_list[migratetype]); + area->nr_free++; + set_page_order(&page[size], high); + } +} + +/* + * This page is about to be returned from the page allocator + */ +static inline int check_new_page(struct page *page) +{ + if (unlikely(page_mapcount(page) | + (page->mapping != NULL) | + (atomic_read(&page->_count) != 0) | + (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | + (mem_cgroup_bad_page_check(page)))) { + bad_page(page); + return 1; + } + return 0; +} + +static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) +{ + int i; + + for (i = 0; i < (1 << order); i++) { + struct page *p = page + i; + if (unlikely(check_new_page(p))) + return 1; + } + + set_page_private(page, 0); + set_page_refcounted(page); + + arch_alloc_page(page, order); + kernel_map_pages(page, 1 << order, 1); + + if (gfp_flags & __GFP_ZERO) + prep_zero_page(page, order, gfp_flags); + + if (order && (gfp_flags & __GFP_COMP)) + prep_compound_page(page, order); + + return 0; +} + +/* + * Go through the free lists for the given migratetype and remove + * the smallest available page from the freelists + */ +static inline +struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, + int migratetype) +{ + unsigned int current_order; + struct free_area * area; + struct page *page; + + /* Find a page of the appropriate size in the preferred list */ + for (current_order = order; current_order < MAX_ORDER; ++current_order) { + area = &(zone->free_area[current_order]); + if (list_empty(&area->free_list[migratetype])) + continue; + + page = list_entry(area->free_list[migratetype].next, + struct page, lru); + list_del(&page->lru); + rmv_page_order(page); + area->nr_free--; + expand(zone, page, order, current_order, area, migratetype); + return page; + } + + return NULL; +} + + +/* + * This array describes the order lists are fallen back to when + * the free lists for the desirable migrate type are depleted + */ +static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { + [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, + [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, + [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, + [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ +}; + +/* + * Move the free pages in a range to the free lists of the requested type. + * Note that start_page and end_pages are not aligned on a pageblock + * boundary. If alignment is required, use move_freepages_block() + */ +static int move_freepages(struct zone *zone, + struct page *start_page, struct page *end_page, + int migratetype) +{ + struct page *page; + unsigned long order; + int pages_moved = 0; + +#ifndef CONFIG_HOLES_IN_ZONE + /* + * page_zone is not safe to call in this context when + * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant + * anyway as we check zone boundaries in move_freepages_block(). + * Remove at a later date when no bug reports exist related to + * grouping pages by mobility + */ + BUG_ON(page_zone(start_page) != page_zone(end_page)); +#endif + + for (page = start_page; page <= end_page;) { + /* Make sure we are not inadvertently changing nodes */ + VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); + + if (!pfn_valid_within(page_to_pfn(page))) { + page++; + continue; + } + + if (!PageBuddy(page)) { + page++; + continue; + } + + order = page_order(page); + list_move(&page->lru, + &zone->free_area[order].free_list[migratetype]); + page += 1 << order; + pages_moved += 1 << order; + } + + return pages_moved; +} + +static int move_freepages_block(struct zone *zone, struct page *page, + int migratetype) +{ + unsigned long start_pfn, end_pfn; + struct page *start_page, *end_page; + + start_pfn = page_to_pfn(page); + start_pfn = start_pfn & ~(pageblock_nr_pages-1); + start_page = pfn_to_page(start_pfn); + end_page = start_page + pageblock_nr_pages - 1; + end_pfn = start_pfn + pageblock_nr_pages - 1; + + /* Do not cross zone boundaries */ + if (start_pfn < zone->zone_start_pfn) + start_page = page; + if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) + return 0; + + return move_freepages(zone, start_page, end_page, migratetype); +} + +static void change_pageblock_range(struct page *pageblock_page, + int start_order, int migratetype) +{ + int nr_pageblocks = 1 << (start_order - pageblock_order); + + while (nr_pageblocks--) { + set_pageblock_migratetype(pageblock_page, migratetype); + pageblock_page += pageblock_nr_pages; + } +} + +/* Remove an element from the buddy allocator from the fallback list */ +static inline struct page * +__rmqueue_fallback(struct zone *zone, int order, int start_migratetype) +{ + struct free_area * area; + int current_order; + struct page *page; + int migratetype, i; + + /* Find the largest possible block of pages in the other list */ + for (current_order = MAX_ORDER-1; current_order >= order; + --current_order) { + for (i = 0; i < MIGRATE_TYPES - 1; i++) { + migratetype = fallbacks[start_migratetype][i]; + + /* MIGRATE_RESERVE handled later if necessary */ + if (migratetype == MIGRATE_RESERVE) + continue; + + area = &(zone->free_area[current_order]); + if (list_empty(&area->free_list[migratetype])) + continue; + + page = list_entry(area->free_list[migratetype].next, + struct page, lru); + area->nr_free--; + + /* + * If breaking a large block of pages, move all free + * pages to the preferred allocation list. If falling + * back for a reclaimable kernel allocation, be more + * aggressive about taking ownership of free pages + */ + if (unlikely(current_order >= (pageblock_order >> 1)) || + start_migratetype == MIGRATE_RECLAIMABLE || + page_group_by_mobility_disabled) { + unsigned long pages; + pages = move_freepages_block(zone, page, + start_migratetype); + + /* Claim the whole block if over half of it is free */ + if (pages >= (1 << (pageblock_order-1)) || + page_group_by_mobility_disabled) + set_pageblock_migratetype(page, + start_migratetype); + + migratetype = start_migratetype; + } + + /* Remove the page from the freelists */ + list_del(&page->lru); + rmv_page_order(page); + + /* Take ownership for orders >= pageblock_order */ + if (current_order >= pageblock_order) + change_pageblock_range(page, current_order, + start_migratetype); + + expand(zone, page, order, current_order, area, migratetype); + + trace_mm_page_alloc_extfrag(page, order, current_order, + start_migratetype, migratetype); + + return page; + } + } + + return NULL; +} + +/* + * Do the hard work of removing an element from the buddy allocator. + * Call me with the zone->lock already held. + */ +static struct page *__rmqueue(struct zone *zone, unsigned int order, + int migratetype) +{ + struct page *page; + +retry_reserve: + page = __rmqueue_smallest(zone, order, migratetype); + + if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { + page = __rmqueue_fallback(zone, order, migratetype); + + /* + * Use MIGRATE_RESERVE rather than fail an allocation. goto + * is used because __rmqueue_smallest is an inline function + * and we want just one call site + */ + if (!page) { + migratetype = MIGRATE_RESERVE; + goto retry_reserve; + } + } + + trace_mm_page_alloc_zone_locked(page, order, migratetype); + return page; +} + +/* + * Obtain a specified number of elements from the buddy allocator, all under + * a single hold of the lock, for efficiency. Add them to the supplied list. + * Returns the number of new pages which were placed at *list. + */ +static int rmqueue_bulk(struct zone *zone, unsigned int order, + unsigned long count, struct list_head *list, + int migratetype, int cold) +{ + int i; + + spin_lock(&zone->lock); + for (i = 0; i < count; ++i) { + struct page *page = __rmqueue(zone, order, migratetype); + if (unlikely(page == NULL)) + break; + + /* + * Split buddy pages returned by expand() are received here + * in physical page order. The page is added to the callers and + * list and the list head then moves forward. From the callers + * perspective, the linked list is ordered by page number in + * some conditions. This is useful for IO devices that can + * merge IO requests if the physical pages are ordered + * properly. + */ + if (likely(cold == 0)) + list_add(&page->lru, list); + else + list_add_tail(&page->lru, list); + set_page_private(page, migratetype); + list = &page->lru; + } + __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); + spin_unlock(&zone->lock); + return i; +} + +#ifdef CONFIG_NUMA +/* + * Called from the vmstat counter updater to drain pagesets of this + * currently executing processor on remote nodes after they have + * expired. + * + * Note that this function must be called with the thread pinned to + * a single processor. + */ +void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) +{ + unsigned long flags; + int to_drain; + + local_irq_save(flags); + if (pcp->count >= pcp->batch) + to_drain = pcp->batch; + else + to_drain = pcp->count; + free_pcppages_bulk(zone, to_drain, pcp); + pcp->count -= to_drain; + local_irq_restore(flags); +} +#endif + +/* + * Drain pages of the indicated processor. + * + * The processor must either be the current processor and the + * thread pinned to the current processor or a processor that + * is not online. + */ +static void drain_pages(unsigned int cpu) +{ + unsigned long flags; + struct zone *zone; + + for_each_populated_zone(zone) { + struct per_cpu_pageset *pset; + struct per_cpu_pages *pcp; + + local_irq_save(flags); + pset = per_cpu_ptr(zone->pageset, cpu); + + pcp = &pset->pcp; + if (pcp->count) { + free_pcppages_bulk(zone, pcp->count, pcp); + pcp->count = 0; + } + local_irq_restore(flags); + } +} + +/* + * Spill all of this CPU's per-cpu pages back into the buddy allocator. + */ +void drain_local_pages(void *arg) +{ + drain_pages(smp_processor_id()); +} + +/* + * Spill all the per-cpu pages from all CPUs back into the buddy allocator. + * + * Note that this code is protected against sending an IPI to an offline + * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: + * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but + * nothing keeps CPUs from showing up after we populated the cpumask and + * before the call to on_each_cpu_mask(). + */ +void drain_all_pages(void) +{ + int cpu; + struct per_cpu_pageset *pcp; + struct zone *zone; + + /* + * Allocate in the BSS so we wont require allocation in + * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y + */ + static cpumask_t cpus_with_pcps; + + /* + * We don't care about racing with CPU hotplug event + * as offline notification will cause the notified + * cpu to drain that CPU pcps and on_each_cpu_mask + * disables preemption as part of its processing + */ + for_each_online_cpu(cpu) { + bool has_pcps = false; + for_each_populated_zone(zone) { + pcp = per_cpu_ptr(zone->pageset, cpu); + if (pcp->pcp.count) { + has_pcps = true; + break; + } + } + if (has_pcps) + cpumask_set_cpu(cpu, &cpus_with_pcps); + else + cpumask_clear_cpu(cpu, &cpus_with_pcps); + } + on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); +} + +#ifdef CONFIG_HIBERNATION + +void mark_free_pages(struct zone *zone) +{ + unsigned long pfn, max_zone_pfn; + unsigned long flags; + int order, t; + struct list_head *curr; + + if (!zone->spanned_pages) + return; + + spin_lock_irqsave(&zone->lock, flags); + + max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; + for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) + if (pfn_valid(pfn)) { + struct page *page = pfn_to_page(pfn); + + if (!swsusp_page_is_forbidden(page)) + swsusp_unset_page_free(page); + } + + for_each_migratetype_order(order, t) { + list_for_each(curr, &zone->free_area[order].free_list[t]) { + unsigned long i; + + pfn = page_to_pfn(list_entry(curr, struct page, lru)); + for (i = 0; i < (1UL << order); i++) + swsusp_set_page_free(pfn_to_page(pfn + i)); + } + } + spin_unlock_irqrestore(&zone->lock, flags); +} +#endif /* CONFIG_PM */ + +/* + * Free a 0-order page + * cold == 1 ? free a cold page : free a hot page + */ +void free_hot_cold_page(struct page *page, int cold) +{ + struct zone *zone = page_zone(page); + struct per_cpu_pages *pcp; + unsigned long flags; + int migratetype; + int wasMlocked = __TestClearPageMlocked(page); + + if (!free_pages_prepare(page, 0)) + return; + + migratetype = get_pageblock_migratetype(page); + set_page_private(page, migratetype); + local_irq_save(flags); + if (unlikely(wasMlocked)) + free_page_mlock(page); + __count_vm_event(PGFREE); + + /* + * We only track unmovable, reclaimable and movable on pcp lists. + * Free ISOLATE pages back to the allocator because they are being + * offlined but treat RESERVE as movable pages so we can get those + * areas back if necessary. Otherwise, we may have to free + * excessively into the page allocator + */ + if (migratetype >= MIGRATE_PCPTYPES) { + if (unlikely(migratetype == MIGRATE_ISOLATE)) { + free_one_page(zone, page, 0, migratetype); + goto out; + } + migratetype = MIGRATE_MOVABLE; + } + + pcp = &this_cpu_ptr(zone->pageset)->pcp; + if (cold) + list_add_tail(&page->lru, &pcp->lists[migratetype]); + else + list_add(&page->lru, &pcp->lists[migratetype]); + pcp->count++; + if (pcp->count >= pcp->high) { + free_pcppages_bulk(zone, pcp->batch, pcp); + pcp->count -= pcp->batch; + } + +out: + local_irq_restore(flags); +} + +/* + * Free a list of 0-order pages + */ +void free_hot_cold_page_list(struct list_head *list, int cold) +{ + struct page *page, *next; + + list_for_each_entry_safe(page, next, list, lru) { + trace_mm_page_free_batched(page, cold); + free_hot_cold_page(page, cold); + } +} + +/* + * split_page takes a non-compound higher-order page, and splits it into + * n (1<<order) sub-pages: page[0..n] + * Each sub-page must be freed individually. + * + * Note: this is probably too low level an operation for use in drivers. + * Please consult with lkml before using this in your driver. + */ +void split_page(struct page *page, unsigned int order) +{ + int i; + + VM_BUG_ON(PageCompound(page)); + VM_BUG_ON(!page_count(page)); + +#ifdef CONFIG_KMEMCHECK + /* + * Split shadow pages too, because free(page[0]) would + * otherwise free the whole shadow. + */ + if (kmemcheck_page_is_tracked(page)) + split_page(virt_to_page(page[0].shadow), order); +#endif + + for (i = 1; i < (1 << order); i++) + set_page_refcounted(page + i); +} + +/* + * Similar to split_page except the page is already free. As this is only + * being used for migration, the migratetype of the block also changes. + * As this is called with interrupts disabled, the caller is responsible + * for calling arch_alloc_page() and kernel_map_page() after interrupts + * are enabled. + * + * Note: this is probably too low level an operation for use in drivers. + * Please consult with lkml before using this in your driver. + */ +int split_free_page(struct page *page) +{ + unsigned int order; + unsigned long watermark; + struct zone *zone; + + BUG_ON(!PageBuddy(page)); + + zone = page_zone(page); + order = page_order(page); + + /* Obey watermarks as if the page was being allocated */ + watermark = low_wmark_pages(zone) + (1 << order); + if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) + return 0; + + /* Remove page from free list */ + list_del(&page->lru); + zone->free_area[order].nr_free--; + rmv_page_order(page); + __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); + + /* Split into individual pages */ + set_page_refcounted(page); + split_page(page, order); + + if (order >= pageblock_order - 1) { + struct page *endpage = page + (1 << order) - 1; + for (; page < endpage; page += pageblock_nr_pages) + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + } + + return 1 << order; +} + +/* + * Really, prep_compound_page() should be called from __rmqueue_bulk(). But + * we cheat by calling it from here, in the order > 0 path. Saves a branch + * or two. + */ +static inline +struct page *buffered_rmqueue(struct zone *preferred_zone, + struct zone *zone, int order, gfp_t gfp_flags, + int migratetype) +{ + unsigned long flags; + struct page *page; + int cold = !!(gfp_flags & __GFP_COLD); + +again: + if (likely(order == 0)) { + struct per_cpu_pages *pcp; + struct list_head *list; + + local_irq_save(flags); + pcp = &this_cpu_ptr(zone->pageset)->pcp; + list = &pcp->lists[migratetype]; + if (list_empty(list)) { + pcp->count += rmqueue_bulk(zone, 0, + pcp->batch, list, + migratetype, cold); + if (unlikely(list_empty(list))) + goto failed; + } + + if (cold) + page = list_entry(list->prev, struct page, lru); + else + page = list_entry(list->next, struct page, lru); + + list_del(&page->lru); + pcp->count--; + } else { + if (unlikely(gfp_flags & __GFP_NOFAIL)) { + /* + * __GFP_NOFAIL is not to be used in new code. + * + * All __GFP_NOFAIL callers should be fixed so that they + * properly detect and handle allocation failures. + * + * We most definitely don't want callers attempting to + * allocate greater than order-1 page units with + * __GFP_NOFAIL. + */ + WARN_ON_ONCE(order > 1); + } + spin_lock_irqsave(&zone->lock, flags); + page = __rmqueue(zone, order, migratetype); + spin_unlock(&zone->lock); + if (!page) + goto failed; + __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); + } + + __count_zone_vm_events(PGALLOC, zone, 1 << order); + zone_statistics(preferred_zone, zone, gfp_flags); + local_irq_restore(flags); + + VM_BUG_ON(bad_range(zone, page)); + if (prep_new_page(page, order, gfp_flags)) + goto again; + return page; + +failed: + local_irq_restore(flags); + return NULL; +} + +/* The ALLOC_WMARK bits are used as an index to zone->watermark */ +#define ALLOC_WMARK_MIN WMARK_MIN +#define ALLOC_WMARK_LOW WMARK_LOW +#define ALLOC_WMARK_HIGH WMARK_HIGH +#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ + +/* Mask to get the watermark bits */ +#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) + +#define ALLOC_HARDER 0x10 /* try to alloc harder */ +#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ +#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ + +#ifdef CONFIG_FAIL_PAGE_ALLOC + +static struct { + struct fault_attr attr; + + u32 ignore_gfp_highmem; + u32 ignore_gfp_wait; + u32 min_order; +} fail_page_alloc = { + .attr = FAULT_ATTR_INITIALIZER, + .ignore_gfp_wait = 1, + .ignore_gfp_highmem = 1, + .min_order = 1, +}; + +static int __init setup_fail_page_alloc(char *str) +{ + return setup_fault_attr(&fail_page_alloc.attr, str); +} +__setup("fail_page_alloc=", setup_fail_page_alloc); + +static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) +{ + if (order < fail_page_alloc.min_order) + return 0; + if (gfp_mask & __GFP_NOFAIL) + return 0; + if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) + return 0; + if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) + return 0; + + return should_fail(&fail_page_alloc.attr, 1 << order); +} + +#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS + +static int __init fail_page_alloc_debugfs(void) +{ + umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; + struct dentry *dir; + + dir = fault_create_debugfs_attr("fail_page_alloc", NULL, + &fail_page_alloc.attr); + if (IS_ERR(dir)) + return PTR_ERR(dir); + + if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, + &fail_page_alloc.ignore_gfp_wait)) + goto fail; + if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, + &fail_page_alloc.ignore_gfp_highmem)) + goto fail; + if (!debugfs_create_u32("min-order", mode, dir, + &fail_page_alloc.min_order)) + goto fail; + + return 0; +fail: + debugfs_remove_recursive(dir); + + return -ENOMEM; +} + +late_initcall(fail_page_alloc_debugfs); + +#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ + +#else /* CONFIG_FAIL_PAGE_ALLOC */ + +static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) +{ + return 0; +} + +#endif /* CONFIG_FAIL_PAGE_ALLOC */ + +/* + * Return true if free pages are above 'mark'. This takes into account the order + * of the allocation. + */ +static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, + int classzone_idx, int alloc_flags, long free_pages) +{ + /* free_pages my go negative - that's OK */ + long min = mark; + int o; + + free_pages -= (1 << order) - 1; + if (alloc_flags & ALLOC_HIGH) + min -= min / 2; + if (alloc_flags & ALLOC_HARDER) + min -= min / 4; + + if (free_pages <= min + z->lowmem_reserve[classzone_idx]) + return false; + for (o = 0; o < order; o++) { + /* At the next order, this order's pages become unavailable */ + free_pages -= z->free_area[o].nr_free << o; + + /* Require fewer higher order pages to be free */ + min >>= min_free_order_shift; + + if (free_pages <= min) + return false; + } + return true; +} + +bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, + int classzone_idx, int alloc_flags) +{ + return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, + zone_page_state(z, NR_FREE_PAGES)); +} + +bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, + int classzone_idx, int alloc_flags) +{ + long free_pages = zone_page_state(z, NR_FREE_PAGES); + + if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) + free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); + + return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, + free_pages); +} + +#ifdef CONFIG_NUMA +/* + * zlc_setup - Setup for "zonelist cache". Uses cached zone data to + * skip over zones that are not allowed by the cpuset, or that have + * been recently (in last second) found to be nearly full. See further + * comments in mmzone.h. Reduces cache footprint of zonelist scans + * that have to skip over a lot of full or unallowed zones. + * + * If the zonelist cache is present in the passed in zonelist, then + * returns a pointer to the allowed node mask (either the current + * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) + * + * If the zonelist cache is not available for this zonelist, does + * nothing and returns NULL. + * + * If the fullzones BITMAP in the zonelist cache is stale (more than + * a second since last zap'd) then we zap it out (clear its bits.) + * + * We hold off even calling zlc_setup, until after we've checked the + * first zone in the zonelist, on the theory that most allocations will + * be satisfied from that first zone, so best to examine that zone as + * quickly as we can. + */ +static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ + nodemask_t *allowednodes; /* zonelist_cache approximation */ + + zlc = zonelist->zlcache_ptr; + if (!zlc) + return NULL; + + if (time_after(jiffies, zlc->last_full_zap + HZ)) { + bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); + zlc->last_full_zap = jiffies; + } + + allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? + &cpuset_current_mems_allowed : + &node_states[N_HIGH_MEMORY]; + return allowednodes; +} + +/* + * Given 'z' scanning a zonelist, run a couple of quick checks to see + * if it is worth looking at further for free memory: + * 1) Check that the zone isn't thought to be full (doesn't have its + * bit set in the zonelist_cache fullzones BITMAP). + * 2) Check that the zones node (obtained from the zonelist_cache + * z_to_n[] mapping) is allowed in the passed in allowednodes mask. + * Return true (non-zero) if zone is worth looking at further, or + * else return false (zero) if it is not. + * + * This check -ignores- the distinction between various watermarks, + * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is + * found to be full for any variation of these watermarks, it will + * be considered full for up to one second by all requests, unless + * we are so low on memory on all allowed nodes that we are forced + * into the second scan of the zonelist. + * + * In the second scan we ignore this zonelist cache and exactly + * apply the watermarks to all zones, even it is slower to do so. + * We are low on memory in the second scan, and should leave no stone + * unturned looking for a free page. + */ +static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, + nodemask_t *allowednodes) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ + int i; /* index of *z in zonelist zones */ + int n; /* node that zone *z is on */ + + zlc = zonelist->zlcache_ptr; + if (!zlc) + return 1; + + i = z - zonelist->_zonerefs; + n = zlc->z_to_n[i]; + + /* This zone is worth trying if it is allowed but not full */ + return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); +} + +/* + * Given 'z' scanning a zonelist, set the corresponding bit in + * zlc->fullzones, so that subsequent attempts to allocate a page + * from that zone don't waste time re-examining it. + */ +static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ + int i; /* index of *z in zonelist zones */ + + zlc = zonelist->zlcache_ptr; + if (!zlc) + return; + + i = z - zonelist->_zonerefs; + + set_bit(i, zlc->fullzones); +} + +/* + * clear all zones full, called after direct reclaim makes progress so that + * a zone that was recently full is not skipped over for up to a second + */ +static void zlc_clear_zones_full(struct zonelist *zonelist) +{ + struct zonelist_cache *zlc; /* cached zonelist speedup info */ + + zlc = zonelist->zlcache_ptr; + if (!zlc) + return; + + bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); +} + +#else /* CONFIG_NUMA */ + +static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) +{ + return NULL; +} + +static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, + nodemask_t *allowednodes) +{ + return 1; +} + +static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) +{ +} + +static void zlc_clear_zones_full(struct zonelist *zonelist) +{ +} +#endif /* CONFIG_NUMA */ + +/* + * get_page_from_freelist goes through the zonelist trying to allocate + * a page. + */ +static struct page * +get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, + struct zonelist *zonelist, int high_zoneidx, int alloc_flags, + struct zone *preferred_zone, int migratetype) +{ + struct zoneref *z; + struct page *page = NULL; + int classzone_idx; + struct zone *zone; + nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ + int zlc_active = 0; /* set if using zonelist_cache */ + int did_zlc_setup = 0; /* just call zlc_setup() one time */ + + classzone_idx = zone_idx(preferred_zone); +zonelist_scan: + /* + * Scan zonelist, looking for a zone with enough free. + * See also cpuset_zone_allowed() comment in kernel/cpuset.c. + */ + for_each_zone_zonelist_nodemask(zone, z, zonelist, + high_zoneidx, nodemask) { + if (NUMA_BUILD && zlc_active && + !zlc_zone_worth_trying(zonelist, z, allowednodes)) + continue; + if ((alloc_flags & ALLOC_CPUSET) && + !cpuset_zone_allowed_softwall(zone, gfp_mask)) + continue; + /* + * When allocating a page cache page for writing, we + * want to get it from a zone that is within its dirty + * limit, such that no single zone holds more than its + * proportional share of globally allowed dirty pages. + * The dirty limits take into account the zone's + * lowmem reserves and high watermark so that kswapd + * should be able to balance it without having to + * write pages from its LRU list. + * + * This may look like it could increase pressure on + * lower zones by failing allocations in higher zones + * before they are full. But the pages that do spill + * over are limited as the lower zones are protected + * by this very same mechanism. It should not become + * a practical burden to them. + * + * XXX: For now, allow allocations to potentially + * exceed the per-zone dirty limit in the slowpath + * (ALLOC_WMARK_LOW unset) before going into reclaim, + * which is important when on a NUMA setup the allowed + * zones are together not big enough to reach the + * global limit. The proper fix for these situations + * will require awareness of zones in the + * dirty-throttling and the flusher threads. + */ + if ((alloc_flags & ALLOC_WMARK_LOW) && + (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) + goto this_zone_full; + + BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); + if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { + unsigned long mark; + int ret; + + mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; + if (zone_watermark_ok(zone, order, mark, + classzone_idx, alloc_flags)) + goto try_this_zone; + + if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { + /* + * we do zlc_setup if there are multiple nodes + * and before considering the first zone allowed + * by the cpuset. + */ + allowednodes = zlc_setup(zonelist, alloc_flags); + zlc_active = 1; + did_zlc_setup = 1; + } + + if (zone_reclaim_mode == 0) + goto this_zone_full; + + /* + * As we may have just activated ZLC, check if the first + * eligible zone has failed zone_reclaim recently. + */ + if (NUMA_BUILD && zlc_active && + !zlc_zone_worth_trying(zonelist, z, allowednodes)) + continue; + + ret = zone_reclaim(zone, gfp_mask, order); + switch (ret) { + case ZONE_RECLAIM_NOSCAN: + /* did not scan */ + continue; + case ZONE_RECLAIM_FULL: + /* scanned but unreclaimable */ + continue; + default: + /* did we reclaim enough */ + if (!zone_watermark_ok(zone, order, mark, + classzone_idx, alloc_flags)) + goto this_zone_full; + } + } + +try_this_zone: + page = buffered_rmqueue(preferred_zone, zone, order, + gfp_mask, migratetype); + if (page) + break; +this_zone_full: + if (NUMA_BUILD) + zlc_mark_zone_full(zonelist, z); + } + + if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { + /* Disable zlc cache for second zonelist scan */ + zlc_active = 0; + goto zonelist_scan; + } + return page; +} + +/* + * Large machines with many possible nodes should not always dump per-node + * meminfo in irq context. + */ +static inline bool should_suppress_show_mem(void) +{ + bool ret = false; + +#if NODES_SHIFT > 8 + ret = in_interrupt(); +#endif + return ret; +} + +static DEFINE_RATELIMIT_STATE(nopage_rs, + DEFAULT_RATELIMIT_INTERVAL, + DEFAULT_RATELIMIT_BURST); + +void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) +{ + unsigned int filter = SHOW_MEM_FILTER_NODES; + + if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || + debug_guardpage_minorder() > 0) + return; + + /* + * This documents exceptions given to allocations in certain + * contexts that are allowed to allocate outside current's set + * of allowed nodes. + */ + if (!(gfp_mask & __GFP_NOMEMALLOC)) + if (test_thread_flag(TIF_MEMDIE) || + (current->flags & (PF_MEMALLOC | PF_EXITING))) + filter &= ~SHOW_MEM_FILTER_NODES; + if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) + filter &= ~SHOW_MEM_FILTER_NODES; + + if (fmt) { + struct va_format vaf; + va_list args; + + va_start(args, fmt); + + vaf.fmt = fmt; + vaf.va = &args; + + pr_warn("%pV", &vaf); + + va_end(args); + } + + pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", + current->comm, order, gfp_mask); + + dump_stack(); + if (!should_suppress_show_mem()) + show_mem(filter); +} + +static inline int +should_alloc_retry(gfp_t gfp_mask, unsigned int order, + unsigned long did_some_progress, + unsigned long pages_reclaimed) +{ + /* Do not loop if specifically requested */ + if (gfp_mask & __GFP_NORETRY) + return 0; + + /* Always retry if specifically requested */ + if (gfp_mask & __GFP_NOFAIL) + return 1; + + /* + * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim + * making forward progress without invoking OOM. Suspend also disables + * storage devices so kswapd will not help. Bail if we are suspending. + */ + if (!did_some_progress && pm_suspended_storage()) + return 0; + + /* + * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER + * means __GFP_NOFAIL, but that may not be true in other + * implementations. + */ + if (order <= PAGE_ALLOC_COSTLY_ORDER) + return 1; + + /* + * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is + * specified, then we retry until we no longer reclaim any pages + * (above), or we've reclaimed an order of pages at least as + * large as the allocation's order. In both cases, if the + * allocation still fails, we stop retrying. + */ + if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) + return 1; + + return 0; +} + +static inline struct page * +__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, struct zone *preferred_zone, + int migratetype) +{ + struct page *page; + + /* Acquire the OOM killer lock for the zones in zonelist */ + if (!try_set_zonelist_oom(zonelist, gfp_mask)) { + schedule_timeout_uninterruptible(1); + return NULL; + } + + /* + * Go through the zonelist yet one more time, keep very high watermark + * here, this is only to catch a parallel oom killing, we must fail if + * we're still under heavy pressure. + */ + page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, + order, zonelist, high_zoneidx, + ALLOC_WMARK_HIGH|ALLOC_CPUSET, + preferred_zone, migratetype); + if (page) + goto out; + + if (!(gfp_mask & __GFP_NOFAIL)) { + /* The OOM killer will not help higher order allocs */ + if (order > PAGE_ALLOC_COSTLY_ORDER) + goto out; + /* The OOM killer does not needlessly kill tasks for lowmem */ + if (high_zoneidx < ZONE_NORMAL) + goto out; + /* + * GFP_THISNODE contains __GFP_NORETRY and we never hit this. + * Sanity check for bare calls of __GFP_THISNODE, not real OOM. + * The caller should handle page allocation failure by itself if + * it specifies __GFP_THISNODE. + * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. + */ + if (gfp_mask & __GFP_THISNODE) + goto out; + } + /* Exhausted what can be done so it's blamo time */ + out_of_memory(zonelist, gfp_mask, order, nodemask, false); + +out: + clear_zonelist_oom(zonelist, gfp_mask); + return page; +} + +#ifdef CONFIG_COMPACTION +/* Try memory compaction for high-order allocations before reclaim */ +static struct page * +__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, + int migratetype, bool sync_migration, + bool *deferred_compaction, + unsigned long *did_some_progress) +{ + struct page *page; + + if (!order) + return NULL; + + if (compaction_deferred(preferred_zone, order)) { + *deferred_compaction = true; + return NULL; + } + + current->flags |= PF_MEMALLOC; + *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, + nodemask, sync_migration); + current->flags &= ~PF_MEMALLOC; + if (*did_some_progress != COMPACT_SKIPPED) { + + /* Page migration frees to the PCP lists but we want merging */ + drain_pages(get_cpu()); + put_cpu(); + + page = get_page_from_freelist(gfp_mask, nodemask, + order, zonelist, high_zoneidx, + alloc_flags, preferred_zone, + migratetype); + if (page) { + preferred_zone->compact_considered = 0; + preferred_zone->compact_defer_shift = 0; + if (order >= preferred_zone->compact_order_failed) + preferred_zone->compact_order_failed = order + 1; + count_vm_event(COMPACTSUCCESS); + return page; + } + + /* + * It's bad if compaction run occurs and fails. + * The most likely reason is that pages exist, + * but not enough to satisfy watermarks. + */ + count_vm_event(COMPACTFAIL); + + /* + * As async compaction considers a subset of pageblocks, only + * defer if the failure was a sync compaction failure. + */ + if (sync_migration) + defer_compaction(preferred_zone, order); + + cond_resched(); + } + + return NULL; +} +#else +static inline struct page * +__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, + int migratetype, bool sync_migration, + bool *deferred_compaction, + unsigned long *did_some_progress) +{ + return NULL; +} +#endif /* CONFIG_COMPACTION */ + +/* The really slow allocator path where we enter direct reclaim */ +static inline struct page * +__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, + int migratetype, unsigned long *did_some_progress) +{ + struct page *page = NULL; + struct reclaim_state reclaim_state; + bool drained = false; + + cond_resched(); + + /* We now go into synchronous reclaim */ + cpuset_memory_pressure_bump(); + current->flags |= PF_MEMALLOC; + lockdep_set_current_reclaim_state(gfp_mask); + reclaim_state.reclaimed_slab = 0; + current->reclaim_state = &reclaim_state; + + *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); + + current->reclaim_state = NULL; + lockdep_clear_current_reclaim_state(); + current->flags &= ~PF_MEMALLOC; + + cond_resched(); + + if (unlikely(!(*did_some_progress))) + return NULL; + + /* After successful reclaim, reconsider all zones for allocation */ + if (NUMA_BUILD) + zlc_clear_zones_full(zonelist); + +retry: + page = get_page_from_freelist(gfp_mask, nodemask, order, + zonelist, high_zoneidx, + alloc_flags, preferred_zone, + migratetype); + + /* + * If an allocation failed after direct reclaim, it could be because + * pages are pinned on the per-cpu lists. Drain them and try again + */ + if (!page && !drained) { + drain_all_pages(); + drained = true; + goto retry; + } + + return page; +} + +/* + * This is called in the allocator slow-path if the allocation request is of + * sufficient urgency to ignore watermarks and take other desperate measures + */ +static inline struct page * +__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, struct zone *preferred_zone, + int migratetype) +{ + struct page *page; + + do { + page = get_page_from_freelist(gfp_mask, nodemask, order, + zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, + preferred_zone, migratetype); + + if (!page && gfp_mask & __GFP_NOFAIL) + wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); + } while (!page && (gfp_mask & __GFP_NOFAIL)); + + return page; +} + +static inline +void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, + enum zone_type high_zoneidx, + enum zone_type classzone_idx) +{ + struct zoneref *z; + struct zone *zone; + + for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) + wakeup_kswapd(zone, order, classzone_idx); +} + +static inline int +gfp_to_alloc_flags(gfp_t gfp_mask) +{ + int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; + const gfp_t wait = gfp_mask & __GFP_WAIT; + + /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ + BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); + + /* + * The caller may dip into page reserves a bit more if the caller + * cannot run direct reclaim, or if the caller has realtime scheduling + * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will + * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). + */ + alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); + + if (!wait) { + /* + * Not worth trying to allocate harder for + * __GFP_NOMEMALLOC even if it can't schedule. + */ + if (!(gfp_mask & __GFP_NOMEMALLOC)) + alloc_flags |= ALLOC_HARDER; + /* + * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. + * See also cpuset_zone_allowed() comment in kernel/cpuset.c. + */ + alloc_flags &= ~ALLOC_CPUSET; + } else if (unlikely(rt_task(current)) && !in_interrupt()) + alloc_flags |= ALLOC_HARDER; + + if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { + if (!in_interrupt() && + ((current->flags & PF_MEMALLOC) || + unlikely(test_thread_flag(TIF_MEMDIE)))) + alloc_flags |= ALLOC_NO_WATERMARKS; + } + + return alloc_flags; +} + +static inline struct page * +__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, enum zone_type high_zoneidx, + nodemask_t *nodemask, struct zone *preferred_zone, + int migratetype) +{ + const gfp_t wait = gfp_mask & __GFP_WAIT; + struct page *page = NULL; + int alloc_flags; + unsigned long pages_reclaimed = 0; + unsigned long did_some_progress; + bool sync_migration = false; + bool deferred_compaction = false; + + /* + * In the slowpath, we sanity check order to avoid ever trying to + * reclaim >= MAX_ORDER areas which will never succeed. Callers may + * be using allocators in order of preference for an area that is + * too large. + */ + if (order >= MAX_ORDER) { + WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); + return NULL; + } + + /* + * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and + * __GFP_NOWARN set) should not cause reclaim since the subsystem + * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim + * using a larger set of nodes after it has established that the + * allowed per node queues are empty and that nodes are + * over allocated. + */ + if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) + goto nopage; + +restart: + if (!(gfp_mask & __GFP_NO_KSWAPD)) + wake_all_kswapd(order, zonelist, high_zoneidx, + zone_idx(preferred_zone)); + + /* + * OK, we're below the kswapd watermark and have kicked background + * reclaim. Now things get more complex, so set up alloc_flags according + * to how we want to proceed. + */ + alloc_flags = gfp_to_alloc_flags(gfp_mask); + + /* + * Find the true preferred zone if the allocation is unconstrained by + * cpusets. + */ + if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) + first_zones_zonelist(zonelist, high_zoneidx, NULL, + &preferred_zone); + +rebalance: + /* This is the last chance, in general, before the goto nopage. */ + page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, + high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, + preferred_zone, migratetype); + if (page) + goto got_pg; + + /* Allocate without watermarks if the context allows */ + if (alloc_flags & ALLOC_NO_WATERMARKS) { + page = __alloc_pages_high_priority(gfp_mask, order, + zonelist, high_zoneidx, nodemask, + preferred_zone, migratetype); + if (page) + goto got_pg; + } + + /* Atomic allocations - we can't balance anything */ + if (!wait) + goto nopage; + + /* Avoid recursion of direct reclaim */ + if (current->flags & PF_MEMALLOC) + goto nopage; + + /* Avoid allocations with no watermarks from looping endlessly */ + if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) + goto nopage; + + /* + * Try direct compaction. The first pass is asynchronous. Subsequent + * attempts after direct reclaim are synchronous + */ + page = __alloc_pages_direct_compact(gfp_mask, order, + zonelist, high_zoneidx, + nodemask, + alloc_flags, preferred_zone, + migratetype, sync_migration, + &deferred_compaction, + &did_some_progress); + if (page) + goto got_pg; + sync_migration = true; + + /* + * If compaction is deferred for high-order allocations, it is because + * sync compaction recently failed. In this is the case and the caller + * has requested the system not be heavily disrupted, fail the + * allocation now instead of entering direct reclaim + */ + if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) + goto nopage; + + /* Try direct reclaim and then allocating */ + page = __alloc_pages_direct_reclaim(gfp_mask, order, + zonelist, high_zoneidx, + nodemask, + alloc_flags, preferred_zone, + migratetype, &did_some_progress); + if (page) + goto got_pg; + + /* + * If we failed to make any progress reclaiming, then we are + * running out of options and have to consider going OOM + */ + if (!did_some_progress) { + if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { + if (oom_killer_disabled) + goto nopage; + /* Coredumps can quickly deplete all memory reserves */ + if ((current->flags & PF_DUMPCORE) && + !(gfp_mask & __GFP_NOFAIL)) + goto nopage; + page = __alloc_pages_may_oom(gfp_mask, order, + zonelist, high_zoneidx, + nodemask, preferred_zone, + migratetype); + if (page) + goto got_pg; + + if (!(gfp_mask & __GFP_NOFAIL)) { + /* + * The oom killer is not called for high-order + * allocations that may fail, so if no progress + * is being made, there are no other options and + * retrying is unlikely to help. + */ + if (order > PAGE_ALLOC_COSTLY_ORDER) + goto nopage; + /* + * The oom killer is not called for lowmem + * allocations to prevent needlessly killing + * innocent tasks. + */ + if (high_zoneidx < ZONE_NORMAL) + goto nopage; + } + + goto restart; + } + } + + /* Check if we should retry the allocation */ + pages_reclaimed += did_some_progress; + if (should_alloc_retry(gfp_mask, order, did_some_progress, + pages_reclaimed)) { + /* Wait for some write requests to complete then retry */ + wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); + goto rebalance; + } else { + /* + * High-order allocations do not necessarily loop after + * direct reclaim and reclaim/compaction depends on compaction + * being called after reclaim so call directly if necessary + */ + page = __alloc_pages_direct_compact(gfp_mask, order, + zonelist, high_zoneidx, + nodemask, + alloc_flags, preferred_zone, + migratetype, sync_migration, + &deferred_compaction, + &did_some_progress); + if (page) + goto got_pg; + } + +nopage: + warn_alloc_failed(gfp_mask, order, NULL); + return page; +got_pg: + if (kmemcheck_enabled) + kmemcheck_pagealloc_alloc(page, order, gfp_mask); + return page; + +} + +/* + * This is the 'heart' of the zoned buddy allocator. + */ +struct page * +__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, nodemask_t *nodemask) +{ + enum zone_type high_zoneidx = gfp_zone(gfp_mask); + struct zone *preferred_zone; + struct page *page = NULL; + int migratetype = allocflags_to_migratetype(gfp_mask); + unsigned int cpuset_mems_cookie; + + gfp_mask &= gfp_allowed_mask; + + lockdep_trace_alloc(gfp_mask); + + might_sleep_if(gfp_mask & __GFP_WAIT); + + if (should_fail_alloc_page(gfp_mask, order)) + return NULL; + + /* + * Check the zones suitable for the gfp_mask contain at least one + * valid zone. It's possible to have an empty zonelist as a result + * of GFP_THISNODE and a memoryless node + */ + if (unlikely(!zonelist->_zonerefs->zone)) + return NULL; + +retry_cpuset: + cpuset_mems_cookie = get_mems_allowed(); + + /* The preferred zone is used for statistics later */ + first_zones_zonelist(zonelist, high_zoneidx, + nodemask ? : &cpuset_current_mems_allowed, + &preferred_zone); + if (!preferred_zone) + goto out; + + /* First allocation attempt */ + page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, + zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, + preferred_zone, migratetype); + if (unlikely(!page)) + page = __alloc_pages_slowpath(gfp_mask, order, + zonelist, high_zoneidx, nodemask, + preferred_zone, migratetype); + + trace_mm_page_alloc(page, order, gfp_mask, migratetype); + +out: + /* + * When updating a task's mems_allowed, it is possible to race with + * parallel threads in such a way that an allocation can fail while + * the mask is being updated. If a page allocation is about to fail, + * check if the cpuset changed during allocation and if so, retry. + */ + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) + goto retry_cpuset; + + return page; +} +EXPORT_SYMBOL(__alloc_pages_nodemask); + +/* + * Common helper functions. + */ +unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) +{ + struct page *page; + + /* + * __get_free_pages() returns a 32-bit address, which cannot represent + * a highmem page + */ + VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); + + page = alloc_pages(gfp_mask, order); + if (!page) + return 0; + return (unsigned long) page_address(page); +} +EXPORT_SYMBOL(__get_free_pages); + +unsigned long get_zeroed_page(gfp_t gfp_mask) +{ + return __get_free_pages(gfp_mask | __GFP_ZERO, 0); +} +EXPORT_SYMBOL(get_zeroed_page); + +void __free_pages(struct page *page, unsigned int order) +{ + if (put_page_testzero(page)) { + if (order == 0) + free_hot_cold_page(page, 0); + else + __free_pages_ok(page, order); + } +} + +EXPORT_SYMBOL(__free_pages); + +void free_pages(unsigned long addr, unsigned int order) +{ + if (addr != 0) { + VM_BUG_ON(!virt_addr_valid((void *)addr)); + __free_pages(virt_to_page((void *)addr), order); + } +} + +EXPORT_SYMBOL(free_pages); + +static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) +{ + if (addr) { + unsigned long alloc_end = addr + (PAGE_SIZE << order); + unsigned long used = addr + PAGE_ALIGN(size); + + split_page(virt_to_page((void *)addr), order); + while (used < alloc_end) { + free_page(used); + used += PAGE_SIZE; + } + } + return (void *)addr; +} + +/** + * alloc_pages_exact - allocate an exact number physically-contiguous pages. + * @size: the number of bytes to allocate + * @gfp_mask: GFP flags for the allocation + * + * This function is similar to alloc_pages(), except that it allocates the + * minimum number of pages to satisfy the request. alloc_pages() can only + * allocate memory in power-of-two pages. + * + * This function is also limited by MAX_ORDER. + * + * Memory allocated by this function must be released by free_pages_exact(). + */ +void *alloc_pages_exact(size_t size, gfp_t gfp_mask) +{ + unsigned int order = get_order(size); + unsigned long addr; + + addr = __get_free_pages(gfp_mask, order); + return make_alloc_exact(addr, order, size); +} +EXPORT_SYMBOL(alloc_pages_exact); + +/** + * alloc_pages_exact_nid - allocate an exact number of physically-contiguous + * pages on a node. + * @nid: the preferred node ID where memory should be allocated + * @size: the number of bytes to allocate + * @gfp_mask: GFP flags for the allocation + * + * Like alloc_pages_exact(), but try to allocate on node nid first before falling + * back. + * Note this is not alloc_pages_exact_node() which allocates on a specific node, + * but is not exact. + */ +void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) +{ + unsigned order = get_order(size); + struct page *p = alloc_pages_node(nid, gfp_mask, order); + if (!p) + return NULL; + return make_alloc_exact((unsigned long)page_address(p), order, size); +} +EXPORT_SYMBOL(alloc_pages_exact_nid); + +/** + * free_pages_exact - release memory allocated via alloc_pages_exact() + * @virt: the value returned by alloc_pages_exact. + * @size: size of allocation, same value as passed to alloc_pages_exact(). + * + * Release the memory allocated by a previous call to alloc_pages_exact. + */ +void free_pages_exact(void *virt, size_t size) +{ + unsigned long addr = (unsigned long)virt; + unsigned long end = addr + PAGE_ALIGN(size); + + while (addr < end) { + free_page(addr); + addr += PAGE_SIZE; + } +} +EXPORT_SYMBOL(free_pages_exact); + +static unsigned int nr_free_zone_pages(int offset) +{ + struct zoneref *z; + struct zone *zone; + + /* Just pick one node, since fallback list is circular */ + unsigned int sum = 0; + + struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); + + for_each_zone_zonelist(zone, z, zonelist, offset) { + unsigned long size = zone->present_pages; + unsigned long high = high_wmark_pages(zone); + if (size > high) + sum += size - high; + } + + return sum; +} + +/* + * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL + */ +unsigned int nr_free_buffer_pages(void) +{ + return nr_free_zone_pages(gfp_zone(GFP_USER)); +} +EXPORT_SYMBOL_GPL(nr_free_buffer_pages); + +/* + * Amount of free RAM allocatable within all zones + */ +unsigned int nr_free_pagecache_pages(void) +{ + return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); +} + +static inline void show_node(struct zone *zone) +{ + if (NUMA_BUILD) + printk("Node %d ", zone_to_nid(zone)); +} + +void si_meminfo(struct sysinfo *val) +{ + val->totalram = totalram_pages; + val->sharedram = 0; + val->freeram = global_page_state(NR_FREE_PAGES); + val->bufferram = nr_blockdev_pages(); + val->totalhigh = totalhigh_pages; + val->freehigh = nr_free_highpages(); + val->mem_unit = PAGE_SIZE; +} + +EXPORT_SYMBOL(si_meminfo); + +#ifdef CONFIG_NUMA +void si_meminfo_node(struct sysinfo *val, int nid) +{ + pg_data_t *pgdat = NODE_DATA(nid); + + val->totalram = pgdat->node_present_pages; + val->freeram = node_page_state(nid, NR_FREE_PAGES); +#ifdef CONFIG_HIGHMEM + val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; + val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], + NR_FREE_PAGES); +#else + val->totalhigh = 0; + val->freehigh = 0; +#endif + val->mem_unit = PAGE_SIZE; +} +#endif + +/* + * Determine whether the node should be displayed or not, depending on whether + * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). + */ +bool skip_free_areas_node(unsigned int flags, int nid) +{ + bool ret = false; + unsigned int cpuset_mems_cookie; + + if (!(flags & SHOW_MEM_FILTER_NODES)) + goto out; + + do { + cpuset_mems_cookie = get_mems_allowed(); + ret = !node_isset(nid, cpuset_current_mems_allowed); + } while (!put_mems_allowed(cpuset_mems_cookie)); +out: + return ret; +} + +#define K(x) ((x) << (PAGE_SHIFT-10)) + +/* + * Show free area list (used inside shift_scroll-lock stuff) + * We also calculate the percentage fragmentation. We do this by counting the + * memory on each free list with the exception of the first item on the list. + * Suppresses nodes that are not allowed by current's cpuset if + * SHOW_MEM_FILTER_NODES is passed. + */ +void show_free_areas(unsigned int filter) +{ + int cpu; + struct zone *zone; + + for_each_populated_zone(zone) { + if (skip_free_areas_node(filter, zone_to_nid(zone))) + continue; + show_node(zone); + printk("%s per-cpu:\n", zone->name); + + for_each_online_cpu(cpu) { + struct per_cpu_pageset *pageset; + + pageset = per_cpu_ptr(zone->pageset, cpu); + + printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", + cpu, pageset->pcp.high, + pageset->pcp.batch, pageset->pcp.count); + } + } + + printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" + " active_file:%lu inactive_file:%lu isolated_file:%lu\n" + " unevictable:%lu" + " dirty:%lu writeback:%lu unstable:%lu\n" + " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" + " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", + global_page_state(NR_ACTIVE_ANON), + global_page_state(NR_INACTIVE_ANON), + global_page_state(NR_ISOLATED_ANON), + global_page_state(NR_ACTIVE_FILE), + global_page_state(NR_INACTIVE_FILE), + global_page_state(NR_ISOLATED_FILE), + global_page_state(NR_UNEVICTABLE), + global_page_state(NR_FILE_DIRTY), + global_page_state(NR_WRITEBACK), + global_page_state(NR_UNSTABLE_NFS), + global_page_state(NR_FREE_PAGES), + global_page_state(NR_SLAB_RECLAIMABLE), + global_page_state(NR_SLAB_UNRECLAIMABLE), + global_page_state(NR_FILE_MAPPED), + global_page_state(NR_SHMEM), + global_page_state(NR_PAGETABLE), + global_page_state(NR_BOUNCE)); + + for_each_populated_zone(zone) { + int i; + + if (skip_free_areas_node(filter, zone_to_nid(zone))) + continue; + show_node(zone); + printk("%s" + " free:%lukB" + " min:%lukB" + " low:%lukB" + " high:%lukB" + " active_anon:%lukB" + " inactive_anon:%lukB" + " active_file:%lukB" + " inactive_file:%lukB" + " unevictable:%lukB" + " isolated(anon):%lukB" + " isolated(file):%lukB" + " present:%lukB" + " mlocked:%lukB" + " dirty:%lukB" + " writeback:%lukB" + " mapped:%lukB" + " shmem:%lukB" + " slab_reclaimable:%lukB" + " slab_unreclaimable:%lukB" + " kernel_stack:%lukB" + " pagetables:%lukB" + " unstable:%lukB" + " bounce:%lukB" + " writeback_tmp:%lukB" + " pages_scanned:%lu" + " all_unreclaimable? %s" + "\n", + zone->name, + K(zone_page_state(zone, NR_FREE_PAGES)), + K(min_wmark_pages(zone)), + K(low_wmark_pages(zone)), + K(high_wmark_pages(zone)), + K(zone_page_state(zone, NR_ACTIVE_ANON)), + K(zone_page_state(zone, NR_INACTIVE_ANON)), + K(zone_page_state(zone, NR_ACTIVE_FILE)), + K(zone_page_state(zone, NR_INACTIVE_FILE)), + K(zone_page_state(zone, NR_UNEVICTABLE)), + K(zone_page_state(zone, NR_ISOLATED_ANON)), + K(zone_page_state(zone, NR_ISOLATED_FILE)), + K(zone->present_pages), + K(zone_page_state(zone, NR_MLOCK)), + K(zone_page_state(zone, NR_FILE_DIRTY)), + K(zone_page_state(zone, NR_WRITEBACK)), + K(zone_page_state(zone, NR_FILE_MAPPED)), + K(zone_page_state(zone, NR_SHMEM)), + K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), + K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), + zone_page_state(zone, NR_KERNEL_STACK) * + THREAD_SIZE / 1024, + K(zone_page_state(zone, NR_PAGETABLE)), + K(zone_page_state(zone, NR_UNSTABLE_NFS)), + K(zone_page_state(zone, NR_BOUNCE)), + K(zone_page_state(zone, NR_WRITEBACK_TEMP)), + zone->pages_scanned, + (zone->all_unreclaimable ? "yes" : "no") + ); + printk("lowmem_reserve[]:"); + for (i = 0; i < MAX_NR_ZONES; i++) + printk(" %lu", zone->lowmem_reserve[i]); + printk("\n"); + } + + for_each_populated_zone(zone) { + unsigned long nr[MAX_ORDER], flags, order, total = 0; + + if (skip_free_areas_node(filter, zone_to_nid(zone))) + continue; + show_node(zone); + printk("%s: ", zone->name); + + spin_lock_irqsave(&zone->lock, flags); + for (order = 0; order < MAX_ORDER; order++) { + nr[order] = zone->free_area[order].nr_free; + total += nr[order] << order; + } + spin_unlock_irqrestore(&zone->lock, flags); + for (order = 0; order < MAX_ORDER; order++) + printk("%lu*%lukB ", nr[order], K(1UL) << order); + printk("= %lukB\n", K(total)); + } + + printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); + + show_swap_cache_info(); +} + +static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) +{ + zoneref->zone = zone; + zoneref->zone_idx = zone_idx(zone); +} + +/* + * Builds allocation fallback zone lists. + * + * Add all populated zones of a node to the zonelist. + */ +static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, + int nr_zones, enum zone_type zone_type) +{ + struct zone *zone; + + BUG_ON(zone_type >= MAX_NR_ZONES); + zone_type++; + + do { + zone_type--; + zone = pgdat->node_zones + zone_type; + if (populated_zone(zone)) { + zoneref_set_zone(zone, + &zonelist->_zonerefs[nr_zones++]); + check_highest_zone(zone_type); + } + + } while (zone_type); + return nr_zones; +} + + +/* + * zonelist_order: + * 0 = automatic detection of better ordering. + * 1 = order by ([node] distance, -zonetype) + * 2 = order by (-zonetype, [node] distance) + * + * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create + * the same zonelist. So only NUMA can configure this param. + */ +#define ZONELIST_ORDER_DEFAULT 0 +#define ZONELIST_ORDER_NODE 1 +#define ZONELIST_ORDER_ZONE 2 + +/* zonelist order in the kernel. + * set_zonelist_order() will set this to NODE or ZONE. + */ +static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; +static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; + + +#ifdef CONFIG_NUMA +/* The value user specified ....changed by config */ +static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; +/* string for sysctl */ +#define NUMA_ZONELIST_ORDER_LEN 16 +char numa_zonelist_order[16] = "default"; + +/* + * interface for configure zonelist ordering. + * command line option "numa_zonelist_order" + * = "[dD]efault - default, automatic configuration. + * = "[nN]ode - order by node locality, then by zone within node + * = "[zZ]one - order by zone, then by locality within zone + */ + +static int __parse_numa_zonelist_order(char *s) +{ + if (*s == 'd' || *s == 'D') { + user_zonelist_order = ZONELIST_ORDER_DEFAULT; + } else if (*s == 'n' || *s == 'N') { + user_zonelist_order = ZONELIST_ORDER_NODE; + } else if (*s == 'z' || *s == 'Z') { + user_zonelist_order = ZONELIST_ORDER_ZONE; + } else { + printk(KERN_WARNING + "Ignoring invalid numa_zonelist_order value: " + "%s\n", s); + return -EINVAL; + } + return 0; +} + +static __init int setup_numa_zonelist_order(char *s) +{ + int ret; + + if (!s) + return 0; + + ret = __parse_numa_zonelist_order(s); + if (ret == 0) + strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); + + return ret; +} +early_param("numa_zonelist_order", setup_numa_zonelist_order); + +/* + * sysctl handler for numa_zonelist_order + */ +int numa_zonelist_order_handler(ctl_table *table, int write, + void __user *buffer, size_t *length, + loff_t *ppos) +{ + char saved_string[NUMA_ZONELIST_ORDER_LEN]; + int ret; + static DEFINE_MUTEX(zl_order_mutex); + + mutex_lock(&zl_order_mutex); + if (write) + strcpy(saved_string, (char*)table->data); + ret = proc_dostring(table, write, buffer, length, ppos); + if (ret) + goto out; + if (write) { + int oldval = user_zonelist_order; + if (__parse_numa_zonelist_order((char*)table->data)) { + /* + * bogus value. restore saved string + */ + strncpy((char*)table->data, saved_string, + NUMA_ZONELIST_ORDER_LEN); + user_zonelist_order = oldval; + } else if (oldval != user_zonelist_order) { + mutex_lock(&zonelists_mutex); + build_all_zonelists(NULL); + mutex_unlock(&zonelists_mutex); + } + } +out: + mutex_unlock(&zl_order_mutex); + return ret; +} + + +#define MAX_NODE_LOAD (nr_online_nodes) +static int node_load[MAX_NUMNODES]; + +/** + * find_next_best_node - find the next node that should appear in a given node's fallback list + * @node: node whose fallback list we're appending + * @used_node_mask: nodemask_t of already used nodes + * + * We use a number of factors to determine which is the next node that should + * appear on a given node's fallback list. The node should not have appeared + * already in @node's fallback list, and it should be the next closest node + * according to the distance array (which contains arbitrary distance values + * from each node to each node in the system), and should also prefer nodes + * with no CPUs, since presumably they'll have very little allocation pressure + * on them otherwise. + * It returns -1 if no node is found. + */ +static int find_next_best_node(int node, nodemask_t *used_node_mask) +{ + int n, val; + int min_val = INT_MAX; + int best_node = -1; + const struct cpumask *tmp = cpumask_of_node(0); + + /* Use the local node if we haven't already */ + if (!node_isset(node, *used_node_mask)) { + node_set(node, *used_node_mask); + return node; + } + + for_each_node_state(n, N_HIGH_MEMORY) { + + /* Don't want a node to appear more than once */ + if (node_isset(n, *used_node_mask)) + continue; + + /* Use the distance array to find the distance */ + val = node_distance(node, n); + + /* Penalize nodes under us ("prefer the next node") */ + val += (n < node); + + /* Give preference to headless and unused nodes */ + tmp = cpumask_of_node(n); + if (!cpumask_empty(tmp)) + val += PENALTY_FOR_NODE_WITH_CPUS; + + /* Slight preference for less loaded node */ + val *= (MAX_NODE_LOAD*MAX_NUMNODES); + val += node_load[n]; + + if (val < min_val) { + min_val = val; + best_node = n; + } + } + + if (best_node >= 0) + node_set(best_node, *used_node_mask); + + return best_node; +} + + +/* + * Build zonelists ordered by node and zones within node. + * This results in maximum locality--normal zone overflows into local + * DMA zone, if any--but risks exhausting DMA zone. + */ +static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) +{ + int j; + struct zonelist *zonelist; + + zonelist = &pgdat->node_zonelists[0]; + for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) + ; + j = build_zonelists_node(NODE_DATA(node), zonelist, j, + MAX_NR_ZONES - 1); + zonelist->_zonerefs[j].zone = NULL; + zonelist->_zonerefs[j].zone_idx = 0; +} + +/* + * Build gfp_thisnode zonelists + */ +static void build_thisnode_zonelists(pg_data_t *pgdat) +{ + int j; + struct zonelist *zonelist; + + zonelist = &pgdat->node_zonelists[1]; + j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); + zonelist->_zonerefs[j].zone = NULL; + zonelist->_zonerefs[j].zone_idx = 0; +} + +/* + * Build zonelists ordered by zone and nodes within zones. + * This results in conserving DMA zone[s] until all Normal memory is + * exhausted, but results in overflowing to remote node while memory + * may still exist in local DMA zone. + */ +static int node_order[MAX_NUMNODES]; + +static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) +{ + int pos, j, node; + int zone_type; /* needs to be signed */ + struct zone *z; + struct zonelist *zonelist; + + zonelist = &pgdat->node_zonelists[0]; + pos = 0; + for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { + for (j = 0; j < nr_nodes; j++) { + node = node_order[j]; + z = &NODE_DATA(node)->node_zones[zone_type]; + if (populated_zone(z)) { + zoneref_set_zone(z, + &zonelist->_zonerefs[pos++]); + check_highest_zone(zone_type); + } + } + } + zonelist->_zonerefs[pos].zone = NULL; + zonelist->_zonerefs[pos].zone_idx = 0; +} + +static int default_zonelist_order(void) +{ + int nid, zone_type; + unsigned long low_kmem_size,total_size; + struct zone *z; + int average_size; + /* + * ZONE_DMA and ZONE_DMA32 can be very small area in the system. + * If they are really small and used heavily, the system can fall + * into OOM very easily. + * This function detect ZONE_DMA/DMA32 size and configures zone order. + */ + /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ + low_kmem_size = 0; + total_size = 0; + for_each_online_node(nid) { + for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { + z = &NODE_DATA(nid)->node_zones[zone_type]; + if (populated_zone(z)) { + if (zone_type < ZONE_NORMAL) + low_kmem_size += z->present_pages; + total_size += z->present_pages; + } else if (zone_type == ZONE_NORMAL) { + /* + * If any node has only lowmem, then node order + * is preferred to allow kernel allocations + * locally; otherwise, they can easily infringe + * on other nodes when there is an abundance of + * lowmem available to allocate from. + */ + return ZONELIST_ORDER_NODE; + } + } + } + if (!low_kmem_size || /* there are no DMA area. */ + low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ + return ZONELIST_ORDER_NODE; + /* + * look into each node's config. + * If there is a node whose DMA/DMA32 memory is very big area on + * local memory, NODE_ORDER may be suitable. + */ + average_size = total_size / + (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); + for_each_online_node(nid) { + low_kmem_size = 0; + total_size = 0; + for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { + z = &NODE_DATA(nid)->node_zones[zone_type]; + if (populated_zone(z)) { + if (zone_type < ZONE_NORMAL) + low_kmem_size += z->present_pages; + total_size += z->present_pages; + } + } + if (low_kmem_size && + total_size > average_size && /* ignore small node */ + low_kmem_size > total_size * 70/100) + return ZONELIST_ORDER_NODE; + } + return ZONELIST_ORDER_ZONE; +} + +static void set_zonelist_order(void) +{ + if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) + current_zonelist_order = default_zonelist_order(); + else + current_zonelist_order = user_zonelist_order; +} + +static void build_zonelists(pg_data_t *pgdat) +{ + int j, node, load; + enum zone_type i; + nodemask_t used_mask; + int local_node, prev_node; + struct zonelist *zonelist; + int order = current_zonelist_order; + + /* initialize zonelists */ + for (i = 0; i < MAX_ZONELISTS; i++) { + zonelist = pgdat->node_zonelists + i; + zonelist->_zonerefs[0].zone = NULL; + zonelist->_zonerefs[0].zone_idx = 0; + } + + /* NUMA-aware ordering of nodes */ + local_node = pgdat->node_id; + load = nr_online_nodes; + prev_node = local_node; + nodes_clear(used_mask); + + memset(node_order, 0, sizeof(node_order)); + j = 0; + + while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { + int distance = node_distance(local_node, node); + + /* + * If another node is sufficiently far away then it is better + * to reclaim pages in a zone before going off node. + */ + if (distance > RECLAIM_DISTANCE) + zone_reclaim_mode = 1; + + /* + * We don't want to pressure a particular node. + * So adding penalty to the first node in same + * distance group to make it round-robin. + */ + if (distance != node_distance(local_node, prev_node)) + node_load[node] = load; + + prev_node = node; + load--; + if (order == ZONELIST_ORDER_NODE) + build_zonelists_in_node_order(pgdat, node); + else + node_order[j++] = node; /* remember order */ + } + + if (order == ZONELIST_ORDER_ZONE) { + /* calculate node order -- i.e., DMA last! */ + build_zonelists_in_zone_order(pgdat, j); + } + + build_thisnode_zonelists(pgdat); +} + +/* Construct the zonelist performance cache - see further mmzone.h */ +static void build_zonelist_cache(pg_data_t *pgdat) +{ + struct zonelist *zonelist; + struct zonelist_cache *zlc; + struct zoneref *z; + + zonelist = &pgdat->node_zonelists[0]; + zonelist->zlcache_ptr = zlc = &zonelist->zlcache; + bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); + for (z = zonelist->_zonerefs; z->zone; z++) + zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); +} + +#ifdef CONFIG_HAVE_MEMORYLESS_NODES +/* + * Return node id of node used for "local" allocations. + * I.e., first node id of first zone in arg node's generic zonelist. + * Used for initializing percpu 'numa_mem', which is used primarily + * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. + */ +int local_memory_node(int node) +{ + struct zone *zone; + + (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), + gfp_zone(GFP_KERNEL), + NULL, + &zone); + return zone->node; +} +#endif + +#else /* CONFIG_NUMA */ + +static void set_zonelist_order(void) +{ + current_zonelist_order = ZONELIST_ORDER_ZONE; +} + +static void build_zonelists(pg_data_t *pgdat) +{ + int node, local_node; + enum zone_type j; + struct zonelist *zonelist; + + local_node = pgdat->node_id; + + zonelist = &pgdat->node_zonelists[0]; + j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); + + /* + * Now we build the zonelist so that it contains the zones + * of all the other nodes. + * We don't want to pressure a particular node, so when + * building the zones for node N, we make sure that the + * zones coming right after the local ones are those from + * node N+1 (modulo N) + */ + for (node = local_node + 1; node < MAX_NUMNODES; node++) { + if (!node_online(node)) + continue; + j = build_zonelists_node(NODE_DATA(node), zonelist, j, + MAX_NR_ZONES - 1); + } + for (node = 0; node < local_node; node++) { + if (!node_online(node)) + continue; + j = build_zonelists_node(NODE_DATA(node), zonelist, j, + MAX_NR_ZONES - 1); + } + + zonelist->_zonerefs[j].zone = NULL; + zonelist->_zonerefs[j].zone_idx = 0; +} + +/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ +static void build_zonelist_cache(pg_data_t *pgdat) +{ + pgdat->node_zonelists[0].zlcache_ptr = NULL; +} + +#endif /* CONFIG_NUMA */ + +/* + * Boot pageset table. One per cpu which is going to be used for all + * zones and all nodes. The parameters will be set in such a way + * that an item put on a list will immediately be handed over to + * the buddy list. This is safe since pageset manipulation is done + * with interrupts disabled. + * + * The boot_pagesets must be kept even after bootup is complete for + * unused processors and/or zones. They do play a role for bootstrapping + * hotplugged processors. + * + * zoneinfo_show() and maybe other functions do + * not check if the processor is online before following the pageset pointer. + * Other parts of the kernel may not check if the zone is available. + */ +static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); +static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); +static void setup_zone_pageset(struct zone *zone); + +/* + * Global mutex to protect against size modification of zonelists + * as well as to serialize pageset setup for the new populated zone. + */ +DEFINE_MUTEX(zonelists_mutex); + +/* return values int ....just for stop_machine() */ +static __init_refok int __build_all_zonelists(void *data) +{ + int nid; + int cpu; + +#ifdef CONFIG_NUMA + memset(node_load, 0, sizeof(node_load)); +#endif + for_each_online_node(nid) { + pg_data_t *pgdat = NODE_DATA(nid); + + build_zonelists(pgdat); + build_zonelist_cache(pgdat); + } + + /* + * Initialize the boot_pagesets that are going to be used + * for bootstrapping processors. The real pagesets for + * each zone will be allocated later when the per cpu + * allocator is available. + * + * boot_pagesets are used also for bootstrapping offline + * cpus if the system is already booted because the pagesets + * are needed to initialize allocators on a specific cpu too. + * F.e. the percpu allocator needs the page allocator which + * needs the percpu allocator in order to allocate its pagesets + * (a chicken-egg dilemma). + */ + for_each_possible_cpu(cpu) { + setup_pageset(&per_cpu(boot_pageset, cpu), 0); + +#ifdef CONFIG_HAVE_MEMORYLESS_NODES + /* + * We now know the "local memory node" for each node-- + * i.e., the node of the first zone in the generic zonelist. + * Set up numa_mem percpu variable for on-line cpus. During + * boot, only the boot cpu should be on-line; we'll init the + * secondary cpus' numa_mem as they come on-line. During + * node/memory hotplug, we'll fixup all on-line cpus. + */ + if (cpu_online(cpu)) + set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); +#endif + } + + return 0; +} + +/* + * Called with zonelists_mutex held always + * unless system_state == SYSTEM_BOOTING. + */ +void __ref build_all_zonelists(void *data) +{ + set_zonelist_order(); + + if (system_state == SYSTEM_BOOTING) { + __build_all_zonelists(NULL); + mminit_verify_zonelist(); + cpuset_init_current_mems_allowed(); + } else { + /* we have to stop all cpus to guarantee there is no user + of zonelist */ +#ifdef CONFIG_MEMORY_HOTPLUG + if (data) + setup_zone_pageset((struct zone *)data); +#endif + stop_machine(__build_all_zonelists, NULL, NULL); + /* cpuset refresh routine should be here */ + } + vm_total_pages = nr_free_pagecache_pages(); + /* + * Disable grouping by mobility if the number of pages in the + * system is too low to allow the mechanism to work. It would be + * more accurate, but expensive to check per-zone. This check is + * made on memory-hotadd so a system can start with mobility + * disabled and enable it later + */ + if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) + page_group_by_mobility_disabled = 1; + else + page_group_by_mobility_disabled = 0; + + printk("Built %i zonelists in %s order, mobility grouping %s. " + "Total pages: %ld\n", + nr_online_nodes, + zonelist_order_name[current_zonelist_order], + page_group_by_mobility_disabled ? "off" : "on", + vm_total_pages); +#ifdef CONFIG_NUMA + printk("Policy zone: %s\n", zone_names[policy_zone]); +#endif +} + +/* + * Helper functions to size the waitqueue hash table. + * Essentially these want to choose hash table sizes sufficiently + * large so that collisions trying to wait on pages are rare. + * But in fact, the number of active page waitqueues on typical + * systems is ridiculously low, less than 200. So this is even + * conservative, even though it seems large. + * + * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to + * waitqueues, i.e. the size of the waitq table given the number of pages. + */ +#define PAGES_PER_WAITQUEUE 256 + +#ifndef CONFIG_MEMORY_HOTPLUG +static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) +{ + unsigned long size = 1; + + pages /= PAGES_PER_WAITQUEUE; + + while (size < pages) + size <<= 1; + + /* + * Once we have dozens or even hundreds of threads sleeping + * on IO we've got bigger problems than wait queue collision. + * Limit the size of the wait table to a reasonable size. + */ + size = min(size, 4096UL); + + return max(size, 4UL); +} +#else +/* + * A zone's size might be changed by hot-add, so it is not possible to determine + * a suitable size for its wait_table. So we use the maximum size now. + * + * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: + * + * i386 (preemption config) : 4096 x 16 = 64Kbyte. + * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. + * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. + * + * The maximum entries are prepared when a zone's memory is (512K + 256) pages + * or more by the traditional way. (See above). It equals: + * + * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. + * ia64(16K page size) : = ( 8G + 4M)byte. + * powerpc (64K page size) : = (32G +16M)byte. + */ +static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) +{ + return 4096UL; +} +#endif + +/* + * This is an integer logarithm so that shifts can be used later + * to extract the more random high bits from the multiplicative + * hash function before the remainder is taken. + */ +static inline unsigned long wait_table_bits(unsigned long size) +{ + return ffz(~size); +} + +#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) + +/* + * Check if a pageblock contains reserved pages + */ +static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) +{ + unsigned long pfn; + + for (pfn = start_pfn; pfn < end_pfn; pfn++) { + if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) + return 1; + } + return 0; +} + +/* + * Mark a number of pageblocks as MIGRATE_RESERVE. The number + * of blocks reserved is based on min_wmark_pages(zone). The memory within + * the reserve will tend to store contiguous free pages. Setting min_free_kbytes + * higher will lead to a bigger reserve which will get freed as contiguous + * blocks as reclaim kicks in + */ +static void setup_zone_migrate_reserve(struct zone *zone) +{ + unsigned long start_pfn, pfn, end_pfn, block_end_pfn; + struct page *page; + unsigned long block_migratetype; + int reserve; + + /* + * Get the start pfn, end pfn and the number of blocks to reserve + * We have to be careful to be aligned to pageblock_nr_pages to + * make sure that we always check pfn_valid for the first page in + * the block. + */ + start_pfn = zone->zone_start_pfn; + end_pfn = start_pfn + zone->spanned_pages; + start_pfn = roundup(start_pfn, pageblock_nr_pages); + reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> + pageblock_order; + + /* + * Reserve blocks are generally in place to help high-order atomic + * allocations that are short-lived. A min_free_kbytes value that + * would result in more than 2 reserve blocks for atomic allocations + * is assumed to be in place to help anti-fragmentation for the + * future allocation of hugepages at runtime. + */ + reserve = min(2, reserve); + + for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { + if (!pfn_valid(pfn)) + continue; + page = pfn_to_page(pfn); + + /* Watch out for overlapping nodes */ + if (page_to_nid(page) != zone_to_nid(zone)) + continue; + + block_migratetype = get_pageblock_migratetype(page); + + /* Only test what is necessary when the reserves are not met */ + if (reserve > 0) { + /* + * Blocks with reserved pages will never free, skip + * them. + */ + block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); + if (pageblock_is_reserved(pfn, block_end_pfn)) + continue; + + /* If this block is reserved, account for it */ + if (block_migratetype == MIGRATE_RESERVE) { + reserve--; + continue; + } + + /* Suitable for reserving if this block is movable */ + if (block_migratetype == MIGRATE_MOVABLE) { + set_pageblock_migratetype(page, + MIGRATE_RESERVE); + move_freepages_block(zone, page, + MIGRATE_RESERVE); + reserve--; + continue; + } + } + + /* + * If the reserve is met and this is a previous reserved block, + * take it back + */ + if (block_migratetype == MIGRATE_RESERVE) { + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + move_freepages_block(zone, page, MIGRATE_MOVABLE); + } + } +} + +/* + * Initially all pages are reserved - free ones are freed + * up by free_all_bootmem() once the early boot process is + * done. Non-atomic initialization, single-pass. + */ +void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, + unsigned long start_pfn, enum memmap_context context) +{ + struct page *page; + unsigned long end_pfn = start_pfn + size; + unsigned long pfn; + struct zone *z; + + if (highest_memmap_pfn < end_pfn - 1) + highest_memmap_pfn = end_pfn - 1; + + z = &NODE_DATA(nid)->node_zones[zone]; + for (pfn = start_pfn; pfn < end_pfn; pfn++) { + /* + * There can be holes in boot-time mem_map[]s + * handed to this function. They do not + * exist on hotplugged memory. + */ + if (context == MEMMAP_EARLY) { + if (!early_pfn_valid(pfn)) + continue; + if (!early_pfn_in_nid(pfn, nid)) + continue; + } + page = pfn_to_page(pfn); + set_page_links(page, zone, nid, pfn); + mminit_verify_page_links(page, zone, nid, pfn); + init_page_count(page); + reset_page_mapcount(page); + SetPageReserved(page); + /* + * Mark the block movable so that blocks are reserved for + * movable at startup. This will force kernel allocations + * to reserve their blocks rather than leaking throughout + * the address space during boot when many long-lived + * kernel allocations are made. Later some blocks near + * the start are marked MIGRATE_RESERVE by + * setup_zone_migrate_reserve() + * + * bitmap is created for zone's valid pfn range. but memmap + * can be created for invalid pages (for alignment) + * check here not to call set_pageblock_migratetype() against + * pfn out of zone. + */ + if ((z->zone_start_pfn <= pfn) + && (pfn < z->zone_start_pfn + z->spanned_pages) + && !(pfn & (pageblock_nr_pages - 1))) + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + + INIT_LIST_HEAD(&page->lru); +#ifdef WANT_PAGE_VIRTUAL + /* The shift won't overflow because ZONE_NORMAL is below 4G. */ + if (!is_highmem_idx(zone)) + set_page_address(page, __va(pfn << PAGE_SHIFT)); +#endif + } +} + +static void __meminit zone_init_free_lists(struct zone *zone) +{ + int order, t; + for_each_migratetype_order(order, t) { + INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); + zone->free_area[order].nr_free = 0; + } +} + +#ifndef __HAVE_ARCH_MEMMAP_INIT +#define memmap_init(size, nid, zone, start_pfn) \ + memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) +#endif + +static int zone_batchsize(struct zone *zone) +{ +#ifdef CONFIG_MMU + int batch; + + /* + * The per-cpu-pages pools are set to around 1000th of the + * size of the zone. But no more than 1/2 of a meg. + * + * OK, so we don't know how big the cache is. So guess. + */ + batch = zone->present_pages / 1024; + if (batch * PAGE_SIZE > 512 * 1024) + batch = (512 * 1024) / PAGE_SIZE; + batch /= 4; /* We effectively *= 4 below */ + if (batch < 1) + batch = 1; + + /* + * Clamp the batch to a 2^n - 1 value. Having a power + * of 2 value was found to be more likely to have + * suboptimal cache aliasing properties in some cases. + * + * For example if 2 tasks are alternately allocating + * batches of pages, one task can end up with a lot + * of pages of one half of the possible page colors + * and the other with pages of the other colors. + */ + batch = rounddown_pow_of_two(batch + batch/2) - 1; + + return batch; + +#else + /* The deferral and batching of frees should be suppressed under NOMMU + * conditions. + * + * The problem is that NOMMU needs to be able to allocate large chunks + * of contiguous memory as there's no hardware page translation to + * assemble apparent contiguous memory from discontiguous pages. + * + * Queueing large contiguous runs of pages for batching, however, + * causes the pages to actually be freed in smaller chunks. As there + * can be a significant delay between the individual batches being + * recycled, this leads to the once large chunks of space being + * fragmented and becoming unavailable for high-order allocations. + */ + return 0; +#endif +} + +static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) +{ + struct per_cpu_pages *pcp; + int migratetype; + + memset(p, 0, sizeof(*p)); + + pcp = &p->pcp; + pcp->count = 0; + pcp->high = 6 * batch; + pcp->batch = max(1UL, 1 * batch); + for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) + INIT_LIST_HEAD(&pcp->lists[migratetype]); +} + +/* + * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist + * to the value high for the pageset p. + */ + +static void setup_pagelist_highmark(struct per_cpu_pageset *p, + unsigned long high) +{ + struct per_cpu_pages *pcp; + + pcp = &p->pcp; + pcp->high = high; + pcp->batch = max(1UL, high/4); + if ((high/4) > (PAGE_SHIFT * 8)) + pcp->batch = PAGE_SHIFT * 8; +} + +static void setup_zone_pageset(struct zone *zone) +{ + int cpu; + + zone->pageset = alloc_percpu(struct per_cpu_pageset); + + for_each_possible_cpu(cpu) { + struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); + + setup_pageset(pcp, zone_batchsize(zone)); + + if (percpu_pagelist_fraction) + setup_pagelist_highmark(pcp, + (zone->present_pages / + percpu_pagelist_fraction)); + } +} + +/* + * Allocate per cpu pagesets and initialize them. + * Before this call only boot pagesets were available. + */ +void __init setup_per_cpu_pageset(void) +{ + struct zone *zone; + + for_each_populated_zone(zone) + setup_zone_pageset(zone); +} + +static noinline __init_refok +int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) +{ + int i; + struct pglist_data *pgdat = zone->zone_pgdat; + size_t alloc_size; + + /* + * The per-page waitqueue mechanism uses hashed waitqueues + * per zone. + */ + zone->wait_table_hash_nr_entries = + wait_table_hash_nr_entries(zone_size_pages); + zone->wait_table_bits = + wait_table_bits(zone->wait_table_hash_nr_entries); + alloc_size = zone->wait_table_hash_nr_entries + * sizeof(wait_queue_head_t); + + if (!slab_is_available()) { + zone->wait_table = (wait_queue_head_t *) + alloc_bootmem_node_nopanic(pgdat, alloc_size); + } else { + /* + * This case means that a zone whose size was 0 gets new memory + * via memory hot-add. + * But it may be the case that a new node was hot-added. In + * this case vmalloc() will not be able to use this new node's + * memory - this wait_table must be initialized to use this new + * node itself as well. + * To use this new node's memory, further consideration will be + * necessary. + */ + zone->wait_table = vmalloc(alloc_size); + } + if (!zone->wait_table) + return -ENOMEM; + + for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) + init_waitqueue_head(zone->wait_table + i); + + return 0; +} + +static int __zone_pcp_update(void *data) +{ + struct zone *zone = data; + int cpu; + unsigned long batch = zone_batchsize(zone), flags; + + for_each_possible_cpu(cpu) { + struct per_cpu_pageset *pset; + struct per_cpu_pages *pcp; + + pset = per_cpu_ptr(zone->pageset, cpu); + pcp = &pset->pcp; + + local_irq_save(flags); + free_pcppages_bulk(zone, pcp->count, pcp); + setup_pageset(pset, batch); + local_irq_restore(flags); + } + return 0; +} + +void zone_pcp_update(struct zone *zone) +{ + stop_machine(__zone_pcp_update, zone, NULL); +} + +static __meminit void zone_pcp_init(struct zone *zone) +{ + /* + * per cpu subsystem is not up at this point. The following code + * relies on the ability of the linker to provide the + * offset of a (static) per cpu variable into the per cpu area. + */ + zone->pageset = &boot_pageset; + + if (zone->present_pages) + printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", + zone->name, zone->present_pages, + zone_batchsize(zone)); +} + +__meminit int init_currently_empty_zone(struct zone *zone, + unsigned long zone_start_pfn, + unsigned long size, + enum memmap_context context) +{ + struct pglist_data *pgdat = zone->zone_pgdat; + int ret; + ret = zone_wait_table_init(zone, size); + if (ret) + return ret; + pgdat->nr_zones = zone_idx(zone) + 1; + + zone->zone_start_pfn = zone_start_pfn; + + mminit_dprintk(MMINIT_TRACE, "memmap_init", + "Initialising map node %d zone %lu pfns %lu -> %lu\n", + pgdat->node_id, + (unsigned long)zone_idx(zone), + zone_start_pfn, (zone_start_pfn + size)); + + zone_init_free_lists(zone); + + return 0; +} + +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP +#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID +/* + * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. + * Architectures may implement their own version but if add_active_range() + * was used and there are no special requirements, this is a convenient + * alternative + */ +int __meminit __early_pfn_to_nid(unsigned long pfn) +{ + unsigned long start_pfn, end_pfn; + int i, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) + if (start_pfn <= pfn && pfn < end_pfn) + return nid; + /* This is a memory hole */ + return -1; +} +#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ + +int __meminit early_pfn_to_nid(unsigned long pfn) +{ + int nid; + + nid = __early_pfn_to_nid(pfn); + if (nid >= 0) + return nid; + /* just returns 0 */ + return 0; +} + +#ifdef CONFIG_NODES_SPAN_OTHER_NODES +bool __meminit early_pfn_in_nid(unsigned long pfn, int node) +{ + int nid; + + nid = __early_pfn_to_nid(pfn); + if (nid >= 0 && nid != node) + return false; + return true; +} +#endif + +/** + * free_bootmem_with_active_regions - Call free_bootmem_node for each active range + * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. + * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node + * + * If an architecture guarantees that all ranges registered with + * add_active_ranges() contain no holes and may be freed, this + * this function may be used instead of calling free_bootmem() manually. + */ +void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) +{ + unsigned long start_pfn, end_pfn; + int i, this_nid; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { + start_pfn = min(start_pfn, max_low_pfn); + end_pfn = min(end_pfn, max_low_pfn); + + if (start_pfn < end_pfn) + free_bootmem_node(NODE_DATA(this_nid), + PFN_PHYS(start_pfn), + (end_pfn - start_pfn) << PAGE_SHIFT); + } +} + +/** + * sparse_memory_present_with_active_regions - Call memory_present for each active range + * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. + * + * If an architecture guarantees that all ranges registered with + * add_active_ranges() contain no holes and may be freed, this + * function may be used instead of calling memory_present() manually. + */ +void __init sparse_memory_present_with_active_regions(int nid) +{ + unsigned long start_pfn, end_pfn; + int i, this_nid; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) + memory_present(this_nid, start_pfn, end_pfn); +} + +/** + * get_pfn_range_for_nid - Return the start and end page frames for a node + * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. + * @start_pfn: Passed by reference. On return, it will have the node start_pfn. + * @end_pfn: Passed by reference. On return, it will have the node end_pfn. + * + * It returns the start and end page frame of a node based on information + * provided by an arch calling add_active_range(). If called for a node + * with no available memory, a warning is printed and the start and end + * PFNs will be 0. + */ +void __meminit get_pfn_range_for_nid(unsigned int nid, + unsigned long *start_pfn, unsigned long *end_pfn) +{ + unsigned long this_start_pfn, this_end_pfn; + int i; + + *start_pfn = -1UL; + *end_pfn = 0; + + for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { + *start_pfn = min(*start_pfn, this_start_pfn); + *end_pfn = max(*end_pfn, this_end_pfn); + } + + if (*start_pfn == -1UL) + *start_pfn = 0; +} + +/* + * This finds a zone that can be used for ZONE_MOVABLE pages. The + * assumption is made that zones within a node are ordered in monotonic + * increasing memory addresses so that the "highest" populated zone is used + */ +static void __init find_usable_zone_for_movable(void) +{ + int zone_index; + for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { + if (zone_index == ZONE_MOVABLE) + continue; + + if (arch_zone_highest_possible_pfn[zone_index] > + arch_zone_lowest_possible_pfn[zone_index]) + break; + } + + VM_BUG_ON(zone_index == -1); + movable_zone = zone_index; +} + +/* + * The zone ranges provided by the architecture do not include ZONE_MOVABLE + * because it is sized independent of architecture. Unlike the other zones, + * the starting point for ZONE_MOVABLE is not fixed. It may be different + * in each node depending on the size of each node and how evenly kernelcore + * is distributed. This helper function adjusts the zone ranges + * provided by the architecture for a given node by using the end of the + * highest usable zone for ZONE_MOVABLE. This preserves the assumption that + * zones within a node are in order of monotonic increases memory addresses + */ +static void __meminit adjust_zone_range_for_zone_movable(int nid, + unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zone_start_pfn, + unsigned long *zone_end_pfn) +{ + /* Only adjust if ZONE_MOVABLE is on this node */ + if (zone_movable_pfn[nid]) { + /* Size ZONE_MOVABLE */ + if (zone_type == ZONE_MOVABLE) { + *zone_start_pfn = zone_movable_pfn[nid]; + *zone_end_pfn = min(node_end_pfn, + arch_zone_highest_possible_pfn[movable_zone]); + + /* Adjust for ZONE_MOVABLE starting within this range */ + } else if (*zone_start_pfn < zone_movable_pfn[nid] && + *zone_end_pfn > zone_movable_pfn[nid]) { + *zone_end_pfn = zone_movable_pfn[nid]; + + /* Check if this whole range is within ZONE_MOVABLE */ + } else if (*zone_start_pfn >= zone_movable_pfn[nid]) + *zone_start_pfn = *zone_end_pfn; + } +} + +/* + * Return the number of pages a zone spans in a node, including holes + * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() + */ +static unsigned long __meminit zone_spanned_pages_in_node(int nid, + unsigned long zone_type, + unsigned long *ignored) +{ + unsigned long node_start_pfn, node_end_pfn; + unsigned long zone_start_pfn, zone_end_pfn; + + /* Get the start and end of the node and zone */ + get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); + zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; + zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; + adjust_zone_range_for_zone_movable(nid, zone_type, + node_start_pfn, node_end_pfn, + &zone_start_pfn, &zone_end_pfn); + + /* Check that this node has pages within the zone's required range */ + if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) + return 0; + + /* Move the zone boundaries inside the node if necessary */ + zone_end_pfn = min(zone_end_pfn, node_end_pfn); + zone_start_pfn = max(zone_start_pfn, node_start_pfn); + + /* Return the spanned pages */ + return zone_end_pfn - zone_start_pfn; +} + +/* + * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, + * then all holes in the requested range will be accounted for. + */ +unsigned long __meminit __absent_pages_in_range(int nid, + unsigned long range_start_pfn, + unsigned long range_end_pfn) +{ + unsigned long nr_absent = range_end_pfn - range_start_pfn; + unsigned long start_pfn, end_pfn; + int i; + + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { + start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); + end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); + nr_absent -= end_pfn - start_pfn; + } + return nr_absent; +} + +/** + * absent_pages_in_range - Return number of page frames in holes within a range + * @start_pfn: The start PFN to start searching for holes + * @end_pfn: The end PFN to stop searching for holes + * + * It returns the number of pages frames in memory holes within a range. + */ +unsigned long __init absent_pages_in_range(unsigned long start_pfn, + unsigned long end_pfn) +{ + return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); +} + +/* Return the number of page frames in holes in a zone on a node */ +static unsigned long __meminit zone_absent_pages_in_node(int nid, + unsigned long zone_type, + unsigned long *ignored) +{ + unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; + unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; + unsigned long node_start_pfn, node_end_pfn; + unsigned long zone_start_pfn, zone_end_pfn; + + get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); + zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); + zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); + + adjust_zone_range_for_zone_movable(nid, zone_type, + node_start_pfn, node_end_pfn, + &zone_start_pfn, &zone_end_pfn); + return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); +} + +#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ +static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, + unsigned long zone_type, + unsigned long *zones_size) +{ + return zones_size[zone_type]; +} + +static inline unsigned long __meminit zone_absent_pages_in_node(int nid, + unsigned long zone_type, + unsigned long *zholes_size) +{ + if (!zholes_size) + return 0; + + return zholes_size[zone_type]; +} + +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + +static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, + unsigned long *zones_size, unsigned long *zholes_size) +{ + unsigned long realtotalpages, totalpages = 0; + enum zone_type i; + + for (i = 0; i < MAX_NR_ZONES; i++) + totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, + zones_size); + pgdat->node_spanned_pages = totalpages; + + realtotalpages = totalpages; + for (i = 0; i < MAX_NR_ZONES; i++) + realtotalpages -= + zone_absent_pages_in_node(pgdat->node_id, i, + zholes_size); + pgdat->node_present_pages = realtotalpages; + printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, + realtotalpages); +} + +#ifndef CONFIG_SPARSEMEM +/* + * Calculate the size of the zone->blockflags rounded to an unsigned long + * Start by making sure zonesize is a multiple of pageblock_order by rounding + * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally + * round what is now in bits to nearest long in bits, then return it in + * bytes. + */ +static unsigned long __init usemap_size(unsigned long zonesize) +{ + unsigned long usemapsize; + + usemapsize = roundup(zonesize, pageblock_nr_pages); + usemapsize = usemapsize >> pageblock_order; + usemapsize *= NR_PAGEBLOCK_BITS; + usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); + + return usemapsize / 8; +} + +static void __init setup_usemap(struct pglist_data *pgdat, + struct zone *zone, unsigned long zonesize) +{ + unsigned long usemapsize = usemap_size(zonesize); + zone->pageblock_flags = NULL; + if (usemapsize) + zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, + usemapsize); +} +#else +static inline void setup_usemap(struct pglist_data *pgdat, + struct zone *zone, unsigned long zonesize) {} +#endif /* CONFIG_SPARSEMEM */ + +#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE + +/* Return a sensible default order for the pageblock size. */ +static inline int pageblock_default_order(void) +{ + if (HPAGE_SHIFT > PAGE_SHIFT) + return HUGETLB_PAGE_ORDER; + + return MAX_ORDER-1; +} + +/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ +static inline void __init set_pageblock_order(unsigned int order) +{ + /* Check that pageblock_nr_pages has not already been setup */ + if (pageblock_order) + return; + + /* + * Assume the largest contiguous order of interest is a huge page. + * This value may be variable depending on boot parameters on IA64 + */ + pageblock_order = order; +} +#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ + +/* + * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() + * and pageblock_default_order() are unused as pageblock_order is set + * at compile-time. See include/linux/pageblock-flags.h for the values of + * pageblock_order based on the kernel config + */ +static inline int pageblock_default_order(unsigned int order) +{ + return MAX_ORDER-1; +} +#define set_pageblock_order(x) do {} while (0) + +#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ + +/* + * Set up the zone data structures: + * - mark all pages reserved + * - mark all memory queues empty + * - clear the memory bitmaps + */ +static void __paginginit free_area_init_core(struct pglist_data *pgdat, + unsigned long *zones_size, unsigned long *zholes_size) +{ + enum zone_type j; + int nid = pgdat->node_id; + unsigned long zone_start_pfn = pgdat->node_start_pfn; + int ret; + + pgdat_resize_init(pgdat); + pgdat->nr_zones = 0; + init_waitqueue_head(&pgdat->kswapd_wait); + pgdat->kswapd_max_order = 0; + pgdat_page_cgroup_init(pgdat); + + for (j = 0; j < MAX_NR_ZONES; j++) { + struct zone *zone = pgdat->node_zones + j; + unsigned long size, realsize, memmap_pages; + enum lru_list lru; + + size = zone_spanned_pages_in_node(nid, j, zones_size); + realsize = size - zone_absent_pages_in_node(nid, j, + zholes_size); + + /* + * Adjust realsize so that it accounts for how much memory + * is used by this zone for memmap. This affects the watermark + * and per-cpu initialisations + */ + memmap_pages = + PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; + if (realsize >= memmap_pages) { + realsize -= memmap_pages; + if (memmap_pages) + printk(KERN_DEBUG + " %s zone: %lu pages used for memmap\n", + zone_names[j], memmap_pages); + } else + printk(KERN_WARNING + " %s zone: %lu pages exceeds realsize %lu\n", + zone_names[j], memmap_pages, realsize); + + /* Account for reserved pages */ + if (j == 0 && realsize > dma_reserve) { + realsize -= dma_reserve; + printk(KERN_DEBUG " %s zone: %lu pages reserved\n", + zone_names[0], dma_reserve); + } + + if (!is_highmem_idx(j)) + nr_kernel_pages += realsize; + nr_all_pages += realsize; + + zone->spanned_pages = size; + zone->present_pages = realsize; +#ifdef CONFIG_NUMA + zone->node = nid; + zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) + / 100; + zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; +#endif + zone->name = zone_names[j]; + spin_lock_init(&zone->lock); + spin_lock_init(&zone->lru_lock); + zone_seqlock_init(zone); + zone->zone_pgdat = pgdat; + + zone_pcp_init(zone); + for_each_lru(lru) + INIT_LIST_HEAD(&zone->lruvec.lists[lru]); + zone->reclaim_stat.recent_rotated[0] = 0; + zone->reclaim_stat.recent_rotated[1] = 0; + zone->reclaim_stat.recent_scanned[0] = 0; + zone->reclaim_stat.recent_scanned[1] = 0; + zap_zone_vm_stats(zone); + zone->flags = 0; + if (!size) + continue; + + set_pageblock_order(pageblock_default_order()); + setup_usemap(pgdat, zone, size); + ret = init_currently_empty_zone(zone, zone_start_pfn, + size, MEMMAP_EARLY); + BUG_ON(ret); + memmap_init(size, nid, j, zone_start_pfn); + zone_start_pfn += size; + } +} + +static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) +{ + /* Skip empty nodes */ + if (!pgdat->node_spanned_pages) + return; + +#ifdef CONFIG_FLAT_NODE_MEM_MAP + /* ia64 gets its own node_mem_map, before this, without bootmem */ + if (!pgdat->node_mem_map) { + unsigned long size, start, end; + struct page *map; + + /* + * The zone's endpoints aren't required to be MAX_ORDER + * aligned but the node_mem_map endpoints must be in order + * for the buddy allocator to function correctly. + */ + start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); + end = pgdat->node_start_pfn + pgdat->node_spanned_pages; + end = ALIGN(end, MAX_ORDER_NR_PAGES); + size = (end - start) * sizeof(struct page); + map = alloc_remap(pgdat->node_id, size); + if (!map) + map = alloc_bootmem_node_nopanic(pgdat, size); + pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); + } +#ifndef CONFIG_NEED_MULTIPLE_NODES + /* + * With no DISCONTIG, the global mem_map is just set as node 0's + */ + if (pgdat == NODE_DATA(0)) { + mem_map = NODE_DATA(0)->node_mem_map; +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP + if (page_to_pfn(mem_map) != pgdat->node_start_pfn) + mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + } +#endif +#endif /* CONFIG_FLAT_NODE_MEM_MAP */ +} + +void __paginginit free_area_init_node(int nid, unsigned long *zones_size, + unsigned long node_start_pfn, unsigned long *zholes_size) +{ + pg_data_t *pgdat = NODE_DATA(nid); + + pgdat->node_id = nid; + pgdat->node_start_pfn = node_start_pfn; + calculate_node_totalpages(pgdat, zones_size, zholes_size); + + alloc_node_mem_map(pgdat); +#ifdef CONFIG_FLAT_NODE_MEM_MAP + printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", + nid, (unsigned long)pgdat, + (unsigned long)pgdat->node_mem_map); +#endif + + free_area_init_core(pgdat, zones_size, zholes_size); +} + +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP + +#if MAX_NUMNODES > 1 +/* + * Figure out the number of possible node ids. + */ +static void __init setup_nr_node_ids(void) +{ + unsigned int node; + unsigned int highest = 0; + + for_each_node_mask(node, node_possible_map) + highest = node; + nr_node_ids = highest + 1; +} +#else +static inline void setup_nr_node_ids(void) +{ +} +#endif + +/** + * node_map_pfn_alignment - determine the maximum internode alignment + * + * This function should be called after node map is populated and sorted. + * It calculates the maximum power of two alignment which can distinguish + * all the nodes. + * + * For example, if all nodes are 1GiB and aligned to 1GiB, the return value + * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the + * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is + * shifted, 1GiB is enough and this function will indicate so. + * + * This is used to test whether pfn -> nid mapping of the chosen memory + * model has fine enough granularity to avoid incorrect mapping for the + * populated node map. + * + * Returns the determined alignment in pfn's. 0 if there is no alignment + * requirement (single node). + */ +unsigned long __init node_map_pfn_alignment(void) +{ + unsigned long accl_mask = 0, last_end = 0; + unsigned long start, end, mask; + int last_nid = -1; + int i, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { + if (!start || last_nid < 0 || last_nid == nid) { + last_nid = nid; + last_end = end; + continue; + } + + /* + * Start with a mask granular enough to pin-point to the + * start pfn and tick off bits one-by-one until it becomes + * too coarse to separate the current node from the last. + */ + mask = ~((1 << __ffs(start)) - 1); + while (mask && last_end <= (start & (mask << 1))) + mask <<= 1; + + /* accumulate all internode masks */ + accl_mask |= mask; + } + + /* convert mask to number of pages */ + return ~accl_mask + 1; +} + +/* Find the lowest pfn for a node */ +static unsigned long __init find_min_pfn_for_node(int nid) +{ + unsigned long min_pfn = ULONG_MAX; + unsigned long start_pfn; + int i; + + for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) + min_pfn = min(min_pfn, start_pfn); + + if (min_pfn == ULONG_MAX) { + printk(KERN_WARNING + "Could not find start_pfn for node %d\n", nid); + return 0; + } + + return min_pfn; +} + +/** + * find_min_pfn_with_active_regions - Find the minimum PFN registered + * + * It returns the minimum PFN based on information provided via + * add_active_range(). + */ +unsigned long __init find_min_pfn_with_active_regions(void) +{ + return find_min_pfn_for_node(MAX_NUMNODES); +} + +/* + * early_calculate_totalpages() + * Sum pages in active regions for movable zone. + * Populate N_HIGH_MEMORY for calculating usable_nodes. + */ +static unsigned long __init early_calculate_totalpages(void) +{ + unsigned long totalpages = 0; + unsigned long start_pfn, end_pfn; + int i, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + unsigned long pages = end_pfn - start_pfn; + + totalpages += pages; + if (pages) + node_set_state(nid, N_HIGH_MEMORY); + } + return totalpages; +} + +/* + * Find the PFN the Movable zone begins in each node. Kernel memory + * is spread evenly between nodes as long as the nodes have enough + * memory. When they don't, some nodes will have more kernelcore than + * others + */ +static void __init find_zone_movable_pfns_for_nodes(void) +{ + int i, nid; + unsigned long usable_startpfn; + unsigned long kernelcore_node, kernelcore_remaining; + /* save the state before borrow the nodemask */ + nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; + unsigned long totalpages = early_calculate_totalpages(); + int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); + + /* + * If movablecore was specified, calculate what size of + * kernelcore that corresponds so that memory usable for + * any allocation type is evenly spread. If both kernelcore + * and movablecore are specified, then the value of kernelcore + * will be used for required_kernelcore if it's greater than + * what movablecore would have allowed. + */ + if (required_movablecore) { + unsigned long corepages; + + /* + * Round-up so that ZONE_MOVABLE is at least as large as what + * was requested by the user + */ + required_movablecore = + roundup(required_movablecore, MAX_ORDER_NR_PAGES); + corepages = totalpages - required_movablecore; + + required_kernelcore = max(required_kernelcore, corepages); + } + + /* If kernelcore was not specified, there is no ZONE_MOVABLE */ + if (!required_kernelcore) + goto out; + + /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ + find_usable_zone_for_movable(); + usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; + +restart: + /* Spread kernelcore memory as evenly as possible throughout nodes */ + kernelcore_node = required_kernelcore / usable_nodes; + for_each_node_state(nid, N_HIGH_MEMORY) { + unsigned long start_pfn, end_pfn; + + /* + * Recalculate kernelcore_node if the division per node + * now exceeds what is necessary to satisfy the requested + * amount of memory for the kernel + */ + if (required_kernelcore < kernelcore_node) + kernelcore_node = required_kernelcore / usable_nodes; + + /* + * As the map is walked, we track how much memory is usable + * by the kernel using kernelcore_remaining. When it is + * 0, the rest of the node is usable by ZONE_MOVABLE + */ + kernelcore_remaining = kernelcore_node; + + /* Go through each range of PFNs within this node */ + for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { + unsigned long size_pages; + + start_pfn = max(start_pfn, zone_movable_pfn[nid]); + if (start_pfn >= end_pfn) + continue; + + /* Account for what is only usable for kernelcore */ + if (start_pfn < usable_startpfn) { + unsigned long kernel_pages; + kernel_pages = min(end_pfn, usable_startpfn) + - start_pfn; + + kernelcore_remaining -= min(kernel_pages, + kernelcore_remaining); + required_kernelcore -= min(kernel_pages, + required_kernelcore); + + /* Continue if range is now fully accounted */ + if (end_pfn <= usable_startpfn) { + + /* + * Push zone_movable_pfn to the end so + * that if we have to rebalance + * kernelcore across nodes, we will + * not double account here + */ + zone_movable_pfn[nid] = end_pfn; + continue; + } + start_pfn = usable_startpfn; + } + + /* + * The usable PFN range for ZONE_MOVABLE is from + * start_pfn->end_pfn. Calculate size_pages as the + * number of pages used as kernelcore + */ + size_pages = end_pfn - start_pfn; + if (size_pages > kernelcore_remaining) + size_pages = kernelcore_remaining; + zone_movable_pfn[nid] = start_pfn + size_pages; + + /* + * Some kernelcore has been met, update counts and + * break if the kernelcore for this node has been + * satisified + */ + required_kernelcore -= min(required_kernelcore, + size_pages); + kernelcore_remaining -= size_pages; + if (!kernelcore_remaining) + break; + } + } + + /* + * If there is still required_kernelcore, we do another pass with one + * less node in the count. This will push zone_movable_pfn[nid] further + * along on the nodes that still have memory until kernelcore is + * satisified + */ + usable_nodes--; + if (usable_nodes && required_kernelcore > usable_nodes) + goto restart; + + /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ + for (nid = 0; nid < MAX_NUMNODES; nid++) + zone_movable_pfn[nid] = + roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); + +out: + /* restore the node_state */ + node_states[N_HIGH_MEMORY] = saved_node_state; +} + +/* Any regular memory on that node ? */ +static void check_for_regular_memory(pg_data_t *pgdat) +{ +#ifdef CONFIG_HIGHMEM + enum zone_type zone_type; + + for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { + struct zone *zone = &pgdat->node_zones[zone_type]; + if (zone->present_pages) { + node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); + break; + } + } +#endif +} + +/** + * free_area_init_nodes - Initialise all pg_data_t and zone data + * @max_zone_pfn: an array of max PFNs for each zone + * + * This will call free_area_init_node() for each active node in the system. + * Using the page ranges provided by add_active_range(), the size of each + * zone in each node and their holes is calculated. If the maximum PFN + * between two adjacent zones match, it is assumed that the zone is empty. + * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed + * that arch_max_dma32_pfn has no pages. It is also assumed that a zone + * starts where the previous one ended. For example, ZONE_DMA32 starts + * at arch_max_dma_pfn. + */ +void __init free_area_init_nodes(unsigned long *max_zone_pfn) +{ + unsigned long start_pfn, end_pfn; + int i, nid; + + /* Record where the zone boundaries are */ + memset(arch_zone_lowest_possible_pfn, 0, + sizeof(arch_zone_lowest_possible_pfn)); + memset(arch_zone_highest_possible_pfn, 0, + sizeof(arch_zone_highest_possible_pfn)); + arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); + arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; + for (i = 1; i < MAX_NR_ZONES; i++) { + if (i == ZONE_MOVABLE) + continue; + arch_zone_lowest_possible_pfn[i] = + arch_zone_highest_possible_pfn[i-1]; + arch_zone_highest_possible_pfn[i] = + max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); + } + arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; + arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; + + /* Find the PFNs that ZONE_MOVABLE begins at in each node */ + memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); + find_zone_movable_pfns_for_nodes(); + + /* Print out the zone ranges */ + printk("Zone PFN ranges:\n"); + for (i = 0; i < MAX_NR_ZONES; i++) { + if (i == ZONE_MOVABLE) + continue; + printk(" %-8s ", zone_names[i]); + if (arch_zone_lowest_possible_pfn[i] == + arch_zone_highest_possible_pfn[i]) + printk("empty\n"); + else + printk("%0#10lx -> %0#10lx\n", + arch_zone_lowest_possible_pfn[i], + arch_zone_highest_possible_pfn[i]); + } + + /* Print out the PFNs ZONE_MOVABLE begins at in each node */ + printk("Movable zone start PFN for each node\n"); + for (i = 0; i < MAX_NUMNODES; i++) { + if (zone_movable_pfn[i]) + printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); + } + + /* Print out the early_node_map[] */ + printk("Early memory PFN ranges\n"); + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) + printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn); + + /* Initialise every node */ + mminit_verify_pageflags_layout(); + setup_nr_node_ids(); + for_each_online_node(nid) { + pg_data_t *pgdat = NODE_DATA(nid); + free_area_init_node(nid, NULL, + find_min_pfn_for_node(nid), NULL); + + /* Any memory on that node */ + if (pgdat->node_present_pages) + node_set_state(nid, N_HIGH_MEMORY); + check_for_regular_memory(pgdat); + } +} + +static int __init cmdline_parse_core(char *p, unsigned long *core) +{ + unsigned long long coremem; + if (!p) + return -EINVAL; + + coremem = memparse(p, &p); + *core = coremem >> PAGE_SHIFT; + + /* Paranoid check that UL is enough for the coremem value */ + WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); + + return 0; +} + +/* + * kernelcore=size sets the amount of memory for use for allocations that + * cannot be reclaimed or migrated. + */ +static int __init cmdline_parse_kernelcore(char *p) +{ + return cmdline_parse_core(p, &required_kernelcore); +} + +/* + * movablecore=size sets the amount of memory for use for allocations that + * can be reclaimed or migrated. + */ +static int __init cmdline_parse_movablecore(char *p) +{ + return cmdline_parse_core(p, &required_movablecore); +} + +early_param("kernelcore", cmdline_parse_kernelcore); +early_param("movablecore", cmdline_parse_movablecore); + +#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ + +/** + * set_dma_reserve - set the specified number of pages reserved in the first zone + * @new_dma_reserve: The number of pages to mark reserved + * + * The per-cpu batchsize and zone watermarks are determined by present_pages. + * In the DMA zone, a significant percentage may be consumed by kernel image + * and other unfreeable allocations which can skew the watermarks badly. This + * function may optionally be used to account for unfreeable pages in the + * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and + * smaller per-cpu batchsize. + */ +void __init set_dma_reserve(unsigned long new_dma_reserve) +{ + dma_reserve = new_dma_reserve; +} + +void __init free_area_init(unsigned long *zones_size) +{ + free_area_init_node(0, zones_size, + __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); +} + +static int page_alloc_cpu_notify(struct notifier_block *self, + unsigned long action, void *hcpu) +{ + int cpu = (unsigned long)hcpu; + + if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { + lru_add_drain_cpu(cpu); + drain_pages(cpu); + + /* + * Spill the event counters of the dead processor + * into the current processors event counters. + * This artificially elevates the count of the current + * processor. + */ + vm_events_fold_cpu(cpu); + + /* + * Zero the differential counters of the dead processor + * so that the vm statistics are consistent. + * + * This is only okay since the processor is dead and cannot + * race with what we are doing. + */ + refresh_cpu_vm_stats(cpu); + } + return NOTIFY_OK; +} + +void __init page_alloc_init(void) +{ + hotcpu_notifier(page_alloc_cpu_notify, 0); +} + +/* + * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio + * or min_free_kbytes changes. + */ +static void calculate_totalreserve_pages(void) +{ + struct pglist_data *pgdat; + unsigned long reserve_pages = 0; + enum zone_type i, j; + + for_each_online_pgdat(pgdat) { + for (i = 0; i < MAX_NR_ZONES; i++) { + struct zone *zone = pgdat->node_zones + i; + unsigned long max = 0; + + /* Find valid and maximum lowmem_reserve in the zone */ + for (j = i; j < MAX_NR_ZONES; j++) { + if (zone->lowmem_reserve[j] > max) + max = zone->lowmem_reserve[j]; + } + + /* we treat the high watermark as reserved pages. */ + max += high_wmark_pages(zone); + + if (max > zone->present_pages) + max = zone->present_pages; + reserve_pages += max; + /* + * Lowmem reserves are not available to + * GFP_HIGHUSER page cache allocations and + * kswapd tries to balance zones to their high + * watermark. As a result, neither should be + * regarded as dirtyable memory, to prevent a + * situation where reclaim has to clean pages + * in order to balance the zones. + */ + zone->dirty_balance_reserve = max; + } + } + dirty_balance_reserve = reserve_pages; + totalreserve_pages = reserve_pages; +} + +/* + * setup_per_zone_lowmem_reserve - called whenever + * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone + * has a correct pages reserved value, so an adequate number of + * pages are left in the zone after a successful __alloc_pages(). + */ +static void setup_per_zone_lowmem_reserve(void) +{ + struct pglist_data *pgdat; + enum zone_type j, idx; + + for_each_online_pgdat(pgdat) { + for (j = 0; j < MAX_NR_ZONES; j++) { + struct zone *zone = pgdat->node_zones + j; + unsigned long present_pages = zone->present_pages; + + zone->lowmem_reserve[j] = 0; + + idx = j; + while (idx) { + struct zone *lower_zone; + + idx--; + + if (sysctl_lowmem_reserve_ratio[idx] < 1) + sysctl_lowmem_reserve_ratio[idx] = 1; + + lower_zone = pgdat->node_zones + idx; + lower_zone->lowmem_reserve[j] = present_pages / + sysctl_lowmem_reserve_ratio[idx]; + present_pages += lower_zone->present_pages; + } + } + } + + /* update totalreserve_pages */ + calculate_totalreserve_pages(); +} + +/** + * setup_per_zone_wmarks - called when min_free_kbytes changes + * or when memory is hot-{added|removed} + * + * Ensures that the watermark[min,low,high] values for each zone are set + * correctly with respect to min_free_kbytes. + */ +void setup_per_zone_wmarks(void) +{ + unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); + unsigned long lowmem_pages = 0; + struct zone *zone; + unsigned long flags; + + /* Calculate total number of !ZONE_HIGHMEM pages */ + for_each_zone(zone) { + if (!is_highmem(zone)) + lowmem_pages += zone->present_pages; + } + + for_each_zone(zone) { + u64 tmp; + + spin_lock_irqsave(&zone->lock, flags); + tmp = (u64)pages_min * zone->present_pages; + do_div(tmp, lowmem_pages); + if (is_highmem(zone)) { + /* + * __GFP_HIGH and PF_MEMALLOC allocations usually don't + * need highmem pages, so cap pages_min to a small + * value here. + * + * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) + * deltas controls asynch page reclaim, and so should + * not be capped for highmem. + */ + int min_pages; + + min_pages = zone->present_pages / 1024; + if (min_pages < SWAP_CLUSTER_MAX) + min_pages = SWAP_CLUSTER_MAX; + if (min_pages > 128) + min_pages = 128; + zone->watermark[WMARK_MIN] = min_pages; + } else { + /* + * If it's a lowmem zone, reserve a number of pages + * proportionate to the zone's size. + */ + zone->watermark[WMARK_MIN] = tmp; + } + + zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); + zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); + setup_zone_migrate_reserve(zone); + spin_unlock_irqrestore(&zone->lock, flags); + } + + /* update totalreserve_pages */ + calculate_totalreserve_pages(); +} + +/* + * The inactive anon list should be small enough that the VM never has to + * do too much work, but large enough that each inactive page has a chance + * to be referenced again before it is swapped out. + * + * The inactive_anon ratio is the target ratio of ACTIVE_ANON to + * INACTIVE_ANON pages on this zone's LRU, maintained by the + * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of + * the anonymous pages are kept on the inactive list. + * + * total target max + * memory ratio inactive anon + * ------------------------------------- + * 10MB 1 5MB + * 100MB 1 50MB + * 1GB 3 250MB + * 10GB 10 0.9GB + * 100GB 31 3GB + * 1TB 101 10GB + * 10TB 320 32GB + */ +static void __meminit calculate_zone_inactive_ratio(struct zone *zone) +{ + unsigned int gb, ratio; + + /* Zone size in gigabytes */ + gb = zone->present_pages >> (30 - PAGE_SHIFT); + if (gb) + ratio = int_sqrt(10 * gb); + else + ratio = 1; + + zone->inactive_ratio = ratio; +} + +static void __meminit setup_per_zone_inactive_ratio(void) +{ + struct zone *zone; + + for_each_zone(zone) + calculate_zone_inactive_ratio(zone); +} + +/* + * Initialise min_free_kbytes. + * + * For small machines we want it small (128k min). For large machines + * we want it large (64MB max). But it is not linear, because network + * bandwidth does not increase linearly with machine size. We use + * + * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: + * min_free_kbytes = sqrt(lowmem_kbytes * 16) + * + * which yields + * + * 16MB: 512k + * 32MB: 724k + * 64MB: 1024k + * 128MB: 1448k + * 256MB: 2048k + * 512MB: 2896k + * 1024MB: 4096k + * 2048MB: 5792k + * 4096MB: 8192k + * 8192MB: 11584k + * 16384MB: 16384k + */ +int __meminit init_per_zone_wmark_min(void) +{ + unsigned long lowmem_kbytes; + + lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); + + min_free_kbytes = int_sqrt(lowmem_kbytes * 16); + if (min_free_kbytes < 128) + min_free_kbytes = 128; + if (min_free_kbytes > 65536) + min_free_kbytes = 65536; + setup_per_zone_wmarks(); + refresh_zone_stat_thresholds(); + setup_per_zone_lowmem_reserve(); + setup_per_zone_inactive_ratio(); + return 0; +} +module_init(init_per_zone_wmark_min) + +/* + * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so + * that we can call two helper functions whenever min_free_kbytes + * changes. + */ +int min_free_kbytes_sysctl_handler(ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + proc_dointvec(table, write, buffer, length, ppos); + if (write) + setup_per_zone_wmarks(); + return 0; +} + +#ifdef CONFIG_NUMA +int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + struct zone *zone; + int rc; + + rc = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (rc) + return rc; + + for_each_zone(zone) + zone->min_unmapped_pages = (zone->present_pages * + sysctl_min_unmapped_ratio) / 100; + return 0; +} + +int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + struct zone *zone; + int rc; + + rc = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (rc) + return rc; + + for_each_zone(zone) + zone->min_slab_pages = (zone->present_pages * + sysctl_min_slab_ratio) / 100; + return 0; +} +#endif + +/* + * lowmem_reserve_ratio_sysctl_handler - just a wrapper around + * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() + * whenever sysctl_lowmem_reserve_ratio changes. + * + * The reserve ratio obviously has absolutely no relation with the + * minimum watermarks. The lowmem reserve ratio can only make sense + * if in function of the boot time zone sizes. + */ +int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + proc_dointvec_minmax(table, write, buffer, length, ppos); + setup_per_zone_lowmem_reserve(); + return 0; +} + +/* + * percpu_pagelist_fraction - changes the pcp->high for each zone on each + * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist + * can have before it gets flushed back to buddy allocator. + */ + +int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, + void __user *buffer, size_t *length, loff_t *ppos) +{ + struct zone *zone; + unsigned int cpu; + int ret; + + ret = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (!write || (ret < 0)) + return ret; + for_each_populated_zone(zone) { + for_each_possible_cpu(cpu) { + unsigned long high; + high = zone->present_pages / percpu_pagelist_fraction; + setup_pagelist_highmark( + per_cpu_ptr(zone->pageset, cpu), high); + } + } + return 0; +} + +int hashdist = HASHDIST_DEFAULT; + +#ifdef CONFIG_NUMA +static int __init set_hashdist(char *str) +{ + if (!str) + return 0; + hashdist = simple_strtoul(str, &str, 0); + return 1; +} +__setup("hashdist=", set_hashdist); +#endif + +/* + * allocate a large system hash table from bootmem + * - it is assumed that the hash table must contain an exact power-of-2 + * quantity of entries + * - limit is the number of hash buckets, not the total allocation size + */ +void *__init alloc_large_system_hash(const char *tablename, + unsigned long bucketsize, + unsigned long numentries, + int scale, + int flags, + unsigned int *_hash_shift, + unsigned int *_hash_mask, + unsigned long limit) +{ + unsigned long long max = limit; + unsigned long log2qty, size; + void *table = NULL; + + /* allow the kernel cmdline to have a say */ + if (!numentries) { + /* round applicable memory size up to nearest megabyte */ + numentries = nr_kernel_pages; + numentries += (1UL << (20 - PAGE_SHIFT)) - 1; + numentries >>= 20 - PAGE_SHIFT; + numentries <<= 20 - PAGE_SHIFT; + + /* limit to 1 bucket per 2^scale bytes of low memory */ + if (scale > PAGE_SHIFT) + numentries >>= (scale - PAGE_SHIFT); + else + numentries <<= (PAGE_SHIFT - scale); + + /* Make sure we've got at least a 0-order allocation.. */ + if (unlikely(flags & HASH_SMALL)) { + /* Makes no sense without HASH_EARLY */ + WARN_ON(!(flags & HASH_EARLY)); + if (!(numentries >> *_hash_shift)) { + numentries = 1UL << *_hash_shift; + BUG_ON(!numentries); + } + } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) + numentries = PAGE_SIZE / bucketsize; + } + numentries = roundup_pow_of_two(numentries); + + /* limit allocation size to 1/16 total memory by default */ + if (max == 0) { + max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; + do_div(max, bucketsize); + } + max = min(max, 0x80000000ULL); + + if (numentries > max) + numentries = max; + + log2qty = ilog2(numentries); + + do { + size = bucketsize << log2qty; + if (flags & HASH_EARLY) + table = alloc_bootmem_nopanic(size); + else if (hashdist) + table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); + else { + /* + * If bucketsize is not a power-of-two, we may free + * some pages at the end of hash table which + * alloc_pages_exact() automatically does + */ + if (get_order(size) < MAX_ORDER) { + table = alloc_pages_exact(size, GFP_ATOMIC); + kmemleak_alloc(table, size, 1, GFP_ATOMIC); + } + } + } while (!table && size > PAGE_SIZE && --log2qty); + + if (!table) + panic("Failed to allocate %s hash table\n", tablename); + + printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", + tablename, + (1UL << log2qty), + ilog2(size) - PAGE_SHIFT, + size); + + if (_hash_shift) + *_hash_shift = log2qty; + if (_hash_mask) + *_hash_mask = (1 << log2qty) - 1; + + return table; +} + +/* Return a pointer to the bitmap storing bits affecting a block of pages */ +static inline unsigned long *get_pageblock_bitmap(struct zone *zone, + unsigned long pfn) +{ +#ifdef CONFIG_SPARSEMEM + return __pfn_to_section(pfn)->pageblock_flags; +#else + return zone->pageblock_flags; +#endif /* CONFIG_SPARSEMEM */ +} + +static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) +{ +#ifdef CONFIG_SPARSEMEM + pfn &= (PAGES_PER_SECTION-1); + return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; +#else + pfn = pfn - zone->zone_start_pfn; + return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; +#endif /* CONFIG_SPARSEMEM */ +} + +/** + * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages + * @page: The page within the block of interest + * @start_bitidx: The first bit of interest to retrieve + * @end_bitidx: The last bit of interest + * returns pageblock_bits flags + */ +unsigned long get_pageblock_flags_group(struct page *page, + int start_bitidx, int end_bitidx) +{ + struct zone *zone; + unsigned long *bitmap; + unsigned long pfn, bitidx; + unsigned long flags = 0; + unsigned long value = 1; + + zone = page_zone(page); + pfn = page_to_pfn(page); + bitmap = get_pageblock_bitmap(zone, pfn); + bitidx = pfn_to_bitidx(zone, pfn); + + for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) + if (test_bit(bitidx + start_bitidx, bitmap)) + flags |= value; + + return flags; +} + +/** + * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages + * @page: The page within the block of interest + * @start_bitidx: The first bit of interest + * @end_bitidx: The last bit of interest + * @flags: The flags to set + */ +void set_pageblock_flags_group(struct page *page, unsigned long flags, + int start_bitidx, int end_bitidx) +{ + struct zone *zone; + unsigned long *bitmap; + unsigned long pfn, bitidx; + unsigned long value = 1; + + zone = page_zone(page); + pfn = page_to_pfn(page); + bitmap = get_pageblock_bitmap(zone, pfn); + bitidx = pfn_to_bitidx(zone, pfn); + VM_BUG_ON(pfn < zone->zone_start_pfn); + VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); + + for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) + if (flags & value) + __set_bit(bitidx + start_bitidx, bitmap); + else + __clear_bit(bitidx + start_bitidx, bitmap); +} + +/* + * This is designed as sub function...plz see page_isolation.c also. + * set/clear page block's type to be ISOLATE. + * page allocater never alloc memory from ISOLATE block. + */ + +static int +__count_immobile_pages(struct zone *zone, struct page *page, int count) +{ + unsigned long pfn, iter, found; + /* + * For avoiding noise data, lru_add_drain_all() should be called + * If ZONE_MOVABLE, the zone never contains immobile pages + */ + if (zone_idx(zone) == ZONE_MOVABLE) + return true; + + if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) + return true; + + pfn = page_to_pfn(page); + for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { + unsigned long check = pfn + iter; + + if (!pfn_valid_within(check)) + continue; + + page = pfn_to_page(check); + if (!page_count(page)) { + if (PageBuddy(page)) + iter += (1 << page_order(page)) - 1; + continue; + } + if (!PageLRU(page)) + found++; + /* + * If there are RECLAIMABLE pages, we need to check it. + * But now, memory offline itself doesn't call shrink_slab() + * and it still to be fixed. + */ + /* + * If the page is not RAM, page_count()should be 0. + * we don't need more check. This is an _used_ not-movable page. + * + * The problematic thing here is PG_reserved pages. PG_reserved + * is set to both of a memory hole page and a _used_ kernel + * page at boot. + */ + if (found > count) + return false; + } + return true; +} + +bool is_pageblock_removable_nolock(struct page *page) +{ + struct zone *zone; + unsigned long pfn; + + /* + * We have to be careful here because we are iterating over memory + * sections which are not zone aware so we might end up outside of + * the zone but still within the section. + * We have to take care about the node as well. If the node is offline + * its NODE_DATA will be NULL - see page_zone. + */ + if (!node_online(page_to_nid(page))) + return false; + + zone = page_zone(page); + pfn = page_to_pfn(page); + if (zone->zone_start_pfn > pfn || + zone->zone_start_pfn + zone->spanned_pages <= pfn) + return false; + + return __count_immobile_pages(zone, page, 0); +} + +int set_migratetype_isolate(struct page *page) +{ + struct zone *zone; + unsigned long flags, pfn; + struct memory_isolate_notify arg; + int notifier_ret; + int ret = -EBUSY; + + zone = page_zone(page); + + spin_lock_irqsave(&zone->lock, flags); + + pfn = page_to_pfn(page); + arg.start_pfn = pfn; + arg.nr_pages = pageblock_nr_pages; + arg.pages_found = 0; + + /* + * It may be possible to isolate a pageblock even if the + * migratetype is not MIGRATE_MOVABLE. The memory isolation + * notifier chain is used by balloon drivers to return the + * number of pages in a range that are held by the balloon + * driver to shrink memory. If all the pages are accounted for + * by balloons, are free, or on the LRU, isolation can continue. + * Later, for example, when memory hotplug notifier runs, these + * pages reported as "can be isolated" should be isolated(freed) + * by the balloon driver through the memory notifier chain. + */ + notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); + notifier_ret = notifier_to_errno(notifier_ret); + if (notifier_ret) + goto out; + /* + * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. + * We just check MOVABLE pages. + */ + if (__count_immobile_pages(zone, page, arg.pages_found)) + ret = 0; + + /* + * immobile means "not-on-lru" paes. If immobile is larger than + * removable-by-driver pages reported by notifier, we'll fail. + */ + +out: + if (!ret) { + set_pageblock_migratetype(page, MIGRATE_ISOLATE); + move_freepages_block(zone, page, MIGRATE_ISOLATE); + } + + spin_unlock_irqrestore(&zone->lock, flags); + if (!ret) + drain_all_pages(); + return ret; +} + +void unset_migratetype_isolate(struct page *page) +{ + struct zone *zone; + unsigned long flags; + zone = page_zone(page); + spin_lock_irqsave(&zone->lock, flags); + if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) + goto out; + set_pageblock_migratetype(page, MIGRATE_MOVABLE); + move_freepages_block(zone, page, MIGRATE_MOVABLE); +out: + spin_unlock_irqrestore(&zone->lock, flags); +} + +#ifdef CONFIG_MEMORY_HOTREMOVE +/* + * All pages in the range must be isolated before calling this. + */ +void +__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) +{ + struct page *page; + struct zone *zone; + int order, i; + unsigned long pfn; + unsigned long flags; + /* find the first valid pfn */ + for (pfn = start_pfn; pfn < end_pfn; pfn++) + if (pfn_valid(pfn)) + break; + if (pfn == end_pfn) + return; + zone = page_zone(pfn_to_page(pfn)); + spin_lock_irqsave(&zone->lock, flags); + pfn = start_pfn; + while (pfn < end_pfn) { + if (!pfn_valid(pfn)) { + pfn++; + continue; + } + page = pfn_to_page(pfn); + BUG_ON(page_count(page)); + BUG_ON(!PageBuddy(page)); + order = page_order(page); +#ifdef CONFIG_DEBUG_VM + printk(KERN_INFO "remove from free list %lx %d %lx\n", + pfn, 1 << order, end_pfn); +#endif + list_del(&page->lru); + rmv_page_order(page); + zone->free_area[order].nr_free--; + __mod_zone_page_state(zone, NR_FREE_PAGES, + - (1UL << order)); + for (i = 0; i < (1 << order); i++) + SetPageReserved((page+i)); + pfn += (1 << order); + } + spin_unlock_irqrestore(&zone->lock, flags); +} +#endif + +#ifdef CONFIG_MEMORY_FAILURE +bool is_free_buddy_page(struct page *page) +{ + struct zone *zone = page_zone(page); + unsigned long pfn = page_to_pfn(page); + unsigned long flags; + int order; + + spin_lock_irqsave(&zone->lock, flags); + for (order = 0; order < MAX_ORDER; order++) { + struct page *page_head = page - (pfn & ((1 << order) - 1)); + + if (PageBuddy(page_head) && page_order(page_head) >= order) + break; + } + spin_unlock_irqrestore(&zone->lock, flags); + + return order < MAX_ORDER; +} +#endif + +static struct trace_print_flags pageflag_names[] = { + {1UL << PG_locked, "locked" }, + {1UL << PG_error, "error" }, + {1UL << PG_referenced, "referenced" }, + {1UL << PG_uptodate, "uptodate" }, + {1UL << PG_dirty, "dirty" }, + {1UL << PG_lru, "lru" }, + {1UL << PG_active, "active" }, + {1UL << PG_slab, "slab" }, + {1UL << PG_owner_priv_1, "owner_priv_1" }, + {1UL << PG_arch_1, "arch_1" }, + {1UL << PG_reserved, "reserved" }, + {1UL << PG_private, "private" }, + {1UL << PG_private_2, "private_2" }, + {1UL << PG_writeback, "writeback" }, +#ifdef CONFIG_PAGEFLAGS_EXTENDED + {1UL << PG_head, "head" }, + {1UL << PG_tail, "tail" }, +#else + {1UL << PG_compound, "compound" }, +#endif + {1UL << PG_swapcache, "swapcache" }, + {1UL << PG_mappedtodisk, "mappedtodisk" }, + {1UL << PG_reclaim, "reclaim" }, + {1UL << PG_swapbacked, "swapbacked" }, + {1UL << PG_unevictable, "unevictable" }, +#ifdef CONFIG_MMU + {1UL << PG_mlocked, "mlocked" }, +#endif +#ifdef CONFIG_ARCH_USES_PG_UNCACHED + {1UL << PG_uncached, "uncached" }, +#endif +#ifdef CONFIG_MEMORY_FAILURE + {1UL << PG_hwpoison, "hwpoison" }, +#endif + {-1UL, NULL }, +}; + +static void dump_page_flags(unsigned long flags) +{ + const char *delim = ""; + unsigned long mask; + int i; + + printk(KERN_ALERT "page flags: %#lx(", flags); + + /* remove zone id */ + flags &= (1UL << NR_PAGEFLAGS) - 1; + + for (i = 0; pageflag_names[i].name && flags; i++) { + + mask = pageflag_names[i].mask; + if ((flags & mask) != mask) + continue; + + flags &= ~mask; + printk("%s%s", delim, pageflag_names[i].name); + delim = "|"; + } + + /* check for left over flags */ + if (flags) + printk("%s%#lx", delim, flags); + + printk(")\n"); +} + +void dump_page(struct page *page) +{ + printk(KERN_ALERT + "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", + page, atomic_read(&page->_count), page_mapcount(page), + page->mapping, page->index); + dump_page_flags(page->flags); + mem_cgroup_print_bad_page(page); +} |