diff options
Diffstat (limited to 'arch/arm/mm/mmu.c')
-rw-r--r-- | arch/arm/mm/mmu.c | 1250 |
1 files changed, 1250 insertions, 0 deletions
diff --git a/arch/arm/mm/mmu.c b/arch/arm/mm/mmu.c new file mode 100644 index 00000000..2dacda29 --- /dev/null +++ b/arch/arm/mm/mmu.c @@ -0,0 +1,1250 @@ +/* + * linux/arch/arm/mm/mmu.c + * + * Copyright (C) 1995-2005 Russell King + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/init.h> +#include <linux/mman.h> +#include <linux/nodemask.h> +#include <linux/memblock.h> +#include <linux/fs.h> +#include <linux/vmalloc.h> + +#include <asm/cp15.h> +#include <asm/cputype.h> +#include <asm/sections.h> +#include <asm/cachetype.h> +#include <asm/setup.h> +#include <asm/sizes.h> +#include <asm/smp_plat.h> +#include <asm/tlb.h> +#include <asm/highmem.h> +#include <asm/system_info.h> +#include <asm/traps.h> + +#include <asm/mach/arch.h> +#include <asm/mach/map.h> + +#include "mm.h" + +/* + * empty_zero_page is a special page that is used for + * zero-initialized data and COW. + */ +struct page *empty_zero_page; +EXPORT_SYMBOL(empty_zero_page); + +/* + * The pmd table for the upper-most set of pages. + */ +pmd_t *top_pmd; + +#define CPOLICY_UNCACHED 0 +#define CPOLICY_BUFFERED 1 +#define CPOLICY_WRITETHROUGH 2 +#define CPOLICY_WRITEBACK 3 +#define CPOLICY_WRITEALLOC 4 + +static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; +static unsigned int ecc_mask __initdata = 0; +pgprot_t pgprot_user; +pgprot_t pgprot_kernel; + +EXPORT_SYMBOL(pgprot_user); +EXPORT_SYMBOL(pgprot_kernel); + +struct cachepolicy { + const char policy[16]; + unsigned int cr_mask; + pmdval_t pmd; + pteval_t pte; +}; + +static struct cachepolicy cache_policies[] __initdata = { + { + .policy = "uncached", + .cr_mask = CR_W|CR_C, + .pmd = PMD_SECT_UNCACHED, + .pte = L_PTE_MT_UNCACHED, + }, { + .policy = "buffered", + .cr_mask = CR_C, + .pmd = PMD_SECT_BUFFERED, + .pte = L_PTE_MT_BUFFERABLE, + }, { + .policy = "writethrough", + .cr_mask = 0, + .pmd = PMD_SECT_WT, + .pte = L_PTE_MT_WRITETHROUGH, + }, { + .policy = "writeback", + .cr_mask = 0, + .pmd = PMD_SECT_WB, + .pte = L_PTE_MT_WRITEBACK, + }, { + .policy = "writealloc", + .cr_mask = 0, + .pmd = PMD_SECT_WBWA, + .pte = L_PTE_MT_WRITEALLOC, + } +}; + +/* + * These are useful for identifying cache coherency + * problems by allowing the cache or the cache and + * writebuffer to be turned off. (Note: the write + * buffer should not be on and the cache off). + */ +static int __init early_cachepolicy(char *p) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { + int len = strlen(cache_policies[i].policy); + + if (memcmp(p, cache_policies[i].policy, len) == 0) { + cachepolicy = i; + cr_alignment &= ~cache_policies[i].cr_mask; + cr_no_alignment &= ~cache_policies[i].cr_mask; + break; + } + } + if (i == ARRAY_SIZE(cache_policies)) + printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); + /* + * This restriction is partly to do with the way we boot; it is + * unpredictable to have memory mapped using two different sets of + * memory attributes (shared, type, and cache attribs). We can not + * change these attributes once the initial assembly has setup the + * page tables. + */ + if (cpu_architecture() >= CPU_ARCH_ARMv6) { + printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); + cachepolicy = CPOLICY_WRITEBACK; + } + flush_cache_all(); + set_cr(cr_alignment); + return 0; +} +early_param("cachepolicy", early_cachepolicy); + +static int __init early_nocache(char *__unused) +{ + char *p = "buffered"; + printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); + early_cachepolicy(p); + return 0; +} +early_param("nocache", early_nocache); + +static int __init early_nowrite(char *__unused) +{ + char *p = "uncached"; + printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); + early_cachepolicy(p); + return 0; +} +early_param("nowb", early_nowrite); + +#ifndef CONFIG_ARM_LPAE +static int __init early_ecc(char *p) +{ + if (memcmp(p, "on", 2) == 0) + ecc_mask = PMD_PROTECTION; + else if (memcmp(p, "off", 3) == 0) + ecc_mask = 0; + return 0; +} +early_param("ecc", early_ecc); +#endif + +static int __init noalign_setup(char *__unused) +{ + cr_alignment &= ~CR_A; + cr_no_alignment &= ~CR_A; + set_cr(cr_alignment); + return 1; +} +__setup("noalign", noalign_setup); + +#ifndef CONFIG_SMP +void adjust_cr(unsigned long mask, unsigned long set) +{ + unsigned long flags; + + mask &= ~CR_A; + + set &= mask; + + local_irq_save(flags); + + cr_no_alignment = (cr_no_alignment & ~mask) | set; + cr_alignment = (cr_alignment & ~mask) | set; + + set_cr((get_cr() & ~mask) | set); + + local_irq_restore(flags); +} +#endif + +#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN +#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE + +static struct mem_type mem_types[] = { + [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | + L_PTE_SHARED, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, + .domain = DOMAIN_IO, + }, + [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE, + .domain = DOMAIN_IO, + }, + [MT_DEVICE_CACHED] = { /* ioremap_cached */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, + .domain = DOMAIN_IO, + }, + [MT_DEVICE_WC] = { /* ioremap_wc */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE, + .domain = DOMAIN_IO, + }, + [MT_UNCACHED] = { + .prot_pte = PROT_PTE_DEVICE, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, + .domain = DOMAIN_IO, + }, + [MT_CACHECLEAN] = { + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, + .domain = DOMAIN_KERNEL, + }, +#ifndef CONFIG_ARM_LPAE + [MT_MINICLEAN] = { + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, + .domain = DOMAIN_KERNEL, + }, +#endif + [MT_LOW_VECTORS] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_RDONLY, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_USER, + }, + [MT_HIGH_VECTORS] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_USER | L_PTE_RDONLY, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_USER, + }, + [MT_MEMORY] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, + .domain = DOMAIN_KERNEL, + }, + [MT_ROM] = { + .prot_sect = PMD_TYPE_SECT, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_NONCACHED] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_MT_BUFFERABLE, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_DTCM] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_XN, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_ITCM] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_SO] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_MT_UNCACHED, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | + PMD_SECT_UNCACHED | PMD_SECT_XN, + .domain = DOMAIN_KERNEL, + }, +}; + +const struct mem_type *get_mem_type(unsigned int type) +{ + return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; +} +EXPORT_SYMBOL(get_mem_type); + +/* + * Adjust the PMD section entries according to the CPU in use. + */ +static void __init build_mem_type_table(void) +{ + struct cachepolicy *cp; + unsigned int cr = get_cr(); + pteval_t user_pgprot, kern_pgprot, vecs_pgprot; + int cpu_arch = cpu_architecture(); + int i; + + if (cpu_arch < CPU_ARCH_ARMv6) { +#if defined(CONFIG_CPU_DCACHE_DISABLE) + if (cachepolicy > CPOLICY_BUFFERED) + cachepolicy = CPOLICY_BUFFERED; +#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) + if (cachepolicy > CPOLICY_WRITETHROUGH) + cachepolicy = CPOLICY_WRITETHROUGH; +#endif + } + if (cpu_arch < CPU_ARCH_ARMv5) { + if (cachepolicy >= CPOLICY_WRITEALLOC) + cachepolicy = CPOLICY_WRITEBACK; + ecc_mask = 0; + } + if (is_smp()) +#if defined(CONFIG_ARCH_WMT_SMP_CACHEPOLICY_WRITEBACK) + cachepolicy = CPOLICY_WRITEBACK; +#else + cachepolicy = CPOLICY_WRITEALLOC; +#endif + + /* + * Strip out features not present on earlier architectures. + * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those + * without extended page tables don't have the 'Shared' bit. + */ + if (cpu_arch < CPU_ARCH_ARMv5) + for (i = 0; i < ARRAY_SIZE(mem_types); i++) + mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); + if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) + for (i = 0; i < ARRAY_SIZE(mem_types); i++) + mem_types[i].prot_sect &= ~PMD_SECT_S; + + /* + * ARMv5 and lower, bit 4 must be set for page tables (was: cache + * "update-able on write" bit on ARM610). However, Xscale and + * Xscale3 require this bit to be cleared. + */ + if (cpu_is_xscale() || cpu_is_xsc3()) { + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + mem_types[i].prot_sect &= ~PMD_BIT4; + mem_types[i].prot_l1 &= ~PMD_BIT4; + } + } else if (cpu_arch < CPU_ARCH_ARMv6) { + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + if (mem_types[i].prot_l1) + mem_types[i].prot_l1 |= PMD_BIT4; + if (mem_types[i].prot_sect) + mem_types[i].prot_sect |= PMD_BIT4; + } + } + + /* + * Mark the device areas according to the CPU/architecture. + */ + if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { + if (!cpu_is_xsc3()) { + /* + * Mark device regions on ARMv6+ as execute-never + * to prevent speculative instruction fetches. + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; + mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; + } + if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { + /* + * For ARMv7 with TEX remapping, + * - shared device is SXCB=1100 + * - nonshared device is SXCB=0100 + * - write combine device mem is SXCB=0001 + * (Uncached Normal memory) + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; + } else if (cpu_is_xsc3()) { + /* + * For Xscale3, + * - shared device is TEXCB=00101 + * - nonshared device is TEXCB=01000 + * - write combine device mem is TEXCB=00100 + * (Inner/Outer Uncacheable in xsc3 parlance) + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); + } else { + /* + * For ARMv6 and ARMv7 without TEX remapping, + * - shared device is TEXCB=00001 + * - nonshared device is TEXCB=01000 + * - write combine device mem is TEXCB=00100 + * (Uncached Normal in ARMv6 parlance). + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); + } + } else { + /* + * On others, write combining is "Uncached/Buffered" + */ + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; + } + + /* + * Now deal with the memory-type mappings + */ + cp = &cache_policies[cachepolicy]; + vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; + + /* + * Only use write-through for non-SMP systems + */ + if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH) + vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte; + + /* + * Enable CPU-specific coherency if supported. + * (Only available on XSC3 at the moment.) + */ + if (arch_is_coherent() && cpu_is_xsc3()) { + mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED; + } + /* + * ARMv6 and above have extended page tables. + */ + if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { +#ifndef CONFIG_ARM_LPAE + /* + * Mark cache clean areas and XIP ROM read only + * from SVC mode and no access from userspace. + */ + mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; + mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; +#endif + + if (is_smp()) { + /* + * Mark memory with the "shared" attribute + * for SMP systems + */ + user_pgprot |= L_PTE_SHARED; + kern_pgprot |= L_PTE_SHARED; + vecs_pgprot |= L_PTE_SHARED; + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; + mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; + mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; + mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED; + } + } + + /* + * Non-cacheable Normal - intended for memory areas that must + * not cause dirty cache line writebacks when used + */ + if (cpu_arch >= CPU_ARCH_ARMv6) { + if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { + /* Non-cacheable Normal is XCB = 001 */ + mem_types[MT_MEMORY_NONCACHED].prot_sect |= + PMD_SECT_BUFFERED; + } else { + /* For both ARMv6 and non-TEX-remapping ARMv7 */ + mem_types[MT_MEMORY_NONCACHED].prot_sect |= + PMD_SECT_TEX(1); + } + } else { + mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; + } + +#ifdef CONFIG_ARM_LPAE + /* + * Do not generate access flag faults for the kernel mappings. + */ + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + mem_types[i].prot_pte |= PTE_EXT_AF; + if (mem_types[i].prot_sect) + mem_types[i].prot_sect |= PMD_SECT_AF; + } + kern_pgprot |= PTE_EXT_AF; + vecs_pgprot |= PTE_EXT_AF; +#endif + + for (i = 0; i < 16; i++) { + unsigned long v = pgprot_val(protection_map[i]); + protection_map[i] = __pgprot(v | user_pgprot); + } + + mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; + mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; + + pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); + pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | + L_PTE_DIRTY | kern_pgprot); + + mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; + mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; + mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; + mem_types[MT_MEMORY].prot_pte |= kern_pgprot; + mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask; + mem_types[MT_ROM].prot_sect |= cp->pmd; + + switch (cp->pmd) { + case PMD_SECT_WT: + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; + break; + case PMD_SECT_WB: + case PMD_SECT_WBWA: + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; + break; + } + printk("Memory policy: ECC %sabled, Data cache %s\n", + ecc_mask ? "en" : "dis", cp->policy); + + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + struct mem_type *t = &mem_types[i]; + if (t->prot_l1) + t->prot_l1 |= PMD_DOMAIN(t->domain); + if (t->prot_sect) + t->prot_sect |= PMD_DOMAIN(t->domain); + } +} + +#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE +pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, + unsigned long size, pgprot_t vma_prot) +{ + if (!pfn_valid(pfn)) + return pgprot_noncached(vma_prot); + else if (file->f_flags & O_SYNC) + return pgprot_writecombine(vma_prot); + return vma_prot; +} +EXPORT_SYMBOL(phys_mem_access_prot); +#endif + +#define vectors_base() (vectors_high() ? 0xffff0000 : 0) + +static void __init *early_alloc_aligned(unsigned long sz, unsigned long align) +{ + void *ptr = __va(memblock_alloc(sz, align)); + memset(ptr, 0, sz); + return ptr; +} + +static void __init *early_alloc(unsigned long sz) +{ + return early_alloc_aligned(sz, sz); +} + +static pte_t * __init early_pte_alloc(pmd_t *pmd) +{ + if (pmd_none(*pmd) || pmd_bad(*pmd)) + return early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); + return pmd_page_vaddr(*pmd); +} + +static void __init early_pte_install(pmd_t *pmd, pte_t *pte, unsigned long prot) +{ + __pmd_populate(pmd, __pa(pte), prot); + BUG_ON(pmd_bad(*pmd)); +} + +static pte_t * __init early_pte_alloc_and_install(pmd_t *pmd, + unsigned long addr, unsigned long prot) +{ + if (pmd_none(*pmd)) { + pte_t *pte = early_pte_alloc(pmd); + early_pte_install(pmd, pte, prot); + } + BUG_ON(pmd_bad(*pmd)); + return pte_offset_kernel(pmd, addr); +} + +static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, + unsigned long end, unsigned long pfn, + const struct mem_type *type) +{ + pte_t *start_pte = early_pte_alloc(pmd); + pte_t *pte = start_pte + pte_index(addr); + + /* If replacing a section mapping, the whole section must be replaced */ + BUG_ON(pmd_bad(*pmd) && ((addr | end) & ~PMD_MASK)); + + do { + set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); + pfn++; + } while (pte++, addr += PAGE_SIZE, addr != end); + early_pte_install(pmd, start_pte, type->prot_l1); +} + +static void __init alloc_init_section(pud_t *pud, unsigned long addr, + unsigned long end, phys_addr_t phys, + const struct mem_type *type, + bool force_pages) +{ + pmd_t *pmd = pmd_offset(pud, addr); + + /* + * Try a section mapping - end, addr and phys must all be aligned + * to a section boundary. Note that PMDs refer to the individual + * L1 entries, whereas PGDs refer to a group of L1 entries making + * up one logical pointer to an L2 table. + */ + if (((addr | end | phys) & ~SECTION_MASK) == 0 && !force_pages) { + pmd_t *p = pmd; + +#ifndef CONFIG_ARM_LPAE + if (addr & SECTION_SIZE) + pmd++; +#endif + + do { + *pmd = __pmd(phys | type->prot_sect); + phys += SECTION_SIZE; + } while (pmd++, addr += SECTION_SIZE, addr != end); + + flush_pmd_entry(p); + } else { + /* + * No need to loop; pte's aren't interested in the + * individual L1 entries. + */ + alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type); + } +} + +static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, + unsigned long end, unsigned long phys, const struct mem_type *type, + bool force_pages) +{ + pud_t *pud = pud_offset(pgd, addr); + unsigned long next; + + do { + next = pud_addr_end(addr, end); + alloc_init_section(pud, addr, next, phys, type, force_pages); + phys += next - addr; + } while (pud++, addr = next, addr != end); +} + +#ifndef CONFIG_ARM_LPAE +static void __init create_36bit_mapping(struct map_desc *md, + const struct mem_type *type) +{ + unsigned long addr, length, end; + phys_addr_t phys; + pgd_t *pgd; + + addr = md->virtual; + phys = __pfn_to_phys(md->pfn); + length = PAGE_ALIGN(md->length); + + if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { + printk(KERN_ERR "MM: CPU does not support supersection " + "mapping for 0x%08llx at 0x%08lx\n", + (long long)__pfn_to_phys((u64)md->pfn), addr); + return; + } + + /* N.B. ARMv6 supersections are only defined to work with domain 0. + * Since domain assignments can in fact be arbitrary, the + * 'domain == 0' check below is required to insure that ARMv6 + * supersections are only allocated for domain 0 regardless + * of the actual domain assignments in use. + */ + if (type->domain) { + printk(KERN_ERR "MM: invalid domain in supersection " + "mapping for 0x%08llx at 0x%08lx\n", + (long long)__pfn_to_phys((u64)md->pfn), addr); + return; + } + + if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { + printk(KERN_ERR "MM: cannot create mapping for 0x%08llx" + " at 0x%08lx invalid alignment\n", + (long long)__pfn_to_phys((u64)md->pfn), addr); + return; + } + + /* + * Shift bits [35:32] of address into bits [23:20] of PMD + * (See ARMv6 spec). + */ + phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); + + pgd = pgd_offset_k(addr); + end = addr + length; + do { + pud_t *pud = pud_offset(pgd, addr); + pmd_t *pmd = pmd_offset(pud, addr); + int i; + + for (i = 0; i < 16; i++) + *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); + + addr += SUPERSECTION_SIZE; + phys += SUPERSECTION_SIZE; + pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; + } while (addr != end); +} +#endif /* !CONFIG_ARM_LPAE */ + +/* + * Create the page directory entries and any necessary + * page tables for the mapping specified by `md'. We + * are able to cope here with varying sizes and address + * offsets, and we take full advantage of sections and + * supersections. + */ +static void __init create_mapping(struct map_desc *md, bool force_pages) +{ + unsigned long addr, length, end; + phys_addr_t phys; + const struct mem_type *type; + pgd_t *pgd; + + if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { + printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx" + " at 0x%08lx in user region\n", + (long long)__pfn_to_phys((u64)md->pfn), md->virtual); + return; + } + + if ((md->type == MT_DEVICE || md->type == MT_ROM) && + md->virtual >= PAGE_OFFSET && + (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { + printk(KERN_WARNING "BUG: mapping for 0x%08llx" + " at 0x%08lx out of vmalloc space\n", + (long long)__pfn_to_phys((u64)md->pfn), md->virtual); + } + + type = &mem_types[md->type]; + +#ifndef CONFIG_ARM_LPAE + /* + * Catch 36-bit addresses + */ + if (md->pfn >= 0x100000) { + create_36bit_mapping(md, type); + return; + } +#endif + + addr = md->virtual & PAGE_MASK; + phys = __pfn_to_phys(md->pfn); + length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); + + if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { + printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not " + "be mapped using pages, ignoring.\n", + (long long)__pfn_to_phys(md->pfn), addr); + return; + } + + pgd = pgd_offset_k(addr); + end = addr + length; + do { + unsigned long next = pgd_addr_end(addr, end); + + alloc_init_pud(pgd, addr, next, phys, type, force_pages); + + phys += next - addr; + addr = next; + } while (pgd++, addr != end); +} + +/* + * Create the architecture specific mappings + */ +void __init iotable_init(struct map_desc *io_desc, int nr) +{ + struct map_desc *md; + struct vm_struct *vm; + + if (!nr) + return; + + vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm)); + + for (md = io_desc; nr; md++, nr--) { + create_mapping(md, false); + vm->addr = (void *)(md->virtual & PAGE_MASK); + vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); + vm->phys_addr = __pfn_to_phys(md->pfn); + vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; + vm->flags |= VM_ARM_MTYPE(md->type); + vm->caller = iotable_init; + vm_area_add_early(vm++); + } +} + +#ifndef CONFIG_ARM_LPAE + +/* + * The Linux PMD is made of two consecutive section entries covering 2MB + * (see definition in include/asm/pgtable-2level.h). However a call to + * create_mapping() may optimize static mappings by using individual + * 1MB section mappings. This leaves the actual PMD potentially half + * initialized if the top or bottom section entry isn't used, leaving it + * open to problems if a subsequent ioremap() or vmalloc() tries to use + * the virtual space left free by that unused section entry. + * + * Let's avoid the issue by inserting dummy vm entries covering the unused + * PMD halves once the static mappings are in place. + */ + +static void __init pmd_empty_section_gap(unsigned long addr) +{ + struct vm_struct *vm; + + vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm)); + vm->addr = (void *)addr; + vm->size = SECTION_SIZE; + vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; + vm->caller = pmd_empty_section_gap; + vm_area_add_early(vm); +} + +static void __init fill_pmd_gaps(void) +{ + struct vm_struct *vm; + unsigned long addr, next = 0; + pmd_t *pmd; + + /* we're still single threaded hence no lock needed here */ + for (vm = vmlist; vm; vm = vm->next) { + if (!(vm->flags & VM_ARM_STATIC_MAPPING)) + continue; + addr = (unsigned long)vm->addr; + if (addr < next) + continue; + + /* + * Check if this vm starts on an odd section boundary. + * If so and the first section entry for this PMD is free + * then we block the corresponding virtual address. + */ + if ((addr & ~PMD_MASK) == SECTION_SIZE) { + pmd = pmd_off_k(addr); + if (pmd_none(*pmd)) + pmd_empty_section_gap(addr & PMD_MASK); + } + + /* + * Then check if this vm ends on an odd section boundary. + * If so and the second section entry for this PMD is empty + * then we block the corresponding virtual address. + */ + addr += vm->size; + if ((addr & ~PMD_MASK) == SECTION_SIZE) { + pmd = pmd_off_k(addr) + 1; + if (pmd_none(*pmd)) + pmd_empty_section_gap(addr); + } + + /* no need to look at any vm entry until we hit the next PMD */ + next = (addr + PMD_SIZE - 1) & PMD_MASK; + } +} + +#else +#define fill_pmd_gaps() do { } while (0) +#endif + +static void * __initdata vmalloc_min = + (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); + +/* + * vmalloc=size forces the vmalloc area to be exactly 'size' + * bytes. This can be used to increase (or decrease) the vmalloc + * area - the default is 240m. + */ +static int __init early_vmalloc(char *arg) +{ + unsigned long vmalloc_reserve = memparse(arg, NULL); + + if (vmalloc_reserve < SZ_16M) { + vmalloc_reserve = SZ_16M; + printk(KERN_WARNING + "vmalloc area too small, limiting to %luMB\n", + vmalloc_reserve >> 20); + } + + if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { + vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); + printk(KERN_WARNING + "vmalloc area is too big, limiting to %luMB\n", + vmalloc_reserve >> 20); + } + + vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); + return 0; +} +early_param("vmalloc", early_vmalloc); + +static phys_addr_t lowmem_limit __initdata = 0; + +void __init sanity_check_meminfo(void) +{ + int i, j, highmem = 0; + + for (i = 0, j = 0; i < meminfo.nr_banks; i++) { + struct membank *bank = &meminfo.bank[j]; + *bank = meminfo.bank[i]; + + if (bank->start > ULONG_MAX) + highmem = 1; + +#ifdef CONFIG_HIGHMEM + if (__va(bank->start) >= vmalloc_min || + __va(bank->start) < (void *)PAGE_OFFSET) + highmem = 1; + + bank->highmem = highmem; + + /* + * Split those memory banks which are partially overlapping + * the vmalloc area greatly simplifying things later. + */ + if (!highmem && __va(bank->start) < vmalloc_min && + bank->size > vmalloc_min - __va(bank->start)) { + if (meminfo.nr_banks >= NR_BANKS) { + printk(KERN_CRIT "NR_BANKS too low, " + "ignoring high memory\n"); + } else { + memmove(bank + 1, bank, + (meminfo.nr_banks - i) * sizeof(*bank)); + meminfo.nr_banks++; + i++; + bank[1].size -= vmalloc_min - __va(bank->start); + bank[1].start = __pa(vmalloc_min - 1) + 1; + bank[1].highmem = highmem = 1; + j++; + } + bank->size = vmalloc_min - __va(bank->start); + } +#else + bank->highmem = highmem; + + /* + * Highmem banks not allowed with !CONFIG_HIGHMEM. + */ + if (highmem) { + printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx " + "(!CONFIG_HIGHMEM).\n", + (unsigned long long)bank->start, + (unsigned long long)bank->start + bank->size - 1); + continue; + } + + /* + * Check whether this memory bank would entirely overlap + * the vmalloc area. + */ + if (__va(bank->start) >= vmalloc_min || + __va(bank->start) < (void *)PAGE_OFFSET) { + printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx " + "(vmalloc region overlap).\n", + (unsigned long long)bank->start, + (unsigned long long)bank->start + bank->size - 1); + continue; + } + + /* + * Check whether this memory bank would partially overlap + * the vmalloc area. + */ + if (__va(bank->start + bank->size) > vmalloc_min || + __va(bank->start + bank->size) < __va(bank->start)) { + unsigned long newsize = vmalloc_min - __va(bank->start); + printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx " + "to -%.8llx (vmalloc region overlap).\n", + (unsigned long long)bank->start, + (unsigned long long)bank->start + bank->size - 1, + (unsigned long long)bank->start + newsize - 1); + bank->size = newsize; + } +#endif + if (!bank->highmem && bank->start + bank->size > lowmem_limit) + lowmem_limit = bank->start + bank->size; + + j++; + } +#ifdef CONFIG_HIGHMEM + if (highmem) { + const char *reason = NULL; + + if (cache_is_vipt_aliasing()) { + /* + * Interactions between kmap and other mappings + * make highmem support with aliasing VIPT caches + * rather difficult. + */ + reason = "with VIPT aliasing cache"; + } + if (reason) { + printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n", + reason); + while (j > 0 && meminfo.bank[j - 1].highmem) + j--; + } + } +#endif + meminfo.nr_banks = j; + high_memory = __va(lowmem_limit - 1) + 1; + memblock_set_current_limit(lowmem_limit); +} + +static inline void prepare_page_table(void) +{ + unsigned long addr; + phys_addr_t end; + + /* + * Clear out all the mappings below the kernel image. + */ + for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); + +#ifdef CONFIG_XIP_KERNEL + /* The XIP kernel is mapped in the module area -- skip over it */ + addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK; +#endif + for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); + + /* + * Find the end of the first block of lowmem. + */ + end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; + if (end >= lowmem_limit) + end = lowmem_limit; + + /* + * Clear out all the kernel space mappings, except for the first + * memory bank, up to the vmalloc region. + */ + for (addr = __phys_to_virt(end); + addr < VMALLOC_START; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); +} + +#ifdef CONFIG_ARM_LPAE +/* the first page is reserved for pgd */ +#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ + PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) +#else +#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) +#endif + +/* + * Reserve the special regions of memory + */ +void __init arm_mm_memblock_reserve(void) +{ + /* + * Reserve the page tables. These are already in use, + * and can only be in node 0. + */ + memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); + +#ifdef CONFIG_SA1111 + /* + * Because of the SA1111 DMA bug, we want to preserve our + * precious DMA-able memory... + */ + memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); +#endif +} + +/* + * Set up the device mappings. Since we clear out the page tables for all + * mappings above VMALLOC_START, we will remove any debug device mappings. + * This means you have to be careful how you debug this function, or any + * called function. This means you can't use any function or debugging + * method which may touch any device, otherwise the kernel _will_ crash. + */ +static void __init devicemaps_init(struct machine_desc *mdesc) +{ + struct map_desc map; + unsigned long addr; + void *vectors; + + /* + * Allocate the vector page early. + */ + vectors = early_alloc(PAGE_SIZE); + + early_trap_init(vectors); + + for (addr = VMALLOC_START; addr; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); + + /* + * Map the kernel if it is XIP. + * It is always first in the modulearea. + */ +#ifdef CONFIG_XIP_KERNEL + map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); + map.virtual = MODULES_VADDR; + map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; + map.type = MT_ROM; + create_mapping(&map); +#endif + + /* + * Map the cache flushing regions. + */ +#ifdef FLUSH_BASE + map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); + map.virtual = FLUSH_BASE; + map.length = SZ_1M; + map.type = MT_CACHECLEAN; + create_mapping(&map); +#endif +#ifdef FLUSH_BASE_MINICACHE + map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); + map.virtual = FLUSH_BASE_MINICACHE; + map.length = SZ_1M; + map.type = MT_MINICLEAN; + create_mapping(&map); +#endif + + /* + * Create a mapping for the machine vectors at the high-vectors + * location (0xffff0000). If we aren't using high-vectors, also + * create a mapping at the low-vectors virtual address. + */ + map.pfn = __phys_to_pfn(virt_to_phys(vectors)); + map.virtual = 0xffff0000; + map.length = PAGE_SIZE; + map.type = MT_HIGH_VECTORS; + create_mapping(&map, false); + + if (!vectors_high()) { + map.virtual = 0; + map.type = MT_LOW_VECTORS; + create_mapping(&map, false); + } + + /* + * Ask the machine support to map in the statically mapped devices. + */ + if (mdesc->map_io) + mdesc->map_io(); + fill_pmd_gaps(); + + /* + * Finally flush the caches and tlb to ensure that we're in a + * consistent state wrt the writebuffer. This also ensures that + * any write-allocated cache lines in the vector page are written + * back. After this point, we can start to touch devices again. + */ + local_flush_tlb_all(); + flush_cache_all(); +} + +static void __init kmap_init(void) +{ +#ifdef CONFIG_HIGHMEM + pkmap_page_table = early_pte_alloc_and_install(pmd_off_k(PKMAP_BASE), + PKMAP_BASE, _PAGE_KERNEL_TABLE); +#endif +} + + +static void __init map_lowmem(void) +{ + struct memblock_region *reg; + phys_addr_t start; + phys_addr_t end; + struct map_desc map; + + /* Map all the lowmem memory banks. */ + for_each_memblock(memory, reg) { + start = reg->base; + end = start + reg->size; + + if (end > lowmem_limit) + end = lowmem_limit; + if (start >= end) + break; + + map.pfn = __phys_to_pfn(start); + map.virtual = __phys_to_virt(start); + map.length = end - start; + map.type = MT_MEMORY; + + create_mapping(&map, false); + } + +#ifdef CONFIG_DEBUG_RODATA + start = __pa(_stext) & PMD_MASK; + end = ALIGN(__pa(__end_rodata), PMD_SIZE); + + map.pfn = __phys_to_pfn(start); + map.virtual = __phys_to_virt(start); + map.length = end - start; + map.type = MT_MEMORY; + + create_mapping(&map, true); +#endif +} + +/* + * paging_init() sets up the page tables, initialises the zone memory + * maps, and sets up the zero page, bad page and bad page tables. + */ +void __init paging_init(struct machine_desc *mdesc) +{ + void *zero_page; + + memblock_set_current_limit(lowmem_limit); + + build_mem_type_table(); + prepare_page_table(); + map_lowmem(); + devicemaps_init(mdesc); + kmap_init(); + + top_pmd = pmd_off_k(0xffff0000); + + /* allocate the zero page. */ + zero_page = early_alloc(PAGE_SIZE); + + bootmem_init(); + + empty_zero_page = virt_to_page(zero_page); + __flush_dcache_page(NULL, empty_zero_page); +} |