summaryrefslogtreecommitdiff
path: root/arch/blackfin/mm/sram-alloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/blackfin/mm/sram-alloc.c')
-rw-r--r--arch/blackfin/mm/sram-alloc.c861
1 files changed, 861 insertions, 0 deletions
diff --git a/arch/blackfin/mm/sram-alloc.c b/arch/blackfin/mm/sram-alloc.c
new file mode 100644
index 00000000..29d98faa
--- /dev/null
+++ b/arch/blackfin/mm/sram-alloc.c
@@ -0,0 +1,861 @@
+/*
+ * SRAM allocator for Blackfin on-chip memory
+ *
+ * Copyright 2004-2009 Analog Devices Inc.
+ *
+ * Licensed under the GPL-2 or later.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/miscdevice.h>
+#include <linux/ioport.h>
+#include <linux/fcntl.h>
+#include <linux/init.h>
+#include <linux/poll.h>
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/spinlock.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <asm/blackfin.h>
+#include <asm/mem_map.h>
+#include "blackfin_sram.h"
+
+/* the data structure for L1 scratchpad and DATA SRAM */
+struct sram_piece {
+ void *paddr;
+ int size;
+ pid_t pid;
+ struct sram_piece *next;
+};
+
+static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
+static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
+static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
+
+#if L1_DATA_A_LENGTH != 0
+static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
+static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
+#endif
+
+#if L1_DATA_B_LENGTH != 0
+static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
+static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
+#endif
+
+#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
+static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
+#endif
+
+#if L1_CODE_LENGTH != 0
+static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
+static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
+static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
+#endif
+
+#if L2_LENGTH != 0
+static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
+static struct sram_piece free_l2_sram_head, used_l2_sram_head;
+#endif
+
+static struct kmem_cache *sram_piece_cache;
+
+/* L1 Scratchpad SRAM initialization function */
+static void __init l1sram_init(void)
+{
+ unsigned int cpu;
+ unsigned long reserve;
+
+#ifdef CONFIG_SMP
+ reserve = 0;
+#else
+ reserve = sizeof(struct l1_scratch_task_info);
+#endif
+
+ for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
+ per_cpu(free_l1_ssram_head, cpu).next =
+ kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
+ if (!per_cpu(free_l1_ssram_head, cpu).next) {
+ printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
+ return;
+ }
+
+ per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
+ per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
+ per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
+ per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
+
+ per_cpu(used_l1_ssram_head, cpu).next = NULL;
+
+ /* mutex initialize */
+ spin_lock_init(&per_cpu(l1sram_lock, cpu));
+ printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
+ L1_SCRATCH_LENGTH >> 10);
+ }
+}
+
+static void __init l1_data_sram_init(void)
+{
+#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
+ unsigned int cpu;
+#endif
+#if L1_DATA_A_LENGTH != 0
+ for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
+ per_cpu(free_l1_data_A_sram_head, cpu).next =
+ kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
+ if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
+ printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
+ return;
+ }
+
+ per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
+ (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
+ per_cpu(free_l1_data_A_sram_head, cpu).next->size =
+ L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
+ per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
+ per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
+
+ per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
+
+ printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
+ L1_DATA_A_LENGTH >> 10,
+ per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
+ }
+#endif
+#if L1_DATA_B_LENGTH != 0
+ for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
+ per_cpu(free_l1_data_B_sram_head, cpu).next =
+ kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
+ if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
+ printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
+ return;
+ }
+
+ per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
+ (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
+ per_cpu(free_l1_data_B_sram_head, cpu).next->size =
+ L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
+ per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
+ per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
+
+ per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
+
+ printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
+ L1_DATA_B_LENGTH >> 10,
+ per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
+ /* mutex initialize */
+ }
+#endif
+
+#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
+ for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
+ spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
+#endif
+}
+
+static void __init l1_inst_sram_init(void)
+{
+#if L1_CODE_LENGTH != 0
+ unsigned int cpu;
+ for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
+ per_cpu(free_l1_inst_sram_head, cpu).next =
+ kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
+ if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
+ printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
+ return;
+ }
+
+ per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
+ (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
+ per_cpu(free_l1_inst_sram_head, cpu).next->size =
+ L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
+ per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
+ per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
+
+ per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
+
+ printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
+ L1_CODE_LENGTH >> 10,
+ per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
+
+ /* mutex initialize */
+ spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
+ }
+#endif
+}
+
+static void __init l2_sram_init(void)
+{
+#if L2_LENGTH != 0
+ free_l2_sram_head.next =
+ kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
+ if (!free_l2_sram_head.next) {
+ printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
+ return;
+ }
+
+ free_l2_sram_head.next->paddr =
+ (void *)L2_START + (_ebss_l2 - _stext_l2);
+ free_l2_sram_head.next->size =
+ L2_LENGTH - (_ebss_l2 - _stext_l2);
+ free_l2_sram_head.next->pid = 0;
+ free_l2_sram_head.next->next = NULL;
+
+ used_l2_sram_head.next = NULL;
+
+ printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
+ L2_LENGTH >> 10,
+ free_l2_sram_head.next->size >> 10);
+
+ /* mutex initialize */
+ spin_lock_init(&l2_sram_lock);
+#endif
+}
+
+static int __init bfin_sram_init(void)
+{
+ sram_piece_cache = kmem_cache_create("sram_piece_cache",
+ sizeof(struct sram_piece),
+ 0, SLAB_PANIC, NULL);
+
+ l1sram_init();
+ l1_data_sram_init();
+ l1_inst_sram_init();
+ l2_sram_init();
+
+ return 0;
+}
+pure_initcall(bfin_sram_init);
+
+/* SRAM allocate function */
+static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
+ struct sram_piece *pused_head)
+{
+ struct sram_piece *pslot, *plast, *pavail;
+
+ if (size <= 0 || !pfree_head || !pused_head)
+ return NULL;
+
+ /* Align the size */
+ size = (size + 3) & ~3;
+
+ pslot = pfree_head->next;
+ plast = pfree_head;
+
+ /* search an available piece slot */
+ while (pslot != NULL && size > pslot->size) {
+ plast = pslot;
+ pslot = pslot->next;
+ }
+
+ if (!pslot)
+ return NULL;
+
+ if (pslot->size == size) {
+ plast->next = pslot->next;
+ pavail = pslot;
+ } else {
+ /* use atomic so our L1 allocator can be used atomically */
+ pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
+
+ if (!pavail)
+ return NULL;
+
+ pavail->paddr = pslot->paddr;
+ pavail->size = size;
+ pslot->paddr += size;
+ pslot->size -= size;
+ }
+
+ pavail->pid = current->pid;
+
+ pslot = pused_head->next;
+ plast = pused_head;
+
+ /* insert new piece into used piece list !!! */
+ while (pslot != NULL && pavail->paddr < pslot->paddr) {
+ plast = pslot;
+ pslot = pslot->next;
+ }
+
+ pavail->next = pslot;
+ plast->next = pavail;
+
+ return pavail->paddr;
+}
+
+/* Allocate the largest available block. */
+static void *_sram_alloc_max(struct sram_piece *pfree_head,
+ struct sram_piece *pused_head,
+ unsigned long *psize)
+{
+ struct sram_piece *pslot, *pmax;
+
+ if (!pfree_head || !pused_head)
+ return NULL;
+
+ pmax = pslot = pfree_head->next;
+
+ /* search an available piece slot */
+ while (pslot != NULL) {
+ if (pslot->size > pmax->size)
+ pmax = pslot;
+ pslot = pslot->next;
+ }
+
+ if (!pmax)
+ return NULL;
+
+ *psize = pmax->size;
+
+ return _sram_alloc(*psize, pfree_head, pused_head);
+}
+
+/* SRAM free function */
+static int _sram_free(const void *addr,
+ struct sram_piece *pfree_head,
+ struct sram_piece *pused_head)
+{
+ struct sram_piece *pslot, *plast, *pavail;
+
+ if (!pfree_head || !pused_head)
+ return -1;
+
+ /* search the relevant memory slot */
+ pslot = pused_head->next;
+ plast = pused_head;
+
+ /* search an available piece slot */
+ while (pslot != NULL && pslot->paddr != addr) {
+ plast = pslot;
+ pslot = pslot->next;
+ }
+
+ if (!pslot)
+ return -1;
+
+ plast->next = pslot->next;
+ pavail = pslot;
+ pavail->pid = 0;
+
+ /* insert free pieces back to the free list */
+ pslot = pfree_head->next;
+ plast = pfree_head;
+
+ while (pslot != NULL && addr > pslot->paddr) {
+ plast = pslot;
+ pslot = pslot->next;
+ }
+
+ if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
+ plast->size += pavail->size;
+ kmem_cache_free(sram_piece_cache, pavail);
+ } else {
+ pavail->next = plast->next;
+ plast->next = pavail;
+ plast = pavail;
+ }
+
+ if (pslot && plast->paddr + plast->size == pslot->paddr) {
+ plast->size += pslot->size;
+ plast->next = pslot->next;
+ kmem_cache_free(sram_piece_cache, pslot);
+ }
+
+ return 0;
+}
+
+int sram_free(const void *addr)
+{
+
+#if L1_CODE_LENGTH != 0
+ if (addr >= (void *)get_l1_code_start()
+ && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
+ return l1_inst_sram_free(addr);
+ else
+#endif
+#if L1_DATA_A_LENGTH != 0
+ if (addr >= (void *)get_l1_data_a_start()
+ && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
+ return l1_data_A_sram_free(addr);
+ else
+#endif
+#if L1_DATA_B_LENGTH != 0
+ if (addr >= (void *)get_l1_data_b_start()
+ && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
+ return l1_data_B_sram_free(addr);
+ else
+#endif
+#if L2_LENGTH != 0
+ if (addr >= (void *)L2_START
+ && addr < (void *)(L2_START + L2_LENGTH))
+ return l2_sram_free(addr);
+ else
+#endif
+ return -1;
+}
+EXPORT_SYMBOL(sram_free);
+
+void *l1_data_A_sram_alloc(size_t size)
+{
+#if L1_DATA_A_LENGTH != 0
+ unsigned long flags;
+ void *addr;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
+ &per_cpu(used_l1_data_A_sram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
+ (long unsigned int)addr, size);
+
+ return addr;
+#else
+ return NULL;
+#endif
+}
+EXPORT_SYMBOL(l1_data_A_sram_alloc);
+
+int l1_data_A_sram_free(const void *addr)
+{
+#if L1_DATA_A_LENGTH != 0
+ unsigned long flags;
+ int ret;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
+ &per_cpu(used_l1_data_A_sram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ return ret;
+#else
+ return -1;
+#endif
+}
+EXPORT_SYMBOL(l1_data_A_sram_free);
+
+void *l1_data_B_sram_alloc(size_t size)
+{
+#if L1_DATA_B_LENGTH != 0
+ unsigned long flags;
+ void *addr;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
+ &per_cpu(used_l1_data_B_sram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
+ (long unsigned int)addr, size);
+
+ return addr;
+#else
+ return NULL;
+#endif
+}
+EXPORT_SYMBOL(l1_data_B_sram_alloc);
+
+int l1_data_B_sram_free(const void *addr)
+{
+#if L1_DATA_B_LENGTH != 0
+ unsigned long flags;
+ int ret;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
+ &per_cpu(used_l1_data_B_sram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
+
+ return ret;
+#else
+ return -1;
+#endif
+}
+EXPORT_SYMBOL(l1_data_B_sram_free);
+
+void *l1_data_sram_alloc(size_t size)
+{
+ void *addr = l1_data_A_sram_alloc(size);
+
+ if (!addr)
+ addr = l1_data_B_sram_alloc(size);
+
+ return addr;
+}
+EXPORT_SYMBOL(l1_data_sram_alloc);
+
+void *l1_data_sram_zalloc(size_t size)
+{
+ void *addr = l1_data_sram_alloc(size);
+
+ if (addr)
+ memset(addr, 0x00, size);
+
+ return addr;
+}
+EXPORT_SYMBOL(l1_data_sram_zalloc);
+
+int l1_data_sram_free(const void *addr)
+{
+ int ret;
+ ret = l1_data_A_sram_free(addr);
+ if (ret == -1)
+ ret = l1_data_B_sram_free(addr);
+ return ret;
+}
+EXPORT_SYMBOL(l1_data_sram_free);
+
+void *l1_inst_sram_alloc(size_t size)
+{
+#if L1_CODE_LENGTH != 0
+ unsigned long flags;
+ void *addr;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
+
+ addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
+ &per_cpu(used_l1_inst_sram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
+
+ pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
+ (long unsigned int)addr, size);
+
+ return addr;
+#else
+ return NULL;
+#endif
+}
+EXPORT_SYMBOL(l1_inst_sram_alloc);
+
+int l1_inst_sram_free(const void *addr)
+{
+#if L1_CODE_LENGTH != 0
+ unsigned long flags;
+ int ret;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
+
+ ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
+ &per_cpu(used_l1_inst_sram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
+
+ return ret;
+#else
+ return -1;
+#endif
+}
+EXPORT_SYMBOL(l1_inst_sram_free);
+
+/* L1 Scratchpad memory allocate function */
+void *l1sram_alloc(size_t size)
+{
+ unsigned long flags;
+ void *addr;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
+
+ addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
+ &per_cpu(used_l1_ssram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
+
+ return addr;
+}
+
+/* L1 Scratchpad memory allocate function */
+void *l1sram_alloc_max(size_t *psize)
+{
+ unsigned long flags;
+ void *addr;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
+
+ addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
+ &per_cpu(used_l1_ssram_head, cpu), psize);
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
+
+ return addr;
+}
+
+/* L1 Scratchpad memory free function */
+int l1sram_free(const void *addr)
+{
+ unsigned long flags;
+ int ret;
+ unsigned int cpu;
+
+ cpu = smp_processor_id();
+ /* add mutex operation */
+ spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
+
+ ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
+ &per_cpu(used_l1_ssram_head, cpu));
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
+
+ return ret;
+}
+
+void *l2_sram_alloc(size_t size)
+{
+#if L2_LENGTH != 0
+ unsigned long flags;
+ void *addr;
+
+ /* add mutex operation */
+ spin_lock_irqsave(&l2_sram_lock, flags);
+
+ addr = _sram_alloc(size, &free_l2_sram_head,
+ &used_l2_sram_head);
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&l2_sram_lock, flags);
+
+ pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
+ (long unsigned int)addr, size);
+
+ return addr;
+#else
+ return NULL;
+#endif
+}
+EXPORT_SYMBOL(l2_sram_alloc);
+
+void *l2_sram_zalloc(size_t size)
+{
+ void *addr = l2_sram_alloc(size);
+
+ if (addr)
+ memset(addr, 0x00, size);
+
+ return addr;
+}
+EXPORT_SYMBOL(l2_sram_zalloc);
+
+int l2_sram_free(const void *addr)
+{
+#if L2_LENGTH != 0
+ unsigned long flags;
+ int ret;
+
+ /* add mutex operation */
+ spin_lock_irqsave(&l2_sram_lock, flags);
+
+ ret = _sram_free(addr, &free_l2_sram_head,
+ &used_l2_sram_head);
+
+ /* add mutex operation */
+ spin_unlock_irqrestore(&l2_sram_lock, flags);
+
+ return ret;
+#else
+ return -1;
+#endif
+}
+EXPORT_SYMBOL(l2_sram_free);
+
+int sram_free_with_lsl(const void *addr)
+{
+ struct sram_list_struct *lsl, **tmp;
+ struct mm_struct *mm = current->mm;
+ int ret = -1;
+
+ for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
+ if ((*tmp)->addr == addr) {
+ lsl = *tmp;
+ ret = sram_free(addr);
+ *tmp = lsl->next;
+ kfree(lsl);
+ break;
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL(sram_free_with_lsl);
+
+/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
+ * tracked. These are designed for userspace so that when a process exits,
+ * we can safely reap their resources.
+ */
+void *sram_alloc_with_lsl(size_t size, unsigned long flags)
+{
+ void *addr = NULL;
+ struct sram_list_struct *lsl = NULL;
+ struct mm_struct *mm = current->mm;
+
+ lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
+ if (!lsl)
+ return NULL;
+
+ if (flags & L1_INST_SRAM)
+ addr = l1_inst_sram_alloc(size);
+
+ if (addr == NULL && (flags & L1_DATA_A_SRAM))
+ addr = l1_data_A_sram_alloc(size);
+
+ if (addr == NULL && (flags & L1_DATA_B_SRAM))
+ addr = l1_data_B_sram_alloc(size);
+
+ if (addr == NULL && (flags & L2_SRAM))
+ addr = l2_sram_alloc(size);
+
+ if (addr == NULL) {
+ kfree(lsl);
+ return NULL;
+ }
+ lsl->addr = addr;
+ lsl->length = size;
+ lsl->next = mm->context.sram_list;
+ mm->context.sram_list = lsl;
+ return addr;
+}
+EXPORT_SYMBOL(sram_alloc_with_lsl);
+
+#ifdef CONFIG_PROC_FS
+/* Once we get a real allocator, we'll throw all of this away.
+ * Until then, we need some sort of visibility into the L1 alloc.
+ */
+/* Need to keep line of output the same. Currently, that is 44 bytes
+ * (including newline).
+ */
+static int _sram_proc_show(struct seq_file *m, const char *desc,
+ struct sram_piece *pfree_head,
+ struct sram_piece *pused_head)
+{
+ struct sram_piece *pslot;
+
+ if (!pfree_head || !pused_head)
+ return -1;
+
+ seq_printf(m, "--- SRAM %-14s Size PID State \n", desc);
+
+ /* search the relevant memory slot */
+ pslot = pused_head->next;
+
+ while (pslot != NULL) {
+ seq_printf(m, "%p-%p %10i %5i %-10s\n",
+ pslot->paddr, pslot->paddr + pslot->size,
+ pslot->size, pslot->pid, "ALLOCATED");
+
+ pslot = pslot->next;
+ }
+
+ pslot = pfree_head->next;
+
+ while (pslot != NULL) {
+ seq_printf(m, "%p-%p %10i %5i %-10s\n",
+ pslot->paddr, pslot->paddr + pslot->size,
+ pslot->size, pslot->pid, "FREE");
+
+ pslot = pslot->next;
+ }
+
+ return 0;
+}
+static int sram_proc_show(struct seq_file *m, void *v)
+{
+ unsigned int cpu;
+
+ for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
+ if (_sram_proc_show(m, "Scratchpad",
+ &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
+ goto not_done;
+#if L1_DATA_A_LENGTH != 0
+ if (_sram_proc_show(m, "L1 Data A",
+ &per_cpu(free_l1_data_A_sram_head, cpu),
+ &per_cpu(used_l1_data_A_sram_head, cpu)))
+ goto not_done;
+#endif
+#if L1_DATA_B_LENGTH != 0
+ if (_sram_proc_show(m, "L1 Data B",
+ &per_cpu(free_l1_data_B_sram_head, cpu),
+ &per_cpu(used_l1_data_B_sram_head, cpu)))
+ goto not_done;
+#endif
+#if L1_CODE_LENGTH != 0
+ if (_sram_proc_show(m, "L1 Instruction",
+ &per_cpu(free_l1_inst_sram_head, cpu),
+ &per_cpu(used_l1_inst_sram_head, cpu)))
+ goto not_done;
+#endif
+ }
+#if L2_LENGTH != 0
+ if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
+ goto not_done;
+#endif
+ not_done:
+ return 0;
+}
+
+static int sram_proc_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, sram_proc_show, NULL);
+}
+
+static const struct file_operations sram_proc_ops = {
+ .open = sram_proc_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int __init sram_proc_init(void)
+{
+ struct proc_dir_entry *ptr;
+
+ ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
+ if (!ptr) {
+ printk(KERN_WARNING "unable to create /proc/sram\n");
+ return -1;
+ }
+ return 0;
+}
+late_initcall(sram_proc_init);
+#endif