diff options
Diffstat (limited to 'arch/powerpc/mm/numa.c')
-rw-r--r-- | arch/powerpc/mm/numa.c | 1530 |
1 files changed, 1530 insertions, 0 deletions
diff --git a/arch/powerpc/mm/numa.c b/arch/powerpc/mm/numa.c new file mode 100644 index 00000000..6e8f677f --- /dev/null +++ b/arch/powerpc/mm/numa.c @@ -0,0 +1,1530 @@ +/* + * pSeries NUMA support + * + * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ +#include <linux/threads.h> +#include <linux/bootmem.h> +#include <linux/init.h> +#include <linux/mm.h> +#include <linux/mmzone.h> +#include <linux/export.h> +#include <linux/nodemask.h> +#include <linux/cpu.h> +#include <linux/notifier.h> +#include <linux/memblock.h> +#include <linux/of.h> +#include <linux/pfn.h> +#include <linux/cpuset.h> +#include <linux/node.h> +#include <asm/sparsemem.h> +#include <asm/prom.h> +#include <asm/smp.h> +#include <asm/firmware.h> +#include <asm/paca.h> +#include <asm/hvcall.h> +#include <asm/setup.h> + +static int numa_enabled = 1; + +static char *cmdline __initdata; + +static int numa_debug; +#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } + +int numa_cpu_lookup_table[NR_CPUS]; +cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; +struct pglist_data *node_data[MAX_NUMNODES]; + +EXPORT_SYMBOL(numa_cpu_lookup_table); +EXPORT_SYMBOL(node_to_cpumask_map); +EXPORT_SYMBOL(node_data); + +static int min_common_depth; +static int n_mem_addr_cells, n_mem_size_cells; +static int form1_affinity; + +#define MAX_DISTANCE_REF_POINTS 4 +static int distance_ref_points_depth; +static const unsigned int *distance_ref_points; +static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; + +/* + * Allocate node_to_cpumask_map based on number of available nodes + * Requires node_possible_map to be valid. + * + * Note: cpumask_of_node() is not valid until after this is done. + */ +static void __init setup_node_to_cpumask_map(void) +{ + unsigned int node, num = 0; + + /* setup nr_node_ids if not done yet */ + if (nr_node_ids == MAX_NUMNODES) { + for_each_node_mask(node, node_possible_map) + num = node; + nr_node_ids = num + 1; + } + + /* allocate the map */ + for (node = 0; node < nr_node_ids; node++) + alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); + + /* cpumask_of_node() will now work */ + dbg("Node to cpumask map for %d nodes\n", nr_node_ids); +} + +static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, + unsigned int *nid) +{ + unsigned long long mem; + char *p = cmdline; + static unsigned int fake_nid; + static unsigned long long curr_boundary; + + /* + * Modify node id, iff we started creating NUMA nodes + * We want to continue from where we left of the last time + */ + if (fake_nid) + *nid = fake_nid; + /* + * In case there are no more arguments to parse, the + * node_id should be the same as the last fake node id + * (we've handled this above). + */ + if (!p) + return 0; + + mem = memparse(p, &p); + if (!mem) + return 0; + + if (mem < curr_boundary) + return 0; + + curr_boundary = mem; + + if ((end_pfn << PAGE_SHIFT) > mem) { + /* + * Skip commas and spaces + */ + while (*p == ',' || *p == ' ' || *p == '\t') + p++; + + cmdline = p; + fake_nid++; + *nid = fake_nid; + dbg("created new fake_node with id %d\n", fake_nid); + return 1; + } + return 0; +} + +/* + * get_node_active_region - Return active region containing pfn + * Active range returned is empty if none found. + * @pfn: The page to return the region for + * @node_ar: Returned set to the active region containing @pfn + */ +static void __init get_node_active_region(unsigned long pfn, + struct node_active_region *node_ar) +{ + unsigned long start_pfn, end_pfn; + int i, nid; + + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + if (pfn >= start_pfn && pfn < end_pfn) { + node_ar->nid = nid; + node_ar->start_pfn = start_pfn; + node_ar->end_pfn = end_pfn; + break; + } + } +} + +static void map_cpu_to_node(int cpu, int node) +{ + numa_cpu_lookup_table[cpu] = node; + + dbg("adding cpu %d to node %d\n", cpu, node); + + if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) + cpumask_set_cpu(cpu, node_to_cpumask_map[node]); +} + +#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) +static void unmap_cpu_from_node(unsigned long cpu) +{ + int node = numa_cpu_lookup_table[cpu]; + + dbg("removing cpu %lu from node %d\n", cpu, node); + + if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { + cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); + } else { + printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", + cpu, node); + } +} +#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ + +/* must hold reference to node during call */ +static const int *of_get_associativity(struct device_node *dev) +{ + return of_get_property(dev, "ibm,associativity", NULL); +} + +/* + * Returns the property linux,drconf-usable-memory if + * it exists (the property exists only in kexec/kdump kernels, + * added by kexec-tools) + */ +static const u32 *of_get_usable_memory(struct device_node *memory) +{ + const u32 *prop; + u32 len; + prop = of_get_property(memory, "linux,drconf-usable-memory", &len); + if (!prop || len < sizeof(unsigned int)) + return 0; + return prop; +} + +int __node_distance(int a, int b) +{ + int i; + int distance = LOCAL_DISTANCE; + + if (!form1_affinity) + return distance; + + for (i = 0; i < distance_ref_points_depth; i++) { + if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) + break; + + /* Double the distance for each NUMA level */ + distance *= 2; + } + + return distance; +} + +static void initialize_distance_lookup_table(int nid, + const unsigned int *associativity) +{ + int i; + + if (!form1_affinity) + return; + + for (i = 0; i < distance_ref_points_depth; i++) { + distance_lookup_table[nid][i] = + associativity[distance_ref_points[i]]; + } +} + +/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa + * info is found. + */ +static int associativity_to_nid(const unsigned int *associativity) +{ + int nid = -1; + + if (min_common_depth == -1) + goto out; + + if (associativity[0] >= min_common_depth) + nid = associativity[min_common_depth]; + + /* POWER4 LPAR uses 0xffff as invalid node */ + if (nid == 0xffff || nid >= MAX_NUMNODES) + nid = -1; + + if (nid > 0 && associativity[0] >= distance_ref_points_depth) + initialize_distance_lookup_table(nid, associativity); + +out: + return nid; +} + +/* Returns the nid associated with the given device tree node, + * or -1 if not found. + */ +static int of_node_to_nid_single(struct device_node *device) +{ + int nid = -1; + const unsigned int *tmp; + + tmp = of_get_associativity(device); + if (tmp) + nid = associativity_to_nid(tmp); + return nid; +} + +/* Walk the device tree upwards, looking for an associativity id */ +int of_node_to_nid(struct device_node *device) +{ + struct device_node *tmp; + int nid = -1; + + of_node_get(device); + while (device) { + nid = of_node_to_nid_single(device); + if (nid != -1) + break; + + tmp = device; + device = of_get_parent(tmp); + of_node_put(tmp); + } + of_node_put(device); + + return nid; +} +EXPORT_SYMBOL_GPL(of_node_to_nid); + +static int __init find_min_common_depth(void) +{ + int depth; + struct device_node *chosen; + struct device_node *root; + const char *vec5; + + if (firmware_has_feature(FW_FEATURE_OPAL)) + root = of_find_node_by_path("/ibm,opal"); + else + root = of_find_node_by_path("/rtas"); + if (!root) + root = of_find_node_by_path("/"); + + /* + * This property is a set of 32-bit integers, each representing + * an index into the ibm,associativity nodes. + * + * With form 0 affinity the first integer is for an SMP configuration + * (should be all 0's) and the second is for a normal NUMA + * configuration. We have only one level of NUMA. + * + * With form 1 affinity the first integer is the most significant + * NUMA boundary and the following are progressively less significant + * boundaries. There can be more than one level of NUMA. + */ + distance_ref_points = of_get_property(root, + "ibm,associativity-reference-points", + &distance_ref_points_depth); + + if (!distance_ref_points) { + dbg("NUMA: ibm,associativity-reference-points not found.\n"); + goto err; + } + + distance_ref_points_depth /= sizeof(int); + +#define VEC5_AFFINITY_BYTE 5 +#define VEC5_AFFINITY 0x80 + + if (firmware_has_feature(FW_FEATURE_OPAL)) + form1_affinity = 1; + else { + chosen = of_find_node_by_path("/chosen"); + if (chosen) { + vec5 = of_get_property(chosen, + "ibm,architecture-vec-5", NULL); + if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & + VEC5_AFFINITY)) { + dbg("Using form 1 affinity\n"); + form1_affinity = 1; + } + } + } + + if (form1_affinity) { + depth = distance_ref_points[0]; + } else { + if (distance_ref_points_depth < 2) { + printk(KERN_WARNING "NUMA: " + "short ibm,associativity-reference-points\n"); + goto err; + } + + depth = distance_ref_points[1]; + } + + /* + * Warn and cap if the hardware supports more than + * MAX_DISTANCE_REF_POINTS domains. + */ + if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { + printk(KERN_WARNING "NUMA: distance array capped at " + "%d entries\n", MAX_DISTANCE_REF_POINTS); + distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; + } + + of_node_put(root); + return depth; + +err: + of_node_put(root); + return -1; +} + +static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) +{ + struct device_node *memory = NULL; + + memory = of_find_node_by_type(memory, "memory"); + if (!memory) + panic("numa.c: No memory nodes found!"); + + *n_addr_cells = of_n_addr_cells(memory); + *n_size_cells = of_n_size_cells(memory); + of_node_put(memory); +} + +static unsigned long read_n_cells(int n, const unsigned int **buf) +{ + unsigned long result = 0; + + while (n--) { + result = (result << 32) | **buf; + (*buf)++; + } + return result; +} + +struct of_drconf_cell { + u64 base_addr; + u32 drc_index; + u32 reserved; + u32 aa_index; + u32 flags; +}; + +#define DRCONF_MEM_ASSIGNED 0x00000008 +#define DRCONF_MEM_AI_INVALID 0x00000040 +#define DRCONF_MEM_RESERVED 0x00000080 + +/* + * Read the next memblock list entry from the ibm,dynamic-memory property + * and return the information in the provided of_drconf_cell structure. + */ +static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) +{ + const u32 *cp; + + drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); + + cp = *cellp; + drmem->drc_index = cp[0]; + drmem->reserved = cp[1]; + drmem->aa_index = cp[2]; + drmem->flags = cp[3]; + + *cellp = cp + 4; +} + +/* + * Retrieve and validate the ibm,dynamic-memory property of the device tree. + * + * The layout of the ibm,dynamic-memory property is a number N of memblock + * list entries followed by N memblock list entries. Each memblock list entry + * contains information as laid out in the of_drconf_cell struct above. + */ +static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) +{ + const u32 *prop; + u32 len, entries; + + prop = of_get_property(memory, "ibm,dynamic-memory", &len); + if (!prop || len < sizeof(unsigned int)) + return 0; + + entries = *prop++; + + /* Now that we know the number of entries, revalidate the size + * of the property read in to ensure we have everything + */ + if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) + return 0; + + *dm = prop; + return entries; +} + +/* + * Retrieve and validate the ibm,lmb-size property for drconf memory + * from the device tree. + */ +static u64 of_get_lmb_size(struct device_node *memory) +{ + const u32 *prop; + u32 len; + + prop = of_get_property(memory, "ibm,lmb-size", &len); + if (!prop || len < sizeof(unsigned int)) + return 0; + + return read_n_cells(n_mem_size_cells, &prop); +} + +struct assoc_arrays { + u32 n_arrays; + u32 array_sz; + const u32 *arrays; +}; + +/* + * Retrieve and validate the list of associativity arrays for drconf + * memory from the ibm,associativity-lookup-arrays property of the + * device tree.. + * + * The layout of the ibm,associativity-lookup-arrays property is a number N + * indicating the number of associativity arrays, followed by a number M + * indicating the size of each associativity array, followed by a list + * of N associativity arrays. + */ +static int of_get_assoc_arrays(struct device_node *memory, + struct assoc_arrays *aa) +{ + const u32 *prop; + u32 len; + + prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); + if (!prop || len < 2 * sizeof(unsigned int)) + return -1; + + aa->n_arrays = *prop++; + aa->array_sz = *prop++; + + /* Now that we know the number of arrays and size of each array, + * revalidate the size of the property read in. + */ + if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) + return -1; + + aa->arrays = prop; + return 0; +} + +/* + * This is like of_node_to_nid_single() for memory represented in the + * ibm,dynamic-reconfiguration-memory node. + */ +static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, + struct assoc_arrays *aa) +{ + int default_nid = 0; + int nid = default_nid; + int index; + + if (min_common_depth > 0 && min_common_depth <= aa->array_sz && + !(drmem->flags & DRCONF_MEM_AI_INVALID) && + drmem->aa_index < aa->n_arrays) { + index = drmem->aa_index * aa->array_sz + min_common_depth - 1; + nid = aa->arrays[index]; + + if (nid == 0xffff || nid >= MAX_NUMNODES) + nid = default_nid; + } + + return nid; +} + +/* + * Figure out to which domain a cpu belongs and stick it there. + * Return the id of the domain used. + */ +static int __cpuinit numa_setup_cpu(unsigned long lcpu) +{ + int nid = 0; + struct device_node *cpu = of_get_cpu_node(lcpu, NULL); + + if (!cpu) { + WARN_ON(1); + goto out; + } + + nid = of_node_to_nid_single(cpu); + + if (nid < 0 || !node_online(nid)) + nid = first_online_node; +out: + map_cpu_to_node(lcpu, nid); + + of_node_put(cpu); + + return nid; +} + +static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, + unsigned long action, + void *hcpu) +{ + unsigned long lcpu = (unsigned long)hcpu; + int ret = NOTIFY_DONE; + + switch (action) { + case CPU_UP_PREPARE: + case CPU_UP_PREPARE_FROZEN: + numa_setup_cpu(lcpu); + ret = NOTIFY_OK; + break; +#ifdef CONFIG_HOTPLUG_CPU + case CPU_DEAD: + case CPU_DEAD_FROZEN: + case CPU_UP_CANCELED: + case CPU_UP_CANCELED_FROZEN: + unmap_cpu_from_node(lcpu); + break; + ret = NOTIFY_OK; +#endif + } + return ret; +} + +/* + * Check and possibly modify a memory region to enforce the memory limit. + * + * Returns the size the region should have to enforce the memory limit. + * This will either be the original value of size, a truncated value, + * or zero. If the returned value of size is 0 the region should be + * discarded as it lies wholly above the memory limit. + */ +static unsigned long __init numa_enforce_memory_limit(unsigned long start, + unsigned long size) +{ + /* + * We use memblock_end_of_DRAM() in here instead of memory_limit because + * we've already adjusted it for the limit and it takes care of + * having memory holes below the limit. Also, in the case of + * iommu_is_off, memory_limit is not set but is implicitly enforced. + */ + + if (start + size <= memblock_end_of_DRAM()) + return size; + + if (start >= memblock_end_of_DRAM()) + return 0; + + return memblock_end_of_DRAM() - start; +} + +/* + * Reads the counter for a given entry in + * linux,drconf-usable-memory property + */ +static inline int __init read_usm_ranges(const u32 **usm) +{ + /* + * For each lmb in ibm,dynamic-memory a corresponding + * entry in linux,drconf-usable-memory property contains + * a counter followed by that many (base, size) duple. + * read the counter from linux,drconf-usable-memory + */ + return read_n_cells(n_mem_size_cells, usm); +} + +/* + * Extract NUMA information from the ibm,dynamic-reconfiguration-memory + * node. This assumes n_mem_{addr,size}_cells have been set. + */ +static void __init parse_drconf_memory(struct device_node *memory) +{ + const u32 *uninitialized_var(dm), *usm; + unsigned int n, rc, ranges, is_kexec_kdump = 0; + unsigned long lmb_size, base, size, sz; + int nid; + struct assoc_arrays aa; + + n = of_get_drconf_memory(memory, &dm); + if (!n) + return; + + lmb_size = of_get_lmb_size(memory); + if (!lmb_size) + return; + + rc = of_get_assoc_arrays(memory, &aa); + if (rc) + return; + + /* check if this is a kexec/kdump kernel */ + usm = of_get_usable_memory(memory); + if (usm != NULL) + is_kexec_kdump = 1; + + for (; n != 0; --n) { + struct of_drconf_cell drmem; + + read_drconf_cell(&drmem, &dm); + + /* skip this block if the reserved bit is set in flags (0x80) + or if the block is not assigned to this partition (0x8) */ + if ((drmem.flags & DRCONF_MEM_RESERVED) + || !(drmem.flags & DRCONF_MEM_ASSIGNED)) + continue; + + base = drmem.base_addr; + size = lmb_size; + ranges = 1; + + if (is_kexec_kdump) { + ranges = read_usm_ranges(&usm); + if (!ranges) /* there are no (base, size) duple */ + continue; + } + do { + if (is_kexec_kdump) { + base = read_n_cells(n_mem_addr_cells, &usm); + size = read_n_cells(n_mem_size_cells, &usm); + } + nid = of_drconf_to_nid_single(&drmem, &aa); + fake_numa_create_new_node( + ((base + size) >> PAGE_SHIFT), + &nid); + node_set_online(nid); + sz = numa_enforce_memory_limit(base, size); + if (sz) + memblock_set_node(base, sz, nid); + } while (--ranges); + } +} + +static int __init parse_numa_properties(void) +{ + struct device_node *memory; + int default_nid = 0; + unsigned long i; + + if (numa_enabled == 0) { + printk(KERN_WARNING "NUMA disabled by user\n"); + return -1; + } + + min_common_depth = find_min_common_depth(); + + if (min_common_depth < 0) + return min_common_depth; + + dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); + + /* + * Even though we connect cpus to numa domains later in SMP + * init, we need to know the node ids now. This is because + * each node to be onlined must have NODE_DATA etc backing it. + */ + for_each_present_cpu(i) { + struct device_node *cpu; + int nid; + + cpu = of_get_cpu_node(i, NULL); + BUG_ON(!cpu); + nid = of_node_to_nid_single(cpu); + of_node_put(cpu); + + /* + * Don't fall back to default_nid yet -- we will plug + * cpus into nodes once the memory scan has discovered + * the topology. + */ + if (nid < 0) + continue; + node_set_online(nid); + } + + get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); + + for_each_node_by_type(memory, "memory") { + unsigned long start; + unsigned long size; + int nid; + int ranges; + const unsigned int *memcell_buf; + unsigned int len; + + memcell_buf = of_get_property(memory, + "linux,usable-memory", &len); + if (!memcell_buf || len <= 0) + memcell_buf = of_get_property(memory, "reg", &len); + if (!memcell_buf || len <= 0) + continue; + + /* ranges in cell */ + ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); +new_range: + /* these are order-sensitive, and modify the buffer pointer */ + start = read_n_cells(n_mem_addr_cells, &memcell_buf); + size = read_n_cells(n_mem_size_cells, &memcell_buf); + + /* + * Assumption: either all memory nodes or none will + * have associativity properties. If none, then + * everything goes to default_nid. + */ + nid = of_node_to_nid_single(memory); + if (nid < 0) + nid = default_nid; + + fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); + node_set_online(nid); + + if (!(size = numa_enforce_memory_limit(start, size))) { + if (--ranges) + goto new_range; + else + continue; + } + + memblock_set_node(start, size, nid); + + if (--ranges) + goto new_range; + } + + /* + * Now do the same thing for each MEMBLOCK listed in the + * ibm,dynamic-memory property in the + * ibm,dynamic-reconfiguration-memory node. + */ + memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); + if (memory) + parse_drconf_memory(memory); + + return 0; +} + +static void __init setup_nonnuma(void) +{ + unsigned long top_of_ram = memblock_end_of_DRAM(); + unsigned long total_ram = memblock_phys_mem_size(); + unsigned long start_pfn, end_pfn; + unsigned int nid = 0; + struct memblock_region *reg; + + printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", + top_of_ram, total_ram); + printk(KERN_DEBUG "Memory hole size: %ldMB\n", + (top_of_ram - total_ram) >> 20); + + for_each_memblock(memory, reg) { + start_pfn = memblock_region_memory_base_pfn(reg); + end_pfn = memblock_region_memory_end_pfn(reg); + + fake_numa_create_new_node(end_pfn, &nid); + memblock_set_node(PFN_PHYS(start_pfn), + PFN_PHYS(end_pfn - start_pfn), nid); + node_set_online(nid); + } +} + +void __init dump_numa_cpu_topology(void) +{ + unsigned int node; + unsigned int cpu, count; + + if (min_common_depth == -1 || !numa_enabled) + return; + + for_each_online_node(node) { + printk(KERN_DEBUG "Node %d CPUs:", node); + + count = 0; + /* + * If we used a CPU iterator here we would miss printing + * the holes in the cpumap. + */ + for (cpu = 0; cpu < nr_cpu_ids; cpu++) { + if (cpumask_test_cpu(cpu, + node_to_cpumask_map[node])) { + if (count == 0) + printk(" %u", cpu); + ++count; + } else { + if (count > 1) + printk("-%u", cpu - 1); + count = 0; + } + } + + if (count > 1) + printk("-%u", nr_cpu_ids - 1); + printk("\n"); + } +} + +static void __init dump_numa_memory_topology(void) +{ + unsigned int node; + unsigned int count; + + if (min_common_depth == -1 || !numa_enabled) + return; + + for_each_online_node(node) { + unsigned long i; + + printk(KERN_DEBUG "Node %d Memory:", node); + + count = 0; + + for (i = 0; i < memblock_end_of_DRAM(); + i += (1 << SECTION_SIZE_BITS)) { + if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { + if (count == 0) + printk(" 0x%lx", i); + ++count; + } else { + if (count > 0) + printk("-0x%lx", i); + count = 0; + } + } + + if (count > 0) + printk("-0x%lx", i); + printk("\n"); + } +} + +/* + * Allocate some memory, satisfying the memblock or bootmem allocator where + * required. nid is the preferred node and end is the physical address of + * the highest address in the node. + * + * Returns the virtual address of the memory. + */ +static void __init *careful_zallocation(int nid, unsigned long size, + unsigned long align, + unsigned long end_pfn) +{ + void *ret; + int new_nid; + unsigned long ret_paddr; + + ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT); + + /* retry over all memory */ + if (!ret_paddr) + ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM()); + + if (!ret_paddr) + panic("numa.c: cannot allocate %lu bytes for node %d", + size, nid); + + ret = __va(ret_paddr); + + /* + * We initialize the nodes in numeric order: 0, 1, 2... + * and hand over control from the MEMBLOCK allocator to the + * bootmem allocator. If this function is called for + * node 5, then we know that all nodes <5 are using the + * bootmem allocator instead of the MEMBLOCK allocator. + * + * So, check the nid from which this allocation came + * and double check to see if we need to use bootmem + * instead of the MEMBLOCK. We don't free the MEMBLOCK memory + * since it would be useless. + */ + new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); + if (new_nid < nid) { + ret = __alloc_bootmem_node(NODE_DATA(new_nid), + size, align, 0); + + dbg("alloc_bootmem %p %lx\n", ret, size); + } + + memset(ret, 0, size); + return ret; +} + +static struct notifier_block __cpuinitdata ppc64_numa_nb = { + .notifier_call = cpu_numa_callback, + .priority = 1 /* Must run before sched domains notifier. */ +}; + +static void __init mark_reserved_regions_for_nid(int nid) +{ + struct pglist_data *node = NODE_DATA(nid); + struct memblock_region *reg; + + for_each_memblock(reserved, reg) { + unsigned long physbase = reg->base; + unsigned long size = reg->size; + unsigned long start_pfn = physbase >> PAGE_SHIFT; + unsigned long end_pfn = PFN_UP(physbase + size); + struct node_active_region node_ar; + unsigned long node_end_pfn = node->node_start_pfn + + node->node_spanned_pages; + + /* + * Check to make sure that this memblock.reserved area is + * within the bounds of the node that we care about. + * Checking the nid of the start and end points is not + * sufficient because the reserved area could span the + * entire node. + */ + if (end_pfn <= node->node_start_pfn || + start_pfn >= node_end_pfn) + continue; + + get_node_active_region(start_pfn, &node_ar); + while (start_pfn < end_pfn && + node_ar.start_pfn < node_ar.end_pfn) { + unsigned long reserve_size = size; + /* + * if reserved region extends past active region + * then trim size to active region + */ + if (end_pfn > node_ar.end_pfn) + reserve_size = (node_ar.end_pfn << PAGE_SHIFT) + - physbase; + /* + * Only worry about *this* node, others may not + * yet have valid NODE_DATA(). + */ + if (node_ar.nid == nid) { + dbg("reserve_bootmem %lx %lx nid=%d\n", + physbase, reserve_size, node_ar.nid); + reserve_bootmem_node(NODE_DATA(node_ar.nid), + physbase, reserve_size, + BOOTMEM_DEFAULT); + } + /* + * if reserved region is contained in the active region + * then done. + */ + if (end_pfn <= node_ar.end_pfn) + break; + + /* + * reserved region extends past the active region + * get next active region that contains this + * reserved region + */ + start_pfn = node_ar.end_pfn; + physbase = start_pfn << PAGE_SHIFT; + size = size - reserve_size; + get_node_active_region(start_pfn, &node_ar); + } + } +} + + +void __init do_init_bootmem(void) +{ + int nid; + + min_low_pfn = 0; + max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; + max_pfn = max_low_pfn; + + if (parse_numa_properties()) + setup_nonnuma(); + else + dump_numa_memory_topology(); + + for_each_online_node(nid) { + unsigned long start_pfn, end_pfn; + void *bootmem_vaddr; + unsigned long bootmap_pages; + + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); + + /* + * Allocate the node structure node local if possible + * + * Be careful moving this around, as it relies on all + * previous nodes' bootmem to be initialized and have + * all reserved areas marked. + */ + NODE_DATA(nid) = careful_zallocation(nid, + sizeof(struct pglist_data), + SMP_CACHE_BYTES, end_pfn); + + dbg("node %d\n", nid); + dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); + + NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; + NODE_DATA(nid)->node_start_pfn = start_pfn; + NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; + + if (NODE_DATA(nid)->node_spanned_pages == 0) + continue; + + dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); + dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); + + bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); + bootmem_vaddr = careful_zallocation(nid, + bootmap_pages << PAGE_SHIFT, + PAGE_SIZE, end_pfn); + + dbg("bootmap_vaddr = %p\n", bootmem_vaddr); + + init_bootmem_node(NODE_DATA(nid), + __pa(bootmem_vaddr) >> PAGE_SHIFT, + start_pfn, end_pfn); + + free_bootmem_with_active_regions(nid, end_pfn); + /* + * Be very careful about moving this around. Future + * calls to careful_zallocation() depend on this getting + * done correctly. + */ + mark_reserved_regions_for_nid(nid); + sparse_memory_present_with_active_regions(nid); + } + + init_bootmem_done = 1; + + /* + * Now bootmem is initialised we can create the node to cpumask + * lookup tables and setup the cpu callback to populate them. + */ + setup_node_to_cpumask_map(); + + register_cpu_notifier(&ppc64_numa_nb); + cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, + (void *)(unsigned long)boot_cpuid); +} + +void __init paging_init(void) +{ + unsigned long max_zone_pfns[MAX_NR_ZONES]; + memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); + max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT; + free_area_init_nodes(max_zone_pfns); +} + +static int __init early_numa(char *p) +{ + if (!p) + return 0; + + if (strstr(p, "off")) + numa_enabled = 0; + + if (strstr(p, "debug")) + numa_debug = 1; + + p = strstr(p, "fake="); + if (p) + cmdline = p + strlen("fake="); + + return 0; +} +early_param("numa", early_numa); + +#ifdef CONFIG_MEMORY_HOTPLUG +/* + * Find the node associated with a hot added memory section for + * memory represented in the device tree by the property + * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. + */ +static int hot_add_drconf_scn_to_nid(struct device_node *memory, + unsigned long scn_addr) +{ + const u32 *dm; + unsigned int drconf_cell_cnt, rc; + unsigned long lmb_size; + struct assoc_arrays aa; + int nid = -1; + + drconf_cell_cnt = of_get_drconf_memory(memory, &dm); + if (!drconf_cell_cnt) + return -1; + + lmb_size = of_get_lmb_size(memory); + if (!lmb_size) + return -1; + + rc = of_get_assoc_arrays(memory, &aa); + if (rc) + return -1; + + for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { + struct of_drconf_cell drmem; + + read_drconf_cell(&drmem, &dm); + + /* skip this block if it is reserved or not assigned to + * this partition */ + if ((drmem.flags & DRCONF_MEM_RESERVED) + || !(drmem.flags & DRCONF_MEM_ASSIGNED)) + continue; + + if ((scn_addr < drmem.base_addr) + || (scn_addr >= (drmem.base_addr + lmb_size))) + continue; + + nid = of_drconf_to_nid_single(&drmem, &aa); + break; + } + + return nid; +} + +/* + * Find the node associated with a hot added memory section for memory + * represented in the device tree as a node (i.e. memory@XXXX) for + * each memblock. + */ +int hot_add_node_scn_to_nid(unsigned long scn_addr) +{ + struct device_node *memory; + int nid = -1; + + for_each_node_by_type(memory, "memory") { + unsigned long start, size; + int ranges; + const unsigned int *memcell_buf; + unsigned int len; + + memcell_buf = of_get_property(memory, "reg", &len); + if (!memcell_buf || len <= 0) + continue; + + /* ranges in cell */ + ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); + + while (ranges--) { + start = read_n_cells(n_mem_addr_cells, &memcell_buf); + size = read_n_cells(n_mem_size_cells, &memcell_buf); + + if ((scn_addr < start) || (scn_addr >= (start + size))) + continue; + + nid = of_node_to_nid_single(memory); + break; + } + + if (nid >= 0) + break; + } + + of_node_put(memory); + + return nid; +} + +/* + * Find the node associated with a hot added memory section. Section + * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that + * sections are fully contained within a single MEMBLOCK. + */ +int hot_add_scn_to_nid(unsigned long scn_addr) +{ + struct device_node *memory = NULL; + int nid, found = 0; + + if (!numa_enabled || (min_common_depth < 0)) + return first_online_node; + + memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); + if (memory) { + nid = hot_add_drconf_scn_to_nid(memory, scn_addr); + of_node_put(memory); + } else { + nid = hot_add_node_scn_to_nid(scn_addr); + } + + if (nid < 0 || !node_online(nid)) + nid = first_online_node; + + if (NODE_DATA(nid)->node_spanned_pages) + return nid; + + for_each_online_node(nid) { + if (NODE_DATA(nid)->node_spanned_pages) { + found = 1; + break; + } + } + + BUG_ON(!found); + return nid; +} + +static u64 hot_add_drconf_memory_max(void) +{ + struct device_node *memory = NULL; + unsigned int drconf_cell_cnt = 0; + u64 lmb_size = 0; + const u32 *dm = 0; + + memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); + if (memory) { + drconf_cell_cnt = of_get_drconf_memory(memory, &dm); + lmb_size = of_get_lmb_size(memory); + of_node_put(memory); + } + return lmb_size * drconf_cell_cnt; +} + +/* + * memory_hotplug_max - return max address of memory that may be added + * + * This is currently only used on systems that support drconfig memory + * hotplug. + */ +u64 memory_hotplug_max(void) +{ + return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); +} +#endif /* CONFIG_MEMORY_HOTPLUG */ + +/* Virtual Processor Home Node (VPHN) support */ +#ifdef CONFIG_PPC_SPLPAR +static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; +static cpumask_t cpu_associativity_changes_mask; +static int vphn_enabled; +static void set_topology_timer(void); + +/* + * Store the current values of the associativity change counters in the + * hypervisor. + */ +static void setup_cpu_associativity_change_counters(void) +{ + int cpu; + + /* The VPHN feature supports a maximum of 8 reference points */ + BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); + + for_each_possible_cpu(cpu) { + int i; + u8 *counts = vphn_cpu_change_counts[cpu]; + volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; + + for (i = 0; i < distance_ref_points_depth; i++) + counts[i] = hypervisor_counts[i]; + } +} + +/* + * The hypervisor maintains a set of 8 associativity change counters in + * the VPA of each cpu that correspond to the associativity levels in the + * ibm,associativity-reference-points property. When an associativity + * level changes, the corresponding counter is incremented. + * + * Set a bit in cpu_associativity_changes_mask for each cpu whose home + * node associativity levels have changed. + * + * Returns the number of cpus with unhandled associativity changes. + */ +static int update_cpu_associativity_changes_mask(void) +{ + int cpu, nr_cpus = 0; + cpumask_t *changes = &cpu_associativity_changes_mask; + + cpumask_clear(changes); + + for_each_possible_cpu(cpu) { + int i, changed = 0; + u8 *counts = vphn_cpu_change_counts[cpu]; + volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; + + for (i = 0; i < distance_ref_points_depth; i++) { + if (hypervisor_counts[i] != counts[i]) { + counts[i] = hypervisor_counts[i]; + changed = 1; + } + } + if (changed) { + cpumask_set_cpu(cpu, changes); + nr_cpus++; + } + } + + return nr_cpus; +} + +/* + * 6 64-bit registers unpacked into 12 32-bit associativity values. To form + * the complete property we have to add the length in the first cell. + */ +#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1) + +/* + * Convert the associativity domain numbers returned from the hypervisor + * to the sequence they would appear in the ibm,associativity property. + */ +static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked) +{ + int i, nr_assoc_doms = 0; + const u16 *field = (const u16*) packed; + +#define VPHN_FIELD_UNUSED (0xffff) +#define VPHN_FIELD_MSB (0x8000) +#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB) + + for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) { + if (*field == VPHN_FIELD_UNUSED) { + /* All significant fields processed, and remaining + * fields contain the reserved value of all 1's. + * Just store them. + */ + unpacked[i] = *((u32*)field); + field += 2; + } else if (*field & VPHN_FIELD_MSB) { + /* Data is in the lower 15 bits of this field */ + unpacked[i] = *field & VPHN_FIELD_MASK; + field++; + nr_assoc_doms++; + } else { + /* Data is in the lower 15 bits of this field + * concatenated with the next 16 bit field + */ + unpacked[i] = *((u32*)field); + field += 2; + nr_assoc_doms++; + } + } + + /* The first cell contains the length of the property */ + unpacked[0] = nr_assoc_doms; + + return nr_assoc_doms; +} + +/* + * Retrieve the new associativity information for a virtual processor's + * home node. + */ +static long hcall_vphn(unsigned long cpu, unsigned int *associativity) +{ + long rc; + long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; + u64 flags = 1; + int hwcpu = get_hard_smp_processor_id(cpu); + + rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); + vphn_unpack_associativity(retbuf, associativity); + + return rc; +} + +static long vphn_get_associativity(unsigned long cpu, + unsigned int *associativity) +{ + long rc; + + rc = hcall_vphn(cpu, associativity); + + switch (rc) { + case H_FUNCTION: + printk(KERN_INFO + "VPHN is not supported. Disabling polling...\n"); + stop_topology_update(); + break; + case H_HARDWARE: + printk(KERN_ERR + "hcall_vphn() experienced a hardware fault " + "preventing VPHN. Disabling polling...\n"); + stop_topology_update(); + } + + return rc; +} + +/* + * Update the node maps and sysfs entries for each cpu whose home node + * has changed. + */ +int arch_update_cpu_topology(void) +{ + int cpu, nid, old_nid; + unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0}; + struct device *dev; + + for_each_cpu(cpu,&cpu_associativity_changes_mask) { + vphn_get_associativity(cpu, associativity); + nid = associativity_to_nid(associativity); + + if (nid < 0 || !node_online(nid)) + nid = first_online_node; + + old_nid = numa_cpu_lookup_table[cpu]; + + /* Disable hotplug while we update the cpu + * masks and sysfs. + */ + get_online_cpus(); + unregister_cpu_under_node(cpu, old_nid); + unmap_cpu_from_node(cpu); + map_cpu_to_node(cpu, nid); + register_cpu_under_node(cpu, nid); + put_online_cpus(); + + dev = get_cpu_device(cpu); + if (dev) + kobject_uevent(&dev->kobj, KOBJ_CHANGE); + } + + return 1; +} + +static void topology_work_fn(struct work_struct *work) +{ + rebuild_sched_domains(); +} +static DECLARE_WORK(topology_work, topology_work_fn); + +void topology_schedule_update(void) +{ + schedule_work(&topology_work); +} + +static void topology_timer_fn(unsigned long ignored) +{ + if (!vphn_enabled) + return; + if (update_cpu_associativity_changes_mask() > 0) + topology_schedule_update(); + set_topology_timer(); +} +static struct timer_list topology_timer = + TIMER_INITIALIZER(topology_timer_fn, 0, 0); + +static void set_topology_timer(void) +{ + topology_timer.data = 0; + topology_timer.expires = jiffies + 60 * HZ; + add_timer(&topology_timer); +} + +/* + * Start polling for VPHN associativity changes. + */ +int start_topology_update(void) +{ + int rc = 0; + + /* Disabled until races with load balancing are fixed */ + if (0 && firmware_has_feature(FW_FEATURE_VPHN) && + get_lppaca()->shared_proc) { + vphn_enabled = 1; + setup_cpu_associativity_change_counters(); + init_timer_deferrable(&topology_timer); + set_topology_timer(); + rc = 1; + } + + return rc; +} +__initcall(start_topology_update); + +/* + * Disable polling for VPHN associativity changes. + */ +int stop_topology_update(void) +{ + vphn_enabled = 0; + return del_timer_sync(&topology_timer); +} +#endif /* CONFIG_PPC_SPLPAR */ |