summaryrefslogtreecommitdiff
path: root/drivers/mtd/onenand
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/onenand')
-rw-r--r--drivers/mtd/onenand/Kconfig77
-rw-r--r--drivers/mtd/onenand/Makefile16
-rw-r--r--drivers/mtd/onenand/generic.c123
-rw-r--r--drivers/mtd/onenand/omap2.c837
-rw-r--r--drivers/mtd/onenand/onenand_base.c4162
-rw-r--r--drivers/mtd/onenand/onenand_bbt.c253
-rw-r--r--drivers/mtd/onenand/onenand_sim.c564
-rw-r--r--drivers/mtd/onenand/samsung.c1140
8 files changed, 7172 insertions, 0 deletions
diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig
new file mode 100644
index 00000000..91467bb0
--- /dev/null
+++ b/drivers/mtd/onenand/Kconfig
@@ -0,0 +1,77 @@
+menuconfig MTD_ONENAND
+ tristate "OneNAND Device Support"
+ depends on MTD
+ depends on HAS_IOMEM
+ help
+ This enables support for accessing all type of OneNAND flash
+ devices. For further information see
+ <http://www.samsung.com/Products/Semiconductor/OneNAND/index.htm>
+
+if MTD_ONENAND
+
+config MTD_ONENAND_VERIFY_WRITE
+ bool "Verify OneNAND page writes"
+ help
+ This adds an extra check when data is written to the flash. The
+ OneNAND flash device internally checks only bits transitioning
+ from 1 to 0. There is a rare possibility that even though the
+ device thinks the write was successful, a bit could have been
+ flipped accidentally due to device wear or something else.
+
+config MTD_ONENAND_GENERIC
+ tristate "OneNAND Flash device via platform device driver"
+ help
+ Support for OneNAND flash via platform device driver.
+
+config MTD_ONENAND_OMAP2
+ tristate "OneNAND on OMAP2/OMAP3 support"
+ depends on ARCH_OMAP2 || ARCH_OMAP3
+ help
+ Support for a OneNAND flash device connected to an OMAP2/OMAP3 CPU
+ via the GPMC memory controller.
+
+config MTD_ONENAND_SAMSUNG
+ tristate "OneNAND on Samsung SOC controller support"
+ depends on ARCH_S3C64XX || ARCH_S5PC100 || ARCH_S5PV210 || ARCH_EXYNOS4
+ help
+ Support for a OneNAND flash device connected to an Samsung SOC.
+ S3C64XX/S5PC100 use command mapping method.
+ S5PC110/S5PC210 use generic OneNAND method.
+
+config MTD_ONENAND_OTP
+ bool "OneNAND OTP Support"
+ select HAVE_MTD_OTP
+ help
+ One Block of the NAND Flash Array memory is reserved as
+ a One-Time Programmable Block memory area.
+ Also, 1st Block of NAND Flash Array can be used as OTP.
+
+ The OTP block can be read, programmed and locked using the same
+ operations as any other NAND Flash Array memory block.
+ OTP block cannot be erased.
+
+ OTP block is fully-guaranteed to be a valid block.
+
+config MTD_ONENAND_2X_PROGRAM
+ bool "OneNAND 2X program support"
+ help
+ The 2X Program is an extension of Program Operation.
+ Since the device is equipped with two DataRAMs, and two-plane NAND
+ Flash memory array, these two component enables simultaneous program
+ of 4KiB. Plane1 has only even blocks such as block0, block2, block4
+ while Plane2 has only odd blocks such as block1, block3, block5.
+ So MTD regards it as 4KiB page size and 256KiB block size
+
+ Now the following chips support it. (KFXXX16Q2M)
+ Demux: KFG2G16Q2M, KFH4G16Q2M, KFW8G16Q2M,
+ Mux: KFM2G16Q2M, KFN4G16Q2M,
+
+ And more recent chips
+
+config MTD_ONENAND_SIM
+ tristate "OneNAND simulator support"
+ help
+ The simulator may simulate various OneNAND flash chips for the
+ OneNAND MTD layer.
+
+endif # MTD_ONENAND
diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile
new file mode 100644
index 00000000..2b7884c7
--- /dev/null
+++ b/drivers/mtd/onenand/Makefile
@@ -0,0 +1,16 @@
+#
+# Makefile for the OneNAND MTD
+#
+
+# Core functionality.
+obj-$(CONFIG_MTD_ONENAND) += onenand.o
+
+# Board specific.
+obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o
+obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o
+obj-$(CONFIG_MTD_ONENAND_SAMSUNG) += samsung.o
+
+# Simulator
+obj-$(CONFIG_MTD_ONENAND_SIM) += onenand_sim.o
+
+onenand-objs = onenand_base.o onenand_bbt.o
diff --git a/drivers/mtd/onenand/generic.c b/drivers/mtd/onenand/generic.c
new file mode 100644
index 00000000..1c4f97c6
--- /dev/null
+++ b/drivers/mtd/onenand/generic.c
@@ -0,0 +1,123 @@
+/*
+ * linux/drivers/mtd/onenand/generic.c
+ *
+ * Copyright (c) 2005 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the OneNAND flash for generic boards.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+
+/*
+ * Note: Driver name and platform data format have been updated!
+ *
+ * This version of the driver is named "onenand-flash" and takes struct
+ * onenand_platform_data as platform data. The old ARM-specific version
+ * with the name "onenand" used to take struct flash_platform_data.
+ */
+#define DRIVER_NAME "onenand-flash"
+
+struct onenand_info {
+ struct mtd_info mtd;
+ struct onenand_chip onenand;
+};
+
+static int __devinit generic_onenand_probe(struct platform_device *pdev)
+{
+ struct onenand_info *info;
+ struct onenand_platform_data *pdata = pdev->dev.platform_data;
+ struct resource *res = pdev->resource;
+ unsigned long size = resource_size(res);
+ int err;
+
+ info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) {
+ err = -EBUSY;
+ goto out_free_info;
+ }
+
+ info->onenand.base = ioremap(res->start, size);
+ if (!info->onenand.base) {
+ err = -ENOMEM;
+ goto out_release_mem_region;
+ }
+
+ info->onenand.mmcontrol = pdata ? pdata->mmcontrol : 0;
+ info->onenand.irq = platform_get_irq(pdev, 0);
+
+ info->mtd.name = dev_name(&pdev->dev);
+ info->mtd.priv = &info->onenand;
+ info->mtd.owner = THIS_MODULE;
+
+ if (onenand_scan(&info->mtd, 1)) {
+ err = -ENXIO;
+ goto out_iounmap;
+ }
+
+ err = mtd_device_parse_register(&info->mtd, NULL, NULL,
+ pdata ? pdata->parts : NULL,
+ pdata ? pdata->nr_parts : 0);
+
+ platform_set_drvdata(pdev, info);
+
+ return 0;
+
+out_iounmap:
+ iounmap(info->onenand.base);
+out_release_mem_region:
+ release_mem_region(res->start, size);
+out_free_info:
+ kfree(info);
+
+ return err;
+}
+
+static int __devexit generic_onenand_remove(struct platform_device *pdev)
+{
+ struct onenand_info *info = platform_get_drvdata(pdev);
+ struct resource *res = pdev->resource;
+ unsigned long size = resource_size(res);
+
+ platform_set_drvdata(pdev, NULL);
+
+ if (info) {
+ onenand_release(&info->mtd);
+ release_mem_region(res->start, size);
+ iounmap(info->onenand.base);
+ kfree(info);
+ }
+
+ return 0;
+}
+
+static struct platform_driver generic_onenand_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .owner = THIS_MODULE,
+ },
+ .probe = generic_onenand_probe,
+ .remove = __devexit_p(generic_onenand_remove),
+};
+
+module_platform_driver(generic_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards");
+MODULE_ALIAS("platform:" DRIVER_NAME);
diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c
new file mode 100644
index 00000000..398a8278
--- /dev/null
+++ b/drivers/mtd/onenand/omap2.c
@@ -0,0 +1,837 @@
+/*
+ * linux/drivers/mtd/onenand/omap2.c
+ *
+ * OneNAND driver for OMAP2 / OMAP3
+ *
+ * Copyright © 2005-2006 Nokia Corporation
+ *
+ * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
+ * IRQ and DMA support written by Timo Teras
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; see the file COPYING. If not, write to the Free Software
+ * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ */
+
+#include <linux/device.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/regulator/consumer.h>
+
+#include <asm/mach/flash.h>
+#include <plat/gpmc.h>
+#include <plat/onenand.h>
+#include <asm/gpio.h>
+
+#include <plat/dma.h>
+
+#include <plat/board.h>
+
+#define DRIVER_NAME "omap2-onenand"
+
+#define ONENAND_IO_SIZE SZ_128K
+#define ONENAND_BUFRAM_SIZE (1024 * 5)
+
+struct omap2_onenand {
+ struct platform_device *pdev;
+ int gpmc_cs;
+ unsigned long phys_base;
+ int gpio_irq;
+ struct mtd_info mtd;
+ struct onenand_chip onenand;
+ struct completion irq_done;
+ struct completion dma_done;
+ int dma_channel;
+ int freq;
+ int (*setup)(void __iomem *base, int *freq_ptr);
+ struct regulator *regulator;
+};
+
+static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data)
+{
+ struct omap2_onenand *c = data;
+
+ complete(&c->dma_done);
+}
+
+static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id)
+{
+ struct omap2_onenand *c = dev_id;
+
+ complete(&c->irq_done);
+
+ return IRQ_HANDLED;
+}
+
+static inline unsigned short read_reg(struct omap2_onenand *c, int reg)
+{
+ return readw(c->onenand.base + reg);
+}
+
+static inline void write_reg(struct omap2_onenand *c, unsigned short value,
+ int reg)
+{
+ writew(value, c->onenand.base + reg);
+}
+
+static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
+{
+ printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
+ msg, state, ctrl, intr);
+}
+
+static void wait_warn(char *msg, int state, unsigned int ctrl,
+ unsigned int intr)
+{
+ printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x "
+ "intr 0x%04x\n", msg, state, ctrl, intr);
+}
+
+static int omap2_onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ unsigned int intr = 0;
+ unsigned int ctrl, ctrl_mask;
+ unsigned long timeout;
+ u32 syscfg;
+
+ if (state == FL_RESETING || state == FL_PREPARING_ERASE ||
+ state == FL_VERIFYING_ERASE) {
+ int i = 21;
+ unsigned int intr_flags = ONENAND_INT_MASTER;
+
+ switch (state) {
+ case FL_RESETING:
+ intr_flags |= ONENAND_INT_RESET;
+ break;
+ case FL_PREPARING_ERASE:
+ intr_flags |= ONENAND_INT_ERASE;
+ break;
+ case FL_VERIFYING_ERASE:
+ i = 101;
+ break;
+ }
+
+ while (--i) {
+ udelay(1);
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if (intr & ONENAND_INT_MASTER)
+ break;
+ }
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ wait_err("controller error", state, ctrl, intr);
+ return -EIO;
+ }
+ if ((intr & intr_flags) == intr_flags)
+ return 0;
+ /* Continue in wait for interrupt branch */
+ }
+
+ if (state != FL_READING) {
+ int result;
+
+ /* Turn interrupts on */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) {
+ syscfg |= ONENAND_SYS_CFG1_IOBE;
+ write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+ if (cpu_is_omap34xx())
+ /* Add a delay to let GPIO settle */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ }
+
+ INIT_COMPLETION(c->irq_done);
+ if (c->gpio_irq) {
+ result = gpio_get_value(c->gpio_irq);
+ if (result == -1) {
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ wait_err("gpio error", state, ctrl, intr);
+ return -EIO;
+ }
+ } else
+ result = 0;
+ if (result == 0) {
+ int retry_cnt = 0;
+retry:
+ result = wait_for_completion_timeout(&c->irq_done,
+ msecs_to_jiffies(20));
+ if (result == 0) {
+ /* Timeout after 20ms */
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ONGO &&
+ !this->ongoing) {
+ /*
+ * The operation seems to be still going
+ * so give it some more time.
+ */
+ retry_cnt += 1;
+ if (retry_cnt < 3)
+ goto retry;
+ intr = read_reg(c,
+ ONENAND_REG_INTERRUPT);
+ wait_err("timeout", state, ctrl, intr);
+ return -EIO;
+ }
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if ((intr & ONENAND_INT_MASTER) == 0)
+ wait_warn("timeout", state, ctrl, intr);
+ }
+ }
+ } else {
+ int retry_cnt = 0;
+
+ /* Turn interrupts off */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ syscfg &= ~ONENAND_SYS_CFG1_IOBE;
+ write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (1) {
+ if (time_before(jiffies, timeout)) {
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if (intr & ONENAND_INT_MASTER)
+ break;
+ } else {
+ /* Timeout after 20ms */
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ONGO) {
+ /*
+ * The operation seems to be still going
+ * so give it some more time.
+ */
+ retry_cnt += 1;
+ if (retry_cnt < 3) {
+ timeout = jiffies +
+ msecs_to_jiffies(20);
+ continue;
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+
+ if (intr & ONENAND_INT_READ) {
+ int ecc = read_reg(c, ONENAND_REG_ECC_STATUS);
+
+ if (ecc) {
+ unsigned int addr1, addr8;
+
+ addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1);
+ addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8);
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ printk(KERN_ERR "onenand_wait: ECC error = "
+ "0x%04x, addr1 %#x, addr8 %#x\n",
+ ecc, addr1, addr8);
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ } else if (ecc & ONENAND_ECC_1BIT_ALL) {
+ printk(KERN_NOTICE "onenand_wait: correctable "
+ "ECC error = 0x%04x, addr1 %#x, "
+ "addr8 %#x\n", ecc, addr1, addr8);
+ mtd->ecc_stats.corrected++;
+ }
+ }
+ } else if (state == FL_READING) {
+ wait_err("timeout", state, ctrl, intr);
+ return -EIO;
+ }
+
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ wait_err("controller error", state, ctrl, intr);
+ if (ctrl & ONENAND_CTRL_LOCK)
+ printk(KERN_ERR "onenand_wait: "
+ "Device is write protected!!!\n");
+ return -EIO;
+ }
+
+ ctrl_mask = 0xFE9F;
+ if (this->ongoing)
+ ctrl_mask &= ~0x8000;
+
+ if (ctrl & ctrl_mask)
+ wait_warn("unexpected controller status", state, ctrl, intr);
+
+ return 0;
+}
+
+static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ if (area == ONENAND_DATARAM)
+ return this->writesize;
+ if (area == ONENAND_SPARERAM)
+ return mtd->oobsize;
+ }
+
+ return 0;
+}
+
+#if defined(CONFIG_ARCH_OMAP3) || defined(MULTI_OMAP2)
+
+static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+ unsigned long timeout;
+ void *buf = (void *)buffer;
+ size_t xtra;
+ volatile unsigned *done;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
+ goto out_copy;
+
+ /* panic_write() may be in an interrupt context */
+ if (in_interrupt() || oops_in_progress)
+ goto out_copy;
+
+ if (buf >= high_memory) {
+ struct page *p1;
+
+ if (((size_t)buf & PAGE_MASK) !=
+ ((size_t)(buf + count - 1) & PAGE_MASK))
+ goto out_copy;
+ p1 = vmalloc_to_page(buf);
+ if (!p1)
+ goto out_copy;
+ buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
+ }
+
+ xtra = count & 3;
+ if (xtra) {
+ count -= xtra;
+ memcpy(buf + count, this->base + bram_offset + count, xtra);
+ }
+
+ dma_src = c->phys_base + bram_offset;
+ dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE);
+ if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ goto out_copy;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
+ count >> 2, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+
+ timeout = jiffies + msecs_to_jiffies(20);
+ done = &c->dma_done.done;
+ while (time_before(jiffies, timeout))
+ if (*done)
+ break;
+
+ dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
+
+ if (!*done) {
+ dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
+ goto out_copy;
+ }
+
+ return 0;
+
+out_copy:
+ memcpy(buf, this->base + bram_offset, count);
+ return 0;
+}
+
+static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+ unsigned long timeout;
+ void *buf = (void *)buffer;
+ volatile unsigned *done;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
+ goto out_copy;
+
+ /* panic_write() may be in an interrupt context */
+ if (in_interrupt() || oops_in_progress)
+ goto out_copy;
+
+ if (buf >= high_memory) {
+ struct page *p1;
+
+ if (((size_t)buf & PAGE_MASK) !=
+ ((size_t)(buf + count - 1) & PAGE_MASK))
+ goto out_copy;
+ p1 = vmalloc_to_page(buf);
+ if (!p1)
+ goto out_copy;
+ buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
+ }
+
+ dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE);
+ dma_dst = c->phys_base + bram_offset;
+ if (dma_mapping_error(&c->pdev->dev, dma_src)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ return -1;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
+ count >> 2, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+
+ timeout = jiffies + msecs_to_jiffies(20);
+ done = &c->dma_done.done;
+ while (time_before(jiffies, timeout))
+ if (*done)
+ break;
+
+ dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE);
+
+ if (!*done) {
+ dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
+ goto out_copy;
+ }
+
+ return 0;
+
+out_copy:
+ memcpy(this->base + bram_offset, buf, count);
+ return 0;
+}
+
+#else
+
+int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count);
+
+int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count);
+
+#endif
+
+#if defined(CONFIG_ARCH_OMAP2) || defined(MULTI_OMAP2)
+
+static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ /* DMA is not used. Revisit PM requirements before enabling it. */
+ if (1 || (c->dma_channel < 0) ||
+ ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) ||
+ (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) {
+ memcpy(buffer, (__force void *)(this->base + bram_offset),
+ count);
+ return 0;
+ }
+
+ dma_src = c->phys_base + bram_offset;
+ dma_dst = dma_map_single(&c->pdev->dev, buffer, count,
+ DMA_FROM_DEVICE);
+ if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ return -1;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
+ count / 4, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+ wait_for_completion(&c->dma_done);
+
+ dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
+
+ return 0;
+}
+
+static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ /* DMA is not used. Revisit PM requirements before enabling it. */
+ if (1 || (c->dma_channel < 0) ||
+ ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) ||
+ (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) {
+ memcpy((__force void *)(this->base + bram_offset), buffer,
+ count);
+ return 0;
+ }
+
+ dma_src = dma_map_single(&c->pdev->dev, (void *) buffer, count,
+ DMA_TO_DEVICE);
+ dma_dst = c->phys_base + bram_offset;
+ if (dma_mapping_error(&c->pdev->dev, dma_src)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ return -1;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S16,
+ count / 2, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+ wait_for_completion(&c->dma_done);
+
+ dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE);
+
+ return 0;
+}
+
+#else
+
+int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count);
+
+int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count);
+
+#endif
+
+static struct platform_driver omap2_onenand_driver;
+
+static int __adjust_timing(struct device *dev, void *data)
+{
+ int ret = 0;
+ struct omap2_onenand *c;
+
+ c = dev_get_drvdata(dev);
+
+ BUG_ON(c->setup == NULL);
+
+ /* DMA is not in use so this is all that is needed */
+ /* Revisit for OMAP3! */
+ ret = c->setup(c->onenand.base, &c->freq);
+
+ return ret;
+}
+
+int omap2_onenand_rephase(void)
+{
+ return driver_for_each_device(&omap2_onenand_driver.driver, NULL,
+ NULL, __adjust_timing);
+}
+
+static void omap2_onenand_shutdown(struct platform_device *pdev)
+{
+ struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+ /* With certain content in the buffer RAM, the OMAP boot ROM code
+ * can recognize the flash chip incorrectly. Zero it out before
+ * soft reset.
+ */
+ memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE);
+}
+
+static int omap2_onenand_enable(struct mtd_info *mtd)
+{
+ int ret;
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+
+ ret = regulator_enable(c->regulator);
+ if (ret != 0)
+ dev_err(&c->pdev->dev, "can't enable regulator\n");
+
+ return ret;
+}
+
+static int omap2_onenand_disable(struct mtd_info *mtd)
+{
+ int ret;
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+
+ ret = regulator_disable(c->regulator);
+ if (ret != 0)
+ dev_err(&c->pdev->dev, "can't disable regulator\n");
+
+ return ret;
+}
+
+static int __devinit omap2_onenand_probe(struct platform_device *pdev)
+{
+ struct omap_onenand_platform_data *pdata;
+ struct omap2_onenand *c;
+ struct onenand_chip *this;
+ int r;
+
+ pdata = pdev->dev.platform_data;
+ if (pdata == NULL) {
+ dev_err(&pdev->dev, "platform data missing\n");
+ return -ENODEV;
+ }
+
+ c = kzalloc(sizeof(struct omap2_onenand), GFP_KERNEL);
+ if (!c)
+ return -ENOMEM;
+
+ init_completion(&c->irq_done);
+ init_completion(&c->dma_done);
+ c->gpmc_cs = pdata->cs;
+ c->gpio_irq = pdata->gpio_irq;
+ c->dma_channel = pdata->dma_channel;
+ if (c->dma_channel < 0) {
+ /* if -1, don't use DMA */
+ c->gpio_irq = 0;
+ }
+
+ r = gpmc_cs_request(c->gpmc_cs, ONENAND_IO_SIZE, &c->phys_base);
+ if (r < 0) {
+ dev_err(&pdev->dev, "Cannot request GPMC CS\n");
+ goto err_kfree;
+ }
+
+ if (request_mem_region(c->phys_base, ONENAND_IO_SIZE,
+ pdev->dev.driver->name) == NULL) {
+ dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, "
+ "size: 0x%x\n", c->phys_base, ONENAND_IO_SIZE);
+ r = -EBUSY;
+ goto err_free_cs;
+ }
+ c->onenand.base = ioremap(c->phys_base, ONENAND_IO_SIZE);
+ if (c->onenand.base == NULL) {
+ r = -ENOMEM;
+ goto err_release_mem_region;
+ }
+
+ if (pdata->onenand_setup != NULL) {
+ r = pdata->onenand_setup(c->onenand.base, &c->freq);
+ if (r < 0) {
+ dev_err(&pdev->dev, "Onenand platform setup failed: "
+ "%d\n", r);
+ goto err_iounmap;
+ }
+ c->setup = pdata->onenand_setup;
+ }
+
+ if (c->gpio_irq) {
+ if ((r = gpio_request(c->gpio_irq, "OneNAND irq")) < 0) {
+ dev_err(&pdev->dev, "Failed to request GPIO%d for "
+ "OneNAND\n", c->gpio_irq);
+ goto err_iounmap;
+ }
+ gpio_direction_input(c->gpio_irq);
+
+ if ((r = request_irq(gpio_to_irq(c->gpio_irq),
+ omap2_onenand_interrupt, IRQF_TRIGGER_RISING,
+ pdev->dev.driver->name, c)) < 0)
+ goto err_release_gpio;
+ }
+
+ if (c->dma_channel >= 0) {
+ r = omap_request_dma(0, pdev->dev.driver->name,
+ omap2_onenand_dma_cb, (void *) c,
+ &c->dma_channel);
+ if (r == 0) {
+ omap_set_dma_write_mode(c->dma_channel,
+ OMAP_DMA_WRITE_NON_POSTED);
+ omap_set_dma_src_data_pack(c->dma_channel, 1);
+ omap_set_dma_src_burst_mode(c->dma_channel,
+ OMAP_DMA_DATA_BURST_8);
+ omap_set_dma_dest_data_pack(c->dma_channel, 1);
+ omap_set_dma_dest_burst_mode(c->dma_channel,
+ OMAP_DMA_DATA_BURST_8);
+ } else {
+ dev_info(&pdev->dev,
+ "failed to allocate DMA for OneNAND, "
+ "using PIO instead\n");
+ c->dma_channel = -1;
+ }
+ }
+
+ dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual "
+ "base %p, freq %d MHz\n", c->gpmc_cs, c->phys_base,
+ c->onenand.base, c->freq);
+
+ c->pdev = pdev;
+ c->mtd.name = dev_name(&pdev->dev);
+ c->mtd.priv = &c->onenand;
+ c->mtd.owner = THIS_MODULE;
+
+ c->mtd.dev.parent = &pdev->dev;
+
+ this = &c->onenand;
+ if (c->dma_channel >= 0) {
+ this->wait = omap2_onenand_wait;
+ if (cpu_is_omap34xx()) {
+ this->read_bufferram = omap3_onenand_read_bufferram;
+ this->write_bufferram = omap3_onenand_write_bufferram;
+ } else {
+ this->read_bufferram = omap2_onenand_read_bufferram;
+ this->write_bufferram = omap2_onenand_write_bufferram;
+ }
+ }
+
+ if (pdata->regulator_can_sleep) {
+ c->regulator = regulator_get(&pdev->dev, "vonenand");
+ if (IS_ERR(c->regulator)) {
+ dev_err(&pdev->dev, "Failed to get regulator\n");
+ r = PTR_ERR(c->regulator);
+ goto err_release_dma;
+ }
+ c->onenand.enable = omap2_onenand_enable;
+ c->onenand.disable = omap2_onenand_disable;
+ }
+
+ if (pdata->skip_initial_unlocking)
+ this->options |= ONENAND_SKIP_INITIAL_UNLOCKING;
+
+ if ((r = onenand_scan(&c->mtd, 1)) < 0)
+ goto err_release_regulator;
+
+ r = mtd_device_parse_register(&c->mtd, NULL, NULL,
+ pdata ? pdata->parts : NULL,
+ pdata ? pdata->nr_parts : 0);
+ if (r)
+ goto err_release_onenand;
+
+ platform_set_drvdata(pdev, c);
+
+ return 0;
+
+err_release_onenand:
+ onenand_release(&c->mtd);
+err_release_regulator:
+ regulator_put(c->regulator);
+err_release_dma:
+ if (c->dma_channel != -1)
+ omap_free_dma(c->dma_channel);
+ if (c->gpio_irq)
+ free_irq(gpio_to_irq(c->gpio_irq), c);
+err_release_gpio:
+ if (c->gpio_irq)
+ gpio_free(c->gpio_irq);
+err_iounmap:
+ iounmap(c->onenand.base);
+err_release_mem_region:
+ release_mem_region(c->phys_base, ONENAND_IO_SIZE);
+err_free_cs:
+ gpmc_cs_free(c->gpmc_cs);
+err_kfree:
+ kfree(c);
+
+ return r;
+}
+
+static int __devexit omap2_onenand_remove(struct platform_device *pdev)
+{
+ struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+ onenand_release(&c->mtd);
+ regulator_put(c->regulator);
+ if (c->dma_channel != -1)
+ omap_free_dma(c->dma_channel);
+ omap2_onenand_shutdown(pdev);
+ platform_set_drvdata(pdev, NULL);
+ if (c->gpio_irq) {
+ free_irq(gpio_to_irq(c->gpio_irq), c);
+ gpio_free(c->gpio_irq);
+ }
+ iounmap(c->onenand.base);
+ release_mem_region(c->phys_base, ONENAND_IO_SIZE);
+ gpmc_cs_free(c->gpmc_cs);
+ kfree(c);
+
+ return 0;
+}
+
+static struct platform_driver omap2_onenand_driver = {
+ .probe = omap2_onenand_probe,
+ .remove = __devexit_p(omap2_onenand_remove),
+ .shutdown = omap2_onenand_shutdown,
+ .driver = {
+ .name = DRIVER_NAME,
+ .owner = THIS_MODULE,
+ },
+};
+
+static int __init omap2_onenand_init(void)
+{
+ printk(KERN_INFO "OneNAND driver initializing\n");
+ return platform_driver_register(&omap2_onenand_driver);
+}
+
+static void __exit omap2_onenand_exit(void)
+{
+ platform_driver_unregister(&omap2_onenand_driver);
+}
+
+module_init(omap2_onenand_init);
+module_exit(omap2_onenand_exit);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c
new file mode 100644
index 00000000..b3ce12ef
--- /dev/null
+++ b/drivers/mtd/onenand/onenand_base.c
@@ -0,0 +1,4162 @@
+/*
+ * linux/drivers/mtd/onenand/onenand_base.c
+ *
+ * Copyright © 2005-2009 Samsung Electronics
+ * Copyright © 2007 Nokia Corporation
+ *
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * Credits:
+ * Adrian Hunter <ext-adrian.hunter@nokia.com>:
+ * auto-placement support, read-while load support, various fixes
+ *
+ * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
+ * Flex-OneNAND support
+ * Amul Kumar Saha <amul.saha at samsung.com>
+ * OTP support
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/jiffies.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+
+/*
+ * Multiblock erase if number of blocks to erase is 2 or more.
+ * Maximum number of blocks for simultaneous erase is 64.
+ */
+#define MB_ERASE_MIN_BLK_COUNT 2
+#define MB_ERASE_MAX_BLK_COUNT 64
+
+/* Default Flex-OneNAND boundary and lock respectively */
+static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
+
+module_param_array(flex_bdry, int, NULL, 0400);
+MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
+ "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
+ "DIE_BDRY: SLC boundary of the die"
+ "LOCK: Locking information for SLC boundary"
+ " : 0->Set boundary in unlocked status"
+ " : 1->Set boundary in locked status");
+
+/* Default OneNAND/Flex-OneNAND OTP options*/
+static int otp;
+
+module_param(otp, int, 0400);
+MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
+ "Syntax : otp=LOCK_TYPE"
+ "LOCK_TYPE : Keys issued, for specific OTP Lock type"
+ " : 0 -> Default (No Blocks Locked)"
+ " : 1 -> OTP Block lock"
+ " : 2 -> 1st Block lock"
+ " : 3 -> BOTH OTP Block and 1st Block lock");
+
+/*
+ * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
+ * For now, we expose only 64 out of 80 ecc bytes
+ */
+static struct nand_ecclayout flexonenand_oob_128 = {
+ .eccbytes = 64,
+ .eccpos = {
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
+ 102, 103, 104, 105
+ },
+ .oobfree = {
+ {2, 4}, {18, 4}, {34, 4}, {50, 4},
+ {66, 4}, {82, 4}, {98, 4}, {114, 4}
+ }
+};
+
+/*
+ * onenand_oob_128 - oob info for OneNAND with 4KB page
+ *
+ * Based on specification:
+ * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
+ *
+ * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout)
+ *
+ * oobfree uses the spare area fields marked as
+ * "Managed by internal ECC logic for Logical Sector Number area"
+ */
+static struct nand_ecclayout onenand_oob_128 = {
+ .eccbytes = 64,
+ .eccpos = {
+ 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 39, 40, 41, 42, 43, 44, 45, 46, 47,
+ 55, 56, 57, 58, 59, 60, 61, 62, 63,
+ 71, 72, 73, 74, 75, 76, 77, 78, 79,
+ 87, 88, 89, 90, 91, 92, 93, 94, 95,
+ 103, 104, 105, 106, 107, 108, 109, 110, 111,
+ 119
+ },
+ .oobfree = {
+ {2, 3}, {18, 3}, {34, 3}, {50, 3},
+ {66, 3}, {82, 3}, {98, 3}, {114, 3}
+ }
+};
+
+/**
+ * onenand_oob_64 - oob info for large (2KB) page
+ */
+static struct nand_ecclayout onenand_oob_64 = {
+ .eccbytes = 20,
+ .eccpos = {
+ 8, 9, 10, 11, 12,
+ 24, 25, 26, 27, 28,
+ 40, 41, 42, 43, 44,
+ 56, 57, 58, 59, 60,
+ },
+ .oobfree = {
+ {2, 3}, {14, 2}, {18, 3}, {30, 2},
+ {34, 3}, {46, 2}, {50, 3}, {62, 2}
+ }
+};
+
+/**
+ * onenand_oob_32 - oob info for middle (1KB) page
+ */
+static struct nand_ecclayout onenand_oob_32 = {
+ .eccbytes = 10,
+ .eccpos = {
+ 8, 9, 10, 11, 12,
+ 24, 25, 26, 27, 28,
+ },
+ .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
+};
+
+static const unsigned char ffchars[] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
+};
+
+/**
+ * onenand_readw - [OneNAND Interface] Read OneNAND register
+ * @param addr address to read
+ *
+ * Read OneNAND register
+ */
+static unsigned short onenand_readw(void __iomem *addr)
+{
+ return readw(addr);
+}
+
+/**
+ * onenand_writew - [OneNAND Interface] Write OneNAND register with value
+ * @param value value to write
+ * @param addr address to write
+ *
+ * Write OneNAND register with value
+ */
+static void onenand_writew(unsigned short value, void __iomem *addr)
+{
+ writew(value, addr);
+}
+
+/**
+ * onenand_block_address - [DEFAULT] Get block address
+ * @param this onenand chip data structure
+ * @param block the block
+ * @return translated block address if DDP, otherwise same
+ *
+ * Setup Start Address 1 Register (F100h)
+ */
+static int onenand_block_address(struct onenand_chip *this, int block)
+{
+ /* Device Flash Core select, NAND Flash Block Address */
+ if (block & this->density_mask)
+ return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
+
+ return block;
+}
+
+/**
+ * onenand_bufferram_address - [DEFAULT] Get bufferram address
+ * @param this onenand chip data structure
+ * @param block the block
+ * @return set DBS value if DDP, otherwise 0
+ *
+ * Setup Start Address 2 Register (F101h) for DDP
+ */
+static int onenand_bufferram_address(struct onenand_chip *this, int block)
+{
+ /* Device BufferRAM Select */
+ if (block & this->density_mask)
+ return ONENAND_DDP_CHIP1;
+
+ return ONENAND_DDP_CHIP0;
+}
+
+/**
+ * onenand_page_address - [DEFAULT] Get page address
+ * @param page the page address
+ * @param sector the sector address
+ * @return combined page and sector address
+ *
+ * Setup Start Address 8 Register (F107h)
+ */
+static int onenand_page_address(int page, int sector)
+{
+ /* Flash Page Address, Flash Sector Address */
+ int fpa, fsa;
+
+ fpa = page & ONENAND_FPA_MASK;
+ fsa = sector & ONENAND_FSA_MASK;
+
+ return ((fpa << ONENAND_FPA_SHIFT) | fsa);
+}
+
+/**
+ * onenand_buffer_address - [DEFAULT] Get buffer address
+ * @param dataram1 DataRAM index
+ * @param sectors the sector address
+ * @param count the number of sectors
+ * @return the start buffer value
+ *
+ * Setup Start Buffer Register (F200h)
+ */
+static int onenand_buffer_address(int dataram1, int sectors, int count)
+{
+ int bsa, bsc;
+
+ /* BufferRAM Sector Address */
+ bsa = sectors & ONENAND_BSA_MASK;
+
+ if (dataram1)
+ bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
+ else
+ bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
+
+ /* BufferRAM Sector Count */
+ bsc = count & ONENAND_BSC_MASK;
+
+ return ((bsa << ONENAND_BSA_SHIFT) | bsc);
+}
+
+/**
+ * flexonenand_block- For given address return block number
+ * @param this - OneNAND device structure
+ * @param addr - Address for which block number is needed
+ */
+static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
+{
+ unsigned boundary, blk, die = 0;
+
+ if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
+ die = 1;
+ addr -= this->diesize[0];
+ }
+
+ boundary = this->boundary[die];
+
+ blk = addr >> (this->erase_shift - 1);
+ if (blk > boundary)
+ blk = (blk + boundary + 1) >> 1;
+
+ blk += die ? this->density_mask : 0;
+ return blk;
+}
+
+inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
+{
+ if (!FLEXONENAND(this))
+ return addr >> this->erase_shift;
+ return flexonenand_block(this, addr);
+}
+
+/**
+ * flexonenand_addr - Return address of the block
+ * @this: OneNAND device structure
+ * @block: Block number on Flex-OneNAND
+ *
+ * Return address of the block
+ */
+static loff_t flexonenand_addr(struct onenand_chip *this, int block)
+{
+ loff_t ofs = 0;
+ int die = 0, boundary;
+
+ if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
+ block -= this->density_mask;
+ die = 1;
+ ofs = this->diesize[0];
+ }
+
+ boundary = this->boundary[die];
+ ofs += (loff_t)block << (this->erase_shift - 1);
+ if (block > (boundary + 1))
+ ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
+ return ofs;
+}
+
+loff_t onenand_addr(struct onenand_chip *this, int block)
+{
+ if (!FLEXONENAND(this))
+ return (loff_t)block << this->erase_shift;
+ return flexonenand_addr(this, block);
+}
+EXPORT_SYMBOL(onenand_addr);
+
+/**
+ * onenand_get_density - [DEFAULT] Get OneNAND density
+ * @param dev_id OneNAND device ID
+ *
+ * Get OneNAND density from device ID
+ */
+static inline int onenand_get_density(int dev_id)
+{
+ int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
+ return (density & ONENAND_DEVICE_DENSITY_MASK);
+}
+
+/**
+ * flexonenand_region - [Flex-OneNAND] Return erase region of addr
+ * @param mtd MTD device structure
+ * @param addr address whose erase region needs to be identified
+ */
+int flexonenand_region(struct mtd_info *mtd, loff_t addr)
+{
+ int i;
+
+ for (i = 0; i < mtd->numeraseregions; i++)
+ if (addr < mtd->eraseregions[i].offset)
+ break;
+ return i - 1;
+}
+EXPORT_SYMBOL(flexonenand_region);
+
+/**
+ * onenand_command - [DEFAULT] Send command to OneNAND device
+ * @param mtd MTD device structure
+ * @param cmd the command to be sent
+ * @param addr offset to read from or write to
+ * @param len number of bytes to read or write
+ *
+ * Send command to OneNAND device. This function is used for middle/large page
+ * devices (1KB/2KB Bytes per page)
+ */
+static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int value, block, page;
+
+ /* Address translation */
+ switch (cmd) {
+ case ONENAND_CMD_UNLOCK:
+ case ONENAND_CMD_LOCK:
+ case ONENAND_CMD_LOCK_TIGHT:
+ case ONENAND_CMD_UNLOCK_ALL:
+ block = -1;
+ page = -1;
+ break;
+
+ case FLEXONENAND_CMD_PI_ACCESS:
+ /* addr contains die index */
+ block = addr * this->density_mask;
+ page = -1;
+ break;
+
+ case ONENAND_CMD_ERASE:
+ case ONENAND_CMD_MULTIBLOCK_ERASE:
+ case ONENAND_CMD_ERASE_VERIFY:
+ case ONENAND_CMD_BUFFERRAM:
+ case ONENAND_CMD_OTP_ACCESS:
+ block = onenand_block(this, addr);
+ page = -1;
+ break;
+
+ case FLEXONENAND_CMD_READ_PI:
+ cmd = ONENAND_CMD_READ;
+ block = addr * this->density_mask;
+ page = 0;
+ break;
+
+ default:
+ block = onenand_block(this, addr);
+ if (FLEXONENAND(this))
+ page = (int) (addr - onenand_addr(this, block))>>\
+ this->page_shift;
+ else
+ page = (int) (addr >> this->page_shift);
+ if (ONENAND_IS_2PLANE(this)) {
+ /* Make the even block number */
+ block &= ~1;
+ /* Is it the odd plane? */
+ if (addr & this->writesize)
+ block++;
+ page >>= 1;
+ }
+ page &= this->page_mask;
+ break;
+ }
+
+ /* NOTE: The setting order of the registers is very important! */
+ if (cmd == ONENAND_CMD_BUFFERRAM) {
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+
+ if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
+ /* It is always BufferRAM0 */
+ ONENAND_SET_BUFFERRAM0(this);
+ else
+ /* Switch to the next data buffer */
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+
+ return 0;
+ }
+
+ if (block != -1) {
+ /* Write 'DFS, FBA' of Flash */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ }
+
+ if (page != -1) {
+ /* Now we use page size operation */
+ int sectors = 0, count = 0;
+ int dataram;
+
+ switch (cmd) {
+ case FLEXONENAND_CMD_RECOVER_LSB:
+ case ONENAND_CMD_READ:
+ case ONENAND_CMD_READOOB:
+ if (ONENAND_IS_4KB_PAGE(this))
+ /* It is always BufferRAM0 */
+ dataram = ONENAND_SET_BUFFERRAM0(this);
+ else
+ dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
+ break;
+
+ default:
+ if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+ cmd = ONENAND_CMD_2X_PROG;
+ dataram = ONENAND_CURRENT_BUFFERRAM(this);
+ break;
+ }
+
+ /* Write 'FPA, FSA' of Flash */
+ value = onenand_page_address(page, sectors);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
+
+ /* Write 'BSA, BSC' of DataRAM */
+ value = onenand_buffer_address(dataram, sectors, count);
+ this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+ }
+
+ /* Interrupt clear */
+ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+ /* Write command */
+ this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+ return 0;
+}
+
+/**
+ * onenand_read_ecc - return ecc status
+ * @param this onenand chip structure
+ */
+static inline int onenand_read_ecc(struct onenand_chip *this)
+{
+ int ecc, i, result = 0;
+
+ if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
+ return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+
+ for (i = 0; i < 4; i++) {
+ ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
+ if (likely(!ecc))
+ continue;
+ if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
+ return ONENAND_ECC_2BIT_ALL;
+ else
+ result = ONENAND_ECC_1BIT_ALL;
+ }
+
+ return result;
+}
+
+/**
+ * onenand_wait - [DEFAULT] wait until the command is done
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Wait for command done. This applies to all OneNAND command
+ * Read can take up to 30us, erase up to 2ms and program up to 350us
+ * according to general OneNAND specs
+ */
+static int onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip * this = mtd->priv;
+ unsigned long timeout;
+ unsigned int flags = ONENAND_INT_MASTER;
+ unsigned int interrupt = 0;
+ unsigned int ctrl;
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+ if (interrupt & flags)
+ break;
+
+ if (state != FL_READING && state != FL_PREPARING_ERASE)
+ cond_resched();
+ }
+ /* To get correct interrupt status in timeout case */
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+ ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+
+ /*
+ * In the Spec. it checks the controller status first
+ * However if you get the correct information in case of
+ * power off recovery (POR) test, it should read ECC status first
+ */
+ if (interrupt & ONENAND_INT_READ) {
+ int ecc = onenand_read_ecc(this);
+ if (ecc) {
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ printk(KERN_ERR "%s: ECC error = 0x%04x\n",
+ __func__, ecc);
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ } else if (ecc & ONENAND_ECC_1BIT_ALL) {
+ printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
+ __func__, ecc);
+ mtd->ecc_stats.corrected++;
+ }
+ }
+ } else if (state == FL_READING) {
+ printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
+ __func__, ctrl, interrupt);
+ return -EIO;
+ }
+
+ if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
+ printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
+ __func__, ctrl, interrupt);
+ return -EIO;
+ }
+
+ if (!(interrupt & ONENAND_INT_MASTER)) {
+ printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
+ __func__, ctrl, interrupt);
+ return -EIO;
+ }
+
+ /* If there's controller error, it's a real error */
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ printk(KERN_ERR "%s: controller error = 0x%04x\n",
+ __func__, ctrl);
+ if (ctrl & ONENAND_CTRL_LOCK)
+ printk(KERN_ERR "%s: it's locked error.\n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * onenand_interrupt - [DEFAULT] onenand interrupt handler
+ * @param irq onenand interrupt number
+ * @param dev_id interrupt data
+ *
+ * complete the work
+ */
+static irqreturn_t onenand_interrupt(int irq, void *data)
+{
+ struct onenand_chip *this = data;
+
+ /* To handle shared interrupt */
+ if (!this->complete.done)
+ complete(&this->complete);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * onenand_interrupt_wait - [DEFAULT] wait until the command is done
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ wait_for_completion(&this->complete);
+
+ return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Try interrupt based wait (It is used one-time)
+ */
+static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned long remain, timeout;
+
+ /* We use interrupt wait first */
+ this->wait = onenand_interrupt_wait;
+
+ timeout = msecs_to_jiffies(100);
+ remain = wait_for_completion_timeout(&this->complete, timeout);
+ if (!remain) {
+ printk(KERN_INFO "OneNAND: There's no interrupt. "
+ "We use the normal wait\n");
+
+ /* Release the irq */
+ free_irq(this->irq, this);
+
+ this->wait = onenand_wait;
+ }
+
+ return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
+ * @param mtd MTD device structure
+ *
+ * There's two method to wait onenand work
+ * 1. polling - read interrupt status register
+ * 2. interrupt - use the kernel interrupt method
+ */
+static void onenand_setup_wait(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int syscfg;
+
+ init_completion(&this->complete);
+
+ if (this->irq <= 0) {
+ this->wait = onenand_wait;
+ return;
+ }
+
+ if (request_irq(this->irq, &onenand_interrupt,
+ IRQF_SHARED, "onenand", this)) {
+ /* If we can't get irq, use the normal wait */
+ this->wait = onenand_wait;
+ return;
+ }
+
+ /* Enable interrupt */
+ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+ syscfg |= ONENAND_SYS_CFG1_IOBE;
+ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+ this->wait = onenand_try_interrupt_wait;
+}
+
+/**
+ * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @return offset given area
+ *
+ * Return BufferRAM offset given area
+ */
+static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ /* Note: the 'this->writesize' is a real page size */
+ if (area == ONENAND_DATARAM)
+ return this->writesize;
+ if (area == ONENAND_SPARERAM)
+ return mtd->oobsize;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Read the BufferRAM area
+ */
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+ unsigned short word;
+
+ /* Align with word(16-bit) size */
+ count--;
+
+ /* Read word and save byte */
+ word = this->read_word(bufferram + offset + count);
+ buffer[count] = (word & 0xff);
+ }
+
+ memcpy(buffer, bufferram + offset, count);
+
+ return 0;
+}
+
+/**
+ * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Read the BufferRAM area with Sync. Burst Mode
+ */
+static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
+
+ if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+ unsigned short word;
+
+ /* Align with word(16-bit) size */
+ count--;
+
+ /* Read word and save byte */
+ word = this->read_word(bufferram + offset + count);
+ buffer[count] = (word & 0xff);
+ }
+
+ memcpy(buffer, bufferram + offset, count);
+
+ this->mmcontrol(mtd, 0);
+
+ return 0;
+}
+
+/**
+ * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
+ * @param mtd MTD data structure
+ * @param area BufferRAM area
+ * @param buffer the databuffer to put/get data
+ * @param offset offset to read from or write to
+ * @param count number of bytes to read/write
+ *
+ * Write the BufferRAM area
+ */
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *bufferram;
+
+ bufferram = this->base + area;
+
+ bufferram += onenand_bufferram_offset(mtd, area);
+
+ if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+ unsigned short word;
+ int byte_offset;
+
+ /* Align with word(16-bit) size */
+ count--;
+
+ /* Calculate byte access offset */
+ byte_offset = offset + count;
+
+ /* Read word and save byte */
+ word = this->read_word(bufferram + byte_offset);
+ word = (word & ~0xff) | buffer[count];
+ this->write_word(word, bufferram + byte_offset);
+ }
+
+ memcpy(bufferram + offset, buffer, count);
+
+ return 0;
+}
+
+/**
+ * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
+ * @param mtd MTD data structure
+ * @param addr address to check
+ * @return blockpage address
+ *
+ * Get blockpage address at 2x program mode
+ */
+static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
+{
+ struct onenand_chip *this = mtd->priv;
+ int blockpage, block, page;
+
+ /* Calculate the even block number */
+ block = (int) (addr >> this->erase_shift) & ~1;
+ /* Is it the odd plane? */
+ if (addr & this->writesize)
+ block++;
+ page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
+ blockpage = (block << 7) | page;
+
+ return blockpage;
+}
+
+/**
+ * onenand_check_bufferram - [GENERIC] Check BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr address to check
+ * @return 1 if there are valid data, otherwise 0
+ *
+ * Check bufferram if there is data we required
+ */
+static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
+{
+ struct onenand_chip *this = mtd->priv;
+ int blockpage, found = 0;
+ unsigned int i;
+
+ if (ONENAND_IS_2PLANE(this))
+ blockpage = onenand_get_2x_blockpage(mtd, addr);
+ else
+ blockpage = (int) (addr >> this->page_shift);
+
+ /* Is there valid data? */
+ i = ONENAND_CURRENT_BUFFERRAM(this);
+ if (this->bufferram[i].blockpage == blockpage)
+ found = 1;
+ else {
+ /* Check another BufferRAM */
+ i = ONENAND_NEXT_BUFFERRAM(this);
+ if (this->bufferram[i].blockpage == blockpage) {
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ found = 1;
+ }
+ }
+
+ if (found && ONENAND_IS_DDP(this)) {
+ /* Select DataRAM for DDP */
+ int block = onenand_block(this, addr);
+ int value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ }
+
+ return found;
+}
+
+/**
+ * onenand_update_bufferram - [GENERIC] Update BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr address to update
+ * @param valid valid flag
+ *
+ * Update BufferRAM information
+ */
+static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
+ int valid)
+{
+ struct onenand_chip *this = mtd->priv;
+ int blockpage;
+ unsigned int i;
+
+ if (ONENAND_IS_2PLANE(this))
+ blockpage = onenand_get_2x_blockpage(mtd, addr);
+ else
+ blockpage = (int) (addr >> this->page_shift);
+
+ /* Invalidate another BufferRAM */
+ i = ONENAND_NEXT_BUFFERRAM(this);
+ if (this->bufferram[i].blockpage == blockpage)
+ this->bufferram[i].blockpage = -1;
+
+ /* Update BufferRAM */
+ i = ONENAND_CURRENT_BUFFERRAM(this);
+ if (valid)
+ this->bufferram[i].blockpage = blockpage;
+ else
+ this->bufferram[i].blockpage = -1;
+}
+
+/**
+ * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
+ * @param mtd MTD data structure
+ * @param addr start address to invalidate
+ * @param len length to invalidate
+ *
+ * Invalidate BufferRAM information
+ */
+static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
+ unsigned int len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int i;
+ loff_t end_addr = addr + len;
+
+ /* Invalidate BufferRAM */
+ for (i = 0; i < MAX_BUFFERRAM; i++) {
+ loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
+ if (buf_addr >= addr && buf_addr < end_addr)
+ this->bufferram[i].blockpage = -1;
+ }
+}
+
+/**
+ * onenand_get_device - [GENERIC] Get chip for selected access
+ * @param mtd MTD device structure
+ * @param new_state the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int onenand_get_device(struct mtd_info *mtd, int new_state)
+{
+ struct onenand_chip *this = mtd->priv;
+ DECLARE_WAITQUEUE(wait, current);
+
+ /*
+ * Grab the lock and see if the device is available
+ */
+ while (1) {
+ spin_lock(&this->chip_lock);
+ if (this->state == FL_READY) {
+ this->state = new_state;
+ spin_unlock(&this->chip_lock);
+ if (new_state != FL_PM_SUSPENDED && this->enable)
+ this->enable(mtd);
+ break;
+ }
+ if (new_state == FL_PM_SUSPENDED) {
+ spin_unlock(&this->chip_lock);
+ return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
+ }
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&this->wq, &wait);
+ spin_unlock(&this->chip_lock);
+ schedule();
+ remove_wait_queue(&this->wq, &wait);
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_release_device - [GENERIC] release chip
+ * @param mtd MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void onenand_release_device(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (this->state != FL_PM_SUSPENDED && this->disable)
+ this->disable(mtd);
+ /* Release the chip */
+ spin_lock(&this->chip_lock);
+ this->state = FL_READY;
+ wake_up(&this->wq);
+ spin_unlock(&this->chip_lock);
+}
+
+/**
+ * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd MTD device structure
+ * @param buf destination address
+ * @param column oob offset to read from
+ * @param thislen oob length to read
+ */
+static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
+ int thislen)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct nand_oobfree *free;
+ int readcol = column;
+ int readend = column + thislen;
+ int lastgap = 0;
+ unsigned int i;
+ uint8_t *oob_buf = this->oob_buf;
+
+ free = this->ecclayout->oobfree;
+ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
+ if (readcol >= lastgap)
+ readcol += free->offset - lastgap;
+ if (readend >= lastgap)
+ readend += free->offset - lastgap;
+ lastgap = free->offset + free->length;
+ }
+ this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
+ free = this->ecclayout->oobfree;
+ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
+ int free_end = free->offset + free->length;
+ if (free->offset < readend && free_end > readcol) {
+ int st = max_t(int,free->offset,readcol);
+ int ed = min_t(int,free_end,readend);
+ int n = ed - st;
+ memcpy(buf, oob_buf + st, n);
+ buf += n;
+ } else if (column == 0)
+ break;
+ }
+ return 0;
+}
+
+/**
+ * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
+ * @param mtd MTD device structure
+ * @param addr address to recover
+ * @param status return value from onenand_wait / onenand_bbt_wait
+ *
+ * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
+ * lower page address and MSB page has higher page address in paired pages.
+ * If power off occurs during MSB page program, the paired LSB page data can
+ * become corrupt. LSB page recovery read is a way to read LSB page though page
+ * data are corrupted. When uncorrectable error occurs as a result of LSB page
+ * read after power up, issue LSB page recovery read.
+ */
+static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
+{
+ struct onenand_chip *this = mtd->priv;
+ int i;
+
+ /* Recovery is only for Flex-OneNAND */
+ if (!FLEXONENAND(this))
+ return status;
+
+ /* check if we failed due to uncorrectable error */
+ if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
+ return status;
+
+ /* check if address lies in MLC region */
+ i = flexonenand_region(mtd, addr);
+ if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
+ return status;
+
+ /* We are attempting to reread, so decrement stats.failed
+ * which was incremented by onenand_wait due to read failure
+ */
+ printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
+ __func__);
+ mtd->ecc_stats.failed--;
+
+ /* Issue the LSB page recovery command */
+ this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
+ return this->wait(mtd, FL_READING);
+}
+
+/**
+ * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops: oob operation description structure
+ *
+ * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
+ * So, read-while-load is not present.
+ */
+static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_ecc_stats stats;
+ size_t len = ops->len;
+ size_t ooblen = ops->ooblen;
+ u_char *buf = ops->datbuf;
+ u_char *oobbuf = ops->oobbuf;
+ int read = 0, column, thislen;
+ int oobread = 0, oobcolumn, thisooblen, oobsize;
+ int ret = 0;
+ int writesize = this->writesize;
+
+ pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+ (int)len);
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ oobsize = this->ecclayout->oobavail;
+ else
+ oobsize = mtd->oobsize;
+
+ oobcolumn = from & (mtd->oobsize - 1);
+
+ /* Do not allow reads past end of device */
+ if (from + len > mtd->size) {
+ printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+ __func__);
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+ return -EINVAL;
+ }
+
+ stats = mtd->ecc_stats;
+
+ while (read < len) {
+ cond_resched();
+
+ thislen = min_t(int, writesize, len - read);
+
+ column = from & (writesize - 1);
+ if (column + thislen > writesize)
+ thislen = writesize - column;
+
+ if (!onenand_check_bufferram(mtd, from)) {
+ this->command(mtd, ONENAND_CMD_READ, from, writesize);
+
+ ret = this->wait(mtd, FL_READING);
+ if (unlikely(ret))
+ ret = onenand_recover_lsb(mtd, from, ret);
+ onenand_update_bufferram(mtd, from, !ret);
+ if (mtd_is_eccerr(ret))
+ ret = 0;
+ if (ret)
+ break;
+ }
+
+ this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+ if (oobbuf) {
+ thisooblen = oobsize - oobcolumn;
+ thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+ else
+ this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+ oobread += thisooblen;
+ oobbuf += thisooblen;
+ oobcolumn = 0;
+ }
+
+ read += thislen;
+ if (read == len)
+ break;
+
+ from += thislen;
+ buf += thislen;
+ }
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ ops->retlen = read;
+ ops->oobretlen = oobread;
+
+ if (ret)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
+}
+
+/**
+ * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops: oob operation description structure
+ *
+ * OneNAND read main and/or out-of-band data
+ */
+static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_ecc_stats stats;
+ size_t len = ops->len;
+ size_t ooblen = ops->ooblen;
+ u_char *buf = ops->datbuf;
+ u_char *oobbuf = ops->oobbuf;
+ int read = 0, column, thislen;
+ int oobread = 0, oobcolumn, thisooblen, oobsize;
+ int ret = 0, boundary = 0;
+ int writesize = this->writesize;
+
+ pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+ (int)len);
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ oobsize = this->ecclayout->oobavail;
+ else
+ oobsize = mtd->oobsize;
+
+ oobcolumn = from & (mtd->oobsize - 1);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+ __func__);
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+ return -EINVAL;
+ }
+
+ stats = mtd->ecc_stats;
+
+ /* Read-while-load method */
+
+ /* Do first load to bufferRAM */
+ if (read < len) {
+ if (!onenand_check_bufferram(mtd, from)) {
+ this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ ret = this->wait(mtd, FL_READING);
+ onenand_update_bufferram(mtd, from, !ret);
+ if (mtd_is_eccerr(ret))
+ ret = 0;
+ }
+ }
+
+ thislen = min_t(int, writesize, len - read);
+ column = from & (writesize - 1);
+ if (column + thislen > writesize)
+ thislen = writesize - column;
+
+ while (!ret) {
+ /* If there is more to load then start next load */
+ from += thislen;
+ if (read + thislen < len) {
+ this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ /*
+ * Chip boundary handling in DDP
+ * Now we issued chip 1 read and pointed chip 1
+ * bufferram so we have to point chip 0 bufferram.
+ */
+ if (ONENAND_IS_DDP(this) &&
+ unlikely(from == (this->chipsize >> 1))) {
+ this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
+ boundary = 1;
+ } else
+ boundary = 0;
+ ONENAND_SET_PREV_BUFFERRAM(this);
+ }
+ /* While load is going, read from last bufferRAM */
+ this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+
+ /* Read oob area if needed */
+ if (oobbuf) {
+ thisooblen = oobsize - oobcolumn;
+ thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+ else
+ this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+ oobread += thisooblen;
+ oobbuf += thisooblen;
+ oobcolumn = 0;
+ }
+
+ /* See if we are done */
+ read += thislen;
+ if (read == len)
+ break;
+ /* Set up for next read from bufferRAM */
+ if (unlikely(boundary))
+ this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ buf += thislen;
+ thislen = min_t(int, writesize, len - read);
+ column = 0;
+ cond_resched();
+ /* Now wait for load */
+ ret = this->wait(mtd, FL_READING);
+ onenand_update_bufferram(mtd, from, !ret);
+ if (mtd_is_eccerr(ret))
+ ret = 0;
+ }
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ ops->retlen = read;
+ ops->oobretlen = oobread;
+
+ if (ret)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
+}
+
+/**
+ * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops: oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area
+ */
+static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_ecc_stats stats;
+ int read = 0, thislen, column, oobsize;
+ size_t len = ops->ooblen;
+ unsigned int mode = ops->mode;
+ u_char *buf = ops->oobbuf;
+ int ret = 0, readcmd;
+
+ from += ops->ooboffs;
+
+ pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+ (int)len);
+
+ /* Initialize return length value */
+ ops->oobretlen = 0;
+
+ if (mode == MTD_OPS_AUTO_OOB)
+ oobsize = this->ecclayout->oobavail;
+ else
+ oobsize = mtd->oobsize;
+
+ column = from & (mtd->oobsize - 1);
+
+ if (unlikely(column >= oobsize)) {
+ printk(KERN_ERR "%s: Attempted to start read outside oob\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* Do not allow reads past end of device */
+ if (unlikely(from >= mtd->size ||
+ column + len > ((mtd->size >> this->page_shift) -
+ (from >> this->page_shift)) * oobsize)) {
+ printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ stats = mtd->ecc_stats;
+
+ readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+ while (read < len) {
+ cond_resched();
+
+ thislen = oobsize - column;
+ thislen = min_t(int, thislen, len);
+
+ this->command(mtd, readcmd, from, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, from, 0);
+
+ ret = this->wait(mtd, FL_READING);
+ if (unlikely(ret))
+ ret = onenand_recover_lsb(mtd, from, ret);
+
+ if (ret && !mtd_is_eccerr(ret)) {
+ printk(KERN_ERR "%s: read failed = 0x%x\n",
+ __func__, ret);
+ break;
+ }
+
+ if (mode == MTD_OPS_AUTO_OOB)
+ onenand_transfer_auto_oob(mtd, buf, column, thislen);
+ else
+ this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+
+ read += thislen;
+
+ if (read == len)
+ break;
+
+ buf += thislen;
+
+ /* Read more? */
+ if (read < len) {
+ /* Page size */
+ from += mtd->writesize;
+ column = 0;
+ }
+ }
+
+ ops->oobretlen = read;
+
+ if (ret)
+ return ret;
+
+ if (mtd->ecc_stats.failed - stats.failed)
+ return -EBADMSG;
+
+ return 0;
+}
+
+/**
+ * onenand_read - [MTD Interface] Read data from flash
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put data
+ *
+ * Read with ecc
+*/
+static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_oob_ops ops = {
+ .len = len,
+ .ooblen = 0,
+ .datbuf = buf,
+ .oobbuf = NULL,
+ };
+ int ret;
+
+ onenand_get_device(mtd, FL_READING);
+ ret = ONENAND_IS_4KB_PAGE(this) ?
+ onenand_mlc_read_ops_nolock(mtd, from, &ops) :
+ onenand_read_ops_nolock(mtd, from, &ops);
+ onenand_release_device(mtd);
+
+ *retlen = ops.retlen;
+ return ret;
+}
+
+/**
+ * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
+ * @param mtd: MTD device structure
+ * @param from: offset to read from
+ * @param ops: oob operation description structure
+
+ * Read main and/or out-of-band
+ */
+static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret;
+
+ switch (ops->mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_AUTO_OOB:
+ break;
+ case MTD_OPS_RAW:
+ /* Not implemented yet */
+ default:
+ return -EINVAL;
+ }
+
+ onenand_get_device(mtd, FL_READING);
+ if (ops->datbuf)
+ ret = ONENAND_IS_4KB_PAGE(this) ?
+ onenand_mlc_read_ops_nolock(mtd, from, ops) :
+ onenand_read_ops_nolock(mtd, from, ops);
+ else
+ ret = onenand_read_oob_nolock(mtd, from, ops);
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_bbt_wait - [DEFAULT] wait until the command is done
+ * @param mtd MTD device structure
+ * @param state state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned long timeout;
+ unsigned int interrupt, ctrl, ecc, addr1, addr8;
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+ if (interrupt & ONENAND_INT_MASTER)
+ break;
+ }
+ /* To get correct interrupt status in timeout case */
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+ ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+ addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
+ addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
+
+ if (interrupt & ONENAND_INT_READ) {
+ ecc = onenand_read_ecc(this);
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
+ "intr 0x%04x addr1 %#x addr8 %#x\n",
+ __func__, ecc, ctrl, interrupt, addr1, addr8);
+ return ONENAND_BBT_READ_ECC_ERROR;
+ }
+ } else {
+ printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
+ "intr 0x%04x addr1 %#x addr8 %#x\n",
+ __func__, ctrl, interrupt, addr1, addr8);
+ return ONENAND_BBT_READ_FATAL_ERROR;
+ }
+
+ /* Initial bad block case: 0x2400 or 0x0400 */
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
+ "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
+ return ONENAND_BBT_READ_ERROR;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
+ * @param mtd MTD device structure
+ * @param from offset to read from
+ * @param ops oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area for bbt scan
+ */
+int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int read = 0, thislen, column;
+ int ret = 0, readcmd;
+ size_t len = ops->ooblen;
+ u_char *buf = ops->oobbuf;
+
+ pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
+ len);
+
+ /* Initialize return value */
+ ops->oobretlen = 0;
+
+ /* Do not allow reads past end of device */
+ if (unlikely((from + len) > mtd->size)) {
+ printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+ __func__);
+ return ONENAND_BBT_READ_FATAL_ERROR;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_READING);
+
+ column = from & (mtd->oobsize - 1);
+
+ readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+ while (read < len) {
+ cond_resched();
+
+ thislen = mtd->oobsize - column;
+ thislen = min_t(int, thislen, len);
+
+ this->command(mtd, readcmd, from, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, from, 0);
+
+ ret = this->bbt_wait(mtd, FL_READING);
+ if (unlikely(ret))
+ ret = onenand_recover_lsb(mtd, from, ret);
+
+ if (ret)
+ break;
+
+ this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+ read += thislen;
+ if (read == len)
+ break;
+
+ buf += thislen;
+
+ /* Read more? */
+ if (read < len) {
+ /* Update Page size */
+ from += this->writesize;
+ column = 0;
+ }
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ ops->oobretlen = read;
+ return ret;
+}
+
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+/**
+ * onenand_verify_oob - [GENERIC] verify the oob contents after a write
+ * @param mtd MTD device structure
+ * @param buf the databuffer to verify
+ * @param to offset to read from
+ */
+static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
+{
+ struct onenand_chip *this = mtd->priv;
+ u_char *oob_buf = this->oob_buf;
+ int status, i, readcmd;
+
+ readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+ this->command(mtd, readcmd, to, mtd->oobsize);
+ onenand_update_bufferram(mtd, to, 0);
+ status = this->wait(mtd, FL_READING);
+ if (status)
+ return status;
+
+ this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
+ for (i = 0; i < mtd->oobsize; i++)
+ if (buf[i] != 0xFF && buf[i] != oob_buf[i])
+ return -EBADMSG;
+
+ return 0;
+}
+
+/**
+ * onenand_verify - [GENERIC] verify the chip contents after a write
+ * @param mtd MTD device structure
+ * @param buf the databuffer to verify
+ * @param addr offset to read from
+ * @param len number of bytes to read and compare
+ */
+static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret = 0;
+ int thislen, column;
+
+ column = addr & (this->writesize - 1);
+
+ while (len != 0) {
+ thislen = min_t(int, this->writesize - column, len);
+
+ this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
+
+ onenand_update_bufferram(mtd, addr, 0);
+
+ ret = this->wait(mtd, FL_READING);
+ if (ret)
+ return ret;
+
+ onenand_update_bufferram(mtd, addr, 1);
+
+ this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
+
+ if (memcmp(buf, this->verify_buf + column, thislen))
+ return -EBADMSG;
+
+ len -= thislen;
+ buf += thislen;
+ addr += thislen;
+ column = 0;
+ }
+
+ return 0;
+}
+#else
+#define onenand_verify(...) (0)
+#define onenand_verify_oob(...) (0)
+#endif
+
+#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
+
+static void onenand_panic_wait(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int interrupt;
+ int i;
+
+ for (i = 0; i < 2000; i++) {
+ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+ if (interrupt & ONENAND_INT_MASTER)
+ break;
+ udelay(10);
+ }
+}
+
+/**
+ * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ *
+ * Write with ECC
+ */
+static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ int column, subpage;
+ int written = 0;
+ int ret = 0;
+
+ if (this->state == FL_PM_SUSPENDED)
+ return -EBUSY;
+
+ /* Wait for any existing operation to clear */
+ onenand_panic_wait(mtd);
+
+ pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+ (int)len);
+
+ /* Reject writes, which are not page aligned */
+ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+ printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ column = to & (mtd->writesize - 1);
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, mtd->writesize - column, len - written);
+ u_char *wbuf = (u_char *) buf;
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+ /* Partial page write */
+ subpage = thislen < mtd->writesize;
+ if (subpage) {
+ memset(this->page_buf, 0xff, mtd->writesize);
+ memcpy(this->page_buf + column, buf, thislen);
+ wbuf = this->page_buf;
+ }
+
+ this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+ this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
+
+ this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
+
+ onenand_panic_wait(mtd);
+
+ /* In partial page write we don't update bufferram */
+ onenand_update_bufferram(mtd, to, !ret && !subpage);
+ if (ONENAND_IS_2PLANE(this)) {
+ ONENAND_SET_BUFFERRAM1(this);
+ onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
+ }
+
+ if (ret) {
+ printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+ break;
+ }
+
+ written += thislen;
+
+ if (written == len)
+ break;
+
+ column = 0;
+ to += thislen;
+ buf += thislen;
+ }
+
+ *retlen = written;
+ return ret;
+}
+
+/**
+ * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd MTD device structure
+ * @param oob_buf oob buffer
+ * @param buf source address
+ * @param column oob offset to write to
+ * @param thislen oob length to write
+ */
+static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
+ const u_char *buf, int column, int thislen)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct nand_oobfree *free;
+ int writecol = column;
+ int writeend = column + thislen;
+ int lastgap = 0;
+ unsigned int i;
+
+ free = this->ecclayout->oobfree;
+ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
+ if (writecol >= lastgap)
+ writecol += free->offset - lastgap;
+ if (writeend >= lastgap)
+ writeend += free->offset - lastgap;
+ lastgap = free->offset + free->length;
+ }
+ free = this->ecclayout->oobfree;
+ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
+ int free_end = free->offset + free->length;
+ if (free->offset < writeend && free_end > writecol) {
+ int st = max_t(int,free->offset,writecol);
+ int ed = min_t(int,free_end,writeend);
+ int n = ed - st;
+ memcpy(oob_buf + st, buf, n);
+ buf += n;
+ } else if (column == 0)
+ break;
+ }
+ return 0;
+}
+
+/**
+ * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param ops oob operation description structure
+ *
+ * Write main and/or oob with ECC
+ */
+static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int written = 0, column, thislen = 0, subpage = 0;
+ int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
+ int oobwritten = 0, oobcolumn, thisooblen, oobsize;
+ size_t len = ops->len;
+ size_t ooblen = ops->ooblen;
+ const u_char *buf = ops->datbuf;
+ const u_char *oob = ops->oobbuf;
+ u_char *oobbuf;
+ int ret = 0, cmd;
+
+ pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+ (int)len);
+
+ /* Initialize retlen, in case of early exit */
+ ops->retlen = 0;
+ ops->oobretlen = 0;
+
+ /* Reject writes, which are not page aligned */
+ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+ printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* Check zero length */
+ if (!len)
+ return 0;
+
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ oobsize = this->ecclayout->oobavail;
+ else
+ oobsize = mtd->oobsize;
+
+ oobcolumn = to & (mtd->oobsize - 1);
+
+ column = to & (mtd->writesize - 1);
+
+ /* Loop until all data write */
+ while (1) {
+ if (written < len) {
+ u_char *wbuf = (u_char *) buf;
+
+ thislen = min_t(int, mtd->writesize - column, len - written);
+ thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
+
+ cond_resched();
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+ /* Partial page write */
+ subpage = thislen < mtd->writesize;
+ if (subpage) {
+ memset(this->page_buf, 0xff, mtd->writesize);
+ memcpy(this->page_buf + column, buf, thislen);
+ wbuf = this->page_buf;
+ }
+
+ this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+
+ if (oob) {
+ oobbuf = this->oob_buf;
+
+ /* We send data to spare ram with oobsize
+ * to prevent byte access */
+ memset(oobbuf, 0xff, mtd->oobsize);
+ if (ops->mode == MTD_OPS_AUTO_OOB)
+ onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
+ else
+ memcpy(oobbuf + oobcolumn, oob, thisooblen);
+
+ oobwritten += thisooblen;
+ oob += thisooblen;
+ oobcolumn = 0;
+ } else
+ oobbuf = (u_char *) ffchars;
+
+ this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+ } else
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+
+ /*
+ * 2 PLANE, MLC, and Flex-OneNAND do not support
+ * write-while-program feature.
+ */
+ if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
+ ONENAND_SET_PREV_BUFFERRAM(this);
+
+ ret = this->wait(mtd, FL_WRITING);
+
+ /* In partial page write we don't update bufferram */
+ onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
+ if (ret) {
+ written -= prevlen;
+ printk(KERN_ERR "%s: write failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ if (written == len) {
+ /* Only check verify write turn on */
+ ret = onenand_verify(mtd, buf - len, to - len, len);
+ if (ret)
+ printk(KERN_ERR "%s: verify failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ }
+
+ this->ongoing = 0;
+ cmd = ONENAND_CMD_PROG;
+
+ /* Exclude 1st OTP and OTP blocks for cache program feature */
+ if (ONENAND_IS_CACHE_PROGRAM(this) &&
+ likely(onenand_block(this, to) != 0) &&
+ ONENAND_IS_4KB_PAGE(this) &&
+ ((written + thislen) < len)) {
+ cmd = ONENAND_CMD_2X_CACHE_PROG;
+ this->ongoing = 1;
+ }
+
+ this->command(mtd, cmd, to, mtd->writesize);
+
+ /*
+ * 2 PLANE, MLC, and Flex-OneNAND wait here
+ */
+ if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
+ ret = this->wait(mtd, FL_WRITING);
+
+ /* In partial page write we don't update bufferram */
+ onenand_update_bufferram(mtd, to, !ret && !subpage);
+ if (ret) {
+ printk(KERN_ERR "%s: write failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ /* Only check verify write turn on */
+ ret = onenand_verify(mtd, buf, to, thislen);
+ if (ret) {
+ printk(KERN_ERR "%s: verify failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ written += thislen;
+
+ if (written == len)
+ break;
+
+ } else
+ written += thislen;
+
+ column = 0;
+ prev_subpage = subpage;
+ prev = to;
+ prevlen = thislen;
+ to += thislen;
+ buf += thislen;
+ first = 0;
+ }
+
+ /* In error case, clear all bufferrams */
+ if (written != len)
+ onenand_invalidate_bufferram(mtd, 0, -1);
+
+ ops->retlen = written;
+ ops->oobretlen = oobwritten;
+
+ return ret;
+}
+
+
+/**
+ * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ * @param mode operation mode
+ *
+ * OneNAND write out-of-band
+ */
+static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int column, ret = 0, oobsize;
+ int written = 0, oobcmd;
+ u_char *oobbuf;
+ size_t len = ops->ooblen;
+ const u_char *buf = ops->oobbuf;
+ unsigned int mode = ops->mode;
+
+ to += ops->ooboffs;
+
+ pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+ (int)len);
+
+ /* Initialize retlen, in case of early exit */
+ ops->oobretlen = 0;
+
+ if (mode == MTD_OPS_AUTO_OOB)
+ oobsize = this->ecclayout->oobavail;
+ else
+ oobsize = mtd->oobsize;
+
+ column = to & (mtd->oobsize - 1);
+
+ if (unlikely(column >= oobsize)) {
+ printk(KERN_ERR "%s: Attempted to start write outside oob\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* For compatibility with NAND: Do not allow write past end of page */
+ if (unlikely(column + len > oobsize)) {
+ printk(KERN_ERR "%s: Attempt to write past end of page\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ /* Do not allow reads past end of device */
+ if (unlikely(to >= mtd->size ||
+ column + len > ((mtd->size >> this->page_shift) -
+ (to >> this->page_shift)) * oobsize)) {
+ printk(KERN_ERR "%s: Attempted to write past end of device\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ oobbuf = this->oob_buf;
+
+ oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, oobsize, len - written);
+
+ cond_resched();
+
+ this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
+
+ /* We send data to spare ram with oobsize
+ * to prevent byte access */
+ memset(oobbuf, 0xff, mtd->oobsize);
+ if (mode == MTD_OPS_AUTO_OOB)
+ onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
+ else
+ memcpy(oobbuf + column, buf, thislen);
+ this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+
+ if (ONENAND_IS_4KB_PAGE(this)) {
+ /* Set main area of DataRAM to 0xff*/
+ memset(this->page_buf, 0xff, mtd->writesize);
+ this->write_bufferram(mtd, ONENAND_DATARAM,
+ this->page_buf, 0, mtd->writesize);
+ }
+
+ this->command(mtd, oobcmd, to, mtd->oobsize);
+
+ onenand_update_bufferram(mtd, to, 0);
+ if (ONENAND_IS_2PLANE(this)) {
+ ONENAND_SET_BUFFERRAM1(this);
+ onenand_update_bufferram(mtd, to + this->writesize, 0);
+ }
+
+ ret = this->wait(mtd, FL_WRITING);
+ if (ret) {
+ printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+ break;
+ }
+
+ ret = onenand_verify_oob(mtd, oobbuf, to);
+ if (ret) {
+ printk(KERN_ERR "%s: verify failed %d\n",
+ __func__, ret);
+ break;
+ }
+
+ written += thislen;
+ if (written == len)
+ break;
+
+ to += mtd->writesize;
+ buf += thislen;
+ column = 0;
+ }
+
+ ops->oobretlen = written;
+
+ return ret;
+}
+
+/**
+ * onenand_write - [MTD Interface] write buffer to FLASH
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ *
+ * Write with ECC
+ */
+static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct mtd_oob_ops ops = {
+ .len = len,
+ .ooblen = 0,
+ .datbuf = (u_char *) buf,
+ .oobbuf = NULL,
+ };
+ int ret;
+
+ onenand_get_device(mtd, FL_WRITING);
+ ret = onenand_write_ops_nolock(mtd, to, &ops);
+ onenand_release_device(mtd);
+
+ *retlen = ops.retlen;
+ return ret;
+}
+
+/**
+ * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @param mtd: MTD device structure
+ * @param to: offset to write
+ * @param ops: oob operation description structure
+ */
+static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ int ret;
+
+ switch (ops->mode) {
+ case MTD_OPS_PLACE_OOB:
+ case MTD_OPS_AUTO_OOB:
+ break;
+ case MTD_OPS_RAW:
+ /* Not implemented yet */
+ default:
+ return -EINVAL;
+ }
+
+ onenand_get_device(mtd, FL_WRITING);
+ if (ops->datbuf)
+ ret = onenand_write_ops_nolock(mtd, to, ops);
+ else
+ ret = onenand_write_oob_nolock(mtd, to, ops);
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
+ * @param mtd MTD device structure
+ * @param ofs offset from device start
+ * @param allowbbt 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+
+ /* Return info from the table */
+ return bbm->isbad_bbt(mtd, ofs, allowbbt);
+}
+
+
+static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
+ struct erase_info *instr)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t addr = instr->addr;
+ int len = instr->len;
+ unsigned int block_size = (1 << this->erase_shift);
+ int ret = 0;
+
+ while (len) {
+ this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
+ ret = this->wait(mtd, FL_VERIFYING_ERASE);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed verify, block %d\n",
+ __func__, onenand_block(this, addr));
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = addr;
+ return -1;
+ }
+ len -= block_size;
+ addr += block_size;
+ }
+ return 0;
+}
+
+/**
+ * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
+ * @param mtd MTD device structure
+ * @param instr erase instruction
+ * @param region erase region
+ *
+ * Erase one or more blocks up to 64 block at a time
+ */
+static int onenand_multiblock_erase(struct mtd_info *mtd,
+ struct erase_info *instr,
+ unsigned int block_size)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t addr = instr->addr;
+ int len = instr->len;
+ int eb_count = 0;
+ int ret = 0;
+ int bdry_block = 0;
+
+ instr->state = MTD_ERASING;
+
+ if (ONENAND_IS_DDP(this)) {
+ loff_t bdry_addr = this->chipsize >> 1;
+ if (addr < bdry_addr && (addr + len) > bdry_addr)
+ bdry_block = bdry_addr >> this->erase_shift;
+ }
+
+ /* Pre-check bbs */
+ while (len) {
+ /* Check if we have a bad block, we do not erase bad blocks */
+ if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+ printk(KERN_WARNING "%s: attempt to erase a bad block "
+ "at addr 0x%012llx\n",
+ __func__, (unsigned long long) addr);
+ instr->state = MTD_ERASE_FAILED;
+ return -EIO;
+ }
+ len -= block_size;
+ addr += block_size;
+ }
+
+ len = instr->len;
+ addr = instr->addr;
+
+ /* loop over 64 eb batches */
+ while (len) {
+ struct erase_info verify_instr = *instr;
+ int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
+
+ verify_instr.addr = addr;
+ verify_instr.len = 0;
+
+ /* do not cross chip boundary */
+ if (bdry_block) {
+ int this_block = (addr >> this->erase_shift);
+
+ if (this_block < bdry_block) {
+ max_eb_count = min(max_eb_count,
+ (bdry_block - this_block));
+ }
+ }
+
+ eb_count = 0;
+
+ while (len > block_size && eb_count < (max_eb_count - 1)) {
+ this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
+ addr, block_size);
+ onenand_invalidate_bufferram(mtd, addr, block_size);
+
+ ret = this->wait(mtd, FL_PREPARING_ERASE);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed multiblock erase, "
+ "block %d\n", __func__,
+ onenand_block(this, addr));
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+ return -EIO;
+ }
+
+ len -= block_size;
+ addr += block_size;
+ eb_count++;
+ }
+
+ /* last block of 64-eb series */
+ cond_resched();
+ this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+ onenand_invalidate_bufferram(mtd, addr, block_size);
+
+ ret = this->wait(mtd, FL_ERASING);
+ /* Check if it is write protected */
+ if (ret) {
+ printk(KERN_ERR "%s: Failed erase, block %d\n",
+ __func__, onenand_block(this, addr));
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+ return -EIO;
+ }
+
+ len -= block_size;
+ addr += block_size;
+ eb_count++;
+
+ /* verify */
+ verify_instr.len = eb_count * block_size;
+ if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
+ instr->state = verify_instr.state;
+ instr->fail_addr = verify_instr.fail_addr;
+ return -EIO;
+ }
+
+ }
+ return 0;
+}
+
+
+/**
+ * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
+ * @param mtd MTD device structure
+ * @param instr erase instruction
+ * @param region erase region
+ * @param block_size erase block size
+ *
+ * Erase one or more blocks one block at a time
+ */
+static int onenand_block_by_block_erase(struct mtd_info *mtd,
+ struct erase_info *instr,
+ struct mtd_erase_region_info *region,
+ unsigned int block_size)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t addr = instr->addr;
+ int len = instr->len;
+ loff_t region_end = 0;
+ int ret = 0;
+
+ if (region) {
+ /* region is set for Flex-OneNAND */
+ region_end = region->offset + region->erasesize * region->numblocks;
+ }
+
+ instr->state = MTD_ERASING;
+
+ /* Loop through the blocks */
+ while (len) {
+ cond_resched();
+
+ /* Check if we have a bad block, we do not erase bad blocks */
+ if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+ printk(KERN_WARNING "%s: attempt to erase a bad block "
+ "at addr 0x%012llx\n",
+ __func__, (unsigned long long) addr);
+ instr->state = MTD_ERASE_FAILED;
+ return -EIO;
+ }
+
+ this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+
+ onenand_invalidate_bufferram(mtd, addr, block_size);
+
+ ret = this->wait(mtd, FL_ERASING);
+ /* Check, if it is write protected */
+ if (ret) {
+ printk(KERN_ERR "%s: Failed erase, block %d\n",
+ __func__, onenand_block(this, addr));
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = addr;
+ return -EIO;
+ }
+
+ len -= block_size;
+ addr += block_size;
+
+ if (region && addr == region_end) {
+ if (!len)
+ break;
+ region++;
+
+ block_size = region->erasesize;
+ region_end = region->offset + region->erasesize * region->numblocks;
+
+ if (len & (block_size - 1)) {
+ /* FIXME: This should be handled at MTD partitioning level. */
+ printk(KERN_ERR "%s: Unaligned address\n",
+ __func__);
+ return -EIO;
+ }
+ }
+ }
+ return 0;
+}
+
+/**
+ * onenand_erase - [MTD Interface] erase block(s)
+ * @param mtd MTD device structure
+ * @param instr erase instruction
+ *
+ * Erase one or more blocks
+ */
+static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int block_size;
+ loff_t addr = instr->addr;
+ loff_t len = instr->len;
+ int ret = 0;
+ struct mtd_erase_region_info *region = NULL;
+ loff_t region_offset = 0;
+
+ pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
+ (unsigned long long)instr->addr,
+ (unsigned long long)instr->len);
+
+ if (FLEXONENAND(this)) {
+ /* Find the eraseregion of this address */
+ int i = flexonenand_region(mtd, addr);
+
+ region = &mtd->eraseregions[i];
+ block_size = region->erasesize;
+
+ /* Start address within region must align on block boundary.
+ * Erase region's start offset is always block start address.
+ */
+ region_offset = region->offset;
+ } else
+ block_size = 1 << this->erase_shift;
+
+ /* Start address must align on block boundary */
+ if (unlikely((addr - region_offset) & (block_size - 1))) {
+ printk(KERN_ERR "%s: Unaligned address\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (unlikely(len & (block_size - 1))) {
+ printk(KERN_ERR "%s: Length not block aligned\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_ERASING);
+
+ if (ONENAND_IS_4KB_PAGE(this) || region ||
+ instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
+ /* region is set for Flex-OneNAND (no mb erase) */
+ ret = onenand_block_by_block_erase(mtd, instr,
+ region, block_size);
+ } else {
+ ret = onenand_multiblock_erase(mtd, instr, block_size);
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ onenand_release_device(mtd);
+
+ /* Do call back function */
+ if (!ret) {
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+ }
+
+ return ret;
+}
+
+/**
+ * onenand_sync - [MTD Interface] sync
+ * @param mtd MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void onenand_sync(struct mtd_info *mtd)
+{
+ pr_debug("%s: called\n", __func__);
+
+ /* Grab the lock and see if the device is available */
+ onenand_get_device(mtd, FL_SYNCING);
+
+ /* Release it and go back */
+ onenand_release_device(mtd);
+}
+
+/**
+ * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ *
+ * Check whether the block is bad
+ */
+static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
+{
+ int ret;
+
+ /* Check for invalid offset */
+ if (ofs > mtd->size)
+ return -EINVAL;
+
+ onenand_get_device(mtd, FL_READING);
+ ret = onenand_block_isbad_nolock(mtd, ofs, 0);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_default_block_markbad - [DEFAULT] mark a block bad
+ * @param mtd MTD device structure
+ * @param ofs offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+ */
+static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ u_char buf[2] = {0, 0};
+ struct mtd_oob_ops ops = {
+ .mode = MTD_OPS_PLACE_OOB,
+ .ooblen = 2,
+ .oobbuf = buf,
+ .ooboffs = 0,
+ };
+ int block;
+
+ /* Get block number */
+ block = onenand_block(this, ofs);
+ if (bbm->bbt)
+ bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* We write two bytes, so we don't have to mess with 16-bit access */
+ ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
+ /* FIXME : What to do when marking SLC block in partition
+ * with MLC erasesize? For now, it is not advisable to
+ * create partitions containing both SLC and MLC regions.
+ */
+ return onenand_write_oob_nolock(mtd, ofs, &ops);
+}
+
+/**
+ * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ *
+ * Mark the block as bad
+ */
+static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ int ret;
+
+ ret = onenand_block_isbad(mtd, ofs);
+ if (ret) {
+ /* If it was bad already, return success and do nothing */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ onenand_get_device(mtd, FL_WRITING);
+ ret = mtd_block_markbad(mtd, ofs);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ * @param len number of bytes to lock or unlock
+ * @param cmd lock or unlock command
+ *
+ * Lock or unlock one or more blocks
+ */
+static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int start, end, block, value, status;
+ int wp_status_mask;
+
+ start = onenand_block(this, ofs);
+ end = onenand_block(this, ofs + len) - 1;
+
+ if (cmd == ONENAND_CMD_LOCK)
+ wp_status_mask = ONENAND_WP_LS;
+ else
+ wp_status_mask = ONENAND_WP_US;
+
+ /* Continuous lock scheme */
+ if (this->options & ONENAND_HAS_CONT_LOCK) {
+ /* Set start block address */
+ this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Set end block address */
+ this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
+ /* Write lock command */
+ this->command(mtd, cmd, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & wp_status_mask))
+ printk(KERN_ERR "%s: wp status = 0x%x\n",
+ __func__, status);
+
+ return 0;
+ }
+
+ /* Block lock scheme */
+ for (block = start; block < end + 1; block++) {
+ /* Set block address */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ /* Set start block address */
+ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Write lock command */
+ this->command(mtd, cmd, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & wp_status_mask))
+ printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+ __func__, block, status);
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_lock - [MTD Interface] Lock block(s)
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ * @param len number of bytes to unlock
+ *
+ * Lock one or more blocks
+ */
+static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ int ret;
+
+ onenand_get_device(mtd, FL_LOCKING);
+ ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_unlock - [MTD Interface] Unlock block(s)
+ * @param mtd MTD device structure
+ * @param ofs offset relative to mtd start
+ * @param len number of bytes to unlock
+ *
+ * Unlock one or more blocks
+ */
+static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ int ret;
+
+ onenand_get_device(mtd, FL_LOCKING);
+ ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+ onenand_release_device(mtd);
+ return ret;
+}
+
+/**
+ * onenand_check_lock_status - [OneNAND Interface] Check lock status
+ * @param this onenand chip data structure
+ *
+ * Check lock status
+ */
+static int onenand_check_lock_status(struct onenand_chip *this)
+{
+ unsigned int value, block, status;
+ unsigned int end;
+
+ end = this->chipsize >> this->erase_shift;
+ for (block = 0; block < end; block++) {
+ /* Set block address */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+ /* Select DataRAM for DDP */
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+ /* Set start block address */
+ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+
+ /* Check lock status */
+ status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+ if (!(status & ONENAND_WP_US)) {
+ printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+ __func__, block, status);
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+/**
+ * onenand_unlock_all - [OneNAND Interface] unlock all blocks
+ * @param mtd MTD device structure
+ *
+ * Unlock all blocks
+ */
+static void onenand_unlock_all(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t ofs = 0;
+ loff_t len = mtd->size;
+
+ if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+ /* Set start block address */
+ this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+ /* Write unlock command */
+ this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+ /* There's no return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Sanity check */
+ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+ & ONENAND_CTRL_ONGO)
+ continue;
+
+ /* Don't check lock status */
+ if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
+ return;
+
+ /* Check lock status */
+ if (onenand_check_lock_status(this))
+ return;
+
+ /* Workaround for all block unlock in DDP */
+ if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
+ /* All blocks on another chip */
+ ofs = this->chipsize >> 1;
+ len = this->chipsize >> 1;
+ }
+ }
+
+ onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+}
+
+#ifdef CONFIG_MTD_ONENAND_OTP
+
+/**
+ * onenand_otp_command - Send OTP specific command to OneNAND device
+ * @param mtd MTD device structure
+ * @param cmd the command to be sent
+ * @param addr offset to read from or write to
+ * @param len number of bytes to read or write
+ */
+static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
+ size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ int value, block, page;
+
+ /* Address translation */
+ switch (cmd) {
+ case ONENAND_CMD_OTP_ACCESS:
+ block = (int) (addr >> this->erase_shift);
+ page = -1;
+ break;
+
+ default:
+ block = (int) (addr >> this->erase_shift);
+ page = (int) (addr >> this->page_shift);
+
+ if (ONENAND_IS_2PLANE(this)) {
+ /* Make the even block number */
+ block &= ~1;
+ /* Is it the odd plane? */
+ if (addr & this->writesize)
+ block++;
+ page >>= 1;
+ }
+ page &= this->page_mask;
+ break;
+ }
+
+ if (block != -1) {
+ /* Write 'DFS, FBA' of Flash */
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS1);
+ }
+
+ if (page != -1) {
+ /* Now we use page size operation */
+ int sectors = 4, count = 4;
+ int dataram;
+
+ switch (cmd) {
+ default:
+ if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+ cmd = ONENAND_CMD_2X_PROG;
+ dataram = ONENAND_CURRENT_BUFFERRAM(this);
+ break;
+ }
+
+ /* Write 'FPA, FSA' of Flash */
+ value = onenand_page_address(page, sectors);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS8);
+
+ /* Write 'BSA, BSC' of DataRAM */
+ value = onenand_buffer_address(dataram, sectors, count);
+ this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+ }
+
+ /* Interrupt clear */
+ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+ /* Write command */
+ this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+ return 0;
+}
+
+/**
+ * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
+ * @param mtd MTD device structure
+ * @param to offset to write to
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of written bytes
+ * @param buf the data to write
+ *
+ * OneNAND write out-of-band only for OTP
+ */
+static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+ struct mtd_oob_ops *ops)
+{
+ struct onenand_chip *this = mtd->priv;
+ int column, ret = 0, oobsize;
+ int written = 0;
+ u_char *oobbuf;
+ size_t len = ops->ooblen;
+ const u_char *buf = ops->oobbuf;
+ int block, value, status;
+
+ to += ops->ooboffs;
+
+ /* Initialize retlen, in case of early exit */
+ ops->oobretlen = 0;
+
+ oobsize = mtd->oobsize;
+
+ column = to & (mtd->oobsize - 1);
+
+ oobbuf = this->oob_buf;
+
+ /* Loop until all data write */
+ while (written < len) {
+ int thislen = min_t(int, oobsize, len - written);
+
+ cond_resched();
+
+ block = (int) (to >> this->erase_shift);
+ /*
+ * Write 'DFS, FBA' of Flash
+ * Add: F100h DQ=DFS, FBA
+ */
+
+ value = onenand_block_address(this, block);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS1);
+
+ /*
+ * Select DataRAM for DDP
+ * Add: F101h DQ=DBS
+ */
+
+ value = onenand_bufferram_address(this, block);
+ this->write_word(value, this->base +
+ ONENAND_REG_START_ADDRESS2);
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+
+ /*
+ * Enter OTP access mode
+ */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+
+ /* We send data to spare ram with oobsize
+ * to prevent byte access */
+ memcpy(oobbuf + column, buf, thislen);
+
+ /*
+ * Write Data into DataRAM
+ * Add: 8th Word
+ * in sector0/spare/page0
+ * DQ=XXFCh
+ */
+ this->write_bufferram(mtd, ONENAND_SPARERAM,
+ oobbuf, 0, mtd->oobsize);
+
+ onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
+ onenand_update_bufferram(mtd, to, 0);
+ if (ONENAND_IS_2PLANE(this)) {
+ ONENAND_SET_BUFFERRAM1(this);
+ onenand_update_bufferram(mtd, to + this->writesize, 0);
+ }
+
+ ret = this->wait(mtd, FL_WRITING);
+ if (ret) {
+ printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+ break;
+ }
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+
+ status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+ status &= 0x60;
+
+ if (status == 0x60) {
+ printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+ printk(KERN_DEBUG "1st Block\tLOCKED\n");
+ printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+ } else if (status == 0x20) {
+ printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+ printk(KERN_DEBUG "1st Block\tLOCKED\n");
+ printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
+ } else if (status == 0x40) {
+ printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+ printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
+ printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+ } else {
+ printk(KERN_DEBUG "Reboot to check\n");
+ }
+
+ written += thislen;
+ if (written == len)
+ break;
+
+ to += mtd->writesize;
+ buf += thislen;
+ column = 0;
+ }
+
+ ops->oobretlen = written;
+
+ return ret;
+}
+
+/* Internal OTP operation */
+typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
+ size_t *retlen, u_char *buf);
+
+/**
+ * do_otp_read - [DEFAULT] Read OTP block area
+ * @param mtd MTD device structure
+ * @param from The offset to read
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of readbytes
+ * @param buf the databuffer to put/get data
+ *
+ * Read OTP block area.
+ */
+static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_oob_ops ops = {
+ .len = len,
+ .ooblen = 0,
+ .datbuf = buf,
+ .oobbuf = NULL,
+ };
+ int ret;
+
+ /* Enter OTP access mode */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+
+ ret = ONENAND_IS_4KB_PAGE(this) ?
+ onenand_mlc_read_ops_nolock(mtd, from, &ops) :
+ onenand_read_ops_nolock(mtd, from, &ops);
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+
+ return ret;
+}
+
+/**
+ * do_otp_write - [DEFAULT] Write OTP block area
+ * @param mtd MTD device structure
+ * @param to The offset to write
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of write bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Write OTP block area.
+ */
+static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned char *pbuf = buf;
+ int ret;
+ struct mtd_oob_ops ops;
+
+ /* Force buffer page aligned */
+ if (len < mtd->writesize) {
+ memcpy(this->page_buf, buf, len);
+ memset(this->page_buf + len, 0xff, mtd->writesize - len);
+ pbuf = this->page_buf;
+ len = mtd->writesize;
+ }
+
+ /* Enter OTP access mode */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+
+ ops.len = len;
+ ops.ooblen = 0;
+ ops.datbuf = pbuf;
+ ops.oobbuf = NULL;
+ ret = onenand_write_ops_nolock(mtd, to, &ops);
+ *retlen = ops.retlen;
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+
+ return ret;
+}
+
+/**
+ * do_otp_lock - [DEFAULT] Lock OTP block area
+ * @param mtd MTD device structure
+ * @param from The offset to lock
+ * @param len number of bytes to lock
+ * @param retlen pointer to variable to store the number of lock bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Lock OTP block area.
+ */
+static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct mtd_oob_ops ops;
+ int ret;
+
+ if (FLEXONENAND(this)) {
+
+ /* Enter OTP access mode */
+ this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+ this->wait(mtd, FL_OTPING);
+ /*
+ * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+ * main area of page 49.
+ */
+ ops.len = mtd->writesize;
+ ops.ooblen = 0;
+ ops.datbuf = buf;
+ ops.oobbuf = NULL;
+ ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
+ *retlen = ops.retlen;
+
+ /* Exit OTP access mode */
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ this->wait(mtd, FL_RESETING);
+ } else {
+ ops.mode = MTD_OPS_PLACE_OOB;
+ ops.ooblen = len;
+ ops.oobbuf = buf;
+ ops.ooboffs = 0;
+ ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
+ *retlen = ops.oobretlen;
+ }
+
+ return ret;
+}
+
+/**
+ * onenand_otp_walk - [DEFAULT] Handle OTP operation
+ * @param mtd MTD device structure
+ * @param from The offset to read/write
+ * @param len number of bytes to read/write
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put/get data
+ * @param action do given action
+ * @param mode specify user and factory
+ *
+ * Handle OTP operation.
+ */
+static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf,
+ otp_op_t action, int mode)
+{
+ struct onenand_chip *this = mtd->priv;
+ int otp_pages;
+ int density;
+ int ret = 0;
+
+ *retlen = 0;
+
+ density = onenand_get_density(this->device_id);
+ if (density < ONENAND_DEVICE_DENSITY_512Mb)
+ otp_pages = 20;
+ else
+ otp_pages = 50;
+
+ if (mode == MTD_OTP_FACTORY) {
+ from += mtd->writesize * otp_pages;
+ otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
+ }
+
+ /* Check User/Factory boundary */
+ if (mode == MTD_OTP_USER) {
+ if (mtd->writesize * otp_pages < from + len)
+ return 0;
+ } else {
+ if (mtd->writesize * otp_pages < len)
+ return 0;
+ }
+
+ onenand_get_device(mtd, FL_OTPING);
+ while (len > 0 && otp_pages > 0) {
+ if (!action) { /* OTP Info functions */
+ struct otp_info *otpinfo;
+
+ len -= sizeof(struct otp_info);
+ if (len <= 0) {
+ ret = -ENOSPC;
+ break;
+ }
+
+ otpinfo = (struct otp_info *) buf;
+ otpinfo->start = from;
+ otpinfo->length = mtd->writesize;
+ otpinfo->locked = 0;
+
+ from += mtd->writesize;
+ buf += sizeof(struct otp_info);
+ *retlen += sizeof(struct otp_info);
+ } else {
+ size_t tmp_retlen;
+
+ ret = action(mtd, from, len, &tmp_retlen, buf);
+
+ buf += tmp_retlen;
+ len -= tmp_retlen;
+ *retlen += tmp_retlen;
+
+ if (ret)
+ break;
+ }
+ otp_pages--;
+ }
+ onenand_release_device(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
+ * @param mtd MTD device structure
+ * @param buf the databuffer to put/get data
+ * @param len number of bytes to read
+ *
+ * Read factory OTP info.
+ */
+static int onenand_get_fact_prot_info(struct mtd_info *mtd,
+ struct otp_info *buf, size_t len)
+{
+ size_t retlen;
+ int ret;
+
+ ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
+
+ return ret ? : retlen;
+}
+
+/**
+ * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to read
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Read factory OTP area.
+ */
+static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
+}
+
+/**
+ * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
+ * @param mtd MTD device structure
+ * @param buf the databuffer to put/get data
+ * @param len number of bytes to read
+ *
+ * Read user OTP info.
+ */
+static int onenand_get_user_prot_info(struct mtd_info *mtd,
+ struct otp_info *buf, size_t len)
+{
+ size_t retlen;
+ int ret;
+
+ ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
+
+ return ret ? : retlen;
+}
+
+/**
+ * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to read
+ * @param len number of bytes to read
+ * @param retlen pointer to variable to store the number of read bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Read user OTP area.
+ */
+static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
+}
+
+/**
+ * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to write
+ * @param len number of bytes to write
+ * @param retlen pointer to variable to store the number of write bytes
+ * @param buf the databuffer to put/get data
+ *
+ * Write user OTP area.
+ */
+static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
+}
+
+/**
+ * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
+ * @param mtd MTD device structure
+ * @param from The offset to lock
+ * @param len number of bytes to unlock
+ *
+ * Write lock mark on spare area in page 0 in OTP block
+ */
+static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
+ size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
+ size_t retlen;
+ int ret;
+ unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
+
+ memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
+ : mtd->oobsize);
+ /*
+ * Write lock mark to 8th word of sector0 of page0 of the spare0.
+ * We write 16 bytes spare area instead of 2 bytes.
+ * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+ * main area of page 49.
+ */
+
+ from = 0;
+ len = FLEXONENAND(this) ? mtd->writesize : 16;
+
+ /*
+ * Note: OTP lock operation
+ * OTP block : 0xXXFC XX 1111 1100
+ * 1st block : 0xXXF3 (If chip support) XX 1111 0011
+ * Both : 0xXXF0 (If chip support) XX 1111 0000
+ */
+ if (FLEXONENAND(this))
+ otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
+
+ /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
+ if (otp == 1)
+ buf[otp_lock_offset] = 0xFC;
+ else if (otp == 2)
+ buf[otp_lock_offset] = 0xF3;
+ else if (otp == 3)
+ buf[otp_lock_offset] = 0xF0;
+ else if (otp != 0)
+ printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
+
+ ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
+
+ return ret ? : retlen;
+}
+
+#endif /* CONFIG_MTD_ONENAND_OTP */
+
+/**
+ * onenand_check_features - Check and set OneNAND features
+ * @param mtd MTD data structure
+ *
+ * Check and set OneNAND features
+ * - lock scheme
+ * - two plane
+ */
+static void onenand_check_features(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int density, process, numbufs;
+
+ /* Lock scheme depends on density and process */
+ density = onenand_get_density(this->device_id);
+ process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
+ numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
+
+ /* Lock scheme */
+ switch (density) {
+ case ONENAND_DEVICE_DENSITY_4Gb:
+ if (ONENAND_IS_DDP(this))
+ this->options |= ONENAND_HAS_2PLANE;
+ else if (numbufs == 1) {
+ this->options |= ONENAND_HAS_4KB_PAGE;
+ this->options |= ONENAND_HAS_CACHE_PROGRAM;
+ /*
+ * There are two different 4KiB pagesize chips
+ * and no way to detect it by H/W config values.
+ *
+ * To detect the correct NOP for each chips,
+ * It should check the version ID as workaround.
+ *
+ * Now it has as following
+ * KFM4G16Q4M has NOP 4 with version ID 0x0131
+ * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
+ */
+ if ((this->version_id & 0xf) == 0xe)
+ this->options |= ONENAND_HAS_NOP_1;
+ }
+
+ case ONENAND_DEVICE_DENSITY_2Gb:
+ /* 2Gb DDP does not have 2 plane */
+ if (!ONENAND_IS_DDP(this))
+ this->options |= ONENAND_HAS_2PLANE;
+ this->options |= ONENAND_HAS_UNLOCK_ALL;
+
+ case ONENAND_DEVICE_DENSITY_1Gb:
+ /* A-Die has all block unlock */
+ if (process)
+ this->options |= ONENAND_HAS_UNLOCK_ALL;
+ break;
+
+ default:
+ /* Some OneNAND has continuous lock scheme */
+ if (!process)
+ this->options |= ONENAND_HAS_CONT_LOCK;
+ break;
+ }
+
+ /* The MLC has 4KiB pagesize. */
+ if (ONENAND_IS_MLC(this))
+ this->options |= ONENAND_HAS_4KB_PAGE;
+
+ if (ONENAND_IS_4KB_PAGE(this))
+ this->options &= ~ONENAND_HAS_2PLANE;
+
+ if (FLEXONENAND(this)) {
+ this->options &= ~ONENAND_HAS_CONT_LOCK;
+ this->options |= ONENAND_HAS_UNLOCK_ALL;
+ }
+
+ if (this->options & ONENAND_HAS_CONT_LOCK)
+ printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
+ if (this->options & ONENAND_HAS_UNLOCK_ALL)
+ printk(KERN_DEBUG "Chip support all block unlock\n");
+ if (this->options & ONENAND_HAS_2PLANE)
+ printk(KERN_DEBUG "Chip has 2 plane\n");
+ if (this->options & ONENAND_HAS_4KB_PAGE)
+ printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
+ if (this->options & ONENAND_HAS_CACHE_PROGRAM)
+ printk(KERN_DEBUG "Chip has cache program feature\n");
+}
+
+/**
+ * onenand_print_device_info - Print device & version ID
+ * @param device device ID
+ * @param version version ID
+ *
+ * Print device & version ID
+ */
+static void onenand_print_device_info(int device, int version)
+{
+ int vcc, demuxed, ddp, density, flexonenand;
+
+ vcc = device & ONENAND_DEVICE_VCC_MASK;
+ demuxed = device & ONENAND_DEVICE_IS_DEMUX;
+ ddp = device & ONENAND_DEVICE_IS_DDP;
+ density = onenand_get_density(device);
+ flexonenand = device & DEVICE_IS_FLEXONENAND;
+ printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
+ demuxed ? "" : "Muxed ",
+ flexonenand ? "Flex-" : "",
+ ddp ? "(DDP)" : "",
+ (16 << density),
+ vcc ? "2.65/3.3" : "1.8",
+ device);
+ printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
+}
+
+static const struct onenand_manufacturers onenand_manuf_ids[] = {
+ {ONENAND_MFR_SAMSUNG, "Samsung"},
+ {ONENAND_MFR_NUMONYX, "Numonyx"},
+};
+
+/**
+ * onenand_check_maf - Check manufacturer ID
+ * @param manuf manufacturer ID
+ *
+ * Check manufacturer ID
+ */
+static int onenand_check_maf(int manuf)
+{
+ int size = ARRAY_SIZE(onenand_manuf_ids);
+ char *name;
+ int i;
+
+ for (i = 0; i < size; i++)
+ if (manuf == onenand_manuf_ids[i].id)
+ break;
+
+ if (i < size)
+ name = onenand_manuf_ids[i].name;
+ else
+ name = "Unknown";
+
+ printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
+
+ return (i == size);
+}
+
+/**
+* flexonenand_get_boundary - Reads the SLC boundary
+* @param onenand_info - onenand info structure
+**/
+static int flexonenand_get_boundary(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned die, bdry;
+ int ret, syscfg, locked;
+
+ /* Disable ECC */
+ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+ this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
+
+ for (die = 0; die < this->dies; die++) {
+ this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+ this->wait(mtd, FL_SYNCING);
+
+ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+ ret = this->wait(mtd, FL_READING);
+
+ bdry = this->read_word(this->base + ONENAND_DATARAM);
+ if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
+ locked = 0;
+ else
+ locked = 1;
+ this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
+
+ this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+ ret = this->wait(mtd, FL_RESETING);
+
+ printk(KERN_INFO "Die %d boundary: %d%s\n", die,
+ this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
+ }
+
+ /* Enable ECC */
+ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+ return 0;
+}
+
+/**
+ * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
+ * boundary[], diesize[], mtd->size, mtd->erasesize
+ * @param mtd - MTD device structure
+ */
+static void flexonenand_get_size(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int die, i, eraseshift, density;
+ int blksperdie, maxbdry;
+ loff_t ofs;
+
+ density = onenand_get_density(this->device_id);
+ blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
+ blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+ maxbdry = blksperdie - 1;
+ eraseshift = this->erase_shift - 1;
+
+ mtd->numeraseregions = this->dies << 1;
+
+ /* This fills up the device boundary */
+ flexonenand_get_boundary(mtd);
+ die = ofs = 0;
+ i = -1;
+ for (; die < this->dies; die++) {
+ if (!die || this->boundary[die-1] != maxbdry) {
+ i++;
+ mtd->eraseregions[i].offset = ofs;
+ mtd->eraseregions[i].erasesize = 1 << eraseshift;
+ mtd->eraseregions[i].numblocks =
+ this->boundary[die] + 1;
+ ofs += mtd->eraseregions[i].numblocks << eraseshift;
+ eraseshift++;
+ } else {
+ mtd->numeraseregions -= 1;
+ mtd->eraseregions[i].numblocks +=
+ this->boundary[die] + 1;
+ ofs += (this->boundary[die] + 1) << (eraseshift - 1);
+ }
+ if (this->boundary[die] != maxbdry) {
+ i++;
+ mtd->eraseregions[i].offset = ofs;
+ mtd->eraseregions[i].erasesize = 1 << eraseshift;
+ mtd->eraseregions[i].numblocks = maxbdry ^
+ this->boundary[die];
+ ofs += mtd->eraseregions[i].numblocks << eraseshift;
+ eraseshift--;
+ } else
+ mtd->numeraseregions -= 1;
+ }
+
+ /* Expose MLC erase size except when all blocks are SLC */
+ mtd->erasesize = 1 << this->erase_shift;
+ if (mtd->numeraseregions == 1)
+ mtd->erasesize >>= 1;
+
+ printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
+ for (i = 0; i < mtd->numeraseregions; i++)
+ printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
+ " numblocks: %04u]\n",
+ (unsigned int) mtd->eraseregions[i].offset,
+ mtd->eraseregions[i].erasesize,
+ mtd->eraseregions[i].numblocks);
+
+ for (die = 0, mtd->size = 0; die < this->dies; die++) {
+ this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
+ this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
+ << (this->erase_shift - 1);
+ mtd->size += this->diesize[die];
+ }
+}
+
+/**
+ * flexonenand_check_blocks_erased - Check if blocks are erased
+ * @param mtd_info - mtd info structure
+ * @param start - first erase block to check
+ * @param end - last erase block to check
+ *
+ * Converting an unerased block from MLC to SLC
+ * causes byte values to change. Since both data and its ECC
+ * have changed, reads on the block give uncorrectable error.
+ * This might lead to the block being detected as bad.
+ *
+ * Avoid this by ensuring that the block to be converted is
+ * erased.
+ */
+static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
+{
+ struct onenand_chip *this = mtd->priv;
+ int i, ret;
+ int block;
+ struct mtd_oob_ops ops = {
+ .mode = MTD_OPS_PLACE_OOB,
+ .ooboffs = 0,
+ .ooblen = mtd->oobsize,
+ .datbuf = NULL,
+ .oobbuf = this->oob_buf,
+ };
+ loff_t addr;
+
+ printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
+
+ for (block = start; block <= end; block++) {
+ addr = flexonenand_addr(this, block);
+ if (onenand_block_isbad_nolock(mtd, addr, 0))
+ continue;
+
+ /*
+ * Since main area write results in ECC write to spare,
+ * it is sufficient to check only ECC bytes for change.
+ */
+ ret = onenand_read_oob_nolock(mtd, addr, &ops);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < mtd->oobsize; i++)
+ if (this->oob_buf[i] != 0xff)
+ break;
+
+ if (i != mtd->oobsize) {
+ printk(KERN_WARNING "%s: Block %d not erased.\n",
+ __func__, block);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * flexonenand_set_boundary - Writes the SLC boundary
+ * @param mtd - mtd info structure
+ */
+int flexonenand_set_boundary(struct mtd_info *mtd, int die,
+ int boundary, int lock)
+{
+ struct onenand_chip *this = mtd->priv;
+ int ret, density, blksperdie, old, new, thisboundary;
+ loff_t addr;
+
+ /* Change only once for SDP Flex-OneNAND */
+ if (die && (!ONENAND_IS_DDP(this)))
+ return 0;
+
+ /* boundary value of -1 indicates no required change */
+ if (boundary < 0 || boundary == this->boundary[die])
+ return 0;
+
+ density = onenand_get_density(this->device_id);
+ blksperdie = ((16 << density) << 20) >> this->erase_shift;
+ blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+
+ if (boundary >= blksperdie) {
+ printk(KERN_ERR "%s: Invalid boundary value. "
+ "Boundary not changed.\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Check if converting blocks are erased */
+ old = this->boundary[die] + (die * this->density_mask);
+ new = boundary + (die * this->density_mask);
+ ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
+ if (ret) {
+ printk(KERN_ERR "%s: Please erase blocks "
+ "before boundary change\n", __func__);
+ return ret;
+ }
+
+ this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+ this->wait(mtd, FL_SYNCING);
+
+ /* Check is boundary is locked */
+ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+ ret = this->wait(mtd, FL_READING);
+
+ thisboundary = this->read_word(this->base + ONENAND_DATARAM);
+ if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
+ printk(KERN_ERR "%s: boundary locked\n", __func__);
+ ret = 1;
+ goto out;
+ }
+
+ printk(KERN_INFO "Changing die %d boundary: %d%s\n",
+ die, boundary, lock ? "(Locked)" : "(Unlocked)");
+
+ addr = die ? this->diesize[0] : 0;
+
+ boundary &= FLEXONENAND_PI_MASK;
+ boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
+
+ this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
+ ret = this->wait(mtd, FL_ERASING);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
+ __func__, die);
+ goto out;
+ }
+
+ this->write_word(boundary, this->base + ONENAND_DATARAM);
+ this->command(mtd, ONENAND_CMD_PROG, addr, 0);
+ ret = this->wait(mtd, FL_WRITING);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed PI write for Die %d\n",
+ __func__, die);
+ goto out;
+ }
+
+ this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
+ ret = this->wait(mtd, FL_WRITING);
+out:
+ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
+ this->wait(mtd, FL_RESETING);
+ if (!ret)
+ /* Recalculate device size on boundary change*/
+ flexonenand_get_size(mtd);
+
+ return ret;
+}
+
+/**
+ * onenand_chip_probe - [OneNAND Interface] The generic chip probe
+ * @param mtd MTD device structure
+ *
+ * OneNAND detection method:
+ * Compare the values from command with ones from register
+ */
+static int onenand_chip_probe(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int bram_maf_id, bram_dev_id, maf_id, dev_id;
+ int syscfg;
+
+ /* Save system configuration 1 */
+ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+ /* Clear Sync. Burst Read mode to read BootRAM */
+ this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
+
+ /* Send the command for reading device ID from BootRAM */
+ this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
+
+ /* Read manufacturer and device IDs from BootRAM */
+ bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
+ bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
+
+ /* Reset OneNAND to read default register values */
+ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
+ /* Wait reset */
+ this->wait(mtd, FL_RESETING);
+
+ /* Restore system configuration 1 */
+ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+ /* Check manufacturer ID */
+ if (onenand_check_maf(bram_maf_id))
+ return -ENXIO;
+
+ /* Read manufacturer and device IDs from Register */
+ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
+ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+
+ /* Check OneNAND device */
+ if (maf_id != bram_maf_id || dev_id != bram_dev_id)
+ return -ENXIO;
+
+ return 0;
+}
+
+/**
+ * onenand_probe - [OneNAND Interface] Probe the OneNAND device
+ * @param mtd MTD device structure
+ */
+static int onenand_probe(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int maf_id, dev_id, ver_id;
+ int density;
+ int ret;
+
+ ret = this->chip_probe(mtd);
+ if (ret)
+ return ret;
+
+ /* Read manufacturer and device IDs from Register */
+ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
+ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+ ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
+ this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
+
+ /* Flash device information */
+ onenand_print_device_info(dev_id, ver_id);
+ this->device_id = dev_id;
+ this->version_id = ver_id;
+
+ /* Check OneNAND features */
+ onenand_check_features(mtd);
+
+ density = onenand_get_density(dev_id);
+ if (FLEXONENAND(this)) {
+ this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
+ /* Maximum possible erase regions */
+ mtd->numeraseregions = this->dies << 1;
+ mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
+ * (this->dies << 1), GFP_KERNEL);
+ if (!mtd->eraseregions)
+ return -ENOMEM;
+ }
+
+ /*
+ * For Flex-OneNAND, chipsize represents maximum possible device size.
+ * mtd->size represents the actual device size.
+ */
+ this->chipsize = (16 << density) << 20;
+
+ /* OneNAND page size & block size */
+ /* The data buffer size is equal to page size */
+ mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
+ /* We use the full BufferRAM */
+ if (ONENAND_IS_4KB_PAGE(this))
+ mtd->writesize <<= 1;
+
+ mtd->oobsize = mtd->writesize >> 5;
+ /* Pages per a block are always 64 in OneNAND */
+ mtd->erasesize = mtd->writesize << 6;
+ /*
+ * Flex-OneNAND SLC area has 64 pages per block.
+ * Flex-OneNAND MLC area has 128 pages per block.
+ * Expose MLC erase size to find erase_shift and page_mask.
+ */
+ if (FLEXONENAND(this))
+ mtd->erasesize <<= 1;
+
+ this->erase_shift = ffs(mtd->erasesize) - 1;
+ this->page_shift = ffs(mtd->writesize) - 1;
+ this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
+ /* Set density mask. it is used for DDP */
+ if (ONENAND_IS_DDP(this))
+ this->density_mask = this->chipsize >> (this->erase_shift + 1);
+ /* It's real page size */
+ this->writesize = mtd->writesize;
+
+ /* REVISIT: Multichip handling */
+
+ if (FLEXONENAND(this))
+ flexonenand_get_size(mtd);
+ else
+ mtd->size = this->chipsize;
+
+ /*
+ * We emulate the 4KiB page and 256KiB erase block size
+ * But oobsize is still 64 bytes.
+ * It is only valid if you turn on 2X program support,
+ * Otherwise it will be ignored by compiler.
+ */
+ if (ONENAND_IS_2PLANE(this)) {
+ mtd->writesize <<= 1;
+ mtd->erasesize <<= 1;
+ }
+
+ return 0;
+}
+
+/**
+ * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
+ * @param mtd MTD device structure
+ */
+static int onenand_suspend(struct mtd_info *mtd)
+{
+ return onenand_get_device(mtd, FL_PM_SUSPENDED);
+}
+
+/**
+ * onenand_resume - [MTD Interface] Resume the OneNAND flash
+ * @param mtd MTD device structure
+ */
+static void onenand_resume(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (this->state == FL_PM_SUSPENDED)
+ onenand_release_device(mtd);
+ else
+ printk(KERN_ERR "%s: resume() called for the chip which is not "
+ "in suspended state\n", __func__);
+}
+
+/**
+ * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
+ * @param mtd MTD device structure
+ * @param maxchips Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values.
+ */
+int onenand_scan(struct mtd_info *mtd, int maxchips)
+{
+ int i, ret;
+ struct onenand_chip *this = mtd->priv;
+
+ if (!this->read_word)
+ this->read_word = onenand_readw;
+ if (!this->write_word)
+ this->write_word = onenand_writew;
+
+ if (!this->command)
+ this->command = onenand_command;
+ if (!this->wait)
+ onenand_setup_wait(mtd);
+ if (!this->bbt_wait)
+ this->bbt_wait = onenand_bbt_wait;
+ if (!this->unlock_all)
+ this->unlock_all = onenand_unlock_all;
+
+ if (!this->chip_probe)
+ this->chip_probe = onenand_chip_probe;
+
+ if (!this->read_bufferram)
+ this->read_bufferram = onenand_read_bufferram;
+ if (!this->write_bufferram)
+ this->write_bufferram = onenand_write_bufferram;
+
+ if (!this->block_markbad)
+ this->block_markbad = onenand_default_block_markbad;
+ if (!this->scan_bbt)
+ this->scan_bbt = onenand_default_bbt;
+
+ if (onenand_probe(mtd))
+ return -ENXIO;
+
+ /* Set Sync. Burst Read after probing */
+ if (this->mmcontrol) {
+ printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
+ this->read_bufferram = onenand_sync_read_bufferram;
+ }
+
+ /* Allocate buffers, if necessary */
+ if (!this->page_buf) {
+ this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+ if (!this->page_buf) {
+ printk(KERN_ERR "%s: Can't allocate page_buf\n",
+ __func__);
+ return -ENOMEM;
+ }
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+ this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+ if (!this->verify_buf) {
+ kfree(this->page_buf);
+ return -ENOMEM;
+ }
+#endif
+ this->options |= ONENAND_PAGEBUF_ALLOC;
+ }
+ if (!this->oob_buf) {
+ this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
+ if (!this->oob_buf) {
+ printk(KERN_ERR "%s: Can't allocate oob_buf\n",
+ __func__);
+ if (this->options & ONENAND_PAGEBUF_ALLOC) {
+ this->options &= ~ONENAND_PAGEBUF_ALLOC;
+ kfree(this->page_buf);
+ }
+ return -ENOMEM;
+ }
+ this->options |= ONENAND_OOBBUF_ALLOC;
+ }
+
+ this->state = FL_READY;
+ init_waitqueue_head(&this->wq);
+ spin_lock_init(&this->chip_lock);
+
+ /*
+ * Allow subpage writes up to oobsize.
+ */
+ switch (mtd->oobsize) {
+ case 128:
+ if (FLEXONENAND(this)) {
+ this->ecclayout = &flexonenand_oob_128;
+ mtd->subpage_sft = 0;
+ } else {
+ this->ecclayout = &onenand_oob_128;
+ mtd->subpage_sft = 2;
+ }
+ if (ONENAND_IS_NOP_1(this))
+ mtd->subpage_sft = 0;
+ break;
+ case 64:
+ this->ecclayout = &onenand_oob_64;
+ mtd->subpage_sft = 2;
+ break;
+
+ case 32:
+ this->ecclayout = &onenand_oob_32;
+ mtd->subpage_sft = 1;
+ break;
+
+ default:
+ printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
+ __func__, mtd->oobsize);
+ mtd->subpage_sft = 0;
+ /* To prevent kernel oops */
+ this->ecclayout = &onenand_oob_32;
+ break;
+ }
+
+ this->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+ /*
+ * The number of bytes available for a client to place data into
+ * the out of band area
+ */
+ this->ecclayout->oobavail = 0;
+ for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
+ this->ecclayout->oobfree[i].length; i++)
+ this->ecclayout->oobavail +=
+ this->ecclayout->oobfree[i].length;
+ mtd->oobavail = this->ecclayout->oobavail;
+
+ mtd->ecclayout = this->ecclayout;
+ mtd->ecc_strength = 1;
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->_erase = onenand_erase;
+ mtd->_point = NULL;
+ mtd->_unpoint = NULL;
+ mtd->_read = onenand_read;
+ mtd->_write = onenand_write;
+ mtd->_read_oob = onenand_read_oob;
+ mtd->_write_oob = onenand_write_oob;
+ mtd->_panic_write = onenand_panic_write;
+#ifdef CONFIG_MTD_ONENAND_OTP
+ mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
+ mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
+ mtd->_get_user_prot_info = onenand_get_user_prot_info;
+ mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
+ mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
+ mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
+#endif
+ mtd->_sync = onenand_sync;
+ mtd->_lock = onenand_lock;
+ mtd->_unlock = onenand_unlock;
+ mtd->_suspend = onenand_suspend;
+ mtd->_resume = onenand_resume;
+ mtd->_block_isbad = onenand_block_isbad;
+ mtd->_block_markbad = onenand_block_markbad;
+ mtd->owner = THIS_MODULE;
+ mtd->writebufsize = mtd->writesize;
+
+ /* Unlock whole block */
+ if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
+ this->unlock_all(mtd);
+
+ ret = this->scan_bbt(mtd);
+ if ((!FLEXONENAND(this)) || ret)
+ return ret;
+
+ /* Change Flex-OneNAND boundaries if required */
+ for (i = 0; i < MAX_DIES; i++)
+ flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
+ flex_bdry[(2 * i) + 1]);
+
+ return 0;
+}
+
+/**
+ * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
+ * @param mtd MTD device structure
+ */
+void onenand_release(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ /* Deregister partitions */
+ mtd_device_unregister(mtd);
+
+ /* Free bad block table memory, if allocated */
+ if (this->bbm) {
+ struct bbm_info *bbm = this->bbm;
+ kfree(bbm->bbt);
+ kfree(this->bbm);
+ }
+ /* Buffers allocated by onenand_scan */
+ if (this->options & ONENAND_PAGEBUF_ALLOC) {
+ kfree(this->page_buf);
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+ kfree(this->verify_buf);
+#endif
+ }
+ if (this->options & ONENAND_OOBBUF_ALLOC)
+ kfree(this->oob_buf);
+ kfree(mtd->eraseregions);
+}
+
+EXPORT_SYMBOL_GPL(onenand_scan);
+EXPORT_SYMBOL_GPL(onenand_release);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Generic OneNAND flash driver code");
diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/onenand/onenand_bbt.c
new file mode 100644
index 00000000..66fe3b7e
--- /dev/null
+++ b/drivers/mtd/onenand/onenand_bbt.c
@@ -0,0 +1,253 @@
+/*
+ * linux/drivers/mtd/onenand/onenand_bbt.c
+ *
+ * Bad Block Table support for the OneNAND driver
+ *
+ * Copyright(c) 2005 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * Derived from nand_bbt.c
+ *
+ * TODO:
+ * Split BBT core and chip specific BBT.
+ */
+
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/export.h>
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @param buf the buffer to search
+ * @param len the length of buffer to search
+ * @param paglen the pagelength
+ * @param td search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers. Same as check_pattern, but
+ * no optional empty check and the pattern is expected to start
+ * at offset 0.
+ *
+ */
+static int check_short_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+ int i;
+ uint8_t *p = buf;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[i] != td->pattern[i])
+ return -1;
+ }
+ return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @param mtd MTD device structure
+ * @param buf temporary buffer
+ * @param bd descriptor for the good/bad block search pattern
+ * @param chip create the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int i, j, numblocks, len, scanlen;
+ int startblock;
+ loff_t from;
+ size_t readlen, ooblen;
+ struct mtd_oob_ops ops;
+ int rgn;
+
+ printk(KERN_INFO "Scanning device for bad blocks\n");
+
+ len = 2;
+
+ /* We need only read few bytes from the OOB area */
+ scanlen = ooblen = 0;
+ readlen = bd->len;
+
+ /* chip == -1 case only */
+ /* Note that numblocks is 2 * (real numblocks) here;
+ * see i += 2 below as it makses shifting and masking less painful
+ */
+ numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1);
+ startblock = 0;
+ from = 0;
+
+ ops.mode = MTD_OPS_PLACE_OOB;
+ ops.ooblen = readlen;
+ ops.oobbuf = buf;
+ ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
+
+ for (i = startblock; i < numblocks; ) {
+ int ret;
+
+ for (j = 0; j < len; j++) {
+ /* No need to read pages fully,
+ * just read required OOB bytes */
+ ret = onenand_bbt_read_oob(mtd,
+ from + j * this->writesize + bd->offs, &ops);
+
+ /* If it is a initial bad block, just ignore it */
+ if (ret == ONENAND_BBT_READ_FATAL_ERROR)
+ return -EIO;
+
+ if (ret || check_short_pattern(&buf[j * scanlen],
+ scanlen, this->writesize, bd)) {
+ bbm->bbt[i >> 3] |= 0x03 << (i & 0x6);
+ printk(KERN_INFO "OneNAND eraseblock %d is an "
+ "initial bad block\n", i >> 1);
+ mtd->ecc_stats.badblocks++;
+ break;
+ }
+ }
+ i += 2;
+
+ if (FLEXONENAND(this)) {
+ rgn = flexonenand_region(mtd, from);
+ from += mtd->eraseregions[rgn].erasesize;
+ } else
+ from += (1 << bbm->bbt_erase_shift);
+ }
+
+ return 0;
+}
+
+
+/**
+ * onenand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @param mtd MTD device structure
+ * @param bd descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+ */
+static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ bd->options &= ~NAND_BBT_SCANEMPTY;
+ return create_bbt(mtd, this->page_buf, bd, -1);
+}
+
+/**
+ * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad
+ * @param mtd MTD device structure
+ * @param offs offset in the device
+ * @param allowbbt allow access to bad block table region
+ */
+static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int block;
+ uint8_t res;
+
+ /* Get block number * 2 */
+ block = (int) (onenand_block(this, offs) << 1);
+ res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+ pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+ (unsigned int) offs, block >> 1, res);
+
+ switch ((int) res) {
+ case 0x00: return 0;
+ case 0x01: return 1;
+ case 0x02: return allowbbt ? 0 : 1;
+ }
+
+ return 1;
+}
+
+/**
+ * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s)
+ * @param mtd MTD device structure
+ * @param bd descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It is freed
+ * by the onenand_release function.
+ *
+ */
+int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm = this->bbm;
+ int len, ret = 0;
+
+ len = this->chipsize >> (this->erase_shift + 2);
+ /* Allocate memory (2bit per block) and clear the memory bad block table */
+ bbm->bbt = kzalloc(len, GFP_KERNEL);
+ if (!bbm->bbt)
+ return -ENOMEM;
+
+ /* Set the bad block position */
+ bbm->badblockpos = ONENAND_BADBLOCK_POS;
+
+ /* Set erase shift */
+ bbm->bbt_erase_shift = this->erase_shift;
+
+ if (!bbm->isbad_bbt)
+ bbm->isbad_bbt = onenand_isbad_bbt;
+
+ /* Scan the device to build a memory based bad block table */
+ if ((ret = onenand_memory_bbt(mtd, bd))) {
+ printk(KERN_ERR "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n");
+ kfree(bbm->bbt);
+ bbm->bbt = NULL;
+ }
+
+ return ret;
+}
+
+/*
+ * Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks.
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern,
+};
+
+/**
+ * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device
+ * @param mtd MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the onenand_scan_bbt function
+ */
+int onenand_default_bbt(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct bbm_info *bbm;
+
+ this->bbm = kzalloc(sizeof(struct bbm_info), GFP_KERNEL);
+ if (!this->bbm)
+ return -ENOMEM;
+
+ bbm = this->bbm;
+
+ /* 1KB page has same configuration as 2KB page */
+ if (!bbm->badblock_pattern)
+ bbm->badblock_pattern = &largepage_memorybased;
+
+ return onenand_scan_bbt(mtd, bbm->badblock_pattern);
+}
+
+EXPORT_SYMBOL(onenand_scan_bbt);
+EXPORT_SYMBOL(onenand_default_bbt);
diff --git a/drivers/mtd/onenand/onenand_sim.c b/drivers/mtd/onenand/onenand_sim.c
new file mode 100644
index 00000000..85399e3a
--- /dev/null
+++ b/drivers/mtd/onenand/onenand_sim.c
@@ -0,0 +1,564 @@
+/*
+ * linux/drivers/mtd/onenand/onenand_sim.c
+ *
+ * The OneNAND simulator
+ *
+ * Copyright © 2005-2007 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
+ * Flex-OneNAND simulator support
+ * Copyright (C) Samsung Electronics, 2008
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/vmalloc.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/onenand.h>
+
+#include <linux/io.h>
+
+#ifndef CONFIG_ONENAND_SIM_MANUFACTURER
+#define CONFIG_ONENAND_SIM_MANUFACTURER 0xec
+#endif
+
+#ifndef CONFIG_ONENAND_SIM_DEVICE_ID
+#define CONFIG_ONENAND_SIM_DEVICE_ID 0x04
+#endif
+
+#define CONFIG_FLEXONENAND ((CONFIG_ONENAND_SIM_DEVICE_ID >> 9) & 1)
+
+#ifndef CONFIG_ONENAND_SIM_VERSION_ID
+#define CONFIG_ONENAND_SIM_VERSION_ID 0x1e
+#endif
+
+#ifndef CONFIG_ONENAND_SIM_TECHNOLOGY_ID
+#define CONFIG_ONENAND_SIM_TECHNOLOGY_ID CONFIG_FLEXONENAND
+#endif
+
+/* Initial boundary values for Flex-OneNAND Simulator */
+#ifndef CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY
+#define CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY 0x01
+#endif
+
+#ifndef CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY
+#define CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY 0x01
+#endif
+
+static int manuf_id = CONFIG_ONENAND_SIM_MANUFACTURER;
+static int device_id = CONFIG_ONENAND_SIM_DEVICE_ID;
+static int version_id = CONFIG_ONENAND_SIM_VERSION_ID;
+static int technology_id = CONFIG_ONENAND_SIM_TECHNOLOGY_ID;
+static int boundary[] = {
+ CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY,
+ CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY,
+};
+
+struct onenand_flash {
+ void __iomem *base;
+ void __iomem *data;
+};
+
+#define ONENAND_CORE(flash) (flash->data)
+#define ONENAND_CORE_SPARE(flash, this, offset) \
+ ((flash->data) + (this->chipsize) + (offset >> 5))
+
+#define ONENAND_MAIN_AREA(this, offset) \
+ (this->base + ONENAND_DATARAM + offset)
+
+#define ONENAND_SPARE_AREA(this, offset) \
+ (this->base + ONENAND_SPARERAM + offset)
+
+#define ONENAND_GET_WP_STATUS(this) \
+ (readw(this->base + ONENAND_REG_WP_STATUS))
+
+#define ONENAND_SET_WP_STATUS(v, this) \
+ (writew(v, this->base + ONENAND_REG_WP_STATUS))
+
+/* It has all 0xff chars */
+#define MAX_ONENAND_PAGESIZE (4096 + 128)
+static unsigned char *ffchars;
+
+#if CONFIG_FLEXONENAND
+#define PARTITION_NAME "Flex-OneNAND simulator partition"
+#else
+#define PARTITION_NAME "OneNAND simulator partition"
+#endif
+
+static struct mtd_partition os_partitions[] = {
+ {
+ .name = PARTITION_NAME,
+ .offset = 0,
+ .size = MTDPART_SIZ_FULL,
+ },
+};
+
+/*
+ * OneNAND simulator mtd
+ */
+struct onenand_info {
+ struct mtd_info mtd;
+ struct mtd_partition *parts;
+ struct onenand_chip onenand;
+ struct onenand_flash flash;
+};
+
+static struct onenand_info *info;
+
+#define DPRINTK(format, args...) \
+do { \
+ printk(KERN_DEBUG "%s[%d]: " format "\n", __func__, \
+ __LINE__, ##args); \
+} while (0)
+
+/**
+ * onenand_lock_handle - Handle Lock scheme
+ * @this: OneNAND device structure
+ * @cmd: The command to be sent
+ *
+ * Send lock command to OneNAND device.
+ * The lock scheme depends on chip type.
+ */
+static void onenand_lock_handle(struct onenand_chip *this, int cmd)
+{
+ int block_lock_scheme;
+ int status;
+
+ status = ONENAND_GET_WP_STATUS(this);
+ block_lock_scheme = !(this->options & ONENAND_HAS_CONT_LOCK);
+
+ switch (cmd) {
+ case ONENAND_CMD_UNLOCK:
+ case ONENAND_CMD_UNLOCK_ALL:
+ if (block_lock_scheme)
+ ONENAND_SET_WP_STATUS(ONENAND_WP_US, this);
+ else
+ ONENAND_SET_WP_STATUS(status | ONENAND_WP_US, this);
+ break;
+
+ case ONENAND_CMD_LOCK:
+ if (block_lock_scheme)
+ ONENAND_SET_WP_STATUS(ONENAND_WP_LS, this);
+ else
+ ONENAND_SET_WP_STATUS(status | ONENAND_WP_LS, this);
+ break;
+
+ case ONENAND_CMD_LOCK_TIGHT:
+ if (block_lock_scheme)
+ ONENAND_SET_WP_STATUS(ONENAND_WP_LTS, this);
+ else
+ ONENAND_SET_WP_STATUS(status | ONENAND_WP_LTS, this);
+ break;
+
+ default:
+ break;
+ }
+}
+
+/**
+ * onenand_bootram_handle - Handle BootRAM area
+ * @this: OneNAND device structure
+ * @cmd: The command to be sent
+ *
+ * Emulate BootRAM area. It is possible to do basic operation using BootRAM.
+ */
+static void onenand_bootram_handle(struct onenand_chip *this, int cmd)
+{
+ switch (cmd) {
+ case ONENAND_CMD_READID:
+ writew(manuf_id, this->base);
+ writew(device_id, this->base + 2);
+ writew(version_id, this->base + 4);
+ break;
+
+ default:
+ /* REVIST: Handle other commands */
+ break;
+ }
+}
+
+/**
+ * onenand_update_interrupt - Set interrupt register
+ * @this: OneNAND device structure
+ * @cmd: The command to be sent
+ *
+ * Update interrupt register. The status depends on command.
+ */
+static void onenand_update_interrupt(struct onenand_chip *this, int cmd)
+{
+ int interrupt = ONENAND_INT_MASTER;
+
+ switch (cmd) {
+ case ONENAND_CMD_READ:
+ case ONENAND_CMD_READOOB:
+ interrupt |= ONENAND_INT_READ;
+ break;
+
+ case ONENAND_CMD_PROG:
+ case ONENAND_CMD_PROGOOB:
+ interrupt |= ONENAND_INT_WRITE;
+ break;
+
+ case ONENAND_CMD_ERASE:
+ interrupt |= ONENAND_INT_ERASE;
+ break;
+
+ case ONENAND_CMD_RESET:
+ interrupt |= ONENAND_INT_RESET;
+ break;
+
+ default:
+ break;
+ }
+
+ writew(interrupt, this->base + ONENAND_REG_INTERRUPT);
+}
+
+/**
+ * onenand_check_overwrite - Check if over-write happened
+ * @dest: The destination pointer
+ * @src: The source pointer
+ * @count: The length to be check
+ *
+ * Returns: 0 on same, otherwise 1
+ *
+ * Compare the source with destination
+ */
+static int onenand_check_overwrite(void *dest, void *src, size_t count)
+{
+ unsigned int *s = (unsigned int *) src;
+ unsigned int *d = (unsigned int *) dest;
+ int i;
+
+ count >>= 2;
+ for (i = 0; i < count; i++)
+ if ((*s++ ^ *d++) != 0)
+ return 1;
+
+ return 0;
+}
+
+/**
+ * onenand_data_handle - Handle OneNAND Core and DataRAM
+ * @this: OneNAND device structure
+ * @cmd: The command to be sent
+ * @dataram: Which dataram used
+ * @offset: The offset to OneNAND Core
+ *
+ * Copy data from OneNAND Core to DataRAM (read)
+ * Copy data from DataRAM to OneNAND Core (write)
+ * Erase the OneNAND Core (erase)
+ */
+static void onenand_data_handle(struct onenand_chip *this, int cmd,
+ int dataram, unsigned int offset)
+{
+ struct mtd_info *mtd = &info->mtd;
+ struct onenand_flash *flash = this->priv;
+ int main_offset, spare_offset, die = 0;
+ void __iomem *src;
+ void __iomem *dest;
+ unsigned int i;
+ static int pi_operation;
+ int erasesize, rgn;
+
+ if (dataram) {
+ main_offset = mtd->writesize;
+ spare_offset = mtd->oobsize;
+ } else {
+ main_offset = 0;
+ spare_offset = 0;
+ }
+
+ if (pi_operation) {
+ die = readw(this->base + ONENAND_REG_START_ADDRESS2);
+ die >>= ONENAND_DDP_SHIFT;
+ }
+
+ switch (cmd) {
+ case FLEXONENAND_CMD_PI_ACCESS:
+ pi_operation = 1;
+ break;
+
+ case ONENAND_CMD_RESET:
+ pi_operation = 0;
+ break;
+
+ case ONENAND_CMD_READ:
+ src = ONENAND_CORE(flash) + offset;
+ dest = ONENAND_MAIN_AREA(this, main_offset);
+ if (pi_operation) {
+ writew(boundary[die], this->base + ONENAND_DATARAM);
+ break;
+ }
+ memcpy(dest, src, mtd->writesize);
+ /* Fall through */
+
+ case ONENAND_CMD_READOOB:
+ src = ONENAND_CORE_SPARE(flash, this, offset);
+ dest = ONENAND_SPARE_AREA(this, spare_offset);
+ memcpy(dest, src, mtd->oobsize);
+ break;
+
+ case ONENAND_CMD_PROG:
+ src = ONENAND_MAIN_AREA(this, main_offset);
+ dest = ONENAND_CORE(flash) + offset;
+ if (pi_operation) {
+ boundary[die] = readw(this->base + ONENAND_DATARAM);
+ break;
+ }
+ /* To handle partial write */
+ for (i = 0; i < (1 << mtd->subpage_sft); i++) {
+ int off = i * this->subpagesize;
+ if (!memcmp(src + off, ffchars, this->subpagesize))
+ continue;
+ if (memcmp(dest + off, ffchars, this->subpagesize) &&
+ onenand_check_overwrite(dest + off, src + off, this->subpagesize))
+ printk(KERN_ERR "over-write happened at 0x%08x\n", offset);
+ memcpy(dest + off, src + off, this->subpagesize);
+ }
+ /* Fall through */
+
+ case ONENAND_CMD_PROGOOB:
+ src = ONENAND_SPARE_AREA(this, spare_offset);
+ /* Check all data is 0xff chars */
+ if (!memcmp(src, ffchars, mtd->oobsize))
+ break;
+
+ dest = ONENAND_CORE_SPARE(flash, this, offset);
+ if (memcmp(dest, ffchars, mtd->oobsize) &&
+ onenand_check_overwrite(dest, src, mtd->oobsize))
+ printk(KERN_ERR "OOB: over-write happened at 0x%08x\n",
+ offset);
+ memcpy(dest, src, mtd->oobsize);
+ break;
+
+ case ONENAND_CMD_ERASE:
+ if (pi_operation)
+ break;
+
+ if (FLEXONENAND(this)) {
+ rgn = flexonenand_region(mtd, offset);
+ erasesize = mtd->eraseregions[rgn].erasesize;
+ } else
+ erasesize = mtd->erasesize;
+
+ memset(ONENAND_CORE(flash) + offset, 0xff, erasesize);
+ memset(ONENAND_CORE_SPARE(flash, this, offset), 0xff,
+ (erasesize >> 5));
+ break;
+
+ default:
+ break;
+ }
+}
+
+/**
+ * onenand_command_handle - Handle command
+ * @this: OneNAND device structure
+ * @cmd: The command to be sent
+ *
+ * Emulate OneNAND command.
+ */
+static void onenand_command_handle(struct onenand_chip *this, int cmd)
+{
+ unsigned long offset = 0;
+ int block = -1, page = -1, bufferram = -1;
+ int dataram = 0;
+
+ switch (cmd) {
+ case ONENAND_CMD_UNLOCK:
+ case ONENAND_CMD_LOCK:
+ case ONENAND_CMD_LOCK_TIGHT:
+ case ONENAND_CMD_UNLOCK_ALL:
+ onenand_lock_handle(this, cmd);
+ break;
+
+ case ONENAND_CMD_BUFFERRAM:
+ /* Do nothing */
+ return;
+
+ default:
+ block = (int) readw(this->base + ONENAND_REG_START_ADDRESS1);
+ if (block & (1 << ONENAND_DDP_SHIFT)) {
+ block &= ~(1 << ONENAND_DDP_SHIFT);
+ /* The half of chip block */
+ block += this->chipsize >> (this->erase_shift + 1);
+ }
+ if (cmd == ONENAND_CMD_ERASE)
+ break;
+
+ page = (int) readw(this->base + ONENAND_REG_START_ADDRESS8);
+ page = (page >> ONENAND_FPA_SHIFT);
+ bufferram = (int) readw(this->base + ONENAND_REG_START_BUFFER);
+ bufferram >>= ONENAND_BSA_SHIFT;
+ bufferram &= ONENAND_BSA_DATARAM1;
+ dataram = (bufferram == ONENAND_BSA_DATARAM1) ? 1 : 0;
+ break;
+ }
+
+ if (block != -1)
+ offset = onenand_addr(this, block);
+
+ if (page != -1)
+ offset += page << this->page_shift;
+
+ onenand_data_handle(this, cmd, dataram, offset);
+
+ onenand_update_interrupt(this, cmd);
+}
+
+/**
+ * onenand_writew - [OneNAND Interface] Emulate write operation
+ * @value: value to write
+ * @addr: address to write
+ *
+ * Write OneNAND register with value
+ */
+static void onenand_writew(unsigned short value, void __iomem * addr)
+{
+ struct onenand_chip *this = info->mtd.priv;
+
+ /* BootRAM handling */
+ if (addr < this->base + ONENAND_DATARAM) {
+ onenand_bootram_handle(this, value);
+ return;
+ }
+ /* Command handling */
+ if (addr == this->base + ONENAND_REG_COMMAND)
+ onenand_command_handle(this, value);
+
+ writew(value, addr);
+}
+
+/**
+ * flash_init - Initialize OneNAND simulator
+ * @flash: OneNAND simulator data strucutres
+ *
+ * Initialize OneNAND simulator.
+ */
+static int __init flash_init(struct onenand_flash *flash)
+{
+ int density, size;
+ int buffer_size;
+
+ flash->base = kzalloc(131072, GFP_KERNEL);
+ if (!flash->base) {
+ printk(KERN_ERR "Unable to allocate base address.\n");
+ return -ENOMEM;
+ }
+
+ density = device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
+ density &= ONENAND_DEVICE_DENSITY_MASK;
+ size = ((16 << 20) << density);
+
+ ONENAND_CORE(flash) = vmalloc(size + (size >> 5));
+ if (!ONENAND_CORE(flash)) {
+ printk(KERN_ERR "Unable to allocate nand core address.\n");
+ kfree(flash->base);
+ return -ENOMEM;
+ }
+
+ memset(ONENAND_CORE(flash), 0xff, size + (size >> 5));
+
+ /* Setup registers */
+ writew(manuf_id, flash->base + ONENAND_REG_MANUFACTURER_ID);
+ writew(device_id, flash->base + ONENAND_REG_DEVICE_ID);
+ writew(version_id, flash->base + ONENAND_REG_VERSION_ID);
+ writew(technology_id, flash->base + ONENAND_REG_TECHNOLOGY);
+
+ if (density < 2 && (!CONFIG_FLEXONENAND))
+ buffer_size = 0x0400; /* 1KiB page */
+ else
+ buffer_size = 0x0800; /* 2KiB page */
+ writew(buffer_size, flash->base + ONENAND_REG_DATA_BUFFER_SIZE);
+
+ return 0;
+}
+
+/**
+ * flash_exit - Clean up OneNAND simulator
+ * @flash: OneNAND simulator data structures
+ *
+ * Clean up OneNAND simulator.
+ */
+static void flash_exit(struct onenand_flash *flash)
+{
+ vfree(ONENAND_CORE(flash));
+ kfree(flash->base);
+}
+
+static int __init onenand_sim_init(void)
+{
+ /* Allocate all 0xff chars pointer */
+ ffchars = kmalloc(MAX_ONENAND_PAGESIZE, GFP_KERNEL);
+ if (!ffchars) {
+ printk(KERN_ERR "Unable to allocate ff chars.\n");
+ return -ENOMEM;
+ }
+ memset(ffchars, 0xff, MAX_ONENAND_PAGESIZE);
+
+ /* Allocate OneNAND simulator mtd pointer */
+ info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL);
+ if (!info) {
+ printk(KERN_ERR "Unable to allocate core structures.\n");
+ kfree(ffchars);
+ return -ENOMEM;
+ }
+
+ /* Override write_word function */
+ info->onenand.write_word = onenand_writew;
+
+ if (flash_init(&info->flash)) {
+ printk(KERN_ERR "Unable to allocate flash.\n");
+ kfree(ffchars);
+ kfree(info);
+ return -ENOMEM;
+ }
+
+ info->parts = os_partitions;
+
+ info->onenand.base = info->flash.base;
+ info->onenand.priv = &info->flash;
+
+ info->mtd.name = "OneNAND simulator";
+ info->mtd.priv = &info->onenand;
+ info->mtd.owner = THIS_MODULE;
+
+ if (onenand_scan(&info->mtd, 1)) {
+ flash_exit(&info->flash);
+ kfree(ffchars);
+ kfree(info);
+ return -ENXIO;
+ }
+
+ mtd_device_register(&info->mtd, info->parts,
+ ARRAY_SIZE(os_partitions));
+
+ return 0;
+}
+
+static void __exit onenand_sim_exit(void)
+{
+ struct onenand_chip *this = info->mtd.priv;
+ struct onenand_flash *flash = this->priv;
+
+ onenand_release(&info->mtd);
+ flash_exit(flash);
+ kfree(ffchars);
+ kfree(info);
+}
+
+module_init(onenand_sim_init);
+module_exit(onenand_sim_exit);
+
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("The OneNAND flash simulator");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/onenand/samsung.c b/drivers/mtd/onenand/samsung.c
new file mode 100644
index 00000000..8e4b3f27
--- /dev/null
+++ b/drivers/mtd/onenand/samsung.c
@@ -0,0 +1,1140 @@
+/*
+ * Samsung S3C64XX/S5PC1XX OneNAND driver
+ *
+ * Copyright © 2008-2010 Samsung Electronics
+ * Kyungmin Park <kyungmin.park@samsung.com>
+ * Marek Szyprowski <m.szyprowski@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Implementation:
+ * S3C64XX and S5PC100: emulate the pseudo BufferRAM
+ * S5PC110: use DMA
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+
+#include <asm/mach/flash.h>
+#include <plat/regs-onenand.h>
+
+#include <linux/io.h>
+
+enum soc_type {
+ TYPE_S3C6400,
+ TYPE_S3C6410,
+ TYPE_S5PC100,
+ TYPE_S5PC110,
+};
+
+#define ONENAND_ERASE_STATUS 0x00
+#define ONENAND_MULTI_ERASE_SET 0x01
+#define ONENAND_ERASE_START 0x03
+#define ONENAND_UNLOCK_START 0x08
+#define ONENAND_UNLOCK_END 0x09
+#define ONENAND_LOCK_START 0x0A
+#define ONENAND_LOCK_END 0x0B
+#define ONENAND_LOCK_TIGHT_START 0x0C
+#define ONENAND_LOCK_TIGHT_END 0x0D
+#define ONENAND_UNLOCK_ALL 0x0E
+#define ONENAND_OTP_ACCESS 0x12
+#define ONENAND_SPARE_ACCESS_ONLY 0x13
+#define ONENAND_MAIN_ACCESS_ONLY 0x14
+#define ONENAND_ERASE_VERIFY 0x15
+#define ONENAND_MAIN_SPARE_ACCESS 0x16
+#define ONENAND_PIPELINE_READ 0x4000
+
+#define MAP_00 (0x0)
+#define MAP_01 (0x1)
+#define MAP_10 (0x2)
+#define MAP_11 (0x3)
+
+#define S3C64XX_CMD_MAP_SHIFT 24
+#define S5PC100_CMD_MAP_SHIFT 26
+
+#define S3C6400_FBA_SHIFT 10
+#define S3C6400_FPA_SHIFT 4
+#define S3C6400_FSA_SHIFT 2
+
+#define S3C6410_FBA_SHIFT 12
+#define S3C6410_FPA_SHIFT 6
+#define S3C6410_FSA_SHIFT 4
+
+#define S5PC100_FBA_SHIFT 13
+#define S5PC100_FPA_SHIFT 7
+#define S5PC100_FSA_SHIFT 5
+
+/* S5PC110 specific definitions */
+#define S5PC110_DMA_SRC_ADDR 0x400
+#define S5PC110_DMA_SRC_CFG 0x404
+#define S5PC110_DMA_DST_ADDR 0x408
+#define S5PC110_DMA_DST_CFG 0x40C
+#define S5PC110_DMA_TRANS_SIZE 0x414
+#define S5PC110_DMA_TRANS_CMD 0x418
+#define S5PC110_DMA_TRANS_STATUS 0x41C
+#define S5PC110_DMA_TRANS_DIR 0x420
+#define S5PC110_INTC_DMA_CLR 0x1004
+#define S5PC110_INTC_ONENAND_CLR 0x1008
+#define S5PC110_INTC_DMA_MASK 0x1024
+#define S5PC110_INTC_ONENAND_MASK 0x1028
+#define S5PC110_INTC_DMA_PEND 0x1044
+#define S5PC110_INTC_ONENAND_PEND 0x1048
+#define S5PC110_INTC_DMA_STATUS 0x1064
+#define S5PC110_INTC_ONENAND_STATUS 0x1068
+
+#define S5PC110_INTC_DMA_TD (1 << 24)
+#define S5PC110_INTC_DMA_TE (1 << 16)
+
+#define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
+#define S5PC110_DMA_CFG_4BURST (0x2 << 16)
+#define S5PC110_DMA_CFG_8BURST (0x3 << 16)
+#define S5PC110_DMA_CFG_16BURST (0x4 << 16)
+
+#define S5PC110_DMA_CFG_INC (0x0 << 8)
+#define S5PC110_DMA_CFG_CNT (0x1 << 8)
+
+#define S5PC110_DMA_CFG_8BIT (0x0 << 0)
+#define S5PC110_DMA_CFG_16BIT (0x1 << 0)
+#define S5PC110_DMA_CFG_32BIT (0x2 << 0)
+
+#define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_16BIT)
+#define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
+ S5PC110_DMA_CFG_INC | \
+ S5PC110_DMA_CFG_16BIT)
+
+#define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
+#define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
+#define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
+
+#define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
+#define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
+#define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
+
+#define S5PC110_DMA_DIR_READ 0x0
+#define S5PC110_DMA_DIR_WRITE 0x1
+
+struct s3c_onenand {
+ struct mtd_info *mtd;
+ struct platform_device *pdev;
+ enum soc_type type;
+ void __iomem *base;
+ struct resource *base_res;
+ void __iomem *ahb_addr;
+ struct resource *ahb_res;
+ int bootram_command;
+ void __iomem *page_buf;
+ void __iomem *oob_buf;
+ unsigned int (*mem_addr)(int fba, int fpa, int fsa);
+ unsigned int (*cmd_map)(unsigned int type, unsigned int val);
+ void __iomem *dma_addr;
+ struct resource *dma_res;
+ unsigned long phys_base;
+ struct completion complete;
+};
+
+#define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
+#define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
+#define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
+#define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
+
+static struct s3c_onenand *onenand;
+
+static inline int s3c_read_reg(int offset)
+{
+ return readl(onenand->base + offset);
+}
+
+static inline void s3c_write_reg(int value, int offset)
+{
+ writel(value, onenand->base + offset);
+}
+
+static inline int s3c_read_cmd(unsigned int cmd)
+{
+ return readl(onenand->ahb_addr + cmd);
+}
+
+static inline void s3c_write_cmd(int value, unsigned int cmd)
+{
+ writel(value, onenand->ahb_addr + cmd);
+}
+
+#ifdef SAMSUNG_DEBUG
+static void s3c_dump_reg(void)
+{
+ int i;
+
+ for (i = 0; i < 0x400; i += 0x40) {
+ printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
+ (unsigned int) onenand->base + i,
+ s3c_read_reg(i), s3c_read_reg(i + 0x10),
+ s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
+ }
+}
+#endif
+
+static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
+{
+ return (type << S3C64XX_CMD_MAP_SHIFT) | val;
+}
+
+static unsigned int s5pc1xx_cmd_map(unsigned type, unsigned val)
+{
+ return (type << S5PC100_CMD_MAP_SHIFT) | val;
+}
+
+static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
+{
+ return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
+ (fsa << S3C6400_FSA_SHIFT);
+}
+
+static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
+{
+ return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
+ (fsa << S3C6410_FSA_SHIFT);
+}
+
+static unsigned int s5pc100_mem_addr(int fba, int fpa, int fsa)
+{
+ return (fba << S5PC100_FBA_SHIFT) | (fpa << S5PC100_FPA_SHIFT) |
+ (fsa << S5PC100_FSA_SHIFT);
+}
+
+static void s3c_onenand_reset(void)
+{
+ unsigned long timeout = 0x10000;
+ int stat;
+
+ s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+ while (1 && timeout--) {
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ if (stat & RST_CMP)
+ break;
+ }
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+ /* Clear interrupt */
+ s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
+ /* Clear the ECC status */
+ s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
+}
+
+static unsigned short s3c_onenand_readw(void __iomem *addr)
+{
+ struct onenand_chip *this = onenand->mtd->priv;
+ struct device *dev = &onenand->pdev->dev;
+ int reg = addr - this->base;
+ int word_addr = reg >> 1;
+ int value;
+
+ /* It's used for probing time */
+ switch (reg) {
+ case ONENAND_REG_MANUFACTURER_ID:
+ return s3c_read_reg(MANUFACT_ID_OFFSET);
+ case ONENAND_REG_DEVICE_ID:
+ return s3c_read_reg(DEVICE_ID_OFFSET);
+ case ONENAND_REG_VERSION_ID:
+ return s3c_read_reg(FLASH_VER_ID_OFFSET);
+ case ONENAND_REG_DATA_BUFFER_SIZE:
+ return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
+ case ONENAND_REG_TECHNOLOGY:
+ return s3c_read_reg(TECH_OFFSET);
+ case ONENAND_REG_SYS_CFG1:
+ return s3c_read_reg(MEM_CFG_OFFSET);
+
+ /* Used at unlock all status */
+ case ONENAND_REG_CTRL_STATUS:
+ return 0;
+
+ case ONENAND_REG_WP_STATUS:
+ return ONENAND_WP_US;
+
+ default:
+ break;
+ }
+
+ /* BootRAM access control */
+ if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
+ if (word_addr == 0)
+ return s3c_read_reg(MANUFACT_ID_OFFSET);
+ if (word_addr == 1)
+ return s3c_read_reg(DEVICE_ID_OFFSET);
+ if (word_addr == 2)
+ return s3c_read_reg(FLASH_VER_ID_OFFSET);
+ }
+
+ value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
+ dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+ word_addr, value);
+ return value;
+}
+
+static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
+{
+ struct onenand_chip *this = onenand->mtd->priv;
+ struct device *dev = &onenand->pdev->dev;
+ unsigned int reg = addr - this->base;
+ unsigned int word_addr = reg >> 1;
+
+ /* It's used for probing time */
+ switch (reg) {
+ case ONENAND_REG_SYS_CFG1:
+ s3c_write_reg(value, MEM_CFG_OFFSET);
+ return;
+
+ case ONENAND_REG_START_ADDRESS1:
+ case ONENAND_REG_START_ADDRESS2:
+ return;
+
+ /* Lock/lock-tight/unlock/unlock_all */
+ case ONENAND_REG_START_BLOCK_ADDRESS:
+ return;
+
+ default:
+ break;
+ }
+
+ /* BootRAM access control */
+ if ((unsigned int)addr < ONENAND_DATARAM) {
+ if (value == ONENAND_CMD_READID) {
+ onenand->bootram_command = 1;
+ return;
+ }
+ if (value == ONENAND_CMD_RESET) {
+ s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+ onenand->bootram_command = 0;
+ return;
+ }
+ }
+
+ dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+ word_addr, value);
+
+ s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
+}
+
+static int s3c_onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct device *dev = &onenand->pdev->dev;
+ unsigned int flags = INT_ACT;
+ unsigned int stat, ecc;
+ unsigned long timeout;
+
+ switch (state) {
+ case FL_READING:
+ flags |= BLK_RW_CMP | LOAD_CMP;
+ break;
+ case FL_WRITING:
+ flags |= BLK_RW_CMP | PGM_CMP;
+ break;
+ case FL_ERASING:
+ flags |= BLK_RW_CMP | ERS_CMP;
+ break;
+ case FL_LOCKING:
+ flags |= BLK_RW_CMP;
+ break;
+ default:
+ break;
+ }
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ if (stat & flags)
+ break;
+
+ if (state != FL_READING)
+ cond_resched();
+ }
+ /* To get correct interrupt status in timeout case */
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+ /*
+ * In the Spec. it checks the controller status first
+ * However if you get the correct information in case of
+ * power off recovery (POR) test, it should read ECC status first
+ */
+ if (stat & LOAD_CMP) {
+ ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+ if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+ dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
+ ecc);
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ }
+ }
+
+ if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
+ dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
+ stat);
+ if (stat & LOCKED_BLK)
+ dev_info(dev, "%s: it's locked error = 0x%04x\n",
+ __func__, stat);
+
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
+ size_t len)
+{
+ struct onenand_chip *this = mtd->priv;
+ unsigned int *m, *s;
+ int fba, fpa, fsa = 0;
+ unsigned int mem_addr, cmd_map_01, cmd_map_10;
+ int i, mcount, scount;
+ int index;
+
+ fba = (int) (addr >> this->erase_shift);
+ fpa = (int) (addr >> this->page_shift);
+ fpa &= this->page_mask;
+
+ mem_addr = onenand->mem_addr(fba, fpa, fsa);
+ cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
+ cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
+
+ switch (cmd) {
+ case ONENAND_CMD_READ:
+ case ONENAND_CMD_READOOB:
+ case ONENAND_CMD_BUFFERRAM:
+ ONENAND_SET_NEXT_BUFFERRAM(this);
+ default:
+ break;
+ }
+
+ index = ONENAND_CURRENT_BUFFERRAM(this);
+
+ /*
+ * Emulate Two BufferRAMs and access with 4 bytes pointer
+ */
+ m = (unsigned int *) onenand->page_buf;
+ s = (unsigned int *) onenand->oob_buf;
+
+ if (index) {
+ m += (this->writesize >> 2);
+ s += (mtd->oobsize >> 2);
+ }
+
+ mcount = mtd->writesize >> 2;
+ scount = mtd->oobsize >> 2;
+
+ switch (cmd) {
+ case ONENAND_CMD_READ:
+ /* Main */
+ for (i = 0; i < mcount; i++)
+ *m++ = s3c_read_cmd(cmd_map_01);
+ return 0;
+
+ case ONENAND_CMD_READOOB:
+ s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+ /* Main */
+ for (i = 0; i < mcount; i++)
+ *m++ = s3c_read_cmd(cmd_map_01);
+
+ /* Spare */
+ for (i = 0; i < scount; i++)
+ *s++ = s3c_read_cmd(cmd_map_01);
+
+ s3c_write_reg(0, TRANS_SPARE_OFFSET);
+ return 0;
+
+ case ONENAND_CMD_PROG:
+ /* Main */
+ for (i = 0; i < mcount; i++)
+ s3c_write_cmd(*m++, cmd_map_01);
+ return 0;
+
+ case ONENAND_CMD_PROGOOB:
+ s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+
+ /* Main - dummy write */
+ for (i = 0; i < mcount; i++)
+ s3c_write_cmd(0xffffffff, cmd_map_01);
+
+ /* Spare */
+ for (i = 0; i < scount; i++)
+ s3c_write_cmd(*s++, cmd_map_01);
+
+ s3c_write_reg(0, TRANS_SPARE_OFFSET);
+ return 0;
+
+ case ONENAND_CMD_UNLOCK_ALL:
+ s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
+ return 0;
+
+ case ONENAND_CMD_ERASE:
+ s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
+ return 0;
+
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+ int index = ONENAND_CURRENT_BUFFERRAM(this);
+ unsigned char *p;
+
+ if (area == ONENAND_DATARAM) {
+ p = (unsigned char *) onenand->page_buf;
+ if (index == 1)
+ p += this->writesize;
+ } else {
+ p = (unsigned char *) onenand->oob_buf;
+ if (index == 1)
+ p += mtd->oobsize;
+ }
+
+ return p;
+}
+
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ unsigned char *p;
+
+ p = s3c_get_bufferram(mtd, area);
+ memcpy(buffer, p + offset, count);
+ return 0;
+}
+
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer, int offset,
+ size_t count)
+{
+ unsigned char *p;
+
+ p = s3c_get_bufferram(mtd, area);
+ memcpy(p + offset, buffer, count);
+ return 0;
+}
+
+static int (*s5pc110_dma_ops)(void *dst, void *src, size_t count, int direction);
+
+static int s5pc110_dma_poll(void *dst, void *src, size_t count, int direction)
+{
+ void __iomem *base = onenand->dma_addr;
+ int status;
+ unsigned long timeout;
+
+ writel(src, base + S5PC110_DMA_SRC_ADDR);
+ writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+ if (direction == S5PC110_DMA_DIR_READ) {
+ writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+ } else {
+ writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+ }
+
+ writel(count, base + S5PC110_DMA_TRANS_SIZE);
+ writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+ writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+ /*
+ * There's no exact timeout values at Spec.
+ * In real case it takes under 1 msec.
+ * So 20 msecs are enough.
+ */
+ timeout = jiffies + msecs_to_jiffies(20);
+
+ do {
+ status = readl(base + S5PC110_DMA_TRANS_STATUS);
+ if (status & S5PC110_DMA_TRANS_STATUS_TE) {
+ writel(S5PC110_DMA_TRANS_CMD_TEC,
+ base + S5PC110_DMA_TRANS_CMD);
+ return -EIO;
+ }
+ } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
+ time_before(jiffies, timeout));
+
+ writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
+
+ return 0;
+}
+
+static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
+{
+ void __iomem *base = onenand->dma_addr;
+ int status, cmd = 0;
+
+ status = readl(base + S5PC110_INTC_DMA_STATUS);
+
+ if (likely(status & S5PC110_INTC_DMA_TD))
+ cmd = S5PC110_DMA_TRANS_CMD_TDC;
+
+ if (unlikely(status & S5PC110_INTC_DMA_TE))
+ cmd = S5PC110_DMA_TRANS_CMD_TEC;
+
+ writel(cmd, base + S5PC110_DMA_TRANS_CMD);
+ writel(status, base + S5PC110_INTC_DMA_CLR);
+
+ if (!onenand->complete.done)
+ complete(&onenand->complete);
+
+ return IRQ_HANDLED;
+}
+
+static int s5pc110_dma_irq(void *dst, void *src, size_t count, int direction)
+{
+ void __iomem *base = onenand->dma_addr;
+ int status;
+
+ status = readl(base + S5PC110_INTC_DMA_MASK);
+ if (status) {
+ status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
+ writel(status, base + S5PC110_INTC_DMA_MASK);
+ }
+
+ writel(src, base + S5PC110_DMA_SRC_ADDR);
+ writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+ if (direction == S5PC110_DMA_DIR_READ) {
+ writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+ } else {
+ writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+ writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+ }
+
+ writel(count, base + S5PC110_DMA_TRANS_SIZE);
+ writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+ writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+ wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
+
+ return 0;
+}
+
+static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset, size_t count)
+{
+ struct onenand_chip *this = mtd->priv;
+ void __iomem *p;
+ void *buf = (void *) buffer;
+ dma_addr_t dma_src, dma_dst;
+ int err, ofs, page_dma = 0;
+ struct device *dev = &onenand->pdev->dev;
+
+ p = this->base + area;
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ if (area == ONENAND_DATARAM)
+ p += this->writesize;
+ else
+ p += mtd->oobsize;
+ }
+
+ if (offset & 3 || (size_t) buf & 3 ||
+ !onenand->dma_addr || count != mtd->writesize)
+ goto normal;
+
+ /* Handle vmalloc address */
+ if (buf >= high_memory) {
+ struct page *page;
+
+ if (((size_t) buf & PAGE_MASK) !=
+ ((size_t) (buf + count - 1) & PAGE_MASK))
+ goto normal;
+ page = vmalloc_to_page(buf);
+ if (!page)
+ goto normal;
+
+ /* Page offset */
+ ofs = ((size_t) buf & ~PAGE_MASK);
+ page_dma = 1;
+
+ /* DMA routine */
+ dma_src = onenand->phys_base + (p - this->base);
+ dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
+ } else {
+ /* DMA routine */
+ dma_src = onenand->phys_base + (p - this->base);
+ dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
+ }
+ if (dma_mapping_error(dev, dma_dst)) {
+ dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
+ goto normal;
+ }
+ err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src,
+ count, S5PC110_DMA_DIR_READ);
+
+ if (page_dma)
+ dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
+ else
+ dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
+
+ if (!err)
+ return 0;
+
+normal:
+ if (count != mtd->writesize) {
+ /* Copy the bufferram to memory to prevent unaligned access */
+ memcpy(this->page_buf, p, mtd->writesize);
+ p = this->page_buf + offset;
+ }
+
+ memcpy(buffer, p, count);
+
+ return 0;
+}
+
+static int s5pc110_chip_probe(struct mtd_info *mtd)
+{
+ /* Now just return 0 */
+ return 0;
+}
+
+static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+ unsigned int flags = INT_ACT | LOAD_CMP;
+ unsigned int stat;
+ unsigned long timeout;
+
+ /* The 20 msec is enough */
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (time_before(jiffies, timeout)) {
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ if (stat & flags)
+ break;
+ }
+ /* To get correct interrupt status in timeout case */
+ stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+ s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+ if (stat & LD_FAIL_ECC_ERR) {
+ s3c_onenand_reset();
+ return ONENAND_BBT_READ_ERROR;
+ }
+
+ if (stat & LOAD_CMP) {
+ int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+ if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+ s3c_onenand_reset();
+ return ONENAND_BBT_READ_ERROR;
+ }
+ }
+
+ return 0;
+}
+
+static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ struct device *dev = &onenand->pdev->dev;
+ unsigned int block, end;
+ int tmp;
+
+ end = this->chipsize >> this->erase_shift;
+
+ for (block = 0; block < end; block++) {
+ unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
+ tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
+
+ if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
+ dev_err(dev, "block %d is write-protected!\n", block);
+ s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
+ }
+ }
+}
+
+static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
+ size_t len, int cmd)
+{
+ struct onenand_chip *this = mtd->priv;
+ int start, end, start_mem_addr, end_mem_addr;
+
+ start = ofs >> this->erase_shift;
+ start_mem_addr = onenand->mem_addr(start, 0, 0);
+ end = start + (len >> this->erase_shift) - 1;
+ end_mem_addr = onenand->mem_addr(end, 0, 0);
+
+ if (cmd == ONENAND_CMD_LOCK) {
+ s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
+ start_mem_addr));
+ s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
+ end_mem_addr));
+ } else {
+ s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
+ start_mem_addr));
+ s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
+ end_mem_addr));
+ }
+
+ this->wait(mtd, FL_LOCKING);
+}
+
+static void s3c_unlock_all(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+ loff_t ofs = 0;
+ size_t len = this->chipsize;
+
+ if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+ /* Write unlock command */
+ this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+ /* No need to check return value */
+ this->wait(mtd, FL_LOCKING);
+
+ /* Workaround for all block unlock in DDP */
+ if (!ONENAND_IS_DDP(this)) {
+ s3c_onenand_check_lock_status(mtd);
+ return;
+ }
+
+ /* All blocks on another chip */
+ ofs = this->chipsize >> 1;
+ len = this->chipsize >> 1;
+ }
+
+ s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+
+ s3c_onenand_check_lock_status(mtd);
+}
+
+static void s3c_onenand_setup(struct mtd_info *mtd)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ onenand->mtd = mtd;
+
+ if (onenand->type == TYPE_S3C6400) {
+ onenand->mem_addr = s3c6400_mem_addr;
+ onenand->cmd_map = s3c64xx_cmd_map;
+ } else if (onenand->type == TYPE_S3C6410) {
+ onenand->mem_addr = s3c6410_mem_addr;
+ onenand->cmd_map = s3c64xx_cmd_map;
+ } else if (onenand->type == TYPE_S5PC100) {
+ onenand->mem_addr = s5pc100_mem_addr;
+ onenand->cmd_map = s5pc1xx_cmd_map;
+ } else if (onenand->type == TYPE_S5PC110) {
+ /* Use generic onenand functions */
+ this->read_bufferram = s5pc110_read_bufferram;
+ this->chip_probe = s5pc110_chip_probe;
+ return;
+ } else {
+ BUG();
+ }
+
+ this->read_word = s3c_onenand_readw;
+ this->write_word = s3c_onenand_writew;
+
+ this->wait = s3c_onenand_wait;
+ this->bbt_wait = s3c_onenand_bbt_wait;
+ this->unlock_all = s3c_unlock_all;
+ this->command = s3c_onenand_command;
+
+ this->read_bufferram = onenand_read_bufferram;
+ this->write_bufferram = onenand_write_bufferram;
+}
+
+static int s3c_onenand_probe(struct platform_device *pdev)
+{
+ struct onenand_platform_data *pdata;
+ struct onenand_chip *this;
+ struct mtd_info *mtd;
+ struct resource *r;
+ int size, err;
+
+ pdata = pdev->dev.platform_data;
+ /* No need to check pdata. the platform data is optional */
+
+ size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
+ mtd = kzalloc(size, GFP_KERNEL);
+ if (!mtd) {
+ dev_err(&pdev->dev, "failed to allocate memory\n");
+ return -ENOMEM;
+ }
+
+ onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL);
+ if (!onenand) {
+ err = -ENOMEM;
+ goto onenand_fail;
+ }
+
+ this = (struct onenand_chip *) &mtd[1];
+ mtd->priv = this;
+ mtd->dev.parent = &pdev->dev;
+ mtd->owner = THIS_MODULE;
+ onenand->pdev = pdev;
+ onenand->type = platform_get_device_id(pdev)->driver_data;
+
+ s3c_onenand_setup(mtd);
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!r) {
+ dev_err(&pdev->dev, "no memory resource defined\n");
+ return -ENOENT;
+ goto ahb_resource_failed;
+ }
+
+ onenand->base_res = request_mem_region(r->start, resource_size(r),
+ pdev->name);
+ if (!onenand->base_res) {
+ dev_err(&pdev->dev, "failed to request memory resource\n");
+ err = -EBUSY;
+ goto resource_failed;
+ }
+
+ onenand->base = ioremap(r->start, resource_size(r));
+ if (!onenand->base) {
+ dev_err(&pdev->dev, "failed to map memory resource\n");
+ err = -EFAULT;
+ goto ioremap_failed;
+ }
+ /* Set onenand_chip also */
+ this->base = onenand->base;
+
+ /* Use runtime badblock check */
+ this->options |= ONENAND_SKIP_UNLOCK_CHECK;
+
+ if (onenand->type != TYPE_S5PC110) {
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ if (!r) {
+ dev_err(&pdev->dev, "no buffer memory resource defined\n");
+ err = -ENOENT;
+ goto ahb_resource_failed;
+ }
+
+ onenand->ahb_res = request_mem_region(r->start, resource_size(r),
+ pdev->name);
+ if (!onenand->ahb_res) {
+ dev_err(&pdev->dev, "failed to request buffer memory resource\n");
+ err = -EBUSY;
+ goto ahb_resource_failed;
+ }
+
+ onenand->ahb_addr = ioremap(r->start, resource_size(r));
+ if (!onenand->ahb_addr) {
+ dev_err(&pdev->dev, "failed to map buffer memory resource\n");
+ err = -EINVAL;
+ goto ahb_ioremap_failed;
+ }
+
+ /* Allocate 4KiB BufferRAM */
+ onenand->page_buf = kzalloc(SZ_4K, GFP_KERNEL);
+ if (!onenand->page_buf) {
+ err = -ENOMEM;
+ goto page_buf_fail;
+ }
+
+ /* Allocate 128 SpareRAM */
+ onenand->oob_buf = kzalloc(128, GFP_KERNEL);
+ if (!onenand->oob_buf) {
+ err = -ENOMEM;
+ goto oob_buf_fail;
+ }
+
+ /* S3C doesn't handle subpage write */
+ mtd->subpage_sft = 0;
+ this->subpagesize = mtd->writesize;
+
+ } else { /* S5PC110 */
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ if (!r) {
+ dev_err(&pdev->dev, "no dma memory resource defined\n");
+ err = -ENOENT;
+ goto dma_resource_failed;
+ }
+
+ onenand->dma_res = request_mem_region(r->start, resource_size(r),
+ pdev->name);
+ if (!onenand->dma_res) {
+ dev_err(&pdev->dev, "failed to request dma memory resource\n");
+ err = -EBUSY;
+ goto dma_resource_failed;
+ }
+
+ onenand->dma_addr = ioremap(r->start, resource_size(r));
+ if (!onenand->dma_addr) {
+ dev_err(&pdev->dev, "failed to map dma memory resource\n");
+ err = -EINVAL;
+ goto dma_ioremap_failed;
+ }
+
+ onenand->phys_base = onenand->base_res->start;
+
+ s5pc110_dma_ops = s5pc110_dma_poll;
+ /* Interrupt support */
+ r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+ if (r) {
+ init_completion(&onenand->complete);
+ s5pc110_dma_ops = s5pc110_dma_irq;
+ err = request_irq(r->start, s5pc110_onenand_irq,
+ IRQF_SHARED, "onenand", &onenand);
+ if (err) {
+ dev_err(&pdev->dev, "failed to get irq\n");
+ goto scan_failed;
+ }
+ }
+ }
+
+ if (onenand_scan(mtd, 1)) {
+ err = -EFAULT;
+ goto scan_failed;
+ }
+
+ if (onenand->type != TYPE_S5PC110) {
+ /* S3C doesn't handle subpage write */
+ mtd->subpage_sft = 0;
+ this->subpagesize = mtd->writesize;
+ }
+
+ if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
+ dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
+
+ err = mtd_device_parse_register(mtd, NULL, NULL,
+ pdata ? pdata->parts : NULL,
+ pdata ? pdata->nr_parts : 0);
+
+ platform_set_drvdata(pdev, mtd);
+
+ return 0;
+
+scan_failed:
+ if (onenand->dma_addr)
+ iounmap(onenand->dma_addr);
+dma_ioremap_failed:
+ if (onenand->dma_res)
+ release_mem_region(onenand->dma_res->start,
+ resource_size(onenand->dma_res));
+ kfree(onenand->oob_buf);
+oob_buf_fail:
+ kfree(onenand->page_buf);
+page_buf_fail:
+ if (onenand->ahb_addr)
+ iounmap(onenand->ahb_addr);
+ahb_ioremap_failed:
+ if (onenand->ahb_res)
+ release_mem_region(onenand->ahb_res->start,
+ resource_size(onenand->ahb_res));
+dma_resource_failed:
+ahb_resource_failed:
+ iounmap(onenand->base);
+ioremap_failed:
+ if (onenand->base_res)
+ release_mem_region(onenand->base_res->start,
+ resource_size(onenand->base_res));
+resource_failed:
+ kfree(onenand);
+onenand_fail:
+ kfree(mtd);
+ return err;
+}
+
+static int __devexit s3c_onenand_remove(struct platform_device *pdev)
+{
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+
+ onenand_release(mtd);
+ if (onenand->ahb_addr)
+ iounmap(onenand->ahb_addr);
+ if (onenand->ahb_res)
+ release_mem_region(onenand->ahb_res->start,
+ resource_size(onenand->ahb_res));
+ if (onenand->dma_addr)
+ iounmap(onenand->dma_addr);
+ if (onenand->dma_res)
+ release_mem_region(onenand->dma_res->start,
+ resource_size(onenand->dma_res));
+
+ iounmap(onenand->base);
+ release_mem_region(onenand->base_res->start,
+ resource_size(onenand->base_res));
+
+ platform_set_drvdata(pdev, NULL);
+ kfree(onenand->oob_buf);
+ kfree(onenand->page_buf);
+ kfree(onenand);
+ kfree(mtd);
+ return 0;
+}
+
+static int s3c_pm_ops_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct onenand_chip *this = mtd->priv;
+
+ this->wait(mtd, FL_PM_SUSPENDED);
+ return 0;
+}
+
+static int s3c_pm_ops_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct onenand_chip *this = mtd->priv;
+
+ this->unlock_all(mtd);
+ return 0;
+}
+
+static const struct dev_pm_ops s3c_pm_ops = {
+ .suspend = s3c_pm_ops_suspend,
+ .resume = s3c_pm_ops_resume,
+};
+
+static struct platform_device_id s3c_onenand_driver_ids[] = {
+ {
+ .name = "s3c6400-onenand",
+ .driver_data = TYPE_S3C6400,
+ }, {
+ .name = "s3c6410-onenand",
+ .driver_data = TYPE_S3C6410,
+ }, {
+ .name = "s5pc100-onenand",
+ .driver_data = TYPE_S5PC100,
+ }, {
+ .name = "s5pc110-onenand",
+ .driver_data = TYPE_S5PC110,
+ }, { },
+};
+MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
+
+static struct platform_driver s3c_onenand_driver = {
+ .driver = {
+ .name = "samsung-onenand",
+ .pm = &s3c_pm_ops,
+ },
+ .id_table = s3c_onenand_driver_ids,
+ .probe = s3c_onenand_probe,
+ .remove = __devexit_p(s3c_onenand_remove),
+};
+
+module_platform_driver(s3c_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Samsung OneNAND controller support");