diff options
Diffstat (limited to 'drivers/mmc/card/block.c')
-rw-r--r-- | drivers/mmc/card/block.c | 2088 |
1 files changed, 2088 insertions, 0 deletions
diff --git a/drivers/mmc/card/block.c b/drivers/mmc/card/block.c new file mode 100644 index 00000000..90a15016 --- /dev/null +++ b/drivers/mmc/card/block.c @@ -0,0 +1,2088 @@ +/* + * Block driver for media (i.e., flash cards) + * + * Copyright 2002 Hewlett-Packard Company + * Copyright 2005-2008 Pierre Ossman + * + * Use consistent with the GNU GPL is permitted, + * provided that this copyright notice is + * preserved in its entirety in all copies and derived works. + * + * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, + * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS + * FITNESS FOR ANY PARTICULAR PURPOSE. + * + * Many thanks to Alessandro Rubini and Jonathan Corbet! + * + * Author: Andrew Christian + * 28 May 2002 + */ +#include <linux/moduleparam.h> +#include <linux/module.h> +#include <linux/init.h> + +#include <linux/kernel.h> +#include <linux/fs.h> +#include <linux/slab.h> +#include <linux/errno.h> +#include <linux/hdreg.h> +#include <linux/kdev_t.h> +#include <linux/blkdev.h> +#include <linux/mutex.h> +#include <linux/scatterlist.h> +#include <linux/string_helpers.h> +#include <linux/delay.h> +#include <linux/capability.h> +#include <linux/compat.h> + +#include <linux/mmc/ioctl.h> +#include <linux/mmc/card.h> +#include <linux/mmc/host.h> +#include <linux/mmc/mmc.h> +#include <linux/mmc/sd.h> + +#include <asm/uaccess.h> + +#include "queue.h" + +MODULE_ALIAS("mmc:block"); +#ifdef MODULE_PARAM_PREFIX +#undef MODULE_PARAM_PREFIX +#endif +#define MODULE_PARAM_PREFIX "mmcblk." + +#define INAND_CMD38_ARG_EXT_CSD 113 +#define INAND_CMD38_ARG_ERASE 0x00 +#define INAND_CMD38_ARG_TRIM 0x01 +#define INAND_CMD38_ARG_SECERASE 0x80 +#define INAND_CMD38_ARG_SECTRIM1 0x81 +#define INAND_CMD38_ARG_SECTRIM2 0x88 + +static DEFINE_MUTEX(block_mutex); + +/* + * The defaults come from config options but can be overriden by module + * or bootarg options. + */ +static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; + +/* + * We've only got one major, so number of mmcblk devices is + * limited to 256 / number of minors per device. + */ +static int max_devices; + +/* 256 minors, so at most 256 separate devices */ +static DECLARE_BITMAP(dev_use, 256); +static DECLARE_BITMAP(name_use, 256); + +/* + * There is one mmc_blk_data per slot. + */ +struct mmc_blk_data { + spinlock_t lock; + struct gendisk *disk; + struct mmc_queue queue; + struct list_head part; + + unsigned int flags; +#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ +#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ + + unsigned int usage; + unsigned int read_only; + unsigned int part_type; + unsigned int name_idx; + unsigned int reset_done; +#define MMC_BLK_READ BIT(0) +#define MMC_BLK_WRITE BIT(1) +#define MMC_BLK_DISCARD BIT(2) +#define MMC_BLK_SECDISCARD BIT(3) + + /* + * Only set in main mmc_blk_data associated + * with mmc_card with mmc_set_drvdata, and keeps + * track of the current selected device partition. + */ + unsigned int part_curr; + struct device_attribute force_ro; + struct device_attribute power_ro_lock; + int area_type; +}; + +static DEFINE_MUTEX(open_lock); + +enum mmc_blk_status { + MMC_BLK_SUCCESS = 0, + MMC_BLK_PARTIAL, + MMC_BLK_CMD_ERR, + MMC_BLK_RETRY, + MMC_BLK_ABORT, + MMC_BLK_DATA_ERR, + MMC_BLK_ECC_ERR, + MMC_BLK_NOMEDIUM, +}; + +module_param(perdev_minors, int, 0444); +MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); + + +#if 0 +#define DBG(x...) printk(KERN_ALERT x) +#else +#define DBG(x...) do { } while (0) +#endif + + +static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) +{ + struct mmc_blk_data *md; + DBG("[%s] s\n",__func__); + mutex_lock(&open_lock); + md = disk->private_data; + if (md && md->usage == 0) + md = NULL; + if (md) + md->usage++; + mutex_unlock(&open_lock); + DBG("[%s] e\n",__func__); + return md; +} + +static inline int mmc_get_devidx(struct gendisk *disk) +{ + int devidx = disk->first_minor / perdev_minors; + DBG("[%s] s\n",__func__); + return devidx; +} + +static void mmc_blk_put(struct mmc_blk_data *md) +{ + DBG("[%s] s\n",__func__); + mutex_lock(&open_lock); + md->usage--; + if (md->usage == 0) { + int devidx = mmc_get_devidx(md->disk); + blk_cleanup_queue(md->queue.queue); + + __clear_bit(devidx, dev_use); + + put_disk(md->disk); + kfree(md); + } + mutex_unlock(&open_lock); + DBG("[%s] e\n",__func__); +} + +static ssize_t power_ro_lock_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + int ret; + struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); + struct mmc_card *card = md->queue.card; + int locked = 0; + DBG("[%s] s\n",__func__); + + if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) + locked = 2; + else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) + locked = 1; + + ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); + DBG("[%s] e\n",__func__); + return ret; +} + +static ssize_t power_ro_lock_store(struct device *dev, + struct device_attribute *attr, const char *buf, size_t count) +{ + int ret; + struct mmc_blk_data *md, *part_md; + struct mmc_card *card; + unsigned long set; + DBG("[%s] s\n",__func__); + + if (kstrtoul(buf, 0, &set)) { + DBG("[%s] e1\n",__func__); + return -EINVAL; + } + + if (set != 1) { + DBG("[%s] e2\n",__func__); + return count; + } + + md = mmc_blk_get(dev_to_disk(dev)); + card = md->queue.card; + + mmc_claim_host(card->host); + + ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, + card->ext_csd.boot_ro_lock | + EXT_CSD_BOOT_WP_B_PWR_WP_EN, + card->ext_csd.part_time); + if (ret) + pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret); + else + card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN; + + mmc_release_host(card->host); + + if (!ret) { + pr_info("%s: Locking boot partition ro until next power on\n", + md->disk->disk_name); + set_disk_ro(md->disk, 1); + + list_for_each_entry(part_md, &md->part, part) + if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { + pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); + set_disk_ro(part_md->disk, 1); + } + } + + mmc_blk_put(md); + DBG("[%s] e3\n",__func__); + return count; +} + +static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + int ret; + struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); + DBG("[%s] s\n",__func__); + + ret = snprintf(buf, PAGE_SIZE, "%d", + get_disk_ro(dev_to_disk(dev)) ^ + md->read_only); + mmc_blk_put(md); + DBG("[%s] e\n",__func__); + return ret; +} + +static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, + const char *buf, size_t count) +{ + int ret; + char *end; + struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); + unsigned long set = simple_strtoul(buf, &end, 0); + DBG("[%s] s\n",__func__); + + if (end == buf) { + ret = -EINVAL; + goto out; + } + + set_disk_ro(dev_to_disk(dev), set || md->read_only); + ret = count; +out: + mmc_blk_put(md); + DBG("[%s] e\n",__func__); + return ret; +} + +static int mmc_blk_open(struct block_device *bdev, fmode_t mode) +{ + struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); + int ret = -ENXIO; + DBG("[%s] s\n",__func__); + + mutex_lock(&block_mutex); + if (md) { + if (md->usage == 2) + check_disk_change(bdev); + ret = 0; + + if ((mode & FMODE_WRITE) && md->read_only) { + mmc_blk_put(md); + ret = -EROFS; + } + } + mutex_unlock(&block_mutex); + DBG("[%s] e\n",__func__); + return ret; +} + +static int mmc_blk_release(struct gendisk *disk, fmode_t mode) +{ + struct mmc_blk_data *md = disk->private_data; + DBG("[%s] s\n",__func__); + + mutex_lock(&block_mutex); + mmc_blk_put(md); + mutex_unlock(&block_mutex); + DBG("[%s] e\n",__func__); + return 0; +} + +static int +mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) +{ + DBG("[%s] s\n",__func__); + geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); + geo->heads = 4; + geo->sectors = 16; + DBG("[%s] e\n",__func__); + return 0; +} + +struct mmc_blk_ioc_data { + struct mmc_ioc_cmd ic; + unsigned char *buf; + u64 buf_bytes; +}; + +static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( + struct mmc_ioc_cmd __user *user) +{ + struct mmc_blk_ioc_data *idata; + int err; + DBG("[%s] s\n",__func__); + + idata = kzalloc(sizeof(*idata), GFP_KERNEL); + if (!idata) { + err = -ENOMEM; + goto out; + } + + if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { + err = -EFAULT; + goto idata_err; + } + + idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; + if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { + err = -EOVERFLOW; + goto idata_err; + } + + if (!idata->buf_bytes) { + DBG("[%s] e1\n",__func__); + return idata; + } + + idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL); + if (!idata->buf) { + err = -ENOMEM; + goto idata_err; + } + + if (copy_from_user(idata->buf, (void __user *)(unsigned long) + idata->ic.data_ptr, idata->buf_bytes)) { + err = -EFAULT; + goto copy_err; + } + DBG("[%s] e2\n",__func__); + return idata; + +copy_err: + kfree(idata->buf); +idata_err: + kfree(idata); +out: + DBG("[%s] e3\n",__func__); + return ERR_PTR(err); +} + +static int mmc_blk_ioctl_cmd(struct block_device *bdev, + struct mmc_ioc_cmd __user *ic_ptr) +{ + struct mmc_blk_ioc_data *idata; + struct mmc_blk_data *md; + struct mmc_card *card; + struct mmc_command cmd = {0}; + struct mmc_data data = {0}; + struct mmc_request mrq = {NULL}; + struct scatterlist sg; + int err; + DBG("[%s] s\n",__func__); + /* + * The caller must have CAP_SYS_RAWIO, and must be calling this on the + * whole block device, not on a partition. This prevents overspray + * between sibling partitions. + */ + if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) { + DBG("[%s] e1\n",__func__); + return -EPERM; + } + + idata = mmc_blk_ioctl_copy_from_user(ic_ptr); + if (IS_ERR(idata)) { + DBG("[%s] e2\n",__func__); + return PTR_ERR(idata); + } + + md = mmc_blk_get(bdev->bd_disk); + if (!md) { + err = -EINVAL; + goto cmd_done; + } + + card = md->queue.card; + if (IS_ERR(card)) { + err = PTR_ERR(card); + goto cmd_done; + } + + cmd.opcode = idata->ic.opcode; + cmd.arg = idata->ic.arg; + cmd.flags = idata->ic.flags; + + if (idata->buf_bytes) { + data.sg = &sg; + data.sg_len = 1; + data.blksz = idata->ic.blksz; + data.blocks = idata->ic.blocks; + + sg_init_one(data.sg, idata->buf, idata->buf_bytes); + + if (idata->ic.write_flag) + data.flags = MMC_DATA_WRITE; + else + data.flags = MMC_DATA_READ; + + /* data.flags must already be set before doing this. */ + mmc_set_data_timeout(&data, card); + + /* Allow overriding the timeout_ns for empirical tuning. */ + if (idata->ic.data_timeout_ns) + data.timeout_ns = idata->ic.data_timeout_ns; + + if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { + /* + * Pretend this is a data transfer and rely on the + * host driver to compute timeout. When all host + * drivers support cmd.cmd_timeout for R1B, this + * can be changed to: + * + * mrq.data = NULL; + * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; + */ + data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; + } + + mrq.data = &data; + } + + mrq.cmd = &cmd; + + mmc_claim_host(card->host); + + if (idata->ic.is_acmd) { + err = mmc_app_cmd(card->host, card); + if (err) + goto cmd_rel_host; + } + + mmc_wait_for_req(card->host, &mrq); + + if (cmd.error) { + dev_err(mmc_dev(card->host), "%s: cmd error %d\n", + __func__, cmd.error); + err = cmd.error; + goto cmd_rel_host; + } + if (data.error) { + dev_err(mmc_dev(card->host), "%s: data error %d\n", + __func__, data.error); + err = data.error; + goto cmd_rel_host; + } + + /* + * According to the SD specs, some commands require a delay after + * issuing the command. + */ + if (idata->ic.postsleep_min_us) + usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); + + if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) { + err = -EFAULT; + goto cmd_rel_host; + } + + if (!idata->ic.write_flag) { + if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr, + idata->buf, idata->buf_bytes)) { + err = -EFAULT; + goto cmd_rel_host; + } + } + +cmd_rel_host: + mmc_release_host(card->host); + +cmd_done: + mmc_blk_put(md); + kfree(idata->buf); + kfree(idata); + DBG("[%s] e3\n",__func__); + return err; +} + +static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, + unsigned int cmd, unsigned long arg) +{ + int ret = -EINVAL; + DBG("[%s] s\n",__func__); + if (cmd == MMC_IOC_CMD) + ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg); + DBG("[%s] e\n",__func__); + return ret; +} + +#ifdef CONFIG_COMPAT +static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, + unsigned int cmd, unsigned long arg) +{ + DBG("[%s] s\n",__func__); + return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); +} +#endif + +static const struct block_device_operations mmc_bdops = { + .open = mmc_blk_open, + .release = mmc_blk_release, + .getgeo = mmc_blk_getgeo, + .owner = THIS_MODULE, + .ioctl = mmc_blk_ioctl, +#ifdef CONFIG_COMPAT + .compat_ioctl = mmc_blk_compat_ioctl, +#endif +}; + +static inline int mmc_blk_part_switch(struct mmc_card *card, + struct mmc_blk_data *md) +{ + int ret; + struct mmc_blk_data *main_md = mmc_get_drvdata(card); + DBG("[%s] s\n",__func__); + + if (main_md->part_curr == md->part_type) { + DBG("[%s] e1\n",__func__); + return 0; + } + + if (mmc_card_mmc(card)) { + u8 part_config = card->ext_csd.part_config; + + part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; + part_config |= md->part_type; + + ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, + EXT_CSD_PART_CONFIG, part_config, + card->ext_csd.part_time); + if (ret) { + DBG("[%s] e2\n",__func__); + return ret; + } + + card->ext_csd.part_config = part_config; + } + + main_md->part_curr = md->part_type; + DBG("[%s] e3\n",__func__); + return 0; +} + +static u32 mmc_sd_num_wr_blocks(struct mmc_card *card) +{ + int err; + u32 result; + __be32 *blocks; + struct mmc_request mrq = {NULL}; + struct mmc_command cmd = {0}; + struct mmc_data data = {0}; + unsigned int timeout_us; + + struct scatterlist sg; + DBG("[%s] s\n",__func__); + + cmd.opcode = MMC_APP_CMD; + cmd.arg = card->rca << 16; + //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; + cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; + + err = mmc_wait_for_cmd(card->host, &cmd, 0); + if (err) { + DBG("[%s] e1\n",__func__); + return (u32)-1; + } + if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) { + DBG("[%s] e2\n",__func__); + return (u32)-1; + } + + memset(&cmd, 0, sizeof(struct mmc_command)); + + cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; + cmd.arg = 0; + //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; + cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; + + data.timeout_ns = card->csd.tacc_ns * 100; + data.timeout_clks = card->csd.tacc_clks * 100; + + timeout_us = data.timeout_ns / 1000; + timeout_us += data.timeout_clks * 1000 / + (card->host->ios.clock / 1000); + + if (timeout_us > 100000) { + data.timeout_ns = 100000000; + data.timeout_clks = 0; + } + + data.blksz = 4; + data.blocks = 1; + data.flags = MMC_DATA_READ; + data.sg = &sg; + data.sg_len = 1; + + mrq.cmd = &cmd; + mrq.data = &data; + + blocks = kmalloc(4, GFP_KERNEL); + if (!blocks) { + DBG("[%s] e3\n",__func__); + return (u32)-1; + } + + sg_init_one(&sg, blocks, 4); + + mmc_wait_for_req(card->host, &mrq); + + result = ntohl(*blocks); + kfree(blocks); + + if (cmd.error || data.error) + result = (u32)-1; + DBG("[%s] e4\n",__func__); + return result; +} + +static int send_stop(struct mmc_card *card, u32 *status) +{ + struct mmc_command cmd = {0}; + int err; + DBG("[%s] s\n",__func__); + + cmd.opcode = MMC_STOP_TRANSMISSION; + //cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; + cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; + err = mmc_wait_for_cmd(card->host, &cmd, 5); + if (err == 0) + *status = cmd.resp[0]; + DBG("[%s] e\n",__func__); + return err; +} + +static int get_card_status(struct mmc_card *card, u32 *status, int retries) +{ + struct mmc_command cmd = {0}; + int err; + DBG("[%s] s\n",__func__); + + cmd.opcode = MMC_SEND_STATUS; + if (!mmc_host_is_spi(card->host)) + cmd.arg = card->rca << 16; + //cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; + cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; + err = mmc_wait_for_cmd(card->host, &cmd, retries); + if (err == 0) + *status = cmd.resp[0]; + DBG("[%s] e\n",__func__); + return err; +} + +#define ERR_NOMEDIUM 3 +#define ERR_RETRY 2 +#define ERR_ABORT 1 +#define ERR_CONTINUE 0 + +static int mmc_blk_cmd_error(struct request *req, const char *name, int error, + bool status_valid, u32 status) +{ + DBG("[%s] s\n",__func__); + switch (error) { + case -EILSEQ: + /* response crc error, retry the r/w cmd */ + pr_err("%s: %s sending %s command, card status %#x\n", + req->rq_disk->disk_name, "response CRC error", + name, status); + DBG("[%s] e1\n",__func__); + return ERR_RETRY; + + case -ETIMEDOUT: + pr_err("%s: %s sending %s command, card status %#x\n", + req->rq_disk->disk_name, "timed out", name, status); + + /* If the status cmd initially failed, retry the r/w cmd */ + if (!status_valid) { + pr_err("%s: status not valid, retrying timeout\n", req->rq_disk->disk_name); + DBG("[%s] e2\n",__func__); + return ERR_RETRY; + } + /* + * If it was a r/w cmd crc error, or illegal command + * (eg, issued in wrong state) then retry - we should + * have corrected the state problem above. + */ + if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) { + pr_err("%s: command error, retrying timeout\n", req->rq_disk->disk_name); + DBG("[%s] e3\n",__func__); + return ERR_RETRY; + } + + /* Otherwise abort the command */ + pr_err("%s: not retrying timeout\n", req->rq_disk->disk_name); + DBG("[%s] e4\n",__func__); + return ERR_ABORT; + + default: + /* We don't understand the error code the driver gave us */ + pr_err("%s: unknown error %d sending read/write command, card status %#x\n", + req->rq_disk->disk_name, error, status); + DBG("[%s] e5\n",__func__); + return ERR_ABORT; + } +} + +/* + * Initial r/w and stop cmd error recovery. + * We don't know whether the card received the r/w cmd or not, so try to + * restore things back to a sane state. Essentially, we do this as follows: + * - Obtain card status. If the first attempt to obtain card status fails, + * the status word will reflect the failed status cmd, not the failed + * r/w cmd. If we fail to obtain card status, it suggests we can no + * longer communicate with the card. + * - Check the card state. If the card received the cmd but there was a + * transient problem with the response, it might still be in a data transfer + * mode. Try to send it a stop command. If this fails, we can't recover. + * - If the r/w cmd failed due to a response CRC error, it was probably + * transient, so retry the cmd. + * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. + * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or + * illegal cmd, retry. + * Otherwise we don't understand what happened, so abort. + */ +static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, + struct mmc_blk_request *brq, int *ecc_err) +{ + bool prev_cmd_status_valid = true; + u32 status, stop_status = 0; + int err, retry; + DBG("[%s] s\n",__func__); + + if (mmc_card_removed(card)) { + DBG("[%s] e1\n",__func__); + return ERR_NOMEDIUM; + } + /* + * Try to get card status which indicates both the card state + * and why there was no response. If the first attempt fails, + * we can't be sure the returned status is for the r/w command. + */ + for (retry = 2; retry >= 0; retry--) { + err = get_card_status(card, &status, 0); + if (!err) + break; + + prev_cmd_status_valid = false; + pr_err("%s: error %d sending status command, %sing\n", + req->rq_disk->disk_name, err, retry ? "retry" : "abort"); + } + + /* We couldn't get a response from the card. Give up. */ + if (err) { + /* Check if the card is removed */ + if (mmc_detect_card_removed(card->host)) { + DBG("[%s] e1\n",__func__); + return ERR_NOMEDIUM; + } + DBG("[%s] e2\n",__func__); + return ERR_ABORT; + } + + /* Flag ECC errors */ + if ((status & R1_CARD_ECC_FAILED) || + (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || + (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) + *ecc_err = 1; + + /* + * Check the current card state. If it is in some data transfer + * mode, tell it to stop (and hopefully transition back to TRAN.) + */ + if (R1_CURRENT_STATE(status) == R1_STATE_DATA || + R1_CURRENT_STATE(status) == R1_STATE_RCV) { + err = send_stop(card, &stop_status); + if (err) + pr_err("%s: error %d sending stop command\n", + req->rq_disk->disk_name, err); + + /* + * If the stop cmd also timed out, the card is probably + * not present, so abort. Other errors are bad news too. + */ + if (err) { + DBG("[%s] e4\n",__func__); + return ERR_ABORT; + } + if (stop_status & R1_CARD_ECC_FAILED) + *ecc_err = 1; + } + + /* Check for set block count errors */ + if (brq->sbc.error) { + DBG("[%s] e5\n",__func__); + return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, + prev_cmd_status_valid, status); + } + /* Check for r/w command errors */ + if (brq->cmd.error) { + DBG("[%s] e6\n",__func__); + return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, + prev_cmd_status_valid, status); + } + /* Data errors */ + if (!brq->stop.error) { + DBG("[%s] e7\n",__func__); + return ERR_CONTINUE; + } + + /* Now for stop errors. These aren't fatal to the transfer. */ + pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", + req->rq_disk->disk_name, brq->stop.error, + brq->cmd.resp[0], status); + + /* + * Subsitute in our own stop status as this will give the error + * state which happened during the execution of the r/w command. + */ + if (stop_status) { + brq->stop.resp[0] = stop_status; + brq->stop.error = 0; + } + DBG("[%s] e8\n",__func__); + return ERR_CONTINUE; +} + +static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, + int type) +{ + int err; + DBG("[%s] s\n",__func__); + + if (md->reset_done & type) { + DBG("[%s] e1\n",__func__); + return -EEXIST; + } + + md->reset_done |= type; + err = mmc_hw_reset(host); + /* Ensure we switch back to the correct partition */ + if (err != -EOPNOTSUPP) { + struct mmc_blk_data *main_md = mmc_get_drvdata(host->card); + int part_err; + + main_md->part_curr = main_md->part_type; + part_err = mmc_blk_part_switch(host->card, md); + if (part_err) { + /* + * We have failed to get back into the correct + * partition, so we need to abort the whole request. + */ + DBG("[%s] e2\n",__func__); + return -ENODEV; + } + } + DBG("[%s] e3\n",__func__); + return err; +} + +static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) +{ + DBG("[%s] s\n",__func__); + md->reset_done &= ~type; + DBG("[%s] e\n",__func__); +} + +static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) +{ + struct mmc_blk_data *md = mq->data; + struct mmc_card *card = md->queue.card; + unsigned int from, nr, arg; + int err = 0, type = MMC_BLK_DISCARD; + DBG("[%s] s\n",__func__); + + if (!mmc_can_erase(card)) { + err = -EOPNOTSUPP; + goto out; + } + + from = blk_rq_pos(req); + nr = blk_rq_sectors(req); + + if (mmc_can_discard(card)) + arg = MMC_DISCARD_ARG; + else if (mmc_can_trim(card)) + arg = MMC_TRIM_ARG; + else + arg = MMC_ERASE_ARG; +retry: + if (card->quirks & MMC_QUIRK_INAND_CMD38) { + err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, + INAND_CMD38_ARG_EXT_CSD, + arg == MMC_TRIM_ARG ? + INAND_CMD38_ARG_TRIM : + INAND_CMD38_ARG_ERASE, + 0); + if (err) + goto out; + } + err = mmc_erase(card, from, nr, arg); +out: + if (err == -EIO && !mmc_blk_reset(md, card->host, type)) + goto retry; + if (!err) + mmc_blk_reset_success(md, type); + spin_lock_irq(&md->lock); + __blk_end_request(req, err, blk_rq_bytes(req)); + spin_unlock_irq(&md->lock); + DBG("[%s] e\n",__func__); + return err ? 0 : 1; +} + +static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, + struct request *req) +{ + struct mmc_blk_data *md = mq->data; + struct mmc_card *card = md->queue.card; + unsigned int from, nr, arg, trim_arg, erase_arg; + int err = 0, type = MMC_BLK_SECDISCARD; + DBG("[%s] s\n",__func__); + + if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) { + err = -EOPNOTSUPP; + goto out; + } + + from = blk_rq_pos(req); + nr = blk_rq_sectors(req); + + /* The sanitize operation is supported at v4.5 only */ + if (mmc_can_sanitize(card)) { + erase_arg = MMC_ERASE_ARG; + trim_arg = MMC_TRIM_ARG; + } else { + erase_arg = MMC_SECURE_ERASE_ARG; + trim_arg = MMC_SECURE_TRIM1_ARG; + } + + if (mmc_erase_group_aligned(card, from, nr)) + arg = erase_arg; + else if (mmc_can_trim(card)) + arg = trim_arg; + else { + err = -EINVAL; + goto out; + } +retry: + if (card->quirks & MMC_QUIRK_INAND_CMD38) { + err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, + INAND_CMD38_ARG_EXT_CSD, + arg == MMC_SECURE_TRIM1_ARG ? + INAND_CMD38_ARG_SECTRIM1 : + INAND_CMD38_ARG_SECERASE, + 0); + if (err) + goto out_retry; + } + + err = mmc_erase(card, from, nr, arg); + if (err == -EIO) + goto out_retry; + if (err) + goto out; + + if (arg == MMC_SECURE_TRIM1_ARG) { + if (card->quirks & MMC_QUIRK_INAND_CMD38) { + err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, + INAND_CMD38_ARG_EXT_CSD, + INAND_CMD38_ARG_SECTRIM2, + 0); + if (err) + goto out_retry; + } + + err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); + if (err == -EIO) + goto out_retry; + if (err) + goto out; + } + + if (mmc_can_sanitize(card)) + err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, + EXT_CSD_SANITIZE_START, 1, 0); +out_retry: + if (err && !mmc_blk_reset(md, card->host, type)) + goto retry; + if (!err) + mmc_blk_reset_success(md, type); +out: + spin_lock_irq(&md->lock); + __blk_end_request(req, err, blk_rq_bytes(req)); + spin_unlock_irq(&md->lock); + DBG("[%s] e\n",__func__); + return err ? 0 : 1; +} + +static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) +{ + struct mmc_blk_data *md = mq->data; + struct mmc_card *card = md->queue.card; + int ret = 0; + DBG("[%s] s\n",__func__); + + ret = mmc_flush_cache(card); + if (ret) + ret = -EIO; + + spin_lock_irq(&md->lock); + __blk_end_request_all(req, ret); + spin_unlock_irq(&md->lock); + DBG("[%s] e\n",__func__); + return ret ? 0 : 1; +} + +/* + * Reformat current write as a reliable write, supporting + * both legacy and the enhanced reliable write MMC cards. + * In each transfer we'll handle only as much as a single + * reliable write can handle, thus finish the request in + * partial completions. + */ +static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, + struct mmc_card *card, + struct request *req) +{ + DBG("[%s] s\n",__func__); + if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { + /* Legacy mode imposes restrictions on transfers. */ + if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors)) + brq->data.blocks = 1; + + if (brq->data.blocks > card->ext_csd.rel_sectors) + brq->data.blocks = card->ext_csd.rel_sectors; + else if (brq->data.blocks < card->ext_csd.rel_sectors) + brq->data.blocks = 1; + } + DBG("[%s] e\n",__func__); +} + +#define CMD_ERRORS \ + (R1_OUT_OF_RANGE | /* Command argument out of range */ \ + R1_ADDRESS_ERROR | /* Misaligned address */ \ + R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ + R1_WP_VIOLATION | /* Tried to write to protected block */ \ + R1_CC_ERROR | /* Card controller error */ \ + R1_ERROR) /* General/unknown error */ + +static int mmc_blk_err_check(struct mmc_card *card, + struct mmc_async_req *areq) +{ + struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, + mmc_active); + struct mmc_blk_request *brq = &mq_mrq->brq; + struct request *req = mq_mrq->req; + int ecc_err = 0; + DBG("[%s] s\n",__func__); + /* + * sbc.error indicates a problem with the set block count + * command. No data will have been transferred. + * + * cmd.error indicates a problem with the r/w command. No + * data will have been transferred. + * + * stop.error indicates a problem with the stop command. Data + * may have been transferred, or may still be transferring. + */ + if (brq->sbc.error || brq->cmd.error || brq->stop.error || + brq->data.error) { + switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) { + case ERR_RETRY: + return MMC_BLK_RETRY; + case ERR_ABORT: + return MMC_BLK_ABORT; + case ERR_NOMEDIUM: + return MMC_BLK_NOMEDIUM; + case ERR_CONTINUE: + break; + } + } + + /* + * Check for errors relating to the execution of the + * initial command - such as address errors. No data + * has been transferred. + */ + if (brq->cmd.resp[0] & CMD_ERRORS) { + pr_err("%s: r/w command failed, status = %#x\n", + req->rq_disk->disk_name, brq->cmd.resp[0]); + DBG("[%s] e1\n",__func__); + return MMC_BLK_ABORT; + } + + /* + * Everything else is either success, or a data error of some + * kind. If it was a write, we may have transitioned to + * program mode, which we have to wait for it to complete. + */ + if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { + u32 status; + do { + int err = get_card_status(card, &status, 5); + if (err) { + pr_err("%s: error %d requesting status\n", + req->rq_disk->disk_name, err); + DBG("[%s] e2\n",__func__); + return MMC_BLK_CMD_ERR; + } + /* + * Some cards mishandle the status bits, + * so make sure to check both the busy + * indication and the card state. + */ + } while (!(status & R1_READY_FOR_DATA) || + (R1_CURRENT_STATE(status) == R1_STATE_PRG)); + } + + if (brq->data.error) { + pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", + req->rq_disk->disk_name, brq->data.error, + (unsigned)blk_rq_pos(req), + (unsigned)blk_rq_sectors(req), + brq->cmd.resp[0], brq->stop.resp[0]); + + if (rq_data_dir(req) == READ) { + if (ecc_err) { + DBG("[%s] e3\n",__func__); + return MMC_BLK_ECC_ERR; + } + DBG("[%s] e4\n",__func__); + return MMC_BLK_DATA_ERR; + } else { + DBG("[%s] e5\n",__func__); + return MMC_BLK_CMD_ERR; + } + } + + if (!brq->data.bytes_xfered) { + DBG("[%s] e6\n",__func__); + return MMC_BLK_RETRY; + } + + if (blk_rq_bytes(req) != brq->data.bytes_xfered) { + DBG("[%s] e7\n",__func__); + return MMC_BLK_PARTIAL; + } + + DBG("[%s] e8\n",__func__); + return MMC_BLK_SUCCESS; +} + +static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, + struct mmc_card *card, + int disable_multi, + struct mmc_queue *mq) +{ + u32 readcmd, writecmd; + struct mmc_blk_request *brq = &mqrq->brq; + struct request *req = mqrq->req; + struct mmc_blk_data *md = mq->data; + bool do_data_tag; + + /* + * Reliable writes are used to implement Forced Unit Access and + * REQ_META accesses, and are supported only on MMCs. + * + * XXX: this really needs a good explanation of why REQ_META + * is treated special. + */ + bool do_rel_wr = ((req->cmd_flags & REQ_FUA) || + (req->cmd_flags & REQ_META)) && + (rq_data_dir(req) == WRITE) && + (md->flags & MMC_BLK_REL_WR); + DBG("[%s] s\n",__func__); + memset(brq, 0, sizeof(struct mmc_blk_request)); + brq->mrq.cmd = &brq->cmd; + brq->mrq.data = &brq->data; + + brq->cmd.arg = blk_rq_pos(req); + if (!mmc_card_blockaddr(card)) + brq->cmd.arg <<= 9; + //brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; + brq->cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; + brq->data.blksz = 512; + brq->stop.opcode = MMC_STOP_TRANSMISSION; + brq->stop.arg = 0; + //brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; + brq->stop.flags = MMC_RSP_R1B | MMC_CMD_AC; + brq->data.blocks = blk_rq_sectors(req); + + /* + * The block layer doesn't support all sector count + * restrictions, so we need to be prepared for too big + * requests. + */ + if (brq->data.blocks > card->host->max_blk_count) + brq->data.blocks = card->host->max_blk_count; + + if (brq->data.blocks > 1) { + /* + * After a read error, we redo the request one sector + * at a time in order to accurately determine which + * sectors can be read successfully. + */ + if (disable_multi) + brq->data.blocks = 1; + + /* Some controllers can't do multiblock reads due to hw bugs */ + if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ && + rq_data_dir(req) == READ) + brq->data.blocks = 1; + } + + if (brq->data.blocks > 1 || do_rel_wr) { + /* SPI multiblock writes terminate using a special + * token, not a STOP_TRANSMISSION request. + */ + if (!mmc_host_is_spi(card->host) || + rq_data_dir(req) == READ) + brq->mrq.stop = &brq->stop; + readcmd = MMC_READ_MULTIPLE_BLOCK; + writecmd = MMC_WRITE_MULTIPLE_BLOCK; + } else { + brq->mrq.stop = NULL; + readcmd = MMC_READ_SINGLE_BLOCK; + writecmd = MMC_WRITE_BLOCK; + } + if (rq_data_dir(req) == READ) { + brq->cmd.opcode = readcmd; + brq->data.flags |= MMC_DATA_READ; + } else { + brq->cmd.opcode = writecmd; + brq->data.flags |= MMC_DATA_WRITE; + } + + if (do_rel_wr) + mmc_apply_rel_rw(brq, card, req); + + /* + * Data tag is used only during writing meta data to speed + * up write and any subsequent read of this meta data + */ + do_data_tag = (card->ext_csd.data_tag_unit_size) && + (req->cmd_flags & REQ_META) && + (rq_data_dir(req) == WRITE) && + ((brq->data.blocks * brq->data.blksz) >= + card->ext_csd.data_tag_unit_size); + + /* + * Pre-defined multi-block transfers are preferable to + * open ended-ones (and necessary for reliable writes). + * However, it is not sufficient to just send CMD23, + * and avoid the final CMD12, as on an error condition + * CMD12 (stop) needs to be sent anyway. This, coupled + * with Auto-CMD23 enhancements provided by some + * hosts, means that the complexity of dealing + * with this is best left to the host. If CMD23 is + * supported by card and host, we'll fill sbc in and let + * the host deal with handling it correctly. This means + * that for hosts that don't expose MMC_CAP_CMD23, no + * change of behavior will be observed. + * + * N.B: Some MMC cards experience perf degradation. + * We'll avoid using CMD23-bounded multiblock writes for + * these, while retaining features like reliable writes. + */ + if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && + (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || + do_data_tag)) { + brq->sbc.opcode = MMC_SET_BLOCK_COUNT; + brq->sbc.arg = brq->data.blocks | + (do_rel_wr ? (1 << 31) : 0) | + (do_data_tag ? (1 << 29) : 0); + brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; + brq->mrq.sbc = &brq->sbc; + } + + mmc_set_data_timeout(&brq->data, card); + + brq->data.sg = mqrq->sg; + brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); + + /* + * Adjust the sg list so it is the same size as the + * request. + */ + if (brq->data.blocks != blk_rq_sectors(req)) { + int i, data_size = brq->data.blocks << 9; + struct scatterlist *sg; + + for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { + data_size -= sg->length; + if (data_size <= 0) { + sg->length += data_size; + i++; + break; + } + } + brq->data.sg_len = i; + } + + mqrq->mmc_active.mrq = &brq->mrq; + mqrq->mmc_active.err_check = mmc_blk_err_check; + + mmc_queue_bounce_pre(mqrq); + DBG("[%s] e\n",__func__); +} + +static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, + struct mmc_blk_request *brq, struct request *req, + int ret) +{ + DBG("[%s] s\n",__func__); + /* + * If this is an SD card and we're writing, we can first + * mark the known good sectors as ok. + * + * If the card is not SD, we can still ok written sectors + * as reported by the controller (which might be less than + * the real number of written sectors, but never more). + */ + if (mmc_card_sd(card)) { + u32 blocks; + + blocks = mmc_sd_num_wr_blocks(card); + if (blocks != (u32)-1) { + spin_lock_irq(&md->lock); + ret = __blk_end_request(req, 0, blocks << 9); + spin_unlock_irq(&md->lock); + } + } else { + spin_lock_irq(&md->lock); + ret = __blk_end_request(req, 0, brq->data.bytes_xfered); + spin_unlock_irq(&md->lock); + } + DBG("[%s] e\n",__func__); + return ret; +} + +static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc) +{ + struct mmc_blk_data *md = mq->data; + struct mmc_card *card = md->queue.card; + struct mmc_blk_request *brq = &mq->mqrq_cur->brq; + int ret = 1, disable_multi = 0, retry = 0, type; + enum mmc_blk_status status; + struct mmc_queue_req *mq_rq; + struct request *req; + struct mmc_async_req *areq; + DBG("[%s] s\n",__func__); + + if (!rqc && !mq->mqrq_prev->req) { + DBG("[%s] e1\n",__func__); + return 0; + } + + do { + if (rqc) { + mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); + areq = &mq->mqrq_cur->mmc_active; + } else + areq = NULL; + areq = mmc_start_req(card->host, areq, (int *) &status); + if (!areq) { + DBG("[%s] e2\n",__func__); + return 0; + } + + mq_rq = container_of(areq, struct mmc_queue_req, mmc_active); + brq = &mq_rq->brq; + req = mq_rq->req; + type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; + mmc_queue_bounce_post(mq_rq); + + switch (status) { + case MMC_BLK_SUCCESS: + case MMC_BLK_PARTIAL: + /* + * A block was successfully transferred. + */ + mmc_blk_reset_success(md, type); + spin_lock_irq(&md->lock); + ret = __blk_end_request(req, 0, + brq->data.bytes_xfered); + spin_unlock_irq(&md->lock); + /* + * If the blk_end_request function returns non-zero even + * though all data has been transferred and no errors + * were returned by the host controller, it's a bug. + */ + if (status == MMC_BLK_SUCCESS && ret) { + pr_err("%s BUG rq_tot %d d_xfer %d\n", + __func__, blk_rq_bytes(req), + brq->data.bytes_xfered); + rqc = NULL; + goto cmd_abort; + } + break; + case MMC_BLK_CMD_ERR: + ret = mmc_blk_cmd_err(md, card, brq, req, ret); + if (!mmc_blk_reset(md, card->host, type)) + break; + goto cmd_abort; + case MMC_BLK_RETRY: + if (retry++ < 5) + break; + /* Fall through */ + case MMC_BLK_ABORT: + if (!mmc_blk_reset(md, card->host, type)) + break; + goto cmd_abort; + case MMC_BLK_DATA_ERR: { + int err; + + err = mmc_blk_reset(md, card->host, type); + if (!err) + break; + if (err == -ENODEV) + goto cmd_abort; + /* Fall through */ + } + case MMC_BLK_ECC_ERR: + if (brq->data.blocks > 1) { + /* Redo read one sector at a time */ + pr_warning("%s: retrying using single block read\n", + req->rq_disk->disk_name); + disable_multi = 1; + break; + } + /* + * After an error, we redo I/O one sector at a + * time, so we only reach here after trying to + * read a single sector. + */ + spin_lock_irq(&md->lock); + ret = __blk_end_request(req, -EIO, + brq->data.blksz); + spin_unlock_irq(&md->lock); + if (!ret) + goto start_new_req; + break; + case MMC_BLK_NOMEDIUM: + goto cmd_abort; + } + + if (ret) { + /* + * In case of a incomplete request + * prepare it again and resend. + */ + mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq); + mmc_start_req(card->host, &mq_rq->mmc_active, NULL); + } + } while (ret); + DBG("[%s] e3\n",__func__); + return 1; + + cmd_abort: + spin_lock_irq(&md->lock); + if (mmc_card_removed(card)) + req->cmd_flags |= REQ_QUIET; + while (ret) + ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req)); + spin_unlock_irq(&md->lock); + + start_new_req: + if (rqc) { + mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); + mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL); + } + DBG("[%s] e4\n",__func__); + return 0; +} + +static int +mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card); + +static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) +{ + int ret; + struct mmc_blk_data *md = mq->data; + struct mmc_card *card = md->queue.card; + DBG("[%s] s\n",__func__); + +#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME + if (mmc_bus_needs_resume(card->host)) { + mmc_resume_bus(card->host); + mmc_blk_set_blksize(md, card); + } +#endif + + if (req && !mq->mqrq_prev->req) + /* claim host only for the first request */ + mmc_claim_host(card->host); + +#ifdef CONFIG_MMC_UNSAFE_RESUME +/* + if(card->host->card_attath_status == card_attach_status_change) { + goto cmd_err; + } +*/ +#endif + + ret = mmc_blk_part_switch(card, md); + if (ret) { + if (req) { + spin_lock_irq(&md->lock); + __blk_end_request_all(req, -EIO); + spin_unlock_irq(&md->lock); + } + ret = 0; + goto out; + } + + if (req && req->cmd_flags & REQ_DISCARD) { + /* complete ongoing async transfer before issuing discard */ + if (card->host->areq) + mmc_blk_issue_rw_rq(mq, NULL); + if (req->cmd_flags & REQ_SECURE) + ret = mmc_blk_issue_secdiscard_rq(mq, req); + else + ret = mmc_blk_issue_discard_rq(mq, req); + } else if (req && req->cmd_flags & REQ_FLUSH) { + /* complete ongoing async transfer before issuing flush */ + if (card->host->areq) + mmc_blk_issue_rw_rq(mq, NULL); + ret = mmc_blk_issue_flush(mq, req); + } else { + ret = mmc_blk_issue_rw_rq(mq, req); + } + +out: + if (!req) + /* release host only when there are no more requests */ + mmc_release_host(card->host); + DBG("[%s] e\n",__func__); + return ret; +} + +static inline int mmc_blk_readonly(struct mmc_card *card) +{ + DBG("[%s] s\n",__func__); + return mmc_card_readonly(card) || + !(card->csd.cmdclass & CCC_BLOCK_WRITE); +} + +static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, + struct device *parent, + sector_t size, + bool default_ro, + const char *subname, + int area_type) +{ + struct mmc_blk_data *md; + int devidx, ret; + DBG("[%s] s\n",__func__); + + devidx = find_first_zero_bit(dev_use, max_devices); + if (devidx >= max_devices) { + DBG("[%s] e1\n",__func__); + return ERR_PTR(-ENOSPC); + } + __set_bit(devidx, dev_use); + + md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); + if (!md) { + ret = -ENOMEM; + goto out; + } + + /* + * !subname implies we are creating main mmc_blk_data that will be + * associated with mmc_card with mmc_set_drvdata. Due to device + * partitions, devidx will not coincide with a per-physical card + * index anymore so we keep track of a name index. + */ + if (!subname) { + md->name_idx = find_first_zero_bit(name_use, max_devices); + __set_bit(md->name_idx, name_use); + } else + md->name_idx = ((struct mmc_blk_data *) + dev_to_disk(parent)->private_data)->name_idx; + + md->area_type = area_type; + + /* + * Set the read-only status based on the supported commands + * and the write protect switch. + */ + md->read_only = mmc_blk_readonly(card); + + md->disk = alloc_disk(perdev_minors); + if (md->disk == NULL) { + ret = -ENOMEM; + goto err_kfree; + } + + spin_lock_init(&md->lock); + INIT_LIST_HEAD(&md->part); + md->usage = 1; + + ret = mmc_init_queue(&md->queue, card, &md->lock, subname); + if (ret) + goto err_putdisk; + + md->queue.issue_fn = mmc_blk_issue_rq; + md->queue.data = md; + + md->disk->major = MMC_BLOCK_MAJOR; + md->disk->first_minor = devidx * perdev_minors; + md->disk->fops = &mmc_bdops; + md->disk->private_data = md; + md->disk->queue = md->queue.queue; + md->disk->driverfs_dev = parent; + set_disk_ro(md->disk, md->read_only || default_ro); + md->disk->flags = GENHD_FL_EXT_DEVT; + + /* + * As discussed on lkml, GENHD_FL_REMOVABLE should: + * + * - be set for removable media with permanent block devices + * - be unset for removable block devices with permanent media + * + * Since MMC block devices clearly fall under the second + * case, we do not set GENHD_FL_REMOVABLE. Userspace + * should use the block device creation/destruction hotplug + * messages to tell when the card is present. + */ + + /*snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), + "mmcblk%d%s", md->name_idx, subname ? subname : "");*/ + + snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), + "mmcblk%d%s", card->host->wmt_host_index, subname ? subname : ""); + + blk_queue_logical_block_size(md->queue.queue, 512); + set_capacity(md->disk, size); + + if (mmc_host_cmd23(card->host)) { + if (mmc_card_mmc(card) || + (mmc_card_sd(card) && + card->scr.cmds & SD_SCR_CMD23_SUPPORT)) + md->flags |= MMC_BLK_CMD23; + } + + if (mmc_card_mmc(card) && + md->flags & MMC_BLK_CMD23 && + ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || + card->ext_csd.rel_sectors)) { + md->flags |= MMC_BLK_REL_WR; + blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA); + } + DBG("[%s] e2\n",__func__); + return md; + + err_putdisk: + put_disk(md->disk); + err_kfree: + kfree(md); + out: + DBG("[%s] e3\n",__func__); + return ERR_PTR(ret); +} + +static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) +{ + sector_t size; + struct mmc_blk_data *md; + DBG("[%s] s\n",__func__); + + if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { + /* + * The EXT_CSD sector count is in number or 512 byte + * sectors. + */ + size = card->ext_csd.sectors; + } else { + /* + * The CSD capacity field is in units of read_blkbits. + * set_capacity takes units of 512 bytes. + */ + size = card->csd.capacity << (card->csd.read_blkbits - 9); + } + + md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL, + MMC_BLK_DATA_AREA_MAIN); + DBG("[%s] e\n",__func__); + return md; +} + +static int mmc_blk_alloc_part(struct mmc_card *card, + struct mmc_blk_data *md, + unsigned int part_type, + sector_t size, + bool default_ro, + const char *subname, + int area_type) +{ + char cap_str[10]; + struct mmc_blk_data *part_md; + DBG("[%s] s\n",__func__); + + part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, + subname, area_type); + if (IS_ERR(part_md)) { + DBG("[%s] e1\n",__func__); + return PTR_ERR(part_md); + } + part_md->part_type = part_type; + list_add(&part_md->part, &md->part); + + string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2, + cap_str, sizeof(cap_str)); + pr_info("%s: %s %s partition %u %s\n", + part_md->disk->disk_name, mmc_card_id(card), + mmc_card_name(card), part_md->part_type, cap_str); + DBG("[%s] e2\n",__func__); + return 0; +} + +/* MMC Physical partitions consist of two boot partitions and + * up to four general purpose partitions. + * For each partition enabled in EXT_CSD a block device will be allocatedi + * to provide access to the partition. + */ + +static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) +{ + int idx, ret = 0; + DBG("[%s] s\n",__func__); + + if (!mmc_card_mmc(card)) { + DBG("[%s] e1\n",__func__); + return 0; + } + + for (idx = 0; idx < card->nr_parts; idx++) { + if (card->part[idx].size) { + ret = mmc_blk_alloc_part(card, md, + card->part[idx].part_cfg, + card->part[idx].size >> 9, + card->part[idx].force_ro, + card->part[idx].name, + card->part[idx].area_type); + if (ret) { + DBG("[%s] e2\n",__func__); + return ret; + } + } + } + DBG("[%s] e3\n",__func__); + return ret; +} + +static void mmc_blk_remove_req(struct mmc_blk_data *md) +{ + struct mmc_card *card; + DBG("[%s] s\n",__func__); + + if (md) { + card = md->queue.card; + if (md->disk->flags & GENHD_FL_UP) { + device_remove_file(disk_to_dev(md->disk), &md->force_ro); + if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && + card->ext_csd.boot_ro_lockable) + device_remove_file(disk_to_dev(md->disk), + &md->power_ro_lock); + + /* Stop new requests from getting into the queue */ + del_gendisk(md->disk); + } + + /* Then flush out any already in there */ + mmc_cleanup_queue(&md->queue); + mmc_blk_put(md); + } + DBG("[%s] e\n",__func__); +} + +static void mmc_blk_remove_parts(struct mmc_card *card, + struct mmc_blk_data *md) +{ + struct list_head *pos, *q; + struct mmc_blk_data *part_md; + DBG("[%s] s\n",__func__); + + __clear_bit(md->name_idx, name_use); + list_for_each_safe(pos, q, &md->part) { + part_md = list_entry(pos, struct mmc_blk_data, part); + list_del(pos); + mmc_blk_remove_req(part_md); + } + DBG("[%s] e\n",__func__); +} + +static int mmc_add_disk(struct mmc_blk_data *md) +{ + int ret; + struct mmc_card *card = md->queue.card; + DBG("[%s] s\n",__func__); + + add_disk(md->disk); + md->force_ro.show = force_ro_show; + md->force_ro.store = force_ro_store; + sysfs_attr_init(&md->force_ro.attr); + md->force_ro.attr.name = "force_ro"; + md->force_ro.attr.mode = S_IRUGO | S_IWUSR; + ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); + if (ret) + goto force_ro_fail; + + if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && + card->ext_csd.boot_ro_lockable) { + umode_t mode; + + if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) + mode = S_IRUGO; + else + mode = S_IRUGO | S_IWUSR; + + md->power_ro_lock.show = power_ro_lock_show; + md->power_ro_lock.store = power_ro_lock_store; + sysfs_attr_init(&md->power_ro_lock.attr); + md->power_ro_lock.attr.mode = mode; + md->power_ro_lock.attr.name = + "ro_lock_until_next_power_on"; + ret = device_create_file(disk_to_dev(md->disk), + &md->power_ro_lock); + if (ret) + goto power_ro_lock_fail; + } + DBG("[%s] e1\n",__func__); + return ret; + +power_ro_lock_fail: + device_remove_file(disk_to_dev(md->disk), &md->force_ro); +force_ro_fail: + del_gendisk(md->disk); + DBG("[%s] e2\n",__func__); + return ret; +} + +#define CID_MANFID_SANDISK 0x2 +#define CID_MANFID_TOSHIBA 0x11 +#define CID_MANFID_MICRON 0x13 + +static const struct mmc_fixup blk_fixups[] = +{ + MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk, + MMC_QUIRK_INAND_CMD38), + MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk, + MMC_QUIRK_INAND_CMD38), + MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk, + MMC_QUIRK_INAND_CMD38), + MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk, + MMC_QUIRK_INAND_CMD38), + MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk, + MMC_QUIRK_INAND_CMD38), + + /* + * Some MMC cards experience performance degradation with CMD23 + * instead of CMD12-bounded multiblock transfers. For now we'll + * black list what's bad... + * - Certain Toshiba cards. + * + * N.B. This doesn't affect SD cards. + */ + MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, + MMC_QUIRK_BLK_NO_CMD23), + MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, + MMC_QUIRK_BLK_NO_CMD23), + MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, + MMC_QUIRK_BLK_NO_CMD23), + + /* + * Some Micron MMC cards needs longer data read timeout than + * indicated in CSD. + */ + MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc, + MMC_QUIRK_LONG_READ_TIME), + + END_FIXUP +}; + +static int mmc_blk_probe(struct mmc_card *card) +{ + struct mmc_blk_data *md, *part_md; + char cap_str[10]; + DBG("[%s] s\n",__func__); + /* + * Check that the card supports the command class(es) we need. + */ + if (!(card->csd.cmdclass & CCC_BLOCK_READ)) { + DBG("[%s] e1\n",__func__); + return -ENODEV; + } + md = mmc_blk_alloc(card); + if (IS_ERR(md)) { + DBG("[%s] e2\n",__func__); + return PTR_ERR(md); + } + + string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2, + cap_str, sizeof(cap_str)); + pr_info("%s: %s %s %s %s\n", + md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), + cap_str, md->read_only ? "(ro)" : ""); + + if (mmc_blk_alloc_parts(card, md)) + goto out; + + mmc_set_drvdata(card, md); + mmc_fixup_device(card, blk_fixups); + +#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME + mmc_set_bus_resume_policy(card->host, 1); +#endif + if (mmc_add_disk(md)) + goto out; + + list_for_each_entry(part_md, &md->part, part) { + if (mmc_add_disk(part_md)) + goto out; + } + + DBG("[%s] e3\n",__func__); + return 0; + + out: + mmc_blk_remove_parts(card, md); + mmc_blk_remove_req(md); + DBG("[%s] e4\n",__func__); + return 0; +} + +static void mmc_blk_remove(struct mmc_card *card) +{ + struct mmc_blk_data *md = mmc_get_drvdata(card); + DBG("[%s] s\n",__func__); + + mmc_blk_remove_parts(card, md); + mmc_claim_host(card->host); + mmc_blk_part_switch(card, md); + mmc_release_host(card->host); + mmc_blk_remove_req(md); + mmc_set_drvdata(card, NULL); +#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME + mmc_set_bus_resume_policy(card->host, 0); +#endif + DBG("[%s] e\n",__func__); +} + +#ifdef CONFIG_PM +static int mmc_blk_suspend(struct mmc_card *card) +{ + struct mmc_blk_data *part_md; + struct mmc_blk_data *md = mmc_get_drvdata(card); + DBG("[%s] s\n",__func__); + + if (md) { + mmc_queue_suspend(&md->queue); + list_for_each_entry(part_md, &md->part, part) { + mmc_queue_suspend(&part_md->queue); + } + } + DBG("[%s] e\n",__func__); + return 0; +} + +static int mmc_blk_resume(struct mmc_card *card) +{ + struct mmc_blk_data *part_md; + struct mmc_blk_data *md = mmc_get_drvdata(card); + DBG("[%s] s\n",__func__); + + if (md) { + /* + * Resume involves the card going into idle state, + * so current partition is always the main one. + */ + md->part_curr = md->part_type; + mmc_queue_resume(&md->queue); + list_for_each_entry(part_md, &md->part, part) { + mmc_queue_resume(&part_md->queue); + } + } + DBG("[%s] e\n",__func__); + return 0; +} +#else +#define mmc_blk_suspend NULL +#define mmc_blk_resume NULL +#endif + +static struct mmc_driver mmc_driver = { + .drv = { + .name = "mmcblk", + }, + .probe = mmc_blk_probe, + .remove = mmc_blk_remove, + .suspend = mmc_blk_suspend, + .resume = mmc_blk_resume, +}; + +static int __init mmc_blk_init(void) +{ + int res; + DBG("[%s] s\n",__func__); + + if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) + pr_info("mmcblk: using %d minors per device\n", perdev_minors); + + max_devices = 256 / perdev_minors; + + res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); + if (res) + goto out; + + res = mmc_register_driver(&mmc_driver); + if (res) + goto out2; + DBG("[%s] e1\n",__func__); + return 0; + out2: + unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); + out: + DBG("[%s] e2\n",__func__); + return res; +} + +static void __exit mmc_blk_exit(void) +{ + DBG("[%s] s\n",__func__); + mmc_unregister_driver(&mmc_driver); + unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); + DBG("[%s] e\n",__func__); +} + +module_init(mmc_blk_init); +module_exit(mmc_blk_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); + |