summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/numa.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/mm/numa.c')
-rw-r--r--arch/powerpc/mm/numa.c1530
1 files changed, 1530 insertions, 0 deletions
diff --git a/arch/powerpc/mm/numa.c b/arch/powerpc/mm/numa.c
new file mode 100644
index 00000000..6e8f677f
--- /dev/null
+++ b/arch/powerpc/mm/numa.c
@@ -0,0 +1,1530 @@
+/*
+ * pSeries NUMA support
+ *
+ * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+#include <linux/threads.h>
+#include <linux/bootmem.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/mmzone.h>
+#include <linux/export.h>
+#include <linux/nodemask.h>
+#include <linux/cpu.h>
+#include <linux/notifier.h>
+#include <linux/memblock.h>
+#include <linux/of.h>
+#include <linux/pfn.h>
+#include <linux/cpuset.h>
+#include <linux/node.h>
+#include <asm/sparsemem.h>
+#include <asm/prom.h>
+#include <asm/smp.h>
+#include <asm/firmware.h>
+#include <asm/paca.h>
+#include <asm/hvcall.h>
+#include <asm/setup.h>
+
+static int numa_enabled = 1;
+
+static char *cmdline __initdata;
+
+static int numa_debug;
+#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
+
+int numa_cpu_lookup_table[NR_CPUS];
+cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
+struct pglist_data *node_data[MAX_NUMNODES];
+
+EXPORT_SYMBOL(numa_cpu_lookup_table);
+EXPORT_SYMBOL(node_to_cpumask_map);
+EXPORT_SYMBOL(node_data);
+
+static int min_common_depth;
+static int n_mem_addr_cells, n_mem_size_cells;
+static int form1_affinity;
+
+#define MAX_DISTANCE_REF_POINTS 4
+static int distance_ref_points_depth;
+static const unsigned int *distance_ref_points;
+static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
+
+/*
+ * Allocate node_to_cpumask_map based on number of available nodes
+ * Requires node_possible_map to be valid.
+ *
+ * Note: cpumask_of_node() is not valid until after this is done.
+ */
+static void __init setup_node_to_cpumask_map(void)
+{
+ unsigned int node, num = 0;
+
+ /* setup nr_node_ids if not done yet */
+ if (nr_node_ids == MAX_NUMNODES) {
+ for_each_node_mask(node, node_possible_map)
+ num = node;
+ nr_node_ids = num + 1;
+ }
+
+ /* allocate the map */
+ for (node = 0; node < nr_node_ids; node++)
+ alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
+
+ /* cpumask_of_node() will now work */
+ dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
+}
+
+static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
+ unsigned int *nid)
+{
+ unsigned long long mem;
+ char *p = cmdline;
+ static unsigned int fake_nid;
+ static unsigned long long curr_boundary;
+
+ /*
+ * Modify node id, iff we started creating NUMA nodes
+ * We want to continue from where we left of the last time
+ */
+ if (fake_nid)
+ *nid = fake_nid;
+ /*
+ * In case there are no more arguments to parse, the
+ * node_id should be the same as the last fake node id
+ * (we've handled this above).
+ */
+ if (!p)
+ return 0;
+
+ mem = memparse(p, &p);
+ if (!mem)
+ return 0;
+
+ if (mem < curr_boundary)
+ return 0;
+
+ curr_boundary = mem;
+
+ if ((end_pfn << PAGE_SHIFT) > mem) {
+ /*
+ * Skip commas and spaces
+ */
+ while (*p == ',' || *p == ' ' || *p == '\t')
+ p++;
+
+ cmdline = p;
+ fake_nid++;
+ *nid = fake_nid;
+ dbg("created new fake_node with id %d\n", fake_nid);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * get_node_active_region - Return active region containing pfn
+ * Active range returned is empty if none found.
+ * @pfn: The page to return the region for
+ * @node_ar: Returned set to the active region containing @pfn
+ */
+static void __init get_node_active_region(unsigned long pfn,
+ struct node_active_region *node_ar)
+{
+ unsigned long start_pfn, end_pfn;
+ int i, nid;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ if (pfn >= start_pfn && pfn < end_pfn) {
+ node_ar->nid = nid;
+ node_ar->start_pfn = start_pfn;
+ node_ar->end_pfn = end_pfn;
+ break;
+ }
+ }
+}
+
+static void map_cpu_to_node(int cpu, int node)
+{
+ numa_cpu_lookup_table[cpu] = node;
+
+ dbg("adding cpu %d to node %d\n", cpu, node);
+
+ if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
+ cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
+}
+
+#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
+static void unmap_cpu_from_node(unsigned long cpu)
+{
+ int node = numa_cpu_lookup_table[cpu];
+
+ dbg("removing cpu %lu from node %d\n", cpu, node);
+
+ if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
+ cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
+ } else {
+ printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
+ cpu, node);
+ }
+}
+#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
+
+/* must hold reference to node during call */
+static const int *of_get_associativity(struct device_node *dev)
+{
+ return of_get_property(dev, "ibm,associativity", NULL);
+}
+
+/*
+ * Returns the property linux,drconf-usable-memory if
+ * it exists (the property exists only in kexec/kdump kernels,
+ * added by kexec-tools)
+ */
+static const u32 *of_get_usable_memory(struct device_node *memory)
+{
+ const u32 *prop;
+ u32 len;
+ prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
+ if (!prop || len < sizeof(unsigned int))
+ return 0;
+ return prop;
+}
+
+int __node_distance(int a, int b)
+{
+ int i;
+ int distance = LOCAL_DISTANCE;
+
+ if (!form1_affinity)
+ return distance;
+
+ for (i = 0; i < distance_ref_points_depth; i++) {
+ if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
+ break;
+
+ /* Double the distance for each NUMA level */
+ distance *= 2;
+ }
+
+ return distance;
+}
+
+static void initialize_distance_lookup_table(int nid,
+ const unsigned int *associativity)
+{
+ int i;
+
+ if (!form1_affinity)
+ return;
+
+ for (i = 0; i < distance_ref_points_depth; i++) {
+ distance_lookup_table[nid][i] =
+ associativity[distance_ref_points[i]];
+ }
+}
+
+/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
+ * info is found.
+ */
+static int associativity_to_nid(const unsigned int *associativity)
+{
+ int nid = -1;
+
+ if (min_common_depth == -1)
+ goto out;
+
+ if (associativity[0] >= min_common_depth)
+ nid = associativity[min_common_depth];
+
+ /* POWER4 LPAR uses 0xffff as invalid node */
+ if (nid == 0xffff || nid >= MAX_NUMNODES)
+ nid = -1;
+
+ if (nid > 0 && associativity[0] >= distance_ref_points_depth)
+ initialize_distance_lookup_table(nid, associativity);
+
+out:
+ return nid;
+}
+
+/* Returns the nid associated with the given device tree node,
+ * or -1 if not found.
+ */
+static int of_node_to_nid_single(struct device_node *device)
+{
+ int nid = -1;
+ const unsigned int *tmp;
+
+ tmp = of_get_associativity(device);
+ if (tmp)
+ nid = associativity_to_nid(tmp);
+ return nid;
+}
+
+/* Walk the device tree upwards, looking for an associativity id */
+int of_node_to_nid(struct device_node *device)
+{
+ struct device_node *tmp;
+ int nid = -1;
+
+ of_node_get(device);
+ while (device) {
+ nid = of_node_to_nid_single(device);
+ if (nid != -1)
+ break;
+
+ tmp = device;
+ device = of_get_parent(tmp);
+ of_node_put(tmp);
+ }
+ of_node_put(device);
+
+ return nid;
+}
+EXPORT_SYMBOL_GPL(of_node_to_nid);
+
+static int __init find_min_common_depth(void)
+{
+ int depth;
+ struct device_node *chosen;
+ struct device_node *root;
+ const char *vec5;
+
+ if (firmware_has_feature(FW_FEATURE_OPAL))
+ root = of_find_node_by_path("/ibm,opal");
+ else
+ root = of_find_node_by_path("/rtas");
+ if (!root)
+ root = of_find_node_by_path("/");
+
+ /*
+ * This property is a set of 32-bit integers, each representing
+ * an index into the ibm,associativity nodes.
+ *
+ * With form 0 affinity the first integer is for an SMP configuration
+ * (should be all 0's) and the second is for a normal NUMA
+ * configuration. We have only one level of NUMA.
+ *
+ * With form 1 affinity the first integer is the most significant
+ * NUMA boundary and the following are progressively less significant
+ * boundaries. There can be more than one level of NUMA.
+ */
+ distance_ref_points = of_get_property(root,
+ "ibm,associativity-reference-points",
+ &distance_ref_points_depth);
+
+ if (!distance_ref_points) {
+ dbg("NUMA: ibm,associativity-reference-points not found.\n");
+ goto err;
+ }
+
+ distance_ref_points_depth /= sizeof(int);
+
+#define VEC5_AFFINITY_BYTE 5
+#define VEC5_AFFINITY 0x80
+
+ if (firmware_has_feature(FW_FEATURE_OPAL))
+ form1_affinity = 1;
+ else {
+ chosen = of_find_node_by_path("/chosen");
+ if (chosen) {
+ vec5 = of_get_property(chosen,
+ "ibm,architecture-vec-5", NULL);
+ if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
+ VEC5_AFFINITY)) {
+ dbg("Using form 1 affinity\n");
+ form1_affinity = 1;
+ }
+ }
+ }
+
+ if (form1_affinity) {
+ depth = distance_ref_points[0];
+ } else {
+ if (distance_ref_points_depth < 2) {
+ printk(KERN_WARNING "NUMA: "
+ "short ibm,associativity-reference-points\n");
+ goto err;
+ }
+
+ depth = distance_ref_points[1];
+ }
+
+ /*
+ * Warn and cap if the hardware supports more than
+ * MAX_DISTANCE_REF_POINTS domains.
+ */
+ if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
+ printk(KERN_WARNING "NUMA: distance array capped at "
+ "%d entries\n", MAX_DISTANCE_REF_POINTS);
+ distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
+ }
+
+ of_node_put(root);
+ return depth;
+
+err:
+ of_node_put(root);
+ return -1;
+}
+
+static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
+{
+ struct device_node *memory = NULL;
+
+ memory = of_find_node_by_type(memory, "memory");
+ if (!memory)
+ panic("numa.c: No memory nodes found!");
+
+ *n_addr_cells = of_n_addr_cells(memory);
+ *n_size_cells = of_n_size_cells(memory);
+ of_node_put(memory);
+}
+
+static unsigned long read_n_cells(int n, const unsigned int **buf)
+{
+ unsigned long result = 0;
+
+ while (n--) {
+ result = (result << 32) | **buf;
+ (*buf)++;
+ }
+ return result;
+}
+
+struct of_drconf_cell {
+ u64 base_addr;
+ u32 drc_index;
+ u32 reserved;
+ u32 aa_index;
+ u32 flags;
+};
+
+#define DRCONF_MEM_ASSIGNED 0x00000008
+#define DRCONF_MEM_AI_INVALID 0x00000040
+#define DRCONF_MEM_RESERVED 0x00000080
+
+/*
+ * Read the next memblock list entry from the ibm,dynamic-memory property
+ * and return the information in the provided of_drconf_cell structure.
+ */
+static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
+{
+ const u32 *cp;
+
+ drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
+
+ cp = *cellp;
+ drmem->drc_index = cp[0];
+ drmem->reserved = cp[1];
+ drmem->aa_index = cp[2];
+ drmem->flags = cp[3];
+
+ *cellp = cp + 4;
+}
+
+/*
+ * Retrieve and validate the ibm,dynamic-memory property of the device tree.
+ *
+ * The layout of the ibm,dynamic-memory property is a number N of memblock
+ * list entries followed by N memblock list entries. Each memblock list entry
+ * contains information as laid out in the of_drconf_cell struct above.
+ */
+static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
+{
+ const u32 *prop;
+ u32 len, entries;
+
+ prop = of_get_property(memory, "ibm,dynamic-memory", &len);
+ if (!prop || len < sizeof(unsigned int))
+ return 0;
+
+ entries = *prop++;
+
+ /* Now that we know the number of entries, revalidate the size
+ * of the property read in to ensure we have everything
+ */
+ if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
+ return 0;
+
+ *dm = prop;
+ return entries;
+}
+
+/*
+ * Retrieve and validate the ibm,lmb-size property for drconf memory
+ * from the device tree.
+ */
+static u64 of_get_lmb_size(struct device_node *memory)
+{
+ const u32 *prop;
+ u32 len;
+
+ prop = of_get_property(memory, "ibm,lmb-size", &len);
+ if (!prop || len < sizeof(unsigned int))
+ return 0;
+
+ return read_n_cells(n_mem_size_cells, &prop);
+}
+
+struct assoc_arrays {
+ u32 n_arrays;
+ u32 array_sz;
+ const u32 *arrays;
+};
+
+/*
+ * Retrieve and validate the list of associativity arrays for drconf
+ * memory from the ibm,associativity-lookup-arrays property of the
+ * device tree..
+ *
+ * The layout of the ibm,associativity-lookup-arrays property is a number N
+ * indicating the number of associativity arrays, followed by a number M
+ * indicating the size of each associativity array, followed by a list
+ * of N associativity arrays.
+ */
+static int of_get_assoc_arrays(struct device_node *memory,
+ struct assoc_arrays *aa)
+{
+ const u32 *prop;
+ u32 len;
+
+ prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
+ if (!prop || len < 2 * sizeof(unsigned int))
+ return -1;
+
+ aa->n_arrays = *prop++;
+ aa->array_sz = *prop++;
+
+ /* Now that we know the number of arrays and size of each array,
+ * revalidate the size of the property read in.
+ */
+ if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
+ return -1;
+
+ aa->arrays = prop;
+ return 0;
+}
+
+/*
+ * This is like of_node_to_nid_single() for memory represented in the
+ * ibm,dynamic-reconfiguration-memory node.
+ */
+static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
+ struct assoc_arrays *aa)
+{
+ int default_nid = 0;
+ int nid = default_nid;
+ int index;
+
+ if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
+ !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
+ drmem->aa_index < aa->n_arrays) {
+ index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
+ nid = aa->arrays[index];
+
+ if (nid == 0xffff || nid >= MAX_NUMNODES)
+ nid = default_nid;
+ }
+
+ return nid;
+}
+
+/*
+ * Figure out to which domain a cpu belongs and stick it there.
+ * Return the id of the domain used.
+ */
+static int __cpuinit numa_setup_cpu(unsigned long lcpu)
+{
+ int nid = 0;
+ struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
+
+ if (!cpu) {
+ WARN_ON(1);
+ goto out;
+ }
+
+ nid = of_node_to_nid_single(cpu);
+
+ if (nid < 0 || !node_online(nid))
+ nid = first_online_node;
+out:
+ map_cpu_to_node(lcpu, nid);
+
+ of_node_put(cpu);
+
+ return nid;
+}
+
+static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
+ unsigned long action,
+ void *hcpu)
+{
+ unsigned long lcpu = (unsigned long)hcpu;
+ int ret = NOTIFY_DONE;
+
+ switch (action) {
+ case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
+ numa_setup_cpu(lcpu);
+ ret = NOTIFY_OK;
+ break;
+#ifdef CONFIG_HOTPLUG_CPU
+ case CPU_DEAD:
+ case CPU_DEAD_FROZEN:
+ case CPU_UP_CANCELED:
+ case CPU_UP_CANCELED_FROZEN:
+ unmap_cpu_from_node(lcpu);
+ break;
+ ret = NOTIFY_OK;
+#endif
+ }
+ return ret;
+}
+
+/*
+ * Check and possibly modify a memory region to enforce the memory limit.
+ *
+ * Returns the size the region should have to enforce the memory limit.
+ * This will either be the original value of size, a truncated value,
+ * or zero. If the returned value of size is 0 the region should be
+ * discarded as it lies wholly above the memory limit.
+ */
+static unsigned long __init numa_enforce_memory_limit(unsigned long start,
+ unsigned long size)
+{
+ /*
+ * We use memblock_end_of_DRAM() in here instead of memory_limit because
+ * we've already adjusted it for the limit and it takes care of
+ * having memory holes below the limit. Also, in the case of
+ * iommu_is_off, memory_limit is not set but is implicitly enforced.
+ */
+
+ if (start + size <= memblock_end_of_DRAM())
+ return size;
+
+ if (start >= memblock_end_of_DRAM())
+ return 0;
+
+ return memblock_end_of_DRAM() - start;
+}
+
+/*
+ * Reads the counter for a given entry in
+ * linux,drconf-usable-memory property
+ */
+static inline int __init read_usm_ranges(const u32 **usm)
+{
+ /*
+ * For each lmb in ibm,dynamic-memory a corresponding
+ * entry in linux,drconf-usable-memory property contains
+ * a counter followed by that many (base, size) duple.
+ * read the counter from linux,drconf-usable-memory
+ */
+ return read_n_cells(n_mem_size_cells, usm);
+}
+
+/*
+ * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
+ * node. This assumes n_mem_{addr,size}_cells have been set.
+ */
+static void __init parse_drconf_memory(struct device_node *memory)
+{
+ const u32 *uninitialized_var(dm), *usm;
+ unsigned int n, rc, ranges, is_kexec_kdump = 0;
+ unsigned long lmb_size, base, size, sz;
+ int nid;
+ struct assoc_arrays aa;
+
+ n = of_get_drconf_memory(memory, &dm);
+ if (!n)
+ return;
+
+ lmb_size = of_get_lmb_size(memory);
+ if (!lmb_size)
+ return;
+
+ rc = of_get_assoc_arrays(memory, &aa);
+ if (rc)
+ return;
+
+ /* check if this is a kexec/kdump kernel */
+ usm = of_get_usable_memory(memory);
+ if (usm != NULL)
+ is_kexec_kdump = 1;
+
+ for (; n != 0; --n) {
+ struct of_drconf_cell drmem;
+
+ read_drconf_cell(&drmem, &dm);
+
+ /* skip this block if the reserved bit is set in flags (0x80)
+ or if the block is not assigned to this partition (0x8) */
+ if ((drmem.flags & DRCONF_MEM_RESERVED)
+ || !(drmem.flags & DRCONF_MEM_ASSIGNED))
+ continue;
+
+ base = drmem.base_addr;
+ size = lmb_size;
+ ranges = 1;
+
+ if (is_kexec_kdump) {
+ ranges = read_usm_ranges(&usm);
+ if (!ranges) /* there are no (base, size) duple */
+ continue;
+ }
+ do {
+ if (is_kexec_kdump) {
+ base = read_n_cells(n_mem_addr_cells, &usm);
+ size = read_n_cells(n_mem_size_cells, &usm);
+ }
+ nid = of_drconf_to_nid_single(&drmem, &aa);
+ fake_numa_create_new_node(
+ ((base + size) >> PAGE_SHIFT),
+ &nid);
+ node_set_online(nid);
+ sz = numa_enforce_memory_limit(base, size);
+ if (sz)
+ memblock_set_node(base, sz, nid);
+ } while (--ranges);
+ }
+}
+
+static int __init parse_numa_properties(void)
+{
+ struct device_node *memory;
+ int default_nid = 0;
+ unsigned long i;
+
+ if (numa_enabled == 0) {
+ printk(KERN_WARNING "NUMA disabled by user\n");
+ return -1;
+ }
+
+ min_common_depth = find_min_common_depth();
+
+ if (min_common_depth < 0)
+ return min_common_depth;
+
+ dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
+
+ /*
+ * Even though we connect cpus to numa domains later in SMP
+ * init, we need to know the node ids now. This is because
+ * each node to be onlined must have NODE_DATA etc backing it.
+ */
+ for_each_present_cpu(i) {
+ struct device_node *cpu;
+ int nid;
+
+ cpu = of_get_cpu_node(i, NULL);
+ BUG_ON(!cpu);
+ nid = of_node_to_nid_single(cpu);
+ of_node_put(cpu);
+
+ /*
+ * Don't fall back to default_nid yet -- we will plug
+ * cpus into nodes once the memory scan has discovered
+ * the topology.
+ */
+ if (nid < 0)
+ continue;
+ node_set_online(nid);
+ }
+
+ get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
+
+ for_each_node_by_type(memory, "memory") {
+ unsigned long start;
+ unsigned long size;
+ int nid;
+ int ranges;
+ const unsigned int *memcell_buf;
+ unsigned int len;
+
+ memcell_buf = of_get_property(memory,
+ "linux,usable-memory", &len);
+ if (!memcell_buf || len <= 0)
+ memcell_buf = of_get_property(memory, "reg", &len);
+ if (!memcell_buf || len <= 0)
+ continue;
+
+ /* ranges in cell */
+ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
+new_range:
+ /* these are order-sensitive, and modify the buffer pointer */
+ start = read_n_cells(n_mem_addr_cells, &memcell_buf);
+ size = read_n_cells(n_mem_size_cells, &memcell_buf);
+
+ /*
+ * Assumption: either all memory nodes or none will
+ * have associativity properties. If none, then
+ * everything goes to default_nid.
+ */
+ nid = of_node_to_nid_single(memory);
+ if (nid < 0)
+ nid = default_nid;
+
+ fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
+ node_set_online(nid);
+
+ if (!(size = numa_enforce_memory_limit(start, size))) {
+ if (--ranges)
+ goto new_range;
+ else
+ continue;
+ }
+
+ memblock_set_node(start, size, nid);
+
+ if (--ranges)
+ goto new_range;
+ }
+
+ /*
+ * Now do the same thing for each MEMBLOCK listed in the
+ * ibm,dynamic-memory property in the
+ * ibm,dynamic-reconfiguration-memory node.
+ */
+ memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
+ if (memory)
+ parse_drconf_memory(memory);
+
+ return 0;
+}
+
+static void __init setup_nonnuma(void)
+{
+ unsigned long top_of_ram = memblock_end_of_DRAM();
+ unsigned long total_ram = memblock_phys_mem_size();
+ unsigned long start_pfn, end_pfn;
+ unsigned int nid = 0;
+ struct memblock_region *reg;
+
+ printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
+ top_of_ram, total_ram);
+ printk(KERN_DEBUG "Memory hole size: %ldMB\n",
+ (top_of_ram - total_ram) >> 20);
+
+ for_each_memblock(memory, reg) {
+ start_pfn = memblock_region_memory_base_pfn(reg);
+ end_pfn = memblock_region_memory_end_pfn(reg);
+
+ fake_numa_create_new_node(end_pfn, &nid);
+ memblock_set_node(PFN_PHYS(start_pfn),
+ PFN_PHYS(end_pfn - start_pfn), nid);
+ node_set_online(nid);
+ }
+}
+
+void __init dump_numa_cpu_topology(void)
+{
+ unsigned int node;
+ unsigned int cpu, count;
+
+ if (min_common_depth == -1 || !numa_enabled)
+ return;
+
+ for_each_online_node(node) {
+ printk(KERN_DEBUG "Node %d CPUs:", node);
+
+ count = 0;
+ /*
+ * If we used a CPU iterator here we would miss printing
+ * the holes in the cpumap.
+ */
+ for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
+ if (cpumask_test_cpu(cpu,
+ node_to_cpumask_map[node])) {
+ if (count == 0)
+ printk(" %u", cpu);
+ ++count;
+ } else {
+ if (count > 1)
+ printk("-%u", cpu - 1);
+ count = 0;
+ }
+ }
+
+ if (count > 1)
+ printk("-%u", nr_cpu_ids - 1);
+ printk("\n");
+ }
+}
+
+static void __init dump_numa_memory_topology(void)
+{
+ unsigned int node;
+ unsigned int count;
+
+ if (min_common_depth == -1 || !numa_enabled)
+ return;
+
+ for_each_online_node(node) {
+ unsigned long i;
+
+ printk(KERN_DEBUG "Node %d Memory:", node);
+
+ count = 0;
+
+ for (i = 0; i < memblock_end_of_DRAM();
+ i += (1 << SECTION_SIZE_BITS)) {
+ if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
+ if (count == 0)
+ printk(" 0x%lx", i);
+ ++count;
+ } else {
+ if (count > 0)
+ printk("-0x%lx", i);
+ count = 0;
+ }
+ }
+
+ if (count > 0)
+ printk("-0x%lx", i);
+ printk("\n");
+ }
+}
+
+/*
+ * Allocate some memory, satisfying the memblock or bootmem allocator where
+ * required. nid is the preferred node and end is the physical address of
+ * the highest address in the node.
+ *
+ * Returns the virtual address of the memory.
+ */
+static void __init *careful_zallocation(int nid, unsigned long size,
+ unsigned long align,
+ unsigned long end_pfn)
+{
+ void *ret;
+ int new_nid;
+ unsigned long ret_paddr;
+
+ ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
+
+ /* retry over all memory */
+ if (!ret_paddr)
+ ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
+
+ if (!ret_paddr)
+ panic("numa.c: cannot allocate %lu bytes for node %d",
+ size, nid);
+
+ ret = __va(ret_paddr);
+
+ /*
+ * We initialize the nodes in numeric order: 0, 1, 2...
+ * and hand over control from the MEMBLOCK allocator to the
+ * bootmem allocator. If this function is called for
+ * node 5, then we know that all nodes <5 are using the
+ * bootmem allocator instead of the MEMBLOCK allocator.
+ *
+ * So, check the nid from which this allocation came
+ * and double check to see if we need to use bootmem
+ * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
+ * since it would be useless.
+ */
+ new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
+ if (new_nid < nid) {
+ ret = __alloc_bootmem_node(NODE_DATA(new_nid),
+ size, align, 0);
+
+ dbg("alloc_bootmem %p %lx\n", ret, size);
+ }
+
+ memset(ret, 0, size);
+ return ret;
+}
+
+static struct notifier_block __cpuinitdata ppc64_numa_nb = {
+ .notifier_call = cpu_numa_callback,
+ .priority = 1 /* Must run before sched domains notifier. */
+};
+
+static void __init mark_reserved_regions_for_nid(int nid)
+{
+ struct pglist_data *node = NODE_DATA(nid);
+ struct memblock_region *reg;
+
+ for_each_memblock(reserved, reg) {
+ unsigned long physbase = reg->base;
+ unsigned long size = reg->size;
+ unsigned long start_pfn = physbase >> PAGE_SHIFT;
+ unsigned long end_pfn = PFN_UP(physbase + size);
+ struct node_active_region node_ar;
+ unsigned long node_end_pfn = node->node_start_pfn +
+ node->node_spanned_pages;
+
+ /*
+ * Check to make sure that this memblock.reserved area is
+ * within the bounds of the node that we care about.
+ * Checking the nid of the start and end points is not
+ * sufficient because the reserved area could span the
+ * entire node.
+ */
+ if (end_pfn <= node->node_start_pfn ||
+ start_pfn >= node_end_pfn)
+ continue;
+
+ get_node_active_region(start_pfn, &node_ar);
+ while (start_pfn < end_pfn &&
+ node_ar.start_pfn < node_ar.end_pfn) {
+ unsigned long reserve_size = size;
+ /*
+ * if reserved region extends past active region
+ * then trim size to active region
+ */
+ if (end_pfn > node_ar.end_pfn)
+ reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
+ - physbase;
+ /*
+ * Only worry about *this* node, others may not
+ * yet have valid NODE_DATA().
+ */
+ if (node_ar.nid == nid) {
+ dbg("reserve_bootmem %lx %lx nid=%d\n",
+ physbase, reserve_size, node_ar.nid);
+ reserve_bootmem_node(NODE_DATA(node_ar.nid),
+ physbase, reserve_size,
+ BOOTMEM_DEFAULT);
+ }
+ /*
+ * if reserved region is contained in the active region
+ * then done.
+ */
+ if (end_pfn <= node_ar.end_pfn)
+ break;
+
+ /*
+ * reserved region extends past the active region
+ * get next active region that contains this
+ * reserved region
+ */
+ start_pfn = node_ar.end_pfn;
+ physbase = start_pfn << PAGE_SHIFT;
+ size = size - reserve_size;
+ get_node_active_region(start_pfn, &node_ar);
+ }
+ }
+}
+
+
+void __init do_init_bootmem(void)
+{
+ int nid;
+
+ min_low_pfn = 0;
+ max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
+ max_pfn = max_low_pfn;
+
+ if (parse_numa_properties())
+ setup_nonnuma();
+ else
+ dump_numa_memory_topology();
+
+ for_each_online_node(nid) {
+ unsigned long start_pfn, end_pfn;
+ void *bootmem_vaddr;
+ unsigned long bootmap_pages;
+
+ get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
+
+ /*
+ * Allocate the node structure node local if possible
+ *
+ * Be careful moving this around, as it relies on all
+ * previous nodes' bootmem to be initialized and have
+ * all reserved areas marked.
+ */
+ NODE_DATA(nid) = careful_zallocation(nid,
+ sizeof(struct pglist_data),
+ SMP_CACHE_BYTES, end_pfn);
+
+ dbg("node %d\n", nid);
+ dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
+
+ NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
+ NODE_DATA(nid)->node_start_pfn = start_pfn;
+ NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
+
+ if (NODE_DATA(nid)->node_spanned_pages == 0)
+ continue;
+
+ dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
+ dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
+
+ bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
+ bootmem_vaddr = careful_zallocation(nid,
+ bootmap_pages << PAGE_SHIFT,
+ PAGE_SIZE, end_pfn);
+
+ dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
+
+ init_bootmem_node(NODE_DATA(nid),
+ __pa(bootmem_vaddr) >> PAGE_SHIFT,
+ start_pfn, end_pfn);
+
+ free_bootmem_with_active_regions(nid, end_pfn);
+ /*
+ * Be very careful about moving this around. Future
+ * calls to careful_zallocation() depend on this getting
+ * done correctly.
+ */
+ mark_reserved_regions_for_nid(nid);
+ sparse_memory_present_with_active_regions(nid);
+ }
+
+ init_bootmem_done = 1;
+
+ /*
+ * Now bootmem is initialised we can create the node to cpumask
+ * lookup tables and setup the cpu callback to populate them.
+ */
+ setup_node_to_cpumask_map();
+
+ register_cpu_notifier(&ppc64_numa_nb);
+ cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
+ (void *)(unsigned long)boot_cpuid);
+}
+
+void __init paging_init(void)
+{
+ unsigned long max_zone_pfns[MAX_NR_ZONES];
+ memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+ max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
+ free_area_init_nodes(max_zone_pfns);
+}
+
+static int __init early_numa(char *p)
+{
+ if (!p)
+ return 0;
+
+ if (strstr(p, "off"))
+ numa_enabled = 0;
+
+ if (strstr(p, "debug"))
+ numa_debug = 1;
+
+ p = strstr(p, "fake=");
+ if (p)
+ cmdline = p + strlen("fake=");
+
+ return 0;
+}
+early_param("numa", early_numa);
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+/*
+ * Find the node associated with a hot added memory section for
+ * memory represented in the device tree by the property
+ * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
+ */
+static int hot_add_drconf_scn_to_nid(struct device_node *memory,
+ unsigned long scn_addr)
+{
+ const u32 *dm;
+ unsigned int drconf_cell_cnt, rc;
+ unsigned long lmb_size;
+ struct assoc_arrays aa;
+ int nid = -1;
+
+ drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
+ if (!drconf_cell_cnt)
+ return -1;
+
+ lmb_size = of_get_lmb_size(memory);
+ if (!lmb_size)
+ return -1;
+
+ rc = of_get_assoc_arrays(memory, &aa);
+ if (rc)
+ return -1;
+
+ for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
+ struct of_drconf_cell drmem;
+
+ read_drconf_cell(&drmem, &dm);
+
+ /* skip this block if it is reserved or not assigned to
+ * this partition */
+ if ((drmem.flags & DRCONF_MEM_RESERVED)
+ || !(drmem.flags & DRCONF_MEM_ASSIGNED))
+ continue;
+
+ if ((scn_addr < drmem.base_addr)
+ || (scn_addr >= (drmem.base_addr + lmb_size)))
+ continue;
+
+ nid = of_drconf_to_nid_single(&drmem, &aa);
+ break;
+ }
+
+ return nid;
+}
+
+/*
+ * Find the node associated with a hot added memory section for memory
+ * represented in the device tree as a node (i.e. memory@XXXX) for
+ * each memblock.
+ */
+int hot_add_node_scn_to_nid(unsigned long scn_addr)
+{
+ struct device_node *memory;
+ int nid = -1;
+
+ for_each_node_by_type(memory, "memory") {
+ unsigned long start, size;
+ int ranges;
+ const unsigned int *memcell_buf;
+ unsigned int len;
+
+ memcell_buf = of_get_property(memory, "reg", &len);
+ if (!memcell_buf || len <= 0)
+ continue;
+
+ /* ranges in cell */
+ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
+
+ while (ranges--) {
+ start = read_n_cells(n_mem_addr_cells, &memcell_buf);
+ size = read_n_cells(n_mem_size_cells, &memcell_buf);
+
+ if ((scn_addr < start) || (scn_addr >= (start + size)))
+ continue;
+
+ nid = of_node_to_nid_single(memory);
+ break;
+ }
+
+ if (nid >= 0)
+ break;
+ }
+
+ of_node_put(memory);
+
+ return nid;
+}
+
+/*
+ * Find the node associated with a hot added memory section. Section
+ * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
+ * sections are fully contained within a single MEMBLOCK.
+ */
+int hot_add_scn_to_nid(unsigned long scn_addr)
+{
+ struct device_node *memory = NULL;
+ int nid, found = 0;
+
+ if (!numa_enabled || (min_common_depth < 0))
+ return first_online_node;
+
+ memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
+ if (memory) {
+ nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
+ of_node_put(memory);
+ } else {
+ nid = hot_add_node_scn_to_nid(scn_addr);
+ }
+
+ if (nid < 0 || !node_online(nid))
+ nid = first_online_node;
+
+ if (NODE_DATA(nid)->node_spanned_pages)
+ return nid;
+
+ for_each_online_node(nid) {
+ if (NODE_DATA(nid)->node_spanned_pages) {
+ found = 1;
+ break;
+ }
+ }
+
+ BUG_ON(!found);
+ return nid;
+}
+
+static u64 hot_add_drconf_memory_max(void)
+{
+ struct device_node *memory = NULL;
+ unsigned int drconf_cell_cnt = 0;
+ u64 lmb_size = 0;
+ const u32 *dm = 0;
+
+ memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
+ if (memory) {
+ drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
+ lmb_size = of_get_lmb_size(memory);
+ of_node_put(memory);
+ }
+ return lmb_size * drconf_cell_cnt;
+}
+
+/*
+ * memory_hotplug_max - return max address of memory that may be added
+ *
+ * This is currently only used on systems that support drconfig memory
+ * hotplug.
+ */
+u64 memory_hotplug_max(void)
+{
+ return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
+}
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+/* Virtual Processor Home Node (VPHN) support */
+#ifdef CONFIG_PPC_SPLPAR
+static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
+static cpumask_t cpu_associativity_changes_mask;
+static int vphn_enabled;
+static void set_topology_timer(void);
+
+/*
+ * Store the current values of the associativity change counters in the
+ * hypervisor.
+ */
+static void setup_cpu_associativity_change_counters(void)
+{
+ int cpu;
+
+ /* The VPHN feature supports a maximum of 8 reference points */
+ BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
+
+ for_each_possible_cpu(cpu) {
+ int i;
+ u8 *counts = vphn_cpu_change_counts[cpu];
+ volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
+
+ for (i = 0; i < distance_ref_points_depth; i++)
+ counts[i] = hypervisor_counts[i];
+ }
+}
+
+/*
+ * The hypervisor maintains a set of 8 associativity change counters in
+ * the VPA of each cpu that correspond to the associativity levels in the
+ * ibm,associativity-reference-points property. When an associativity
+ * level changes, the corresponding counter is incremented.
+ *
+ * Set a bit in cpu_associativity_changes_mask for each cpu whose home
+ * node associativity levels have changed.
+ *
+ * Returns the number of cpus with unhandled associativity changes.
+ */
+static int update_cpu_associativity_changes_mask(void)
+{
+ int cpu, nr_cpus = 0;
+ cpumask_t *changes = &cpu_associativity_changes_mask;
+
+ cpumask_clear(changes);
+
+ for_each_possible_cpu(cpu) {
+ int i, changed = 0;
+ u8 *counts = vphn_cpu_change_counts[cpu];
+ volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
+
+ for (i = 0; i < distance_ref_points_depth; i++) {
+ if (hypervisor_counts[i] != counts[i]) {
+ counts[i] = hypervisor_counts[i];
+ changed = 1;
+ }
+ }
+ if (changed) {
+ cpumask_set_cpu(cpu, changes);
+ nr_cpus++;
+ }
+ }
+
+ return nr_cpus;
+}
+
+/*
+ * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
+ * the complete property we have to add the length in the first cell.
+ */
+#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
+
+/*
+ * Convert the associativity domain numbers returned from the hypervisor
+ * to the sequence they would appear in the ibm,associativity property.
+ */
+static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
+{
+ int i, nr_assoc_doms = 0;
+ const u16 *field = (const u16*) packed;
+
+#define VPHN_FIELD_UNUSED (0xffff)
+#define VPHN_FIELD_MSB (0x8000)
+#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
+
+ for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
+ if (*field == VPHN_FIELD_UNUSED) {
+ /* All significant fields processed, and remaining
+ * fields contain the reserved value of all 1's.
+ * Just store them.
+ */
+ unpacked[i] = *((u32*)field);
+ field += 2;
+ } else if (*field & VPHN_FIELD_MSB) {
+ /* Data is in the lower 15 bits of this field */
+ unpacked[i] = *field & VPHN_FIELD_MASK;
+ field++;
+ nr_assoc_doms++;
+ } else {
+ /* Data is in the lower 15 bits of this field
+ * concatenated with the next 16 bit field
+ */
+ unpacked[i] = *((u32*)field);
+ field += 2;
+ nr_assoc_doms++;
+ }
+ }
+
+ /* The first cell contains the length of the property */
+ unpacked[0] = nr_assoc_doms;
+
+ return nr_assoc_doms;
+}
+
+/*
+ * Retrieve the new associativity information for a virtual processor's
+ * home node.
+ */
+static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
+{
+ long rc;
+ long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
+ u64 flags = 1;
+ int hwcpu = get_hard_smp_processor_id(cpu);
+
+ rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
+ vphn_unpack_associativity(retbuf, associativity);
+
+ return rc;
+}
+
+static long vphn_get_associativity(unsigned long cpu,
+ unsigned int *associativity)
+{
+ long rc;
+
+ rc = hcall_vphn(cpu, associativity);
+
+ switch (rc) {
+ case H_FUNCTION:
+ printk(KERN_INFO
+ "VPHN is not supported. Disabling polling...\n");
+ stop_topology_update();
+ break;
+ case H_HARDWARE:
+ printk(KERN_ERR
+ "hcall_vphn() experienced a hardware fault "
+ "preventing VPHN. Disabling polling...\n");
+ stop_topology_update();
+ }
+
+ return rc;
+}
+
+/*
+ * Update the node maps and sysfs entries for each cpu whose home node
+ * has changed.
+ */
+int arch_update_cpu_topology(void)
+{
+ int cpu, nid, old_nid;
+ unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
+ struct device *dev;
+
+ for_each_cpu(cpu,&cpu_associativity_changes_mask) {
+ vphn_get_associativity(cpu, associativity);
+ nid = associativity_to_nid(associativity);
+
+ if (nid < 0 || !node_online(nid))
+ nid = first_online_node;
+
+ old_nid = numa_cpu_lookup_table[cpu];
+
+ /* Disable hotplug while we update the cpu
+ * masks and sysfs.
+ */
+ get_online_cpus();
+ unregister_cpu_under_node(cpu, old_nid);
+ unmap_cpu_from_node(cpu);
+ map_cpu_to_node(cpu, nid);
+ register_cpu_under_node(cpu, nid);
+ put_online_cpus();
+
+ dev = get_cpu_device(cpu);
+ if (dev)
+ kobject_uevent(&dev->kobj, KOBJ_CHANGE);
+ }
+
+ return 1;
+}
+
+static void topology_work_fn(struct work_struct *work)
+{
+ rebuild_sched_domains();
+}
+static DECLARE_WORK(topology_work, topology_work_fn);
+
+void topology_schedule_update(void)
+{
+ schedule_work(&topology_work);
+}
+
+static void topology_timer_fn(unsigned long ignored)
+{
+ if (!vphn_enabled)
+ return;
+ if (update_cpu_associativity_changes_mask() > 0)
+ topology_schedule_update();
+ set_topology_timer();
+}
+static struct timer_list topology_timer =
+ TIMER_INITIALIZER(topology_timer_fn, 0, 0);
+
+static void set_topology_timer(void)
+{
+ topology_timer.data = 0;
+ topology_timer.expires = jiffies + 60 * HZ;
+ add_timer(&topology_timer);
+}
+
+/*
+ * Start polling for VPHN associativity changes.
+ */
+int start_topology_update(void)
+{
+ int rc = 0;
+
+ /* Disabled until races with load balancing are fixed */
+ if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
+ get_lppaca()->shared_proc) {
+ vphn_enabled = 1;
+ setup_cpu_associativity_change_counters();
+ init_timer_deferrable(&topology_timer);
+ set_topology_timer();
+ rc = 1;
+ }
+
+ return rc;
+}
+__initcall(start_topology_update);
+
+/*
+ * Disable polling for VPHN associativity changes.
+ */
+int stop_topology_update(void)
+{
+ vphn_enabled = 0;
+ return del_timer_sync(&topology_timer);
+}
+#endif /* CONFIG_PPC_SPLPAR */