diff options
Diffstat (limited to 'arch/x86/xen/time.c')
-rw-r--r-- | arch/x86/xen/time.c | 525 |
1 files changed, 525 insertions, 0 deletions
diff --git a/arch/x86/xen/time.c b/arch/x86/xen/time.c new file mode 100644 index 00000000..0296a952 --- /dev/null +++ b/arch/x86/xen/time.c @@ -0,0 +1,525 @@ +/* + * Xen time implementation. + * + * This is implemented in terms of a clocksource driver which uses + * the hypervisor clock as a nanosecond timebase, and a clockevent + * driver which uses the hypervisor's timer mechanism. + * + * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 + */ +#include <linux/kernel.h> +#include <linux/interrupt.h> +#include <linux/clocksource.h> +#include <linux/clockchips.h> +#include <linux/kernel_stat.h> +#include <linux/math64.h> +#include <linux/gfp.h> + +#include <asm/pvclock.h> +#include <asm/xen/hypervisor.h> +#include <asm/xen/hypercall.h> + +#include <xen/events.h> +#include <xen/features.h> +#include <xen/interface/xen.h> +#include <xen/interface/vcpu.h> + +#include "xen-ops.h" + +/* Xen may fire a timer up to this many ns early */ +#define TIMER_SLOP 100000 +#define NS_PER_TICK (1000000000LL / HZ) + +/* runstate info updated by Xen */ +static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate); + +/* snapshots of runstate info */ +static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot); + +/* unused ns of stolen and blocked time */ +static DEFINE_PER_CPU(u64, xen_residual_stolen); +static DEFINE_PER_CPU(u64, xen_residual_blocked); + +/* return an consistent snapshot of 64-bit time/counter value */ +static u64 get64(const u64 *p) +{ + u64 ret; + + if (BITS_PER_LONG < 64) { + u32 *p32 = (u32 *)p; + u32 h, l; + + /* + * Read high then low, and then make sure high is + * still the same; this will only loop if low wraps + * and carries into high. + * XXX some clean way to make this endian-proof? + */ + do { + h = p32[1]; + barrier(); + l = p32[0]; + barrier(); + } while (p32[1] != h); + + ret = (((u64)h) << 32) | l; + } else + ret = *p; + + return ret; +} + +/* + * Runstate accounting + */ +static void get_runstate_snapshot(struct vcpu_runstate_info *res) +{ + u64 state_time; + struct vcpu_runstate_info *state; + + BUG_ON(preemptible()); + + state = &__get_cpu_var(xen_runstate); + + /* + * The runstate info is always updated by the hypervisor on + * the current CPU, so there's no need to use anything + * stronger than a compiler barrier when fetching it. + */ + do { + state_time = get64(&state->state_entry_time); + barrier(); + *res = *state; + barrier(); + } while (get64(&state->state_entry_time) != state_time); +} + +/* return true when a vcpu could run but has no real cpu to run on */ +bool xen_vcpu_stolen(int vcpu) +{ + return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable; +} + +void xen_setup_runstate_info(int cpu) +{ + struct vcpu_register_runstate_memory_area area; + + area.addr.v = &per_cpu(xen_runstate, cpu); + + if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, + cpu, &area)) + BUG(); +} + +static void do_stolen_accounting(void) +{ + struct vcpu_runstate_info state; + struct vcpu_runstate_info *snap; + s64 blocked, runnable, offline, stolen; + cputime_t ticks; + + get_runstate_snapshot(&state); + + WARN_ON(state.state != RUNSTATE_running); + + snap = &__get_cpu_var(xen_runstate_snapshot); + + /* work out how much time the VCPU has not been runn*ing* */ + blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; + runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; + offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; + + *snap = state; + + /* Add the appropriate number of ticks of stolen time, + including any left-overs from last time. */ + stolen = runnable + offline + __this_cpu_read(xen_residual_stolen); + + if (stolen < 0) + stolen = 0; + + ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); + __this_cpu_write(xen_residual_stolen, stolen); + account_steal_ticks(ticks); + + /* Add the appropriate number of ticks of blocked time, + including any left-overs from last time. */ + blocked += __this_cpu_read(xen_residual_blocked); + + if (blocked < 0) + blocked = 0; + + ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); + __this_cpu_write(xen_residual_blocked, blocked); + account_idle_ticks(ticks); +} + +/* Get the TSC speed from Xen */ +static unsigned long xen_tsc_khz(void) +{ + struct pvclock_vcpu_time_info *info = + &HYPERVISOR_shared_info->vcpu_info[0].time; + + return pvclock_tsc_khz(info); +} + +cycle_t xen_clocksource_read(void) +{ + struct pvclock_vcpu_time_info *src; + cycle_t ret; + + preempt_disable_notrace(); + src = &__get_cpu_var(xen_vcpu)->time; + ret = pvclock_clocksource_read(src); + preempt_enable_notrace(); + return ret; +} + +static cycle_t xen_clocksource_get_cycles(struct clocksource *cs) +{ + return xen_clocksource_read(); +} + +static void xen_read_wallclock(struct timespec *ts) +{ + struct shared_info *s = HYPERVISOR_shared_info; + struct pvclock_wall_clock *wall_clock = &(s->wc); + struct pvclock_vcpu_time_info *vcpu_time; + + vcpu_time = &get_cpu_var(xen_vcpu)->time; + pvclock_read_wallclock(wall_clock, vcpu_time, ts); + put_cpu_var(xen_vcpu); +} + +static unsigned long xen_get_wallclock(void) +{ + struct timespec ts; + + xen_read_wallclock(&ts); + return ts.tv_sec; +} + +static int xen_set_wallclock(unsigned long now) +{ + struct xen_platform_op op; + int rc; + + /* do nothing for domU */ + if (!xen_initial_domain()) + return -1; + + op.cmd = XENPF_settime; + op.u.settime.secs = now; + op.u.settime.nsecs = 0; + op.u.settime.system_time = xen_clocksource_read(); + + rc = HYPERVISOR_dom0_op(&op); + WARN(rc != 0, "XENPF_settime failed: now=%ld\n", now); + + return rc; +} + +static struct clocksource xen_clocksource __read_mostly = { + .name = "xen", + .rating = 400, + .read = xen_clocksource_get_cycles, + .mask = ~0, + .flags = CLOCK_SOURCE_IS_CONTINUOUS, +}; + +/* + Xen clockevent implementation + + Xen has two clockevent implementations: + + The old timer_op one works with all released versions of Xen prior + to version 3.0.4. This version of the hypervisor provides a + single-shot timer with nanosecond resolution. However, sharing the + same event channel is a 100Hz tick which is delivered while the + vcpu is running. We don't care about or use this tick, but it will + cause the core time code to think the timer fired too soon, and + will end up resetting it each time. It could be filtered, but + doing so has complications when the ktime clocksource is not yet + the xen clocksource (ie, at boot time). + + The new vcpu_op-based timer interface allows the tick timer period + to be changed or turned off. The tick timer is not useful as a + periodic timer because events are only delivered to running vcpus. + The one-shot timer can report when a timeout is in the past, so + set_next_event is capable of returning -ETIME when appropriate. + This interface is used when available. +*/ + + +/* + Get a hypervisor absolute time. In theory we could maintain an + offset between the kernel's time and the hypervisor's time, and + apply that to a kernel's absolute timeout. Unfortunately the + hypervisor and kernel times can drift even if the kernel is using + the Xen clocksource, because ntp can warp the kernel's clocksource. +*/ +static s64 get_abs_timeout(unsigned long delta) +{ + return xen_clocksource_read() + delta; +} + +static void xen_timerop_set_mode(enum clock_event_mode mode, + struct clock_event_device *evt) +{ + switch (mode) { + case CLOCK_EVT_MODE_PERIODIC: + /* unsupported */ + WARN_ON(1); + break; + + case CLOCK_EVT_MODE_ONESHOT: + case CLOCK_EVT_MODE_RESUME: + break; + + case CLOCK_EVT_MODE_UNUSED: + case CLOCK_EVT_MODE_SHUTDOWN: + HYPERVISOR_set_timer_op(0); /* cancel timeout */ + break; + } +} + +static int xen_timerop_set_next_event(unsigned long delta, + struct clock_event_device *evt) +{ + WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); + + if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) + BUG(); + + /* We may have missed the deadline, but there's no real way of + knowing for sure. If the event was in the past, then we'll + get an immediate interrupt. */ + + return 0; +} + +static const struct clock_event_device xen_timerop_clockevent = { + .name = "xen", + .features = CLOCK_EVT_FEAT_ONESHOT, + + .max_delta_ns = 0xffffffff, + .min_delta_ns = TIMER_SLOP, + + .mult = 1, + .shift = 0, + .rating = 500, + + .set_mode = xen_timerop_set_mode, + .set_next_event = xen_timerop_set_next_event, +}; + + + +static void xen_vcpuop_set_mode(enum clock_event_mode mode, + struct clock_event_device *evt) +{ + int cpu = smp_processor_id(); + + switch (mode) { + case CLOCK_EVT_MODE_PERIODIC: + WARN_ON(1); /* unsupported */ + break; + + case CLOCK_EVT_MODE_ONESHOT: + if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) + BUG(); + break; + + case CLOCK_EVT_MODE_UNUSED: + case CLOCK_EVT_MODE_SHUTDOWN: + if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || + HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) + BUG(); + break; + case CLOCK_EVT_MODE_RESUME: + break; + } +} + +static int xen_vcpuop_set_next_event(unsigned long delta, + struct clock_event_device *evt) +{ + int cpu = smp_processor_id(); + struct vcpu_set_singleshot_timer single; + int ret; + + WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); + + single.timeout_abs_ns = get_abs_timeout(delta); + single.flags = VCPU_SSHOTTMR_future; + + ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); + + BUG_ON(ret != 0 && ret != -ETIME); + + return ret; +} + +static const struct clock_event_device xen_vcpuop_clockevent = { + .name = "xen", + .features = CLOCK_EVT_FEAT_ONESHOT, + + .max_delta_ns = 0xffffffff, + .min_delta_ns = TIMER_SLOP, + + .mult = 1, + .shift = 0, + .rating = 500, + + .set_mode = xen_vcpuop_set_mode, + .set_next_event = xen_vcpuop_set_next_event, +}; + +static const struct clock_event_device *xen_clockevent = + &xen_timerop_clockevent; +static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); + +static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) +{ + struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); + irqreturn_t ret; + + ret = IRQ_NONE; + if (evt->event_handler) { + evt->event_handler(evt); + ret = IRQ_HANDLED; + } + + do_stolen_accounting(); + + return ret; +} + +void xen_setup_timer(int cpu) +{ + const char *name; + struct clock_event_device *evt; + int irq; + + printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); + + name = kasprintf(GFP_KERNEL, "timer%d", cpu); + if (!name) + name = "<timer kasprintf failed>"; + + irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, + IRQF_DISABLED|IRQF_PERCPU| + IRQF_NOBALANCING|IRQF_TIMER| + IRQF_FORCE_RESUME, + name, NULL); + + evt = &per_cpu(xen_clock_events, cpu); + memcpy(evt, xen_clockevent, sizeof(*evt)); + + evt->cpumask = cpumask_of(cpu); + evt->irq = irq; +} + +void xen_teardown_timer(int cpu) +{ + struct clock_event_device *evt; + BUG_ON(cpu == 0); + evt = &per_cpu(xen_clock_events, cpu); + unbind_from_irqhandler(evt->irq, NULL); +} + +void xen_setup_cpu_clockevents(void) +{ + BUG_ON(preemptible()); + + clockevents_register_device(&__get_cpu_var(xen_clock_events)); +} + +void xen_timer_resume(void) +{ + int cpu; + + pvclock_resume(); + + if (xen_clockevent != &xen_vcpuop_clockevent) + return; + + for_each_online_cpu(cpu) { + if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) + BUG(); + } +} + +static const struct pv_time_ops xen_time_ops __initconst = { + .sched_clock = xen_clocksource_read, +}; + +static void __init xen_time_init(void) +{ + int cpu = smp_processor_id(); + struct timespec tp; + + clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); + + if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { + /* Successfully turned off 100Hz tick, so we have the + vcpuop-based timer interface */ + printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); + xen_clockevent = &xen_vcpuop_clockevent; + } + + /* Set initial system time with full resolution */ + xen_read_wallclock(&tp); + do_settimeofday(&tp); + + setup_force_cpu_cap(X86_FEATURE_TSC); + + xen_setup_runstate_info(cpu); + xen_setup_timer(cpu); + xen_setup_cpu_clockevents(); +} + +void __init xen_init_time_ops(void) +{ + pv_time_ops = xen_time_ops; + + x86_init.timers.timer_init = xen_time_init; + x86_init.timers.setup_percpu_clockev = x86_init_noop; + x86_cpuinit.setup_percpu_clockev = x86_init_noop; + + x86_platform.calibrate_tsc = xen_tsc_khz; + x86_platform.get_wallclock = xen_get_wallclock; + x86_platform.set_wallclock = xen_set_wallclock; +} + +#ifdef CONFIG_XEN_PVHVM +static void xen_hvm_setup_cpu_clockevents(void) +{ + int cpu = smp_processor_id(); + xen_setup_runstate_info(cpu); + xen_setup_timer(cpu); + xen_setup_cpu_clockevents(); +} + +void __init xen_hvm_init_time_ops(void) +{ + /* vector callback is needed otherwise we cannot receive interrupts + * on cpu > 0 and at this point we don't know how many cpus are + * available */ + if (!xen_have_vector_callback) + return; + if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { + printk(KERN_INFO "Xen doesn't support pvclock on HVM," + "disable pv timer\n"); + return; + } + + pv_time_ops = xen_time_ops; + x86_init.timers.setup_percpu_clockev = xen_time_init; + x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; + + x86_platform.calibrate_tsc = xen_tsc_khz; + x86_platform.get_wallclock = xen_get_wallclock; + x86_platform.set_wallclock = xen_set_wallclock; +} +#endif |