summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/qlogic/qlge/qlge_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/qlogic/qlge/qlge_main.c')
-rw-r--r--drivers/net/ethernet/qlogic/qlge/qlge_main.c4927
1 files changed, 4927 insertions, 0 deletions
diff --git a/drivers/net/ethernet/qlogic/qlge/qlge_main.c b/drivers/net/ethernet/qlogic/qlge/qlge_main.c
new file mode 100644
index 00000000..49343ec2
--- /dev/null
+++ b/drivers/net/ethernet/qlogic/qlge/qlge_main.c
@@ -0,0 +1,4927 @@
+/*
+ * QLogic qlge NIC HBA Driver
+ * Copyright (c) 2003-2008 QLogic Corporation
+ * See LICENSE.qlge for copyright and licensing details.
+ * Author: Linux qlge network device driver by
+ * Ron Mercer <ron.mercer@qlogic.com>
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/bitops.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dmapool.h>
+#include <linux/mempool.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/interrupt.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/in.h>
+#include <linux/ip.h>
+#include <linux/ipv6.h>
+#include <net/ipv6.h>
+#include <linux/tcp.h>
+#include <linux/udp.h>
+#include <linux/if_arp.h>
+#include <linux/if_ether.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/ethtool.h>
+#include <linux/if_vlan.h>
+#include <linux/skbuff.h>
+#include <linux/delay.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+#include <linux/prefetch.h>
+#include <net/ip6_checksum.h>
+
+#include "qlge.h"
+
+char qlge_driver_name[] = DRV_NAME;
+const char qlge_driver_version[] = DRV_VERSION;
+
+MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
+MODULE_DESCRIPTION(DRV_STRING " ");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+static const u32 default_msg =
+ NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
+/* NETIF_MSG_TIMER | */
+ NETIF_MSG_IFDOWN |
+ NETIF_MSG_IFUP |
+ NETIF_MSG_RX_ERR |
+ NETIF_MSG_TX_ERR |
+/* NETIF_MSG_TX_QUEUED | */
+/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
+/* NETIF_MSG_PKTDATA | */
+ NETIF_MSG_HW | NETIF_MSG_WOL | 0;
+
+static int debug = -1; /* defaults above */
+module_param(debug, int, 0664);
+MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
+
+#define MSIX_IRQ 0
+#define MSI_IRQ 1
+#define LEG_IRQ 2
+static int qlge_irq_type = MSIX_IRQ;
+module_param(qlge_irq_type, int, 0664);
+MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
+
+static int qlge_mpi_coredump;
+module_param(qlge_mpi_coredump, int, 0);
+MODULE_PARM_DESC(qlge_mpi_coredump,
+ "Option to enable MPI firmware dump. "
+ "Default is OFF - Do Not allocate memory. ");
+
+static int qlge_force_coredump;
+module_param(qlge_force_coredump, int, 0);
+MODULE_PARM_DESC(qlge_force_coredump,
+ "Option to allow force of firmware core dump. "
+ "Default is OFF - Do not allow.");
+
+static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
+ {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
+ {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
+ /* required last entry */
+ {0,}
+};
+
+MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
+
+static int ql_wol(struct ql_adapter *qdev);
+static void qlge_set_multicast_list(struct net_device *ndev);
+
+/* This hardware semaphore causes exclusive access to
+ * resources shared between the NIC driver, MPI firmware,
+ * FCOE firmware and the FC driver.
+ */
+static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
+{
+ u32 sem_bits = 0;
+
+ switch (sem_mask) {
+ case SEM_XGMAC0_MASK:
+ sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
+ break;
+ case SEM_XGMAC1_MASK:
+ sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
+ break;
+ case SEM_ICB_MASK:
+ sem_bits = SEM_SET << SEM_ICB_SHIFT;
+ break;
+ case SEM_MAC_ADDR_MASK:
+ sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
+ break;
+ case SEM_FLASH_MASK:
+ sem_bits = SEM_SET << SEM_FLASH_SHIFT;
+ break;
+ case SEM_PROBE_MASK:
+ sem_bits = SEM_SET << SEM_PROBE_SHIFT;
+ break;
+ case SEM_RT_IDX_MASK:
+ sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
+ break;
+ case SEM_PROC_REG_MASK:
+ sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
+ break;
+ default:
+ netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
+ return -EINVAL;
+ }
+
+ ql_write32(qdev, SEM, sem_bits | sem_mask);
+ return !(ql_read32(qdev, SEM) & sem_bits);
+}
+
+int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+ unsigned int wait_count = 30;
+ do {
+ if (!ql_sem_trylock(qdev, sem_mask))
+ return 0;
+ udelay(100);
+ } while (--wait_count);
+ return -ETIMEDOUT;
+}
+
+void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
+{
+ ql_write32(qdev, SEM, sem_mask);
+ ql_read32(qdev, SEM); /* flush */
+}
+
+/* This function waits for a specific bit to come ready
+ * in a given register. It is used mostly by the initialize
+ * process, but is also used in kernel thread API such as
+ * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
+ */
+int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
+{
+ u32 temp;
+ int count = UDELAY_COUNT;
+
+ while (count) {
+ temp = ql_read32(qdev, reg);
+
+ /* check for errors */
+ if (temp & err_bit) {
+ netif_alert(qdev, probe, qdev->ndev,
+ "register 0x%.08x access error, value = 0x%.08x!.\n",
+ reg, temp);
+ return -EIO;
+ } else if (temp & bit)
+ return 0;
+ udelay(UDELAY_DELAY);
+ count--;
+ }
+ netif_alert(qdev, probe, qdev->ndev,
+ "Timed out waiting for reg %x to come ready.\n", reg);
+ return -ETIMEDOUT;
+}
+
+/* The CFG register is used to download TX and RX control blocks
+ * to the chip. This function waits for an operation to complete.
+ */
+static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
+{
+ int count = UDELAY_COUNT;
+ u32 temp;
+
+ while (count) {
+ temp = ql_read32(qdev, CFG);
+ if (temp & CFG_LE)
+ return -EIO;
+ if (!(temp & bit))
+ return 0;
+ udelay(UDELAY_DELAY);
+ count--;
+ }
+ return -ETIMEDOUT;
+}
+
+
+/* Used to issue init control blocks to hw. Maps control block,
+ * sets address, triggers download, waits for completion.
+ */
+int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
+ u16 q_id)
+{
+ u64 map;
+ int status = 0;
+ int direction;
+ u32 mask;
+ u32 value;
+
+ direction =
+ (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
+ PCI_DMA_FROMDEVICE;
+
+ map = pci_map_single(qdev->pdev, ptr, size, direction);
+ if (pci_dma_mapping_error(qdev->pdev, map)) {
+ netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
+ return -ENOMEM;
+ }
+
+ status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
+ if (status)
+ return status;
+
+ status = ql_wait_cfg(qdev, bit);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Timed out waiting for CFG to come ready.\n");
+ goto exit;
+ }
+
+ ql_write32(qdev, ICB_L, (u32) map);
+ ql_write32(qdev, ICB_H, (u32) (map >> 32));
+
+ mask = CFG_Q_MASK | (bit << 16);
+ value = bit | (q_id << CFG_Q_SHIFT);
+ ql_write32(qdev, CFG, (mask | value));
+
+ /*
+ * Wait for the bit to clear after signaling hw.
+ */
+ status = ql_wait_cfg(qdev, bit);
+exit:
+ ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
+ pci_unmap_single(qdev->pdev, map, size, direction);
+ return status;
+}
+
+/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
+int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
+ u32 *value)
+{
+ u32 offset = 0;
+ int status;
+
+ switch (type) {
+ case MAC_ADDR_TYPE_MULTI_MAC:
+ case MAC_ADDR_TYPE_CAM_MAC:
+ {
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MR, 0);
+ if (status)
+ goto exit;
+ *value++ = ql_read32(qdev, MAC_ADDR_DATA);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MR, 0);
+ if (status)
+ goto exit;
+ *value++ = ql_read32(qdev, MAC_ADDR_DATA);
+ if (type == MAC_ADDR_TYPE_CAM_MAC) {
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
+ status =
+ ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
+ MAC_ADDR_MR, 0);
+ if (status)
+ goto exit;
+ *value++ = ql_read32(qdev, MAC_ADDR_DATA);
+ }
+ break;
+ }
+ case MAC_ADDR_TYPE_VLAN:
+ case MAC_ADDR_TYPE_MULTI_FLTR:
+ default:
+ netif_crit(qdev, ifup, qdev->ndev,
+ "Address type %d not yet supported.\n", type);
+ status = -EPERM;
+ }
+exit:
+ return status;
+}
+
+/* Set up a MAC, multicast or VLAN address for the
+ * inbound frame matching.
+ */
+static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
+ u16 index)
+{
+ u32 offset = 0;
+ int status = 0;
+
+ switch (type) {
+ case MAC_ADDR_TYPE_MULTI_MAC:
+ {
+ u32 upper = (addr[0] << 8) | addr[1];
+ u32 lower = (addr[2] << 24) | (addr[3] << 16) |
+ (addr[4] << 8) | (addr[5]);
+
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
+ (index << MAC_ADDR_IDX_SHIFT) |
+ type | MAC_ADDR_E);
+ ql_write32(qdev, MAC_ADDR_DATA, lower);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
+ (index << MAC_ADDR_IDX_SHIFT) |
+ type | MAC_ADDR_E);
+
+ ql_write32(qdev, MAC_ADDR_DATA, upper);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ break;
+ }
+ case MAC_ADDR_TYPE_CAM_MAC:
+ {
+ u32 cam_output;
+ u32 upper = (addr[0] << 8) | addr[1];
+ u32 lower =
+ (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
+ (addr[5]);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type); /* type */
+ ql_write32(qdev, MAC_ADDR_DATA, lower);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type); /* type */
+ ql_write32(qdev, MAC_ADDR_DATA, upper);
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type); /* type */
+ /* This field should also include the queue id
+ and possibly the function id. Right now we hardcode
+ the route field to NIC core.
+ */
+ cam_output = (CAM_OUT_ROUTE_NIC |
+ (qdev->
+ func << CAM_OUT_FUNC_SHIFT) |
+ (0 << CAM_OUT_CQ_ID_SHIFT));
+ if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
+ cam_output |= CAM_OUT_RV;
+ /* route to NIC core */
+ ql_write32(qdev, MAC_ADDR_DATA, cam_output);
+ break;
+ }
+ case MAC_ADDR_TYPE_VLAN:
+ {
+ u32 enable_bit = *((u32 *) &addr[0]);
+ /* For VLAN, the addr actually holds a bit that
+ * either enables or disables the vlan id we are
+ * addressing. It's either MAC_ADDR_E on or off.
+ * That's bit-27 we're talking about.
+ */
+ status =
+ ql_wait_reg_rdy(qdev,
+ MAC_ADDR_IDX, MAC_ADDR_MW, 0);
+ if (status)
+ goto exit;
+ ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
+ (index << MAC_ADDR_IDX_SHIFT) | /* index */
+ type | /* type */
+ enable_bit); /* enable/disable */
+ break;
+ }
+ case MAC_ADDR_TYPE_MULTI_FLTR:
+ default:
+ netif_crit(qdev, ifup, qdev->ndev,
+ "Address type %d not yet supported.\n", type);
+ status = -EPERM;
+ }
+exit:
+ return status;
+}
+
+/* Set or clear MAC address in hardware. We sometimes
+ * have to clear it to prevent wrong frame routing
+ * especially in a bonding environment.
+ */
+static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
+{
+ int status;
+ char zero_mac_addr[ETH_ALEN];
+ char *addr;
+
+ if (set) {
+ addr = &qdev->current_mac_addr[0];
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "Set Mac addr %pM\n", addr);
+ } else {
+ memset(zero_mac_addr, 0, ETH_ALEN);
+ addr = &zero_mac_addr[0];
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "Clearing MAC address\n");
+ }
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ return status;
+ status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
+ MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init mac address.\n");
+ return status;
+}
+
+void ql_link_on(struct ql_adapter *qdev)
+{
+ netif_err(qdev, link, qdev->ndev, "Link is up.\n");
+ netif_carrier_on(qdev->ndev);
+ ql_set_mac_addr(qdev, 1);
+}
+
+void ql_link_off(struct ql_adapter *qdev)
+{
+ netif_err(qdev, link, qdev->ndev, "Link is down.\n");
+ netif_carrier_off(qdev->ndev);
+ ql_set_mac_addr(qdev, 0);
+}
+
+/* Get a specific frame routing value from the CAM.
+ * Used for debug and reg dump.
+ */
+int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
+{
+ int status = 0;
+
+ status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
+ if (status)
+ goto exit;
+
+ ql_write32(qdev, RT_IDX,
+ RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
+ status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
+ if (status)
+ goto exit;
+ *value = ql_read32(qdev, RT_DATA);
+exit:
+ return status;
+}
+
+/* The NIC function for this chip has 16 routing indexes. Each one can be used
+ * to route different frame types to various inbound queues. We send broadcast/
+ * multicast/error frames to the default queue for slow handling,
+ * and CAM hit/RSS frames to the fast handling queues.
+ */
+static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
+ int enable)
+{
+ int status = -EINVAL; /* Return error if no mask match. */
+ u32 value = 0;
+
+ switch (mask) {
+ case RT_IDX_CAM_HIT:
+ {
+ value = RT_IDX_DST_CAM_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_VALID: /* Promiscuous Mode frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_IP_CSUM_ERR_SLOT <<
+ RT_IDX_IDX_SHIFT); /* index */
+ break;
+ }
+ case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
+ RT_IDX_IDX_SHIFT); /* index */
+ break;
+ }
+ case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_MCAST: /* Pass up All Multicast frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
+ {
+ value = RT_IDX_DST_RSS | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ case 0: /* Clear the E-bit on an entry. */
+ {
+ value = RT_IDX_DST_DFLT_Q | /* dest */
+ RT_IDX_TYPE_NICQ | /* type */
+ (index << RT_IDX_IDX_SHIFT);/* index */
+ break;
+ }
+ default:
+ netif_err(qdev, ifup, qdev->ndev,
+ "Mask type %d not yet supported.\n", mask);
+ status = -EPERM;
+ goto exit;
+ }
+
+ if (value) {
+ status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
+ if (status)
+ goto exit;
+ value |= (enable ? RT_IDX_E : 0);
+ ql_write32(qdev, RT_IDX, value);
+ ql_write32(qdev, RT_DATA, enable ? mask : 0);
+ }
+exit:
+ return status;
+}
+
+static void ql_enable_interrupts(struct ql_adapter *qdev)
+{
+ ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
+}
+
+static void ql_disable_interrupts(struct ql_adapter *qdev)
+{
+ ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
+}
+
+/* If we're running with multiple MSI-X vectors then we enable on the fly.
+ * Otherwise, we may have multiple outstanding workers and don't want to
+ * enable until the last one finishes. In this case, the irq_cnt gets
+ * incremented every time we queue a worker and decremented every time
+ * a worker finishes. Once it hits zero we enable the interrupt.
+ */
+u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+ u32 var = 0;
+ unsigned long hw_flags = 0;
+ struct intr_context *ctx = qdev->intr_context + intr;
+
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
+ /* Always enable if we're MSIX multi interrupts and
+ * it's not the default (zeroeth) interrupt.
+ */
+ ql_write32(qdev, INTR_EN,
+ ctx->intr_en_mask);
+ var = ql_read32(qdev, STS);
+ return var;
+ }
+
+ spin_lock_irqsave(&qdev->hw_lock, hw_flags);
+ if (atomic_dec_and_test(&ctx->irq_cnt)) {
+ ql_write32(qdev, INTR_EN,
+ ctx->intr_en_mask);
+ var = ql_read32(qdev, STS);
+ }
+ spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
+ return var;
+}
+
+static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
+{
+ u32 var = 0;
+ struct intr_context *ctx;
+
+ /* HW disables for us if we're MSIX multi interrupts and
+ * it's not the default (zeroeth) interrupt.
+ */
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
+ return 0;
+
+ ctx = qdev->intr_context + intr;
+ spin_lock(&qdev->hw_lock);
+ if (!atomic_read(&ctx->irq_cnt)) {
+ ql_write32(qdev, INTR_EN,
+ ctx->intr_dis_mask);
+ var = ql_read32(qdev, STS);
+ }
+ atomic_inc(&ctx->irq_cnt);
+ spin_unlock(&qdev->hw_lock);
+ return var;
+}
+
+static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
+{
+ int i;
+ for (i = 0; i < qdev->intr_count; i++) {
+ /* The enable call does a atomic_dec_and_test
+ * and enables only if the result is zero.
+ * So we precharge it here.
+ */
+ if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
+ i == 0))
+ atomic_set(&qdev->intr_context[i].irq_cnt, 1);
+ ql_enable_completion_interrupt(qdev, i);
+ }
+
+}
+
+static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
+{
+ int status, i;
+ u16 csum = 0;
+ __le16 *flash = (__le16 *)&qdev->flash;
+
+ status = strncmp((char *)&qdev->flash, str, 4);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
+ return status;
+ }
+
+ for (i = 0; i < size; i++)
+ csum += le16_to_cpu(*flash++);
+
+ if (csum)
+ netif_err(qdev, ifup, qdev->ndev,
+ "Invalid flash checksum, csum = 0x%.04x.\n", csum);
+
+ return csum;
+}
+
+static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
+{
+ int status = 0;
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
+ if (status)
+ goto exit;
+ /* set up for reg read */
+ ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
+ if (status)
+ goto exit;
+ /* This data is stored on flash as an array of
+ * __le32. Since ql_read32() returns cpu endian
+ * we need to swap it back.
+ */
+ *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
+exit:
+ return status;
+}
+
+static int ql_get_8000_flash_params(struct ql_adapter *qdev)
+{
+ u32 i, size;
+ int status;
+ __le32 *p = (__le32 *)&qdev->flash;
+ u32 offset;
+ u8 mac_addr[6];
+
+ /* Get flash offset for function and adjust
+ * for dword access.
+ */
+ if (!qdev->port)
+ offset = FUNC0_FLASH_OFFSET / sizeof(u32);
+ else
+ offset = FUNC1_FLASH_OFFSET / sizeof(u32);
+
+ if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
+ return -ETIMEDOUT;
+
+ size = sizeof(struct flash_params_8000) / sizeof(u32);
+ for (i = 0; i < size; i++, p++) {
+ status = ql_read_flash_word(qdev, i+offset, p);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Error reading flash.\n");
+ goto exit;
+ }
+ }
+
+ status = ql_validate_flash(qdev,
+ sizeof(struct flash_params_8000) / sizeof(u16),
+ "8000");
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
+ status = -EINVAL;
+ goto exit;
+ }
+
+ /* Extract either manufacturer or BOFM modified
+ * MAC address.
+ */
+ if (qdev->flash.flash_params_8000.data_type1 == 2)
+ memcpy(mac_addr,
+ qdev->flash.flash_params_8000.mac_addr1,
+ qdev->ndev->addr_len);
+ else
+ memcpy(mac_addr,
+ qdev->flash.flash_params_8000.mac_addr,
+ qdev->ndev->addr_len);
+
+ if (!is_valid_ether_addr(mac_addr)) {
+ netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
+ status = -EINVAL;
+ goto exit;
+ }
+
+ memcpy(qdev->ndev->dev_addr,
+ mac_addr,
+ qdev->ndev->addr_len);
+
+exit:
+ ql_sem_unlock(qdev, SEM_FLASH_MASK);
+ return status;
+}
+
+static int ql_get_8012_flash_params(struct ql_adapter *qdev)
+{
+ int i;
+ int status;
+ __le32 *p = (__le32 *)&qdev->flash;
+ u32 offset = 0;
+ u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
+
+ /* Second function's parameters follow the first
+ * function's.
+ */
+ if (qdev->port)
+ offset = size;
+
+ if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
+ return -ETIMEDOUT;
+
+ for (i = 0; i < size; i++, p++) {
+ status = ql_read_flash_word(qdev, i+offset, p);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Error reading flash.\n");
+ goto exit;
+ }
+
+ }
+
+ status = ql_validate_flash(qdev,
+ sizeof(struct flash_params_8012) / sizeof(u16),
+ "8012");
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
+ status = -EINVAL;
+ goto exit;
+ }
+
+ if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
+ status = -EINVAL;
+ goto exit;
+ }
+
+ memcpy(qdev->ndev->dev_addr,
+ qdev->flash.flash_params_8012.mac_addr,
+ qdev->ndev->addr_len);
+
+exit:
+ ql_sem_unlock(qdev, SEM_FLASH_MASK);
+ return status;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair. Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
+{
+ int status;
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+ if (status)
+ return status;
+ /* write the data to the data reg */
+ ql_write32(qdev, XGMAC_DATA, data);
+ /* trigger the write */
+ ql_write32(qdev, XGMAC_ADDR, reg);
+ return status;
+}
+
+/* xgmac register are located behind the xgmac_addr and xgmac_data
+ * register pair. Each read/write requires us to wait for the ready
+ * bit before reading/writing the data.
+ */
+int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
+{
+ int status = 0;
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+ if (status)
+ goto exit;
+ /* set up for reg read */
+ ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
+ /* wait for reg to come ready */
+ status = ql_wait_reg_rdy(qdev,
+ XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
+ if (status)
+ goto exit;
+ /* get the data */
+ *data = ql_read32(qdev, XGMAC_DATA);
+exit:
+ return status;
+}
+
+/* This is used for reading the 64-bit statistics regs. */
+int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
+{
+ int status = 0;
+ u32 hi = 0;
+ u32 lo = 0;
+
+ status = ql_read_xgmac_reg(qdev, reg, &lo);
+ if (status)
+ goto exit;
+
+ status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
+ if (status)
+ goto exit;
+
+ *data = (u64) lo | ((u64) hi << 32);
+
+exit:
+ return status;
+}
+
+static int ql_8000_port_initialize(struct ql_adapter *qdev)
+{
+ int status;
+ /*
+ * Get MPI firmware version for driver banner
+ * and ethool info.
+ */
+ status = ql_mb_about_fw(qdev);
+ if (status)
+ goto exit;
+ status = ql_mb_get_fw_state(qdev);
+ if (status)
+ goto exit;
+ /* Wake up a worker to get/set the TX/RX frame sizes. */
+ queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
+exit:
+ return status;
+}
+
+/* Take the MAC Core out of reset.
+ * Enable statistics counting.
+ * Take the transmitter/receiver out of reset.
+ * This functionality may be done in the MPI firmware at a
+ * later date.
+ */
+static int ql_8012_port_initialize(struct ql_adapter *qdev)
+{
+ int status = 0;
+ u32 data;
+
+ if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
+ /* Another function has the semaphore, so
+ * wait for the port init bit to come ready.
+ */
+ netif_info(qdev, link, qdev->ndev,
+ "Another function has the semaphore, so wait for the port init bit to come ready.\n");
+ status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
+ if (status) {
+ netif_crit(qdev, link, qdev->ndev,
+ "Port initialize timed out.\n");
+ }
+ return status;
+ }
+
+ netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
+ /* Set the core reset. */
+ status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
+ if (status)
+ goto end;
+ data |= GLOBAL_CFG_RESET;
+ status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+ if (status)
+ goto end;
+
+ /* Clear the core reset and turn on jumbo for receiver. */
+ data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
+ data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
+ data |= GLOBAL_CFG_TX_STAT_EN;
+ data |= GLOBAL_CFG_RX_STAT_EN;
+ status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
+ if (status)
+ goto end;
+
+ /* Enable transmitter, and clear it's reset. */
+ status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
+ if (status)
+ goto end;
+ data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
+ data |= TX_CFG_EN; /* Enable the transmitter. */
+ status = ql_write_xgmac_reg(qdev, TX_CFG, data);
+ if (status)
+ goto end;
+
+ /* Enable receiver and clear it's reset. */
+ status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
+ if (status)
+ goto end;
+ data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
+ data |= RX_CFG_EN; /* Enable the receiver. */
+ status = ql_write_xgmac_reg(qdev, RX_CFG, data);
+ if (status)
+ goto end;
+
+ /* Turn on jumbo. */
+ status =
+ ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
+ if (status)
+ goto end;
+ status =
+ ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
+ if (status)
+ goto end;
+
+ /* Signal to the world that the port is enabled. */
+ ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
+end:
+ ql_sem_unlock(qdev, qdev->xg_sem_mask);
+ return status;
+}
+
+static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
+{
+ return PAGE_SIZE << qdev->lbq_buf_order;
+}
+
+/* Get the next large buffer. */
+static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
+{
+ struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
+ rx_ring->lbq_curr_idx++;
+ if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
+ rx_ring->lbq_curr_idx = 0;
+ rx_ring->lbq_free_cnt++;
+ return lbq_desc;
+}
+
+static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
+
+ pci_dma_sync_single_for_cpu(qdev->pdev,
+ dma_unmap_addr(lbq_desc, mapaddr),
+ rx_ring->lbq_buf_size,
+ PCI_DMA_FROMDEVICE);
+
+ /* If it's the last chunk of our master page then
+ * we unmap it.
+ */
+ if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
+ == ql_lbq_block_size(qdev))
+ pci_unmap_page(qdev->pdev,
+ lbq_desc->p.pg_chunk.map,
+ ql_lbq_block_size(qdev),
+ PCI_DMA_FROMDEVICE);
+ return lbq_desc;
+}
+
+/* Get the next small buffer. */
+static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
+{
+ struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
+ rx_ring->sbq_curr_idx++;
+ if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
+ rx_ring->sbq_curr_idx = 0;
+ rx_ring->sbq_free_cnt++;
+ return sbq_desc;
+}
+
+/* Update an rx ring index. */
+static void ql_update_cq(struct rx_ring *rx_ring)
+{
+ rx_ring->cnsmr_idx++;
+ rx_ring->curr_entry++;
+ if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
+ rx_ring->cnsmr_idx = 0;
+ rx_ring->curr_entry = rx_ring->cq_base;
+ }
+}
+
+static void ql_write_cq_idx(struct rx_ring *rx_ring)
+{
+ ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
+}
+
+static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
+ struct bq_desc *lbq_desc)
+{
+ if (!rx_ring->pg_chunk.page) {
+ u64 map;
+ rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
+ GFP_ATOMIC,
+ qdev->lbq_buf_order);
+ if (unlikely(!rx_ring->pg_chunk.page)) {
+ netif_err(qdev, drv, qdev->ndev,
+ "page allocation failed.\n");
+ return -ENOMEM;
+ }
+ rx_ring->pg_chunk.offset = 0;
+ map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
+ 0, ql_lbq_block_size(qdev),
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(qdev->pdev, map)) {
+ __free_pages(rx_ring->pg_chunk.page,
+ qdev->lbq_buf_order);
+ netif_err(qdev, drv, qdev->ndev,
+ "PCI mapping failed.\n");
+ return -ENOMEM;
+ }
+ rx_ring->pg_chunk.map = map;
+ rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
+ }
+
+ /* Copy the current master pg_chunk info
+ * to the current descriptor.
+ */
+ lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
+
+ /* Adjust the master page chunk for next
+ * buffer get.
+ */
+ rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
+ if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
+ rx_ring->pg_chunk.page = NULL;
+ lbq_desc->p.pg_chunk.last_flag = 1;
+ } else {
+ rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
+ get_page(rx_ring->pg_chunk.page);
+ lbq_desc->p.pg_chunk.last_flag = 0;
+ }
+ return 0;
+}
+/* Process (refill) a large buffer queue. */
+static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ u32 clean_idx = rx_ring->lbq_clean_idx;
+ u32 start_idx = clean_idx;
+ struct bq_desc *lbq_desc;
+ u64 map;
+ int i;
+
+ while (rx_ring->lbq_free_cnt > 32) {
+ for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "lbq: try cleaning clean_idx = %d.\n",
+ clean_idx);
+ lbq_desc = &rx_ring->lbq[clean_idx];
+ if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
+ rx_ring->lbq_clean_idx = clean_idx;
+ netif_err(qdev, ifup, qdev->ndev,
+ "Could not get a page chunk, i=%d, clean_idx =%d .\n",
+ i, clean_idx);
+ return;
+ }
+
+ map = lbq_desc->p.pg_chunk.map +
+ lbq_desc->p.pg_chunk.offset;
+ dma_unmap_addr_set(lbq_desc, mapaddr, map);
+ dma_unmap_len_set(lbq_desc, maplen,
+ rx_ring->lbq_buf_size);
+ *lbq_desc->addr = cpu_to_le64(map);
+
+ pci_dma_sync_single_for_device(qdev->pdev, map,
+ rx_ring->lbq_buf_size,
+ PCI_DMA_FROMDEVICE);
+ clean_idx++;
+ if (clean_idx == rx_ring->lbq_len)
+ clean_idx = 0;
+ }
+
+ rx_ring->lbq_clean_idx = clean_idx;
+ rx_ring->lbq_prod_idx += 16;
+ if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
+ rx_ring->lbq_prod_idx = 0;
+ rx_ring->lbq_free_cnt -= 16;
+ }
+
+ if (start_idx != clean_idx) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "lbq: updating prod idx = %d.\n",
+ rx_ring->lbq_prod_idx);
+ ql_write_db_reg(rx_ring->lbq_prod_idx,
+ rx_ring->lbq_prod_idx_db_reg);
+ }
+}
+
+/* Process (refill) a small buffer queue. */
+static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ u32 clean_idx = rx_ring->sbq_clean_idx;
+ u32 start_idx = clean_idx;
+ struct bq_desc *sbq_desc;
+ u64 map;
+ int i;
+
+ while (rx_ring->sbq_free_cnt > 16) {
+ for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
+ sbq_desc = &rx_ring->sbq[clean_idx];
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "sbq: try cleaning clean_idx = %d.\n",
+ clean_idx);
+ if (sbq_desc->p.skb == NULL) {
+ netif_printk(qdev, rx_status, KERN_DEBUG,
+ qdev->ndev,
+ "sbq: getting new skb for index %d.\n",
+ sbq_desc->index);
+ sbq_desc->p.skb =
+ netdev_alloc_skb(qdev->ndev,
+ SMALL_BUFFER_SIZE);
+ if (sbq_desc->p.skb == NULL) {
+ netif_err(qdev, probe, qdev->ndev,
+ "Couldn't get an skb.\n");
+ rx_ring->sbq_clean_idx = clean_idx;
+ return;
+ }
+ skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
+ map = pci_map_single(qdev->pdev,
+ sbq_desc->p.skb->data,
+ rx_ring->sbq_buf_size,
+ PCI_DMA_FROMDEVICE);
+ if (pci_dma_mapping_error(qdev->pdev, map)) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "PCI mapping failed.\n");
+ rx_ring->sbq_clean_idx = clean_idx;
+ dev_kfree_skb_any(sbq_desc->p.skb);
+ sbq_desc->p.skb = NULL;
+ return;
+ }
+ dma_unmap_addr_set(sbq_desc, mapaddr, map);
+ dma_unmap_len_set(sbq_desc, maplen,
+ rx_ring->sbq_buf_size);
+ *sbq_desc->addr = cpu_to_le64(map);
+ }
+
+ clean_idx++;
+ if (clean_idx == rx_ring->sbq_len)
+ clean_idx = 0;
+ }
+ rx_ring->sbq_clean_idx = clean_idx;
+ rx_ring->sbq_prod_idx += 16;
+ if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
+ rx_ring->sbq_prod_idx = 0;
+ rx_ring->sbq_free_cnt -= 16;
+ }
+
+ if (start_idx != clean_idx) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "sbq: updating prod idx = %d.\n",
+ rx_ring->sbq_prod_idx);
+ ql_write_db_reg(rx_ring->sbq_prod_idx,
+ rx_ring->sbq_prod_idx_db_reg);
+ }
+}
+
+static void ql_update_buffer_queues(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ ql_update_sbq(qdev, rx_ring);
+ ql_update_lbq(qdev, rx_ring);
+}
+
+/* Unmaps tx buffers. Can be called from send() if a pci mapping
+ * fails at some stage, or from the interrupt when a tx completes.
+ */
+static void ql_unmap_send(struct ql_adapter *qdev,
+ struct tx_ring_desc *tx_ring_desc, int mapped)
+{
+ int i;
+ for (i = 0; i < mapped; i++) {
+ if (i == 0 || (i == 7 && mapped > 7)) {
+ /*
+ * Unmap the skb->data area, or the
+ * external sglist (AKA the Outbound
+ * Address List (OAL)).
+ * If its the zeroeth element, then it's
+ * the skb->data area. If it's the 7th
+ * element and there is more than 6 frags,
+ * then its an OAL.
+ */
+ if (i == 7) {
+ netif_printk(qdev, tx_done, KERN_DEBUG,
+ qdev->ndev,
+ "unmapping OAL area.\n");
+ }
+ pci_unmap_single(qdev->pdev,
+ dma_unmap_addr(&tx_ring_desc->map[i],
+ mapaddr),
+ dma_unmap_len(&tx_ring_desc->map[i],
+ maplen),
+ PCI_DMA_TODEVICE);
+ } else {
+ netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
+ "unmapping frag %d.\n", i);
+ pci_unmap_page(qdev->pdev,
+ dma_unmap_addr(&tx_ring_desc->map[i],
+ mapaddr),
+ dma_unmap_len(&tx_ring_desc->map[i],
+ maplen), PCI_DMA_TODEVICE);
+ }
+ }
+
+}
+
+/* Map the buffers for this transmit. This will return
+ * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
+ */
+static int ql_map_send(struct ql_adapter *qdev,
+ struct ob_mac_iocb_req *mac_iocb_ptr,
+ struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
+{
+ int len = skb_headlen(skb);
+ dma_addr_t map;
+ int frag_idx, err, map_idx = 0;
+ struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
+ int frag_cnt = skb_shinfo(skb)->nr_frags;
+
+ if (frag_cnt) {
+ netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
+ "frag_cnt = %d.\n", frag_cnt);
+ }
+ /*
+ * Map the skb buffer first.
+ */
+ map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
+
+ err = pci_dma_mapping_error(qdev->pdev, map);
+ if (err) {
+ netif_err(qdev, tx_queued, qdev->ndev,
+ "PCI mapping failed with error: %d\n", err);
+
+ return NETDEV_TX_BUSY;
+ }
+
+ tbd->len = cpu_to_le32(len);
+ tbd->addr = cpu_to_le64(map);
+ dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+ dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
+ map_idx++;
+
+ /*
+ * This loop fills the remainder of the 8 address descriptors
+ * in the IOCB. If there are more than 7 fragments, then the
+ * eighth address desc will point to an external list (OAL).
+ * When this happens, the remainder of the frags will be stored
+ * in this list.
+ */
+ for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
+ skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
+ tbd++;
+ if (frag_idx == 6 && frag_cnt > 7) {
+ /* Let's tack on an sglist.
+ * Our control block will now
+ * look like this:
+ * iocb->seg[0] = skb->data
+ * iocb->seg[1] = frag[0]
+ * iocb->seg[2] = frag[1]
+ * iocb->seg[3] = frag[2]
+ * iocb->seg[4] = frag[3]
+ * iocb->seg[5] = frag[4]
+ * iocb->seg[6] = frag[5]
+ * iocb->seg[7] = ptr to OAL (external sglist)
+ * oal->seg[0] = frag[6]
+ * oal->seg[1] = frag[7]
+ * oal->seg[2] = frag[8]
+ * oal->seg[3] = frag[9]
+ * oal->seg[4] = frag[10]
+ * etc...
+ */
+ /* Tack on the OAL in the eighth segment of IOCB. */
+ map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
+ sizeof(struct oal),
+ PCI_DMA_TODEVICE);
+ err = pci_dma_mapping_error(qdev->pdev, map);
+ if (err) {
+ netif_err(qdev, tx_queued, qdev->ndev,
+ "PCI mapping outbound address list with error: %d\n",
+ err);
+ goto map_error;
+ }
+
+ tbd->addr = cpu_to_le64(map);
+ /*
+ * The length is the number of fragments
+ * that remain to be mapped times the length
+ * of our sglist (OAL).
+ */
+ tbd->len =
+ cpu_to_le32((sizeof(struct tx_buf_desc) *
+ (frag_cnt - frag_idx)) | TX_DESC_C);
+ dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
+ map);
+ dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+ sizeof(struct oal));
+ tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
+ map_idx++;
+ }
+
+ map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
+ DMA_TO_DEVICE);
+
+ err = dma_mapping_error(&qdev->pdev->dev, map);
+ if (err) {
+ netif_err(qdev, tx_queued, qdev->ndev,
+ "PCI mapping frags failed with error: %d.\n",
+ err);
+ goto map_error;
+ }
+
+ tbd->addr = cpu_to_le64(map);
+ tbd->len = cpu_to_le32(skb_frag_size(frag));
+ dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
+ dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
+ skb_frag_size(frag));
+
+ }
+ /* Save the number of segments we've mapped. */
+ tx_ring_desc->map_cnt = map_idx;
+ /* Terminate the last segment. */
+ tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
+ return NETDEV_TX_OK;
+
+map_error:
+ /*
+ * If the first frag mapping failed, then i will be zero.
+ * This causes the unmap of the skb->data area. Otherwise
+ * we pass in the number of frags that mapped successfully
+ * so they can be umapped.
+ */
+ ql_unmap_send(qdev, tx_ring_desc, map_idx);
+ return NETDEV_TX_BUSY;
+}
+
+/* Process an inbound completion from an rx ring. */
+static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp,
+ u32 length,
+ u16 vlan_id)
+{
+ struct sk_buff *skb;
+ struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
+ struct napi_struct *napi = &rx_ring->napi;
+
+ napi->dev = qdev->ndev;
+
+ skb = napi_get_frags(napi);
+ if (!skb) {
+ netif_err(qdev, drv, qdev->ndev,
+ "Couldn't get an skb, exiting.\n");
+ rx_ring->rx_dropped++;
+ put_page(lbq_desc->p.pg_chunk.page);
+ return;
+ }
+ prefetch(lbq_desc->p.pg_chunk.va);
+ __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
+ lbq_desc->p.pg_chunk.page,
+ lbq_desc->p.pg_chunk.offset,
+ length);
+
+ skb->len += length;
+ skb->data_len += length;
+ skb->truesize += length;
+ skb_shinfo(skb)->nr_frags++;
+
+ rx_ring->rx_packets++;
+ rx_ring->rx_bytes += length;
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ skb_record_rx_queue(skb, rx_ring->cq_id);
+ if (vlan_id != 0xffff)
+ __vlan_hwaccel_put_tag(skb, vlan_id);
+ napi_gro_frags(napi);
+}
+
+/* Process an inbound completion from an rx ring. */
+static void ql_process_mac_rx_page(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp,
+ u32 length,
+ u16 vlan_id)
+{
+ struct net_device *ndev = qdev->ndev;
+ struct sk_buff *skb = NULL;
+ void *addr;
+ struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
+ struct napi_struct *napi = &rx_ring->napi;
+
+ skb = netdev_alloc_skb(ndev, length);
+ if (!skb) {
+ netif_err(qdev, drv, qdev->ndev,
+ "Couldn't get an skb, need to unwind!.\n");
+ rx_ring->rx_dropped++;
+ put_page(lbq_desc->p.pg_chunk.page);
+ return;
+ }
+
+ addr = lbq_desc->p.pg_chunk.va;
+ prefetch(addr);
+
+
+ /* Frame error, so drop the packet. */
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
+ netif_info(qdev, drv, qdev->ndev,
+ "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
+ rx_ring->rx_errors++;
+ goto err_out;
+ }
+
+ /* The max framesize filter on this chip is set higher than
+ * MTU since FCoE uses 2k frames.
+ */
+ if (skb->len > ndev->mtu + ETH_HLEN) {
+ netif_err(qdev, drv, qdev->ndev,
+ "Segment too small, dropping.\n");
+ rx_ring->rx_dropped++;
+ goto err_out;
+ }
+ memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
+ length);
+ skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
+ lbq_desc->p.pg_chunk.offset+ETH_HLEN,
+ length-ETH_HLEN);
+ skb->len += length-ETH_HLEN;
+ skb->data_len += length-ETH_HLEN;
+ skb->truesize += length-ETH_HLEN;
+
+ rx_ring->rx_packets++;
+ rx_ring->rx_bytes += skb->len;
+ skb->protocol = eth_type_trans(skb, ndev);
+ skb_checksum_none_assert(skb);
+
+ if ((ndev->features & NETIF_F_RXCSUM) &&
+ !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
+ /* TCP frame. */
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "TCP checksum done!\n");
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
+ (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
+ /* Unfragmented ipv4 UDP frame. */
+ struct iphdr *iph =
+ (struct iphdr *) ((u8 *)addr + ETH_HLEN);
+ if (!(iph->frag_off &
+ cpu_to_be16(IP_MF|IP_OFFSET))) {
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ netif_printk(qdev, rx_status, KERN_DEBUG,
+ qdev->ndev,
+ "UDP checksum done!\n");
+ }
+ }
+ }
+
+ skb_record_rx_queue(skb, rx_ring->cq_id);
+ if (vlan_id != 0xffff)
+ __vlan_hwaccel_put_tag(skb, vlan_id);
+ if (skb->ip_summed == CHECKSUM_UNNECESSARY)
+ napi_gro_receive(napi, skb);
+ else
+ netif_receive_skb(skb);
+ return;
+err_out:
+ dev_kfree_skb_any(skb);
+ put_page(lbq_desc->p.pg_chunk.page);
+}
+
+/* Process an inbound completion from an rx ring. */
+static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp,
+ u32 length,
+ u16 vlan_id)
+{
+ struct net_device *ndev = qdev->ndev;
+ struct sk_buff *skb = NULL;
+ struct sk_buff *new_skb = NULL;
+ struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
+
+ skb = sbq_desc->p.skb;
+ /* Allocate new_skb and copy */
+ new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
+ if (new_skb == NULL) {
+ netif_err(qdev, probe, qdev->ndev,
+ "No skb available, drop the packet.\n");
+ rx_ring->rx_dropped++;
+ return;
+ }
+ skb_reserve(new_skb, NET_IP_ALIGN);
+ memcpy(skb_put(new_skb, length), skb->data, length);
+ skb = new_skb;
+
+ /* Frame error, so drop the packet. */
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
+ netif_info(qdev, drv, qdev->ndev,
+ "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
+ dev_kfree_skb_any(skb);
+ rx_ring->rx_errors++;
+ return;
+ }
+
+ /* loopback self test for ethtool */
+ if (test_bit(QL_SELFTEST, &qdev->flags)) {
+ ql_check_lb_frame(qdev, skb);
+ dev_kfree_skb_any(skb);
+ return;
+ }
+
+ /* The max framesize filter on this chip is set higher than
+ * MTU since FCoE uses 2k frames.
+ */
+ if (skb->len > ndev->mtu + ETH_HLEN) {
+ dev_kfree_skb_any(skb);
+ rx_ring->rx_dropped++;
+ return;
+ }
+
+ prefetch(skb->data);
+ skb->dev = ndev;
+ if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "%s Multicast.\n",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_REG ? "Registered" :
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
+ }
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Promiscuous Packet.\n");
+
+ rx_ring->rx_packets++;
+ rx_ring->rx_bytes += skb->len;
+ skb->protocol = eth_type_trans(skb, ndev);
+ skb_checksum_none_assert(skb);
+
+ /* If rx checksum is on, and there are no
+ * csum or frame errors.
+ */
+ if ((ndev->features & NETIF_F_RXCSUM) &&
+ !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
+ /* TCP frame. */
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "TCP checksum done!\n");
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
+ (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
+ /* Unfragmented ipv4 UDP frame. */
+ struct iphdr *iph = (struct iphdr *) skb->data;
+ if (!(iph->frag_off &
+ ntohs(IP_MF|IP_OFFSET))) {
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ netif_printk(qdev, rx_status, KERN_DEBUG,
+ qdev->ndev,
+ "UDP checksum done!\n");
+ }
+ }
+ }
+
+ skb_record_rx_queue(skb, rx_ring->cq_id);
+ if (vlan_id != 0xffff)
+ __vlan_hwaccel_put_tag(skb, vlan_id);
+ if (skb->ip_summed == CHECKSUM_UNNECESSARY)
+ napi_gro_receive(&rx_ring->napi, skb);
+ else
+ netif_receive_skb(skb);
+}
+
+static void ql_realign_skb(struct sk_buff *skb, int len)
+{
+ void *temp_addr = skb->data;
+
+ /* Undo the skb_reserve(skb,32) we did before
+ * giving to hardware, and realign data on
+ * a 2-byte boundary.
+ */
+ skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
+ skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
+ skb_copy_to_linear_data(skb, temp_addr,
+ (unsigned int)len);
+}
+
+/*
+ * This function builds an skb for the given inbound
+ * completion. It will be rewritten for readability in the near
+ * future, but for not it works well.
+ */
+static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+ struct bq_desc *lbq_desc;
+ struct bq_desc *sbq_desc;
+ struct sk_buff *skb = NULL;
+ u32 length = le32_to_cpu(ib_mac_rsp->data_len);
+ u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
+
+ /*
+ * Handle the header buffer if present.
+ */
+ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
+ ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Header of %d bytes in small buffer.\n", hdr_len);
+ /*
+ * Headers fit nicely into a small buffer.
+ */
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ pci_unmap_single(qdev->pdev,
+ dma_unmap_addr(sbq_desc, mapaddr),
+ dma_unmap_len(sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ skb = sbq_desc->p.skb;
+ ql_realign_skb(skb, hdr_len);
+ skb_put(skb, hdr_len);
+ sbq_desc->p.skb = NULL;
+ }
+
+ /*
+ * Handle the data buffer(s).
+ */
+ if (unlikely(!length)) { /* Is there data too? */
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "No Data buffer in this packet.\n");
+ return skb;
+ }
+
+ if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
+ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Headers in small, data of %d bytes in small, combine them.\n",
+ length);
+ /*
+ * Data is less than small buffer size so it's
+ * stuffed in a small buffer.
+ * For this case we append the data
+ * from the "data" small buffer to the "header" small
+ * buffer.
+ */
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ pci_dma_sync_single_for_cpu(qdev->pdev,
+ dma_unmap_addr
+ (sbq_desc, mapaddr),
+ dma_unmap_len
+ (sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ memcpy(skb_put(skb, length),
+ sbq_desc->p.skb->data, length);
+ pci_dma_sync_single_for_device(qdev->pdev,
+ dma_unmap_addr
+ (sbq_desc,
+ mapaddr),
+ dma_unmap_len
+ (sbq_desc,
+ maplen),
+ PCI_DMA_FROMDEVICE);
+ } else {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "%d bytes in a single small buffer.\n",
+ length);
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ skb = sbq_desc->p.skb;
+ ql_realign_skb(skb, length);
+ skb_put(skb, length);
+ pci_unmap_single(qdev->pdev,
+ dma_unmap_addr(sbq_desc,
+ mapaddr),
+ dma_unmap_len(sbq_desc,
+ maplen),
+ PCI_DMA_FROMDEVICE);
+ sbq_desc->p.skb = NULL;
+ }
+ } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
+ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Header in small, %d bytes in large. Chain large to small!\n",
+ length);
+ /*
+ * The data is in a single large buffer. We
+ * chain it to the header buffer's skb and let
+ * it rip.
+ */
+ lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Chaining page at offset = %d, for %d bytes to skb.\n",
+ lbq_desc->p.pg_chunk.offset, length);
+ skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
+ lbq_desc->p.pg_chunk.offset,
+ length);
+ skb->len += length;
+ skb->data_len += length;
+ skb->truesize += length;
+ } else {
+ /*
+ * The headers and data are in a single large buffer. We
+ * copy it to a new skb and let it go. This can happen with
+ * jumbo mtu on a non-TCP/UDP frame.
+ */
+ lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
+ skb = netdev_alloc_skb(qdev->ndev, length);
+ if (skb == NULL) {
+ netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
+ "No skb available, drop the packet.\n");
+ return NULL;
+ }
+ pci_unmap_page(qdev->pdev,
+ dma_unmap_addr(lbq_desc,
+ mapaddr),
+ dma_unmap_len(lbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ skb_reserve(skb, NET_IP_ALIGN);
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
+ length);
+ skb_fill_page_desc(skb, 0,
+ lbq_desc->p.pg_chunk.page,
+ lbq_desc->p.pg_chunk.offset,
+ length);
+ skb->len += length;
+ skb->data_len += length;
+ skb->truesize += length;
+ length -= length;
+ __pskb_pull_tail(skb,
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
+ VLAN_ETH_HLEN : ETH_HLEN);
+ }
+ } else {
+ /*
+ * The data is in a chain of large buffers
+ * pointed to by a small buffer. We loop
+ * thru and chain them to the our small header
+ * buffer's skb.
+ * frags: There are 18 max frags and our small
+ * buffer will hold 32 of them. The thing is,
+ * we'll use 3 max for our 9000 byte jumbo
+ * frames. If the MTU goes up we could
+ * eventually be in trouble.
+ */
+ int size, i = 0;
+ sbq_desc = ql_get_curr_sbuf(rx_ring);
+ pci_unmap_single(qdev->pdev,
+ dma_unmap_addr(sbq_desc, mapaddr),
+ dma_unmap_len(sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
+ /*
+ * This is an non TCP/UDP IP frame, so
+ * the headers aren't split into a small
+ * buffer. We have to use the small buffer
+ * that contains our sg list as our skb to
+ * send upstairs. Copy the sg list here to
+ * a local buffer and use it to find the
+ * pages to chain.
+ */
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "%d bytes of headers & data in chain of large.\n",
+ length);
+ skb = sbq_desc->p.skb;
+ sbq_desc->p.skb = NULL;
+ skb_reserve(skb, NET_IP_ALIGN);
+ }
+ while (length > 0) {
+ lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
+ size = (length < rx_ring->lbq_buf_size) ? length :
+ rx_ring->lbq_buf_size;
+
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Adding page %d to skb for %d bytes.\n",
+ i, size);
+ skb_fill_page_desc(skb, i,
+ lbq_desc->p.pg_chunk.page,
+ lbq_desc->p.pg_chunk.offset,
+ size);
+ skb->len += size;
+ skb->data_len += size;
+ skb->truesize += size;
+ length -= size;
+ i++;
+ }
+ __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
+ VLAN_ETH_HLEN : ETH_HLEN);
+ }
+ return skb;
+}
+
+/* Process an inbound completion from an rx ring. */
+static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp,
+ u16 vlan_id)
+{
+ struct net_device *ndev = qdev->ndev;
+ struct sk_buff *skb = NULL;
+
+ QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
+
+ skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
+ if (unlikely(!skb)) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "No skb available, drop packet.\n");
+ rx_ring->rx_dropped++;
+ return;
+ }
+
+ /* Frame error, so drop the packet. */
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
+ netif_info(qdev, drv, qdev->ndev,
+ "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
+ dev_kfree_skb_any(skb);
+ rx_ring->rx_errors++;
+ return;
+ }
+
+ /* The max framesize filter on this chip is set higher than
+ * MTU since FCoE uses 2k frames.
+ */
+ if (skb->len > ndev->mtu + ETH_HLEN) {
+ dev_kfree_skb_any(skb);
+ rx_ring->rx_dropped++;
+ return;
+ }
+
+ /* loopback self test for ethtool */
+ if (test_bit(QL_SELFTEST, &qdev->flags)) {
+ ql_check_lb_frame(qdev, skb);
+ dev_kfree_skb_any(skb);
+ return;
+ }
+
+ prefetch(skb->data);
+ skb->dev = ndev;
+ if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_REG ? "Registered" :
+ (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
+ IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
+ rx_ring->rx_multicast++;
+ }
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Promiscuous Packet.\n");
+ }
+
+ skb->protocol = eth_type_trans(skb, ndev);
+ skb_checksum_none_assert(skb);
+
+ /* If rx checksum is on, and there are no
+ * csum or frame errors.
+ */
+ if ((ndev->features & NETIF_F_RXCSUM) &&
+ !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
+ /* TCP frame. */
+ if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "TCP checksum done!\n");
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
+ (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
+ /* Unfragmented ipv4 UDP frame. */
+ struct iphdr *iph = (struct iphdr *) skb->data;
+ if (!(iph->frag_off &
+ ntohs(IP_MF|IP_OFFSET))) {
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "TCP checksum done!\n");
+ }
+ }
+ }
+
+ rx_ring->rx_packets++;
+ rx_ring->rx_bytes += skb->len;
+ skb_record_rx_queue(skb, rx_ring->cq_id);
+ if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
+ __vlan_hwaccel_put_tag(skb, vlan_id);
+ if (skb->ip_summed == CHECKSUM_UNNECESSARY)
+ napi_gro_receive(&rx_ring->napi, skb);
+ else
+ netif_receive_skb(skb);
+}
+
+/* Process an inbound completion from an rx ring. */
+static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring,
+ struct ib_mac_iocb_rsp *ib_mac_rsp)
+{
+ u32 length = le32_to_cpu(ib_mac_rsp->data_len);
+ u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
+ ((le16_to_cpu(ib_mac_rsp->vlan_id) &
+ IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
+
+ QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
+
+ if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
+ /* The data and headers are split into
+ * separate buffers.
+ */
+ ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
+ vlan_id);
+ } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
+ /* The data fit in a single small buffer.
+ * Allocate a new skb, copy the data and
+ * return the buffer to the free pool.
+ */
+ ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
+ length, vlan_id);
+ } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
+ !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
+ (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
+ /* TCP packet in a page chunk that's been checksummed.
+ * Tack it on to our GRO skb and let it go.
+ */
+ ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
+ length, vlan_id);
+ } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
+ /* Non-TCP packet in a page chunk. Allocate an
+ * skb, tack it on frags, and send it up.
+ */
+ ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
+ length, vlan_id);
+ } else {
+ /* Non-TCP/UDP large frames that span multiple buffers
+ * can be processed corrrectly by the split frame logic.
+ */
+ ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
+ vlan_id);
+ }
+
+ return (unsigned long)length;
+}
+
+/* Process an outbound completion from an rx ring. */
+static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
+ struct ob_mac_iocb_rsp *mac_rsp)
+{
+ struct tx_ring *tx_ring;
+ struct tx_ring_desc *tx_ring_desc;
+
+ QL_DUMP_OB_MAC_RSP(mac_rsp);
+ tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
+ tx_ring_desc = &tx_ring->q[mac_rsp->tid];
+ ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
+ tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
+ tx_ring->tx_packets++;
+ dev_kfree_skb(tx_ring_desc->skb);
+ tx_ring_desc->skb = NULL;
+
+ if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
+ OB_MAC_IOCB_RSP_S |
+ OB_MAC_IOCB_RSP_L |
+ OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
+ netif_warn(qdev, tx_done, qdev->ndev,
+ "Total descriptor length did not match transfer length.\n");
+ }
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
+ netif_warn(qdev, tx_done, qdev->ndev,
+ "Frame too short to be valid, not sent.\n");
+ }
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
+ netif_warn(qdev, tx_done, qdev->ndev,
+ "Frame too long, but sent anyway.\n");
+ }
+ if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
+ netif_warn(qdev, tx_done, qdev->ndev,
+ "PCI backplane error. Frame not sent.\n");
+ }
+ }
+ atomic_inc(&tx_ring->tx_count);
+}
+
+/* Fire up a handler to reset the MPI processor. */
+void ql_queue_fw_error(struct ql_adapter *qdev)
+{
+ ql_link_off(qdev);
+ queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
+}
+
+void ql_queue_asic_error(struct ql_adapter *qdev)
+{
+ ql_link_off(qdev);
+ ql_disable_interrupts(qdev);
+ /* Clear adapter up bit to signal the recovery
+ * process that it shouldn't kill the reset worker
+ * thread
+ */
+ clear_bit(QL_ADAPTER_UP, &qdev->flags);
+ /* Set asic recovery bit to indicate reset process that we are
+ * in fatal error recovery process rather than normal close
+ */
+ set_bit(QL_ASIC_RECOVERY, &qdev->flags);
+ queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
+}
+
+static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
+ struct ib_ae_iocb_rsp *ib_ae_rsp)
+{
+ switch (ib_ae_rsp->event) {
+ case MGMT_ERR_EVENT:
+ netif_err(qdev, rx_err, qdev->ndev,
+ "Management Processor Fatal Error.\n");
+ ql_queue_fw_error(qdev);
+ return;
+
+ case CAM_LOOKUP_ERR_EVENT:
+ netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
+ netdev_err(qdev->ndev, "This event shouldn't occur.\n");
+ ql_queue_asic_error(qdev);
+ return;
+
+ case SOFT_ECC_ERROR_EVENT:
+ netdev_err(qdev->ndev, "Soft ECC error detected.\n");
+ ql_queue_asic_error(qdev);
+ break;
+
+ case PCI_ERR_ANON_BUF_RD:
+ netdev_err(qdev->ndev, "PCI error occurred when reading "
+ "anonymous buffers from rx_ring %d.\n",
+ ib_ae_rsp->q_id);
+ ql_queue_asic_error(qdev);
+ break;
+
+ default:
+ netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
+ ib_ae_rsp->event);
+ ql_queue_asic_error(qdev);
+ break;
+ }
+}
+
+static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
+{
+ struct ql_adapter *qdev = rx_ring->qdev;
+ u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ struct ob_mac_iocb_rsp *net_rsp = NULL;
+ int count = 0;
+
+ struct tx_ring *tx_ring;
+ /* While there are entries in the completion queue. */
+ while (prod != rx_ring->cnsmr_idx) {
+
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "cq_id = %d, prod = %d, cnsmr = %d.\n.",
+ rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
+
+ net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
+ rmb();
+ switch (net_rsp->opcode) {
+
+ case OPCODE_OB_MAC_TSO_IOCB:
+ case OPCODE_OB_MAC_IOCB:
+ ql_process_mac_tx_intr(qdev, net_rsp);
+ break;
+ default:
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Hit default case, not handled! dropping the packet, opcode = %x.\n",
+ net_rsp->opcode);
+ }
+ count++;
+ ql_update_cq(rx_ring);
+ prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ }
+ if (!net_rsp)
+ return 0;
+ ql_write_cq_idx(rx_ring);
+ tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
+ if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
+ if (atomic_read(&tx_ring->queue_stopped) &&
+ (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
+ /*
+ * The queue got stopped because the tx_ring was full.
+ * Wake it up, because it's now at least 25% empty.
+ */
+ netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
+ }
+
+ return count;
+}
+
+static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
+{
+ struct ql_adapter *qdev = rx_ring->qdev;
+ u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ struct ql_net_rsp_iocb *net_rsp;
+ int count = 0;
+
+ /* While there are entries in the completion queue. */
+ while (prod != rx_ring->cnsmr_idx) {
+
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "cq_id = %d, prod = %d, cnsmr = %d.\n.",
+ rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
+
+ net_rsp = rx_ring->curr_entry;
+ rmb();
+ switch (net_rsp->opcode) {
+ case OPCODE_IB_MAC_IOCB:
+ ql_process_mac_rx_intr(qdev, rx_ring,
+ (struct ib_mac_iocb_rsp *)
+ net_rsp);
+ break;
+
+ case OPCODE_IB_AE_IOCB:
+ ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
+ net_rsp);
+ break;
+ default:
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Hit default case, not handled! dropping the packet, opcode = %x.\n",
+ net_rsp->opcode);
+ break;
+ }
+ count++;
+ ql_update_cq(rx_ring);
+ prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
+ if (count == budget)
+ break;
+ }
+ ql_update_buffer_queues(qdev, rx_ring);
+ ql_write_cq_idx(rx_ring);
+ return count;
+}
+
+static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
+{
+ struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
+ struct ql_adapter *qdev = rx_ring->qdev;
+ struct rx_ring *trx_ring;
+ int i, work_done = 0;
+ struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
+
+ netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
+ "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
+
+ /* Service the TX rings first. They start
+ * right after the RSS rings. */
+ for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
+ trx_ring = &qdev->rx_ring[i];
+ /* If this TX completion ring belongs to this vector and
+ * it's not empty then service it.
+ */
+ if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
+ (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
+ trx_ring->cnsmr_idx)) {
+ netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
+ "%s: Servicing TX completion ring %d.\n",
+ __func__, trx_ring->cq_id);
+ ql_clean_outbound_rx_ring(trx_ring);
+ }
+ }
+
+ /*
+ * Now service the RSS ring if it's active.
+ */
+ if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
+ rx_ring->cnsmr_idx) {
+ netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
+ "%s: Servicing RX completion ring %d.\n",
+ __func__, rx_ring->cq_id);
+ work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
+ }
+
+ if (work_done < budget) {
+ napi_complete(napi);
+ ql_enable_completion_interrupt(qdev, rx_ring->irq);
+ }
+ return work_done;
+}
+
+static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ if (features & NETIF_F_HW_VLAN_RX) {
+ ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
+ NIC_RCV_CFG_VLAN_MATCH_AND_NON);
+ } else {
+ ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
+ }
+}
+
+static netdev_features_t qlge_fix_features(struct net_device *ndev,
+ netdev_features_t features)
+{
+ /*
+ * Since there is no support for separate rx/tx vlan accel
+ * enable/disable make sure tx flag is always in same state as rx.
+ */
+ if (features & NETIF_F_HW_VLAN_RX)
+ features |= NETIF_F_HW_VLAN_TX;
+ else
+ features &= ~NETIF_F_HW_VLAN_TX;
+
+ return features;
+}
+
+static int qlge_set_features(struct net_device *ndev,
+ netdev_features_t features)
+{
+ netdev_features_t changed = ndev->features ^ features;
+
+ if (changed & NETIF_F_HW_VLAN_RX)
+ qlge_vlan_mode(ndev, features);
+
+ return 0;
+}
+
+static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
+{
+ u32 enable_bit = MAC_ADDR_E;
+ int err;
+
+ err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
+ MAC_ADDR_TYPE_VLAN, vid);
+ if (err)
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init vlan address.\n");
+ return err;
+}
+
+static int qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int status;
+ int err;
+
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ return status;
+
+ err = __qlge_vlan_rx_add_vid(qdev, vid);
+ set_bit(vid, qdev->active_vlans);
+
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+
+ return err;
+}
+
+static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
+{
+ u32 enable_bit = 0;
+ int err;
+
+ err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
+ MAC_ADDR_TYPE_VLAN, vid);
+ if (err)
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to clear vlan address.\n");
+ return err;
+}
+
+static int qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int status;
+ int err;
+
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ return status;
+
+ err = __qlge_vlan_rx_kill_vid(qdev, vid);
+ clear_bit(vid, qdev->active_vlans);
+
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+
+ return err;
+}
+
+static void qlge_restore_vlan(struct ql_adapter *qdev)
+{
+ int status;
+ u16 vid;
+
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ return;
+
+ for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
+ __qlge_vlan_rx_add_vid(qdev, vid);
+
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+}
+
+/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
+static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
+{
+ struct rx_ring *rx_ring = dev_id;
+ napi_schedule(&rx_ring->napi);
+ return IRQ_HANDLED;
+}
+
+/* This handles a fatal error, MPI activity, and the default
+ * rx_ring in an MSI-X multiple vector environment.
+ * In MSI/Legacy environment it also process the rest of
+ * the rx_rings.
+ */
+static irqreturn_t qlge_isr(int irq, void *dev_id)
+{
+ struct rx_ring *rx_ring = dev_id;
+ struct ql_adapter *qdev = rx_ring->qdev;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+ u32 var;
+ int work_done = 0;
+
+ spin_lock(&qdev->hw_lock);
+ if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
+ netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
+ "Shared Interrupt, Not ours!\n");
+ spin_unlock(&qdev->hw_lock);
+ return IRQ_NONE;
+ }
+ spin_unlock(&qdev->hw_lock);
+
+ var = ql_disable_completion_interrupt(qdev, intr_context->intr);
+
+ /*
+ * Check for fatal error.
+ */
+ if (var & STS_FE) {
+ ql_queue_asic_error(qdev);
+ netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
+ var = ql_read32(qdev, ERR_STS);
+ netdev_err(qdev->ndev, "Resetting chip. "
+ "Error Status Register = 0x%x\n", var);
+ return IRQ_HANDLED;
+ }
+
+ /*
+ * Check MPI processor activity.
+ */
+ if ((var & STS_PI) &&
+ (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
+ /*
+ * We've got an async event or mailbox completion.
+ * Handle it and clear the source of the interrupt.
+ */
+ netif_err(qdev, intr, qdev->ndev,
+ "Got MPI processor interrupt.\n");
+ ql_disable_completion_interrupt(qdev, intr_context->intr);
+ ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
+ queue_delayed_work_on(smp_processor_id(),
+ qdev->workqueue, &qdev->mpi_work, 0);
+ work_done++;
+ }
+
+ /*
+ * Get the bit-mask that shows the active queues for this
+ * pass. Compare it to the queues that this irq services
+ * and call napi if there's a match.
+ */
+ var = ql_read32(qdev, ISR1);
+ if (var & intr_context->irq_mask) {
+ netif_info(qdev, intr, qdev->ndev,
+ "Waking handler for rx_ring[0].\n");
+ ql_disable_completion_interrupt(qdev, intr_context->intr);
+ napi_schedule(&rx_ring->napi);
+ work_done++;
+ }
+ ql_enable_completion_interrupt(qdev, intr_context->intr);
+ return work_done ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+
+ if (skb_is_gso(skb)) {
+ int err;
+ if (skb_header_cloned(skb)) {
+ err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
+ if (err)
+ return err;
+ }
+
+ mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+ mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
+ mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+ mac_iocb_ptr->total_hdrs_len =
+ cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
+ mac_iocb_ptr->net_trans_offset =
+ cpu_to_le16(skb_network_offset(skb) |
+ skb_transport_offset(skb)
+ << OB_MAC_TRANSPORT_HDR_SHIFT);
+ mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
+ mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
+ if (likely(skb->protocol == htons(ETH_P_IP))) {
+ struct iphdr *iph = ip_hdr(skb);
+ iph->check = 0;
+ mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+ tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
+ iph->daddr, 0,
+ IPPROTO_TCP,
+ 0);
+ } else if (skb->protocol == htons(ETH_P_IPV6)) {
+ mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
+ tcp_hdr(skb)->check =
+ ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
+ &ipv6_hdr(skb)->daddr,
+ 0, IPPROTO_TCP, 0);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static void ql_hw_csum_setup(struct sk_buff *skb,
+ struct ob_mac_tso_iocb_req *mac_iocb_ptr)
+{
+ int len;
+ struct iphdr *iph = ip_hdr(skb);
+ __sum16 *check;
+ mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
+ mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
+ mac_iocb_ptr->net_trans_offset =
+ cpu_to_le16(skb_network_offset(skb) |
+ skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
+
+ mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
+ len = (ntohs(iph->tot_len) - (iph->ihl << 2));
+ if (likely(iph->protocol == IPPROTO_TCP)) {
+ check = &(tcp_hdr(skb)->check);
+ mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
+ mac_iocb_ptr->total_hdrs_len =
+ cpu_to_le16(skb_transport_offset(skb) +
+ (tcp_hdr(skb)->doff << 2));
+ } else {
+ check = &(udp_hdr(skb)->check);
+ mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
+ mac_iocb_ptr->total_hdrs_len =
+ cpu_to_le16(skb_transport_offset(skb) +
+ sizeof(struct udphdr));
+ }
+ *check = ~csum_tcpudp_magic(iph->saddr,
+ iph->daddr, len, iph->protocol, 0);
+}
+
+static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
+{
+ struct tx_ring_desc *tx_ring_desc;
+ struct ob_mac_iocb_req *mac_iocb_ptr;
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int tso;
+ struct tx_ring *tx_ring;
+ u32 tx_ring_idx = (u32) skb->queue_mapping;
+
+ tx_ring = &qdev->tx_ring[tx_ring_idx];
+
+ if (skb_padto(skb, ETH_ZLEN))
+ return NETDEV_TX_OK;
+
+ if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
+ netif_info(qdev, tx_queued, qdev->ndev,
+ "%s: shutting down tx queue %d du to lack of resources.\n",
+ __func__, tx_ring_idx);
+ netif_stop_subqueue(ndev, tx_ring->wq_id);
+ atomic_inc(&tx_ring->queue_stopped);
+ tx_ring->tx_errors++;
+ return NETDEV_TX_BUSY;
+ }
+ tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
+ mac_iocb_ptr = tx_ring_desc->queue_entry;
+ memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
+
+ mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
+ mac_iocb_ptr->tid = tx_ring_desc->index;
+ /* We use the upper 32-bits to store the tx queue for this IO.
+ * When we get the completion we can use it to establish the context.
+ */
+ mac_iocb_ptr->txq_idx = tx_ring_idx;
+ tx_ring_desc->skb = skb;
+
+ mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
+
+ if (vlan_tx_tag_present(skb)) {
+ netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
+ "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
+ mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
+ mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
+ }
+ tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+ if (tso < 0) {
+ dev_kfree_skb_any(skb);
+ return NETDEV_TX_OK;
+ } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
+ ql_hw_csum_setup(skb,
+ (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
+ }
+ if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
+ NETDEV_TX_OK) {
+ netif_err(qdev, tx_queued, qdev->ndev,
+ "Could not map the segments.\n");
+ tx_ring->tx_errors++;
+ return NETDEV_TX_BUSY;
+ }
+ QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
+ tx_ring->prod_idx++;
+ if (tx_ring->prod_idx == tx_ring->wq_len)
+ tx_ring->prod_idx = 0;
+ wmb();
+
+ ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
+ netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
+ "tx queued, slot %d, len %d\n",
+ tx_ring->prod_idx, skb->len);
+
+ atomic_dec(&tx_ring->tx_count);
+ return NETDEV_TX_OK;
+}
+
+
+static void ql_free_shadow_space(struct ql_adapter *qdev)
+{
+ if (qdev->rx_ring_shadow_reg_area) {
+ pci_free_consistent(qdev->pdev,
+ PAGE_SIZE,
+ qdev->rx_ring_shadow_reg_area,
+ qdev->rx_ring_shadow_reg_dma);
+ qdev->rx_ring_shadow_reg_area = NULL;
+ }
+ if (qdev->tx_ring_shadow_reg_area) {
+ pci_free_consistent(qdev->pdev,
+ PAGE_SIZE,
+ qdev->tx_ring_shadow_reg_area,
+ qdev->tx_ring_shadow_reg_dma);
+ qdev->tx_ring_shadow_reg_area = NULL;
+ }
+}
+
+static int ql_alloc_shadow_space(struct ql_adapter *qdev)
+{
+ qdev->rx_ring_shadow_reg_area =
+ pci_alloc_consistent(qdev->pdev,
+ PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
+ if (qdev->rx_ring_shadow_reg_area == NULL) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Allocation of RX shadow space failed.\n");
+ return -ENOMEM;
+ }
+ memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
+ qdev->tx_ring_shadow_reg_area =
+ pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
+ &qdev->tx_ring_shadow_reg_dma);
+ if (qdev->tx_ring_shadow_reg_area == NULL) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Allocation of TX shadow space failed.\n");
+ goto err_wqp_sh_area;
+ }
+ memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
+ return 0;
+
+err_wqp_sh_area:
+ pci_free_consistent(qdev->pdev,
+ PAGE_SIZE,
+ qdev->rx_ring_shadow_reg_area,
+ qdev->rx_ring_shadow_reg_dma);
+ return -ENOMEM;
+}
+
+static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+ struct tx_ring_desc *tx_ring_desc;
+ int i;
+ struct ob_mac_iocb_req *mac_iocb_ptr;
+
+ mac_iocb_ptr = tx_ring->wq_base;
+ tx_ring_desc = tx_ring->q;
+ for (i = 0; i < tx_ring->wq_len; i++) {
+ tx_ring_desc->index = i;
+ tx_ring_desc->skb = NULL;
+ tx_ring_desc->queue_entry = mac_iocb_ptr;
+ mac_iocb_ptr++;
+ tx_ring_desc++;
+ }
+ atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
+ atomic_set(&tx_ring->queue_stopped, 0);
+}
+
+static void ql_free_tx_resources(struct ql_adapter *qdev,
+ struct tx_ring *tx_ring)
+{
+ if (tx_ring->wq_base) {
+ pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+ tx_ring->wq_base, tx_ring->wq_base_dma);
+ tx_ring->wq_base = NULL;
+ }
+ kfree(tx_ring->q);
+ tx_ring->q = NULL;
+}
+
+static int ql_alloc_tx_resources(struct ql_adapter *qdev,
+ struct tx_ring *tx_ring)
+{
+ tx_ring->wq_base =
+ pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
+ &tx_ring->wq_base_dma);
+
+ if ((tx_ring->wq_base == NULL) ||
+ tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
+ netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
+ return -ENOMEM;
+ }
+ tx_ring->q =
+ kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
+ if (tx_ring->q == NULL)
+ goto err;
+
+ return 0;
+err:
+ pci_free_consistent(qdev->pdev, tx_ring->wq_size,
+ tx_ring->wq_base, tx_ring->wq_base_dma);
+ return -ENOMEM;
+}
+
+static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ struct bq_desc *lbq_desc;
+
+ uint32_t curr_idx, clean_idx;
+
+ curr_idx = rx_ring->lbq_curr_idx;
+ clean_idx = rx_ring->lbq_clean_idx;
+ while (curr_idx != clean_idx) {
+ lbq_desc = &rx_ring->lbq[curr_idx];
+
+ if (lbq_desc->p.pg_chunk.last_flag) {
+ pci_unmap_page(qdev->pdev,
+ lbq_desc->p.pg_chunk.map,
+ ql_lbq_block_size(qdev),
+ PCI_DMA_FROMDEVICE);
+ lbq_desc->p.pg_chunk.last_flag = 0;
+ }
+
+ put_page(lbq_desc->p.pg_chunk.page);
+ lbq_desc->p.pg_chunk.page = NULL;
+
+ if (++curr_idx == rx_ring->lbq_len)
+ curr_idx = 0;
+
+ }
+}
+
+static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ int i;
+ struct bq_desc *sbq_desc;
+
+ for (i = 0; i < rx_ring->sbq_len; i++) {
+ sbq_desc = &rx_ring->sbq[i];
+ if (sbq_desc == NULL) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "sbq_desc %d is NULL.\n", i);
+ return;
+ }
+ if (sbq_desc->p.skb) {
+ pci_unmap_single(qdev->pdev,
+ dma_unmap_addr(sbq_desc, mapaddr),
+ dma_unmap_len(sbq_desc, maplen),
+ PCI_DMA_FROMDEVICE);
+ dev_kfree_skb(sbq_desc->p.skb);
+ sbq_desc->p.skb = NULL;
+ }
+ }
+}
+
+/* Free all large and small rx buffers associated
+ * with the completion queues for this device.
+ */
+static void ql_free_rx_buffers(struct ql_adapter *qdev)
+{
+ int i;
+ struct rx_ring *rx_ring;
+
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ rx_ring = &qdev->rx_ring[i];
+ if (rx_ring->lbq)
+ ql_free_lbq_buffers(qdev, rx_ring);
+ if (rx_ring->sbq)
+ ql_free_sbq_buffers(qdev, rx_ring);
+ }
+}
+
+static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
+{
+ struct rx_ring *rx_ring;
+ int i;
+
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ rx_ring = &qdev->rx_ring[i];
+ if (rx_ring->type != TX_Q)
+ ql_update_buffer_queues(qdev, rx_ring);
+ }
+}
+
+static void ql_init_lbq_ring(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ int i;
+ struct bq_desc *lbq_desc;
+ __le64 *bq = rx_ring->lbq_base;
+
+ memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
+ for (i = 0; i < rx_ring->lbq_len; i++) {
+ lbq_desc = &rx_ring->lbq[i];
+ memset(lbq_desc, 0, sizeof(*lbq_desc));
+ lbq_desc->index = i;
+ lbq_desc->addr = bq;
+ bq++;
+ }
+}
+
+static void ql_init_sbq_ring(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ int i;
+ struct bq_desc *sbq_desc;
+ __le64 *bq = rx_ring->sbq_base;
+
+ memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
+ for (i = 0; i < rx_ring->sbq_len; i++) {
+ sbq_desc = &rx_ring->sbq[i];
+ memset(sbq_desc, 0, sizeof(*sbq_desc));
+ sbq_desc->index = i;
+ sbq_desc->addr = bq;
+ bq++;
+ }
+}
+
+static void ql_free_rx_resources(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+ /* Free the small buffer queue. */
+ if (rx_ring->sbq_base) {
+ pci_free_consistent(qdev->pdev,
+ rx_ring->sbq_size,
+ rx_ring->sbq_base, rx_ring->sbq_base_dma);
+ rx_ring->sbq_base = NULL;
+ }
+
+ /* Free the small buffer queue control blocks. */
+ kfree(rx_ring->sbq);
+ rx_ring->sbq = NULL;
+
+ /* Free the large buffer queue. */
+ if (rx_ring->lbq_base) {
+ pci_free_consistent(qdev->pdev,
+ rx_ring->lbq_size,
+ rx_ring->lbq_base, rx_ring->lbq_base_dma);
+ rx_ring->lbq_base = NULL;
+ }
+
+ /* Free the large buffer queue control blocks. */
+ kfree(rx_ring->lbq);
+ rx_ring->lbq = NULL;
+
+ /* Free the rx queue. */
+ if (rx_ring->cq_base) {
+ pci_free_consistent(qdev->pdev,
+ rx_ring->cq_size,
+ rx_ring->cq_base, rx_ring->cq_base_dma);
+ rx_ring->cq_base = NULL;
+ }
+}
+
+/* Allocate queues and buffers for this completions queue based
+ * on the values in the parameter structure. */
+static int ql_alloc_rx_resources(struct ql_adapter *qdev,
+ struct rx_ring *rx_ring)
+{
+
+ /*
+ * Allocate the completion queue for this rx_ring.
+ */
+ rx_ring->cq_base =
+ pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
+ &rx_ring->cq_base_dma);
+
+ if (rx_ring->cq_base == NULL) {
+ netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
+ return -ENOMEM;
+ }
+
+ if (rx_ring->sbq_len) {
+ /*
+ * Allocate small buffer queue.
+ */
+ rx_ring->sbq_base =
+ pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
+ &rx_ring->sbq_base_dma);
+
+ if (rx_ring->sbq_base == NULL) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Small buffer queue allocation failed.\n");
+ goto err_mem;
+ }
+
+ /*
+ * Allocate small buffer queue control blocks.
+ */
+ rx_ring->sbq =
+ kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
+ GFP_KERNEL);
+ if (rx_ring->sbq == NULL) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Small buffer queue control block allocation failed.\n");
+ goto err_mem;
+ }
+
+ ql_init_sbq_ring(qdev, rx_ring);
+ }
+
+ if (rx_ring->lbq_len) {
+ /*
+ * Allocate large buffer queue.
+ */
+ rx_ring->lbq_base =
+ pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
+ &rx_ring->lbq_base_dma);
+
+ if (rx_ring->lbq_base == NULL) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Large buffer queue allocation failed.\n");
+ goto err_mem;
+ }
+ /*
+ * Allocate large buffer queue control blocks.
+ */
+ rx_ring->lbq =
+ kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
+ GFP_KERNEL);
+ if (rx_ring->lbq == NULL) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Large buffer queue control block allocation failed.\n");
+ goto err_mem;
+ }
+
+ ql_init_lbq_ring(qdev, rx_ring);
+ }
+
+ return 0;
+
+err_mem:
+ ql_free_rx_resources(qdev, rx_ring);
+ return -ENOMEM;
+}
+
+static void ql_tx_ring_clean(struct ql_adapter *qdev)
+{
+ struct tx_ring *tx_ring;
+ struct tx_ring_desc *tx_ring_desc;
+ int i, j;
+
+ /*
+ * Loop through all queues and free
+ * any resources.
+ */
+ for (j = 0; j < qdev->tx_ring_count; j++) {
+ tx_ring = &qdev->tx_ring[j];
+ for (i = 0; i < tx_ring->wq_len; i++) {
+ tx_ring_desc = &tx_ring->q[i];
+ if (tx_ring_desc && tx_ring_desc->skb) {
+ netif_err(qdev, ifdown, qdev->ndev,
+ "Freeing lost SKB %p, from queue %d, index %d.\n",
+ tx_ring_desc->skb, j,
+ tx_ring_desc->index);
+ ql_unmap_send(qdev, tx_ring_desc,
+ tx_ring_desc->map_cnt);
+ dev_kfree_skb(tx_ring_desc->skb);
+ tx_ring_desc->skb = NULL;
+ }
+ }
+ }
+}
+
+static void ql_free_mem_resources(struct ql_adapter *qdev)
+{
+ int i;
+
+ for (i = 0; i < qdev->tx_ring_count; i++)
+ ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
+ for (i = 0; i < qdev->rx_ring_count; i++)
+ ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
+ ql_free_shadow_space(qdev);
+}
+
+static int ql_alloc_mem_resources(struct ql_adapter *qdev)
+{
+ int i;
+
+ /* Allocate space for our shadow registers and such. */
+ if (ql_alloc_shadow_space(qdev))
+ return -ENOMEM;
+
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "RX resource allocation failed.\n");
+ goto err_mem;
+ }
+ }
+ /* Allocate tx queue resources */
+ for (i = 0; i < qdev->tx_ring_count; i++) {
+ if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "TX resource allocation failed.\n");
+ goto err_mem;
+ }
+ }
+ return 0;
+
+err_mem:
+ ql_free_mem_resources(qdev);
+ return -ENOMEM;
+}
+
+/* Set up the rx ring control block and pass it to the chip.
+ * The control block is defined as
+ * "Completion Queue Initialization Control Block", or cqicb.
+ */
+static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
+{
+ struct cqicb *cqicb = &rx_ring->cqicb;
+ void *shadow_reg = qdev->rx_ring_shadow_reg_area +
+ (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
+ u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
+ (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
+ void __iomem *doorbell_area =
+ qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
+ int err = 0;
+ u16 bq_len;
+ u64 tmp;
+ __le64 *base_indirect_ptr;
+ int page_entries;
+
+ /* Set up the shadow registers for this ring. */
+ rx_ring->prod_idx_sh_reg = shadow_reg;
+ rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
+ *rx_ring->prod_idx_sh_reg = 0;
+ shadow_reg += sizeof(u64);
+ shadow_reg_dma += sizeof(u64);
+ rx_ring->lbq_base_indirect = shadow_reg;
+ rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
+ shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
+ shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
+ rx_ring->sbq_base_indirect = shadow_reg;
+ rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
+
+ /* PCI doorbell mem area + 0x00 for consumer index register */
+ rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
+ rx_ring->cnsmr_idx = 0;
+ rx_ring->curr_entry = rx_ring->cq_base;
+
+ /* PCI doorbell mem area + 0x04 for valid register */
+ rx_ring->valid_db_reg = doorbell_area + 0x04;
+
+ /* PCI doorbell mem area + 0x18 for large buffer consumer */
+ rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
+
+ /* PCI doorbell mem area + 0x1c */
+ rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
+
+ memset((void *)cqicb, 0, sizeof(struct cqicb));
+ cqicb->msix_vect = rx_ring->irq;
+
+ bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
+ cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
+
+ cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
+
+ cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
+
+ /*
+ * Set up the control block load flags.
+ */
+ cqicb->flags = FLAGS_LC | /* Load queue base address */
+ FLAGS_LV | /* Load MSI-X vector */
+ FLAGS_LI; /* Load irq delay values */
+ if (rx_ring->lbq_len) {
+ cqicb->flags |= FLAGS_LL; /* Load lbq values */
+ tmp = (u64)rx_ring->lbq_base_dma;
+ base_indirect_ptr = rx_ring->lbq_base_indirect;
+ page_entries = 0;
+ do {
+ *base_indirect_ptr = cpu_to_le64(tmp);
+ tmp += DB_PAGE_SIZE;
+ base_indirect_ptr++;
+ page_entries++;
+ } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
+ cqicb->lbq_addr =
+ cpu_to_le64(rx_ring->lbq_base_indirect_dma);
+ bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
+ (u16) rx_ring->lbq_buf_size;
+ cqicb->lbq_buf_size = cpu_to_le16(bq_len);
+ bq_len = (rx_ring->lbq_len == 65536) ? 0 :
+ (u16) rx_ring->lbq_len;
+ cqicb->lbq_len = cpu_to_le16(bq_len);
+ rx_ring->lbq_prod_idx = 0;
+ rx_ring->lbq_curr_idx = 0;
+ rx_ring->lbq_clean_idx = 0;
+ rx_ring->lbq_free_cnt = rx_ring->lbq_len;
+ }
+ if (rx_ring->sbq_len) {
+ cqicb->flags |= FLAGS_LS; /* Load sbq values */
+ tmp = (u64)rx_ring->sbq_base_dma;
+ base_indirect_ptr = rx_ring->sbq_base_indirect;
+ page_entries = 0;
+ do {
+ *base_indirect_ptr = cpu_to_le64(tmp);
+ tmp += DB_PAGE_SIZE;
+ base_indirect_ptr++;
+ page_entries++;
+ } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
+ cqicb->sbq_addr =
+ cpu_to_le64(rx_ring->sbq_base_indirect_dma);
+ cqicb->sbq_buf_size =
+ cpu_to_le16((u16)(rx_ring->sbq_buf_size));
+ bq_len = (rx_ring->sbq_len == 65536) ? 0 :
+ (u16) rx_ring->sbq_len;
+ cqicb->sbq_len = cpu_to_le16(bq_len);
+ rx_ring->sbq_prod_idx = 0;
+ rx_ring->sbq_curr_idx = 0;
+ rx_ring->sbq_clean_idx = 0;
+ rx_ring->sbq_free_cnt = rx_ring->sbq_len;
+ }
+ switch (rx_ring->type) {
+ case TX_Q:
+ cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
+ cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
+ break;
+ case RX_Q:
+ /* Inbound completion handling rx_rings run in
+ * separate NAPI contexts.
+ */
+ netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
+ 64);
+ cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
+ cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
+ break;
+ default:
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "Invalid rx_ring->type = %d.\n", rx_ring->type);
+ }
+ err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
+ CFG_LCQ, rx_ring->cq_id);
+ if (err) {
+ netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
+ return err;
+ }
+ return err;
+}
+
+static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
+{
+ struct wqicb *wqicb = (struct wqicb *)tx_ring;
+ void __iomem *doorbell_area =
+ qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
+ void *shadow_reg = qdev->tx_ring_shadow_reg_area +
+ (tx_ring->wq_id * sizeof(u64));
+ u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
+ (tx_ring->wq_id * sizeof(u64));
+ int err = 0;
+
+ /*
+ * Assign doorbell registers for this tx_ring.
+ */
+ /* TX PCI doorbell mem area for tx producer index */
+ tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
+ tx_ring->prod_idx = 0;
+ /* TX PCI doorbell mem area + 0x04 */
+ tx_ring->valid_db_reg = doorbell_area + 0x04;
+
+ /*
+ * Assign shadow registers for this tx_ring.
+ */
+ tx_ring->cnsmr_idx_sh_reg = shadow_reg;
+ tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
+
+ wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
+ wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
+ Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
+ wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
+ wqicb->rid = 0;
+ wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
+
+ wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
+
+ ql_init_tx_ring(qdev, tx_ring);
+
+ err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
+ (u16) tx_ring->wq_id);
+ if (err) {
+ netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
+ return err;
+ }
+ return err;
+}
+
+static void ql_disable_msix(struct ql_adapter *qdev)
+{
+ if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+ pci_disable_msix(qdev->pdev);
+ clear_bit(QL_MSIX_ENABLED, &qdev->flags);
+ kfree(qdev->msi_x_entry);
+ qdev->msi_x_entry = NULL;
+ } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
+ pci_disable_msi(qdev->pdev);
+ clear_bit(QL_MSI_ENABLED, &qdev->flags);
+ }
+}
+
+/* We start by trying to get the number of vectors
+ * stored in qdev->intr_count. If we don't get that
+ * many then we reduce the count and try again.
+ */
+static void ql_enable_msix(struct ql_adapter *qdev)
+{
+ int i, err;
+
+ /* Get the MSIX vectors. */
+ if (qlge_irq_type == MSIX_IRQ) {
+ /* Try to alloc space for the msix struct,
+ * if it fails then go to MSI/legacy.
+ */
+ qdev->msi_x_entry = kcalloc(qdev->intr_count,
+ sizeof(struct msix_entry),
+ GFP_KERNEL);
+ if (!qdev->msi_x_entry) {
+ qlge_irq_type = MSI_IRQ;
+ goto msi;
+ }
+
+ for (i = 0; i < qdev->intr_count; i++)
+ qdev->msi_x_entry[i].entry = i;
+
+ /* Loop to get our vectors. We start with
+ * what we want and settle for what we get.
+ */
+ do {
+ err = pci_enable_msix(qdev->pdev,
+ qdev->msi_x_entry, qdev->intr_count);
+ if (err > 0)
+ qdev->intr_count = err;
+ } while (err > 0);
+
+ if (err < 0) {
+ kfree(qdev->msi_x_entry);
+ qdev->msi_x_entry = NULL;
+ netif_warn(qdev, ifup, qdev->ndev,
+ "MSI-X Enable failed, trying MSI.\n");
+ qdev->intr_count = 1;
+ qlge_irq_type = MSI_IRQ;
+ } else if (err == 0) {
+ set_bit(QL_MSIX_ENABLED, &qdev->flags);
+ netif_info(qdev, ifup, qdev->ndev,
+ "MSI-X Enabled, got %d vectors.\n",
+ qdev->intr_count);
+ return;
+ }
+ }
+msi:
+ qdev->intr_count = 1;
+ if (qlge_irq_type == MSI_IRQ) {
+ if (!pci_enable_msi(qdev->pdev)) {
+ set_bit(QL_MSI_ENABLED, &qdev->flags);
+ netif_info(qdev, ifup, qdev->ndev,
+ "Running with MSI interrupts.\n");
+ return;
+ }
+ }
+ qlge_irq_type = LEG_IRQ;
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "Running with legacy interrupts.\n");
+}
+
+/* Each vector services 1 RSS ring and and 1 or more
+ * TX completion rings. This function loops through
+ * the TX completion rings and assigns the vector that
+ * will service it. An example would be if there are
+ * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
+ * This would mean that vector 0 would service RSS ring 0
+ * and TX completion rings 0,1,2 and 3. Vector 1 would
+ * service RSS ring 1 and TX completion rings 4,5,6 and 7.
+ */
+static void ql_set_tx_vect(struct ql_adapter *qdev)
+{
+ int i, j, vect;
+ u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
+
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
+ /* Assign irq vectors to TX rx_rings.*/
+ for (vect = 0, j = 0, i = qdev->rss_ring_count;
+ i < qdev->rx_ring_count; i++) {
+ if (j == tx_rings_per_vector) {
+ vect++;
+ j = 0;
+ }
+ qdev->rx_ring[i].irq = vect;
+ j++;
+ }
+ } else {
+ /* For single vector all rings have an irq
+ * of zero.
+ */
+ for (i = 0; i < qdev->rx_ring_count; i++)
+ qdev->rx_ring[i].irq = 0;
+ }
+}
+
+/* Set the interrupt mask for this vector. Each vector
+ * will service 1 RSS ring and 1 or more TX completion
+ * rings. This function sets up a bit mask per vector
+ * that indicates which rings it services.
+ */
+static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
+{
+ int j, vect = ctx->intr;
+ u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
+
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
+ /* Add the RSS ring serviced by this vector
+ * to the mask.
+ */
+ ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
+ /* Add the TX ring(s) serviced by this vector
+ * to the mask. */
+ for (j = 0; j < tx_rings_per_vector; j++) {
+ ctx->irq_mask |=
+ (1 << qdev->rx_ring[qdev->rss_ring_count +
+ (vect * tx_rings_per_vector) + j].cq_id);
+ }
+ } else {
+ /* For single vector we just shift each queue's
+ * ID into the mask.
+ */
+ for (j = 0; j < qdev->rx_ring_count; j++)
+ ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
+ }
+}
+
+/*
+ * Here we build the intr_context structures based on
+ * our rx_ring count and intr vector count.
+ * The intr_context structure is used to hook each vector
+ * to possibly different handlers.
+ */
+static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
+{
+ int i = 0;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+
+ if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
+ /* Each rx_ring has it's
+ * own intr_context since we have separate
+ * vectors for each queue.
+ */
+ for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+ qdev->rx_ring[i].irq = i;
+ intr_context->intr = i;
+ intr_context->qdev = qdev;
+ /* Set up this vector's bit-mask that indicates
+ * which queues it services.
+ */
+ ql_set_irq_mask(qdev, intr_context);
+ /*
+ * We set up each vectors enable/disable/read bits so
+ * there's no bit/mask calculations in the critical path.
+ */
+ intr_context->intr_en_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
+ | i;
+ intr_context->intr_dis_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
+ INTR_EN_IHD | i;
+ intr_context->intr_read_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
+ i;
+ if (i == 0) {
+ /* The first vector/queue handles
+ * broadcast/multicast, fatal errors,
+ * and firmware events. This in addition
+ * to normal inbound NAPI processing.
+ */
+ intr_context->handler = qlge_isr;
+ sprintf(intr_context->name, "%s-rx-%d",
+ qdev->ndev->name, i);
+ } else {
+ /*
+ * Inbound queues handle unicast frames only.
+ */
+ intr_context->handler = qlge_msix_rx_isr;
+ sprintf(intr_context->name, "%s-rx-%d",
+ qdev->ndev->name, i);
+ }
+ }
+ } else {
+ /*
+ * All rx_rings use the same intr_context since
+ * there is only one vector.
+ */
+ intr_context->intr = 0;
+ intr_context->qdev = qdev;
+ /*
+ * We set up each vectors enable/disable/read bits so
+ * there's no bit/mask calculations in the critical path.
+ */
+ intr_context->intr_en_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
+ intr_context->intr_dis_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
+ INTR_EN_TYPE_DISABLE;
+ intr_context->intr_read_mask =
+ INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
+ /*
+ * Single interrupt means one handler for all rings.
+ */
+ intr_context->handler = qlge_isr;
+ sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
+ /* Set up this vector's bit-mask that indicates
+ * which queues it services. In this case there is
+ * a single vector so it will service all RSS and
+ * TX completion rings.
+ */
+ ql_set_irq_mask(qdev, intr_context);
+ }
+ /* Tell the TX completion rings which MSIx vector
+ * they will be using.
+ */
+ ql_set_tx_vect(qdev);
+}
+
+static void ql_free_irq(struct ql_adapter *qdev)
+{
+ int i;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+
+ for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+ if (intr_context->hooked) {
+ if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+ free_irq(qdev->msi_x_entry[i].vector,
+ &qdev->rx_ring[i]);
+ } else {
+ free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
+ }
+ }
+ }
+ ql_disable_msix(qdev);
+}
+
+static int ql_request_irq(struct ql_adapter *qdev)
+{
+ int i;
+ int status = 0;
+ struct pci_dev *pdev = qdev->pdev;
+ struct intr_context *intr_context = &qdev->intr_context[0];
+
+ ql_resolve_queues_to_irqs(qdev);
+
+ for (i = 0; i < qdev->intr_count; i++, intr_context++) {
+ atomic_set(&intr_context->irq_cnt, 0);
+ if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
+ status = request_irq(qdev->msi_x_entry[i].vector,
+ intr_context->handler,
+ 0,
+ intr_context->name,
+ &qdev->rx_ring[i]);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed request for MSIX interrupt %d.\n",
+ i);
+ goto err_irq;
+ }
+ } else {
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "trying msi or legacy interrupts.\n");
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "%s: irq = %d.\n", __func__, pdev->irq);
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "%s: context->name = %s.\n", __func__,
+ intr_context->name);
+ netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
+ "%s: dev_id = 0x%p.\n", __func__,
+ &qdev->rx_ring[0]);
+ status =
+ request_irq(pdev->irq, qlge_isr,
+ test_bit(QL_MSI_ENABLED,
+ &qdev->
+ flags) ? 0 : IRQF_SHARED,
+ intr_context->name, &qdev->rx_ring[0]);
+ if (status)
+ goto err_irq;
+
+ netif_err(qdev, ifup, qdev->ndev,
+ "Hooked intr %d, queue type %s, with name %s.\n",
+ i,
+ qdev->rx_ring[0].type == DEFAULT_Q ?
+ "DEFAULT_Q" :
+ qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
+ qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
+ intr_context->name);
+ }
+ intr_context->hooked = 1;
+ }
+ return status;
+err_irq:
+ netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
+ ql_free_irq(qdev);
+ return status;
+}
+
+static int ql_start_rss(struct ql_adapter *qdev)
+{
+ static const u8 init_hash_seed[] = {
+ 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
+ 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
+ 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
+ 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
+ 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
+ };
+ struct ricb *ricb = &qdev->ricb;
+ int status = 0;
+ int i;
+ u8 *hash_id = (u8 *) ricb->hash_cq_id;
+
+ memset((void *)ricb, 0, sizeof(*ricb));
+
+ ricb->base_cq = RSS_L4K;
+ ricb->flags =
+ (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
+ ricb->mask = cpu_to_le16((u16)(0x3ff));
+
+ /*
+ * Fill out the Indirection Table.
+ */
+ for (i = 0; i < 1024; i++)
+ hash_id[i] = (i & (qdev->rss_ring_count - 1));
+
+ memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
+ memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
+
+ status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
+ return status;
+ }
+ return status;
+}
+
+static int ql_clear_routing_entries(struct ql_adapter *qdev)
+{
+ int i, status = 0;
+
+ status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+ if (status)
+ return status;
+ /* Clear all the entries in the routing table. */
+ for (i = 0; i < 16; i++) {
+ status = ql_set_routing_reg(qdev, i, 0, 0);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init routing register for CAM packets.\n");
+ break;
+ }
+ }
+ ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+ return status;
+}
+
+/* Initialize the frame-to-queue routing. */
+static int ql_route_initialize(struct ql_adapter *qdev)
+{
+ int status = 0;
+
+ /* Clear all the entries in the routing table. */
+ status = ql_clear_routing_entries(qdev);
+ if (status)
+ return status;
+
+ status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+ if (status)
+ return status;
+
+ status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
+ RT_IDX_IP_CSUM_ERR, 1);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init routing register "
+ "for IP CSUM error packets.\n");
+ goto exit;
+ }
+ status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
+ RT_IDX_TU_CSUM_ERR, 1);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init routing register "
+ "for TCP/UDP CSUM error packets.\n");
+ goto exit;
+ }
+ status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init routing register for broadcast packets.\n");
+ goto exit;
+ }
+ /* If we have more than one inbound queue, then turn on RSS in the
+ * routing block.
+ */
+ if (qdev->rss_ring_count > 1) {
+ status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
+ RT_IDX_RSS_MATCH, 1);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init routing register for MATCH RSS packets.\n");
+ goto exit;
+ }
+ }
+
+ status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
+ RT_IDX_CAM_HIT, 1);
+ if (status)
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init routing register for CAM packets.\n");
+exit:
+ ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+ return status;
+}
+
+int ql_cam_route_initialize(struct ql_adapter *qdev)
+{
+ int status, set;
+
+ /* If check if the link is up and use to
+ * determine if we are setting or clearing
+ * the MAC address in the CAM.
+ */
+ set = ql_read32(qdev, STS);
+ set &= qdev->port_link_up;
+ status = ql_set_mac_addr(qdev, set);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
+ return status;
+ }
+
+ status = ql_route_initialize(qdev);
+ if (status)
+ netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
+
+ return status;
+}
+
+static int ql_adapter_initialize(struct ql_adapter *qdev)
+{
+ u32 value, mask;
+ int i;
+ int status = 0;
+
+ /*
+ * Set up the System register to halt on errors.
+ */
+ value = SYS_EFE | SYS_FAE;
+ mask = value << 16;
+ ql_write32(qdev, SYS, mask | value);
+
+ /* Set the default queue, and VLAN behavior. */
+ value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
+ mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
+ ql_write32(qdev, NIC_RCV_CFG, (mask | value));
+
+ /* Set the MPI interrupt to enabled. */
+ ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
+
+ /* Enable the function, set pagesize, enable error checking. */
+ value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
+ FSC_EC | FSC_VM_PAGE_4K;
+ value |= SPLT_SETTING;
+
+ /* Set/clear header splitting. */
+ mask = FSC_VM_PAGESIZE_MASK |
+ FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
+ ql_write32(qdev, FSC, mask | value);
+
+ ql_write32(qdev, SPLT_HDR, SPLT_LEN);
+
+ /* Set RX packet routing to use port/pci function on which the
+ * packet arrived on in addition to usual frame routing.
+ * This is helpful on bonding where both interfaces can have
+ * the same MAC address.
+ */
+ ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
+ /* Reroute all packets to our Interface.
+ * They may have been routed to MPI firmware
+ * due to WOL.
+ */
+ value = ql_read32(qdev, MGMT_RCV_CFG);
+ value &= ~MGMT_RCV_CFG_RM;
+ mask = 0xffff0000;
+
+ /* Sticky reg needs clearing due to WOL. */
+ ql_write32(qdev, MGMT_RCV_CFG, mask);
+ ql_write32(qdev, MGMT_RCV_CFG, mask | value);
+
+ /* Default WOL is enable on Mezz cards */
+ if (qdev->pdev->subsystem_device == 0x0068 ||
+ qdev->pdev->subsystem_device == 0x0180)
+ qdev->wol = WAKE_MAGIC;
+
+ /* Start up the rx queues. */
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to start rx ring[%d].\n", i);
+ return status;
+ }
+ }
+
+ /* If there is more than one inbound completion queue
+ * then download a RICB to configure RSS.
+ */
+ if (qdev->rss_ring_count > 1) {
+ status = ql_start_rss(qdev);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
+ return status;
+ }
+ }
+
+ /* Start up the tx queues. */
+ for (i = 0; i < qdev->tx_ring_count; i++) {
+ status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to start tx ring[%d].\n", i);
+ return status;
+ }
+ }
+
+ /* Initialize the port and set the max framesize. */
+ status = qdev->nic_ops->port_initialize(qdev);
+ if (status)
+ netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
+
+ /* Set up the MAC address and frame routing filter. */
+ status = ql_cam_route_initialize(qdev);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Failed to init CAM/Routing tables.\n");
+ return status;
+ }
+
+ /* Start NAPI for the RSS queues. */
+ for (i = 0; i < qdev->rss_ring_count; i++)
+ napi_enable(&qdev->rx_ring[i].napi);
+
+ return status;
+}
+
+/* Issue soft reset to chip. */
+static int ql_adapter_reset(struct ql_adapter *qdev)
+{
+ u32 value;
+ int status = 0;
+ unsigned long end_jiffies;
+
+ /* Clear all the entries in the routing table. */
+ status = ql_clear_routing_entries(qdev);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
+ return status;
+ }
+
+ end_jiffies = jiffies +
+ max((unsigned long)1, usecs_to_jiffies(30));
+
+ /* Check if bit is set then skip the mailbox command and
+ * clear the bit, else we are in normal reset process.
+ */
+ if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
+ /* Stop management traffic. */
+ ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
+
+ /* Wait for the NIC and MGMNT FIFOs to empty. */
+ ql_wait_fifo_empty(qdev);
+ } else
+ clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
+
+ ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
+
+ do {
+ value = ql_read32(qdev, RST_FO);
+ if ((value & RST_FO_FR) == 0)
+ break;
+ cpu_relax();
+ } while (time_before(jiffies, end_jiffies));
+
+ if (value & RST_FO_FR) {
+ netif_err(qdev, ifdown, qdev->ndev,
+ "ETIMEDOUT!!! errored out of resetting the chip!\n");
+ status = -ETIMEDOUT;
+ }
+
+ /* Resume management traffic. */
+ ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
+ return status;
+}
+
+static void ql_display_dev_info(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ netif_info(qdev, probe, qdev->ndev,
+ "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
+ "XG Roll = %d, XG Rev = %d.\n",
+ qdev->func,
+ qdev->port,
+ qdev->chip_rev_id & 0x0000000f,
+ qdev->chip_rev_id >> 4 & 0x0000000f,
+ qdev->chip_rev_id >> 8 & 0x0000000f,
+ qdev->chip_rev_id >> 12 & 0x0000000f);
+ netif_info(qdev, probe, qdev->ndev,
+ "MAC address %pM\n", ndev->dev_addr);
+}
+
+static int ql_wol(struct ql_adapter *qdev)
+{
+ int status = 0;
+ u32 wol = MB_WOL_DISABLE;
+
+ /* The CAM is still intact after a reset, but if we
+ * are doing WOL, then we may need to program the
+ * routing regs. We would also need to issue the mailbox
+ * commands to instruct the MPI what to do per the ethtool
+ * settings.
+ */
+
+ if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
+ WAKE_MCAST | WAKE_BCAST)) {
+ netif_err(qdev, ifdown, qdev->ndev,
+ "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
+ qdev->wol);
+ return -EINVAL;
+ }
+
+ if (qdev->wol & WAKE_MAGIC) {
+ status = ql_mb_wol_set_magic(qdev, 1);
+ if (status) {
+ netif_err(qdev, ifdown, qdev->ndev,
+ "Failed to set magic packet on %s.\n",
+ qdev->ndev->name);
+ return status;
+ } else
+ netif_info(qdev, drv, qdev->ndev,
+ "Enabled magic packet successfully on %s.\n",
+ qdev->ndev->name);
+
+ wol |= MB_WOL_MAGIC_PKT;
+ }
+
+ if (qdev->wol) {
+ wol |= MB_WOL_MODE_ON;
+ status = ql_mb_wol_mode(qdev, wol);
+ netif_err(qdev, drv, qdev->ndev,
+ "WOL %s (wol code 0x%x) on %s\n",
+ (status == 0) ? "Successfully set" : "Failed",
+ wol, qdev->ndev->name);
+ }
+
+ return status;
+}
+
+static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
+{
+
+ /* Don't kill the reset worker thread if we
+ * are in the process of recovery.
+ */
+ if (test_bit(QL_ADAPTER_UP, &qdev->flags))
+ cancel_delayed_work_sync(&qdev->asic_reset_work);
+ cancel_delayed_work_sync(&qdev->mpi_reset_work);
+ cancel_delayed_work_sync(&qdev->mpi_work);
+ cancel_delayed_work_sync(&qdev->mpi_idc_work);
+ cancel_delayed_work_sync(&qdev->mpi_core_to_log);
+ cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
+}
+
+static int ql_adapter_down(struct ql_adapter *qdev)
+{
+ int i, status = 0;
+
+ ql_link_off(qdev);
+
+ ql_cancel_all_work_sync(qdev);
+
+ for (i = 0; i < qdev->rss_ring_count; i++)
+ napi_disable(&qdev->rx_ring[i].napi);
+
+ clear_bit(QL_ADAPTER_UP, &qdev->flags);
+
+ ql_disable_interrupts(qdev);
+
+ ql_tx_ring_clean(qdev);
+
+ /* Call netif_napi_del() from common point.
+ */
+ for (i = 0; i < qdev->rss_ring_count; i++)
+ netif_napi_del(&qdev->rx_ring[i].napi);
+
+ status = ql_adapter_reset(qdev);
+ if (status)
+ netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
+ qdev->func);
+ ql_free_rx_buffers(qdev);
+
+ return status;
+}
+
+static int ql_adapter_up(struct ql_adapter *qdev)
+{
+ int err = 0;
+
+ err = ql_adapter_initialize(qdev);
+ if (err) {
+ netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
+ goto err_init;
+ }
+ set_bit(QL_ADAPTER_UP, &qdev->flags);
+ ql_alloc_rx_buffers(qdev);
+ /* If the port is initialized and the
+ * link is up the turn on the carrier.
+ */
+ if ((ql_read32(qdev, STS) & qdev->port_init) &&
+ (ql_read32(qdev, STS) & qdev->port_link_up))
+ ql_link_on(qdev);
+ /* Restore rx mode. */
+ clear_bit(QL_ALLMULTI, &qdev->flags);
+ clear_bit(QL_PROMISCUOUS, &qdev->flags);
+ qlge_set_multicast_list(qdev->ndev);
+
+ /* Restore vlan setting. */
+ qlge_restore_vlan(qdev);
+
+ ql_enable_interrupts(qdev);
+ ql_enable_all_completion_interrupts(qdev);
+ netif_tx_start_all_queues(qdev->ndev);
+
+ return 0;
+err_init:
+ ql_adapter_reset(qdev);
+ return err;
+}
+
+static void ql_release_adapter_resources(struct ql_adapter *qdev)
+{
+ ql_free_mem_resources(qdev);
+ ql_free_irq(qdev);
+}
+
+static int ql_get_adapter_resources(struct ql_adapter *qdev)
+{
+ int status = 0;
+
+ if (ql_alloc_mem_resources(qdev)) {
+ netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
+ return -ENOMEM;
+ }
+ status = ql_request_irq(qdev);
+ return status;
+}
+
+static int qlge_close(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ /* If we hit pci_channel_io_perm_failure
+ * failure condition, then we already
+ * brought the adapter down.
+ */
+ if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
+ netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
+ clear_bit(QL_EEH_FATAL, &qdev->flags);
+ return 0;
+ }
+
+ /*
+ * Wait for device to recover from a reset.
+ * (Rarely happens, but possible.)
+ */
+ while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
+ msleep(1);
+ ql_adapter_down(qdev);
+ ql_release_adapter_resources(qdev);
+ return 0;
+}
+
+static int ql_configure_rings(struct ql_adapter *qdev)
+{
+ int i;
+ struct rx_ring *rx_ring;
+ struct tx_ring *tx_ring;
+ int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
+ unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
+ LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
+
+ qdev->lbq_buf_order = get_order(lbq_buf_len);
+
+ /* In a perfect world we have one RSS ring for each CPU
+ * and each has it's own vector. To do that we ask for
+ * cpu_cnt vectors. ql_enable_msix() will adjust the
+ * vector count to what we actually get. We then
+ * allocate an RSS ring for each.
+ * Essentially, we are doing min(cpu_count, msix_vector_count).
+ */
+ qdev->intr_count = cpu_cnt;
+ ql_enable_msix(qdev);
+ /* Adjust the RSS ring count to the actual vector count. */
+ qdev->rss_ring_count = qdev->intr_count;
+ qdev->tx_ring_count = cpu_cnt;
+ qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
+
+ for (i = 0; i < qdev->tx_ring_count; i++) {
+ tx_ring = &qdev->tx_ring[i];
+ memset((void *)tx_ring, 0, sizeof(*tx_ring));
+ tx_ring->qdev = qdev;
+ tx_ring->wq_id = i;
+ tx_ring->wq_len = qdev->tx_ring_size;
+ tx_ring->wq_size =
+ tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
+
+ /*
+ * The completion queue ID for the tx rings start
+ * immediately after the rss rings.
+ */
+ tx_ring->cq_id = qdev->rss_ring_count + i;
+ }
+
+ for (i = 0; i < qdev->rx_ring_count; i++) {
+ rx_ring = &qdev->rx_ring[i];
+ memset((void *)rx_ring, 0, sizeof(*rx_ring));
+ rx_ring->qdev = qdev;
+ rx_ring->cq_id = i;
+ rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
+ if (i < qdev->rss_ring_count) {
+ /*
+ * Inbound (RSS) queues.
+ */
+ rx_ring->cq_len = qdev->rx_ring_size;
+ rx_ring->cq_size =
+ rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+ rx_ring->lbq_len = NUM_LARGE_BUFFERS;
+ rx_ring->lbq_size =
+ rx_ring->lbq_len * sizeof(__le64);
+ rx_ring->lbq_buf_size = (u16)lbq_buf_len;
+ rx_ring->sbq_len = NUM_SMALL_BUFFERS;
+ rx_ring->sbq_size =
+ rx_ring->sbq_len * sizeof(__le64);
+ rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
+ rx_ring->type = RX_Q;
+ } else {
+ /*
+ * Outbound queue handles outbound completions only.
+ */
+ /* outbound cq is same size as tx_ring it services. */
+ rx_ring->cq_len = qdev->tx_ring_size;
+ rx_ring->cq_size =
+ rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
+ rx_ring->lbq_len = 0;
+ rx_ring->lbq_size = 0;
+ rx_ring->lbq_buf_size = 0;
+ rx_ring->sbq_len = 0;
+ rx_ring->sbq_size = 0;
+ rx_ring->sbq_buf_size = 0;
+ rx_ring->type = TX_Q;
+ }
+ }
+ return 0;
+}
+
+static int qlge_open(struct net_device *ndev)
+{
+ int err = 0;
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ err = ql_adapter_reset(qdev);
+ if (err)
+ return err;
+
+ err = ql_configure_rings(qdev);
+ if (err)
+ return err;
+
+ err = ql_get_adapter_resources(qdev);
+ if (err)
+ goto error_up;
+
+ err = ql_adapter_up(qdev);
+ if (err)
+ goto error_up;
+
+ return err;
+
+error_up:
+ ql_release_adapter_resources(qdev);
+ return err;
+}
+
+static int ql_change_rx_buffers(struct ql_adapter *qdev)
+{
+ struct rx_ring *rx_ring;
+ int i, status;
+ u32 lbq_buf_len;
+
+ /* Wait for an outstanding reset to complete. */
+ if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
+ int i = 3;
+ while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Waiting for adapter UP...\n");
+ ssleep(1);
+ }
+
+ if (!i) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Timed out waiting for adapter UP\n");
+ return -ETIMEDOUT;
+ }
+ }
+
+ status = ql_adapter_down(qdev);
+ if (status)
+ goto error;
+
+ /* Get the new rx buffer size. */
+ lbq_buf_len = (qdev->ndev->mtu > 1500) ?
+ LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
+ qdev->lbq_buf_order = get_order(lbq_buf_len);
+
+ for (i = 0; i < qdev->rss_ring_count; i++) {
+ rx_ring = &qdev->rx_ring[i];
+ /* Set the new size. */
+ rx_ring->lbq_buf_size = lbq_buf_len;
+ }
+
+ status = ql_adapter_up(qdev);
+ if (status)
+ goto error;
+
+ return status;
+error:
+ netif_alert(qdev, ifup, qdev->ndev,
+ "Driver up/down cycle failed, closing device.\n");
+ set_bit(QL_ADAPTER_UP, &qdev->flags);
+ dev_close(qdev->ndev);
+ return status;
+}
+
+static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int status;
+
+ if (ndev->mtu == 1500 && new_mtu == 9000) {
+ netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
+ } else if (ndev->mtu == 9000 && new_mtu == 1500) {
+ netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
+ } else
+ return -EINVAL;
+
+ queue_delayed_work(qdev->workqueue,
+ &qdev->mpi_port_cfg_work, 3*HZ);
+
+ ndev->mtu = new_mtu;
+
+ if (!netif_running(qdev->ndev)) {
+ return 0;
+ }
+
+ status = ql_change_rx_buffers(qdev);
+ if (status) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Changing MTU failed.\n");
+ }
+
+ return status;
+}
+
+static struct net_device_stats *qlge_get_stats(struct net_device
+ *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ struct rx_ring *rx_ring = &qdev->rx_ring[0];
+ struct tx_ring *tx_ring = &qdev->tx_ring[0];
+ unsigned long pkts, mcast, dropped, errors, bytes;
+ int i;
+
+ /* Get RX stats. */
+ pkts = mcast = dropped = errors = bytes = 0;
+ for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
+ pkts += rx_ring->rx_packets;
+ bytes += rx_ring->rx_bytes;
+ dropped += rx_ring->rx_dropped;
+ errors += rx_ring->rx_errors;
+ mcast += rx_ring->rx_multicast;
+ }
+ ndev->stats.rx_packets = pkts;
+ ndev->stats.rx_bytes = bytes;
+ ndev->stats.rx_dropped = dropped;
+ ndev->stats.rx_errors = errors;
+ ndev->stats.multicast = mcast;
+
+ /* Get TX stats. */
+ pkts = errors = bytes = 0;
+ for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
+ pkts += tx_ring->tx_packets;
+ bytes += tx_ring->tx_bytes;
+ errors += tx_ring->tx_errors;
+ }
+ ndev->stats.tx_packets = pkts;
+ ndev->stats.tx_bytes = bytes;
+ ndev->stats.tx_errors = errors;
+ return &ndev->stats;
+}
+
+static void qlge_set_multicast_list(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ struct netdev_hw_addr *ha;
+ int i, status;
+
+ status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
+ if (status)
+ return;
+ /*
+ * Set or clear promiscuous mode if a
+ * transition is taking place.
+ */
+ if (ndev->flags & IFF_PROMISC) {
+ if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
+ netif_err(qdev, hw, qdev->ndev,
+ "Failed to set promiscuous mode.\n");
+ } else {
+ set_bit(QL_PROMISCUOUS, &qdev->flags);
+ }
+ }
+ } else {
+ if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
+ netif_err(qdev, hw, qdev->ndev,
+ "Failed to clear promiscuous mode.\n");
+ } else {
+ clear_bit(QL_PROMISCUOUS, &qdev->flags);
+ }
+ }
+ }
+
+ /*
+ * Set or clear all multicast mode if a
+ * transition is taking place.
+ */
+ if ((ndev->flags & IFF_ALLMULTI) ||
+ (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
+ if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
+ netif_err(qdev, hw, qdev->ndev,
+ "Failed to set all-multi mode.\n");
+ } else {
+ set_bit(QL_ALLMULTI, &qdev->flags);
+ }
+ }
+ } else {
+ if (test_bit(QL_ALLMULTI, &qdev->flags)) {
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
+ netif_err(qdev, hw, qdev->ndev,
+ "Failed to clear all-multi mode.\n");
+ } else {
+ clear_bit(QL_ALLMULTI, &qdev->flags);
+ }
+ }
+ }
+
+ if (!netdev_mc_empty(ndev)) {
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ goto exit;
+ i = 0;
+ netdev_for_each_mc_addr(ha, ndev) {
+ if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
+ MAC_ADDR_TYPE_MULTI_MAC, i)) {
+ netif_err(qdev, hw, qdev->ndev,
+ "Failed to loadmulticast address.\n");
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+ goto exit;
+ }
+ i++;
+ }
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+ if (ql_set_routing_reg
+ (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
+ netif_err(qdev, hw, qdev->ndev,
+ "Failed to set multicast match mode.\n");
+ } else {
+ set_bit(QL_ALLMULTI, &qdev->flags);
+ }
+ }
+exit:
+ ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
+}
+
+static int qlge_set_mac_address(struct net_device *ndev, void *p)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ struct sockaddr *addr = p;
+ int status;
+
+ if (!is_valid_ether_addr(addr->sa_data))
+ return -EADDRNOTAVAIL;
+ memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
+ /* Update local copy of current mac address. */
+ memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
+
+ status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
+ if (status)
+ return status;
+ status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
+ MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
+ if (status)
+ netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
+ ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
+ return status;
+}
+
+static void qlge_tx_timeout(struct net_device *ndev)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ ql_queue_asic_error(qdev);
+}
+
+static void ql_asic_reset_work(struct work_struct *work)
+{
+ struct ql_adapter *qdev =
+ container_of(work, struct ql_adapter, asic_reset_work.work);
+ int status;
+ rtnl_lock();
+ status = ql_adapter_down(qdev);
+ if (status)
+ goto error;
+
+ status = ql_adapter_up(qdev);
+ if (status)
+ goto error;
+
+ /* Restore rx mode. */
+ clear_bit(QL_ALLMULTI, &qdev->flags);
+ clear_bit(QL_PROMISCUOUS, &qdev->flags);
+ qlge_set_multicast_list(qdev->ndev);
+
+ rtnl_unlock();
+ return;
+error:
+ netif_alert(qdev, ifup, qdev->ndev,
+ "Driver up/down cycle failed, closing device\n");
+
+ set_bit(QL_ADAPTER_UP, &qdev->flags);
+ dev_close(qdev->ndev);
+ rtnl_unlock();
+}
+
+static const struct nic_operations qla8012_nic_ops = {
+ .get_flash = ql_get_8012_flash_params,
+ .port_initialize = ql_8012_port_initialize,
+};
+
+static const struct nic_operations qla8000_nic_ops = {
+ .get_flash = ql_get_8000_flash_params,
+ .port_initialize = ql_8000_port_initialize,
+};
+
+/* Find the pcie function number for the other NIC
+ * on this chip. Since both NIC functions share a
+ * common firmware we have the lowest enabled function
+ * do any common work. Examples would be resetting
+ * after a fatal firmware error, or doing a firmware
+ * coredump.
+ */
+static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
+{
+ int status = 0;
+ u32 temp;
+ u32 nic_func1, nic_func2;
+
+ status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
+ &temp);
+ if (status)
+ return status;
+
+ nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
+ MPI_TEST_NIC_FUNC_MASK);
+ nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
+ MPI_TEST_NIC_FUNC_MASK);
+
+ if (qdev->func == nic_func1)
+ qdev->alt_func = nic_func2;
+ else if (qdev->func == nic_func2)
+ qdev->alt_func = nic_func1;
+ else
+ status = -EIO;
+
+ return status;
+}
+
+static int ql_get_board_info(struct ql_adapter *qdev)
+{
+ int status;
+ qdev->func =
+ (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
+ if (qdev->func > 3)
+ return -EIO;
+
+ status = ql_get_alt_pcie_func(qdev);
+ if (status)
+ return status;
+
+ qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
+ if (qdev->port) {
+ qdev->xg_sem_mask = SEM_XGMAC1_MASK;
+ qdev->port_link_up = STS_PL1;
+ qdev->port_init = STS_PI1;
+ qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
+ qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
+ } else {
+ qdev->xg_sem_mask = SEM_XGMAC0_MASK;
+ qdev->port_link_up = STS_PL0;
+ qdev->port_init = STS_PI0;
+ qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
+ qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
+ }
+ qdev->chip_rev_id = ql_read32(qdev, REV_ID);
+ qdev->device_id = qdev->pdev->device;
+ if (qdev->device_id == QLGE_DEVICE_ID_8012)
+ qdev->nic_ops = &qla8012_nic_ops;
+ else if (qdev->device_id == QLGE_DEVICE_ID_8000)
+ qdev->nic_ops = &qla8000_nic_ops;
+ return status;
+}
+
+static void ql_release_all(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ if (qdev->workqueue) {
+ destroy_workqueue(qdev->workqueue);
+ qdev->workqueue = NULL;
+ }
+
+ if (qdev->reg_base)
+ iounmap(qdev->reg_base);
+ if (qdev->doorbell_area)
+ iounmap(qdev->doorbell_area);
+ vfree(qdev->mpi_coredump);
+ pci_release_regions(pdev);
+ pci_set_drvdata(pdev, NULL);
+}
+
+static int __devinit ql_init_device(struct pci_dev *pdev,
+ struct net_device *ndev, int cards_found)
+{
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int err = 0;
+
+ memset((void *)qdev, 0, sizeof(*qdev));
+ err = pci_enable_device(pdev);
+ if (err) {
+ dev_err(&pdev->dev, "PCI device enable failed.\n");
+ return err;
+ }
+
+ qdev->ndev = ndev;
+ qdev->pdev = pdev;
+ pci_set_drvdata(pdev, ndev);
+
+ /* Set PCIe read request size */
+ err = pcie_set_readrq(pdev, 4096);
+ if (err) {
+ dev_err(&pdev->dev, "Set readrq failed.\n");
+ goto err_out1;
+ }
+
+ err = pci_request_regions(pdev, DRV_NAME);
+ if (err) {
+ dev_err(&pdev->dev, "PCI region request failed.\n");
+ return err;
+ }
+
+ pci_set_master(pdev);
+ if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
+ set_bit(QL_DMA64, &qdev->flags);
+ err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
+ } else {
+ err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
+ if (!err)
+ err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
+ }
+
+ if (err) {
+ dev_err(&pdev->dev, "No usable DMA configuration.\n");
+ goto err_out2;
+ }
+
+ /* Set PCIe reset type for EEH to fundamental. */
+ pdev->needs_freset = 1;
+ pci_save_state(pdev);
+ qdev->reg_base =
+ ioremap_nocache(pci_resource_start(pdev, 1),
+ pci_resource_len(pdev, 1));
+ if (!qdev->reg_base) {
+ dev_err(&pdev->dev, "Register mapping failed.\n");
+ err = -ENOMEM;
+ goto err_out2;
+ }
+
+ qdev->doorbell_area_size = pci_resource_len(pdev, 3);
+ qdev->doorbell_area =
+ ioremap_nocache(pci_resource_start(pdev, 3),
+ pci_resource_len(pdev, 3));
+ if (!qdev->doorbell_area) {
+ dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
+ err = -ENOMEM;
+ goto err_out2;
+ }
+
+ err = ql_get_board_info(qdev);
+ if (err) {
+ dev_err(&pdev->dev, "Register access failed.\n");
+ err = -EIO;
+ goto err_out2;
+ }
+ qdev->msg_enable = netif_msg_init(debug, default_msg);
+ spin_lock_init(&qdev->hw_lock);
+ spin_lock_init(&qdev->stats_lock);
+
+ if (qlge_mpi_coredump) {
+ qdev->mpi_coredump =
+ vmalloc(sizeof(struct ql_mpi_coredump));
+ if (qdev->mpi_coredump == NULL) {
+ dev_err(&pdev->dev, "Coredump alloc failed.\n");
+ err = -ENOMEM;
+ goto err_out2;
+ }
+ if (qlge_force_coredump)
+ set_bit(QL_FRC_COREDUMP, &qdev->flags);
+ }
+ /* make sure the EEPROM is good */
+ err = qdev->nic_ops->get_flash(qdev);
+ if (err) {
+ dev_err(&pdev->dev, "Invalid FLASH.\n");
+ goto err_out2;
+ }
+
+ memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
+ /* Keep local copy of current mac address. */
+ memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
+
+ /* Set up the default ring sizes. */
+ qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
+ qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
+
+ /* Set up the coalescing parameters. */
+ qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
+ qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
+ qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+ qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
+
+ /*
+ * Set up the operating parameters.
+ */
+ qdev->workqueue = create_singlethread_workqueue(ndev->name);
+ INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
+ INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
+ INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
+ INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
+ INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
+ INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
+ init_completion(&qdev->ide_completion);
+ mutex_init(&qdev->mpi_mutex);
+
+ if (!cards_found) {
+ dev_info(&pdev->dev, "%s\n", DRV_STRING);
+ dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
+ DRV_NAME, DRV_VERSION);
+ }
+ return 0;
+err_out2:
+ ql_release_all(pdev);
+err_out1:
+ pci_disable_device(pdev);
+ return err;
+}
+
+static const struct net_device_ops qlge_netdev_ops = {
+ .ndo_open = qlge_open,
+ .ndo_stop = qlge_close,
+ .ndo_start_xmit = qlge_send,
+ .ndo_change_mtu = qlge_change_mtu,
+ .ndo_get_stats = qlge_get_stats,
+ .ndo_set_rx_mode = qlge_set_multicast_list,
+ .ndo_set_mac_address = qlge_set_mac_address,
+ .ndo_validate_addr = eth_validate_addr,
+ .ndo_tx_timeout = qlge_tx_timeout,
+ .ndo_fix_features = qlge_fix_features,
+ .ndo_set_features = qlge_set_features,
+ .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
+ .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
+};
+
+static void ql_timer(unsigned long data)
+{
+ struct ql_adapter *qdev = (struct ql_adapter *)data;
+ u32 var = 0;
+
+ var = ql_read32(qdev, STS);
+ if (pci_channel_offline(qdev->pdev)) {
+ netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
+ return;
+ }
+
+ mod_timer(&qdev->timer, jiffies + (5*HZ));
+}
+
+static int __devinit qlge_probe(struct pci_dev *pdev,
+ const struct pci_device_id *pci_entry)
+{
+ struct net_device *ndev = NULL;
+ struct ql_adapter *qdev = NULL;
+ static int cards_found = 0;
+ int err = 0;
+
+ ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
+ min(MAX_CPUS, (int)num_online_cpus()));
+ if (!ndev)
+ return -ENOMEM;
+
+ err = ql_init_device(pdev, ndev, cards_found);
+ if (err < 0) {
+ free_netdev(ndev);
+ return err;
+ }
+
+ qdev = netdev_priv(ndev);
+ SET_NETDEV_DEV(ndev, &pdev->dev);
+ ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
+ NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
+ NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
+ ndev->features = ndev->hw_features |
+ NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
+
+ if (test_bit(QL_DMA64, &qdev->flags))
+ ndev->features |= NETIF_F_HIGHDMA;
+
+ /*
+ * Set up net_device structure.
+ */
+ ndev->tx_queue_len = qdev->tx_ring_size;
+ ndev->irq = pdev->irq;
+
+ ndev->netdev_ops = &qlge_netdev_ops;
+ SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
+ ndev->watchdog_timeo = 10 * HZ;
+
+ err = register_netdev(ndev);
+ if (err) {
+ dev_err(&pdev->dev, "net device registration failed.\n");
+ ql_release_all(pdev);
+ pci_disable_device(pdev);
+ return err;
+ }
+ /* Start up the timer to trigger EEH if
+ * the bus goes dead
+ */
+ init_timer_deferrable(&qdev->timer);
+ qdev->timer.data = (unsigned long)qdev;
+ qdev->timer.function = ql_timer;
+ qdev->timer.expires = jiffies + (5*HZ);
+ add_timer(&qdev->timer);
+ ql_link_off(qdev);
+ ql_display_dev_info(ndev);
+ atomic_set(&qdev->lb_count, 0);
+ cards_found++;
+ return 0;
+}
+
+netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
+{
+ return qlge_send(skb, ndev);
+}
+
+int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
+{
+ return ql_clean_inbound_rx_ring(rx_ring, budget);
+}
+
+static void __devexit qlge_remove(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ del_timer_sync(&qdev->timer);
+ ql_cancel_all_work_sync(qdev);
+ unregister_netdev(ndev);
+ ql_release_all(pdev);
+ pci_disable_device(pdev);
+ free_netdev(ndev);
+}
+
+/* Clean up resources without touching hardware. */
+static void ql_eeh_close(struct net_device *ndev)
+{
+ int i;
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ if (netif_carrier_ok(ndev)) {
+ netif_carrier_off(ndev);
+ netif_stop_queue(ndev);
+ }
+
+ /* Disabling the timer */
+ del_timer_sync(&qdev->timer);
+ ql_cancel_all_work_sync(qdev);
+
+ for (i = 0; i < qdev->rss_ring_count; i++)
+ netif_napi_del(&qdev->rx_ring[i].napi);
+
+ clear_bit(QL_ADAPTER_UP, &qdev->flags);
+ ql_tx_ring_clean(qdev);
+ ql_free_rx_buffers(qdev);
+ ql_release_adapter_resources(qdev);
+}
+
+/*
+ * This callback is called by the PCI subsystem whenever
+ * a PCI bus error is detected.
+ */
+static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
+ enum pci_channel_state state)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ switch (state) {
+ case pci_channel_io_normal:
+ return PCI_ERS_RESULT_CAN_RECOVER;
+ case pci_channel_io_frozen:
+ netif_device_detach(ndev);
+ if (netif_running(ndev))
+ ql_eeh_close(ndev);
+ pci_disable_device(pdev);
+ return PCI_ERS_RESULT_NEED_RESET;
+ case pci_channel_io_perm_failure:
+ dev_err(&pdev->dev,
+ "%s: pci_channel_io_perm_failure.\n", __func__);
+ ql_eeh_close(ndev);
+ set_bit(QL_EEH_FATAL, &qdev->flags);
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+
+ /* Request a slot reset. */
+ return PCI_ERS_RESULT_NEED_RESET;
+}
+
+/*
+ * This callback is called after the PCI buss has been reset.
+ * Basically, this tries to restart the card from scratch.
+ * This is a shortened version of the device probe/discovery code,
+ * it resembles the first-half of the () routine.
+ */
+static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+
+ pdev->error_state = pci_channel_io_normal;
+
+ pci_restore_state(pdev);
+ if (pci_enable_device(pdev)) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Cannot re-enable PCI device after reset.\n");
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+ pci_set_master(pdev);
+
+ if (ql_adapter_reset(qdev)) {
+ netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
+ set_bit(QL_EEH_FATAL, &qdev->flags);
+ return PCI_ERS_RESULT_DISCONNECT;
+ }
+
+ return PCI_ERS_RESULT_RECOVERED;
+}
+
+static void qlge_io_resume(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int err = 0;
+
+ if (netif_running(ndev)) {
+ err = qlge_open(ndev);
+ if (err) {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Device initialization failed after reset.\n");
+ return;
+ }
+ } else {
+ netif_err(qdev, ifup, qdev->ndev,
+ "Device was not running prior to EEH.\n");
+ }
+ mod_timer(&qdev->timer, jiffies + (5*HZ));
+ netif_device_attach(ndev);
+}
+
+static struct pci_error_handlers qlge_err_handler = {
+ .error_detected = qlge_io_error_detected,
+ .slot_reset = qlge_io_slot_reset,
+ .resume = qlge_io_resume,
+};
+
+static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int err;
+
+ netif_device_detach(ndev);
+ del_timer_sync(&qdev->timer);
+
+ if (netif_running(ndev)) {
+ err = ql_adapter_down(qdev);
+ if (!err)
+ return err;
+ }
+
+ ql_wol(qdev);
+ err = pci_save_state(pdev);
+ if (err)
+ return err;
+
+ pci_disable_device(pdev);
+
+ pci_set_power_state(pdev, pci_choose_state(pdev, state));
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int qlge_resume(struct pci_dev *pdev)
+{
+ struct net_device *ndev = pci_get_drvdata(pdev);
+ struct ql_adapter *qdev = netdev_priv(ndev);
+ int err;
+
+ pci_set_power_state(pdev, PCI_D0);
+ pci_restore_state(pdev);
+ err = pci_enable_device(pdev);
+ if (err) {
+ netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
+ return err;
+ }
+ pci_set_master(pdev);
+
+ pci_enable_wake(pdev, PCI_D3hot, 0);
+ pci_enable_wake(pdev, PCI_D3cold, 0);
+
+ if (netif_running(ndev)) {
+ err = ql_adapter_up(qdev);
+ if (err)
+ return err;
+ }
+
+ mod_timer(&qdev->timer, jiffies + (5*HZ));
+ netif_device_attach(ndev);
+
+ return 0;
+}
+#endif /* CONFIG_PM */
+
+static void qlge_shutdown(struct pci_dev *pdev)
+{
+ qlge_suspend(pdev, PMSG_SUSPEND);
+}
+
+static struct pci_driver qlge_driver = {
+ .name = DRV_NAME,
+ .id_table = qlge_pci_tbl,
+ .probe = qlge_probe,
+ .remove = __devexit_p(qlge_remove),
+#ifdef CONFIG_PM
+ .suspend = qlge_suspend,
+ .resume = qlge_resume,
+#endif
+ .shutdown = qlge_shutdown,
+ .err_handler = &qlge_err_handler
+};
+
+static int __init qlge_init_module(void)
+{
+ return pci_register_driver(&qlge_driver);
+}
+
+static void __exit qlge_exit(void)
+{
+ pci_unregister_driver(&qlge_driver);
+}
+
+module_init(qlge_init_module);
+module_exit(qlge_exit);