summaryrefslogtreecommitdiff
path: root/arch/arm/mm/fault-armv.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/mm/fault-armv.c')
-rw-r--r--arch/arm/mm/fault-armv.c270
1 files changed, 270 insertions, 0 deletions
diff --git a/arch/arm/mm/fault-armv.c b/arch/arm/mm/fault-armv.c
new file mode 100644
index 00000000..7599e262
--- /dev/null
+++ b/arch/arm/mm/fault-armv.c
@@ -0,0 +1,270 @@
+/*
+ * linux/arch/arm/mm/fault-armv.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ * Modifications for ARM processor (c) 1995-2002 Russell King
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/bitops.h>
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/pagemap.h>
+#include <linux/gfp.h>
+
+#include <asm/bugs.h>
+#include <asm/cacheflush.h>
+#include <asm/cachetype.h>
+#include <asm/pgtable.h>
+#include <asm/tlbflush.h>
+
+#include "mm.h"
+
+static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
+
+#if __LINUX_ARM_ARCH__ < 6
+/*
+ * We take the easy way out of this problem - we make the
+ * PTE uncacheable. However, we leave the write buffer on.
+ *
+ * Note that the pte lock held when calling update_mmu_cache must also
+ * guard the pte (somewhere else in the same mm) that we modify here.
+ * Therefore those configurations which might call adjust_pte (those
+ * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
+ */
+static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
+ unsigned long pfn, pte_t *ptep)
+{
+ pte_t entry = *ptep;
+ int ret;
+
+ /*
+ * If this page is present, it's actually being shared.
+ */
+ ret = pte_present(entry);
+
+ /*
+ * If this page isn't present, or is already setup to
+ * fault (ie, is old), we can safely ignore any issues.
+ */
+ if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
+ flush_cache_page(vma, address, pfn);
+ outer_flush_range((pfn << PAGE_SHIFT),
+ (pfn << PAGE_SHIFT) + PAGE_SIZE);
+ pte_val(entry) &= ~L_PTE_MT_MASK;
+ pte_val(entry) |= shared_pte_mask;
+ set_pte_at(vma->vm_mm, address, ptep, entry);
+ flush_tlb_page(vma, address);
+ }
+
+ return ret;
+}
+
+#if USE_SPLIT_PTLOCKS
+/*
+ * If we are using split PTE locks, then we need to take the page
+ * lock here. Otherwise we are using shared mm->page_table_lock
+ * which is already locked, thus cannot take it.
+ */
+static inline void do_pte_lock(spinlock_t *ptl)
+{
+ /*
+ * Use nested version here to indicate that we are already
+ * holding one similar spinlock.
+ */
+ spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
+}
+
+static inline void do_pte_unlock(spinlock_t *ptl)
+{
+ spin_unlock(ptl);
+}
+#else /* !USE_SPLIT_PTLOCKS */
+static inline void do_pte_lock(spinlock_t *ptl) {}
+static inline void do_pte_unlock(spinlock_t *ptl) {}
+#endif /* USE_SPLIT_PTLOCKS */
+
+static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
+ unsigned long pfn)
+{
+ spinlock_t *ptl;
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ int ret;
+
+ pgd = pgd_offset(vma->vm_mm, address);
+ if (pgd_none_or_clear_bad(pgd))
+ return 0;
+
+ pud = pud_offset(pgd, address);
+ if (pud_none_or_clear_bad(pud))
+ return 0;
+
+ pmd = pmd_offset(pud, address);
+ if (pmd_none_or_clear_bad(pmd))
+ return 0;
+
+ /*
+ * This is called while another page table is mapped, so we
+ * must use the nested version. This also means we need to
+ * open-code the spin-locking.
+ */
+ ptl = pte_lockptr(vma->vm_mm, pmd);
+ pte = pte_offset_map(pmd, address);
+ do_pte_lock(ptl);
+
+ ret = do_adjust_pte(vma, address, pfn, pte);
+
+ do_pte_unlock(ptl);
+ pte_unmap(pte);
+
+ return ret;
+}
+
+static void
+make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep, unsigned long pfn)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ struct vm_area_struct *mpnt;
+ struct prio_tree_iter iter;
+ unsigned long offset;
+ pgoff_t pgoff;
+ int aliases = 0;
+
+ pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
+
+ /*
+ * If we have any shared mappings that are in the same mm
+ * space, then we need to handle them specially to maintain
+ * cache coherency.
+ */
+ flush_dcache_mmap_lock(mapping);
+ vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
+ /*
+ * If this VMA is not in our MM, we can ignore it.
+ * Note that we intentionally mask out the VMA
+ * that we are fixing up.
+ */
+ if (mpnt->vm_mm != mm || mpnt == vma)
+ continue;
+ if (!(mpnt->vm_flags & VM_MAYSHARE))
+ continue;
+ offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
+ aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
+ }
+ flush_dcache_mmap_unlock(mapping);
+ if (aliases)
+ do_adjust_pte(vma, addr, pfn, ptep);
+}
+
+/*
+ * Take care of architecture specific things when placing a new PTE into
+ * a page table, or changing an existing PTE. Basically, there are two
+ * things that we need to take care of:
+ *
+ * 1. If PG_dcache_clean is not set for the page, we need to ensure
+ * that any cache entries for the kernels virtual memory
+ * range are written back to the page.
+ * 2. If we have multiple shared mappings of the same space in
+ * an object, we need to deal with the cache aliasing issues.
+ *
+ * Note that the pte lock will be held.
+ */
+void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
+ pte_t *ptep)
+{
+ unsigned long pfn = pte_pfn(*ptep);
+ struct address_space *mapping;
+ struct page *page;
+
+ if (!pfn_valid(pfn))
+ return;
+
+ /*
+ * The zero page is never written to, so never has any dirty
+ * cache lines, and therefore never needs to be flushed.
+ */
+ page = pfn_to_page(pfn);
+ if (page == ZERO_PAGE(0))
+ return;
+
+ mapping = page_mapping(page);
+ if (!test_and_set_bit(PG_dcache_clean, &page->flags))
+ __flush_dcache_page(mapping, page);
+ if (mapping) {
+ if (cache_is_vivt())
+ make_coherent(mapping, vma, addr, ptep, pfn);
+ else if (vma->vm_flags & VM_EXEC)
+ __flush_icache_all();
+ }
+}
+#endif /* __LINUX_ARM_ARCH__ < 6 */
+
+/*
+ * Check whether the write buffer has physical address aliasing
+ * issues. If it has, we need to avoid them for the case where
+ * we have several shared mappings of the same object in user
+ * space.
+ */
+static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
+{
+ register unsigned long zero = 0, one = 1, val;
+
+ local_irq_disable();
+ mb();
+ *p1 = one;
+ mb();
+ *p2 = zero;
+ mb();
+ val = *p1;
+ mb();
+ local_irq_enable();
+ return val != zero;
+}
+
+void __init check_writebuffer_bugs(void)
+{
+ struct page *page;
+ const char *reason;
+ unsigned long v = 1;
+
+ printk(KERN_INFO "CPU: Testing write buffer coherency: ");
+
+ page = alloc_page(GFP_KERNEL);
+ if (page) {
+ unsigned long *p1, *p2;
+ pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
+ L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
+
+ p1 = vmap(&page, 1, VM_IOREMAP, prot);
+ p2 = vmap(&page, 1, VM_IOREMAP, prot);
+
+ if (p1 && p2) {
+ v = check_writebuffer(p1, p2);
+ reason = "enabling work-around";
+ } else {
+ reason = "unable to map memory\n";
+ }
+
+ vunmap(p1);
+ vunmap(p2);
+ put_page(page);
+ } else {
+ reason = "unable to grab page\n";
+ }
+
+ if (v) {
+ printk("failed, %s\n", reason);
+ shared_pte_mask = L_PTE_MT_UNCACHED;
+ } else {
+ printk("ok\n");
+ }
+}