diff options
Diffstat (limited to 'arch/ia64/mm')
-rw-r--r-- | arch/ia64/mm/Makefile | 11 | ||||
-rw-r--r-- | arch/ia64/mm/contig.c | 356 | ||||
-rw-r--r-- | arch/ia64/mm/discontig.c | 825 | ||||
-rw-r--r-- | arch/ia64/mm/extable.c | 115 | ||||
-rw-r--r-- | arch/ia64/mm/fault.c | 281 | ||||
-rw-r--r-- | arch/ia64/mm/hugetlbpage.c | 207 | ||||
-rw-r--r-- | arch/ia64/mm/init.c | 716 | ||||
-rw-r--r-- | arch/ia64/mm/ioremap.c | 121 | ||||
-rw-r--r-- | arch/ia64/mm/numa.c | 92 | ||||
-rw-r--r-- | arch/ia64/mm/tlb.c | 562 |
10 files changed, 3286 insertions, 0 deletions
diff --git a/arch/ia64/mm/Makefile b/arch/ia64/mm/Makefile new file mode 100644 index 00000000..bb0a01a8 --- /dev/null +++ b/arch/ia64/mm/Makefile @@ -0,0 +1,11 @@ +# +# Makefile for the ia64-specific parts of the memory manager. +# + +obj-y := init.o fault.o tlb.o extable.o ioremap.o + +obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o +obj-$(CONFIG_NUMA) += numa.o +obj-$(CONFIG_DISCONTIGMEM) += discontig.o +obj-$(CONFIG_SPARSEMEM) += discontig.o +obj-$(CONFIG_FLATMEM) += contig.o diff --git a/arch/ia64/mm/contig.c b/arch/ia64/mm/contig.c new file mode 100644 index 00000000..1516d1dc --- /dev/null +++ b/arch/ia64/mm/contig.c @@ -0,0 +1,356 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1998-2003 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + * Stephane Eranian <eranian@hpl.hp.com> + * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> + * Copyright (C) 1999 VA Linux Systems + * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> + * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. + * + * Routines used by ia64 machines with contiguous (or virtually contiguous) + * memory. + */ +#include <linux/bootmem.h> +#include <linux/efi.h> +#include <linux/memblock.h> +#include <linux/mm.h> +#include <linux/nmi.h> +#include <linux/swap.h> + +#include <asm/meminit.h> +#include <asm/pgalloc.h> +#include <asm/pgtable.h> +#include <asm/sections.h> +#include <asm/mca.h> + +#ifdef CONFIG_VIRTUAL_MEM_MAP +static unsigned long max_gap; +#endif + +/** + * show_mem - give short summary of memory stats + * + * Shows a simple page count of reserved and used pages in the system. + * For discontig machines, it does this on a per-pgdat basis. + */ +void show_mem(unsigned int filter) +{ + int i, total_reserved = 0; + int total_shared = 0, total_cached = 0; + unsigned long total_present = 0; + pg_data_t *pgdat; + + printk(KERN_INFO "Mem-info:\n"); + show_free_areas(filter); + printk(KERN_INFO "Node memory in pages:\n"); + for_each_online_pgdat(pgdat) { + unsigned long present; + unsigned long flags; + int shared = 0, cached = 0, reserved = 0; + int nid = pgdat->node_id; + + if (skip_free_areas_node(filter, nid)) + continue; + pgdat_resize_lock(pgdat, &flags); + present = pgdat->node_present_pages; + for(i = 0; i < pgdat->node_spanned_pages; i++) { + struct page *page; + if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) + touch_nmi_watchdog(); + if (pfn_valid(pgdat->node_start_pfn + i)) + page = pfn_to_page(pgdat->node_start_pfn + i); + else { +#ifdef CONFIG_VIRTUAL_MEM_MAP + if (max_gap < LARGE_GAP) + continue; +#endif + i = vmemmap_find_next_valid_pfn(nid, i) - 1; + continue; + } + if (PageReserved(page)) + reserved++; + else if (PageSwapCache(page)) + cached++; + else if (page_count(page)) + shared += page_count(page)-1; + } + pgdat_resize_unlock(pgdat, &flags); + total_present += present; + total_reserved += reserved; + total_cached += cached; + total_shared += shared; + printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " + "shrd: %10d, swpd: %10d\n", nid, + present, reserved, shared, cached); + } + printk(KERN_INFO "%ld pages of RAM\n", total_present); + printk(KERN_INFO "%d reserved pages\n", total_reserved); + printk(KERN_INFO "%d pages shared\n", total_shared); + printk(KERN_INFO "%d pages swap cached\n", total_cached); + printk(KERN_INFO "Total of %ld pages in page table cache\n", + quicklist_total_size()); + printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); +} + + +/* physical address where the bootmem map is located */ +unsigned long bootmap_start; + +/** + * find_bootmap_location - callback to find a memory area for the bootmap + * @start: start of region + * @end: end of region + * @arg: unused callback data + * + * Find a place to put the bootmap and return its starting address in + * bootmap_start. This address must be page-aligned. + */ +static int __init +find_bootmap_location (u64 start, u64 end, void *arg) +{ + u64 needed = *(unsigned long *)arg; + u64 range_start, range_end, free_start; + int i; + +#if IGNORE_PFN0 + if (start == PAGE_OFFSET) { + start += PAGE_SIZE; + if (start >= end) + return 0; + } +#endif + + free_start = PAGE_OFFSET; + + for (i = 0; i < num_rsvd_regions; i++) { + range_start = max(start, free_start); + range_end = min(end, rsvd_region[i].start & PAGE_MASK); + + free_start = PAGE_ALIGN(rsvd_region[i].end); + + if (range_end <= range_start) + continue; /* skip over empty range */ + + if (range_end - range_start >= needed) { + bootmap_start = __pa(range_start); + return -1; /* done */ + } + + /* nothing more available in this segment */ + if (range_end == end) + return 0; + } + return 0; +} + +#ifdef CONFIG_SMP +static void *cpu_data; +/** + * per_cpu_init - setup per-cpu variables + * + * Allocate and setup per-cpu data areas. + */ +void * __cpuinit +per_cpu_init (void) +{ + static bool first_time = true; + void *cpu0_data = __cpu0_per_cpu; + unsigned int cpu; + + if (!first_time) + goto skip; + first_time = false; + + /* + * get_free_pages() cannot be used before cpu_init() done. + * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs + * to avoid that AP calls get_zeroed_page(). + */ + for_each_possible_cpu(cpu) { + void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start; + + memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start); + __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; + per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; + + /* + * percpu area for cpu0 is moved from the __init area + * which is setup by head.S and used till this point. + * Update ar.k3. This move is ensures that percpu + * area for cpu0 is on the correct node and its + * virtual address isn't insanely far from other + * percpu areas which is important for congruent + * percpu allocator. + */ + if (cpu == 0) + ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) - + (unsigned long)__per_cpu_start); + + cpu_data += PERCPU_PAGE_SIZE; + } +skip: + return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; +} + +static inline void +alloc_per_cpu_data(void) +{ + cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(), + PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); +} + +/** + * setup_per_cpu_areas - setup percpu areas + * + * Arch code has already allocated and initialized percpu areas. All + * this function has to do is to teach the determined layout to the + * dynamic percpu allocator, which happens to be more complex than + * creating whole new ones using helpers. + */ +void __init +setup_per_cpu_areas(void) +{ + struct pcpu_alloc_info *ai; + struct pcpu_group_info *gi; + unsigned int cpu; + ssize_t static_size, reserved_size, dyn_size; + int rc; + + ai = pcpu_alloc_alloc_info(1, num_possible_cpus()); + if (!ai) + panic("failed to allocate pcpu_alloc_info"); + gi = &ai->groups[0]; + + /* units are assigned consecutively to possible cpus */ + for_each_possible_cpu(cpu) + gi->cpu_map[gi->nr_units++] = cpu; + + /* set parameters */ + static_size = __per_cpu_end - __per_cpu_start; + reserved_size = PERCPU_MODULE_RESERVE; + dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; + if (dyn_size < 0) + panic("percpu area overflow static=%zd reserved=%zd\n", + static_size, reserved_size); + + ai->static_size = static_size; + ai->reserved_size = reserved_size; + ai->dyn_size = dyn_size; + ai->unit_size = PERCPU_PAGE_SIZE; + ai->atom_size = PAGE_SIZE; + ai->alloc_size = PERCPU_PAGE_SIZE; + + rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]); + if (rc) + panic("failed to setup percpu area (err=%d)", rc); + + pcpu_free_alloc_info(ai); +} +#else +#define alloc_per_cpu_data() do { } while (0) +#endif /* CONFIG_SMP */ + +/** + * find_memory - setup memory map + * + * Walk the EFI memory map and find usable memory for the system, taking + * into account reserved areas. + */ +void __init +find_memory (void) +{ + unsigned long bootmap_size; + + reserve_memory(); + + /* first find highest page frame number */ + min_low_pfn = ~0UL; + max_low_pfn = 0; + efi_memmap_walk(find_max_min_low_pfn, NULL); + max_pfn = max_low_pfn; + /* how many bytes to cover all the pages */ + bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; + + /* look for a location to hold the bootmap */ + bootmap_start = ~0UL; + efi_memmap_walk(find_bootmap_location, &bootmap_size); + if (bootmap_start == ~0UL) + panic("Cannot find %ld bytes for bootmap\n", bootmap_size); + + bootmap_size = init_bootmem_node(NODE_DATA(0), + (bootmap_start >> PAGE_SHIFT), 0, max_pfn); + + /* Free all available memory, then mark bootmem-map as being in use. */ + efi_memmap_walk(filter_rsvd_memory, free_bootmem); + reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT); + + find_initrd(); + + alloc_per_cpu_data(); +} + +static int count_pages(u64 start, u64 end, void *arg) +{ + unsigned long *count = arg; + + *count += (end - start) >> PAGE_SHIFT; + return 0; +} + +/* + * Set up the page tables. + */ + +void __init +paging_init (void) +{ + unsigned long max_dma; + unsigned long max_zone_pfns[MAX_NR_ZONES]; + + num_physpages = 0; + efi_memmap_walk(count_pages, &num_physpages); + + memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); +#ifdef CONFIG_ZONE_DMA + max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; + max_zone_pfns[ZONE_DMA] = max_dma; +#endif + max_zone_pfns[ZONE_NORMAL] = max_low_pfn; + +#ifdef CONFIG_VIRTUAL_MEM_MAP + efi_memmap_walk(filter_memory, register_active_ranges); + efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); + if (max_gap < LARGE_GAP) { + vmem_map = (struct page *) 0; + free_area_init_nodes(max_zone_pfns); + } else { + unsigned long map_size; + + /* allocate virtual_mem_map */ + + map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * + sizeof(struct page)); + VMALLOC_END -= map_size; + vmem_map = (struct page *) VMALLOC_END; + efi_memmap_walk(create_mem_map_page_table, NULL); + + /* + * alloc_node_mem_map makes an adjustment for mem_map + * which isn't compatible with vmem_map. + */ + NODE_DATA(0)->node_mem_map = vmem_map + + find_min_pfn_with_active_regions(); + free_area_init_nodes(max_zone_pfns); + + printk("Virtual mem_map starts at 0x%p\n", mem_map); + } +#else /* !CONFIG_VIRTUAL_MEM_MAP */ + memblock_add_node(0, PFN_PHYS(max_low_pfn), 0); + free_area_init_nodes(max_zone_pfns); +#endif /* !CONFIG_VIRTUAL_MEM_MAP */ + zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); +} diff --git a/arch/ia64/mm/discontig.c b/arch/ia64/mm/discontig.c new file mode 100644 index 00000000..c641333c --- /dev/null +++ b/arch/ia64/mm/discontig.c @@ -0,0 +1,825 @@ +/* + * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. + * Copyright (c) 2001 Intel Corp. + * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> + * Copyright (c) 2002 NEC Corp. + * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> + * Copyright (c) 2004 Silicon Graphics, Inc + * Russ Anderson <rja@sgi.com> + * Jesse Barnes <jbarnes@sgi.com> + * Jack Steiner <steiner@sgi.com> + */ + +/* + * Platform initialization for Discontig Memory + */ + +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/nmi.h> +#include <linux/swap.h> +#include <linux/bootmem.h> +#include <linux/acpi.h> +#include <linux/efi.h> +#include <linux/nodemask.h> +#include <linux/slab.h> +#include <asm/pgalloc.h> +#include <asm/tlb.h> +#include <asm/meminit.h> +#include <asm/numa.h> +#include <asm/sections.h> + +/* + * Track per-node information needed to setup the boot memory allocator, the + * per-node areas, and the real VM. + */ +struct early_node_data { + struct ia64_node_data *node_data; + unsigned long pernode_addr; + unsigned long pernode_size; + unsigned long num_physpages; +#ifdef CONFIG_ZONE_DMA + unsigned long num_dma_physpages; +#endif + unsigned long min_pfn; + unsigned long max_pfn; +}; + +static struct early_node_data mem_data[MAX_NUMNODES] __initdata; +static nodemask_t memory_less_mask __initdata; + +pg_data_t *pgdat_list[MAX_NUMNODES]; + +/* + * To prevent cache aliasing effects, align per-node structures so that they + * start at addresses that are strided by node number. + */ +#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024) +#define NODEDATA_ALIGN(addr, node) \ + ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \ + (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) + +/** + * build_node_maps - callback to setup bootmem structs for each node + * @start: physical start of range + * @len: length of range + * @node: node where this range resides + * + * We allocate a struct bootmem_data for each piece of memory that we wish to + * treat as a virtually contiguous block (i.e. each node). Each such block + * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down + * if necessary. Any non-existent pages will simply be part of the virtual + * memmap. We also update min_low_pfn and max_low_pfn here as we receive + * memory ranges from the caller. + */ +static int __init build_node_maps(unsigned long start, unsigned long len, + int node) +{ + unsigned long spfn, epfn, end = start + len; + struct bootmem_data *bdp = &bootmem_node_data[node]; + + epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; + spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; + + if (!bdp->node_low_pfn) { + bdp->node_min_pfn = spfn; + bdp->node_low_pfn = epfn; + } else { + bdp->node_min_pfn = min(spfn, bdp->node_min_pfn); + bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); + } + + return 0; +} + +/** + * early_nr_cpus_node - return number of cpus on a given node + * @node: node to check + * + * Count the number of cpus on @node. We can't use nr_cpus_node() yet because + * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been + * called yet. Note that node 0 will also count all non-existent cpus. + */ +static int __meminit early_nr_cpus_node(int node) +{ + int cpu, n = 0; + + for_each_possible_early_cpu(cpu) + if (node == node_cpuid[cpu].nid) + n++; + + return n; +} + +/** + * compute_pernodesize - compute size of pernode data + * @node: the node id. + */ +static unsigned long __meminit compute_pernodesize(int node) +{ + unsigned long pernodesize = 0, cpus; + + cpus = early_nr_cpus_node(node); + pernodesize += PERCPU_PAGE_SIZE * cpus; + pernodesize += node * L1_CACHE_BYTES; + pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); + pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); + pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); + pernodesize = PAGE_ALIGN(pernodesize); + return pernodesize; +} + +/** + * per_cpu_node_setup - setup per-cpu areas on each node + * @cpu_data: per-cpu area on this node + * @node: node to setup + * + * Copy the static per-cpu data into the region we just set aside and then + * setup __per_cpu_offset for each CPU on this node. Return a pointer to + * the end of the area. + */ +static void *per_cpu_node_setup(void *cpu_data, int node) +{ +#ifdef CONFIG_SMP + int cpu; + + for_each_possible_early_cpu(cpu) { + void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start; + + if (node != node_cpuid[cpu].nid) + continue; + + memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start); + __per_cpu_offset[cpu] = (char *)__va(cpu_data) - + __per_cpu_start; + + /* + * percpu area for cpu0 is moved from the __init area + * which is setup by head.S and used till this point. + * Update ar.k3. This move is ensures that percpu + * area for cpu0 is on the correct node and its + * virtual address isn't insanely far from other + * percpu areas which is important for congruent + * percpu allocator. + */ + if (cpu == 0) + ia64_set_kr(IA64_KR_PER_CPU_DATA, + (unsigned long)cpu_data - + (unsigned long)__per_cpu_start); + + cpu_data += PERCPU_PAGE_SIZE; + } +#endif + return cpu_data; +} + +#ifdef CONFIG_SMP +/** + * setup_per_cpu_areas - setup percpu areas + * + * Arch code has already allocated and initialized percpu areas. All + * this function has to do is to teach the determined layout to the + * dynamic percpu allocator, which happens to be more complex than + * creating whole new ones using helpers. + */ +void __init setup_per_cpu_areas(void) +{ + struct pcpu_alloc_info *ai; + struct pcpu_group_info *uninitialized_var(gi); + unsigned int *cpu_map; + void *base; + unsigned long base_offset; + unsigned int cpu; + ssize_t static_size, reserved_size, dyn_size; + int node, prev_node, unit, nr_units, rc; + + ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids); + if (!ai) + panic("failed to allocate pcpu_alloc_info"); + cpu_map = ai->groups[0].cpu_map; + + /* determine base */ + base = (void *)ULONG_MAX; + for_each_possible_cpu(cpu) + base = min(base, + (void *)(__per_cpu_offset[cpu] + __per_cpu_start)); + base_offset = (void *)__per_cpu_start - base; + + /* build cpu_map, units are grouped by node */ + unit = 0; + for_each_node(node) + for_each_possible_cpu(cpu) + if (node == node_cpuid[cpu].nid) + cpu_map[unit++] = cpu; + nr_units = unit; + + /* set basic parameters */ + static_size = __per_cpu_end - __per_cpu_start; + reserved_size = PERCPU_MODULE_RESERVE; + dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; + if (dyn_size < 0) + panic("percpu area overflow static=%zd reserved=%zd\n", + static_size, reserved_size); + + ai->static_size = static_size; + ai->reserved_size = reserved_size; + ai->dyn_size = dyn_size; + ai->unit_size = PERCPU_PAGE_SIZE; + ai->atom_size = PAGE_SIZE; + ai->alloc_size = PERCPU_PAGE_SIZE; + + /* + * CPUs are put into groups according to node. Walk cpu_map + * and create new groups at node boundaries. + */ + prev_node = -1; + ai->nr_groups = 0; + for (unit = 0; unit < nr_units; unit++) { + cpu = cpu_map[unit]; + node = node_cpuid[cpu].nid; + + if (node == prev_node) { + gi->nr_units++; + continue; + } + prev_node = node; + + gi = &ai->groups[ai->nr_groups++]; + gi->nr_units = 1; + gi->base_offset = __per_cpu_offset[cpu] + base_offset; + gi->cpu_map = &cpu_map[unit]; + } + + rc = pcpu_setup_first_chunk(ai, base); + if (rc) + panic("failed to setup percpu area (err=%d)", rc); + + pcpu_free_alloc_info(ai); +} +#endif + +/** + * fill_pernode - initialize pernode data. + * @node: the node id. + * @pernode: physical address of pernode data + * @pernodesize: size of the pernode data + */ +static void __init fill_pernode(int node, unsigned long pernode, + unsigned long pernodesize) +{ + void *cpu_data; + int cpus = early_nr_cpus_node(node); + struct bootmem_data *bdp = &bootmem_node_data[node]; + + mem_data[node].pernode_addr = pernode; + mem_data[node].pernode_size = pernodesize; + memset(__va(pernode), 0, pernodesize); + + cpu_data = (void *)pernode; + pernode += PERCPU_PAGE_SIZE * cpus; + pernode += node * L1_CACHE_BYTES; + + pgdat_list[node] = __va(pernode); + pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); + + mem_data[node].node_data = __va(pernode); + pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); + + pgdat_list[node]->bdata = bdp; + pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); + + cpu_data = per_cpu_node_setup(cpu_data, node); + + return; +} + +/** + * find_pernode_space - allocate memory for memory map and per-node structures + * @start: physical start of range + * @len: length of range + * @node: node where this range resides + * + * This routine reserves space for the per-cpu data struct, the list of + * pg_data_ts and the per-node data struct. Each node will have something like + * the following in the first chunk of addr. space large enough to hold it. + * + * ________________________ + * | | + * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first + * | PERCPU_PAGE_SIZE * | start and length big enough + * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. + * |------------------------| + * | local pg_data_t * | + * |------------------------| + * | local ia64_node_data | + * |------------------------| + * | ??? | + * |________________________| + * + * Once this space has been set aside, the bootmem maps are initialized. We + * could probably move the allocation of the per-cpu and ia64_node_data space + * outside of this function and use alloc_bootmem_node(), but doing it here + * is straightforward and we get the alignments we want so... + */ +static int __init find_pernode_space(unsigned long start, unsigned long len, + int node) +{ + unsigned long spfn, epfn; + unsigned long pernodesize = 0, pernode, pages, mapsize; + struct bootmem_data *bdp = &bootmem_node_data[node]; + + spfn = start >> PAGE_SHIFT; + epfn = (start + len) >> PAGE_SHIFT; + + pages = bdp->node_low_pfn - bdp->node_min_pfn; + mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; + + /* + * Make sure this memory falls within this node's usable memory + * since we may have thrown some away in build_maps(). + */ + if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn) + return 0; + + /* Don't setup this node's local space twice... */ + if (mem_data[node].pernode_addr) + return 0; + + /* + * Calculate total size needed, incl. what's necessary + * for good alignment and alias prevention. + */ + pernodesize = compute_pernodesize(node); + pernode = NODEDATA_ALIGN(start, node); + + /* Is this range big enough for what we want to store here? */ + if (start + len > (pernode + pernodesize + mapsize)) + fill_pernode(node, pernode, pernodesize); + + return 0; +} + +/** + * free_node_bootmem - free bootmem allocator memory for use + * @start: physical start of range + * @len: length of range + * @node: node where this range resides + * + * Simply calls the bootmem allocator to free the specified ranged from + * the given pg_data_t's bdata struct. After this function has been called + * for all the entries in the EFI memory map, the bootmem allocator will + * be ready to service allocation requests. + */ +static int __init free_node_bootmem(unsigned long start, unsigned long len, + int node) +{ + free_bootmem_node(pgdat_list[node], start, len); + + return 0; +} + +/** + * reserve_pernode_space - reserve memory for per-node space + * + * Reserve the space used by the bootmem maps & per-node space in the boot + * allocator so that when we actually create the real mem maps we don't + * use their memory. + */ +static void __init reserve_pernode_space(void) +{ + unsigned long base, size, pages; + struct bootmem_data *bdp; + int node; + + for_each_online_node(node) { + pg_data_t *pdp = pgdat_list[node]; + + if (node_isset(node, memory_less_mask)) + continue; + + bdp = pdp->bdata; + + /* First the bootmem_map itself */ + pages = bdp->node_low_pfn - bdp->node_min_pfn; + size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; + base = __pa(bdp->node_bootmem_map); + reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); + + /* Now the per-node space */ + size = mem_data[node].pernode_size; + base = __pa(mem_data[node].pernode_addr); + reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); + } +} + +static void __meminit scatter_node_data(void) +{ + pg_data_t **dst; + int node; + + /* + * for_each_online_node() can't be used at here. + * node_online_map is not set for hot-added nodes at this time, + * because we are halfway through initialization of the new node's + * structures. If for_each_online_node() is used, a new node's + * pg_data_ptrs will be not initialized. Instead of using it, + * pgdat_list[] is checked. + */ + for_each_node(node) { + if (pgdat_list[node]) { + dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; + memcpy(dst, pgdat_list, sizeof(pgdat_list)); + } + } +} + +/** + * initialize_pernode_data - fixup per-cpu & per-node pointers + * + * Each node's per-node area has a copy of the global pg_data_t list, so + * we copy that to each node here, as well as setting the per-cpu pointer + * to the local node data structure. The active_cpus field of the per-node + * structure gets setup by the platform_cpu_init() function later. + */ +static void __init initialize_pernode_data(void) +{ + int cpu, node; + + scatter_node_data(); + +#ifdef CONFIG_SMP + /* Set the node_data pointer for each per-cpu struct */ + for_each_possible_early_cpu(cpu) { + node = node_cpuid[cpu].nid; + per_cpu(ia64_cpu_info, cpu).node_data = + mem_data[node].node_data; + } +#else + { + struct cpuinfo_ia64 *cpu0_cpu_info; + cpu = 0; + node = node_cpuid[cpu].nid; + cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + + ((char *)&ia64_cpu_info - __per_cpu_start)); + cpu0_cpu_info->node_data = mem_data[node].node_data; + } +#endif /* CONFIG_SMP */ +} + +/** + * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit + * node but fall back to any other node when __alloc_bootmem_node fails + * for best. + * @nid: node id + * @pernodesize: size of this node's pernode data + */ +static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) +{ + void *ptr = NULL; + u8 best = 0xff; + int bestnode = -1, node, anynode = 0; + + for_each_online_node(node) { + if (node_isset(node, memory_less_mask)) + continue; + else if (node_distance(nid, node) < best) { + best = node_distance(nid, node); + bestnode = node; + } + anynode = node; + } + + if (bestnode == -1) + bestnode = anynode; + + ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize, + PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); + + return ptr; +} + +/** + * memory_less_nodes - allocate and initialize CPU only nodes pernode + * information. + */ +static void __init memory_less_nodes(void) +{ + unsigned long pernodesize; + void *pernode; + int node; + + for_each_node_mask(node, memory_less_mask) { + pernodesize = compute_pernodesize(node); + pernode = memory_less_node_alloc(node, pernodesize); + fill_pernode(node, __pa(pernode), pernodesize); + } + + return; +} + +/** + * find_memory - walk the EFI memory map and setup the bootmem allocator + * + * Called early in boot to setup the bootmem allocator, and to + * allocate the per-cpu and per-node structures. + */ +void __init find_memory(void) +{ + int node; + + reserve_memory(); + + if (num_online_nodes() == 0) { + printk(KERN_ERR "node info missing!\n"); + node_set_online(0); + } + + nodes_or(memory_less_mask, memory_less_mask, node_online_map); + min_low_pfn = -1; + max_low_pfn = 0; + + /* These actually end up getting called by call_pernode_memory() */ + efi_memmap_walk(filter_rsvd_memory, build_node_maps); + efi_memmap_walk(filter_rsvd_memory, find_pernode_space); + efi_memmap_walk(find_max_min_low_pfn, NULL); + + for_each_online_node(node) + if (bootmem_node_data[node].node_low_pfn) { + node_clear(node, memory_less_mask); + mem_data[node].min_pfn = ~0UL; + } + + efi_memmap_walk(filter_memory, register_active_ranges); + + /* + * Initialize the boot memory maps in reverse order since that's + * what the bootmem allocator expects + */ + for (node = MAX_NUMNODES - 1; node >= 0; node--) { + unsigned long pernode, pernodesize, map; + struct bootmem_data *bdp; + + if (!node_online(node)) + continue; + else if (node_isset(node, memory_less_mask)) + continue; + + bdp = &bootmem_node_data[node]; + pernode = mem_data[node].pernode_addr; + pernodesize = mem_data[node].pernode_size; + map = pernode + pernodesize; + + init_bootmem_node(pgdat_list[node], + map>>PAGE_SHIFT, + bdp->node_min_pfn, + bdp->node_low_pfn); + } + + efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); + + reserve_pernode_space(); + memory_less_nodes(); + initialize_pernode_data(); + + max_pfn = max_low_pfn; + + find_initrd(); +} + +#ifdef CONFIG_SMP +/** + * per_cpu_init - setup per-cpu variables + * + * find_pernode_space() does most of this already, we just need to set + * local_per_cpu_offset + */ +void __cpuinit *per_cpu_init(void) +{ + int cpu; + static int first_time = 1; + + if (first_time) { + first_time = 0; + for_each_possible_early_cpu(cpu) + per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; + } + + return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; +} +#endif /* CONFIG_SMP */ + +/** + * show_mem - give short summary of memory stats + * + * Shows a simple page count of reserved and used pages in the system. + * For discontig machines, it does this on a per-pgdat basis. + */ +void show_mem(unsigned int filter) +{ + int i, total_reserved = 0; + int total_shared = 0, total_cached = 0; + unsigned long total_present = 0; + pg_data_t *pgdat; + + printk(KERN_INFO "Mem-info:\n"); + show_free_areas(filter); + printk(KERN_INFO "Node memory in pages:\n"); + for_each_online_pgdat(pgdat) { + unsigned long present; + unsigned long flags; + int shared = 0, cached = 0, reserved = 0; + int nid = pgdat->node_id; + + if (skip_free_areas_node(filter, nid)) + continue; + pgdat_resize_lock(pgdat, &flags); + present = pgdat->node_present_pages; + for(i = 0; i < pgdat->node_spanned_pages; i++) { + struct page *page; + if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) + touch_nmi_watchdog(); + if (pfn_valid(pgdat->node_start_pfn + i)) + page = pfn_to_page(pgdat->node_start_pfn + i); + else { + i = vmemmap_find_next_valid_pfn(nid, i) - 1; + continue; + } + if (PageReserved(page)) + reserved++; + else if (PageSwapCache(page)) + cached++; + else if (page_count(page)) + shared += page_count(page)-1; + } + pgdat_resize_unlock(pgdat, &flags); + total_present += present; + total_reserved += reserved; + total_cached += cached; + total_shared += shared; + printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, " + "shrd: %10d, swpd: %10d\n", nid, + present, reserved, shared, cached); + } + printk(KERN_INFO "%ld pages of RAM\n", total_present); + printk(KERN_INFO "%d reserved pages\n", total_reserved); + printk(KERN_INFO "%d pages shared\n", total_shared); + printk(KERN_INFO "%d pages swap cached\n", total_cached); + printk(KERN_INFO "Total of %ld pages in page table cache\n", + quicklist_total_size()); + printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); +} + +/** + * call_pernode_memory - use SRAT to call callback functions with node info + * @start: physical start of range + * @len: length of range + * @arg: function to call for each range + * + * efi_memmap_walk() knows nothing about layout of memory across nodes. Find + * out to which node a block of memory belongs. Ignore memory that we cannot + * identify, and split blocks that run across multiple nodes. + * + * Take this opportunity to round the start address up and the end address + * down to page boundaries. + */ +void call_pernode_memory(unsigned long start, unsigned long len, void *arg) +{ + unsigned long rs, re, end = start + len; + void (*func)(unsigned long, unsigned long, int); + int i; + + start = PAGE_ALIGN(start); + end &= PAGE_MASK; + if (start >= end) + return; + + func = arg; + + if (!num_node_memblks) { + /* No SRAT table, so assume one node (node 0) */ + if (start < end) + (*func)(start, end - start, 0); + return; + } + + for (i = 0; i < num_node_memblks; i++) { + rs = max(start, node_memblk[i].start_paddr); + re = min(end, node_memblk[i].start_paddr + + node_memblk[i].size); + + if (rs < re) + (*func)(rs, re - rs, node_memblk[i].nid); + + if (re == end) + break; + } +} + +/** + * count_node_pages - callback to build per-node memory info structures + * @start: physical start of range + * @len: length of range + * @node: node where this range resides + * + * Each node has it's own number of physical pages, DMAable pages, start, and + * end page frame number. This routine will be called by call_pernode_memory() + * for each piece of usable memory and will setup these values for each node. + * Very similar to build_maps(). + */ +static __init int count_node_pages(unsigned long start, unsigned long len, int node) +{ + unsigned long end = start + len; + + mem_data[node].num_physpages += len >> PAGE_SHIFT; +#ifdef CONFIG_ZONE_DMA + if (start <= __pa(MAX_DMA_ADDRESS)) + mem_data[node].num_dma_physpages += + (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; +#endif + start = GRANULEROUNDDOWN(start); + end = GRANULEROUNDUP(end); + mem_data[node].max_pfn = max(mem_data[node].max_pfn, + end >> PAGE_SHIFT); + mem_data[node].min_pfn = min(mem_data[node].min_pfn, + start >> PAGE_SHIFT); + + return 0; +} + +/** + * paging_init - setup page tables + * + * paging_init() sets up the page tables for each node of the system and frees + * the bootmem allocator memory for general use. + */ +void __init paging_init(void) +{ + unsigned long max_dma; + unsigned long pfn_offset = 0; + unsigned long max_pfn = 0; + int node; + unsigned long max_zone_pfns[MAX_NR_ZONES]; + + max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; + + efi_memmap_walk(filter_rsvd_memory, count_node_pages); + + sparse_memory_present_with_active_regions(MAX_NUMNODES); + sparse_init(); + +#ifdef CONFIG_VIRTUAL_MEM_MAP + VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * + sizeof(struct page)); + vmem_map = (struct page *) VMALLOC_END; + efi_memmap_walk(create_mem_map_page_table, NULL); + printk("Virtual mem_map starts at 0x%p\n", vmem_map); +#endif + + for_each_online_node(node) { + num_physpages += mem_data[node].num_physpages; + pfn_offset = mem_data[node].min_pfn; + +#ifdef CONFIG_VIRTUAL_MEM_MAP + NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; +#endif + if (mem_data[node].max_pfn > max_pfn) + max_pfn = mem_data[node].max_pfn; + } + + memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); +#ifdef CONFIG_ZONE_DMA + max_zone_pfns[ZONE_DMA] = max_dma; +#endif + max_zone_pfns[ZONE_NORMAL] = max_pfn; + free_area_init_nodes(max_zone_pfns); + + zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); +} + +#ifdef CONFIG_MEMORY_HOTPLUG +pg_data_t *arch_alloc_nodedata(int nid) +{ + unsigned long size = compute_pernodesize(nid); + + return kzalloc(size, GFP_KERNEL); +} + +void arch_free_nodedata(pg_data_t *pgdat) +{ + kfree(pgdat); +} + +void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) +{ + pgdat_list[update_node] = update_pgdat; + scatter_node_data(); +} +#endif + +#ifdef CONFIG_SPARSEMEM_VMEMMAP +int __meminit vmemmap_populate(struct page *start_page, + unsigned long size, int node) +{ + return vmemmap_populate_basepages(start_page, size, node); +} +#endif diff --git a/arch/ia64/mm/extable.c b/arch/ia64/mm/extable.c new file mode 100644 index 00000000..c99a41e2 --- /dev/null +++ b/arch/ia64/mm/extable.c @@ -0,0 +1,115 @@ +/* + * Kernel exception handling table support. Derived from arch/alpha/mm/extable.c. + * + * Copyright (C) 1998, 1999, 2001-2002, 2004 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + */ + +#include <linux/sort.h> + +#include <asm/uaccess.h> +#include <linux/module.h> + +static int cmp_ex(const void *a, const void *b) +{ + const struct exception_table_entry *l = a, *r = b; + u64 lip = (u64) &l->addr + l->addr; + u64 rip = (u64) &r->addr + r->addr; + + /* avoid overflow */ + if (lip > rip) + return 1; + if (lip < rip) + return -1; + return 0; +} + +static void swap_ex(void *a, void *b, int size) +{ + struct exception_table_entry *l = a, *r = b, tmp; + u64 delta = (u64) r - (u64) l; + + tmp = *l; + l->addr = r->addr + delta; + l->cont = r->cont + delta; + r->addr = tmp.addr - delta; + r->cont = tmp.cont - delta; +} + +/* + * Sort the exception table. It's usually already sorted, but there + * may be unordered entries due to multiple text sections (such as the + * .init text section). Note that the exception-table-entries contain + * location-relative addresses, which requires a bit of care during + * sorting to avoid overflows in the offset members (e.g., it would + * not be safe to make a temporary copy of an exception-table entry on + * the stack, because the stack may be more than 2GB away from the + * exception-table). + */ +void sort_extable (struct exception_table_entry *start, + struct exception_table_entry *finish) +{ + sort(start, finish - start, sizeof(struct exception_table_entry), + cmp_ex, swap_ex); +} + +static inline unsigned long ex_to_addr(const struct exception_table_entry *x) +{ + return (unsigned long)&x->addr + x->addr; +} + +#ifdef CONFIG_MODULES +/* + * Any entry referring to the module init will be at the beginning or + * the end. + */ +void trim_init_extable(struct module *m) +{ + /*trim the beginning*/ + while (m->num_exentries && + within_module_init(ex_to_addr(&m->extable[0]), m)) { + m->extable++; + m->num_exentries--; + } + /*trim the end*/ + while (m->num_exentries && + within_module_init(ex_to_addr(&m->extable[m->num_exentries-1]), + m)) + m->num_exentries--; +} +#endif /* CONFIG_MODULES */ + +const struct exception_table_entry * +search_extable (const struct exception_table_entry *first, + const struct exception_table_entry *last, + unsigned long ip) +{ + const struct exception_table_entry *mid; + unsigned long mid_ip; + long diff; + + while (first <= last) { + mid = &first[(last - first)/2]; + mid_ip = (u64) &mid->addr + mid->addr; + diff = mid_ip - ip; + if (diff == 0) + return mid; + else if (diff < 0) + first = mid + 1; + else + last = mid - 1; + } + return NULL; +} + +void +ia64_handle_exception (struct pt_regs *regs, const struct exception_table_entry *e) +{ + long fix = (u64) &e->cont + e->cont; + + regs->r8 = -EFAULT; + if (fix & 4) + regs->r9 = 0; + regs->cr_iip = fix & ~0xf; + ia64_psr(regs)->ri = fix & 0x3; /* set continuation slot number */ +} diff --git a/arch/ia64/mm/fault.c b/arch/ia64/mm/fault.c new file mode 100644 index 00000000..02d29c2a --- /dev/null +++ b/arch/ia64/mm/fault.c @@ -0,0 +1,281 @@ +/* + * MMU fault handling support. + * + * Copyright (C) 1998-2002 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + */ +#include <linux/sched.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/interrupt.h> +#include <linux/kprobes.h> +#include <linux/kdebug.h> +#include <linux/prefetch.h> + +#include <asm/pgtable.h> +#include <asm/processor.h> +#include <asm/uaccess.h> + +extern int die(char *, struct pt_regs *, long); + +#ifdef CONFIG_KPROBES +static inline int notify_page_fault(struct pt_regs *regs, int trap) +{ + int ret = 0; + + if (!user_mode(regs)) { + /* kprobe_running() needs smp_processor_id() */ + preempt_disable(); + if (kprobe_running() && kprobe_fault_handler(regs, trap)) + ret = 1; + preempt_enable(); + } + + return ret; +} +#else +static inline int notify_page_fault(struct pt_regs *regs, int trap) +{ + return 0; +} +#endif + +/* + * Return TRUE if ADDRESS points at a page in the kernel's mapped segment + * (inside region 5, on ia64) and that page is present. + */ +static int +mapped_kernel_page_is_present (unsigned long address) +{ + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *ptep, pte; + + pgd = pgd_offset_k(address); + if (pgd_none(*pgd) || pgd_bad(*pgd)) + return 0; + + pud = pud_offset(pgd, address); + if (pud_none(*pud) || pud_bad(*pud)) + return 0; + + pmd = pmd_offset(pud, address); + if (pmd_none(*pmd) || pmd_bad(*pmd)) + return 0; + + ptep = pte_offset_kernel(pmd, address); + if (!ptep) + return 0; + + pte = *ptep; + return pte_present(pte); +} + +void __kprobes +ia64_do_page_fault (unsigned long address, unsigned long isr, struct pt_regs *regs) +{ + int signal = SIGSEGV, code = SEGV_MAPERR; + struct vm_area_struct *vma, *prev_vma; + struct mm_struct *mm = current->mm; + struct siginfo si; + unsigned long mask; + int fault; + + /* mmap_sem is performance critical.... */ + prefetchw(&mm->mmap_sem); + + /* + * If we're in an interrupt or have no user context, we must not take the fault.. + */ + if (in_atomic() || !mm) + goto no_context; + +#ifdef CONFIG_VIRTUAL_MEM_MAP + /* + * If fault is in region 5 and we are in the kernel, we may already + * have the mmap_sem (pfn_valid macro is called during mmap). There + * is no vma for region 5 addr's anyway, so skip getting the semaphore + * and go directly to the exception handling code. + */ + + if ((REGION_NUMBER(address) == 5) && !user_mode(regs)) + goto bad_area_no_up; +#endif + + /* + * This is to handle the kprobes on user space access instructions + */ + if (notify_page_fault(regs, TRAP_BRKPT)) + return; + + down_read(&mm->mmap_sem); + + vma = find_vma_prev(mm, address, &prev_vma); + if (!vma && !prev_vma ) + goto bad_area; + + /* + * find_vma_prev() returns vma such that address < vma->vm_end or NULL + * + * May find no vma, but could be that the last vm area is the + * register backing store that needs to expand upwards, in + * this case vma will be null, but prev_vma will ne non-null + */ + if (( !vma && prev_vma ) || (address < vma->vm_start) ) + goto check_expansion; + + good_area: + code = SEGV_ACCERR; + + /* OK, we've got a good vm_area for this memory area. Check the access permissions: */ + +# define VM_READ_BIT 0 +# define VM_WRITE_BIT 1 +# define VM_EXEC_BIT 2 + +# if (((1 << VM_READ_BIT) != VM_READ || (1 << VM_WRITE_BIT) != VM_WRITE) \ + || (1 << VM_EXEC_BIT) != VM_EXEC) +# error File is out of sync with <linux/mm.h>. Please update. +# endif + + if (((isr >> IA64_ISR_R_BIT) & 1UL) && (!(vma->vm_flags & (VM_READ | VM_WRITE)))) + goto bad_area; + + mask = ( (((isr >> IA64_ISR_X_BIT) & 1UL) << VM_EXEC_BIT) + | (((isr >> IA64_ISR_W_BIT) & 1UL) << VM_WRITE_BIT)); + + if ((vma->vm_flags & mask) != mask) + goto bad_area; + + /* + * If for any reason at all we couldn't handle the fault, make + * sure we exit gracefully rather than endlessly redo the + * fault. + */ + fault = handle_mm_fault(mm, vma, address, (mask & VM_WRITE) ? FAULT_FLAG_WRITE : 0); + if (unlikely(fault & VM_FAULT_ERROR)) { + /* + * We ran out of memory, or some other thing happened + * to us that made us unable to handle the page fault + * gracefully. + */ + if (fault & VM_FAULT_OOM) { + goto out_of_memory; + } else if (fault & VM_FAULT_SIGBUS) { + signal = SIGBUS; + goto bad_area; + } + BUG(); + } + if (fault & VM_FAULT_MAJOR) + current->maj_flt++; + else + current->min_flt++; + up_read(&mm->mmap_sem); + return; + + check_expansion: + if (!(prev_vma && (prev_vma->vm_flags & VM_GROWSUP) && (address == prev_vma->vm_end))) { + if (!vma) + goto bad_area; + if (!(vma->vm_flags & VM_GROWSDOWN)) + goto bad_area; + if (REGION_NUMBER(address) != REGION_NUMBER(vma->vm_start) + || REGION_OFFSET(address) >= RGN_MAP_LIMIT) + goto bad_area; + if (expand_stack(vma, address)) + goto bad_area; + } else { + vma = prev_vma; + if (REGION_NUMBER(address) != REGION_NUMBER(vma->vm_start) + || REGION_OFFSET(address) >= RGN_MAP_LIMIT) + goto bad_area; + /* + * Since the register backing store is accessed sequentially, + * we disallow growing it by more than a page at a time. + */ + if (address > vma->vm_end + PAGE_SIZE - sizeof(long)) + goto bad_area; + if (expand_upwards(vma, address)) + goto bad_area; + } + goto good_area; + + bad_area: + up_read(&mm->mmap_sem); +#ifdef CONFIG_VIRTUAL_MEM_MAP + bad_area_no_up: +#endif + if ((isr & IA64_ISR_SP) + || ((isr & IA64_ISR_NA) && (isr & IA64_ISR_CODE_MASK) == IA64_ISR_CODE_LFETCH)) + { + /* + * This fault was due to a speculative load or lfetch.fault, set the "ed" + * bit in the psr to ensure forward progress. (Target register will get a + * NaT for ld.s, lfetch will be canceled.) + */ + ia64_psr(regs)->ed = 1; + return; + } + if (user_mode(regs)) { + si.si_signo = signal; + si.si_errno = 0; + si.si_code = code; + si.si_addr = (void __user *) address; + si.si_isr = isr; + si.si_flags = __ISR_VALID; + force_sig_info(signal, &si, current); + return; + } + + no_context: + if ((isr & IA64_ISR_SP) + || ((isr & IA64_ISR_NA) && (isr & IA64_ISR_CODE_MASK) == IA64_ISR_CODE_LFETCH)) + { + /* + * This fault was due to a speculative load or lfetch.fault, set the "ed" + * bit in the psr to ensure forward progress. (Target register will get a + * NaT for ld.s, lfetch will be canceled.) + */ + ia64_psr(regs)->ed = 1; + return; + } + + /* + * Since we have no vma's for region 5, we might get here even if the address is + * valid, due to the VHPT walker inserting a non present translation that becomes + * stale. If that happens, the non present fault handler already purged the stale + * translation, which fixed the problem. So, we check to see if the translation is + * valid, and return if it is. + */ + if (REGION_NUMBER(address) == 5 && mapped_kernel_page_is_present(address)) + return; + + if (ia64_done_with_exception(regs)) + return; + + /* + * Oops. The kernel tried to access some bad page. We'll have to terminate things + * with extreme prejudice. + */ + bust_spinlocks(1); + + if (address < PAGE_SIZE) + printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference (address %016lx)\n", address); + else + printk(KERN_ALERT "Unable to handle kernel paging request at " + "virtual address %016lx\n", address); + if (die("Oops", regs, isr)) + regs = NULL; + bust_spinlocks(0); + if (regs) + do_exit(SIGKILL); + return; + + out_of_memory: + up_read(&mm->mmap_sem); + if (!user_mode(regs)) + goto no_context; + pagefault_out_of_memory(); +} diff --git a/arch/ia64/mm/hugetlbpage.c b/arch/ia64/mm/hugetlbpage.c new file mode 100644 index 00000000..5ca674b7 --- /dev/null +++ b/arch/ia64/mm/hugetlbpage.c @@ -0,0 +1,207 @@ +/* + * IA-64 Huge TLB Page Support for Kernel. + * + * Copyright (C) 2002-2004 Rohit Seth <rohit.seth@intel.com> + * Copyright (C) 2003-2004 Ken Chen <kenneth.w.chen@intel.com> + * + * Sep, 2003: add numa support + * Feb, 2004: dynamic hugetlb page size via boot parameter + */ + +#include <linux/init.h> +#include <linux/fs.h> +#include <linux/mm.h> +#include <linux/hugetlb.h> +#include <linux/pagemap.h> +#include <linux/module.h> +#include <linux/sysctl.h> +#include <linux/log2.h> +#include <asm/mman.h> +#include <asm/pgalloc.h> +#include <asm/tlb.h> +#include <asm/tlbflush.h> + +unsigned int hpage_shift = HPAGE_SHIFT_DEFAULT; +EXPORT_SYMBOL(hpage_shift); + +pte_t * +huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) +{ + unsigned long taddr = htlbpage_to_page(addr); + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte = NULL; + + pgd = pgd_offset(mm, taddr); + pud = pud_alloc(mm, pgd, taddr); + if (pud) { + pmd = pmd_alloc(mm, pud, taddr); + if (pmd) + pte = pte_alloc_map(mm, NULL, pmd, taddr); + } + return pte; +} + +pte_t * +huge_pte_offset (struct mm_struct *mm, unsigned long addr) +{ + unsigned long taddr = htlbpage_to_page(addr); + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte = NULL; + + pgd = pgd_offset(mm, taddr); + if (pgd_present(*pgd)) { + pud = pud_offset(pgd, taddr); + if (pud_present(*pud)) { + pmd = pmd_offset(pud, taddr); + if (pmd_present(*pmd)) + pte = pte_offset_map(pmd, taddr); + } + } + + return pte; +} + +int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) +{ + return 0; +} + +#define mk_pte_huge(entry) { pte_val(entry) |= _PAGE_P; } + +/* + * Don't actually need to do any preparation, but need to make sure + * the address is in the right region. + */ +int prepare_hugepage_range(struct file *file, + unsigned long addr, unsigned long len) +{ + if (len & ~HPAGE_MASK) + return -EINVAL; + if (addr & ~HPAGE_MASK) + return -EINVAL; + if (REGION_NUMBER(addr) != RGN_HPAGE) + return -EINVAL; + + return 0; +} + +struct page *follow_huge_addr(struct mm_struct *mm, unsigned long addr, int write) +{ + struct page *page; + pte_t *ptep; + + if (REGION_NUMBER(addr) != RGN_HPAGE) + return ERR_PTR(-EINVAL); + + ptep = huge_pte_offset(mm, addr); + if (!ptep || pte_none(*ptep)) + return NULL; + page = pte_page(*ptep); + page += ((addr & ~HPAGE_MASK) >> PAGE_SHIFT); + return page; +} +int pmd_huge(pmd_t pmd) +{ + return 0; +} + +int pud_huge(pud_t pud) +{ + return 0; +} + +struct page * +follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write) +{ + return NULL; +} + +void hugetlb_free_pgd_range(struct mmu_gather *tlb, + unsigned long addr, unsigned long end, + unsigned long floor, unsigned long ceiling) +{ + /* + * This is called to free hugetlb page tables. + * + * The offset of these addresses from the base of the hugetlb + * region must be scaled down by HPAGE_SIZE/PAGE_SIZE so that + * the standard free_pgd_range will free the right page tables. + * + * If floor and ceiling are also in the hugetlb region, they + * must likewise be scaled down; but if outside, left unchanged. + */ + + addr = htlbpage_to_page(addr); + end = htlbpage_to_page(end); + if (REGION_NUMBER(floor) == RGN_HPAGE) + floor = htlbpage_to_page(floor); + if (REGION_NUMBER(ceiling) == RGN_HPAGE) + ceiling = htlbpage_to_page(ceiling); + + free_pgd_range(tlb, addr, end, floor, ceiling); +} + +unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, + unsigned long pgoff, unsigned long flags) +{ + struct vm_area_struct *vmm; + + if (len > RGN_MAP_LIMIT) + return -ENOMEM; + if (len & ~HPAGE_MASK) + return -EINVAL; + + /* Handle MAP_FIXED */ + if (flags & MAP_FIXED) { + if (prepare_hugepage_range(file, addr, len)) + return -EINVAL; + return addr; + } + + /* This code assumes that RGN_HPAGE != 0. */ + if ((REGION_NUMBER(addr) != RGN_HPAGE) || (addr & (HPAGE_SIZE - 1))) + addr = HPAGE_REGION_BASE; + else + addr = ALIGN(addr, HPAGE_SIZE); + for (vmm = find_vma(current->mm, addr); ; vmm = vmm->vm_next) { + /* At this point: (!vmm || addr < vmm->vm_end). */ + if (REGION_OFFSET(addr) + len > RGN_MAP_LIMIT) + return -ENOMEM; + if (!vmm || (addr + len) <= vmm->vm_start) + return addr; + addr = ALIGN(vmm->vm_end, HPAGE_SIZE); + } +} + +static int __init hugetlb_setup_sz(char *str) +{ + u64 tr_pages; + unsigned long long size; + + if (ia64_pal_vm_page_size(&tr_pages, NULL) != 0) + /* + * shouldn't happen, but just in case. + */ + tr_pages = 0x15557000UL; + + size = memparse(str, &str); + if (*str || !is_power_of_2(size) || !(tr_pages & size) || + size <= PAGE_SIZE || + size >= (1UL << PAGE_SHIFT << MAX_ORDER)) { + printk(KERN_WARNING "Invalid huge page size specified\n"); + return 1; + } + + hpage_shift = __ffs(size); + /* + * boot cpu already executed ia64_mmu_init, and has HPAGE_SHIFT_DEFAULT + * override here with new page shift. + */ + ia64_set_rr(HPAGE_REGION_BASE, hpage_shift << 2); + return 0; +} +early_param("hugepagesz", hugetlb_setup_sz); diff --git a/arch/ia64/mm/init.c b/arch/ia64/mm/init.c new file mode 100644 index 00000000..0eab4548 --- /dev/null +++ b/arch/ia64/mm/init.c @@ -0,0 +1,716 @@ +/* + * Initialize MMU support. + * + * Copyright (C) 1998-2003 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + */ +#include <linux/kernel.h> +#include <linux/init.h> + +#include <linux/bootmem.h> +#include <linux/efi.h> +#include <linux/elf.h> +#include <linux/memblock.h> +#include <linux/mm.h> +#include <linux/mmzone.h> +#include <linux/module.h> +#include <linux/personality.h> +#include <linux/reboot.h> +#include <linux/slab.h> +#include <linux/swap.h> +#include <linux/proc_fs.h> +#include <linux/bitops.h> +#include <linux/kexec.h> + +#include <asm/dma.h> +#include <asm/io.h> +#include <asm/machvec.h> +#include <asm/numa.h> +#include <asm/patch.h> +#include <asm/pgalloc.h> +#include <asm/sal.h> +#include <asm/sections.h> +#include <asm/tlb.h> +#include <asm/uaccess.h> +#include <asm/unistd.h> +#include <asm/mca.h> +#include <asm/paravirt.h> + +extern void ia64_tlb_init (void); + +unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL; + +#ifdef CONFIG_VIRTUAL_MEM_MAP +unsigned long VMALLOC_END = VMALLOC_END_INIT; +EXPORT_SYMBOL(VMALLOC_END); +struct page *vmem_map; +EXPORT_SYMBOL(vmem_map); +#endif + +struct page *zero_page_memmap_ptr; /* map entry for zero page */ +EXPORT_SYMBOL(zero_page_memmap_ptr); + +void +__ia64_sync_icache_dcache (pte_t pte) +{ + unsigned long addr; + struct page *page; + + page = pte_page(pte); + addr = (unsigned long) page_address(page); + + if (test_bit(PG_arch_1, &page->flags)) + return; /* i-cache is already coherent with d-cache */ + + flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page))); + set_bit(PG_arch_1, &page->flags); /* mark page as clean */ +} + +/* + * Since DMA is i-cache coherent, any (complete) pages that were written via + * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to + * flush them when they get mapped into an executable vm-area. + */ +void +dma_mark_clean(void *addr, size_t size) +{ + unsigned long pg_addr, end; + + pg_addr = PAGE_ALIGN((unsigned long) addr); + end = (unsigned long) addr + size; + while (pg_addr + PAGE_SIZE <= end) { + struct page *page = virt_to_page(pg_addr); + set_bit(PG_arch_1, &page->flags); + pg_addr += PAGE_SIZE; + } +} + +inline void +ia64_set_rbs_bot (void) +{ + unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16; + + if (stack_size > MAX_USER_STACK_SIZE) + stack_size = MAX_USER_STACK_SIZE; + current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size); +} + +/* + * This performs some platform-dependent address space initialization. + * On IA-64, we want to setup the VM area for the register backing + * store (which grows upwards) and install the gateway page which is + * used for signal trampolines, etc. + */ +void +ia64_init_addr_space (void) +{ + struct vm_area_struct *vma; + + ia64_set_rbs_bot(); + + /* + * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore + * the problem. When the process attempts to write to the register backing store + * for the first time, it will get a SEGFAULT in this case. + */ + vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); + if (vma) { + INIT_LIST_HEAD(&vma->anon_vma_chain); + vma->vm_mm = current->mm; + vma->vm_start = current->thread.rbs_bot & PAGE_MASK; + vma->vm_end = vma->vm_start + PAGE_SIZE; + vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT; + vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); + down_write(¤t->mm->mmap_sem); + if (insert_vm_struct(current->mm, vma)) { + up_write(¤t->mm->mmap_sem); + kmem_cache_free(vm_area_cachep, vma); + return; + } + up_write(¤t->mm->mmap_sem); + } + + /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ + if (!(current->personality & MMAP_PAGE_ZERO)) { + vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); + if (vma) { + INIT_LIST_HEAD(&vma->anon_vma_chain); + vma->vm_mm = current->mm; + vma->vm_end = PAGE_SIZE; + vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); + vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; + down_write(¤t->mm->mmap_sem); + if (insert_vm_struct(current->mm, vma)) { + up_write(¤t->mm->mmap_sem); + kmem_cache_free(vm_area_cachep, vma); + return; + } + up_write(¤t->mm->mmap_sem); + } + } +} + +void +free_initmem (void) +{ + unsigned long addr, eaddr; + + addr = (unsigned long) ia64_imva(__init_begin); + eaddr = (unsigned long) ia64_imva(__init_end); + while (addr < eaddr) { + ClearPageReserved(virt_to_page(addr)); + init_page_count(virt_to_page(addr)); + free_page(addr); + ++totalram_pages; + addr += PAGE_SIZE; + } + printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", + (__init_end - __init_begin) >> 10); +} + +void __init +free_initrd_mem (unsigned long start, unsigned long end) +{ + struct page *page; + /* + * EFI uses 4KB pages while the kernel can use 4KB or bigger. + * Thus EFI and the kernel may have different page sizes. It is + * therefore possible to have the initrd share the same page as + * the end of the kernel (given current setup). + * + * To avoid freeing/using the wrong page (kernel sized) we: + * - align up the beginning of initrd + * - align down the end of initrd + * + * | | + * |=============| a000 + * | | + * | | + * | | 9000 + * |/////////////| + * |/////////////| + * |=============| 8000 + * |///INITRD////| + * |/////////////| + * |/////////////| 7000 + * | | + * |KKKKKKKKKKKKK| + * |=============| 6000 + * |KKKKKKKKKKKKK| + * |KKKKKKKKKKKKK| + * K=kernel using 8KB pages + * + * In this example, we must free page 8000 ONLY. So we must align up + * initrd_start and keep initrd_end as is. + */ + start = PAGE_ALIGN(start); + end = end & PAGE_MASK; + + if (start < end) + printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); + + for (; start < end; start += PAGE_SIZE) { + if (!virt_addr_valid(start)) + continue; + page = virt_to_page(start); + ClearPageReserved(page); + init_page_count(page); + free_page(start); + ++totalram_pages; + } +} + +/* + * This installs a clean page in the kernel's page table. + */ +static struct page * __init +put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot) +{ + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + if (!PageReserved(page)) + printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n", + page_address(page)); + + pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ + + { + pud = pud_alloc(&init_mm, pgd, address); + if (!pud) + goto out; + pmd = pmd_alloc(&init_mm, pud, address); + if (!pmd) + goto out; + pte = pte_alloc_kernel(pmd, address); + if (!pte) + goto out; + if (!pte_none(*pte)) + goto out; + set_pte(pte, mk_pte(page, pgprot)); + } + out: + /* no need for flush_tlb */ + return page; +} + +static void __init +setup_gate (void) +{ + void *gate_section; + struct page *page; + + /* + * Map the gate page twice: once read-only to export the ELF + * headers etc. and once execute-only page to enable + * privilege-promotion via "epc": + */ + gate_section = paravirt_get_gate_section(); + page = virt_to_page(ia64_imva(gate_section)); + put_kernel_page(page, GATE_ADDR, PAGE_READONLY); +#ifdef HAVE_BUGGY_SEGREL + page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE)); + put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE); +#else + put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE); + /* Fill in the holes (if any) with read-only zero pages: */ + { + unsigned long addr; + + for (addr = GATE_ADDR + PAGE_SIZE; + addr < GATE_ADDR + PERCPU_PAGE_SIZE; + addr += PAGE_SIZE) + { + put_kernel_page(ZERO_PAGE(0), addr, + PAGE_READONLY); + put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE, + PAGE_READONLY); + } + } +#endif + ia64_patch_gate(); +} + +void __devinit +ia64_mmu_init (void *my_cpu_data) +{ + unsigned long pta, impl_va_bits; + extern void __devinit tlb_init (void); + +#ifdef CONFIG_DISABLE_VHPT +# define VHPT_ENABLE_BIT 0 +#else +# define VHPT_ENABLE_BIT 1 +#endif + + /* + * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped + * address space. The IA-64 architecture guarantees that at least 50 bits of + * virtual address space are implemented but if we pick a large enough page size + * (e.g., 64KB), the mapped address space is big enough that it will overlap with + * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, + * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a + * problem in practice. Alternatively, we could truncate the top of the mapped + * address space to not permit mappings that would overlap with the VMLPT. + * --davidm 00/12/06 + */ +# define pte_bits 3 +# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) + /* + * The virtual page table has to cover the entire implemented address space within + * a region even though not all of this space may be mappable. The reason for + * this is that the Access bit and Dirty bit fault handlers perform + * non-speculative accesses to the virtual page table, so the address range of the + * virtual page table itself needs to be covered by virtual page table. + */ +# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits) +# define POW2(n) (1ULL << (n)) + + impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61))); + + if (impl_va_bits < 51 || impl_va_bits > 61) + panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); + /* + * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need, + * which must fit into "vmlpt_bits - pte_bits" slots. Second half of + * the test makes sure that our mapped space doesn't overlap the + * unimplemented hole in the middle of the region. + */ + if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) || + (mapped_space_bits > impl_va_bits - 1)) + panic("Cannot build a big enough virtual-linear page table" + " to cover mapped address space.\n" + " Try using a smaller page size.\n"); + + + /* place the VMLPT at the end of each page-table mapped region: */ + pta = POW2(61) - POW2(vmlpt_bits); + + /* + * Set the (virtually mapped linear) page table address. Bit + * 8 selects between the short and long format, bits 2-7 the + * size of the table, and bit 0 whether the VHPT walker is + * enabled. + */ + ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); + + ia64_tlb_init(); + +#ifdef CONFIG_HUGETLB_PAGE + ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2); + ia64_srlz_d(); +#endif +} + +#ifdef CONFIG_VIRTUAL_MEM_MAP +int vmemmap_find_next_valid_pfn(int node, int i) +{ + unsigned long end_address, hole_next_pfn; + unsigned long stop_address; + pg_data_t *pgdat = NODE_DATA(node); + + end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i]; + end_address = PAGE_ALIGN(end_address); + + stop_address = (unsigned long) &vmem_map[ + pgdat->node_start_pfn + pgdat->node_spanned_pages]; + + do { + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + pgd = pgd_offset_k(end_address); + if (pgd_none(*pgd)) { + end_address += PGDIR_SIZE; + continue; + } + + pud = pud_offset(pgd, end_address); + if (pud_none(*pud)) { + end_address += PUD_SIZE; + continue; + } + + pmd = pmd_offset(pud, end_address); + if (pmd_none(*pmd)) { + end_address += PMD_SIZE; + continue; + } + + pte = pte_offset_kernel(pmd, end_address); +retry_pte: + if (pte_none(*pte)) { + end_address += PAGE_SIZE; + pte++; + if ((end_address < stop_address) && + (end_address != ALIGN(end_address, 1UL << PMD_SHIFT))) + goto retry_pte; + continue; + } + /* Found next valid vmem_map page */ + break; + } while (end_address < stop_address); + + end_address = min(end_address, stop_address); + end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1; + hole_next_pfn = end_address / sizeof(struct page); + return hole_next_pfn - pgdat->node_start_pfn; +} + +int __init create_mem_map_page_table(u64 start, u64 end, void *arg) +{ + unsigned long address, start_page, end_page; + struct page *map_start, *map_end; + int node; + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); + map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); + + start_page = (unsigned long) map_start & PAGE_MASK; + end_page = PAGE_ALIGN((unsigned long) map_end); + node = paddr_to_nid(__pa(start)); + + for (address = start_page; address < end_page; address += PAGE_SIZE) { + pgd = pgd_offset_k(address); + if (pgd_none(*pgd)) + pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); + pud = pud_offset(pgd, address); + + if (pud_none(*pud)) + pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); + pmd = pmd_offset(pud, address); + + if (pmd_none(*pmd)) + pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); + pte = pte_offset_kernel(pmd, address); + + if (pte_none(*pte)) + set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT, + PAGE_KERNEL)); + } + return 0; +} + +struct memmap_init_callback_data { + struct page *start; + struct page *end; + int nid; + unsigned long zone; +}; + +static int __meminit +virtual_memmap_init(u64 start, u64 end, void *arg) +{ + struct memmap_init_callback_data *args; + struct page *map_start, *map_end; + + args = (struct memmap_init_callback_data *) arg; + map_start = vmem_map + (__pa(start) >> PAGE_SHIFT); + map_end = vmem_map + (__pa(end) >> PAGE_SHIFT); + + if (map_start < args->start) + map_start = args->start; + if (map_end > args->end) + map_end = args->end; + + /* + * We have to initialize "out of bounds" struct page elements that fit completely + * on the same pages that were allocated for the "in bounds" elements because they + * may be referenced later (and found to be "reserved"). + */ + map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); + map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) + / sizeof(struct page)); + + if (map_start < map_end) + memmap_init_zone((unsigned long)(map_end - map_start), + args->nid, args->zone, page_to_pfn(map_start), + MEMMAP_EARLY); + return 0; +} + +void __meminit +memmap_init (unsigned long size, int nid, unsigned long zone, + unsigned long start_pfn) +{ + if (!vmem_map) + memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY); + else { + struct page *start; + struct memmap_init_callback_data args; + + start = pfn_to_page(start_pfn); + args.start = start; + args.end = start + size; + args.nid = nid; + args.zone = zone; + + efi_memmap_walk(virtual_memmap_init, &args); + } +} + +int +ia64_pfn_valid (unsigned long pfn) +{ + char byte; + struct page *pg = pfn_to_page(pfn); + + return (__get_user(byte, (char __user *) pg) == 0) + && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK)) + || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0)); +} +EXPORT_SYMBOL(ia64_pfn_valid); + +int __init find_largest_hole(u64 start, u64 end, void *arg) +{ + u64 *max_gap = arg; + + static u64 last_end = PAGE_OFFSET; + + /* NOTE: this algorithm assumes efi memmap table is ordered */ + + if (*max_gap < (start - last_end)) + *max_gap = start - last_end; + last_end = end; + return 0; +} + +#endif /* CONFIG_VIRTUAL_MEM_MAP */ + +int __init register_active_ranges(u64 start, u64 len, int nid) +{ + u64 end = start + len; + +#ifdef CONFIG_KEXEC + if (start > crashk_res.start && start < crashk_res.end) + start = crashk_res.end; + if (end > crashk_res.start && end < crashk_res.end) + end = crashk_res.start; +#endif + + if (start < end) + memblock_add_node(__pa(start), end - start, nid); + return 0; +} + +static int __init +count_reserved_pages(u64 start, u64 end, void *arg) +{ + unsigned long num_reserved = 0; + unsigned long *count = arg; + + for (; start < end; start += PAGE_SIZE) + if (PageReserved(virt_to_page(start))) + ++num_reserved; + *count += num_reserved; + return 0; +} + +int +find_max_min_low_pfn (u64 start, u64 end, void *arg) +{ + unsigned long pfn_start, pfn_end; +#ifdef CONFIG_FLATMEM + pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT; + pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT; +#else + pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT; + pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT; +#endif + min_low_pfn = min(min_low_pfn, pfn_start); + max_low_pfn = max(max_low_pfn, pfn_end); + return 0; +} + +/* + * Boot command-line option "nolwsys" can be used to disable the use of any light-weight + * system call handler. When this option is in effect, all fsyscalls will end up bubbling + * down into the kernel and calling the normal (heavy-weight) syscall handler. This is + * useful for performance testing, but conceivably could also come in handy for debugging + * purposes. + */ + +static int nolwsys __initdata; + +static int __init +nolwsys_setup (char *s) +{ + nolwsys = 1; + return 1; +} + +__setup("nolwsys", nolwsys_setup); + +void __init +mem_init (void) +{ + long reserved_pages, codesize, datasize, initsize; + pg_data_t *pgdat; + int i; + + BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE); + BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE); + BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE); + +#ifdef CONFIG_PCI + /* + * This needs to be called _after_ the command line has been parsed but _before_ + * any drivers that may need the PCI DMA interface are initialized or bootmem has + * been freed. + */ + platform_dma_init(); +#endif + +#ifdef CONFIG_FLATMEM + BUG_ON(!mem_map); + max_mapnr = max_low_pfn; +#endif + + high_memory = __va(max_low_pfn * PAGE_SIZE); + + for_each_online_pgdat(pgdat) + if (pgdat->bdata->node_bootmem_map) + totalram_pages += free_all_bootmem_node(pgdat); + + reserved_pages = 0; + efi_memmap_walk(count_reserved_pages, &reserved_pages); + + codesize = (unsigned long) _etext - (unsigned long) _stext; + datasize = (unsigned long) _edata - (unsigned long) _etext; + initsize = (unsigned long) __init_end - (unsigned long) __init_begin; + + printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, " + "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10), + num_physpages << (PAGE_SHIFT - 10), codesize >> 10, + reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); + + + /* + * For fsyscall entrpoints with no light-weight handler, use the ordinary + * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry + * code can tell them apart. + */ + for (i = 0; i < NR_syscalls; ++i) { + extern unsigned long sys_call_table[NR_syscalls]; + unsigned long *fsyscall_table = paravirt_get_fsyscall_table(); + + if (!fsyscall_table[i] || nolwsys) + fsyscall_table[i] = sys_call_table[i] | 1; + } + setup_gate(); +} + +#ifdef CONFIG_MEMORY_HOTPLUG +int arch_add_memory(int nid, u64 start, u64 size) +{ + pg_data_t *pgdat; + struct zone *zone; + unsigned long start_pfn = start >> PAGE_SHIFT; + unsigned long nr_pages = size >> PAGE_SHIFT; + int ret; + + pgdat = NODE_DATA(nid); + + zone = pgdat->node_zones + ZONE_NORMAL; + ret = __add_pages(nid, zone, start_pfn, nr_pages); + + if (ret) + printk("%s: Problem encountered in __add_pages() as ret=%d\n", + __func__, ret); + + return ret; +} +#endif + +/* + * Even when CONFIG_IA32_SUPPORT is not enabled it is + * useful to have the Linux/x86 domain registered to + * avoid an attempted module load when emulators call + * personality(PER_LINUX32). This saves several milliseconds + * on each such call. + */ +static struct exec_domain ia32_exec_domain; + +static int __init +per_linux32_init(void) +{ + ia32_exec_domain.name = "Linux/x86"; + ia32_exec_domain.handler = NULL; + ia32_exec_domain.pers_low = PER_LINUX32; + ia32_exec_domain.pers_high = PER_LINUX32; + ia32_exec_domain.signal_map = default_exec_domain.signal_map; + ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap; + register_exec_domain(&ia32_exec_domain); + + return 0; +} + +__initcall(per_linux32_init); diff --git a/arch/ia64/mm/ioremap.c b/arch/ia64/mm/ioremap.c new file mode 100644 index 00000000..3dccdd8e --- /dev/null +++ b/arch/ia64/mm/ioremap.c @@ -0,0 +1,121 @@ +/* + * (c) Copyright 2006, 2007 Hewlett-Packard Development Company, L.P. + * Bjorn Helgaas <bjorn.helgaas@hp.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/compiler.h> +#include <linux/module.h> +#include <linux/efi.h> +#include <linux/io.h> +#include <linux/vmalloc.h> +#include <asm/io.h> +#include <asm/meminit.h> + +static inline void __iomem * +__ioremap (unsigned long phys_addr) +{ + return (void __iomem *) (__IA64_UNCACHED_OFFSET | phys_addr); +} + +void __iomem * +early_ioremap (unsigned long phys_addr, unsigned long size) +{ + return __ioremap(phys_addr); +} + +void __iomem * +ioremap (unsigned long phys_addr, unsigned long size) +{ + void __iomem *addr; + struct vm_struct *area; + unsigned long offset; + pgprot_t prot; + u64 attr; + unsigned long gran_base, gran_size; + unsigned long page_base; + + /* + * For things in kern_memmap, we must use the same attribute + * as the rest of the kernel. For more details, see + * Documentation/ia64/aliasing.txt. + */ + attr = kern_mem_attribute(phys_addr, size); + if (attr & EFI_MEMORY_WB) + return (void __iomem *) phys_to_virt(phys_addr); + else if (attr & EFI_MEMORY_UC) + return __ioremap(phys_addr); + + /* + * Some chipsets don't support UC access to memory. If + * WB is supported for the whole granule, we prefer that. + */ + gran_base = GRANULEROUNDDOWN(phys_addr); + gran_size = GRANULEROUNDUP(phys_addr + size) - gran_base; + if (efi_mem_attribute(gran_base, gran_size) & EFI_MEMORY_WB) + return (void __iomem *) phys_to_virt(phys_addr); + + /* + * WB is not supported for the whole granule, so we can't use + * the region 7 identity mapping. If we can safely cover the + * area with kernel page table mappings, we can use those + * instead. + */ + page_base = phys_addr & PAGE_MASK; + size = PAGE_ALIGN(phys_addr + size) - page_base; + if (efi_mem_attribute(page_base, size) & EFI_MEMORY_WB) { + prot = PAGE_KERNEL; + + /* + * Mappings have to be page-aligned + */ + offset = phys_addr & ~PAGE_MASK; + phys_addr &= PAGE_MASK; + + /* + * Ok, go for it.. + */ + area = get_vm_area(size, VM_IOREMAP); + if (!area) + return NULL; + + area->phys_addr = phys_addr; + addr = (void __iomem *) area->addr; + if (ioremap_page_range((unsigned long) addr, + (unsigned long) addr + size, phys_addr, prot)) { + vunmap((void __force *) addr); + return NULL; + } + + return (void __iomem *) (offset + (char __iomem *)addr); + } + + return __ioremap(phys_addr); +} +EXPORT_SYMBOL(ioremap); + +void __iomem * +ioremap_nocache (unsigned long phys_addr, unsigned long size) +{ + if (kern_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) + return NULL; + + return __ioremap(phys_addr); +} +EXPORT_SYMBOL(ioremap_nocache); + +void +early_iounmap (volatile void __iomem *addr, unsigned long size) +{ +} + +void +iounmap (volatile void __iomem *addr) +{ + if (REGION_NUMBER(addr) == RGN_GATE) + vunmap((void *) ((unsigned long) addr & PAGE_MASK)); +} +EXPORT_SYMBOL(iounmap); diff --git a/arch/ia64/mm/numa.c b/arch/ia64/mm/numa.c new file mode 100644 index 00000000..3efea7d0 --- /dev/null +++ b/arch/ia64/mm/numa.c @@ -0,0 +1,92 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * This file contains NUMA specific variables and functions which can + * be split away from DISCONTIGMEM and are used on NUMA machines with + * contiguous memory. + * + * 2002/08/07 Erich Focht <efocht@ess.nec.de> + */ + +#include <linux/cpu.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/node.h> +#include <linux/init.h> +#include <linux/bootmem.h> +#include <linux/module.h> +#include <asm/mmzone.h> +#include <asm/numa.h> + + +/* + * The following structures are usually initialized by ACPI or + * similar mechanisms and describe the NUMA characteristics of the machine. + */ +int num_node_memblks; +struct node_memblk_s node_memblk[NR_NODE_MEMBLKS]; +struct node_cpuid_s node_cpuid[NR_CPUS] = + { [0 ... NR_CPUS-1] = { .phys_id = 0, .nid = NUMA_NO_NODE } }; + +/* + * This is a matrix with "distances" between nodes, they should be + * proportional to the memory access latency ratios. + */ +u8 numa_slit[MAX_NUMNODES * MAX_NUMNODES]; + +/* Identify which cnode a physical address resides on */ +int +paddr_to_nid(unsigned long paddr) +{ + int i; + + for (i = 0; i < num_node_memblks; i++) + if (paddr >= node_memblk[i].start_paddr && + paddr < node_memblk[i].start_paddr + node_memblk[i].size) + break; + + return (i < num_node_memblks) ? node_memblk[i].nid : (num_node_memblks ? -1 : 0); +} + +#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_NUMA) +/* + * Because of holes evaluate on section limits. + * If the section of memory exists, then return the node where the section + * resides. Otherwise return node 0 as the default. This is used by + * SPARSEMEM to allocate the SPARSEMEM sectionmap on the NUMA node where + * the section resides. + */ +int __meminit __early_pfn_to_nid(unsigned long pfn) +{ + int i, section = pfn >> PFN_SECTION_SHIFT, ssec, esec; + + for (i = 0; i < num_node_memblks; i++) { + ssec = node_memblk[i].start_paddr >> PA_SECTION_SHIFT; + esec = (node_memblk[i].start_paddr + node_memblk[i].size + + ((1L << PA_SECTION_SHIFT) - 1)) >> PA_SECTION_SHIFT; + if (section >= ssec && section < esec) + return node_memblk[i].nid; + } + + return -1; +} + +#ifdef CONFIG_MEMORY_HOTPLUG +/* + * SRAT information is stored in node_memblk[], then we can use SRAT + * information at memory-hot-add if necessary. + */ + +int memory_add_physaddr_to_nid(u64 addr) +{ + int nid = paddr_to_nid(addr); + if (nid < 0) + return 0; + return nid; +} + +EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); +#endif +#endif diff --git a/arch/ia64/mm/tlb.c b/arch/ia64/mm/tlb.c new file mode 100644 index 00000000..7b3cdc6c --- /dev/null +++ b/arch/ia64/mm/tlb.c @@ -0,0 +1,562 @@ +/* + * TLB support routines. + * + * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + * + * 08/02/00 A. Mallick <asit.k.mallick@intel.com> + * Modified RID allocation for SMP + * Goutham Rao <goutham.rao@intel.com> + * IPI based ptc implementation and A-step IPI implementation. + * Rohit Seth <rohit.seth@intel.com> + * Ken Chen <kenneth.w.chen@intel.com> + * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation + * Copyright (C) 2007 Intel Corp + * Fenghua Yu <fenghua.yu@intel.com> + * Add multiple ptc.g/ptc.ga instruction support in global tlb purge. + */ +#include <linux/module.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/smp.h> +#include <linux/mm.h> +#include <linux/bootmem.h> +#include <linux/slab.h> + +#include <asm/delay.h> +#include <asm/mmu_context.h> +#include <asm/pgalloc.h> +#include <asm/pal.h> +#include <asm/tlbflush.h> +#include <asm/dma.h> +#include <asm/processor.h> +#include <asm/sal.h> +#include <asm/tlb.h> + +static struct { + u64 mask; /* mask of supported purge page-sizes */ + unsigned long max_bits; /* log2 of largest supported purge page-size */ +} purge; + +struct ia64_ctx ia64_ctx = { + .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock), + .next = 1, + .max_ctx = ~0U +}; + +DEFINE_PER_CPU(u8, ia64_need_tlb_flush); +DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/ +DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/ + +struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; + +/* + * Initializes the ia64_ctx.bitmap array based on max_ctx+1. + * Called after cpu_init() has setup ia64_ctx.max_ctx based on + * maximum RID that is supported by boot CPU. + */ +void __init +mmu_context_init (void) +{ + ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3); + ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3); +} + +/* + * Acquire the ia64_ctx.lock before calling this function! + */ +void +wrap_mmu_context (struct mm_struct *mm) +{ + int i, cpu; + unsigned long flush_bit; + + for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) { + flush_bit = xchg(&ia64_ctx.flushmap[i], 0); + ia64_ctx.bitmap[i] ^= flush_bit; + } + + /* use offset at 300 to skip daemons */ + ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap, + ia64_ctx.max_ctx, 300); + ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap, + ia64_ctx.max_ctx, ia64_ctx.next); + + /* + * can't call flush_tlb_all() here because of race condition + * with O(1) scheduler [EF] + */ + cpu = get_cpu(); /* prevent preemption/migration */ + for_each_online_cpu(i) + if (i != cpu) + per_cpu(ia64_need_tlb_flush, i) = 1; + put_cpu(); + local_flush_tlb_all(); +} + +/* + * Implement "spinaphores" ... like counting semaphores, but they + * spin instead of sleeping. If there are ever any other users for + * this primitive it can be moved up to a spinaphore.h header. + */ +struct spinaphore { + unsigned long ticket; + unsigned long serve; +}; + +static inline void spinaphore_init(struct spinaphore *ss, int val) +{ + ss->ticket = 0; + ss->serve = val; +} + +static inline void down_spin(struct spinaphore *ss) +{ + unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve; + + if (time_before(t, ss->serve)) + return; + + ia64_invala(); + + for (;;) { + asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory"); + if (time_before(t, serve)) + return; + cpu_relax(); + } +} + +static inline void up_spin(struct spinaphore *ss) +{ + ia64_fetchadd(1, &ss->serve, rel); +} + +static struct spinaphore ptcg_sem; +static u16 nptcg = 1; +static int need_ptcg_sem = 1; +static int toolatetochangeptcgsem = 0; + +/* + * Kernel parameter "nptcg=" overrides max number of concurrent global TLB + * purges which is reported from either PAL or SAL PALO. + * + * We don't have sanity checking for nptcg value. It's the user's responsibility + * for valid nptcg value on the platform. Otherwise, kernel may hang in some + * cases. + */ +static int __init +set_nptcg(char *str) +{ + int value = 0; + + get_option(&str, &value); + setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER); + + return 1; +} + +__setup("nptcg=", set_nptcg); + +/* + * Maximum number of simultaneous ptc.g purges in the system can + * be defined by PAL_VM_SUMMARY (in which case we should take + * the smallest value for any cpu in the system) or by the PAL + * override table (in which case we should ignore the value from + * PAL_VM_SUMMARY). + * + * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g + * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case, + * we should ignore the value from either PAL_VM_SUMMARY or PAL override table. + * + * Complicating the logic here is the fact that num_possible_cpus() + * isn't fully setup until we start bringing cpus online. + */ +void +setup_ptcg_sem(int max_purges, int nptcg_from) +{ + static int kp_override; + static int palo_override; + static int firstcpu = 1; + + if (toolatetochangeptcgsem) { + if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0) + BUG_ON(1 < nptcg); + else + BUG_ON(max_purges < nptcg); + return; + } + + if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) { + kp_override = 1; + nptcg = max_purges; + goto resetsema; + } + if (kp_override) { + need_ptcg_sem = num_possible_cpus() > nptcg; + return; + } + + if (nptcg_from == NPTCG_FROM_PALO) { + palo_override = 1; + + /* In PALO max_purges == 0 really means it! */ + if (max_purges == 0) + panic("Whoa! Platform does not support global TLB purges.\n"); + nptcg = max_purges; + if (nptcg == PALO_MAX_TLB_PURGES) { + need_ptcg_sem = 0; + return; + } + goto resetsema; + } + if (palo_override) { + if (nptcg != PALO_MAX_TLB_PURGES) + need_ptcg_sem = (num_possible_cpus() > nptcg); + return; + } + + /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */ + if (max_purges == 0) max_purges = 1; + + if (firstcpu) { + nptcg = max_purges; + firstcpu = 0; + } + if (max_purges < nptcg) + nptcg = max_purges; + if (nptcg == PAL_MAX_PURGES) { + need_ptcg_sem = 0; + return; + } else + need_ptcg_sem = (num_possible_cpus() > nptcg); + +resetsema: + spinaphore_init(&ptcg_sem, max_purges); +} + +void +ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start, + unsigned long end, unsigned long nbits) +{ + struct mm_struct *active_mm = current->active_mm; + + toolatetochangeptcgsem = 1; + + if (mm != active_mm) { + /* Restore region IDs for mm */ + if (mm && active_mm) { + activate_context(mm); + } else { + flush_tlb_all(); + return; + } + } + + if (need_ptcg_sem) + down_spin(&ptcg_sem); + + do { + /* + * Flush ALAT entries also. + */ + ia64_ptcga(start, (nbits << 2)); + ia64_srlz_i(); + start += (1UL << nbits); + } while (start < end); + + if (need_ptcg_sem) + up_spin(&ptcg_sem); + + if (mm != active_mm) { + activate_context(active_mm); + } +} + +void +local_flush_tlb_all (void) +{ + unsigned long i, j, flags, count0, count1, stride0, stride1, addr; + + addr = local_cpu_data->ptce_base; + count0 = local_cpu_data->ptce_count[0]; + count1 = local_cpu_data->ptce_count[1]; + stride0 = local_cpu_data->ptce_stride[0]; + stride1 = local_cpu_data->ptce_stride[1]; + + local_irq_save(flags); + for (i = 0; i < count0; ++i) { + for (j = 0; j < count1; ++j) { + ia64_ptce(addr); + addr += stride1; + } + addr += stride0; + } + local_irq_restore(flags); + ia64_srlz_i(); /* srlz.i implies srlz.d */ +} + +void +flush_tlb_range (struct vm_area_struct *vma, unsigned long start, + unsigned long end) +{ + struct mm_struct *mm = vma->vm_mm; + unsigned long size = end - start; + unsigned long nbits; + +#ifndef CONFIG_SMP + if (mm != current->active_mm) { + mm->context = 0; + return; + } +#endif + + nbits = ia64_fls(size + 0xfff); + while (unlikely (((1UL << nbits) & purge.mask) == 0) && + (nbits < purge.max_bits)) + ++nbits; + if (nbits > purge.max_bits) + nbits = purge.max_bits; + start &= ~((1UL << nbits) - 1); + + preempt_disable(); +#ifdef CONFIG_SMP + if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) { + platform_global_tlb_purge(mm, start, end, nbits); + preempt_enable(); + return; + } +#endif + do { + ia64_ptcl(start, (nbits<<2)); + start += (1UL << nbits); + } while (start < end); + preempt_enable(); + ia64_srlz_i(); /* srlz.i implies srlz.d */ +} +EXPORT_SYMBOL(flush_tlb_range); + +void __devinit +ia64_tlb_init (void) +{ + ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */ + u64 tr_pgbits; + long status; + pal_vm_info_1_u_t vm_info_1; + pal_vm_info_2_u_t vm_info_2; + int cpu = smp_processor_id(); + + if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { + printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; " + "defaulting to architected purge page-sizes.\n", status); + purge.mask = 0x115557000UL; + } + purge.max_bits = ia64_fls(purge.mask); + + ia64_get_ptce(&ptce_info); + local_cpu_data->ptce_base = ptce_info.base; + local_cpu_data->ptce_count[0] = ptce_info.count[0]; + local_cpu_data->ptce_count[1] = ptce_info.count[1]; + local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; + local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; + + local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ + status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2); + + if (status) { + printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); + per_cpu(ia64_tr_num, cpu) = 8; + return; + } + per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; + if (per_cpu(ia64_tr_num, cpu) > + (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1)) + per_cpu(ia64_tr_num, cpu) = + vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; + if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) { + static int justonce = 1; + per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX; + if (justonce) { + justonce = 0; + printk(KERN_DEBUG "TR register number exceeds " + "IA64_TR_ALLOC_MAX!\n"); + } + } +} + +/* + * is_tr_overlap + * + * Check overlap with inserted TRs. + */ +static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size) +{ + u64 tr_log_size; + u64 tr_end; + u64 va_rr = ia64_get_rr(va); + u64 va_rid = RR_TO_RID(va_rr); + u64 va_end = va + (1<<log_size) - 1; + + if (va_rid != RR_TO_RID(p->rr)) + return 0; + tr_log_size = (p->itir & 0xff) >> 2; + tr_end = p->ifa + (1<<tr_log_size) - 1; + + if (va > tr_end || p->ifa > va_end) + return 0; + return 1; + +} + +/* + * ia64_insert_tr in virtual mode. Allocate a TR slot + * + * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr + * + * va : virtual address. + * pte : pte entries inserted. + * log_size: range to be covered. + * + * Return value: <0 : error No. + * + * >=0 : slot number allocated for TR. + * Must be called with preemption disabled. + */ +int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size) +{ + int i, r; + unsigned long psr; + struct ia64_tr_entry *p; + int cpu = smp_processor_id(); + + if (!ia64_idtrs[cpu]) { + ia64_idtrs[cpu] = kmalloc(2 * IA64_TR_ALLOC_MAX * + sizeof (struct ia64_tr_entry), GFP_KERNEL); + if (!ia64_idtrs[cpu]) + return -ENOMEM; + } + r = -EINVAL; + /*Check overlap with existing TR entries*/ + if (target_mask & 0x1) { + p = ia64_idtrs[cpu]; + for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); + i++, p++) { + if (p->pte & 0x1) + if (is_tr_overlap(p, va, log_size)) { + printk(KERN_DEBUG "Overlapped Entry" + "Inserted for TR Reigster!!\n"); + goto out; + } + } + } + if (target_mask & 0x2) { + p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX; + for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); + i++, p++) { + if (p->pte & 0x1) + if (is_tr_overlap(p, va, log_size)) { + printk(KERN_DEBUG "Overlapped Entry" + "Inserted for TR Reigster!!\n"); + goto out; + } + } + } + + for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) { + switch (target_mask & 0x3) { + case 1: + if (!((ia64_idtrs[cpu] + i)->pte & 0x1)) + goto found; + continue; + case 2: + if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) + goto found; + continue; + case 3: + if (!((ia64_idtrs[cpu] + i)->pte & 0x1) && + !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) + goto found; + continue; + default: + r = -EINVAL; + goto out; + } + } +found: + if (i >= per_cpu(ia64_tr_num, cpu)) + return -EBUSY; + + /*Record tr info for mca hander use!*/ + if (i > per_cpu(ia64_tr_used, cpu)) + per_cpu(ia64_tr_used, cpu) = i; + + psr = ia64_clear_ic(); + if (target_mask & 0x1) { + ia64_itr(0x1, i, va, pte, log_size); + ia64_srlz_i(); + p = ia64_idtrs[cpu] + i; + p->ifa = va; + p->pte = pte; + p->itir = log_size << 2; + p->rr = ia64_get_rr(va); + } + if (target_mask & 0x2) { + ia64_itr(0x2, i, va, pte, log_size); + ia64_srlz_i(); + p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i; + p->ifa = va; + p->pte = pte; + p->itir = log_size << 2; + p->rr = ia64_get_rr(va); + } + ia64_set_psr(psr); + r = i; +out: + return r; +} +EXPORT_SYMBOL_GPL(ia64_itr_entry); + +/* + * ia64_purge_tr + * + * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr. + * slot: slot number to be freed. + * + * Must be called with preemption disabled. + */ +void ia64_ptr_entry(u64 target_mask, int slot) +{ + int cpu = smp_processor_id(); + int i; + struct ia64_tr_entry *p; + + if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu)) + return; + + if (target_mask & 0x1) { + p = ia64_idtrs[cpu] + slot; + if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { + p->pte = 0; + ia64_ptr(0x1, p->ifa, p->itir>>2); + ia64_srlz_i(); + } + } + + if (target_mask & 0x2) { + p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot; + if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { + p->pte = 0; + ia64_ptr(0x2, p->ifa, p->itir>>2); + ia64_srlz_i(); + } + } + + for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) { + if (((ia64_idtrs[cpu] + i)->pte & 0x1) || + ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) + break; + } + per_cpu(ia64_tr_used, cpu) = i; +} +EXPORT_SYMBOL_GPL(ia64_ptr_entry); |