diff options
Diffstat (limited to 'include/linux/edac.h')
-rw-r--r-- | include/linux/edac.h | 476 |
1 files changed, 476 insertions, 0 deletions
diff --git a/include/linux/edac.h b/include/linux/edac.h new file mode 100644 index 00000000..c621d762 --- /dev/null +++ b/include/linux/edac.h @@ -0,0 +1,476 @@ +/* + * Generic EDAC defs + * + * Author: Dave Jiang <djiang@mvista.com> + * + * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under + * the terms of the GNU General Public License version 2. This program + * is licensed "as is" without any warranty of any kind, whether express + * or implied. + * + */ +#ifndef _LINUX_EDAC_H_ +#define _LINUX_EDAC_H_ + +#include <linux/atomic.h> +#include <linux/kobject.h> +#include <linux/completion.h> +#include <linux/workqueue.h> + +struct device; + +#define EDAC_OPSTATE_INVAL -1 +#define EDAC_OPSTATE_POLL 0 +#define EDAC_OPSTATE_NMI 1 +#define EDAC_OPSTATE_INT 2 + +extern int edac_op_state; +extern int edac_err_assert; +extern atomic_t edac_handlers; +extern struct bus_type edac_subsys; + +extern int edac_handler_set(void); +extern void edac_atomic_assert_error(void); +extern struct bus_type *edac_get_sysfs_subsys(void); +extern void edac_put_sysfs_subsys(void); + +static inline void opstate_init(void) +{ + switch (edac_op_state) { + case EDAC_OPSTATE_POLL: + case EDAC_OPSTATE_NMI: + break; + default: + edac_op_state = EDAC_OPSTATE_POLL; + } + return; +} + +#define EDAC_MC_LABEL_LEN 31 +#define MC_PROC_NAME_MAX_LEN 7 + +/* memory devices */ +enum dev_type { + DEV_UNKNOWN = 0, + DEV_X1, + DEV_X2, + DEV_X4, + DEV_X8, + DEV_X16, + DEV_X32, /* Do these parts exist? */ + DEV_X64 /* Do these parts exist? */ +}; + +#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) +#define DEV_FLAG_X1 BIT(DEV_X1) +#define DEV_FLAG_X2 BIT(DEV_X2) +#define DEV_FLAG_X4 BIT(DEV_X4) +#define DEV_FLAG_X8 BIT(DEV_X8) +#define DEV_FLAG_X16 BIT(DEV_X16) +#define DEV_FLAG_X32 BIT(DEV_X32) +#define DEV_FLAG_X64 BIT(DEV_X64) + +/** + * enum mem_type - memory types. For a more detailed reference, please see + * http://en.wikipedia.org/wiki/DRAM + * + * @MEM_EMPTY Empty csrow + * @MEM_RESERVED: Reserved csrow type + * @MEM_UNKNOWN: Unknown csrow type + * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. + * @MEM_EDO: EDO - Extended data out, used on systems up to 1998. + * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant. + * @MEM_SDR: SDR - Single data rate SDRAM + * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory + * They use 3 pins for chip select: Pins 0 and 2 are + * for rank 0; pins 1 and 3 are for rank 1, if the memory + * is dual-rank. + * @MEM_RDR: Registered SDR SDRAM + * @MEM_DDR: Double data rate SDRAM + * http://en.wikipedia.org/wiki/DDR_SDRAM + * @MEM_RDDR: Registered Double data rate SDRAM + * This is a variant of the DDR memories. + * A registered memory has a buffer inside it, hiding + * part of the memory details to the memory controller. + * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. + * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. + * Those memories are labed as "PC2-" instead of "PC" to + * differenciate from DDR. + * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 + * and JESD206. + * Those memories are accessed per DIMM slot, and not by + * a chip select signal. + * @MEM_RDDR2: Registered DDR2 RAM + * This is a variant of the DDR2 memories. + * @MEM_XDR: Rambus XDR + * It is an evolution of the original RAMBUS memories, + * created to compete with DDR2. Weren't used on any + * x86 arch, but cell_edac PPC memory controller uses it. + * @MEM_DDR3: DDR3 RAM + * @MEM_RDDR3: Registered DDR3 RAM + * This is a variant of the DDR3 memories. + */ +enum mem_type { + MEM_EMPTY = 0, + MEM_RESERVED, + MEM_UNKNOWN, + MEM_FPM, + MEM_EDO, + MEM_BEDO, + MEM_SDR, + MEM_RDR, + MEM_DDR, + MEM_RDDR, + MEM_RMBS, + MEM_DDR2, + MEM_FB_DDR2, + MEM_RDDR2, + MEM_XDR, + MEM_DDR3, + MEM_RDDR3, +}; + +#define MEM_FLAG_EMPTY BIT(MEM_EMPTY) +#define MEM_FLAG_RESERVED BIT(MEM_RESERVED) +#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) +#define MEM_FLAG_FPM BIT(MEM_FPM) +#define MEM_FLAG_EDO BIT(MEM_EDO) +#define MEM_FLAG_BEDO BIT(MEM_BEDO) +#define MEM_FLAG_SDR BIT(MEM_SDR) +#define MEM_FLAG_RDR BIT(MEM_RDR) +#define MEM_FLAG_DDR BIT(MEM_DDR) +#define MEM_FLAG_RDDR BIT(MEM_RDDR) +#define MEM_FLAG_RMBS BIT(MEM_RMBS) +#define MEM_FLAG_DDR2 BIT(MEM_DDR2) +#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) +#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) +#define MEM_FLAG_XDR BIT(MEM_XDR) +#define MEM_FLAG_DDR3 BIT(MEM_DDR3) +#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) + +/* chipset Error Detection and Correction capabilities and mode */ +enum edac_type { + EDAC_UNKNOWN = 0, /* Unknown if ECC is available */ + EDAC_NONE, /* Doesn't support ECC */ + EDAC_RESERVED, /* Reserved ECC type */ + EDAC_PARITY, /* Detects parity errors */ + EDAC_EC, /* Error Checking - no correction */ + EDAC_SECDED, /* Single bit error correction, Double detection */ + EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */ + EDAC_S4ECD4ED, /* Chipkill x4 devices */ + EDAC_S8ECD8ED, /* Chipkill x8 devices */ + EDAC_S16ECD16ED, /* Chipkill x16 devices */ +}; + +#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) +#define EDAC_FLAG_NONE BIT(EDAC_NONE) +#define EDAC_FLAG_PARITY BIT(EDAC_PARITY) +#define EDAC_FLAG_EC BIT(EDAC_EC) +#define EDAC_FLAG_SECDED BIT(EDAC_SECDED) +#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) +#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) +#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) +#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) + +/* scrubbing capabilities */ +enum scrub_type { + SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */ + SCRUB_NONE, /* No scrubber */ + SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */ + SCRUB_SW_SRC, /* Software scrub only errors */ + SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */ + SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */ + SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */ + SCRUB_HW_SRC, /* Hardware scrub only errors */ + SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */ + SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */ +}; + +#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) +#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) +#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) +#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) +#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) +#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) +#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) +#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) + +/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ + +/* EDAC internal operation states */ +#define OP_ALLOC 0x100 +#define OP_RUNNING_POLL 0x201 +#define OP_RUNNING_INTERRUPT 0x202 +#define OP_RUNNING_POLL_INTR 0x203 +#define OP_OFFLINE 0x300 + +/* + * Concepts used at the EDAC subsystem + * + * There are several things to be aware of that aren't at all obvious: + * + * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc.. + * + * These are some of the many terms that are thrown about that don't always + * mean what people think they mean (Inconceivable!). In the interest of + * creating a common ground for discussion, terms and their definitions + * will be established. + * + * Memory devices: The individual DRAM chips on a memory stick. These + * devices commonly output 4 and 8 bits each (x4, x8). + * Grouping several of these in parallel provides the + * number of bits that the memory controller expects: + * typically 72 bits, in order to provide 64 bits + + * 8 bits of ECC data. + * + * Memory Stick: A printed circuit board that aggregates multiple + * memory devices in parallel. In general, this is the + * Field Replaceable Unit (FRU) which gets replaced, in + * the case of excessive errors. Most often it is also + * called DIMM (Dual Inline Memory Module). + * + * Memory Socket: A physical connector on the motherboard that accepts + * a single memory stick. Also called as "slot" on several + * datasheets. + * + * Channel: A memory controller channel, responsible to communicate + * with a group of DIMMs. Each channel has its own + * independent control (command) and data bus, and can + * be used independently or grouped with other channels. + * + * Branch: It is typically the highest hierarchy on a + * Fully-Buffered DIMM memory controller. + * Typically, it contains two channels. + * Two channels at the same branch can be used in single + * mode or in lockstep mode. + * When lockstep is enabled, the cacheline is doubled, + * but it generally brings some performance penalty. + * Also, it is generally not possible to point to just one + * memory stick when an error occurs, as the error + * correction code is calculated using two DIMMs instead + * of one. Due to that, it is capable of correcting more + * errors than on single mode. + * + * Single-channel: The data accessed by the memory controller is contained + * into one dimm only. E. g. if the data is 64 bits-wide, + * the data flows to the CPU using one 64 bits parallel + * access. + * Typically used with SDR, DDR, DDR2 and DDR3 memories. + * FB-DIMM and RAMBUS use a different concept for channel, + * so this concept doesn't apply there. + * + * Double-channel: The data size accessed by the memory controller is + * interlaced into two dimms, accessed at the same time. + * E. g. if the DIMM is 64 bits-wide (72 bits with ECC), + * the data flows to the CPU using a 128 bits parallel + * access. + * + * Chip-select row: This is the name of the DRAM signal used to select the + * DRAM ranks to be accessed. Common chip-select rows for + * single channel are 64 bits, for dual channel 128 bits. + * It may not be visible by the memory controller, as some + * DIMM types have a memory buffer that can hide direct + * access to it from the Memory Controller. + * + * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory. + * Motherboards commonly drive two chip-select pins to + * a memory stick. A single-ranked stick, will occupy + * only one of those rows. The other will be unused. + * + * Double-Ranked stick: A double-ranked stick has two chip-select rows which + * access different sets of memory devices. The two + * rows cannot be accessed concurrently. + * + * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick. + * A double-sided stick has two chip-select rows which + * access different sets of memory devices. The two + * rows cannot be accessed concurrently. "Double-sided" + * is irrespective of the memory devices being mounted + * on both sides of the memory stick. + * + * Socket set: All of the memory sticks that are required for + * a single memory access or all of the memory sticks + * spanned by a chip-select row. A single socket set + * has two chip-select rows and if double-sided sticks + * are used these will occupy those chip-select rows. + * + * Bank: This term is avoided because it is unclear when + * needing to distinguish between chip-select rows and + * socket sets. + * + * Controller pages: + * + * Physical pages: + * + * Virtual pages: + * + * + * STRUCTURE ORGANIZATION AND CHOICES + * + * + * + * PS - I enjoyed writing all that about as much as you enjoyed reading it. + */ + +/** + * struct rank_info - contains the information for one DIMM rank + * + * @chan_idx: channel number where the rank is (typically, 0 or 1) + * @ce_count: number of correctable errors for this rank + * @label: DIMM label. Different ranks for the same DIMM should be + * filled, on userspace, with the same label. + * FIXME: The core currently won't enforce it. + * @csrow: A pointer to the chip select row structure (the parent + * structure). The location of the rank is given by + * the (csrow->csrow_idx, chan_idx) vector. + */ +struct rank_info { + int chan_idx; + u32 ce_count; + char label[EDAC_MC_LABEL_LEN + 1]; + struct csrow_info *csrow; /* the parent */ +}; + +struct csrow_info { + unsigned long first_page; /* first page number in dimm */ + unsigned long last_page; /* last page number in dimm */ + unsigned long page_mask; /* used for interleaving - + * 0UL for non intlv + */ + u32 nr_pages; /* number of pages in csrow */ + u32 grain; /* granularity of reported error in bytes */ + int csrow_idx; /* the chip-select row */ + enum dev_type dtype; /* memory device type */ + u32 ue_count; /* Uncorrectable Errors for this csrow */ + u32 ce_count; /* Correctable Errors for this csrow */ + enum mem_type mtype; /* memory csrow type */ + enum edac_type edac_mode; /* EDAC mode for this csrow */ + struct mem_ctl_info *mci; /* the parent */ + + struct kobject kobj; /* sysfs kobject for this csrow */ + + /* channel information for this csrow */ + u32 nr_channels; + struct rank_info *channels; +}; + +struct mcidev_sysfs_group { + const char *name; /* group name */ + const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */ +}; + +struct mcidev_sysfs_group_kobj { + struct list_head list; /* list for all instances within a mc */ + + struct kobject kobj; /* kobj for the group */ + + const struct mcidev_sysfs_group *grp; /* group description table */ + struct mem_ctl_info *mci; /* the parent */ +}; + +/* mcidev_sysfs_attribute structure + * used for driver sysfs attributes and in mem_ctl_info + * sysfs top level entries + */ +struct mcidev_sysfs_attribute { + /* It should use either attr or grp */ + struct attribute attr; + const struct mcidev_sysfs_group *grp; /* Points to a group of attributes */ + + /* Ops for show/store values at the attribute - not used on group */ + ssize_t (*show)(struct mem_ctl_info *,char *); + ssize_t (*store)(struct mem_ctl_info *, const char *,size_t); +}; + +/* MEMORY controller information structure + */ +struct mem_ctl_info { + struct list_head link; /* for global list of mem_ctl_info structs */ + + struct module *owner; /* Module owner of this control struct */ + + unsigned long mtype_cap; /* memory types supported by mc */ + unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ + unsigned long edac_cap; /* configuration capabilities - this is + * closely related to edac_ctl_cap. The + * difference is that the controller may be + * capable of s4ecd4ed which would be listed + * in edac_ctl_cap, but if channels aren't + * capable of s4ecd4ed then the edac_cap would + * not have that capability. + */ + unsigned long scrub_cap; /* chipset scrub capabilities */ + enum scrub_type scrub_mode; /* current scrub mode */ + + /* Translates sdram memory scrub rate given in bytes/sec to the + internal representation and configures whatever else needs + to be configured. + */ + int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); + + /* Get the current sdram memory scrub rate from the internal + representation and converts it to the closest matching + bandwidth in bytes/sec. + */ + int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); + + + /* pointer to edac checking routine */ + void (*edac_check) (struct mem_ctl_info * mci); + + /* + * Remaps memory pages: controller pages to physical pages. + * For most MC's, this will be NULL. + */ + /* FIXME - why not send the phys page to begin with? */ + unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, + unsigned long page); + int mc_idx; + int nr_csrows; + struct csrow_info *csrows; + /* + * FIXME - what about controllers on other busses? - IDs must be + * unique. dev pointer should be sufficiently unique, but + * BUS:SLOT.FUNC numbers may not be unique. + */ + struct device *dev; + const char *mod_name; + const char *mod_ver; + const char *ctl_name; + const char *dev_name; + char proc_name[MC_PROC_NAME_MAX_LEN + 1]; + void *pvt_info; + u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */ + u32 ce_noinfo_count; /* Correctable Errors w/o info */ + u32 ue_count; /* Total Uncorrectable Errors for this MC */ + u32 ce_count; /* Total Correctable Errors for this MC */ + unsigned long start_time; /* mci load start time (in jiffies) */ + + struct completion complete; + + /* edac sysfs device control */ + struct kobject edac_mci_kobj; + + /* list for all grp instances within a mc */ + struct list_head grp_kobj_list; + + /* Additional top controller level attributes, but specified + * by the low level driver. + * + * Set by the low level driver to provide attributes at the + * controller level, same level as 'ue_count' and 'ce_count' above. + * An array of structures, NULL terminated + * + * If attributes are desired, then set to array of attributes + * If no attributes are desired, leave NULL + */ + const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; + + /* work struct for this MC */ + struct delayed_work work; + + /* the internal state of this controller instance */ + int op_state; +}; + +#endif |