diff options
Diffstat (limited to 'fs/ubifs/debug.c')
-rw-r--r-- | fs/ubifs/debug.c | 3193 |
1 files changed, 3193 insertions, 0 deletions
diff --git a/fs/ubifs/debug.c b/fs/ubifs/debug.c new file mode 100644 index 00000000..1934084e --- /dev/null +++ b/fs/ubifs/debug.c @@ -0,0 +1,3193 @@ +/* + * This file is part of UBIFS. + * + * Copyright (C) 2006-2008 Nokia Corporation + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + * Authors: Artem Bityutskiy (Битюцкий Артём) + * Adrian Hunter + */ + +/* + * This file implements most of the debugging stuff which is compiled in only + * when it is enabled. But some debugging check functions are implemented in + * corresponding subsystem, just because they are closely related and utilize + * various local functions of those subsystems. + */ + +#include <linux/module.h> +#include <linux/debugfs.h> +#include <linux/math64.h> +#include <linux/uaccess.h> +#include <linux/random.h> +#include "ubifs.h" + +#ifdef CONFIG_UBIFS_FS_DEBUG + +static DEFINE_SPINLOCK(dbg_lock); + +static const char *get_key_fmt(int fmt) +{ + switch (fmt) { + case UBIFS_SIMPLE_KEY_FMT: + return "simple"; + default: + return "unknown/invalid format"; + } +} + +static const char *get_key_hash(int hash) +{ + switch (hash) { + case UBIFS_KEY_HASH_R5: + return "R5"; + case UBIFS_KEY_HASH_TEST: + return "test"; + default: + return "unknown/invalid name hash"; + } +} + +static const char *get_key_type(int type) +{ + switch (type) { + case UBIFS_INO_KEY: + return "inode"; + case UBIFS_DENT_KEY: + return "direntry"; + case UBIFS_XENT_KEY: + return "xentry"; + case UBIFS_DATA_KEY: + return "data"; + case UBIFS_TRUN_KEY: + return "truncate"; + default: + return "unknown/invalid key"; + } +} + +static const char *get_dent_type(int type) +{ + switch (type) { + case UBIFS_ITYPE_REG: + return "file"; + case UBIFS_ITYPE_DIR: + return "dir"; + case UBIFS_ITYPE_LNK: + return "symlink"; + case UBIFS_ITYPE_BLK: + return "blkdev"; + case UBIFS_ITYPE_CHR: + return "char dev"; + case UBIFS_ITYPE_FIFO: + return "fifo"; + case UBIFS_ITYPE_SOCK: + return "socket"; + default: + return "unknown/invalid type"; + } +} + +const char *dbg_snprintf_key(const struct ubifs_info *c, + const union ubifs_key *key, char *buffer, int len) +{ + char *p = buffer; + int type = key_type(c, key); + + if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { + switch (type) { + case UBIFS_INO_KEY: + len -= snprintf(p, len, "(%lu, %s)", + (unsigned long)key_inum(c, key), + get_key_type(type)); + break; + case UBIFS_DENT_KEY: + case UBIFS_XENT_KEY: + len -= snprintf(p, len, "(%lu, %s, %#08x)", + (unsigned long)key_inum(c, key), + get_key_type(type), key_hash(c, key)); + break; + case UBIFS_DATA_KEY: + len -= snprintf(p, len, "(%lu, %s, %u)", + (unsigned long)key_inum(c, key), + get_key_type(type), key_block(c, key)); + break; + case UBIFS_TRUN_KEY: + len -= snprintf(p, len, "(%lu, %s)", + (unsigned long)key_inum(c, key), + get_key_type(type)); + break; + default: + len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", + key->u32[0], key->u32[1]); + } + } else + len -= snprintf(p, len, "bad key format %d", c->key_fmt); + ubifs_assert(len > 0); + return p; +} + +const char *dbg_ntype(int type) +{ + switch (type) { + case UBIFS_PAD_NODE: + return "padding node"; + case UBIFS_SB_NODE: + return "superblock node"; + case UBIFS_MST_NODE: + return "master node"; + case UBIFS_REF_NODE: + return "reference node"; + case UBIFS_INO_NODE: + return "inode node"; + case UBIFS_DENT_NODE: + return "direntry node"; + case UBIFS_XENT_NODE: + return "xentry node"; + case UBIFS_DATA_NODE: + return "data node"; + case UBIFS_TRUN_NODE: + return "truncate node"; + case UBIFS_IDX_NODE: + return "indexing node"; + case UBIFS_CS_NODE: + return "commit start node"; + case UBIFS_ORPH_NODE: + return "orphan node"; + default: + return "unknown node"; + } +} + +static const char *dbg_gtype(int type) +{ + switch (type) { + case UBIFS_NO_NODE_GROUP: + return "no node group"; + case UBIFS_IN_NODE_GROUP: + return "in node group"; + case UBIFS_LAST_OF_NODE_GROUP: + return "last of node group"; + default: + return "unknown"; + } +} + +const char *dbg_cstate(int cmt_state) +{ + switch (cmt_state) { + case COMMIT_RESTING: + return "commit resting"; + case COMMIT_BACKGROUND: + return "background commit requested"; + case COMMIT_REQUIRED: + return "commit required"; + case COMMIT_RUNNING_BACKGROUND: + return "BACKGROUND commit running"; + case COMMIT_RUNNING_REQUIRED: + return "commit running and required"; + case COMMIT_BROKEN: + return "broken commit"; + default: + return "unknown commit state"; + } +} + +const char *dbg_jhead(int jhead) +{ + switch (jhead) { + case GCHD: + return "0 (GC)"; + case BASEHD: + return "1 (base)"; + case DATAHD: + return "2 (data)"; + default: + return "unknown journal head"; + } +} + +static void dump_ch(const struct ubifs_ch *ch) +{ + printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic)); + printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc)); + printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type, + dbg_ntype(ch->node_type)); + printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type, + dbg_gtype(ch->group_type)); + printk(KERN_ERR "\tsqnum %llu\n", + (unsigned long long)le64_to_cpu(ch->sqnum)); + printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len)); +} + +void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode) +{ + const struct ubifs_inode *ui = ubifs_inode(inode); + struct qstr nm = { .name = NULL }; + union ubifs_key key; + struct ubifs_dent_node *dent, *pdent = NULL; + int count = 2; + + printk(KERN_ERR "Dump in-memory inode:"); + printk(KERN_ERR "\tinode %lu\n", inode->i_ino); + printk(KERN_ERR "\tsize %llu\n", + (unsigned long long)i_size_read(inode)); + printk(KERN_ERR "\tnlink %u\n", inode->i_nlink); + printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid); + printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid); + printk(KERN_ERR "\tatime %u.%u\n", + (unsigned int)inode->i_atime.tv_sec, + (unsigned int)inode->i_atime.tv_nsec); + printk(KERN_ERR "\tmtime %u.%u\n", + (unsigned int)inode->i_mtime.tv_sec, + (unsigned int)inode->i_mtime.tv_nsec); + printk(KERN_ERR "\tctime %u.%u\n", + (unsigned int)inode->i_ctime.tv_sec, + (unsigned int)inode->i_ctime.tv_nsec); + printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum); + printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size); + printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt); + printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names); + printk(KERN_ERR "\tdirty %u\n", ui->dirty); + printk(KERN_ERR "\txattr %u\n", ui->xattr); + printk(KERN_ERR "\tbulk_read %u\n", ui->xattr); + printk(KERN_ERR "\tsynced_i_size %llu\n", + (unsigned long long)ui->synced_i_size); + printk(KERN_ERR "\tui_size %llu\n", + (unsigned long long)ui->ui_size); + printk(KERN_ERR "\tflags %d\n", ui->flags); + printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type); + printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read); + printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row); + printk(KERN_ERR "\tdata_len %d\n", ui->data_len); + + if (!S_ISDIR(inode->i_mode)) + return; + + printk(KERN_ERR "List of directory entries:\n"); + ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); + + lowest_dent_key(c, &key, inode->i_ino); + while (1) { + dent = ubifs_tnc_next_ent(c, &key, &nm); + if (IS_ERR(dent)) { + if (PTR_ERR(dent) != -ENOENT) + printk(KERN_ERR "error %ld\n", PTR_ERR(dent)); + break; + } + + printk(KERN_ERR "\t%d: %s (%s)\n", + count++, dent->name, get_dent_type(dent->type)); + + nm.name = dent->name; + nm.len = le16_to_cpu(dent->nlen); + kfree(pdent); + pdent = dent; + key_read(c, &dent->key, &key); + } + kfree(pdent); +} + +void dbg_dump_node(const struct ubifs_info *c, const void *node) +{ + int i, n; + union ubifs_key key; + const struct ubifs_ch *ch = node; + char key_buf[DBG_KEY_BUF_LEN]; + + if (dbg_is_tst_rcvry(c)) + return; + + /* If the magic is incorrect, just hexdump the first bytes */ + if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { + printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ); + print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, + (void *)node, UBIFS_CH_SZ, 1); + return; + } + + spin_lock(&dbg_lock); + dump_ch(node); + + switch (ch->node_type) { + case UBIFS_PAD_NODE: + { + const struct ubifs_pad_node *pad = node; + + printk(KERN_ERR "\tpad_len %u\n", + le32_to_cpu(pad->pad_len)); + break; + } + case UBIFS_SB_NODE: + { + const struct ubifs_sb_node *sup = node; + unsigned int sup_flags = le32_to_cpu(sup->flags); + + printk(KERN_ERR "\tkey_hash %d (%s)\n", + (int)sup->key_hash, get_key_hash(sup->key_hash)); + printk(KERN_ERR "\tkey_fmt %d (%s)\n", + (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); + printk(KERN_ERR "\tflags %#x\n", sup_flags); + printk(KERN_ERR "\t big_lpt %u\n", + !!(sup_flags & UBIFS_FLG_BIGLPT)); + printk(KERN_ERR "\t space_fixup %u\n", + !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); + printk(KERN_ERR "\tmin_io_size %u\n", + le32_to_cpu(sup->min_io_size)); + printk(KERN_ERR "\tleb_size %u\n", + le32_to_cpu(sup->leb_size)); + printk(KERN_ERR "\tleb_cnt %u\n", + le32_to_cpu(sup->leb_cnt)); + printk(KERN_ERR "\tmax_leb_cnt %u\n", + le32_to_cpu(sup->max_leb_cnt)); + printk(KERN_ERR "\tmax_bud_bytes %llu\n", + (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); + printk(KERN_ERR "\tlog_lebs %u\n", + le32_to_cpu(sup->log_lebs)); + printk(KERN_ERR "\tlpt_lebs %u\n", + le32_to_cpu(sup->lpt_lebs)); + printk(KERN_ERR "\torph_lebs %u\n", + le32_to_cpu(sup->orph_lebs)); + printk(KERN_ERR "\tjhead_cnt %u\n", + le32_to_cpu(sup->jhead_cnt)); + printk(KERN_ERR "\tfanout %u\n", + le32_to_cpu(sup->fanout)); + printk(KERN_ERR "\tlsave_cnt %u\n", + le32_to_cpu(sup->lsave_cnt)); + printk(KERN_ERR "\tdefault_compr %u\n", + (int)le16_to_cpu(sup->default_compr)); + printk(KERN_ERR "\trp_size %llu\n", + (unsigned long long)le64_to_cpu(sup->rp_size)); + printk(KERN_ERR "\trp_uid %u\n", + le32_to_cpu(sup->rp_uid)); + printk(KERN_ERR "\trp_gid %u\n", + le32_to_cpu(sup->rp_gid)); + printk(KERN_ERR "\tfmt_version %u\n", + le32_to_cpu(sup->fmt_version)); + printk(KERN_ERR "\ttime_gran %u\n", + le32_to_cpu(sup->time_gran)); + printk(KERN_ERR "\tUUID %pUB\n", + sup->uuid); + break; + } + case UBIFS_MST_NODE: + { + const struct ubifs_mst_node *mst = node; + + printk(KERN_ERR "\thighest_inum %llu\n", + (unsigned long long)le64_to_cpu(mst->highest_inum)); + printk(KERN_ERR "\tcommit number %llu\n", + (unsigned long long)le64_to_cpu(mst->cmt_no)); + printk(KERN_ERR "\tflags %#x\n", + le32_to_cpu(mst->flags)); + printk(KERN_ERR "\tlog_lnum %u\n", + le32_to_cpu(mst->log_lnum)); + printk(KERN_ERR "\troot_lnum %u\n", + le32_to_cpu(mst->root_lnum)); + printk(KERN_ERR "\troot_offs %u\n", + le32_to_cpu(mst->root_offs)); + printk(KERN_ERR "\troot_len %u\n", + le32_to_cpu(mst->root_len)); + printk(KERN_ERR "\tgc_lnum %u\n", + le32_to_cpu(mst->gc_lnum)); + printk(KERN_ERR "\tihead_lnum %u\n", + le32_to_cpu(mst->ihead_lnum)); + printk(KERN_ERR "\tihead_offs %u\n", + le32_to_cpu(mst->ihead_offs)); + printk(KERN_ERR "\tindex_size %llu\n", + (unsigned long long)le64_to_cpu(mst->index_size)); + printk(KERN_ERR "\tlpt_lnum %u\n", + le32_to_cpu(mst->lpt_lnum)); + printk(KERN_ERR "\tlpt_offs %u\n", + le32_to_cpu(mst->lpt_offs)); + printk(KERN_ERR "\tnhead_lnum %u\n", + le32_to_cpu(mst->nhead_lnum)); + printk(KERN_ERR "\tnhead_offs %u\n", + le32_to_cpu(mst->nhead_offs)); + printk(KERN_ERR "\tltab_lnum %u\n", + le32_to_cpu(mst->ltab_lnum)); + printk(KERN_ERR "\tltab_offs %u\n", + le32_to_cpu(mst->ltab_offs)); + printk(KERN_ERR "\tlsave_lnum %u\n", + le32_to_cpu(mst->lsave_lnum)); + printk(KERN_ERR "\tlsave_offs %u\n", + le32_to_cpu(mst->lsave_offs)); + printk(KERN_ERR "\tlscan_lnum %u\n", + le32_to_cpu(mst->lscan_lnum)); + printk(KERN_ERR "\tleb_cnt %u\n", + le32_to_cpu(mst->leb_cnt)); + printk(KERN_ERR "\tempty_lebs %u\n", + le32_to_cpu(mst->empty_lebs)); + printk(KERN_ERR "\tidx_lebs %u\n", + le32_to_cpu(mst->idx_lebs)); + printk(KERN_ERR "\ttotal_free %llu\n", + (unsigned long long)le64_to_cpu(mst->total_free)); + printk(KERN_ERR "\ttotal_dirty %llu\n", + (unsigned long long)le64_to_cpu(mst->total_dirty)); + printk(KERN_ERR "\ttotal_used %llu\n", + (unsigned long long)le64_to_cpu(mst->total_used)); + printk(KERN_ERR "\ttotal_dead %llu\n", + (unsigned long long)le64_to_cpu(mst->total_dead)); + printk(KERN_ERR "\ttotal_dark %llu\n", + (unsigned long long)le64_to_cpu(mst->total_dark)); + break; + } + case UBIFS_REF_NODE: + { + const struct ubifs_ref_node *ref = node; + + printk(KERN_ERR "\tlnum %u\n", + le32_to_cpu(ref->lnum)); + printk(KERN_ERR "\toffs %u\n", + le32_to_cpu(ref->offs)); + printk(KERN_ERR "\tjhead %u\n", + le32_to_cpu(ref->jhead)); + break; + } + case UBIFS_INO_NODE: + { + const struct ubifs_ino_node *ino = node; + + key_read(c, &ino->key, &key); + printk(KERN_ERR "\tkey %s\n", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + printk(KERN_ERR "\tcreat_sqnum %llu\n", + (unsigned long long)le64_to_cpu(ino->creat_sqnum)); + printk(KERN_ERR "\tsize %llu\n", + (unsigned long long)le64_to_cpu(ino->size)); + printk(KERN_ERR "\tnlink %u\n", + le32_to_cpu(ino->nlink)); + printk(KERN_ERR "\tatime %lld.%u\n", + (long long)le64_to_cpu(ino->atime_sec), + le32_to_cpu(ino->atime_nsec)); + printk(KERN_ERR "\tmtime %lld.%u\n", + (long long)le64_to_cpu(ino->mtime_sec), + le32_to_cpu(ino->mtime_nsec)); + printk(KERN_ERR "\tctime %lld.%u\n", + (long long)le64_to_cpu(ino->ctime_sec), + le32_to_cpu(ino->ctime_nsec)); + printk(KERN_ERR "\tuid %u\n", + le32_to_cpu(ino->uid)); + printk(KERN_ERR "\tgid %u\n", + le32_to_cpu(ino->gid)); + printk(KERN_ERR "\tmode %u\n", + le32_to_cpu(ino->mode)); + printk(KERN_ERR "\tflags %#x\n", + le32_to_cpu(ino->flags)); + printk(KERN_ERR "\txattr_cnt %u\n", + le32_to_cpu(ino->xattr_cnt)); + printk(KERN_ERR "\txattr_size %u\n", + le32_to_cpu(ino->xattr_size)); + printk(KERN_ERR "\txattr_names %u\n", + le32_to_cpu(ino->xattr_names)); + printk(KERN_ERR "\tcompr_type %#x\n", + (int)le16_to_cpu(ino->compr_type)); + printk(KERN_ERR "\tdata len %u\n", + le32_to_cpu(ino->data_len)); + break; + } + case UBIFS_DENT_NODE: + case UBIFS_XENT_NODE: + { + const struct ubifs_dent_node *dent = node; + int nlen = le16_to_cpu(dent->nlen); + + key_read(c, &dent->key, &key); + printk(KERN_ERR "\tkey %s\n", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + printk(KERN_ERR "\tinum %llu\n", + (unsigned long long)le64_to_cpu(dent->inum)); + printk(KERN_ERR "\ttype %d\n", (int)dent->type); + printk(KERN_ERR "\tnlen %d\n", nlen); + printk(KERN_ERR "\tname "); + + if (nlen > UBIFS_MAX_NLEN) + printk(KERN_ERR "(bad name length, not printing, " + "bad or corrupted node)"); + else { + for (i = 0; i < nlen && dent->name[i]; i++) + printk(KERN_CONT "%c", dent->name[i]); + } + printk(KERN_CONT "\n"); + + break; + } + case UBIFS_DATA_NODE: + { + const struct ubifs_data_node *dn = node; + int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; + + key_read(c, &dn->key, &key); + printk(KERN_ERR "\tkey %s\n", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + printk(KERN_ERR "\tsize %u\n", + le32_to_cpu(dn->size)); + printk(KERN_ERR "\tcompr_typ %d\n", + (int)le16_to_cpu(dn->compr_type)); + printk(KERN_ERR "\tdata size %d\n", + dlen); + printk(KERN_ERR "\tdata:\n"); + print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, + (void *)&dn->data, dlen, 0); + break; + } + case UBIFS_TRUN_NODE: + { + const struct ubifs_trun_node *trun = node; + + printk(KERN_ERR "\tinum %u\n", + le32_to_cpu(trun->inum)); + printk(KERN_ERR "\told_size %llu\n", + (unsigned long long)le64_to_cpu(trun->old_size)); + printk(KERN_ERR "\tnew_size %llu\n", + (unsigned long long)le64_to_cpu(trun->new_size)); + break; + } + case UBIFS_IDX_NODE: + { + const struct ubifs_idx_node *idx = node; + + n = le16_to_cpu(idx->child_cnt); + printk(KERN_ERR "\tchild_cnt %d\n", n); + printk(KERN_ERR "\tlevel %d\n", + (int)le16_to_cpu(idx->level)); + printk(KERN_ERR "\tBranches:\n"); + + for (i = 0; i < n && i < c->fanout - 1; i++) { + const struct ubifs_branch *br; + + br = ubifs_idx_branch(c, idx, i); + key_read(c, &br->key, &key); + printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n", + i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), + le32_to_cpu(br->len), + dbg_snprintf_key(c, &key, key_buf, + DBG_KEY_BUF_LEN)); + } + break; + } + case UBIFS_CS_NODE: + break; + case UBIFS_ORPH_NODE: + { + const struct ubifs_orph_node *orph = node; + + printk(KERN_ERR "\tcommit number %llu\n", + (unsigned long long) + le64_to_cpu(orph->cmt_no) & LLONG_MAX); + printk(KERN_ERR "\tlast node flag %llu\n", + (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); + n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; + printk(KERN_ERR "\t%d orphan inode numbers:\n", n); + for (i = 0; i < n; i++) + printk(KERN_ERR "\t ino %llu\n", + (unsigned long long)le64_to_cpu(orph->inos[i])); + break; + } + default: + printk(KERN_ERR "node type %d was not recognized\n", + (int)ch->node_type); + } + spin_unlock(&dbg_lock); +} + +void dbg_dump_budget_req(const struct ubifs_budget_req *req) +{ + spin_lock(&dbg_lock); + printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n", + req->new_ino, req->dirtied_ino); + printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n", + req->new_ino_d, req->dirtied_ino_d); + printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n", + req->new_page, req->dirtied_page); + printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n", + req->new_dent, req->mod_dent); + printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth); + printk(KERN_ERR "\tdata_growth %d dd_growth %d\n", + req->data_growth, req->dd_growth); + spin_unlock(&dbg_lock); +} + +void dbg_dump_lstats(const struct ubifs_lp_stats *lst) +{ + spin_lock(&dbg_lock); + printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, " + "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); + printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, " + "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, + lst->total_dirty); + printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, " + "total_dead %lld\n", lst->total_used, lst->total_dark, + lst->total_dead); + spin_unlock(&dbg_lock); +} + +void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) +{ + int i; + struct rb_node *rb; + struct ubifs_bud *bud; + struct ubifs_gced_idx_leb *idx_gc; + long long available, outstanding, free; + + spin_lock(&c->space_lock); + spin_lock(&dbg_lock); + printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, " + "total budget sum %lld\n", current->pid, + bi->data_growth + bi->dd_growth, + bi->data_growth + bi->dd_growth + bi->idx_growth); + printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, " + "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth, + bi->idx_growth); + printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, " + "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz, + bi->uncommitted_idx); + printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n", + bi->page_budget, bi->inode_budget, bi->dent_budget); + printk(KERN_ERR "\tnospace %u, nospace_rp %u\n", + bi->nospace, bi->nospace_rp); + printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", + c->dark_wm, c->dead_wm, c->max_idx_node_sz); + + if (bi != &c->bi) + /* + * If we are dumping saved budgeting data, do not print + * additional information which is about the current state, not + * the old one which corresponded to the saved budgeting data. + */ + goto out_unlock; + + printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", + c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); + printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " + "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), + atomic_long_read(&c->dirty_zn_cnt), + atomic_long_read(&c->clean_zn_cnt)); + printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n", + c->gc_lnum, c->ihead_lnum); + + /* If we are in R/O mode, journal heads do not exist */ + if (c->jheads) + for (i = 0; i < c->jhead_cnt; i++) + printk(KERN_ERR "\tjhead %s\t LEB %d\n", + dbg_jhead(c->jheads[i].wbuf.jhead), + c->jheads[i].wbuf.lnum); + for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { + bud = rb_entry(rb, struct ubifs_bud, rb); + printk(KERN_ERR "\tbud LEB %d\n", bud->lnum); + } + list_for_each_entry(bud, &c->old_buds, list) + printk(KERN_ERR "\told bud LEB %d\n", bud->lnum); + list_for_each_entry(idx_gc, &c->idx_gc, list) + printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n", + idx_gc->lnum, idx_gc->unmap); + printk(KERN_ERR "\tcommit state %d\n", c->cmt_state); + + /* Print budgeting predictions */ + available = ubifs_calc_available(c, c->bi.min_idx_lebs); + outstanding = c->bi.data_growth + c->bi.dd_growth; + free = ubifs_get_free_space_nolock(c); + printk(KERN_ERR "Budgeting predictions:\n"); + printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n", + available, outstanding, free); +out_unlock: + spin_unlock(&dbg_lock); + spin_unlock(&c->space_lock); +} + +void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) +{ + int i, spc, dark = 0, dead = 0; + struct rb_node *rb; + struct ubifs_bud *bud; + + spc = lp->free + lp->dirty; + if (spc < c->dead_wm) + dead = spc; + else + dark = ubifs_calc_dark(c, spc); + + if (lp->flags & LPROPS_INDEX) + printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d " + "free + dirty %-8d flags %#x (", lp->lnum, lp->free, + lp->dirty, c->leb_size - spc, spc, lp->flags); + else + printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d " + "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " + "flags %#-4x (", lp->lnum, lp->free, lp->dirty, + c->leb_size - spc, spc, dark, dead, + (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); + + if (lp->flags & LPROPS_TAKEN) { + if (lp->flags & LPROPS_INDEX) + printk(KERN_CONT "index, taken"); + else + printk(KERN_CONT "taken"); + } else { + const char *s; + + if (lp->flags & LPROPS_INDEX) { + switch (lp->flags & LPROPS_CAT_MASK) { + case LPROPS_DIRTY_IDX: + s = "dirty index"; + break; + case LPROPS_FRDI_IDX: + s = "freeable index"; + break; + default: + s = "index"; + } + } else { + switch (lp->flags & LPROPS_CAT_MASK) { + case LPROPS_UNCAT: + s = "not categorized"; + break; + case LPROPS_DIRTY: + s = "dirty"; + break; + case LPROPS_FREE: + s = "free"; + break; + case LPROPS_EMPTY: + s = "empty"; + break; + case LPROPS_FREEABLE: + s = "freeable"; + break; + default: + s = NULL; + break; + } + } + printk(KERN_CONT "%s", s); + } + + for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { + bud = rb_entry(rb, struct ubifs_bud, rb); + if (bud->lnum == lp->lnum) { + int head = 0; + for (i = 0; i < c->jhead_cnt; i++) { + /* + * Note, if we are in R/O mode or in the middle + * of mounting/re-mounting, the write-buffers do + * not exist. + */ + if (c->jheads && + lp->lnum == c->jheads[i].wbuf.lnum) { + printk(KERN_CONT ", jhead %s", + dbg_jhead(i)); + head = 1; + } + } + if (!head) + printk(KERN_CONT ", bud of jhead %s", + dbg_jhead(bud->jhead)); + } + } + if (lp->lnum == c->gc_lnum) + printk(KERN_CONT ", GC LEB"); + printk(KERN_CONT ")\n"); +} + +void dbg_dump_lprops(struct ubifs_info *c) +{ + int lnum, err; + struct ubifs_lprops lp; + struct ubifs_lp_stats lst; + + printk(KERN_ERR "(pid %d) start dumping LEB properties\n", + current->pid); + ubifs_get_lp_stats(c, &lst); + dbg_dump_lstats(&lst); + + for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { + err = ubifs_read_one_lp(c, lnum, &lp); + if (err) + ubifs_err("cannot read lprops for LEB %d", lnum); + + dbg_dump_lprop(c, &lp); + } + printk(KERN_ERR "(pid %d) finish dumping LEB properties\n", + current->pid); +} + +void dbg_dump_lpt_info(struct ubifs_info *c) +{ + int i; + + spin_lock(&dbg_lock); + printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid); + printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz); + printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz); + printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz); + printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz); + printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz); + printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt); + printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght); + printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt); + printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt); + printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); + printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); + printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt); + printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits); + printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); + printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); + printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); + printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits); + printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits); + printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); + printk(KERN_ERR "\tLPT head is at %d:%d\n", + c->nhead_lnum, c->nhead_offs); + printk(KERN_ERR "\tLPT ltab is at %d:%d\n", + c->ltab_lnum, c->ltab_offs); + if (c->big_lpt) + printk(KERN_ERR "\tLPT lsave is at %d:%d\n", + c->lsave_lnum, c->lsave_offs); + for (i = 0; i < c->lpt_lebs; i++) + printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d " + "cmt %d\n", i + c->lpt_first, c->ltab[i].free, + c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); + spin_unlock(&dbg_lock); +} + +void dbg_dump_sleb(const struct ubifs_info *c, + const struct ubifs_scan_leb *sleb, int offs) +{ + struct ubifs_scan_node *snod; + + printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n", + current->pid, sleb->lnum, offs); + + list_for_each_entry(snod, &sleb->nodes, list) { + cond_resched(); + printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum, + snod->offs, snod->len); + dbg_dump_node(c, snod->node); + } +} + +void dbg_dump_leb(const struct ubifs_info *c, int lnum) +{ + struct ubifs_scan_leb *sleb; + struct ubifs_scan_node *snod; + void *buf; + + if (dbg_is_tst_rcvry(c)) + return; + + printk(KERN_ERR "(pid %d) start dumping LEB %d\n", + current->pid, lnum); + + buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory for dumping LEB %d", lnum); + return; + } + + sleb = ubifs_scan(c, lnum, 0, buf, 0); + if (IS_ERR(sleb)) { + ubifs_err("scan error %d", (int)PTR_ERR(sleb)); + goto out; + } + + printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum, + sleb->nodes_cnt, sleb->endpt); + + list_for_each_entry(snod, &sleb->nodes, list) { + cond_resched(); + printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum, + snod->offs, snod->len); + dbg_dump_node(c, snod->node); + } + + printk(KERN_ERR "(pid %d) finish dumping LEB %d\n", + current->pid, lnum); + ubifs_scan_destroy(sleb); + +out: + vfree(buf); + return; +} + +void dbg_dump_znode(const struct ubifs_info *c, + const struct ubifs_znode *znode) +{ + int n; + const struct ubifs_zbranch *zbr; + char key_buf[DBG_KEY_BUF_LEN]; + + spin_lock(&dbg_lock); + if (znode->parent) + zbr = &znode->parent->zbranch[znode->iip]; + else + zbr = &c->zroot; + + printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d" + " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, + zbr->len, znode->parent, znode->iip, znode->level, + znode->child_cnt, znode->flags); + + if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { + spin_unlock(&dbg_lock); + return; + } + + printk(KERN_ERR "zbranches:\n"); + for (n = 0; n < znode->child_cnt; n++) { + zbr = &znode->zbranch[n]; + if (znode->level > 0) + printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key " + "%s\n", n, zbr->znode, zbr->lnum, + zbr->offs, zbr->len, + dbg_snprintf_key(c, &zbr->key, + key_buf, + DBG_KEY_BUF_LEN)); + else + printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key " + "%s\n", n, zbr->znode, zbr->lnum, + zbr->offs, zbr->len, + dbg_snprintf_key(c, &zbr->key, + key_buf, + DBG_KEY_BUF_LEN)); + } + spin_unlock(&dbg_lock); +} + +void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) +{ + int i; + + printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n", + current->pid, cat, heap->cnt); + for (i = 0; i < heap->cnt; i++) { + struct ubifs_lprops *lprops = heap->arr[i]; + + printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d " + "flags %d\n", i, lprops->lnum, lprops->hpos, + lprops->free, lprops->dirty, lprops->flags); + } + printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid); +} + +void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, + struct ubifs_nnode *parent, int iip) +{ + int i; + + printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid); + printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n", + (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); + printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n", + pnode->flags, iip, pnode->level, pnode->num); + for (i = 0; i < UBIFS_LPT_FANOUT; i++) { + struct ubifs_lprops *lp = &pnode->lprops[i]; + + printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n", + i, lp->free, lp->dirty, lp->flags, lp->lnum); + } +} + +void dbg_dump_tnc(struct ubifs_info *c) +{ + struct ubifs_znode *znode; + int level; + + printk(KERN_ERR "\n"); + printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid); + znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); + level = znode->level; + printk(KERN_ERR "== Level %d ==\n", level); + while (znode) { + if (level != znode->level) { + level = znode->level; + printk(KERN_ERR "== Level %d ==\n", level); + } + dbg_dump_znode(c, znode); + znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); + } + printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid); +} + +static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, + void *priv) +{ + dbg_dump_znode(c, znode); + return 0; +} + +/** + * dbg_dump_index - dump the on-flash index. + * @c: UBIFS file-system description object + * + * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' + * which dumps only in-memory znodes and does not read znodes which from flash. + */ +void dbg_dump_index(struct ubifs_info *c) +{ + dbg_walk_index(c, NULL, dump_znode, NULL); +} + +/** + * dbg_save_space_info - save information about flash space. + * @c: UBIFS file-system description object + * + * This function saves information about UBIFS free space, dirty space, etc, in + * order to check it later. + */ +void dbg_save_space_info(struct ubifs_info *c) +{ + struct ubifs_debug_info *d = c->dbg; + int freeable_cnt; + + spin_lock(&c->space_lock); + memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); + memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); + d->saved_idx_gc_cnt = c->idx_gc_cnt; + + /* + * We use a dirty hack here and zero out @c->freeable_cnt, because it + * affects the free space calculations, and UBIFS might not know about + * all freeable eraseblocks. Indeed, we know about freeable eraseblocks + * only when we read their lprops, and we do this only lazily, upon the + * need. So at any given point of time @c->freeable_cnt might be not + * exactly accurate. + * + * Just one example about the issue we hit when we did not zero + * @c->freeable_cnt. + * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the + * amount of free space in @d->saved_free + * 2. We re-mount R/W, which makes UBIFS to read the "lsave" + * information from flash, where we cache LEBs from various + * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' + * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' + * -> 'ubifs_get_pnode()' -> 'update_cats()' + * -> 'ubifs_add_to_cat()'). + * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt + * becomes %1. + * 4. We calculate the amount of free space when the re-mount is + * finished in 'dbg_check_space_info()' and it does not match + * @d->saved_free. + */ + freeable_cnt = c->freeable_cnt; + c->freeable_cnt = 0; + d->saved_free = ubifs_get_free_space_nolock(c); + c->freeable_cnt = freeable_cnt; + spin_unlock(&c->space_lock); +} + +/** + * dbg_check_space_info - check flash space information. + * @c: UBIFS file-system description object + * + * This function compares current flash space information with the information + * which was saved when the 'dbg_save_space_info()' function was called. + * Returns zero if the information has not changed, and %-EINVAL it it has + * changed. + */ +int dbg_check_space_info(struct ubifs_info *c) +{ + struct ubifs_debug_info *d = c->dbg; + struct ubifs_lp_stats lst; + long long free; + int freeable_cnt; + + spin_lock(&c->space_lock); + freeable_cnt = c->freeable_cnt; + c->freeable_cnt = 0; + free = ubifs_get_free_space_nolock(c); + c->freeable_cnt = freeable_cnt; + spin_unlock(&c->space_lock); + + if (free != d->saved_free) { + ubifs_err("free space changed from %lld to %lld", + d->saved_free, free); + goto out; + } + + return 0; + +out: + ubifs_msg("saved lprops statistics dump"); + dbg_dump_lstats(&d->saved_lst); + ubifs_msg("saved budgeting info dump"); + dbg_dump_budg(c, &d->saved_bi); + ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); + ubifs_msg("current lprops statistics dump"); + ubifs_get_lp_stats(c, &lst); + dbg_dump_lstats(&lst); + ubifs_msg("current budgeting info dump"); + dbg_dump_budg(c, &c->bi); + dump_stack(); + return -EINVAL; +} + +/** + * dbg_check_synced_i_size - check synchronized inode size. + * @c: UBIFS file-system description object + * @inode: inode to check + * + * If inode is clean, synchronized inode size has to be equivalent to current + * inode size. This function has to be called only for locked inodes (@i_mutex + * has to be locked). Returns %0 if synchronized inode size if correct, and + * %-EINVAL if not. + */ +int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) +{ + int err = 0; + struct ubifs_inode *ui = ubifs_inode(inode); + + if (!dbg_is_chk_gen(c)) + return 0; + if (!S_ISREG(inode->i_mode)) + return 0; + + mutex_lock(&ui->ui_mutex); + spin_lock(&ui->ui_lock); + if (ui->ui_size != ui->synced_i_size && !ui->dirty) { + ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " + "is clean", ui->ui_size, ui->synced_i_size); + ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, + inode->i_mode, i_size_read(inode)); + dbg_dump_stack(); + err = -EINVAL; + } + spin_unlock(&ui->ui_lock); + mutex_unlock(&ui->ui_mutex); + return err; +} + +/* + * dbg_check_dir - check directory inode size and link count. + * @c: UBIFS file-system description object + * @dir: the directory to calculate size for + * @size: the result is returned here + * + * This function makes sure that directory size and link count are correct. + * Returns zero in case of success and a negative error code in case of + * failure. + * + * Note, it is good idea to make sure the @dir->i_mutex is locked before + * calling this function. + */ +int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) +{ + unsigned int nlink = 2; + union ubifs_key key; + struct ubifs_dent_node *dent, *pdent = NULL; + struct qstr nm = { .name = NULL }; + loff_t size = UBIFS_INO_NODE_SZ; + + if (!dbg_is_chk_gen(c)) + return 0; + + if (!S_ISDIR(dir->i_mode)) + return 0; + + lowest_dent_key(c, &key, dir->i_ino); + while (1) { + int err; + + dent = ubifs_tnc_next_ent(c, &key, &nm); + if (IS_ERR(dent)) { + err = PTR_ERR(dent); + if (err == -ENOENT) + break; + return err; + } + + nm.name = dent->name; + nm.len = le16_to_cpu(dent->nlen); + size += CALC_DENT_SIZE(nm.len); + if (dent->type == UBIFS_ITYPE_DIR) + nlink += 1; + kfree(pdent); + pdent = dent; + key_read(c, &dent->key, &key); + } + kfree(pdent); + + if (i_size_read(dir) != size) { + ubifs_err("directory inode %lu has size %llu, " + "but calculated size is %llu", dir->i_ino, + (unsigned long long)i_size_read(dir), + (unsigned long long)size); + dbg_dump_inode(c, dir); + dump_stack(); + return -EINVAL; + } + if (dir->i_nlink != nlink) { + ubifs_err("directory inode %lu has nlink %u, but calculated " + "nlink is %u", dir->i_ino, dir->i_nlink, nlink); + dbg_dump_inode(c, dir); + dump_stack(); + return -EINVAL; + } + + return 0; +} + +/** + * dbg_check_key_order - make sure that colliding keys are properly ordered. + * @c: UBIFS file-system description object + * @zbr1: first zbranch + * @zbr2: following zbranch + * + * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of + * names of the direntries/xentries which are referred by the keys. This + * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes + * sure the name of direntry/xentry referred by @zbr1 is less than + * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, + * and a negative error code in case of failure. + */ +static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, + struct ubifs_zbranch *zbr2) +{ + int err, nlen1, nlen2, cmp; + struct ubifs_dent_node *dent1, *dent2; + union ubifs_key key; + char key_buf[DBG_KEY_BUF_LEN]; + + ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); + dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); + if (!dent1) + return -ENOMEM; + dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); + if (!dent2) { + err = -ENOMEM; + goto out_free; + } + + err = ubifs_tnc_read_node(c, zbr1, dent1); + if (err) + goto out_free; + err = ubifs_validate_entry(c, dent1); + if (err) + goto out_free; + + err = ubifs_tnc_read_node(c, zbr2, dent2); + if (err) + goto out_free; + err = ubifs_validate_entry(c, dent2); + if (err) + goto out_free; + + /* Make sure node keys are the same as in zbranch */ + err = 1; + key_read(c, &dent1->key, &key); + if (keys_cmp(c, &zbr1->key, &key)) { + dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, + zbr1->offs, dbg_snprintf_key(c, &key, key_buf, + DBG_KEY_BUF_LEN)); + dbg_err("but it should have key %s according to tnc", + dbg_snprintf_key(c, &zbr1->key, key_buf, + DBG_KEY_BUF_LEN)); + dbg_dump_node(c, dent1); + goto out_free; + } + + key_read(c, &dent2->key, &key); + if (keys_cmp(c, &zbr2->key, &key)) { + dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, + zbr1->offs, dbg_snprintf_key(c, &key, key_buf, + DBG_KEY_BUF_LEN)); + dbg_err("but it should have key %s according to tnc", + dbg_snprintf_key(c, &zbr2->key, key_buf, + DBG_KEY_BUF_LEN)); + dbg_dump_node(c, dent2); + goto out_free; + } + + nlen1 = le16_to_cpu(dent1->nlen); + nlen2 = le16_to_cpu(dent2->nlen); + + cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); + if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { + err = 0; + goto out_free; + } + if (cmp == 0 && nlen1 == nlen2) + dbg_err("2 xent/dent nodes with the same name"); + else + dbg_err("bad order of colliding key %s", + dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); + + ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); + dbg_dump_node(c, dent1); + ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); + dbg_dump_node(c, dent2); + +out_free: + kfree(dent2); + kfree(dent1); + return err; +} + +/** + * dbg_check_znode - check if znode is all right. + * @c: UBIFS file-system description object + * @zbr: zbranch which points to this znode + * + * This function makes sure that znode referred to by @zbr is all right. + * Returns zero if it is, and %-EINVAL if it is not. + */ +static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) +{ + struct ubifs_znode *znode = zbr->znode; + struct ubifs_znode *zp = znode->parent; + int n, err, cmp; + + if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { + err = 1; + goto out; + } + if (znode->level < 0) { + err = 2; + goto out; + } + if (znode->iip < 0 || znode->iip >= c->fanout) { + err = 3; + goto out; + } + + if (zbr->len == 0) + /* Only dirty zbranch may have no on-flash nodes */ + if (!ubifs_zn_dirty(znode)) { + err = 4; + goto out; + } + + if (ubifs_zn_dirty(znode)) { + /* + * If znode is dirty, its parent has to be dirty as well. The + * order of the operation is important, so we have to have + * memory barriers. + */ + smp_mb(); + if (zp && !ubifs_zn_dirty(zp)) { + /* + * The dirty flag is atomic and is cleared outside the + * TNC mutex, so znode's dirty flag may now have + * been cleared. The child is always cleared before the + * parent, so we just need to check again. + */ + smp_mb(); + if (ubifs_zn_dirty(znode)) { + err = 5; + goto out; + } + } + } + + if (zp) { + const union ubifs_key *min, *max; + + if (znode->level != zp->level - 1) { + err = 6; + goto out; + } + + /* Make sure the 'parent' pointer in our znode is correct */ + err = ubifs_search_zbranch(c, zp, &zbr->key, &n); + if (!err) { + /* This zbranch does not exist in the parent */ + err = 7; + goto out; + } + + if (znode->iip >= zp->child_cnt) { + err = 8; + goto out; + } + + if (znode->iip != n) { + /* This may happen only in case of collisions */ + if (keys_cmp(c, &zp->zbranch[n].key, + &zp->zbranch[znode->iip].key)) { + err = 9; + goto out; + } + n = znode->iip; + } + + /* + * Make sure that the first key in our znode is greater than or + * equal to the key in the pointing zbranch. + */ + min = &zbr->key; + cmp = keys_cmp(c, min, &znode->zbranch[0].key); + if (cmp == 1) { + err = 10; + goto out; + } + + if (n + 1 < zp->child_cnt) { + max = &zp->zbranch[n + 1].key; + + /* + * Make sure the last key in our znode is less or + * equivalent than the key in the zbranch which goes + * after our pointing zbranch. + */ + cmp = keys_cmp(c, max, + &znode->zbranch[znode->child_cnt - 1].key); + if (cmp == -1) { + err = 11; + goto out; + } + } + } else { + /* This may only be root znode */ + if (zbr != &c->zroot) { + err = 12; + goto out; + } + } + + /* + * Make sure that next key is greater or equivalent then the previous + * one. + */ + for (n = 1; n < znode->child_cnt; n++) { + cmp = keys_cmp(c, &znode->zbranch[n - 1].key, + &znode->zbranch[n].key); + if (cmp > 0) { + err = 13; + goto out; + } + if (cmp == 0) { + /* This can only be keys with colliding hash */ + if (!is_hash_key(c, &znode->zbranch[n].key)) { + err = 14; + goto out; + } + + if (znode->level != 0 || c->replaying) + continue; + + /* + * Colliding keys should follow binary order of + * corresponding xentry/dentry names. + */ + err = dbg_check_key_order(c, &znode->zbranch[n - 1], + &znode->zbranch[n]); + if (err < 0) + return err; + if (err) { + err = 15; + goto out; + } + } + } + + for (n = 0; n < znode->child_cnt; n++) { + if (!znode->zbranch[n].znode && + (znode->zbranch[n].lnum == 0 || + znode->zbranch[n].len == 0)) { + err = 16; + goto out; + } + + if (znode->zbranch[n].lnum != 0 && + znode->zbranch[n].len == 0) { + err = 17; + goto out; + } + + if (znode->zbranch[n].lnum == 0 && + znode->zbranch[n].len != 0) { + err = 18; + goto out; + } + + if (znode->zbranch[n].lnum == 0 && + znode->zbranch[n].offs != 0) { + err = 19; + goto out; + } + + if (znode->level != 0 && znode->zbranch[n].znode) + if (znode->zbranch[n].znode->parent != znode) { + err = 20; + goto out; + } + } + + return 0; + +out: + ubifs_err("failed, error %d", err); + ubifs_msg("dump of the znode"); + dbg_dump_znode(c, znode); + if (zp) { + ubifs_msg("dump of the parent znode"); + dbg_dump_znode(c, zp); + } + dump_stack(); + return -EINVAL; +} + +/** + * dbg_check_tnc - check TNC tree. + * @c: UBIFS file-system description object + * @extra: do extra checks that are possible at start commit + * + * This function traverses whole TNC tree and checks every znode. Returns zero + * if everything is all right and %-EINVAL if something is wrong with TNC. + */ +int dbg_check_tnc(struct ubifs_info *c, int extra) +{ + struct ubifs_znode *znode; + long clean_cnt = 0, dirty_cnt = 0; + int err, last; + + if (!dbg_is_chk_index(c)) + return 0; + + ubifs_assert(mutex_is_locked(&c->tnc_mutex)); + if (!c->zroot.znode) + return 0; + + znode = ubifs_tnc_postorder_first(c->zroot.znode); + while (1) { + struct ubifs_znode *prev; + struct ubifs_zbranch *zbr; + + if (!znode->parent) + zbr = &c->zroot; + else + zbr = &znode->parent->zbranch[znode->iip]; + + err = dbg_check_znode(c, zbr); + if (err) + return err; + + if (extra) { + if (ubifs_zn_dirty(znode)) + dirty_cnt += 1; + else + clean_cnt += 1; + } + + prev = znode; + znode = ubifs_tnc_postorder_next(znode); + if (!znode) + break; + + /* + * If the last key of this znode is equivalent to the first key + * of the next znode (collision), then check order of the keys. + */ + last = prev->child_cnt - 1; + if (prev->level == 0 && znode->level == 0 && !c->replaying && + !keys_cmp(c, &prev->zbranch[last].key, + &znode->zbranch[0].key)) { + err = dbg_check_key_order(c, &prev->zbranch[last], + &znode->zbranch[0]); + if (err < 0) + return err; + if (err) { + ubifs_msg("first znode"); + dbg_dump_znode(c, prev); + ubifs_msg("second znode"); + dbg_dump_znode(c, znode); + return -EINVAL; + } + } + } + + if (extra) { + if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { + ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", + atomic_long_read(&c->clean_zn_cnt), + clean_cnt); + return -EINVAL; + } + if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { + ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", + atomic_long_read(&c->dirty_zn_cnt), + dirty_cnt); + return -EINVAL; + } + } + + return 0; +} + +/** + * dbg_walk_index - walk the on-flash index. + * @c: UBIFS file-system description object + * @leaf_cb: called for each leaf node + * @znode_cb: called for each indexing node + * @priv: private data which is passed to callbacks + * + * This function walks the UBIFS index and calls the @leaf_cb for each leaf + * node and @znode_cb for each indexing node. Returns zero in case of success + * and a negative error code in case of failure. + * + * It would be better if this function removed every znode it pulled to into + * the TNC, so that the behavior more closely matched the non-debugging + * behavior. + */ +int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, + dbg_znode_callback znode_cb, void *priv) +{ + int err; + struct ubifs_zbranch *zbr; + struct ubifs_znode *znode, *child; + + mutex_lock(&c->tnc_mutex); + /* If the root indexing node is not in TNC - pull it */ + if (!c->zroot.znode) { + c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); + if (IS_ERR(c->zroot.znode)) { + err = PTR_ERR(c->zroot.znode); + c->zroot.znode = NULL; + goto out_unlock; + } + } + + /* + * We are going to traverse the indexing tree in the postorder manner. + * Go down and find the leftmost indexing node where we are going to + * start from. + */ + znode = c->zroot.znode; + while (znode->level > 0) { + zbr = &znode->zbranch[0]; + child = zbr->znode; + if (!child) { + child = ubifs_load_znode(c, zbr, znode, 0); + if (IS_ERR(child)) { + err = PTR_ERR(child); + goto out_unlock; + } + zbr->znode = child; + } + + znode = child; + } + + /* Iterate over all indexing nodes */ + while (1) { + int idx; + + cond_resched(); + + if (znode_cb) { + err = znode_cb(c, znode, priv); + if (err) { + ubifs_err("znode checking function returned " + "error %d", err); + dbg_dump_znode(c, znode); + goto out_dump; + } + } + if (leaf_cb && znode->level == 0) { + for (idx = 0; idx < znode->child_cnt; idx++) { + zbr = &znode->zbranch[idx]; + err = leaf_cb(c, zbr, priv); + if (err) { + ubifs_err("leaf checking function " + "returned error %d, for leaf " + "at LEB %d:%d", + err, zbr->lnum, zbr->offs); + goto out_dump; + } + } + } + + if (!znode->parent) + break; + + idx = znode->iip + 1; + znode = znode->parent; + if (idx < znode->child_cnt) { + /* Switch to the next index in the parent */ + zbr = &znode->zbranch[idx]; + child = zbr->znode; + if (!child) { + child = ubifs_load_znode(c, zbr, znode, idx); + if (IS_ERR(child)) { + err = PTR_ERR(child); + goto out_unlock; + } + zbr->znode = child; + } + znode = child; + } else + /* + * This is the last child, switch to the parent and + * continue. + */ + continue; + + /* Go to the lowest leftmost znode in the new sub-tree */ + while (znode->level > 0) { + zbr = &znode->zbranch[0]; + child = zbr->znode; + if (!child) { + child = ubifs_load_znode(c, zbr, znode, 0); + if (IS_ERR(child)) { + err = PTR_ERR(child); + goto out_unlock; + } + zbr->znode = child; + } + znode = child; + } + } + + mutex_unlock(&c->tnc_mutex); + return 0; + +out_dump: + if (znode->parent) + zbr = &znode->parent->zbranch[znode->iip]; + else + zbr = &c->zroot; + ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); + dbg_dump_znode(c, znode); +out_unlock: + mutex_unlock(&c->tnc_mutex); + return err; +} + +/** + * add_size - add znode size to partially calculated index size. + * @c: UBIFS file-system description object + * @znode: znode to add size for + * @priv: partially calculated index size + * + * This is a helper function for 'dbg_check_idx_size()' which is called for + * every indexing node and adds its size to the 'long long' variable pointed to + * by @priv. + */ +static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) +{ + long long *idx_size = priv; + int add; + + add = ubifs_idx_node_sz(c, znode->child_cnt); + add = ALIGN(add, 8); + *idx_size += add; + return 0; +} + +/** + * dbg_check_idx_size - check index size. + * @c: UBIFS file-system description object + * @idx_size: size to check + * + * This function walks the UBIFS index, calculates its size and checks that the + * size is equivalent to @idx_size. Returns zero in case of success and a + * negative error code in case of failure. + */ +int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) +{ + int err; + long long calc = 0; + + if (!dbg_is_chk_index(c)) + return 0; + + err = dbg_walk_index(c, NULL, add_size, &calc); + if (err) { + ubifs_err("error %d while walking the index", err); + return err; + } + + if (calc != idx_size) { + ubifs_err("index size check failed: calculated size is %lld, " + "should be %lld", calc, idx_size); + dump_stack(); + return -EINVAL; + } + + return 0; +} + +/** + * struct fsck_inode - information about an inode used when checking the file-system. + * @rb: link in the RB-tree of inodes + * @inum: inode number + * @mode: inode type, permissions, etc + * @nlink: inode link count + * @xattr_cnt: count of extended attributes + * @references: how many directory/xattr entries refer this inode (calculated + * while walking the index) + * @calc_cnt: for directory inode count of child directories + * @size: inode size (read from on-flash inode) + * @xattr_sz: summary size of all extended attributes (read from on-flash + * inode) + * @calc_sz: for directories calculated directory size + * @calc_xcnt: count of extended attributes + * @calc_xsz: calculated summary size of all extended attributes + * @xattr_nms: sum of lengths of all extended attribute names belonging to this + * inode (read from on-flash inode) + * @calc_xnms: calculated sum of lengths of all extended attribute names + */ +struct fsck_inode { + struct rb_node rb; + ino_t inum; + umode_t mode; + unsigned int nlink; + unsigned int xattr_cnt; + int references; + int calc_cnt; + long long size; + unsigned int xattr_sz; + long long calc_sz; + long long calc_xcnt; + long long calc_xsz; + unsigned int xattr_nms; + long long calc_xnms; +}; + +/** + * struct fsck_data - private FS checking information. + * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) + */ +struct fsck_data { + struct rb_root inodes; +}; + +/** + * add_inode - add inode information to RB-tree of inodes. + * @c: UBIFS file-system description object + * @fsckd: FS checking information + * @ino: raw UBIFS inode to add + * + * This is a helper function for 'check_leaf()' which adds information about + * inode @ino to the RB-tree of inodes. Returns inode information pointer in + * case of success and a negative error code in case of failure. + */ +static struct fsck_inode *add_inode(struct ubifs_info *c, + struct fsck_data *fsckd, + struct ubifs_ino_node *ino) +{ + struct rb_node **p, *parent = NULL; + struct fsck_inode *fscki; + ino_t inum = key_inum_flash(c, &ino->key); + struct inode *inode; + struct ubifs_inode *ui; + + p = &fsckd->inodes.rb_node; + while (*p) { + parent = *p; + fscki = rb_entry(parent, struct fsck_inode, rb); + if (inum < fscki->inum) + p = &(*p)->rb_left; + else if (inum > fscki->inum) + p = &(*p)->rb_right; + else + return fscki; + } + + if (inum > c->highest_inum) { + ubifs_err("too high inode number, max. is %lu", + (unsigned long)c->highest_inum); + return ERR_PTR(-EINVAL); + } + + fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); + if (!fscki) + return ERR_PTR(-ENOMEM); + + inode = ilookup(c->vfs_sb, inum); + + fscki->inum = inum; + /* + * If the inode is present in the VFS inode cache, use it instead of + * the on-flash inode which might be out-of-date. E.g., the size might + * be out-of-date. If we do not do this, the following may happen, for + * example: + * 1. A power cut happens + * 2. We mount the file-system R/O, the replay process fixes up the + * inode size in the VFS cache, but on on-flash. + * 3. 'check_leaf()' fails because it hits a data node beyond inode + * size. + */ + if (!inode) { + fscki->nlink = le32_to_cpu(ino->nlink); + fscki->size = le64_to_cpu(ino->size); + fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); + fscki->xattr_sz = le32_to_cpu(ino->xattr_size); + fscki->xattr_nms = le32_to_cpu(ino->xattr_names); + fscki->mode = le32_to_cpu(ino->mode); + } else { + ui = ubifs_inode(inode); + fscki->nlink = inode->i_nlink; + fscki->size = inode->i_size; + fscki->xattr_cnt = ui->xattr_cnt; + fscki->xattr_sz = ui->xattr_size; + fscki->xattr_nms = ui->xattr_names; + fscki->mode = inode->i_mode; + iput(inode); + } + + if (S_ISDIR(fscki->mode)) { + fscki->calc_sz = UBIFS_INO_NODE_SZ; + fscki->calc_cnt = 2; + } + + rb_link_node(&fscki->rb, parent, p); + rb_insert_color(&fscki->rb, &fsckd->inodes); + + return fscki; +} + +/** + * search_inode - search inode in the RB-tree of inodes. + * @fsckd: FS checking information + * @inum: inode number to search + * + * This is a helper function for 'check_leaf()' which searches inode @inum in + * the RB-tree of inodes and returns an inode information pointer or %NULL if + * the inode was not found. + */ +static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) +{ + struct rb_node *p; + struct fsck_inode *fscki; + + p = fsckd->inodes.rb_node; + while (p) { + fscki = rb_entry(p, struct fsck_inode, rb); + if (inum < fscki->inum) + p = p->rb_left; + else if (inum > fscki->inum) + p = p->rb_right; + else + return fscki; + } + return NULL; +} + +/** + * read_add_inode - read inode node and add it to RB-tree of inodes. + * @c: UBIFS file-system description object + * @fsckd: FS checking information + * @inum: inode number to read + * + * This is a helper function for 'check_leaf()' which finds inode node @inum in + * the index, reads it, and adds it to the RB-tree of inodes. Returns inode + * information pointer in case of success and a negative error code in case of + * failure. + */ +static struct fsck_inode *read_add_inode(struct ubifs_info *c, + struct fsck_data *fsckd, ino_t inum) +{ + int n, err; + union ubifs_key key; + struct ubifs_znode *znode; + struct ubifs_zbranch *zbr; + struct ubifs_ino_node *ino; + struct fsck_inode *fscki; + + fscki = search_inode(fsckd, inum); + if (fscki) + return fscki; + + ino_key_init(c, &key, inum); + err = ubifs_lookup_level0(c, &key, &znode, &n); + if (!err) { + ubifs_err("inode %lu not found in index", (unsigned long)inum); + return ERR_PTR(-ENOENT); + } else if (err < 0) { + ubifs_err("error %d while looking up inode %lu", + err, (unsigned long)inum); + return ERR_PTR(err); + } + + zbr = &znode->zbranch[n]; + if (zbr->len < UBIFS_INO_NODE_SZ) { + ubifs_err("bad node %lu node length %d", + (unsigned long)inum, zbr->len); + return ERR_PTR(-EINVAL); + } + + ino = kmalloc(zbr->len, GFP_NOFS); + if (!ino) + return ERR_PTR(-ENOMEM); + + err = ubifs_tnc_read_node(c, zbr, ino); + if (err) { + ubifs_err("cannot read inode node at LEB %d:%d, error %d", + zbr->lnum, zbr->offs, err); + kfree(ino); + return ERR_PTR(err); + } + + fscki = add_inode(c, fsckd, ino); + kfree(ino); + if (IS_ERR(fscki)) { + ubifs_err("error %ld while adding inode %lu node", + PTR_ERR(fscki), (unsigned long)inum); + return fscki; + } + + return fscki; +} + +/** + * check_leaf - check leaf node. + * @c: UBIFS file-system description object + * @zbr: zbranch of the leaf node to check + * @priv: FS checking information + * + * This is a helper function for 'dbg_check_filesystem()' which is called for + * every single leaf node while walking the indexing tree. It checks that the + * leaf node referred from the indexing tree exists, has correct CRC, and does + * some other basic validation. This function is also responsible for building + * an RB-tree of inodes - it adds all inodes into the RB-tree. It also + * calculates reference count, size, etc for each inode in order to later + * compare them to the information stored inside the inodes and detect possible + * inconsistencies. Returns zero in case of success and a negative error code + * in case of failure. + */ +static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, + void *priv) +{ + ino_t inum; + void *node; + struct ubifs_ch *ch; + int err, type = key_type(c, &zbr->key); + struct fsck_inode *fscki; + + if (zbr->len < UBIFS_CH_SZ) { + ubifs_err("bad leaf length %d (LEB %d:%d)", + zbr->len, zbr->lnum, zbr->offs); + return -EINVAL; + } + + node = kmalloc(zbr->len, GFP_NOFS); + if (!node) + return -ENOMEM; + + err = ubifs_tnc_read_node(c, zbr, node); + if (err) { + ubifs_err("cannot read leaf node at LEB %d:%d, error %d", + zbr->lnum, zbr->offs, err); + goto out_free; + } + + /* If this is an inode node, add it to RB-tree of inodes */ + if (type == UBIFS_INO_KEY) { + fscki = add_inode(c, priv, node); + if (IS_ERR(fscki)) { + err = PTR_ERR(fscki); + ubifs_err("error %d while adding inode node", err); + goto out_dump; + } + goto out; + } + + if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && + type != UBIFS_DATA_KEY) { + ubifs_err("unexpected node type %d at LEB %d:%d", + type, zbr->lnum, zbr->offs); + err = -EINVAL; + goto out_free; + } + + ch = node; + if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { + ubifs_err("too high sequence number, max. is %llu", + c->max_sqnum); + err = -EINVAL; + goto out_dump; + } + + if (type == UBIFS_DATA_KEY) { + long long blk_offs; + struct ubifs_data_node *dn = node; + + /* + * Search the inode node this data node belongs to and insert + * it to the RB-tree of inodes. + */ + inum = key_inum_flash(c, &dn->key); + fscki = read_add_inode(c, priv, inum); + if (IS_ERR(fscki)) { + err = PTR_ERR(fscki); + ubifs_err("error %d while processing data node and " + "trying to find inode node %lu", + err, (unsigned long)inum); + goto out_dump; + } + + /* Make sure the data node is within inode size */ + blk_offs = key_block_flash(c, &dn->key); + blk_offs <<= UBIFS_BLOCK_SHIFT; + blk_offs += le32_to_cpu(dn->size); + if (blk_offs > fscki->size) { + ubifs_err("data node at LEB %d:%d is not within inode " + "size %lld", zbr->lnum, zbr->offs, + fscki->size); + err = -EINVAL; + goto out_dump; + } + } else { + int nlen; + struct ubifs_dent_node *dent = node; + struct fsck_inode *fscki1; + + err = ubifs_validate_entry(c, dent); + if (err) + goto out_dump; + + /* + * Search the inode node this entry refers to and the parent + * inode node and insert them to the RB-tree of inodes. + */ + inum = le64_to_cpu(dent->inum); + fscki = read_add_inode(c, priv, inum); + if (IS_ERR(fscki)) { + err = PTR_ERR(fscki); + ubifs_err("error %d while processing entry node and " + "trying to find inode node %lu", + err, (unsigned long)inum); + goto out_dump; + } + + /* Count how many direntries or xentries refers this inode */ + fscki->references += 1; + + inum = key_inum_flash(c, &dent->key); + fscki1 = read_add_inode(c, priv, inum); + if (IS_ERR(fscki1)) { + err = PTR_ERR(fscki1); + ubifs_err("error %d while processing entry node and " + "trying to find parent inode node %lu", + err, (unsigned long)inum); + goto out_dump; + } + + nlen = le16_to_cpu(dent->nlen); + if (type == UBIFS_XENT_KEY) { + fscki1->calc_xcnt += 1; + fscki1->calc_xsz += CALC_DENT_SIZE(nlen); + fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); + fscki1->calc_xnms += nlen; + } else { + fscki1->calc_sz += CALC_DENT_SIZE(nlen); + if (dent->type == UBIFS_ITYPE_DIR) + fscki1->calc_cnt += 1; + } + } + +out: + kfree(node); + return 0; + +out_dump: + ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); + dbg_dump_node(c, node); +out_free: + kfree(node); + return err; +} + +/** + * free_inodes - free RB-tree of inodes. + * @fsckd: FS checking information + */ +static void free_inodes(struct fsck_data *fsckd) +{ + struct rb_node *this = fsckd->inodes.rb_node; + struct fsck_inode *fscki; + + while (this) { + if (this->rb_left) + this = this->rb_left; + else if (this->rb_right) + this = this->rb_right; + else { + fscki = rb_entry(this, struct fsck_inode, rb); + this = rb_parent(this); + if (this) { + if (this->rb_left == &fscki->rb) + this->rb_left = NULL; + else + this->rb_right = NULL; + } + kfree(fscki); + } + } +} + +/** + * check_inodes - checks all inodes. + * @c: UBIFS file-system description object + * @fsckd: FS checking information + * + * This is a helper function for 'dbg_check_filesystem()' which walks the + * RB-tree of inodes after the index scan has been finished, and checks that + * inode nlink, size, etc are correct. Returns zero if inodes are fine, + * %-EINVAL if not, and a negative error code in case of failure. + */ +static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) +{ + int n, err; + union ubifs_key key; + struct ubifs_znode *znode; + struct ubifs_zbranch *zbr; + struct ubifs_ino_node *ino; + struct fsck_inode *fscki; + struct rb_node *this = rb_first(&fsckd->inodes); + + while (this) { + fscki = rb_entry(this, struct fsck_inode, rb); + this = rb_next(this); + + if (S_ISDIR(fscki->mode)) { + /* + * Directories have to have exactly one reference (they + * cannot have hardlinks), although root inode is an + * exception. + */ + if (fscki->inum != UBIFS_ROOT_INO && + fscki->references != 1) { + ubifs_err("directory inode %lu has %d " + "direntries which refer it, but " + "should be 1", + (unsigned long)fscki->inum, + fscki->references); + goto out_dump; + } + if (fscki->inum == UBIFS_ROOT_INO && + fscki->references != 0) { + ubifs_err("root inode %lu has non-zero (%d) " + "direntries which refer it", + (unsigned long)fscki->inum, + fscki->references); + goto out_dump; + } + if (fscki->calc_sz != fscki->size) { + ubifs_err("directory inode %lu size is %lld, " + "but calculated size is %lld", + (unsigned long)fscki->inum, + fscki->size, fscki->calc_sz); + goto out_dump; + } + if (fscki->calc_cnt != fscki->nlink) { + ubifs_err("directory inode %lu nlink is %d, " + "but calculated nlink is %d", + (unsigned long)fscki->inum, + fscki->nlink, fscki->calc_cnt); + goto out_dump; + } + } else { + if (fscki->references != fscki->nlink) { + ubifs_err("inode %lu nlink is %d, but " + "calculated nlink is %d", + (unsigned long)fscki->inum, + fscki->nlink, fscki->references); + goto out_dump; + } + } + if (fscki->xattr_sz != fscki->calc_xsz) { + ubifs_err("inode %lu has xattr size %u, but " + "calculated size is %lld", + (unsigned long)fscki->inum, fscki->xattr_sz, + fscki->calc_xsz); + goto out_dump; + } + if (fscki->xattr_cnt != fscki->calc_xcnt) { + ubifs_err("inode %lu has %u xattrs, but " + "calculated count is %lld", + (unsigned long)fscki->inum, + fscki->xattr_cnt, fscki->calc_xcnt); + goto out_dump; + } + if (fscki->xattr_nms != fscki->calc_xnms) { + ubifs_err("inode %lu has xattr names' size %u, but " + "calculated names' size is %lld", + (unsigned long)fscki->inum, fscki->xattr_nms, + fscki->calc_xnms); + goto out_dump; + } + } + + return 0; + +out_dump: + /* Read the bad inode and dump it */ + ino_key_init(c, &key, fscki->inum); + err = ubifs_lookup_level0(c, &key, &znode, &n); + if (!err) { + ubifs_err("inode %lu not found in index", + (unsigned long)fscki->inum); + return -ENOENT; + } else if (err < 0) { + ubifs_err("error %d while looking up inode %lu", + err, (unsigned long)fscki->inum); + return err; + } + + zbr = &znode->zbranch[n]; + ino = kmalloc(zbr->len, GFP_NOFS); + if (!ino) + return -ENOMEM; + + err = ubifs_tnc_read_node(c, zbr, ino); + if (err) { + ubifs_err("cannot read inode node at LEB %d:%d, error %d", + zbr->lnum, zbr->offs, err); + kfree(ino); + return err; + } + + ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", + (unsigned long)fscki->inum, zbr->lnum, zbr->offs); + dbg_dump_node(c, ino); + kfree(ino); + return -EINVAL; +} + +/** + * dbg_check_filesystem - check the file-system. + * @c: UBIFS file-system description object + * + * This function checks the file system, namely: + * o makes sure that all leaf nodes exist and their CRCs are correct; + * o makes sure inode nlink, size, xattr size/count are correct (for all + * inodes). + * + * The function reads whole indexing tree and all nodes, so it is pretty + * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if + * not, and a negative error code in case of failure. + */ +int dbg_check_filesystem(struct ubifs_info *c) +{ + int err; + struct fsck_data fsckd; + + if (!dbg_is_chk_fs(c)) + return 0; + + fsckd.inodes = RB_ROOT; + err = dbg_walk_index(c, check_leaf, NULL, &fsckd); + if (err) + goto out_free; + + err = check_inodes(c, &fsckd); + if (err) + goto out_free; + + free_inodes(&fsckd); + return 0; + +out_free: + ubifs_err("file-system check failed with error %d", err); + dump_stack(); + free_inodes(&fsckd); + return err; +} + +/** + * dbg_check_data_nodes_order - check that list of data nodes is sorted. + * @c: UBIFS file-system description object + * @head: the list of nodes ('struct ubifs_scan_node' objects) + * + * This function returns zero if the list of data nodes is sorted correctly, + * and %-EINVAL if not. + */ +int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) +{ + struct list_head *cur; + struct ubifs_scan_node *sa, *sb; + + if (!dbg_is_chk_gen(c)) + return 0; + + for (cur = head->next; cur->next != head; cur = cur->next) { + ino_t inuma, inumb; + uint32_t blka, blkb; + + cond_resched(); + sa = container_of(cur, struct ubifs_scan_node, list); + sb = container_of(cur->next, struct ubifs_scan_node, list); + + if (sa->type != UBIFS_DATA_NODE) { + ubifs_err("bad node type %d", sa->type); + dbg_dump_node(c, sa->node); + return -EINVAL; + } + if (sb->type != UBIFS_DATA_NODE) { + ubifs_err("bad node type %d", sb->type); + dbg_dump_node(c, sb->node); + return -EINVAL; + } + + inuma = key_inum(c, &sa->key); + inumb = key_inum(c, &sb->key); + + if (inuma < inumb) + continue; + if (inuma > inumb) { + ubifs_err("larger inum %lu goes before inum %lu", + (unsigned long)inuma, (unsigned long)inumb); + goto error_dump; + } + + blka = key_block(c, &sa->key); + blkb = key_block(c, &sb->key); + + if (blka > blkb) { + ubifs_err("larger block %u goes before %u", blka, blkb); + goto error_dump; + } + if (blka == blkb) { + ubifs_err("two data nodes for the same block"); + goto error_dump; + } + } + + return 0; + +error_dump: + dbg_dump_node(c, sa->node); + dbg_dump_node(c, sb->node); + return -EINVAL; +} + +/** + * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. + * @c: UBIFS file-system description object + * @head: the list of nodes ('struct ubifs_scan_node' objects) + * + * This function returns zero if the list of non-data nodes is sorted correctly, + * and %-EINVAL if not. + */ +int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) +{ + struct list_head *cur; + struct ubifs_scan_node *sa, *sb; + + if (!dbg_is_chk_gen(c)) + return 0; + + for (cur = head->next; cur->next != head; cur = cur->next) { + ino_t inuma, inumb; + uint32_t hasha, hashb; + + cond_resched(); + sa = container_of(cur, struct ubifs_scan_node, list); + sb = container_of(cur->next, struct ubifs_scan_node, list); + + if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && + sa->type != UBIFS_XENT_NODE) { + ubifs_err("bad node type %d", sa->type); + dbg_dump_node(c, sa->node); + return -EINVAL; + } + if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && + sa->type != UBIFS_XENT_NODE) { + ubifs_err("bad node type %d", sb->type); + dbg_dump_node(c, sb->node); + return -EINVAL; + } + + if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { + ubifs_err("non-inode node goes before inode node"); + goto error_dump; + } + + if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) + continue; + + if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { + /* Inode nodes are sorted in descending size order */ + if (sa->len < sb->len) { + ubifs_err("smaller inode node goes first"); + goto error_dump; + } + continue; + } + + /* + * This is either a dentry or xentry, which should be sorted in + * ascending (parent ino, hash) order. + */ + inuma = key_inum(c, &sa->key); + inumb = key_inum(c, &sb->key); + + if (inuma < inumb) + continue; + if (inuma > inumb) { + ubifs_err("larger inum %lu goes before inum %lu", + (unsigned long)inuma, (unsigned long)inumb); + goto error_dump; + } + + hasha = key_block(c, &sa->key); + hashb = key_block(c, &sb->key); + + if (hasha > hashb) { + ubifs_err("larger hash %u goes before %u", + hasha, hashb); + goto error_dump; + } + } + + return 0; + +error_dump: + ubifs_msg("dumping first node"); + dbg_dump_node(c, sa->node); + ubifs_msg("dumping second node"); + dbg_dump_node(c, sb->node); + return -EINVAL; + return 0; +} + +static inline int chance(unsigned int n, unsigned int out_of) +{ + return !!((random32() % out_of) + 1 <= n); + +} + +static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) +{ + struct ubifs_debug_info *d = c->dbg; + + ubifs_assert(dbg_is_tst_rcvry(c)); + + if (!d->pc_cnt) { + /* First call - decide delay to the power cut */ + if (chance(1, 2)) { + unsigned long delay; + + if (chance(1, 2)) { + d->pc_delay = 1; + /* Fail withing 1 minute */ + delay = random32() % 60000; + d->pc_timeout = jiffies; + d->pc_timeout += msecs_to_jiffies(delay); + ubifs_warn("failing after %lums", delay); + } else { + d->pc_delay = 2; + delay = random32() % 10000; + /* Fail within 10000 operations */ + d->pc_cnt_max = delay; + ubifs_warn("failing after %lu calls", delay); + } + } + + d->pc_cnt += 1; + } + + /* Determine if failure delay has expired */ + if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) + return 0; + if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) + return 0; + + if (lnum == UBIFS_SB_LNUM) { + if (write && chance(1, 2)) + return 0; + if (chance(19, 20)) + return 0; + ubifs_warn("failing in super block LEB %d", lnum); + } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { + if (chance(19, 20)) + return 0; + ubifs_warn("failing in master LEB %d", lnum); + } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { + if (write && chance(99, 100)) + return 0; + if (chance(399, 400)) + return 0; + ubifs_warn("failing in log LEB %d", lnum); + } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { + if (write && chance(7, 8)) + return 0; + if (chance(19, 20)) + return 0; + ubifs_warn("failing in LPT LEB %d", lnum); + } else if (lnum >= c->orph_first && lnum <= c->orph_last) { + if (write && chance(1, 2)) + return 0; + if (chance(9, 10)) + return 0; + ubifs_warn("failing in orphan LEB %d", lnum); + } else if (lnum == c->ihead_lnum) { + if (chance(99, 100)) + return 0; + ubifs_warn("failing in index head LEB %d", lnum); + } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { + if (chance(9, 10)) + return 0; + ubifs_warn("failing in GC head LEB %d", lnum); + } else if (write && !RB_EMPTY_ROOT(&c->buds) && + !ubifs_search_bud(c, lnum)) { + if (chance(19, 20)) + return 0; + ubifs_warn("failing in non-bud LEB %d", lnum); + } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || + c->cmt_state == COMMIT_RUNNING_REQUIRED) { + if (chance(999, 1000)) + return 0; + ubifs_warn("failing in bud LEB %d commit running", lnum); + } else { + if (chance(9999, 10000)) + return 0; + ubifs_warn("failing in bud LEB %d commit not running", lnum); + } + + d->pc_happened = 1; + ubifs_warn("========== Power cut emulated =========="); + dump_stack(); + return 1; +} + +static void cut_data(const void *buf, unsigned int len) +{ + unsigned int from, to, i, ffs = chance(1, 2); + unsigned char *p = (void *)buf; + + from = random32() % (len + 1); + if (chance(1, 2)) + to = random32() % (len - from + 1); + else + to = len; + + if (from < to) + ubifs_warn("filled bytes %u-%u with %s", from, to - 1, + ffs ? "0xFFs" : "random data"); + + if (ffs) + for (i = from; i < to; i++) + p[i] = 0xFF; + else + for (i = from; i < to; i++) + p[i] = random32() % 0x100; +} + +int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, + int offs, int len, int dtype) +{ + int err, failing; + + if (c->dbg->pc_happened) + return -EROFS; + + failing = power_cut_emulated(c, lnum, 1); + if (failing) + cut_data(buf, len); + err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype); + if (err) + return err; + if (failing) + return -EROFS; + return 0; +} + +int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, + int len, int dtype) +{ + int err; + + if (c->dbg->pc_happened) + return -EROFS; + if (power_cut_emulated(c, lnum, 1)) + return -EROFS; + err = ubi_leb_change(c->ubi, lnum, buf, len, dtype); + if (err) + return err; + if (power_cut_emulated(c, lnum, 1)) + return -EROFS; + return 0; +} + +int dbg_leb_unmap(struct ubifs_info *c, int lnum) +{ + int err; + + if (c->dbg->pc_happened) + return -EROFS; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + err = ubi_leb_unmap(c->ubi, lnum); + if (err) + return err; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + return 0; +} + +int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype) +{ + int err; + + if (c->dbg->pc_happened) + return -EROFS; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + err = ubi_leb_map(c->ubi, lnum, dtype); + if (err) + return err; + if (power_cut_emulated(c, lnum, 0)) + return -EROFS; + return 0; +} + +/* + * Root directory for UBIFS stuff in debugfs. Contains sub-directories which + * contain the stuff specific to particular file-system mounts. + */ +static struct dentry *dfs_rootdir; + +static int dfs_file_open(struct inode *inode, struct file *file) +{ + file->private_data = inode->i_private; + return nonseekable_open(inode, file); +} + +/** + * provide_user_output - provide output to the user reading a debugfs file. + * @val: boolean value for the answer + * @u: the buffer to store the answer at + * @count: size of the buffer + * @ppos: position in the @u output buffer + * + * This is a simple helper function which stores @val boolean value in the user + * buffer when the user reads one of UBIFS debugfs files. Returns amount of + * bytes written to @u in case of success and a negative error code in case of + * failure. + */ +static int provide_user_output(int val, char __user *u, size_t count, + loff_t *ppos) +{ + char buf[3]; + + if (val) + buf[0] = '1'; + else + buf[0] = '0'; + buf[1] = '\n'; + buf[2] = 0x00; + + return simple_read_from_buffer(u, count, ppos, buf, 2); +} + +static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, + loff_t *ppos) +{ + struct dentry *dent = file->f_path.dentry; + struct ubifs_info *c = file->private_data; + struct ubifs_debug_info *d = c->dbg; + int val; + + if (dent == d->dfs_chk_gen) + val = d->chk_gen; + else if (dent == d->dfs_chk_index) + val = d->chk_index; + else if (dent == d->dfs_chk_orph) + val = d->chk_orph; + else if (dent == d->dfs_chk_lprops) + val = d->chk_lprops; + else if (dent == d->dfs_chk_fs) + val = d->chk_fs; + else if (dent == d->dfs_tst_rcvry) + val = d->tst_rcvry; + else + return -EINVAL; + + return provide_user_output(val, u, count, ppos); +} + +/** + * interpret_user_input - interpret user debugfs file input. + * @u: user-provided buffer with the input + * @count: buffer size + * + * This is a helper function which interpret user input to a boolean UBIFS + * debugfs file. Returns %0 or %1 in case of success and a negative error code + * in case of failure. + */ +static int interpret_user_input(const char __user *u, size_t count) +{ + size_t buf_size; + char buf[8]; + + buf_size = min_t(size_t, count, (sizeof(buf) - 1)); + if (copy_from_user(buf, u, buf_size)) + return -EFAULT; + + if (buf[0] == '1') + return 1; + else if (buf[0] == '0') + return 0; + + return -EINVAL; +} + +static ssize_t dfs_file_write(struct file *file, const char __user *u, + size_t count, loff_t *ppos) +{ + struct ubifs_info *c = file->private_data; + struct ubifs_debug_info *d = c->dbg; + struct dentry *dent = file->f_path.dentry; + int val; + + /* + * TODO: this is racy - the file-system might have already been + * unmounted and we'd oops in this case. The plan is to fix it with + * help of 'iterate_supers_type()' which we should have in v3.0: when + * a debugfs opened, we rember FS's UUID in file->private_data. Then + * whenever we access the FS via a debugfs file, we iterate all UBIFS + * superblocks and fine the one with the same UUID, and take the + * locking right. + * + * The other way to go suggested by Al Viro is to create a separate + * 'ubifs-debug' file-system instead. + */ + if (file->f_path.dentry == d->dfs_dump_lprops) { + dbg_dump_lprops(c); + return count; + } + if (file->f_path.dentry == d->dfs_dump_budg) { + dbg_dump_budg(c, &c->bi); + return count; + } + if (file->f_path.dentry == d->dfs_dump_tnc) { + mutex_lock(&c->tnc_mutex); + dbg_dump_tnc(c); + mutex_unlock(&c->tnc_mutex); + return count; + } + + val = interpret_user_input(u, count); + if (val < 0) + return val; + + if (dent == d->dfs_chk_gen) + d->chk_gen = val; + else if (dent == d->dfs_chk_index) + d->chk_index = val; + else if (dent == d->dfs_chk_orph) + d->chk_orph = val; + else if (dent == d->dfs_chk_lprops) + d->chk_lprops = val; + else if (dent == d->dfs_chk_fs) + d->chk_fs = val; + else if (dent == d->dfs_tst_rcvry) + d->tst_rcvry = val; + else + return -EINVAL; + + return count; +} + +static const struct file_operations dfs_fops = { + .open = dfs_file_open, + .read = dfs_file_read, + .write = dfs_file_write, + .owner = THIS_MODULE, + .llseek = no_llseek, +}; + +/** + * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. + * @c: UBIFS file-system description object + * + * This function creates all debugfs files for this instance of UBIFS. Returns + * zero in case of success and a negative error code in case of failure. + * + * Note, the only reason we have not merged this function with the + * 'ubifs_debugging_init()' function is because it is better to initialize + * debugfs interfaces at the very end of the mount process, and remove them at + * the very beginning of the mount process. + */ +int dbg_debugfs_init_fs(struct ubifs_info *c) +{ + int err, n; + const char *fname; + struct dentry *dent; + struct ubifs_debug_info *d = c->dbg; + + n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, + c->vi.ubi_num, c->vi.vol_id); + if (n == UBIFS_DFS_DIR_LEN) { + /* The array size is too small */ + fname = UBIFS_DFS_DIR_NAME; + dent = ERR_PTR(-EINVAL); + goto out; + } + + fname = d->dfs_dir_name; + dent = debugfs_create_dir(fname, dfs_rootdir); + if (IS_ERR_OR_NULL(dent)) + goto out; + d->dfs_dir = dent; + + fname = "dump_lprops"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_dump_lprops = dent; + + fname = "dump_budg"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_dump_budg = dent; + + fname = "dump_tnc"; + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_dump_tnc = dent; + + fname = "chk_general"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_gen = dent; + + fname = "chk_index"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_index = dent; + + fname = "chk_orphans"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_orph = dent; + + fname = "chk_lprops"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_lprops = dent; + + fname = "chk_fs"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_chk_fs = dent; + + fname = "tst_recovery"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, + &dfs_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + d->dfs_tst_rcvry = dent; + + return 0; + +out_remove: + debugfs_remove_recursive(d->dfs_dir); +out: + err = dent ? PTR_ERR(dent) : -ENODEV; + ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", + fname, err); + return err; +} + +/** + * dbg_debugfs_exit_fs - remove all debugfs files. + * @c: UBIFS file-system description object + */ +void dbg_debugfs_exit_fs(struct ubifs_info *c) +{ + debugfs_remove_recursive(c->dbg->dfs_dir); +} + +struct ubifs_global_debug_info ubifs_dbg; + +static struct dentry *dfs_chk_gen; +static struct dentry *dfs_chk_index; +static struct dentry *dfs_chk_orph; +static struct dentry *dfs_chk_lprops; +static struct dentry *dfs_chk_fs; +static struct dentry *dfs_tst_rcvry; + +static ssize_t dfs_global_file_read(struct file *file, char __user *u, + size_t count, loff_t *ppos) +{ + struct dentry *dent = file->f_path.dentry; + int val; + + if (dent == dfs_chk_gen) + val = ubifs_dbg.chk_gen; + else if (dent == dfs_chk_index) + val = ubifs_dbg.chk_index; + else if (dent == dfs_chk_orph) + val = ubifs_dbg.chk_orph; + else if (dent == dfs_chk_lprops) + val = ubifs_dbg.chk_lprops; + else if (dent == dfs_chk_fs) + val = ubifs_dbg.chk_fs; + else if (dent == dfs_tst_rcvry) + val = ubifs_dbg.tst_rcvry; + else + return -EINVAL; + + return provide_user_output(val, u, count, ppos); +} + +static ssize_t dfs_global_file_write(struct file *file, const char __user *u, + size_t count, loff_t *ppos) +{ + struct dentry *dent = file->f_path.dentry; + int val; + + val = interpret_user_input(u, count); + if (val < 0) + return val; + + if (dent == dfs_chk_gen) + ubifs_dbg.chk_gen = val; + else if (dent == dfs_chk_index) + ubifs_dbg.chk_index = val; + else if (dent == dfs_chk_orph) + ubifs_dbg.chk_orph = val; + else if (dent == dfs_chk_lprops) + ubifs_dbg.chk_lprops = val; + else if (dent == dfs_chk_fs) + ubifs_dbg.chk_fs = val; + else if (dent == dfs_tst_rcvry) + ubifs_dbg.tst_rcvry = val; + else + return -EINVAL; + + return count; +} + +static const struct file_operations dfs_global_fops = { + .read = dfs_global_file_read, + .write = dfs_global_file_write, + .owner = THIS_MODULE, + .llseek = no_llseek, +}; + +/** + * dbg_debugfs_init - initialize debugfs file-system. + * + * UBIFS uses debugfs file-system to expose various debugging knobs to + * user-space. This function creates "ubifs" directory in the debugfs + * file-system. Returns zero in case of success and a negative error code in + * case of failure. + */ +int dbg_debugfs_init(void) +{ + int err; + const char *fname; + struct dentry *dent; + + fname = "ubifs"; + dent = debugfs_create_dir(fname, NULL); + if (IS_ERR_OR_NULL(dent)) + goto out; + dfs_rootdir = dent; + + fname = "chk_general"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_gen = dent; + + fname = "chk_index"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_index = dent; + + fname = "chk_orphans"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_orph = dent; + + fname = "chk_lprops"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_lprops = dent; + + fname = "chk_fs"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_chk_fs = dent; + + fname = "tst_recovery"; + dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, + &dfs_global_fops); + if (IS_ERR_OR_NULL(dent)) + goto out_remove; + dfs_tst_rcvry = dent; + + return 0; + +out_remove: + debugfs_remove_recursive(dfs_rootdir); +out: + err = dent ? PTR_ERR(dent) : -ENODEV; + ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", + fname, err); + return err; +} + +/** + * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. + */ +void dbg_debugfs_exit(void) +{ + debugfs_remove_recursive(dfs_rootdir); +} + +/** + * ubifs_debugging_init - initialize UBIFS debugging. + * @c: UBIFS file-system description object + * + * This function initializes debugging-related data for the file system. + * Returns zero in case of success and a negative error code in case of + * failure. + */ +int ubifs_debugging_init(struct ubifs_info *c) +{ + c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); + if (!c->dbg) + return -ENOMEM; + + return 0; +} + +/** + * ubifs_debugging_exit - free debugging data. + * @c: UBIFS file-system description object + */ +void ubifs_debugging_exit(struct ubifs_info *c) +{ + kfree(c->dbg); +} + +#endif /* CONFIG_UBIFS_FS_DEBUG */ |