diff options
Diffstat (limited to 'drivers/edac/amd64_edac.c')
-rw-r--r-- | drivers/edac/amd64_edac.c | 2849 |
1 files changed, 2849 insertions, 0 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c new file mode 100644 index 00000000..7ef73c91 --- /dev/null +++ b/drivers/edac/amd64_edac.c @@ -0,0 +1,2849 @@ +#include "amd64_edac.h" +#include <asm/amd_nb.h> + +static struct edac_pci_ctl_info *amd64_ctl_pci; + +static int report_gart_errors; +module_param(report_gart_errors, int, 0644); + +/* + * Set by command line parameter. If BIOS has enabled the ECC, this override is + * cleared to prevent re-enabling the hardware by this driver. + */ +static int ecc_enable_override; +module_param(ecc_enable_override, int, 0644); + +static struct msr __percpu *msrs; + +/* + * count successfully initialized driver instances for setup_pci_device() + */ +static atomic_t drv_instances = ATOMIC_INIT(0); + +/* Per-node driver instances */ +static struct mem_ctl_info **mcis; +static struct ecc_settings **ecc_stngs; + +/* + * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing + * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- + * or higher value'. + * + *FIXME: Produce a better mapping/linearisation. + */ +struct scrubrate { + u32 scrubval; /* bit pattern for scrub rate */ + u32 bandwidth; /* bandwidth consumed (bytes/sec) */ +} scrubrates[] = { + { 0x01, 1600000000UL}, + { 0x02, 800000000UL}, + { 0x03, 400000000UL}, + { 0x04, 200000000UL}, + { 0x05, 100000000UL}, + { 0x06, 50000000UL}, + { 0x07, 25000000UL}, + { 0x08, 12284069UL}, + { 0x09, 6274509UL}, + { 0x0A, 3121951UL}, + { 0x0B, 1560975UL}, + { 0x0C, 781440UL}, + { 0x0D, 390720UL}, + { 0x0E, 195300UL}, + { 0x0F, 97650UL}, + { 0x10, 48854UL}, + { 0x11, 24427UL}, + { 0x12, 12213UL}, + { 0x13, 6101UL}, + { 0x14, 3051UL}, + { 0x15, 1523UL}, + { 0x16, 761UL}, + { 0x00, 0UL}, /* scrubbing off */ +}; + +static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, + u32 *val, const char *func) +{ + int err = 0; + + err = pci_read_config_dword(pdev, offset, val); + if (err) + amd64_warn("%s: error reading F%dx%03x.\n", + func, PCI_FUNC(pdev->devfn), offset); + + return err; +} + +int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, + u32 val, const char *func) +{ + int err = 0; + + err = pci_write_config_dword(pdev, offset, val); + if (err) + amd64_warn("%s: error writing to F%dx%03x.\n", + func, PCI_FUNC(pdev->devfn), offset); + + return err; +} + +/* + * + * Depending on the family, F2 DCT reads need special handling: + * + * K8: has a single DCT only + * + * F10h: each DCT has its own set of regs + * DCT0 -> F2x040.. + * DCT1 -> F2x140.. + * + * F15h: we select which DCT we access using F1x10C[DctCfgSel] + * + */ +static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, + const char *func) +{ + if (addr >= 0x100) + return -EINVAL; + + return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); +} + +static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, + const char *func) +{ + return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); +} + +/* + * Select DCT to which PCI cfg accesses are routed + */ +static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) +{ + u32 reg = 0; + + amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); + reg &= 0xfffffffe; + reg |= dct; + amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); +} + +static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, + const char *func) +{ + u8 dct = 0; + + if (addr >= 0x140 && addr <= 0x1a0) { + dct = 1; + addr -= 0x100; + } + + f15h_select_dct(pvt, dct); + + return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); +} + +/* + * Memory scrubber control interface. For K8, memory scrubbing is handled by + * hardware and can involve L2 cache, dcache as well as the main memory. With + * F10, this is extended to L3 cache scrubbing on CPU models sporting that + * functionality. + * + * This causes the "units" for the scrubbing speed to vary from 64 byte blocks + * (dram) over to cache lines. This is nasty, so we will use bandwidth in + * bytes/sec for the setting. + * + * Currently, we only do dram scrubbing. If the scrubbing is done in software on + * other archs, we might not have access to the caches directly. + */ + +/* + * scan the scrub rate mapping table for a close or matching bandwidth value to + * issue. If requested is too big, then use last maximum value found. + */ +static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) +{ + u32 scrubval; + int i; + + /* + * map the configured rate (new_bw) to a value specific to the AMD64 + * memory controller and apply to register. Search for the first + * bandwidth entry that is greater or equal than the setting requested + * and program that. If at last entry, turn off DRAM scrubbing. + */ + for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { + /* + * skip scrub rates which aren't recommended + * (see F10 BKDG, F3x58) + */ + if (scrubrates[i].scrubval < min_rate) + continue; + + if (scrubrates[i].bandwidth <= new_bw) + break; + + /* + * if no suitable bandwidth found, turn off DRAM scrubbing + * entirely by falling back to the last element in the + * scrubrates array. + */ + } + + scrubval = scrubrates[i].scrubval; + + pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); + + if (scrubval) + return scrubrates[i].bandwidth; + + return 0; +} + +static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u32 min_scrubrate = 0x5; + + if (boot_cpu_data.x86 == 0xf) + min_scrubrate = 0x0; + + /* F15h Erratum #505 */ + if (boot_cpu_data.x86 == 0x15) + f15h_select_dct(pvt, 0); + + return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); +} + +static int amd64_get_scrub_rate(struct mem_ctl_info *mci) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u32 scrubval = 0; + int i, retval = -EINVAL; + + /* F15h Erratum #505 */ + if (boot_cpu_data.x86 == 0x15) + f15h_select_dct(pvt, 0); + + amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); + + scrubval = scrubval & 0x001F; + + for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { + if (scrubrates[i].scrubval == scrubval) { + retval = scrubrates[i].bandwidth; + break; + } + } + return retval; +} + +/* + * returns true if the SysAddr given by sys_addr matches the + * DRAM base/limit associated with node_id + */ +static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, + unsigned nid) +{ + u64 addr; + + /* The K8 treats this as a 40-bit value. However, bits 63-40 will be + * all ones if the most significant implemented address bit is 1. + * Here we discard bits 63-40. See section 3.4.2 of AMD publication + * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 + * Application Programming. + */ + addr = sys_addr & 0x000000ffffffffffull; + + return ((addr >= get_dram_base(pvt, nid)) && + (addr <= get_dram_limit(pvt, nid))); +} + +/* + * Attempt to map a SysAddr to a node. On success, return a pointer to the + * mem_ctl_info structure for the node that the SysAddr maps to. + * + * On failure, return NULL. + */ +static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, + u64 sys_addr) +{ + struct amd64_pvt *pvt; + unsigned node_id; + u32 intlv_en, bits; + + /* + * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section + * 3.4.4.2) registers to map the SysAddr to a node ID. + */ + pvt = mci->pvt_info; + + /* + * The value of this field should be the same for all DRAM Base + * registers. Therefore we arbitrarily choose to read it from the + * register for node 0. + */ + intlv_en = dram_intlv_en(pvt, 0); + + if (intlv_en == 0) { + for (node_id = 0; node_id < DRAM_RANGES; node_id++) { + if (amd64_base_limit_match(pvt, sys_addr, node_id)) + goto found; + } + goto err_no_match; + } + + if (unlikely((intlv_en != 0x01) && + (intlv_en != 0x03) && + (intlv_en != 0x07))) { + amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); + return NULL; + } + + bits = (((u32) sys_addr) >> 12) & intlv_en; + + for (node_id = 0; ; ) { + if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) + break; /* intlv_sel field matches */ + + if (++node_id >= DRAM_RANGES) + goto err_no_match; + } + + /* sanity test for sys_addr */ + if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { + amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" + "range for node %d with node interleaving enabled.\n", + __func__, sys_addr, node_id); + return NULL; + } + +found: + return edac_mc_find((int)node_id); + +err_no_match: + debugf2("sys_addr 0x%lx doesn't match any node\n", + (unsigned long)sys_addr); + + return NULL; +} + +/* + * compute the CS base address of the @csrow on the DRAM controller @dct. + * For details see F2x[5C:40] in the processor's BKDG + */ +static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, + u64 *base, u64 *mask) +{ + u64 csbase, csmask, base_bits, mask_bits; + u8 addr_shift; + + if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { + csbase = pvt->csels[dct].csbases[csrow]; + csmask = pvt->csels[dct].csmasks[csrow]; + base_bits = GENMASK(21, 31) | GENMASK(9, 15); + mask_bits = GENMASK(21, 29) | GENMASK(9, 15); + addr_shift = 4; + } else { + csbase = pvt->csels[dct].csbases[csrow]; + csmask = pvt->csels[dct].csmasks[csrow >> 1]; + addr_shift = 8; + + if (boot_cpu_data.x86 == 0x15) + base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); + else + base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); + } + + *base = (csbase & base_bits) << addr_shift; + + *mask = ~0ULL; + /* poke holes for the csmask */ + *mask &= ~(mask_bits << addr_shift); + /* OR them in */ + *mask |= (csmask & mask_bits) << addr_shift; +} + +#define for_each_chip_select(i, dct, pvt) \ + for (i = 0; i < pvt->csels[dct].b_cnt; i++) + +#define chip_select_base(i, dct, pvt) \ + pvt->csels[dct].csbases[i] + +#define for_each_chip_select_mask(i, dct, pvt) \ + for (i = 0; i < pvt->csels[dct].m_cnt; i++) + +/* + * @input_addr is an InputAddr associated with the node given by mci. Return the + * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). + */ +static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) +{ + struct amd64_pvt *pvt; + int csrow; + u64 base, mask; + + pvt = mci->pvt_info; + + for_each_chip_select(csrow, 0, pvt) { + if (!csrow_enabled(csrow, 0, pvt)) + continue; + + get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); + + mask = ~mask; + + if ((input_addr & mask) == (base & mask)) { + debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", + (unsigned long)input_addr, csrow, + pvt->mc_node_id); + + return csrow; + } + } + debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", + (unsigned long)input_addr, pvt->mc_node_id); + + return -1; +} + +/* + * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) + * for the node represented by mci. Info is passed back in *hole_base, + * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if + * info is invalid. Info may be invalid for either of the following reasons: + * + * - The revision of the node is not E or greater. In this case, the DRAM Hole + * Address Register does not exist. + * + * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, + * indicating that its contents are not valid. + * + * The values passed back in *hole_base, *hole_offset, and *hole_size are + * complete 32-bit values despite the fact that the bitfields in the DHAR + * only represent bits 31-24 of the base and offset values. + */ +int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, + u64 *hole_offset, u64 *hole_size) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u64 base; + + /* only revE and later have the DRAM Hole Address Register */ + if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { + debugf1(" revision %d for node %d does not support DHAR\n", + pvt->ext_model, pvt->mc_node_id); + return 1; + } + + /* valid for Fam10h and above */ + if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) { + debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); + return 1; + } + + if (!dhar_valid(pvt)) { + debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", + pvt->mc_node_id); + return 1; + } + + /* This node has Memory Hoisting */ + + /* +------------------+--------------------+--------------------+----- + * | memory | DRAM hole | relocated | + * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | + * | | | DRAM hole | + * | | | [0x100000000, | + * | | | (0x100000000+ | + * | | | (0xffffffff-x))] | + * +------------------+--------------------+--------------------+----- + * + * Above is a diagram of physical memory showing the DRAM hole and the + * relocated addresses from the DRAM hole. As shown, the DRAM hole + * starts at address x (the base address) and extends through address + * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the + * addresses in the hole so that they start at 0x100000000. + */ + + base = dhar_base(pvt); + + *hole_base = base; + *hole_size = (0x1ull << 32) - base; + + if (boot_cpu_data.x86 > 0xf) + *hole_offset = f10_dhar_offset(pvt); + else + *hole_offset = k8_dhar_offset(pvt); + + debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", + pvt->mc_node_id, (unsigned long)*hole_base, + (unsigned long)*hole_offset, (unsigned long)*hole_size); + + return 0; +} +EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); + +/* + * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is + * assumed that sys_addr maps to the node given by mci. + * + * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section + * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a + * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, + * then it is also involved in translating a SysAddr to a DramAddr. Sections + * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. + * These parts of the documentation are unclear. I interpret them as follows: + * + * When node n receives a SysAddr, it processes the SysAddr as follows: + * + * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM + * Limit registers for node n. If the SysAddr is not within the range + * specified by the base and limit values, then node n ignores the Sysaddr + * (since it does not map to node n). Otherwise continue to step 2 below. + * + * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is + * disabled so skip to step 3 below. Otherwise see if the SysAddr is within + * the range of relocated addresses (starting at 0x100000000) from the DRAM + * hole. If not, skip to step 3 below. Else get the value of the + * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the + * offset defined by this value from the SysAddr. + * + * 3. Obtain the base address for node n from the DRAMBase field of the DRAM + * Base register for node n. To obtain the DramAddr, subtract the base + * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). + */ +static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; + int ret = 0; + + dram_base = get_dram_base(pvt, pvt->mc_node_id); + + ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, + &hole_size); + if (!ret) { + if ((sys_addr >= (1ull << 32)) && + (sys_addr < ((1ull << 32) + hole_size))) { + /* use DHAR to translate SysAddr to DramAddr */ + dram_addr = sys_addr - hole_offset; + + debugf2("using DHAR to translate SysAddr 0x%lx to " + "DramAddr 0x%lx\n", + (unsigned long)sys_addr, + (unsigned long)dram_addr); + + return dram_addr; + } + } + + /* + * Translate the SysAddr to a DramAddr as shown near the start of + * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 + * only deals with 40-bit values. Therefore we discard bits 63-40 of + * sys_addr below. If bit 39 of sys_addr is 1 then the bits we + * discard are all 1s. Otherwise the bits we discard are all 0s. See + * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture + * Programmer's Manual Volume 1 Application Programming. + */ + dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; + + debugf2("using DRAM Base register to translate SysAddr 0x%lx to " + "DramAddr 0x%lx\n", (unsigned long)sys_addr, + (unsigned long)dram_addr); + return dram_addr; +} + +/* + * @intlv_en is the value of the IntlvEn field from a DRAM Base register + * (section 3.4.4.1). Return the number of bits from a SysAddr that are used + * for node interleaving. + */ +static int num_node_interleave_bits(unsigned intlv_en) +{ + static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; + int n; + + BUG_ON(intlv_en > 7); + n = intlv_shift_table[intlv_en]; + return n; +} + +/* Translate the DramAddr given by @dram_addr to an InputAddr. */ +static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) +{ + struct amd64_pvt *pvt; + int intlv_shift; + u64 input_addr; + + pvt = mci->pvt_info; + + /* + * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) + * concerning translating a DramAddr to an InputAddr. + */ + intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); + input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + + (dram_addr & 0xfff); + + debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", + intlv_shift, (unsigned long)dram_addr, + (unsigned long)input_addr); + + return input_addr; +} + +/* + * Translate the SysAddr represented by @sys_addr to an InputAddr. It is + * assumed that @sys_addr maps to the node given by mci. + */ +static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) +{ + u64 input_addr; + + input_addr = + dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); + + debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", + (unsigned long)sys_addr, (unsigned long)input_addr); + + return input_addr; +} + + +/* + * @input_addr is an InputAddr associated with the node represented by mci. + * Translate @input_addr to a DramAddr and return the result. + */ +static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) +{ + struct amd64_pvt *pvt; + unsigned node_id, intlv_shift; + u64 bits, dram_addr; + u32 intlv_sel; + + /* + * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) + * shows how to translate a DramAddr to an InputAddr. Here we reverse + * this procedure. When translating from a DramAddr to an InputAddr, the + * bits used for node interleaving are discarded. Here we recover these + * bits from the IntlvSel field of the DRAM Limit register (section + * 3.4.4.2) for the node that input_addr is associated with. + */ + pvt = mci->pvt_info; + node_id = pvt->mc_node_id; + + BUG_ON(node_id > 7); + + intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); + if (intlv_shift == 0) { + debugf1(" InputAddr 0x%lx translates to DramAddr of " + "same value\n", (unsigned long)input_addr); + + return input_addr; + } + + bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) + + (input_addr & 0xfff); + + intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1); + dram_addr = bits + (intlv_sel << 12); + + debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " + "(%d node interleave bits)\n", (unsigned long)input_addr, + (unsigned long)dram_addr, intlv_shift); + + return dram_addr; +} + +/* + * @dram_addr is a DramAddr that maps to the node represented by mci. Convert + * @dram_addr to a SysAddr. + */ +static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u64 hole_base, hole_offset, hole_size, base, sys_addr; + int ret = 0; + + ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, + &hole_size); + if (!ret) { + if ((dram_addr >= hole_base) && + (dram_addr < (hole_base + hole_size))) { + sys_addr = dram_addr + hole_offset; + + debugf1("using DHAR to translate DramAddr 0x%lx to " + "SysAddr 0x%lx\n", (unsigned long)dram_addr, + (unsigned long)sys_addr); + + return sys_addr; + } + } + + base = get_dram_base(pvt, pvt->mc_node_id); + sys_addr = dram_addr + base; + + /* + * The sys_addr we have computed up to this point is a 40-bit value + * because the k8 deals with 40-bit values. However, the value we are + * supposed to return is a full 64-bit physical address. The AMD + * x86-64 architecture specifies that the most significant implemented + * address bit through bit 63 of a physical address must be either all + * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a + * 64-bit value below. See section 3.4.2 of AMD publication 24592: + * AMD x86-64 Architecture Programmer's Manual Volume 1 Application + * Programming. + */ + sys_addr |= ~((sys_addr & (1ull << 39)) - 1); + + debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", + pvt->mc_node_id, (unsigned long)dram_addr, + (unsigned long)sys_addr); + + return sys_addr; +} + +/* + * @input_addr is an InputAddr associated with the node given by mci. Translate + * @input_addr to a SysAddr. + */ +static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, + u64 input_addr) +{ + return dram_addr_to_sys_addr(mci, + input_addr_to_dram_addr(mci, input_addr)); +} + +/* + * Find the minimum and maximum InputAddr values that map to the given @csrow. + * Pass back these values in *input_addr_min and *input_addr_max. + */ +static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, + u64 *input_addr_min, u64 *input_addr_max) +{ + struct amd64_pvt *pvt; + u64 base, mask; + + pvt = mci->pvt_info; + BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt)); + + get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); + + *input_addr_min = base & ~mask; + *input_addr_max = base | mask; +} + +/* Map the Error address to a PAGE and PAGE OFFSET. */ +static inline void error_address_to_page_and_offset(u64 error_address, + u32 *page, u32 *offset) +{ + *page = (u32) (error_address >> PAGE_SHIFT); + *offset = ((u32) error_address) & ~PAGE_MASK; +} + +/* + * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address + * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers + * of a node that detected an ECC memory error. mci represents the node that + * the error address maps to (possibly different from the node that detected + * the error). Return the number of the csrow that sys_addr maps to, or -1 on + * error. + */ +static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) +{ + int csrow; + + csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); + + if (csrow == -1) + amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " + "address 0x%lx\n", (unsigned long)sys_addr); + return csrow; +} + +static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); + +/* + * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs + * are ECC capable. + */ +static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt) +{ + u8 bit; + unsigned long edac_cap = EDAC_FLAG_NONE; + + bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) + ? 19 + : 17; + + if (pvt->dclr0 & BIT(bit)) + edac_cap = EDAC_FLAG_SECDED; + + return edac_cap; +} + +static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); + +static void amd64_dump_dramcfg_low(u32 dclr, int chan) +{ + debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); + + debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n", + (dclr & BIT(16)) ? "un" : "", + (dclr & BIT(19)) ? "yes" : "no"); + + debugf1(" PAR/ERR parity: %s\n", + (dclr & BIT(8)) ? "enabled" : "disabled"); + + if (boot_cpu_data.x86 == 0x10) + debugf1(" DCT 128bit mode width: %s\n", + (dclr & BIT(11)) ? "128b" : "64b"); + + debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", + (dclr & BIT(12)) ? "yes" : "no", + (dclr & BIT(13)) ? "yes" : "no", + (dclr & BIT(14)) ? "yes" : "no", + (dclr & BIT(15)) ? "yes" : "no"); +} + +/* Display and decode various NB registers for debug purposes. */ +static void dump_misc_regs(struct amd64_pvt *pvt) +{ + debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); + + debugf1(" NB two channel DRAM capable: %s\n", + (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); + + debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n", + (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", + (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); + + amd64_dump_dramcfg_low(pvt->dclr0, 0); + + debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); + + debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " + "offset: 0x%08x\n", + pvt->dhar, dhar_base(pvt), + (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt) + : f10_dhar_offset(pvt)); + + debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); + + amd64_debug_display_dimm_sizes(pvt, 0); + + /* everything below this point is Fam10h and above */ + if (boot_cpu_data.x86 == 0xf) + return; + + amd64_debug_display_dimm_sizes(pvt, 1); + + amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); + + /* Only if NOT ganged does dclr1 have valid info */ + if (!dct_ganging_enabled(pvt)) + amd64_dump_dramcfg_low(pvt->dclr1, 1); +} + +/* + * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] + */ +static void prep_chip_selects(struct amd64_pvt *pvt) +{ + if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { + pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; + pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; + } else { + pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; + pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; + } +} + +/* + * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers + */ +static void read_dct_base_mask(struct amd64_pvt *pvt) +{ + int cs; + + prep_chip_selects(pvt); + + for_each_chip_select(cs, 0, pvt) { + int reg0 = DCSB0 + (cs * 4); + int reg1 = DCSB1 + (cs * 4); + u32 *base0 = &pvt->csels[0].csbases[cs]; + u32 *base1 = &pvt->csels[1].csbases[cs]; + + if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) + debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", + cs, *base0, reg0); + + if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) + continue; + + if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) + debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", + cs, *base1, reg1); + } + + for_each_chip_select_mask(cs, 0, pvt) { + int reg0 = DCSM0 + (cs * 4); + int reg1 = DCSM1 + (cs * 4); + u32 *mask0 = &pvt->csels[0].csmasks[cs]; + u32 *mask1 = &pvt->csels[1].csmasks[cs]; + + if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) + debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", + cs, *mask0, reg0); + + if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) + continue; + + if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) + debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", + cs, *mask1, reg1); + } +} + +static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) +{ + enum mem_type type; + + /* F15h supports only DDR3 */ + if (boot_cpu_data.x86 >= 0x15) + type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; + else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) { + if (pvt->dchr0 & DDR3_MODE) + type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; + else + type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; + } else { + type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; + } + + amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); + + return type; +} + +/* Get the number of DCT channels the memory controller is using. */ +static int k8_early_channel_count(struct amd64_pvt *pvt) +{ + int flag; + + if (pvt->ext_model >= K8_REV_F) + /* RevF (NPT) and later */ + flag = pvt->dclr0 & WIDTH_128; + else + /* RevE and earlier */ + flag = pvt->dclr0 & REVE_WIDTH_128; + + /* not used */ + pvt->dclr1 = 0; + + return (flag) ? 2 : 1; +} + +/* On F10h and later ErrAddr is MC4_ADDR[47:1] */ +static u64 get_error_address(struct mce *m) +{ + struct cpuinfo_x86 *c = &boot_cpu_data; + u64 addr; + u8 start_bit = 1; + u8 end_bit = 47; + + if (c->x86 == 0xf) { + start_bit = 3; + end_bit = 39; + } + + addr = m->addr & GENMASK(start_bit, end_bit); + + /* + * Erratum 637 workaround + */ + if (c->x86 == 0x15) { + struct amd64_pvt *pvt; + u64 cc6_base, tmp_addr; + u32 tmp; + u8 mce_nid, intlv_en; + + if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7) + return addr; + + mce_nid = amd_get_nb_id(m->extcpu); + pvt = mcis[mce_nid]->pvt_info; + + amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); + intlv_en = tmp >> 21 & 0x7; + + /* add [47:27] + 3 trailing bits */ + cc6_base = (tmp & GENMASK(0, 20)) << 3; + + /* reverse and add DramIntlvEn */ + cc6_base |= intlv_en ^ 0x7; + + /* pin at [47:24] */ + cc6_base <<= 24; + + if (!intlv_en) + return cc6_base | (addr & GENMASK(0, 23)); + + amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); + + /* faster log2 */ + tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1); + + /* OR DramIntlvSel into bits [14:12] */ + tmp_addr |= (tmp & GENMASK(21, 23)) >> 9; + + /* add remaining [11:0] bits from original MC4_ADDR */ + tmp_addr |= addr & GENMASK(0, 11); + + return cc6_base | tmp_addr; + } + + return addr; +} + +static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) +{ + struct cpuinfo_x86 *c = &boot_cpu_data; + int off = range << 3; + + amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); + amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); + + if (c->x86 == 0xf) + return; + + if (!dram_rw(pvt, range)) + return; + + amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); + amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); + + /* Factor in CC6 save area by reading dst node's limit reg */ + if (c->x86 == 0x15) { + struct pci_dev *f1 = NULL; + u8 nid = dram_dst_node(pvt, range); + u32 llim; + + f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1)); + if (WARN_ON(!f1)) + return; + + amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); + + pvt->ranges[range].lim.lo &= GENMASK(0, 15); + + /* {[39:27],111b} */ + pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; + + pvt->ranges[range].lim.hi &= GENMASK(0, 7); + + /* [47:40] */ + pvt->ranges[range].lim.hi |= llim >> 13; + + pci_dev_put(f1); + } +} + +static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, + u16 syndrome) +{ + struct mem_ctl_info *src_mci; + struct amd64_pvt *pvt = mci->pvt_info; + int channel, csrow; + u32 page, offset; + + /* CHIPKILL enabled */ + if (pvt->nbcfg & NBCFG_CHIPKILL) { + channel = get_channel_from_ecc_syndrome(mci, syndrome); + if (channel < 0) { + /* + * Syndrome didn't map, so we don't know which of the + * 2 DIMMs is in error. So we need to ID 'both' of them + * as suspect. + */ + amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible " + "error reporting race\n", syndrome); + edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); + return; + } + } else { + /* + * non-chipkill ecc mode + * + * The k8 documentation is unclear about how to determine the + * channel number when using non-chipkill memory. This method + * was obtained from email communication with someone at AMD. + * (Wish the email was placed in this comment - norsk) + */ + channel = ((sys_addr & BIT(3)) != 0); + } + + /* + * Find out which node the error address belongs to. This may be + * different from the node that detected the error. + */ + src_mci = find_mc_by_sys_addr(mci, sys_addr); + if (!src_mci) { + amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", + (unsigned long)sys_addr); + edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); + return; + } + + /* Now map the sys_addr to a CSROW */ + csrow = sys_addr_to_csrow(src_mci, sys_addr); + if (csrow < 0) { + edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); + } else { + error_address_to_page_and_offset(sys_addr, &page, &offset); + + edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, + channel, EDAC_MOD_STR); + } +} + +static int ddr2_cs_size(unsigned i, bool dct_width) +{ + unsigned shift = 0; + + if (i <= 2) + shift = i; + else if (!(i & 0x1)) + shift = i >> 1; + else + shift = (i + 1) >> 1; + + return 128 << (shift + !!dct_width); +} + +static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode) +{ + u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; + + if (pvt->ext_model >= K8_REV_F) { + WARN_ON(cs_mode > 11); + return ddr2_cs_size(cs_mode, dclr & WIDTH_128); + } + else if (pvt->ext_model >= K8_REV_D) { + unsigned diff; + WARN_ON(cs_mode > 10); + + /* + * the below calculation, besides trying to win an obfuscated C + * contest, maps cs_mode values to DIMM chip select sizes. The + * mappings are: + * + * cs_mode CS size (mb) + * ======= ============ + * 0 32 + * 1 64 + * 2 128 + * 3 128 + * 4 256 + * 5 512 + * 6 256 + * 7 512 + * 8 1024 + * 9 1024 + * 10 2048 + * + * Basically, it calculates a value with which to shift the + * smallest CS size of 32MB. + * + * ddr[23]_cs_size have a similar purpose. + */ + diff = cs_mode/3 + (unsigned)(cs_mode > 5); + + return 32 << (cs_mode - diff); + } + else { + WARN_ON(cs_mode > 6); + return 32 << cs_mode; + } +} + +/* + * Get the number of DCT channels in use. + * + * Return: + * number of Memory Channels in operation + * Pass back: + * contents of the DCL0_LOW register + */ +static int f1x_early_channel_count(struct amd64_pvt *pvt) +{ + int i, j, channels = 0; + + /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ + if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128)) + return 2; + + /* + * Need to check if in unganged mode: In such, there are 2 channels, + * but they are not in 128 bit mode and thus the above 'dclr0' status + * bit will be OFF. + * + * Need to check DCT0[0] and DCT1[0] to see if only one of them has + * their CSEnable bit on. If so, then SINGLE DIMM case. + */ + debugf0("Data width is not 128 bits - need more decoding\n"); + + /* + * Check DRAM Bank Address Mapping values for each DIMM to see if there + * is more than just one DIMM present in unganged mode. Need to check + * both controllers since DIMMs can be placed in either one. + */ + for (i = 0; i < 2; i++) { + u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); + + for (j = 0; j < 4; j++) { + if (DBAM_DIMM(j, dbam) > 0) { + channels++; + break; + } + } + } + + if (channels > 2) + channels = 2; + + amd64_info("MCT channel count: %d\n", channels); + + return channels; +} + +static int ddr3_cs_size(unsigned i, bool dct_width) +{ + unsigned shift = 0; + int cs_size = 0; + + if (i == 0 || i == 3 || i == 4) + cs_size = -1; + else if (i <= 2) + shift = i; + else if (i == 12) + shift = 7; + else if (!(i & 0x1)) + shift = i >> 1; + else + shift = (i + 1) >> 1; + + if (cs_size != -1) + cs_size = (128 * (1 << !!dct_width)) << shift; + + return cs_size; +} + +static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode) +{ + u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; + + WARN_ON(cs_mode > 11); + + if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) + return ddr3_cs_size(cs_mode, dclr & WIDTH_128); + else + return ddr2_cs_size(cs_mode, dclr & WIDTH_128); +} + +/* + * F15h supports only 64bit DCT interfaces + */ +static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, + unsigned cs_mode) +{ + WARN_ON(cs_mode > 12); + + return ddr3_cs_size(cs_mode, false); +} + +static void read_dram_ctl_register(struct amd64_pvt *pvt) +{ + + if (boot_cpu_data.x86 == 0xf) + return; + + if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { + debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", + pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); + + debugf0(" DCTs operate in %s mode.\n", + (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); + + if (!dct_ganging_enabled(pvt)) + debugf0(" Address range split per DCT: %s\n", + (dct_high_range_enabled(pvt) ? "yes" : "no")); + + debugf0(" data interleave for ECC: %s, " + "DRAM cleared since last warm reset: %s\n", + (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), + (dct_memory_cleared(pvt) ? "yes" : "no")); + + debugf0(" channel interleave: %s, " + "interleave bits selector: 0x%x\n", + (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), + dct_sel_interleave_addr(pvt)); + } + + amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); +} + +/* + * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory + * Interleaving Modes. + */ +static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, + bool hi_range_sel, u8 intlv_en) +{ + u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; + + if (dct_ganging_enabled(pvt)) + return 0; + + if (hi_range_sel) + return dct_sel_high; + + /* + * see F2x110[DctSelIntLvAddr] - channel interleave mode + */ + if (dct_interleave_enabled(pvt)) { + u8 intlv_addr = dct_sel_interleave_addr(pvt); + + /* return DCT select function: 0=DCT0, 1=DCT1 */ + if (!intlv_addr) + return sys_addr >> 6 & 1; + + if (intlv_addr & 0x2) { + u8 shift = intlv_addr & 0x1 ? 9 : 6; + u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; + + return ((sys_addr >> shift) & 1) ^ temp; + } + + return (sys_addr >> (12 + hweight8(intlv_en))) & 1; + } + + if (dct_high_range_enabled(pvt)) + return ~dct_sel_high & 1; + + return 0; +} + +/* Convert the sys_addr to the normalized DCT address */ +static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range, + u64 sys_addr, bool hi_rng, + u32 dct_sel_base_addr) +{ + u64 chan_off; + u64 dram_base = get_dram_base(pvt, range); + u64 hole_off = f10_dhar_offset(pvt); + u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; + + if (hi_rng) { + /* + * if + * base address of high range is below 4Gb + * (bits [47:27] at [31:11]) + * DRAM address space on this DCT is hoisted above 4Gb && + * sys_addr > 4Gb + * + * remove hole offset from sys_addr + * else + * remove high range offset from sys_addr + */ + if ((!(dct_sel_base_addr >> 16) || + dct_sel_base_addr < dhar_base(pvt)) && + dhar_valid(pvt) && + (sys_addr >= BIT_64(32))) + chan_off = hole_off; + else + chan_off = dct_sel_base_off; + } else { + /* + * if + * we have a valid hole && + * sys_addr > 4Gb + * + * remove hole + * else + * remove dram base to normalize to DCT address + */ + if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) + chan_off = hole_off; + else + chan_off = dram_base; + } + + return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); +} + +/* + * checks if the csrow passed in is marked as SPARED, if so returns the new + * spare row + */ +static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) +{ + int tmp_cs; + + if (online_spare_swap_done(pvt, dct) && + csrow == online_spare_bad_dramcs(pvt, dct)) { + + for_each_chip_select(tmp_cs, dct, pvt) { + if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { + csrow = tmp_cs; + break; + } + } + } + return csrow; +} + +/* + * Iterate over the DRAM DCT "base" and "mask" registers looking for a + * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' + * + * Return: + * -EINVAL: NOT FOUND + * 0..csrow = Chip-Select Row + */ +static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct) +{ + struct mem_ctl_info *mci; + struct amd64_pvt *pvt; + u64 cs_base, cs_mask; + int cs_found = -EINVAL; + int csrow; + + mci = mcis[nid]; + if (!mci) + return cs_found; + + pvt = mci->pvt_info; + + debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct); + + for_each_chip_select(csrow, dct, pvt) { + if (!csrow_enabled(csrow, dct, pvt)) + continue; + + get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); + + debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", + csrow, cs_base, cs_mask); + + cs_mask = ~cs_mask; + + debugf1(" (InputAddr & ~CSMask)=0x%llx " + "(CSBase & ~CSMask)=0x%llx\n", + (in_addr & cs_mask), (cs_base & cs_mask)); + + if ((in_addr & cs_mask) == (cs_base & cs_mask)) { + cs_found = f10_process_possible_spare(pvt, dct, csrow); + + debugf1(" MATCH csrow=%d\n", cs_found); + break; + } + } + return cs_found; +} + +/* + * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is + * swapped with a region located at the bottom of memory so that the GPU can use + * the interleaved region and thus two channels. + */ +static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) +{ + u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; + + if (boot_cpu_data.x86 == 0x10) { + /* only revC3 and revE have that feature */ + if (boot_cpu_data.x86_model < 4 || + (boot_cpu_data.x86_model < 0xa && + boot_cpu_data.x86_mask < 3)) + return sys_addr; + } + + amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); + + if (!(swap_reg & 0x1)) + return sys_addr; + + swap_base = (swap_reg >> 3) & 0x7f; + swap_limit = (swap_reg >> 11) & 0x7f; + rgn_size = (swap_reg >> 20) & 0x7f; + tmp_addr = sys_addr >> 27; + + if (!(sys_addr >> 34) && + (((tmp_addr >= swap_base) && + (tmp_addr <= swap_limit)) || + (tmp_addr < rgn_size))) + return sys_addr ^ (u64)swap_base << 27; + + return sys_addr; +} + +/* For a given @dram_range, check if @sys_addr falls within it. */ +static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, + u64 sys_addr, int *nid, int *chan_sel) +{ + int cs_found = -EINVAL; + u64 chan_addr; + u32 dct_sel_base; + u8 channel; + bool high_range = false; + + u8 node_id = dram_dst_node(pvt, range); + u8 intlv_en = dram_intlv_en(pvt, range); + u32 intlv_sel = dram_intlv_sel(pvt, range); + + debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", + range, sys_addr, get_dram_limit(pvt, range)); + + if (dhar_valid(pvt) && + dhar_base(pvt) <= sys_addr && + sys_addr < BIT_64(32)) { + amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", + sys_addr); + return -EINVAL; + } + + if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) + return -EINVAL; + + sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); + + dct_sel_base = dct_sel_baseaddr(pvt); + + /* + * check whether addresses >= DctSelBaseAddr[47:27] are to be used to + * select between DCT0 and DCT1. + */ + if (dct_high_range_enabled(pvt) && + !dct_ganging_enabled(pvt) && + ((sys_addr >> 27) >= (dct_sel_base >> 11))) + high_range = true; + + channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); + + chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, + high_range, dct_sel_base); + + /* Remove node interleaving, see F1x120 */ + if (intlv_en) + chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | + (chan_addr & 0xfff); + + /* remove channel interleave */ + if (dct_interleave_enabled(pvt) && + !dct_high_range_enabled(pvt) && + !dct_ganging_enabled(pvt)) { + + if (dct_sel_interleave_addr(pvt) != 1) { + if (dct_sel_interleave_addr(pvt) == 0x3) + /* hash 9 */ + chan_addr = ((chan_addr >> 10) << 9) | + (chan_addr & 0x1ff); + else + /* A[6] or hash 6 */ + chan_addr = ((chan_addr >> 7) << 6) | + (chan_addr & 0x3f); + } else + /* A[12] */ + chan_addr = ((chan_addr >> 13) << 12) | + (chan_addr & 0xfff); + } + + debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr); + + cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); + + if (cs_found >= 0) { + *nid = node_id; + *chan_sel = channel; + } + return cs_found; +} + +static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, + int *node, int *chan_sel) +{ + int cs_found = -EINVAL; + unsigned range; + + for (range = 0; range < DRAM_RANGES; range++) { + + if (!dram_rw(pvt, range)) + continue; + + if ((get_dram_base(pvt, range) <= sys_addr) && + (get_dram_limit(pvt, range) >= sys_addr)) { + + cs_found = f1x_match_to_this_node(pvt, range, + sys_addr, node, + chan_sel); + if (cs_found >= 0) + break; + } + } + return cs_found; +} + +/* + * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps + * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). + * + * The @sys_addr is usually an error address received from the hardware + * (MCX_ADDR). + */ +static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, + u16 syndrome) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u32 page, offset; + int nid, csrow, chan = 0; + + csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); + + if (csrow < 0) { + edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); + return; + } + + error_address_to_page_and_offset(sys_addr, &page, &offset); + + /* + * We need the syndromes for channel detection only when we're + * ganged. Otherwise @chan should already contain the channel at + * this point. + */ + if (dct_ganging_enabled(pvt)) + chan = get_channel_from_ecc_syndrome(mci, syndrome); + + if (chan >= 0) + edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, + EDAC_MOD_STR); + else + /* + * Channel unknown, report all channels on this CSROW as failed. + */ + for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) + edac_mc_handle_ce(mci, page, offset, syndrome, + csrow, chan, EDAC_MOD_STR); +} + +/* + * debug routine to display the memory sizes of all logical DIMMs and its + * CSROWs + */ +static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) +{ + int dimm, size0, size1, factor = 0; + u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; + u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; + + if (boot_cpu_data.x86 == 0xf) { + if (pvt->dclr0 & WIDTH_128) + factor = 1; + + /* K8 families < revF not supported yet */ + if (pvt->ext_model < K8_REV_F) + return; + else + WARN_ON(ctrl != 0); + } + + dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; + dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases + : pvt->csels[0].csbases; + + debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam); + + edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); + + /* Dump memory sizes for DIMM and its CSROWs */ + for (dimm = 0; dimm < 4; dimm++) { + + size0 = 0; + if (dcsb[dimm*2] & DCSB_CS_ENABLE) + size0 = pvt->ops->dbam_to_cs(pvt, ctrl, + DBAM_DIMM(dimm, dbam)); + + size1 = 0; + if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) + size1 = pvt->ops->dbam_to_cs(pvt, ctrl, + DBAM_DIMM(dimm, dbam)); + + amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", + dimm * 2, size0 << factor, + dimm * 2 + 1, size1 << factor); + } +} + +static struct amd64_family_type amd64_family_types[] = { + [K8_CPUS] = { + .ctl_name = "K8", + .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, + .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, + .ops = { + .early_channel_count = k8_early_channel_count, + .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, + .dbam_to_cs = k8_dbam_to_chip_select, + .read_dct_pci_cfg = k8_read_dct_pci_cfg, + } + }, + [F10_CPUS] = { + .ctl_name = "F10h", + .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, + .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f10_dbam_to_chip_select, + .read_dct_pci_cfg = f10_read_dct_pci_cfg, + } + }, + [F15_CPUS] = { + .ctl_name = "F15h", + .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, + .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, + .ops = { + .early_channel_count = f1x_early_channel_count, + .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, + .dbam_to_cs = f15_dbam_to_chip_select, + .read_dct_pci_cfg = f15_read_dct_pci_cfg, + } + }, +}; + +static struct pci_dev *pci_get_related_function(unsigned int vendor, + unsigned int device, + struct pci_dev *related) +{ + struct pci_dev *dev = NULL; + + dev = pci_get_device(vendor, device, dev); + while (dev) { + if ((dev->bus->number == related->bus->number) && + (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) + break; + dev = pci_get_device(vendor, device, dev); + } + + return dev; +} + +/* + * These are tables of eigenvectors (one per line) which can be used for the + * construction of the syndrome tables. The modified syndrome search algorithm + * uses those to find the symbol in error and thus the DIMM. + * + * Algorithm courtesy of Ross LaFetra from AMD. + */ +static u16 x4_vectors[] = { + 0x2f57, 0x1afe, 0x66cc, 0xdd88, + 0x11eb, 0x3396, 0x7f4c, 0xeac8, + 0x0001, 0x0002, 0x0004, 0x0008, + 0x1013, 0x3032, 0x4044, 0x8088, + 0x106b, 0x30d6, 0x70fc, 0xe0a8, + 0x4857, 0xc4fe, 0x13cc, 0x3288, + 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, + 0x1f39, 0x251e, 0xbd6c, 0x6bd8, + 0x15c1, 0x2a42, 0x89ac, 0x4758, + 0x2b03, 0x1602, 0x4f0c, 0xca08, + 0x1f07, 0x3a0e, 0x6b04, 0xbd08, + 0x8ba7, 0x465e, 0x244c, 0x1cc8, + 0x2b87, 0x164e, 0x642c, 0xdc18, + 0x40b9, 0x80de, 0x1094, 0x20e8, + 0x27db, 0x1eb6, 0x9dac, 0x7b58, + 0x11c1, 0x2242, 0x84ac, 0x4c58, + 0x1be5, 0x2d7a, 0x5e34, 0xa718, + 0x4b39, 0x8d1e, 0x14b4, 0x28d8, + 0x4c97, 0xc87e, 0x11fc, 0x33a8, + 0x8e97, 0x497e, 0x2ffc, 0x1aa8, + 0x16b3, 0x3d62, 0x4f34, 0x8518, + 0x1e2f, 0x391a, 0x5cac, 0xf858, + 0x1d9f, 0x3b7a, 0x572c, 0xfe18, + 0x15f5, 0x2a5a, 0x5264, 0xa3b8, + 0x1dbb, 0x3b66, 0x715c, 0xe3f8, + 0x4397, 0xc27e, 0x17fc, 0x3ea8, + 0x1617, 0x3d3e, 0x6464, 0xb8b8, + 0x23ff, 0x12aa, 0xab6c, 0x56d8, + 0x2dfb, 0x1ba6, 0x913c, 0x7328, + 0x185d, 0x2ca6, 0x7914, 0x9e28, + 0x171b, 0x3e36, 0x7d7c, 0xebe8, + 0x4199, 0x82ee, 0x19f4, 0x2e58, + 0x4807, 0xc40e, 0x130c, 0x3208, + 0x1905, 0x2e0a, 0x5804, 0xac08, + 0x213f, 0x132a, 0xadfc, 0x5ba8, + 0x19a9, 0x2efe, 0xb5cc, 0x6f88, +}; + +static u16 x8_vectors[] = { + 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, + 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, + 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, + 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, + 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, + 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, + 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, + 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, + 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, + 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, + 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, + 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, + 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, + 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, + 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, + 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, + 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, + 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, + 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, +}; + +static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs, + unsigned v_dim) +{ + unsigned int i, err_sym; + + for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { + u16 s = syndrome; + unsigned v_idx = err_sym * v_dim; + unsigned v_end = (err_sym + 1) * v_dim; + + /* walk over all 16 bits of the syndrome */ + for (i = 1; i < (1U << 16); i <<= 1) { + + /* if bit is set in that eigenvector... */ + if (v_idx < v_end && vectors[v_idx] & i) { + u16 ev_comp = vectors[v_idx++]; + + /* ... and bit set in the modified syndrome, */ + if (s & i) { + /* remove it. */ + s ^= ev_comp; + + if (!s) + return err_sym; + } + + } else if (s & i) + /* can't get to zero, move to next symbol */ + break; + } + } + + debugf0("syndrome(%x) not found\n", syndrome); + return -1; +} + +static int map_err_sym_to_channel(int err_sym, int sym_size) +{ + if (sym_size == 4) + switch (err_sym) { + case 0x20: + case 0x21: + return 0; + break; + case 0x22: + case 0x23: + return 1; + break; + default: + return err_sym >> 4; + break; + } + /* x8 symbols */ + else + switch (err_sym) { + /* imaginary bits not in a DIMM */ + case 0x10: + WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", + err_sym); + return -1; + break; + + case 0x11: + return 0; + break; + case 0x12: + return 1; + break; + default: + return err_sym >> 3; + break; + } + return -1; +} + +static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) +{ + struct amd64_pvt *pvt = mci->pvt_info; + int err_sym = -1; + + if (pvt->ecc_sym_sz == 8) + err_sym = decode_syndrome(syndrome, x8_vectors, + ARRAY_SIZE(x8_vectors), + pvt->ecc_sym_sz); + else if (pvt->ecc_sym_sz == 4) + err_sym = decode_syndrome(syndrome, x4_vectors, + ARRAY_SIZE(x4_vectors), + pvt->ecc_sym_sz); + else { + amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); + return err_sym; + } + + return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); +} + +/* + * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR + * ADDRESS and process. + */ +static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m) +{ + struct amd64_pvt *pvt = mci->pvt_info; + u64 sys_addr; + u16 syndrome; + + /* Ensure that the Error Address is VALID */ + if (!(m->status & MCI_STATUS_ADDRV)) { + amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); + edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); + return; + } + + sys_addr = get_error_address(m); + syndrome = extract_syndrome(m->status); + + amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); + + pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome); +} + +/* Handle any Un-correctable Errors (UEs) */ +static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m) +{ + struct mem_ctl_info *log_mci, *src_mci = NULL; + int csrow; + u64 sys_addr; + u32 page, offset; + + log_mci = mci; + + if (!(m->status & MCI_STATUS_ADDRV)) { + amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); + edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); + return; + } + + sys_addr = get_error_address(m); + + /* + * Find out which node the error address belongs to. This may be + * different from the node that detected the error. + */ + src_mci = find_mc_by_sys_addr(mci, sys_addr); + if (!src_mci) { + amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n", + (unsigned long)sys_addr); + edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); + return; + } + + log_mci = src_mci; + + csrow = sys_addr_to_csrow(log_mci, sys_addr); + if (csrow < 0) { + amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n", + (unsigned long)sys_addr); + edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); + } else { + error_address_to_page_and_offset(sys_addr, &page, &offset); + edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); + } +} + +static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, + struct mce *m) +{ + u16 ec = EC(m->status); + u8 xec = XEC(m->status, 0x1f); + u8 ecc_type = (m->status >> 45) & 0x3; + + /* Bail early out if this was an 'observed' error */ + if (PP(ec) == NBSL_PP_OBS) + return; + + /* Do only ECC errors */ + if (xec && xec != F10_NBSL_EXT_ERR_ECC) + return; + + if (ecc_type == 2) + amd64_handle_ce(mci, m); + else if (ecc_type == 1) + amd64_handle_ue(mci, m); +} + +void amd64_decode_bus_error(int node_id, struct mce *m) +{ + __amd64_decode_bus_error(mcis[node_id], m); +} + +/* + * Use pvt->F2 which contains the F2 CPU PCI device to get the related + * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. + */ +static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) +{ + /* Reserve the ADDRESS MAP Device */ + pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); + if (!pvt->F1) { + amd64_err("error address map device not found: " + "vendor %x device 0x%x (broken BIOS?)\n", + PCI_VENDOR_ID_AMD, f1_id); + return -ENODEV; + } + + /* Reserve the MISC Device */ + pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); + if (!pvt->F3) { + pci_dev_put(pvt->F1); + pvt->F1 = NULL; + + amd64_err("error F3 device not found: " + "vendor %x device 0x%x (broken BIOS?)\n", + PCI_VENDOR_ID_AMD, f3_id); + + return -ENODEV; + } + debugf1("F1: %s\n", pci_name(pvt->F1)); + debugf1("F2: %s\n", pci_name(pvt->F2)); + debugf1("F3: %s\n", pci_name(pvt->F3)); + + return 0; +} + +static void free_mc_sibling_devs(struct amd64_pvt *pvt) +{ + pci_dev_put(pvt->F1); + pci_dev_put(pvt->F3); +} + +/* + * Retrieve the hardware registers of the memory controller (this includes the + * 'Address Map' and 'Misc' device regs) + */ +static void read_mc_regs(struct amd64_pvt *pvt) +{ + struct cpuinfo_x86 *c = &boot_cpu_data; + u64 msr_val; + u32 tmp; + unsigned range; + + /* + * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since + * those are Read-As-Zero + */ + rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); + debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem); + + /* check first whether TOP_MEM2 is enabled */ + rdmsrl(MSR_K8_SYSCFG, msr_val); + if (msr_val & (1U << 21)) { + rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); + debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2); + } else + debugf0(" TOP_MEM2 disabled.\n"); + + amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); + + read_dram_ctl_register(pvt); + + for (range = 0; range < DRAM_RANGES; range++) { + u8 rw; + + /* read settings for this DRAM range */ + read_dram_base_limit_regs(pvt, range); + + rw = dram_rw(pvt, range); + if (!rw) + continue; + + debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", + range, + get_dram_base(pvt, range), + get_dram_limit(pvt, range)); + + debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", + dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", + (rw & 0x1) ? "R" : "-", + (rw & 0x2) ? "W" : "-", + dram_intlv_sel(pvt, range), + dram_dst_node(pvt, range)); + } + + read_dct_base_mask(pvt); + + amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); + amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); + + amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); + + amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); + amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); + + if (!dct_ganging_enabled(pvt)) { + amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); + amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); + } + + pvt->ecc_sym_sz = 4; + + if (c->x86 >= 0x10) { + amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); + amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); + + /* F10h, revD and later can do x8 ECC too */ + if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25)) + pvt->ecc_sym_sz = 8; + } + dump_misc_regs(pvt); +} + +/* + * NOTE: CPU Revision Dependent code + * + * Input: + * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) + * k8 private pointer to --> + * DRAM Bank Address mapping register + * node_id + * DCL register where dual_channel_active is + * + * The DBAM register consists of 4 sets of 4 bits each definitions: + * + * Bits: CSROWs + * 0-3 CSROWs 0 and 1 + * 4-7 CSROWs 2 and 3 + * 8-11 CSROWs 4 and 5 + * 12-15 CSROWs 6 and 7 + * + * Values range from: 0 to 15 + * The meaning of the values depends on CPU revision and dual-channel state, + * see relevant BKDG more info. + * + * The memory controller provides for total of only 8 CSROWs in its current + * architecture. Each "pair" of CSROWs normally represents just one DIMM in + * single channel or two (2) DIMMs in dual channel mode. + * + * The following code logic collapses the various tables for CSROW based on CPU + * revision. + * + * Returns: + * The number of PAGE_SIZE pages on the specified CSROW number it + * encompasses + * + */ +static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) +{ + u32 cs_mode, nr_pages; + u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; + + /* + * The math on this doesn't look right on the surface because x/2*4 can + * be simplified to x*2 but this expression makes use of the fact that + * it is integral math where 1/2=0. This intermediate value becomes the + * number of bits to shift the DBAM register to extract the proper CSROW + * field. + */ + cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF; + + nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); + + debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); + debugf0(" nr_pages= %u channel-count = %d\n", + nr_pages, pvt->channel_count); + + return nr_pages; +} + +/* + * Initialize the array of csrow attribute instances, based on the values + * from pci config hardware registers. + */ +static int init_csrows(struct mem_ctl_info *mci) +{ + struct csrow_info *csrow; + struct amd64_pvt *pvt = mci->pvt_info; + u64 input_addr_min, input_addr_max, sys_addr, base, mask; + u32 val; + int i, empty = 1; + + amd64_read_pci_cfg(pvt->F3, NBCFG, &val); + + pvt->nbcfg = val; + + debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", + pvt->mc_node_id, val, + !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); + + for_each_chip_select(i, 0, pvt) { + csrow = &mci->csrows[i]; + + if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) { + debugf1("----CSROW %d EMPTY for node %d\n", i, + pvt->mc_node_id); + continue; + } + + debugf1("----CSROW %d VALID for MC node %d\n", + i, pvt->mc_node_id); + + empty = 0; + if (csrow_enabled(i, 0, pvt)) + csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i); + if (csrow_enabled(i, 1, pvt)) + csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i); + find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); + sys_addr = input_addr_to_sys_addr(mci, input_addr_min); + csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); + sys_addr = input_addr_to_sys_addr(mci, input_addr_max); + csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); + + get_cs_base_and_mask(pvt, i, 0, &base, &mask); + csrow->page_mask = ~mask; + /* 8 bytes of resolution */ + + csrow->mtype = amd64_determine_memory_type(pvt, i); + + debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); + debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", + (unsigned long)input_addr_min, + (unsigned long)input_addr_max); + debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", + (unsigned long)sys_addr, csrow->page_mask); + debugf1(" nr_pages: %u first_page: 0x%lx " + "last_page: 0x%lx\n", + (unsigned)csrow->nr_pages, + csrow->first_page, csrow->last_page); + + /* + * determine whether CHIPKILL or JUST ECC or NO ECC is operating + */ + if (pvt->nbcfg & NBCFG_ECC_ENABLE) + csrow->edac_mode = + (pvt->nbcfg & NBCFG_CHIPKILL) ? + EDAC_S4ECD4ED : EDAC_SECDED; + else + csrow->edac_mode = EDAC_NONE; + } + + return empty; +} + +/* get all cores on this DCT */ +static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid) +{ + int cpu; + + for_each_online_cpu(cpu) + if (amd_get_nb_id(cpu) == nid) + cpumask_set_cpu(cpu, mask); +} + +/* check MCG_CTL on all the cpus on this node */ +static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid) +{ + cpumask_var_t mask; + int cpu, nbe; + bool ret = false; + + if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { + amd64_warn("%s: Error allocating mask\n", __func__); + return false; + } + + get_cpus_on_this_dct_cpumask(mask, nid); + + rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); + + for_each_cpu(cpu, mask) { + struct msr *reg = per_cpu_ptr(msrs, cpu); + nbe = reg->l & MSR_MCGCTL_NBE; + + debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", + cpu, reg->q, + (nbe ? "enabled" : "disabled")); + + if (!nbe) + goto out; + } + ret = true; + +out: + free_cpumask_var(mask); + return ret; +} + +static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on) +{ + cpumask_var_t cmask; + int cpu; + + if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { + amd64_warn("%s: error allocating mask\n", __func__); + return false; + } + + get_cpus_on_this_dct_cpumask(cmask, nid); + + rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); + + for_each_cpu(cpu, cmask) { + + struct msr *reg = per_cpu_ptr(msrs, cpu); + + if (on) { + if (reg->l & MSR_MCGCTL_NBE) + s->flags.nb_mce_enable = 1; + + reg->l |= MSR_MCGCTL_NBE; + } else { + /* + * Turn off NB MCE reporting only when it was off before + */ + if (!s->flags.nb_mce_enable) + reg->l &= ~MSR_MCGCTL_NBE; + } + } + wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); + + free_cpumask_var(cmask); + + return 0; +} + +static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid, + struct pci_dev *F3) +{ + bool ret = true; + u32 value, mask = 0x3; /* UECC/CECC enable */ + + if (toggle_ecc_err_reporting(s, nid, ON)) { + amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); + return false; + } + + amd64_read_pci_cfg(F3, NBCTL, &value); + + s->old_nbctl = value & mask; + s->nbctl_valid = true; + + value |= mask; + amd64_write_pci_cfg(F3, NBCTL, value); + + amd64_read_pci_cfg(F3, NBCFG, &value); + + debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", + nid, value, !!(value & NBCFG_ECC_ENABLE)); + + if (!(value & NBCFG_ECC_ENABLE)) { + amd64_warn("DRAM ECC disabled on this node, enabling...\n"); + + s->flags.nb_ecc_prev = 0; + + /* Attempt to turn on DRAM ECC Enable */ + value |= NBCFG_ECC_ENABLE; + amd64_write_pci_cfg(F3, NBCFG, value); + + amd64_read_pci_cfg(F3, NBCFG, &value); + + if (!(value & NBCFG_ECC_ENABLE)) { + amd64_warn("Hardware rejected DRAM ECC enable," + "check memory DIMM configuration.\n"); + ret = false; + } else { + amd64_info("Hardware accepted DRAM ECC Enable\n"); + } + } else { + s->flags.nb_ecc_prev = 1; + } + + debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", + nid, value, !!(value & NBCFG_ECC_ENABLE)); + + return ret; +} + +static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid, + struct pci_dev *F3) +{ + u32 value, mask = 0x3; /* UECC/CECC enable */ + + + if (!s->nbctl_valid) + return; + + amd64_read_pci_cfg(F3, NBCTL, &value); + value &= ~mask; + value |= s->old_nbctl; + + amd64_write_pci_cfg(F3, NBCTL, value); + + /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ + if (!s->flags.nb_ecc_prev) { + amd64_read_pci_cfg(F3, NBCFG, &value); + value &= ~NBCFG_ECC_ENABLE; + amd64_write_pci_cfg(F3, NBCFG, value); + } + + /* restore the NB Enable MCGCTL bit */ + if (toggle_ecc_err_reporting(s, nid, OFF)) + amd64_warn("Error restoring NB MCGCTL settings!\n"); +} + +/* + * EDAC requires that the BIOS have ECC enabled before + * taking over the processing of ECC errors. A command line + * option allows to force-enable hardware ECC later in + * enable_ecc_error_reporting(). + */ +static const char *ecc_msg = + "ECC disabled in the BIOS or no ECC capability, module will not load.\n" + " Either enable ECC checking or force module loading by setting " + "'ecc_enable_override'.\n" + " (Note that use of the override may cause unknown side effects.)\n"; + +static bool ecc_enabled(struct pci_dev *F3, u8 nid) +{ + u32 value; + u8 ecc_en = 0; + bool nb_mce_en = false; + + amd64_read_pci_cfg(F3, NBCFG, &value); + + ecc_en = !!(value & NBCFG_ECC_ENABLE); + amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); + + nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); + if (!nb_mce_en) + amd64_notice("NB MCE bank disabled, set MSR " + "0x%08x[4] on node %d to enable.\n", + MSR_IA32_MCG_CTL, nid); + + if (!ecc_en || !nb_mce_en) { + amd64_notice("%s", ecc_msg); + return false; + } + return true; +} + +struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + + ARRAY_SIZE(amd64_inj_attrs) + + 1]; + +struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; + +static void set_mc_sysfs_attrs(struct mem_ctl_info *mci) +{ + unsigned int i = 0, j = 0; + + for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) + sysfs_attrs[i] = amd64_dbg_attrs[i]; + + if (boot_cpu_data.x86 >= 0x10) + for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) + sysfs_attrs[i] = amd64_inj_attrs[j]; + + sysfs_attrs[i] = terminator; + + mci->mc_driver_sysfs_attributes = sysfs_attrs; +} + +static void setup_mci_misc_attrs(struct mem_ctl_info *mci, + struct amd64_family_type *fam) +{ + struct amd64_pvt *pvt = mci->pvt_info; + + mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; + mci->edac_ctl_cap = EDAC_FLAG_NONE; + + if (pvt->nbcap & NBCAP_SECDED) + mci->edac_ctl_cap |= EDAC_FLAG_SECDED; + + if (pvt->nbcap & NBCAP_CHIPKILL) + mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; + + mci->edac_cap = amd64_determine_edac_cap(pvt); + mci->mod_name = EDAC_MOD_STR; + mci->mod_ver = EDAC_AMD64_VERSION; + mci->ctl_name = fam->ctl_name; + mci->dev_name = pci_name(pvt->F2); + mci->ctl_page_to_phys = NULL; + + /* memory scrubber interface */ + mci->set_sdram_scrub_rate = amd64_set_scrub_rate; + mci->get_sdram_scrub_rate = amd64_get_scrub_rate; +} + +/* + * returns a pointer to the family descriptor on success, NULL otherwise. + */ +static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) +{ + u8 fam = boot_cpu_data.x86; + struct amd64_family_type *fam_type = NULL; + + switch (fam) { + case 0xf: + fam_type = &amd64_family_types[K8_CPUS]; + pvt->ops = &amd64_family_types[K8_CPUS].ops; + break; + + case 0x10: + fam_type = &amd64_family_types[F10_CPUS]; + pvt->ops = &amd64_family_types[F10_CPUS].ops; + break; + + case 0x15: + fam_type = &amd64_family_types[F15_CPUS]; + pvt->ops = &amd64_family_types[F15_CPUS].ops; + break; + + default: + amd64_err("Unsupported family!\n"); + return NULL; + } + + pvt->ext_model = boot_cpu_data.x86_model >> 4; + + amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, + (fam == 0xf ? + (pvt->ext_model >= K8_REV_F ? "revF or later " + : "revE or earlier ") + : ""), pvt->mc_node_id); + return fam_type; +} + +static int amd64_init_one_instance(struct pci_dev *F2) +{ + struct amd64_pvt *pvt = NULL; + struct amd64_family_type *fam_type = NULL; + struct mem_ctl_info *mci = NULL; + int err = 0, ret; + u8 nid = get_node_id(F2); + + ret = -ENOMEM; + pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); + if (!pvt) + goto err_ret; + + pvt->mc_node_id = nid; + pvt->F2 = F2; + + ret = -EINVAL; + fam_type = amd64_per_family_init(pvt); + if (!fam_type) + goto err_free; + + ret = -ENODEV; + err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); + if (err) + goto err_free; + + read_mc_regs(pvt); + + /* + * We need to determine how many memory channels there are. Then use + * that information for calculating the size of the dynamic instance + * tables in the 'mci' structure. + */ + ret = -EINVAL; + pvt->channel_count = pvt->ops->early_channel_count(pvt); + if (pvt->channel_count < 0) + goto err_siblings; + + ret = -ENOMEM; + mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid); + if (!mci) + goto err_siblings; + + mci->pvt_info = pvt; + mci->dev = &pvt->F2->dev; + + setup_mci_misc_attrs(mci, fam_type); + + if (init_csrows(mci)) + mci->edac_cap = EDAC_FLAG_NONE; + + set_mc_sysfs_attrs(mci); + + ret = -ENODEV; + if (edac_mc_add_mc(mci)) { + debugf1("failed edac_mc_add_mc()\n"); + goto err_add_mc; + } + + /* register stuff with EDAC MCE */ + if (report_gart_errors) + amd_report_gart_errors(true); + + amd_register_ecc_decoder(amd64_decode_bus_error); + + mcis[nid] = mci; + + atomic_inc(&drv_instances); + + return 0; + +err_add_mc: + edac_mc_free(mci); + +err_siblings: + free_mc_sibling_devs(pvt); + +err_free: + kfree(pvt); + +err_ret: + return ret; +} + +static int __devinit amd64_probe_one_instance(struct pci_dev *pdev, + const struct pci_device_id *mc_type) +{ + u8 nid = get_node_id(pdev); + struct pci_dev *F3 = node_to_amd_nb(nid)->misc; + struct ecc_settings *s; + int ret = 0; + + ret = pci_enable_device(pdev); + if (ret < 0) { + debugf0("ret=%d\n", ret); + return -EIO; + } + + ret = -ENOMEM; + s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); + if (!s) + goto err_out; + + ecc_stngs[nid] = s; + + if (!ecc_enabled(F3, nid)) { + ret = -ENODEV; + + if (!ecc_enable_override) + goto err_enable; + + amd64_warn("Forcing ECC on!\n"); + + if (!enable_ecc_error_reporting(s, nid, F3)) + goto err_enable; + } + + ret = amd64_init_one_instance(pdev); + if (ret < 0) { + amd64_err("Error probing instance: %d\n", nid); + restore_ecc_error_reporting(s, nid, F3); + } + + return ret; + +err_enable: + kfree(s); + ecc_stngs[nid] = NULL; + +err_out: + return ret; +} + +static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) +{ + struct mem_ctl_info *mci; + struct amd64_pvt *pvt; + u8 nid = get_node_id(pdev); + struct pci_dev *F3 = node_to_amd_nb(nid)->misc; + struct ecc_settings *s = ecc_stngs[nid]; + + /* Remove from EDAC CORE tracking list */ + mci = edac_mc_del_mc(&pdev->dev); + if (!mci) + return; + + pvt = mci->pvt_info; + + restore_ecc_error_reporting(s, nid, F3); + + free_mc_sibling_devs(pvt); + + /* unregister from EDAC MCE */ + amd_report_gart_errors(false); + amd_unregister_ecc_decoder(amd64_decode_bus_error); + + kfree(ecc_stngs[nid]); + ecc_stngs[nid] = NULL; + + /* Free the EDAC CORE resources */ + mci->pvt_info = NULL; + mcis[nid] = NULL; + + kfree(pvt); + edac_mc_free(mci); +} + +/* + * This table is part of the interface for loading drivers for PCI devices. The + * PCI core identifies what devices are on a system during boot, and then + * inquiry this table to see if this driver is for a given device found. + */ +static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = { + { + .vendor = PCI_VENDOR_ID_AMD, + .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, + .subvendor = PCI_ANY_ID, + .subdevice = PCI_ANY_ID, + .class = 0, + .class_mask = 0, + }, + { + .vendor = PCI_VENDOR_ID_AMD, + .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, + .subvendor = PCI_ANY_ID, + .subdevice = PCI_ANY_ID, + .class = 0, + .class_mask = 0, + }, + { + .vendor = PCI_VENDOR_ID_AMD, + .device = PCI_DEVICE_ID_AMD_15H_NB_F2, + .subvendor = PCI_ANY_ID, + .subdevice = PCI_ANY_ID, + .class = 0, + .class_mask = 0, + }, + + {0, } +}; +MODULE_DEVICE_TABLE(pci, amd64_pci_table); + +static struct pci_driver amd64_pci_driver = { + .name = EDAC_MOD_STR, + .probe = amd64_probe_one_instance, + .remove = __devexit_p(amd64_remove_one_instance), + .id_table = amd64_pci_table, +}; + +static void setup_pci_device(void) +{ + struct mem_ctl_info *mci; + struct amd64_pvt *pvt; + + if (amd64_ctl_pci) + return; + + mci = mcis[0]; + if (mci) { + + pvt = mci->pvt_info; + amd64_ctl_pci = + edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); + + if (!amd64_ctl_pci) { + pr_warning("%s(): Unable to create PCI control\n", + __func__); + + pr_warning("%s(): PCI error report via EDAC not set\n", + __func__); + } + } +} + +static int __init amd64_edac_init(void) +{ + int err = -ENODEV; + + printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); + + opstate_init(); + + if (amd_cache_northbridges() < 0) + goto err_ret; + + err = -ENOMEM; + mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); + ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); + if (!(mcis && ecc_stngs)) + goto err_free; + + msrs = msrs_alloc(); + if (!msrs) + goto err_free; + + err = pci_register_driver(&amd64_pci_driver); + if (err) + goto err_pci; + + err = -ENODEV; + if (!atomic_read(&drv_instances)) + goto err_no_instances; + + setup_pci_device(); + return 0; + +err_no_instances: + pci_unregister_driver(&amd64_pci_driver); + +err_pci: + msrs_free(msrs); + msrs = NULL; + +err_free: + kfree(mcis); + mcis = NULL; + + kfree(ecc_stngs); + ecc_stngs = NULL; + +err_ret: + return err; +} + +static void __exit amd64_edac_exit(void) +{ + if (amd64_ctl_pci) + edac_pci_release_generic_ctl(amd64_ctl_pci); + + pci_unregister_driver(&amd64_pci_driver); + + kfree(ecc_stngs); + ecc_stngs = NULL; + + kfree(mcis); + mcis = NULL; + + msrs_free(msrs); + msrs = NULL; +} + +module_init(amd64_edac_init); +module_exit(amd64_edac_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " + "Dave Peterson, Thayne Harbaugh"); +MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " + EDAC_AMD64_VERSION); + +module_param(edac_op_state, int, 0444); +MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |