summaryrefslogtreecommitdiff
path: root/arch/sh/mm/cache-sh4.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/sh/mm/cache-sh4.c')
-rw-r--r--arch/sh/mm/cache-sh4.c394
1 files changed, 394 insertions, 0 deletions
diff --git a/arch/sh/mm/cache-sh4.c b/arch/sh/mm/cache-sh4.c
new file mode 100644
index 00000000..0e529285
--- /dev/null
+++ b/arch/sh/mm/cache-sh4.c
@@ -0,0 +1,394 @@
+/*
+ * arch/sh/mm/cache-sh4.c
+ *
+ * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
+ * Copyright (C) 2001 - 2009 Paul Mundt
+ * Copyright (C) 2003 Richard Curnow
+ * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ */
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/io.h>
+#include <linux/mutex.h>
+#include <linux/fs.h>
+#include <linux/highmem.h>
+#include <asm/pgtable.h>
+#include <asm/mmu_context.h>
+#include <asm/cache_insns.h>
+#include <asm/cacheflush.h>
+
+/*
+ * The maximum number of pages we support up to when doing ranged dcache
+ * flushing. Anything exceeding this will simply flush the dcache in its
+ * entirety.
+ */
+#define MAX_ICACHE_PAGES 32
+
+static void __flush_cache_one(unsigned long addr, unsigned long phys,
+ unsigned long exec_offset);
+
+/*
+ * Write back the range of D-cache, and purge the I-cache.
+ *
+ * Called from kernel/module.c:sys_init_module and routine for a.out format,
+ * signal handler code and kprobes code
+ */
+static void sh4_flush_icache_range(void *args)
+{
+ struct flusher_data *data = args;
+ unsigned long start, end;
+ unsigned long flags, v;
+ int i;
+
+ start = data->addr1;
+ end = data->addr2;
+
+ /* If there are too many pages then just blow away the caches */
+ if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
+ local_flush_cache_all(NULL);
+ return;
+ }
+
+ /*
+ * Selectively flush d-cache then invalidate the i-cache.
+ * This is inefficient, so only use this for small ranges.
+ */
+ start &= ~(L1_CACHE_BYTES-1);
+ end += L1_CACHE_BYTES-1;
+ end &= ~(L1_CACHE_BYTES-1);
+
+ local_irq_save(flags);
+ jump_to_uncached();
+
+ for (v = start; v < end; v += L1_CACHE_BYTES) {
+ unsigned long icacheaddr;
+ int j, n;
+
+ __ocbwb(v);
+
+ icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
+ cpu_data->icache.entry_mask);
+
+ /* Clear i-cache line valid-bit */
+ n = boot_cpu_data.icache.n_aliases;
+ for (i = 0; i < cpu_data->icache.ways; i++) {
+ for (j = 0; j < n; j++)
+ __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
+ icacheaddr += cpu_data->icache.way_incr;
+ }
+ }
+
+ back_to_cached();
+ local_irq_restore(flags);
+}
+
+static inline void flush_cache_one(unsigned long start, unsigned long phys)
+{
+ unsigned long flags, exec_offset = 0;
+
+ /*
+ * All types of SH-4 require PC to be uncached to operate on the I-cache.
+ * Some types of SH-4 require PC to be uncached to operate on the D-cache.
+ */
+ if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
+ (start < CACHE_OC_ADDRESS_ARRAY))
+ exec_offset = cached_to_uncached;
+
+ local_irq_save(flags);
+ __flush_cache_one(start, phys, exec_offset);
+ local_irq_restore(flags);
+}
+
+/*
+ * Write back & invalidate the D-cache of the page.
+ * (To avoid "alias" issues)
+ */
+static void sh4_flush_dcache_page(void *arg)
+{
+ struct page *page = arg;
+ unsigned long addr = (unsigned long)page_address(page);
+#ifndef CONFIG_SMP
+ struct address_space *mapping = page_mapping(page);
+
+ if (mapping && !mapping_mapped(mapping))
+ clear_bit(PG_dcache_clean, &page->flags);
+ else
+#endif
+ flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
+ (addr & shm_align_mask), page_to_phys(page));
+
+ wmb();
+}
+
+/* TODO: Selective icache invalidation through IC address array.. */
+static void flush_icache_all(void)
+{
+ unsigned long flags, ccr;
+
+ local_irq_save(flags);
+ jump_to_uncached();
+
+ /* Flush I-cache */
+ ccr = __raw_readl(CCR);
+ ccr |= CCR_CACHE_ICI;
+ __raw_writel(ccr, CCR);
+
+ /*
+ * back_to_cached() will take care of the barrier for us, don't add
+ * another one!
+ */
+
+ back_to_cached();
+ local_irq_restore(flags);
+}
+
+static void flush_dcache_all(void)
+{
+ unsigned long addr, end_addr, entry_offset;
+
+ end_addr = CACHE_OC_ADDRESS_ARRAY +
+ (current_cpu_data.dcache.sets <<
+ current_cpu_data.dcache.entry_shift) *
+ current_cpu_data.dcache.ways;
+
+ entry_offset = 1 << current_cpu_data.dcache.entry_shift;
+
+ for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
+ __raw_writel(0, addr); addr += entry_offset;
+ __raw_writel(0, addr); addr += entry_offset;
+ __raw_writel(0, addr); addr += entry_offset;
+ __raw_writel(0, addr); addr += entry_offset;
+ __raw_writel(0, addr); addr += entry_offset;
+ __raw_writel(0, addr); addr += entry_offset;
+ __raw_writel(0, addr); addr += entry_offset;
+ __raw_writel(0, addr); addr += entry_offset;
+ }
+}
+
+static void sh4_flush_cache_all(void *unused)
+{
+ flush_dcache_all();
+ flush_icache_all();
+}
+
+/*
+ * Note : (RPC) since the caches are physically tagged, the only point
+ * of flush_cache_mm for SH-4 is to get rid of aliases from the
+ * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
+ * lines can stay resident so long as the virtual address they were
+ * accessed with (hence cache set) is in accord with the physical
+ * address (i.e. tag). It's no different here.
+ *
+ * Caller takes mm->mmap_sem.
+ */
+static void sh4_flush_cache_mm(void *arg)
+{
+ struct mm_struct *mm = arg;
+
+ if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
+ return;
+
+ flush_dcache_all();
+}
+
+/*
+ * Write back and invalidate I/D-caches for the page.
+ *
+ * ADDR: Virtual Address (U0 address)
+ * PFN: Physical page number
+ */
+static void sh4_flush_cache_page(void *args)
+{
+ struct flusher_data *data = args;
+ struct vm_area_struct *vma;
+ struct page *page;
+ unsigned long address, pfn, phys;
+ int map_coherent = 0;
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ void *vaddr;
+
+ vma = data->vma;
+ address = data->addr1 & PAGE_MASK;
+ pfn = data->addr2;
+ phys = pfn << PAGE_SHIFT;
+ page = pfn_to_page(pfn);
+
+ if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
+ return;
+
+ pgd = pgd_offset(vma->vm_mm, address);
+ pud = pud_offset(pgd, address);
+ pmd = pmd_offset(pud, address);
+ pte = pte_offset_kernel(pmd, address);
+
+ /* If the page isn't present, there is nothing to do here. */
+ if (!(pte_val(*pte) & _PAGE_PRESENT))
+ return;
+
+ if ((vma->vm_mm == current->active_mm))
+ vaddr = NULL;
+ else {
+ /*
+ * Use kmap_coherent or kmap_atomic to do flushes for
+ * another ASID than the current one.
+ */
+ map_coherent = (current_cpu_data.dcache.n_aliases &&
+ test_bit(PG_dcache_clean, &page->flags) &&
+ page_mapped(page));
+ if (map_coherent)
+ vaddr = kmap_coherent(page, address);
+ else
+ vaddr = kmap_atomic(page);
+
+ address = (unsigned long)vaddr;
+ }
+
+ flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
+ (address & shm_align_mask), phys);
+
+ if (vma->vm_flags & VM_EXEC)
+ flush_icache_all();
+
+ if (vaddr) {
+ if (map_coherent)
+ kunmap_coherent(vaddr);
+ else
+ kunmap_atomic(vaddr);
+ }
+}
+
+/*
+ * Write back and invalidate D-caches.
+ *
+ * START, END: Virtual Address (U0 address)
+ *
+ * NOTE: We need to flush the _physical_ page entry.
+ * Flushing the cache lines for U0 only isn't enough.
+ * We need to flush for P1 too, which may contain aliases.
+ */
+static void sh4_flush_cache_range(void *args)
+{
+ struct flusher_data *data = args;
+ struct vm_area_struct *vma;
+ unsigned long start, end;
+
+ vma = data->vma;
+ start = data->addr1;
+ end = data->addr2;
+
+ if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
+ return;
+
+ /*
+ * If cache is only 4k-per-way, there are never any 'aliases'. Since
+ * the cache is physically tagged, the data can just be left in there.
+ */
+ if (boot_cpu_data.dcache.n_aliases == 0)
+ return;
+
+ flush_dcache_all();
+
+ if (vma->vm_flags & VM_EXEC)
+ flush_icache_all();
+}
+
+/**
+ * __flush_cache_one
+ *
+ * @addr: address in memory mapped cache array
+ * @phys: P1 address to flush (has to match tags if addr has 'A' bit
+ * set i.e. associative write)
+ * @exec_offset: set to 0x20000000 if flush has to be executed from P2
+ * region else 0x0
+ *
+ * The offset into the cache array implied by 'addr' selects the
+ * 'colour' of the virtual address range that will be flushed. The
+ * operation (purge/write-back) is selected by the lower 2 bits of
+ * 'phys'.
+ */
+static void __flush_cache_one(unsigned long addr, unsigned long phys,
+ unsigned long exec_offset)
+{
+ int way_count;
+ unsigned long base_addr = addr;
+ struct cache_info *dcache;
+ unsigned long way_incr;
+ unsigned long a, ea, p;
+ unsigned long temp_pc;
+
+ dcache = &boot_cpu_data.dcache;
+ /* Write this way for better assembly. */
+ way_count = dcache->ways;
+ way_incr = dcache->way_incr;
+
+ /*
+ * Apply exec_offset (i.e. branch to P2 if required.).
+ *
+ * FIXME:
+ *
+ * If I write "=r" for the (temp_pc), it puts this in r6 hence
+ * trashing exec_offset before it's been added on - why? Hence
+ * "=&r" as a 'workaround'
+ */
+ asm volatile("mov.l 1f, %0\n\t"
+ "add %1, %0\n\t"
+ "jmp @%0\n\t"
+ "nop\n\t"
+ ".balign 4\n\t"
+ "1: .long 2f\n\t"
+ "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
+
+ /*
+ * We know there will be >=1 iteration, so write as do-while to avoid
+ * pointless nead-of-loop check for 0 iterations.
+ */
+ do {
+ ea = base_addr + PAGE_SIZE;
+ a = base_addr;
+ p = phys;
+
+ do {
+ *(volatile unsigned long *)a = p;
+ /*
+ * Next line: intentionally not p+32, saves an add, p
+ * will do since only the cache tag bits need to
+ * match.
+ */
+ *(volatile unsigned long *)(a+32) = p;
+ a += 64;
+ p += 64;
+ } while (a < ea);
+
+ base_addr += way_incr;
+ } while (--way_count != 0);
+}
+
+extern void __weak sh4__flush_region_init(void);
+
+/*
+ * SH-4 has virtually indexed and physically tagged cache.
+ */
+void __init sh4_cache_init(void)
+{
+ printk("PVR=%08x CVR=%08x PRR=%08x\n",
+ __raw_readl(CCN_PVR),
+ __raw_readl(CCN_CVR),
+ __raw_readl(CCN_PRR));
+
+ local_flush_icache_range = sh4_flush_icache_range;
+ local_flush_dcache_page = sh4_flush_dcache_page;
+ local_flush_cache_all = sh4_flush_cache_all;
+ local_flush_cache_mm = sh4_flush_cache_mm;
+ local_flush_cache_dup_mm = sh4_flush_cache_mm;
+ local_flush_cache_page = sh4_flush_cache_page;
+ local_flush_cache_range = sh4_flush_cache_range;
+
+ sh4__flush_region_init();
+}