summaryrefslogtreecommitdiff
path: root/include/linux/slub_def.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/slub_def.h')
-rw-r--r--include/linux/slub_def.h319
1 files changed, 319 insertions, 0 deletions
diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
new file mode 100644
index 00000000..c2f8c8bc
--- /dev/null
+++ b/include/linux/slub_def.h
@@ -0,0 +1,319 @@
+#ifndef _LINUX_SLUB_DEF_H
+#define _LINUX_SLUB_DEF_H
+
+/*
+ * SLUB : A Slab allocator without object queues.
+ *
+ * (C) 2007 SGI, Christoph Lameter
+ */
+#include <linux/types.h>
+#include <linux/gfp.h>
+#include <linux/bug.h>
+#include <linux/workqueue.h>
+#include <linux/kobject.h>
+
+#include <linux/kmemleak.h>
+
+enum stat_item {
+ ALLOC_FASTPATH, /* Allocation from cpu slab */
+ ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
+ FREE_FASTPATH, /* Free to cpu slub */
+ FREE_SLOWPATH, /* Freeing not to cpu slab */
+ FREE_FROZEN, /* Freeing to frozen slab */
+ FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
+ FREE_REMOVE_PARTIAL, /* Freeing removes last object */
+ ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
+ ALLOC_SLAB, /* Cpu slab acquired from page allocator */
+ ALLOC_REFILL, /* Refill cpu slab from slab freelist */
+ ALLOC_NODE_MISMATCH, /* Switching cpu slab */
+ FREE_SLAB, /* Slab freed to the page allocator */
+ CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
+ DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
+ DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
+ DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
+ DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
+ DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
+ DEACTIVATE_BYPASS, /* Implicit deactivation */
+ ORDER_FALLBACK, /* Number of times fallback was necessary */
+ CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
+ CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
+ CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
+ CPU_PARTIAL_FREE, /* Refill cpu partial on free */
+ CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
+ CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
+ NR_SLUB_STAT_ITEMS };
+
+struct kmem_cache_cpu {
+ void **freelist; /* Pointer to next available object */
+ unsigned long tid; /* Globally unique transaction id */
+ struct page *page; /* The slab from which we are allocating */
+ struct page *partial; /* Partially allocated frozen slabs */
+ int node; /* The node of the page (or -1 for debug) */
+#ifdef CONFIG_SLUB_STATS
+ unsigned stat[NR_SLUB_STAT_ITEMS];
+#endif
+};
+
+struct kmem_cache_node {
+ spinlock_t list_lock; /* Protect partial list and nr_partial */
+ unsigned long nr_partial;
+ struct list_head partial;
+#ifdef CONFIG_SLUB_DEBUG
+ atomic_long_t nr_slabs;
+ atomic_long_t total_objects;
+ struct list_head full;
+#endif
+};
+
+/*
+ * Word size structure that can be atomically updated or read and that
+ * contains both the order and the number of objects that a slab of the
+ * given order would contain.
+ */
+struct kmem_cache_order_objects {
+ unsigned long x;
+};
+
+/*
+ * Slab cache management.
+ */
+struct kmem_cache {
+ struct kmem_cache_cpu __percpu *cpu_slab;
+ /* Used for retriving partial slabs etc */
+ unsigned long flags;
+ unsigned long min_partial;
+ int size; /* The size of an object including meta data */
+ int objsize; /* The size of an object without meta data */
+ int offset; /* Free pointer offset. */
+ int cpu_partial; /* Number of per cpu partial objects to keep around */
+ struct kmem_cache_order_objects oo;
+
+ /* Allocation and freeing of slabs */
+ struct kmem_cache_order_objects max;
+ struct kmem_cache_order_objects min;
+ gfp_t allocflags; /* gfp flags to use on each alloc */
+ int refcount; /* Refcount for slab cache destroy */
+ void (*ctor)(void *);
+ int inuse; /* Offset to metadata */
+ int align; /* Alignment */
+ int reserved; /* Reserved bytes at the end of slabs */
+ const char *name; /* Name (only for display!) */
+ struct list_head list; /* List of slab caches */
+#ifdef CONFIG_SYSFS
+ struct kobject kobj; /* For sysfs */
+#endif
+
+#ifdef CONFIG_NUMA
+ /*
+ * Defragmentation by allocating from a remote node.
+ */
+ int remote_node_defrag_ratio;
+#endif
+ struct kmem_cache_node *node[MAX_NUMNODES];
+};
+
+/*
+ * Kmalloc subsystem.
+ */
+#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
+#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
+#else
+#define KMALLOC_MIN_SIZE 8
+#endif
+
+#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
+
+/*
+ * Maximum kmalloc object size handled by SLUB. Larger object allocations
+ * are passed through to the page allocator. The page allocator "fastpath"
+ * is relatively slow so we need this value sufficiently high so that
+ * performance critical objects are allocated through the SLUB fastpath.
+ *
+ * This should be dropped to PAGE_SIZE / 2 once the page allocator
+ * "fastpath" becomes competitive with the slab allocator fastpaths.
+ */
+#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
+
+#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
+
+#ifdef CONFIG_ZONE_DMA
+#define SLUB_DMA __GFP_DMA
+#else
+/* Disable DMA functionality */
+#define SLUB_DMA (__force gfp_t)0
+#endif
+
+/*
+ * We keep the general caches in an array of slab caches that are used for
+ * 2^x bytes of allocations.
+ */
+extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
+
+/*
+ * Sorry that the following has to be that ugly but some versions of GCC
+ * have trouble with constant propagation and loops.
+ */
+static __always_inline int kmalloc_index(size_t size)
+{
+ if (!size)
+ return 0;
+
+ if (size <= KMALLOC_MIN_SIZE)
+ return KMALLOC_SHIFT_LOW;
+
+ if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
+ return 1;
+ if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
+ return 2;
+ if (size <= 8) return 3;
+ if (size <= 16) return 4;
+ if (size <= 32) return 5;
+ if (size <= 64) return 6;
+ if (size <= 128) return 7;
+ if (size <= 256) return 8;
+ if (size <= 512) return 9;
+ if (size <= 1024) return 10;
+ if (size <= 2 * 1024) return 11;
+ if (size <= 4 * 1024) return 12;
+/*
+ * The following is only needed to support architectures with a larger page
+ * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
+ * size we would have to go up to 128k.
+ */
+ if (size <= 8 * 1024) return 13;
+ if (size <= 16 * 1024) return 14;
+ if (size <= 32 * 1024) return 15;
+ if (size <= 64 * 1024) return 16;
+ if (size <= 128 * 1024) return 17;
+ if (size <= 256 * 1024) return 18;
+ if (size <= 512 * 1024) return 19;
+ if (size <= 1024 * 1024) return 20;
+ if (size <= 2 * 1024 * 1024) return 21;
+ BUG();
+ return -1; /* Will never be reached */
+
+/*
+ * What we really wanted to do and cannot do because of compiler issues is:
+ * int i;
+ * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
+ * if (size <= (1 << i))
+ * return i;
+ */
+}
+
+/*
+ * Find the slab cache for a given combination of allocation flags and size.
+ *
+ * This ought to end up with a global pointer to the right cache
+ * in kmalloc_caches.
+ */
+static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
+{
+ int index = kmalloc_index(size);
+
+ if (index == 0)
+ return NULL;
+
+ return kmalloc_caches[index];
+}
+
+void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
+void *__kmalloc(size_t size, gfp_t flags);
+
+static __always_inline void *
+kmalloc_order(size_t size, gfp_t flags, unsigned int order)
+{
+ void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
+ kmemleak_alloc(ret, size, 1, flags);
+ return ret;
+}
+
+/**
+ * Calling this on allocated memory will check that the memory
+ * is expected to be in use, and print warnings if not.
+ */
+#ifdef CONFIG_SLUB_DEBUG
+extern bool verify_mem_not_deleted(const void *x);
+#else
+static inline bool verify_mem_not_deleted(const void *x)
+{
+ return true;
+}
+#endif
+
+#ifdef CONFIG_TRACING
+extern void *
+kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
+extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
+#else
+static __always_inline void *
+kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
+{
+ return kmem_cache_alloc(s, gfpflags);
+}
+
+static __always_inline void *
+kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
+{
+ return kmalloc_order(size, flags, order);
+}
+#endif
+
+static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
+{
+ unsigned int order = get_order(size);
+ return kmalloc_order_trace(size, flags, order);
+}
+
+static __always_inline void *kmalloc(size_t size, gfp_t flags)
+{
+ if (__builtin_constant_p(size)) {
+ if (size > SLUB_MAX_SIZE)
+ return kmalloc_large(size, flags);
+
+ if (!(flags & SLUB_DMA)) {
+ struct kmem_cache *s = kmalloc_slab(size);
+
+ if (!s)
+ return ZERO_SIZE_PTR;
+
+ return kmem_cache_alloc_trace(s, flags, size);
+ }
+ }
+ return __kmalloc(size, flags);
+}
+
+#ifdef CONFIG_NUMA
+void *__kmalloc_node(size_t size, gfp_t flags, int node);
+void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
+
+#ifdef CONFIG_TRACING
+extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
+ gfp_t gfpflags,
+ int node, size_t size);
+#else
+static __always_inline void *
+kmem_cache_alloc_node_trace(struct kmem_cache *s,
+ gfp_t gfpflags,
+ int node, size_t size)
+{
+ return kmem_cache_alloc_node(s, gfpflags, node);
+}
+#endif
+
+static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
+{
+ if (__builtin_constant_p(size) &&
+ size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
+ struct kmem_cache *s = kmalloc_slab(size);
+
+ if (!s)
+ return ZERO_SIZE_PTR;
+
+ return kmem_cache_alloc_node_trace(s, flags, node, size);
+ }
+ return __kmalloc_node(size, flags, node);
+}
+#endif
+
+#endif /* _LINUX_SLUB_DEF_H */