summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c')
-rw-r--r--ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c999
1 files changed, 0 insertions, 999 deletions
diff --git a/ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c b/ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c
deleted file mode 100644
index 96bb92dd..00000000
--- a/ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c
+++ /dev/null
@@ -1,999 +0,0 @@
-/*
- * Freescale DMA ALSA SoC PCM driver
- *
- * Author: Timur Tabi <timur@freescale.com>
- *
- * Copyright 2007-2010 Freescale Semiconductor, Inc.
- *
- * This file is licensed under the terms of the GNU General Public License
- * version 2. This program is licensed "as is" without any warranty of any
- * kind, whether express or implied.
- *
- * This driver implements ASoC support for the Elo DMA controller, which is
- * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
- * the PCM driver is what handles the DMA buffer.
- */
-
-#include <linux/module.h>
-#include <linux/init.h>
-#include <linux/platform_device.h>
-#include <linux/dma-mapping.h>
-#include <linux/interrupt.h>
-#include <linux/delay.h>
-#include <linux/gfp.h>
-#include <linux/of_platform.h>
-#include <linux/list.h>
-#include <linux/slab.h>
-
-#include <sound/core.h>
-#include <sound/pcm.h>
-#include <sound/pcm_params.h>
-#include <sound/soc.h>
-
-#include <asm/io.h>
-
-#include "fsl_dma.h"
-#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
-
-/*
- * The formats that the DMA controller supports, which is anything
- * that is 8, 16, or 32 bits.
- */
-#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
- SNDRV_PCM_FMTBIT_U8 | \
- SNDRV_PCM_FMTBIT_S16_LE | \
- SNDRV_PCM_FMTBIT_S16_BE | \
- SNDRV_PCM_FMTBIT_U16_LE | \
- SNDRV_PCM_FMTBIT_U16_BE | \
- SNDRV_PCM_FMTBIT_S24_LE | \
- SNDRV_PCM_FMTBIT_S24_BE | \
- SNDRV_PCM_FMTBIT_U24_LE | \
- SNDRV_PCM_FMTBIT_U24_BE | \
- SNDRV_PCM_FMTBIT_S32_LE | \
- SNDRV_PCM_FMTBIT_S32_BE | \
- SNDRV_PCM_FMTBIT_U32_LE | \
- SNDRV_PCM_FMTBIT_U32_BE)
-
-#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
- SNDRV_PCM_RATE_CONTINUOUS)
-
-struct dma_object {
- struct snd_soc_platform_driver dai;
- dma_addr_t ssi_stx_phys;
- dma_addr_t ssi_srx_phys;
- unsigned int ssi_fifo_depth;
- struct ccsr_dma_channel __iomem *channel;
- unsigned int irq;
- bool assigned;
- char path[1];
-};
-
-/*
- * The number of DMA links to use. Two is the bare minimum, but if you
- * have really small links you might need more.
- */
-#define NUM_DMA_LINKS 2
-
-/** fsl_dma_private: p-substream DMA data
- *
- * Each substream has a 1-to-1 association with a DMA channel.
- *
- * The link[] array is first because it needs to be aligned on a 32-byte
- * boundary, so putting it first will ensure alignment without padding the
- * structure.
- *
- * @link[]: array of link descriptors
- * @dma_channel: pointer to the DMA channel's registers
- * @irq: IRQ for this DMA channel
- * @substream: pointer to the substream object, needed by the ISR
- * @ssi_sxx_phys: bus address of the STX or SRX register to use
- * @ld_buf_phys: physical address of the LD buffer
- * @current_link: index into link[] of the link currently being processed
- * @dma_buf_phys: physical address of the DMA buffer
- * @dma_buf_next: physical address of the next period to process
- * @dma_buf_end: physical address of the byte after the end of the DMA
- * @buffer period_size: the size of a single period
- * @num_periods: the number of periods in the DMA buffer
- */
-struct fsl_dma_private {
- struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
- struct ccsr_dma_channel __iomem *dma_channel;
- unsigned int irq;
- struct snd_pcm_substream *substream;
- dma_addr_t ssi_sxx_phys;
- unsigned int ssi_fifo_depth;
- dma_addr_t ld_buf_phys;
- unsigned int current_link;
- dma_addr_t dma_buf_phys;
- dma_addr_t dma_buf_next;
- dma_addr_t dma_buf_end;
- size_t period_size;
- unsigned int num_periods;
-};
-
-/**
- * fsl_dma_hardare: define characteristics of the PCM hardware.
- *
- * The PCM hardware is the Freescale DMA controller. This structure defines
- * the capabilities of that hardware.
- *
- * Since the sampling rate and data format are not controlled by the DMA
- * controller, we specify no limits for those values. The only exception is
- * period_bytes_min, which is set to a reasonably low value to prevent the
- * DMA controller from generating too many interrupts per second.
- *
- * Since each link descriptor has a 32-bit byte count field, we set
- * period_bytes_max to the largest 32-bit number. We also have no maximum
- * number of periods.
- *
- * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
- * limitation in the SSI driver requires the sample rates for playback and
- * capture to be the same.
- */
-static const struct snd_pcm_hardware fsl_dma_hardware = {
-
- .info = SNDRV_PCM_INFO_INTERLEAVED |
- SNDRV_PCM_INFO_MMAP |
- SNDRV_PCM_INFO_MMAP_VALID |
- SNDRV_PCM_INFO_JOINT_DUPLEX |
- SNDRV_PCM_INFO_PAUSE,
- .formats = FSLDMA_PCM_FORMATS,
- .rates = FSLDMA_PCM_RATES,
- .rate_min = 5512,
- .rate_max = 192000,
- .period_bytes_min = 512, /* A reasonable limit */
- .period_bytes_max = (u32) -1,
- .periods_min = NUM_DMA_LINKS,
- .periods_max = (unsigned int) -1,
- .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
-};
-
-/**
- * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
- *
- * This function should be called by the ISR whenever the DMA controller
- * halts data transfer.
- */
-static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
-{
- unsigned long flags;
-
- snd_pcm_stream_lock_irqsave(substream, flags);
-
- if (snd_pcm_running(substream))
- snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
-
- snd_pcm_stream_unlock_irqrestore(substream, flags);
-}
-
-/**
- * fsl_dma_update_pointers - update LD pointers to point to the next period
- *
- * As each period is completed, this function changes the the link
- * descriptor pointers for that period to point to the next period.
- */
-static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
-{
- struct fsl_dma_link_descriptor *link =
- &dma_private->link[dma_private->current_link];
-
- /* Update our link descriptors to point to the next period. On a 36-bit
- * system, we also need to update the ESAD bits. We also set (keep) the
- * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
- */
- if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
- link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
-#ifdef CONFIG_PHYS_64BIT
- link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
- upper_32_bits(dma_private->dma_buf_next));
-#endif
- } else {
- link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
-#ifdef CONFIG_PHYS_64BIT
- link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
- upper_32_bits(dma_private->dma_buf_next));
-#endif
- }
-
- /* Update our variables for next time */
- dma_private->dma_buf_next += dma_private->period_size;
-
- if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
- dma_private->dma_buf_next = dma_private->dma_buf_phys;
-
- if (++dma_private->current_link >= NUM_DMA_LINKS)
- dma_private->current_link = 0;
-}
-
-/**
- * fsl_dma_isr: interrupt handler for the DMA controller
- *
- * @irq: IRQ of the DMA channel
- * @dev_id: pointer to the dma_private structure for this DMA channel
- */
-static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
-{
- struct fsl_dma_private *dma_private = dev_id;
- struct snd_pcm_substream *substream = dma_private->substream;
- struct snd_soc_pcm_runtime *rtd = substream->private_data;
- struct device *dev = rtd->platform->dev;
- struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
- irqreturn_t ret = IRQ_NONE;
- u32 sr, sr2 = 0;
-
- /* We got an interrupt, so read the status register to see what we
- were interrupted for.
- */
- sr = in_be32(&dma_channel->sr);
-
- if (sr & CCSR_DMA_SR_TE) {
- dev_err(dev, "dma transmit error\n");
- fsl_dma_abort_stream(substream);
- sr2 |= CCSR_DMA_SR_TE;
- ret = IRQ_HANDLED;
- }
-
- if (sr & CCSR_DMA_SR_CH)
- ret = IRQ_HANDLED;
-
- if (sr & CCSR_DMA_SR_PE) {
- dev_err(dev, "dma programming error\n");
- fsl_dma_abort_stream(substream);
- sr2 |= CCSR_DMA_SR_PE;
- ret = IRQ_HANDLED;
- }
-
- if (sr & CCSR_DMA_SR_EOLNI) {
- sr2 |= CCSR_DMA_SR_EOLNI;
- ret = IRQ_HANDLED;
- }
-
- if (sr & CCSR_DMA_SR_CB)
- ret = IRQ_HANDLED;
-
- if (sr & CCSR_DMA_SR_EOSI) {
- /* Tell ALSA we completed a period. */
- snd_pcm_period_elapsed(substream);
-
- /*
- * Update our link descriptors to point to the next period. We
- * only need to do this if the number of periods is not equal to
- * the number of links.
- */
- if (dma_private->num_periods != NUM_DMA_LINKS)
- fsl_dma_update_pointers(dma_private);
-
- sr2 |= CCSR_DMA_SR_EOSI;
- ret = IRQ_HANDLED;
- }
-
- if (sr & CCSR_DMA_SR_EOLSI) {
- sr2 |= CCSR_DMA_SR_EOLSI;
- ret = IRQ_HANDLED;
- }
-
- /* Clear the bits that we set */
- if (sr2)
- out_be32(&dma_channel->sr, sr2);
-
- return ret;
-}
-
-/**
- * fsl_dma_new: initialize this PCM driver.
- *
- * This function is called when the codec driver calls snd_soc_new_pcms(),
- * once for each .dai_link in the machine driver's snd_soc_card
- * structure.
- *
- * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
- * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
- * is specified. Therefore, any DMA buffers we allocate will always be in low
- * memory, but we support for 36-bit physical addresses anyway.
- *
- * Regardless of where the memory is actually allocated, since the device can
- * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
- */
-static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
-{
- struct snd_card *card = rtd->card->snd_card;
- struct snd_pcm *pcm = rtd->pcm;
- static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
- int ret;
-
- if (!card->dev->dma_mask)
- card->dev->dma_mask = &fsl_dma_dmamask;
-
- if (!card->dev->coherent_dma_mask)
- card->dev->coherent_dma_mask = fsl_dma_dmamask;
-
- /* Some codecs have separate DAIs for playback and capture, so we
- * should allocate a DMA buffer only for the streams that are valid.
- */
-
- if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
- ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
- fsl_dma_hardware.buffer_bytes_max,
- &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
- if (ret) {
- dev_err(card->dev, "can't alloc playback dma buffer\n");
- return ret;
- }
- }
-
- if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
- ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
- fsl_dma_hardware.buffer_bytes_max,
- &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
- if (ret) {
- dev_err(card->dev, "can't alloc capture dma buffer\n");
- snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
- return ret;
- }
- }
-
- return 0;
-}
-
-/**
- * fsl_dma_open: open a new substream.
- *
- * Each substream has its own DMA buffer.
- *
- * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
- * descriptors that ping-pong from one period to the next. For example, if
- * there are six periods and two link descriptors, this is how they look
- * before playback starts:
- *
- * The last link descriptor
- * ____________ points back to the first
- * | |
- * V |
- * ___ ___ |
- * | |->| |->|
- * |___| |___|
- * | |
- * | |
- * V V
- * _________________________________________
- * | | | | | | | The DMA buffer is
- * | | | | | | | divided into 6 parts
- * |______|______|______|______|______|______|
- *
- * and here's how they look after the first period is finished playing:
- *
- * ____________
- * | |
- * V |
- * ___ ___ |
- * | |->| |->|
- * |___| |___|
- * | |
- * |______________
- * | |
- * V V
- * _________________________________________
- * | | | | | | |
- * | | | | | | |
- * |______|______|______|______|______|______|
- *
- * The first link descriptor now points to the third period. The DMA
- * controller is currently playing the second period. When it finishes, it
- * will jump back to the first descriptor and play the third period.
- *
- * There are four reasons we do this:
- *
- * 1. The only way to get the DMA controller to automatically restart the
- * transfer when it gets to the end of the buffer is to use chaining
- * mode. Basic direct mode doesn't offer that feature.
- * 2. We need to receive an interrupt at the end of every period. The DMA
- * controller can generate an interrupt at the end of every link transfer
- * (aka segment). Making each period into a DMA segment will give us the
- * interrupts we need.
- * 3. By creating only two link descriptors, regardless of the number of
- * periods, we do not need to reallocate the link descriptors if the
- * number of periods changes.
- * 4. All of the audio data is still stored in a single, contiguous DMA
- * buffer, which is what ALSA expects. We're just dividing it into
- * contiguous parts, and creating a link descriptor for each one.
- */
-static int fsl_dma_open(struct snd_pcm_substream *substream)
-{
- struct snd_pcm_runtime *runtime = substream->runtime;
- struct snd_soc_pcm_runtime *rtd = substream->private_data;
- struct device *dev = rtd->platform->dev;
- struct dma_object *dma =
- container_of(rtd->platform->driver, struct dma_object, dai);
- struct fsl_dma_private *dma_private;
- struct ccsr_dma_channel __iomem *dma_channel;
- dma_addr_t ld_buf_phys;
- u64 temp_link; /* Pointer to next link descriptor */
- u32 mr;
- unsigned int channel;
- int ret = 0;
- unsigned int i;
-
- /*
- * Reject any DMA buffer whose size is not a multiple of the period
- * size. We need to make sure that the DMA buffer can be evenly divided
- * into periods.
- */
- ret = snd_pcm_hw_constraint_integer(runtime,
- SNDRV_PCM_HW_PARAM_PERIODS);
- if (ret < 0) {
- dev_err(dev, "invalid buffer size\n");
- return ret;
- }
-
- channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
-
- if (dma->assigned) {
- dev_err(dev, "dma channel already assigned\n");
- return -EBUSY;
- }
-
- dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
- &ld_buf_phys, GFP_KERNEL);
- if (!dma_private) {
- dev_err(dev, "can't allocate dma private data\n");
- return -ENOMEM;
- }
- if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
- dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
- else
- dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
-
- dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
- dma_private->dma_channel = dma->channel;
- dma_private->irq = dma->irq;
- dma_private->substream = substream;
- dma_private->ld_buf_phys = ld_buf_phys;
- dma_private->dma_buf_phys = substream->dma_buffer.addr;
-
- ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
- dma_private);
- if (ret) {
- dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
- dma_private->irq, ret);
- dma_free_coherent(dev, sizeof(struct fsl_dma_private),
- dma_private, dma_private->ld_buf_phys);
- return ret;
- }
-
- dma->assigned = 1;
-
- snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
- snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
- runtime->private_data = dma_private;
-
- /* Program the fixed DMA controller parameters */
-
- dma_channel = dma_private->dma_channel;
-
- temp_link = dma_private->ld_buf_phys +
- sizeof(struct fsl_dma_link_descriptor);
-
- for (i = 0; i < NUM_DMA_LINKS; i++) {
- dma_private->link[i].next = cpu_to_be64(temp_link);
-
- temp_link += sizeof(struct fsl_dma_link_descriptor);
- }
- /* The last link descriptor points to the first */
- dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
-
- /* Tell the DMA controller where the first link descriptor is */
- out_be32(&dma_channel->clndar,
- CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
- out_be32(&dma_channel->eclndar,
- CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
-
- /* The manual says the BCR must be clear before enabling EMP */
- out_be32(&dma_channel->bcr, 0);
-
- /*
- * Program the mode register for interrupts, external master control,
- * and source/destination hold. Also clear the Channel Abort bit.
- */
- mr = in_be32(&dma_channel->mr) &
- ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
-
- /*
- * We want External Master Start and External Master Pause enabled,
- * because the SSI is controlling the DMA controller. We want the DMA
- * controller to be set up in advance, and then we signal only the SSI
- * to start transferring.
- *
- * We want End-Of-Segment Interrupts enabled, because this will generate
- * an interrupt at the end of each segment (each link descriptor
- * represents one segment). Each DMA segment is the same thing as an
- * ALSA period, so this is how we get an interrupt at the end of every
- * period.
- *
- * We want Error Interrupt enabled, so that we can get an error if
- * the DMA controller is mis-programmed somehow.
- */
- mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
- CCSR_DMA_MR_EMS_EN;
-
- /* For playback, we want the destination address to be held. For
- capture, set the source address to be held. */
- mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
- CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
-
- out_be32(&dma_channel->mr, mr);
-
- return 0;
-}
-
-/**
- * fsl_dma_hw_params: continue initializing the DMA links
- *
- * This function obtains hardware parameters about the opened stream and
- * programs the DMA controller accordingly.
- *
- * One drawback of big-endian is that when copying integers of different
- * sizes to a fixed-sized register, the address to which the integer must be
- * copied is dependent on the size of the integer.
- *
- * For example, if P is the address of a 32-bit register, and X is a 32-bit
- * integer, then X should be copied to address P. However, if X is a 16-bit
- * integer, then it should be copied to P+2. If X is an 8-bit register,
- * then it should be copied to P+3.
- *
- * So for playback of 8-bit samples, the DMA controller must transfer single
- * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
- * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
- *
- * For 24-bit samples, the offset is 1 byte. However, the DMA controller
- * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
- * and 8 bytes at a time). So we do not support packed 24-bit samples.
- * 24-bit data must be padded to 32 bits.
- */
-static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
- struct snd_pcm_hw_params *hw_params)
-{
- struct snd_pcm_runtime *runtime = substream->runtime;
- struct fsl_dma_private *dma_private = runtime->private_data;
- struct snd_soc_pcm_runtime *rtd = substream->private_data;
- struct device *dev = rtd->platform->dev;
-
- /* Number of bits per sample */
- unsigned int sample_bits =
- snd_pcm_format_physical_width(params_format(hw_params));
-
- /* Number of bytes per frame */
- unsigned int sample_bytes = sample_bits / 8;
-
- /* Bus address of SSI STX register */
- dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
-
- /* Size of the DMA buffer, in bytes */
- size_t buffer_size = params_buffer_bytes(hw_params);
-
- /* Number of bytes per period */
- size_t period_size = params_period_bytes(hw_params);
-
- /* Pointer to next period */
- dma_addr_t temp_addr = substream->dma_buffer.addr;
-
- /* Pointer to DMA controller */
- struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
-
- u32 mr; /* DMA Mode Register */
-
- unsigned int i;
-
- /* Initialize our DMA tracking variables */
- dma_private->period_size = period_size;
- dma_private->num_periods = params_periods(hw_params);
- dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
- dma_private->dma_buf_next = dma_private->dma_buf_phys +
- (NUM_DMA_LINKS * period_size);
-
- if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
- /* This happens if the number of periods == NUM_DMA_LINKS */
- dma_private->dma_buf_next = dma_private->dma_buf_phys;
-
- mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
- CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
-
- /* Due to a quirk of the SSI's STX register, the target address
- * for the DMA operations depends on the sample size. So we calculate
- * that offset here. While we're at it, also tell the DMA controller
- * how much data to transfer per sample.
- */
- switch (sample_bits) {
- case 8:
- mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
- ssi_sxx_phys += 3;
- break;
- case 16:
- mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
- ssi_sxx_phys += 2;
- break;
- case 32:
- mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
- break;
- default:
- /* We should never get here */
- dev_err(dev, "unsupported sample size %u\n", sample_bits);
- return -EINVAL;
- }
-
- /*
- * BWC determines how many bytes are sent/received before the DMA
- * controller checks the SSI to see if it needs to stop. BWC should
- * always be a multiple of the frame size, so that we always transmit
- * whole frames. Each frame occupies two slots in the FIFO. The
- * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
- * (MR[BWC] can only represent even powers of two).
- *
- * To simplify the process, we set BWC to the largest value that is
- * less than or equal to the FIFO watermark. For playback, this ensures
- * that we transfer the maximum amount without overrunning the FIFO.
- * For capture, this ensures that we transfer the maximum amount without
- * underrunning the FIFO.
- *
- * f = SSI FIFO depth
- * w = SSI watermark value (which equals f - 2)
- * b = DMA bandwidth count (in bytes)
- * s = sample size (in bytes, which equals frame_size * 2)
- *
- * For playback, we never transmit more than the transmit FIFO
- * watermark, otherwise we might write more data than the FIFO can hold.
- * The watermark is equal to the FIFO depth minus two.
- *
- * For capture, two equations must hold:
- * w > f - (b / s)
- * w >= b / s
- *
- * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
- * b = s * w, which is equal to
- * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
- */
- mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
-
- out_be32(&dma_channel->mr, mr);
-
- for (i = 0; i < NUM_DMA_LINKS; i++) {
- struct fsl_dma_link_descriptor *link = &dma_private->link[i];
-
- link->count = cpu_to_be32(period_size);
-
- /* The snoop bit tells the DMA controller whether it should tell
- * the ECM to snoop during a read or write to an address. For
- * audio, we use DMA to transfer data between memory and an I/O
- * device (the SSI's STX0 or SRX0 register). Snooping is only
- * needed if there is a cache, so we need to snoop memory
- * addresses only. For playback, that means we snoop the source
- * but not the destination. For capture, we snoop the
- * destination but not the source.
- *
- * Note that failing to snoop properly is unlikely to cause
- * cache incoherency if the period size is larger than the
- * size of L1 cache. This is because filling in one period will
- * flush out the data for the previous period. So if you
- * increased period_bytes_min to a large enough size, you might
- * get more performance by not snooping, and you'll still be
- * okay. You'll need to update fsl_dma_update_pointers() also.
- */
- if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
- link->source_addr = cpu_to_be32(temp_addr);
- link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
- upper_32_bits(temp_addr));
-
- link->dest_addr = cpu_to_be32(ssi_sxx_phys);
- link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
- upper_32_bits(ssi_sxx_phys));
- } else {
- link->source_addr = cpu_to_be32(ssi_sxx_phys);
- link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
- upper_32_bits(ssi_sxx_phys));
-
- link->dest_addr = cpu_to_be32(temp_addr);
- link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
- upper_32_bits(temp_addr));
- }
-
- temp_addr += period_size;
- }
-
- return 0;
-}
-
-/**
- * fsl_dma_pointer: determine the current position of the DMA transfer
- *
- * This function is called by ALSA when ALSA wants to know where in the
- * stream buffer the hardware currently is.
- *
- * For playback, the SAR register contains the physical address of the most
- * recent DMA transfer. For capture, the value is in the DAR register.
- *
- * The base address of the buffer is stored in the source_addr field of the
- * first link descriptor.
- */
-static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
-{
- struct snd_pcm_runtime *runtime = substream->runtime;
- struct fsl_dma_private *dma_private = runtime->private_data;
- struct snd_soc_pcm_runtime *rtd = substream->private_data;
- struct device *dev = rtd->platform->dev;
- struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
- dma_addr_t position;
- snd_pcm_uframes_t frames;
-
- /* Obtain the current DMA pointer, but don't read the ESAD bits if we
- * only have 32-bit DMA addresses. This function is typically called
- * in interrupt context, so we need to optimize it.
- */
- if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
- position = in_be32(&dma_channel->sar);
-#ifdef CONFIG_PHYS_64BIT
- position |= (u64)(in_be32(&dma_channel->satr) &
- CCSR_DMA_ATR_ESAD_MASK) << 32;
-#endif
- } else {
- position = in_be32(&dma_channel->dar);
-#ifdef CONFIG_PHYS_64BIT
- position |= (u64)(in_be32(&dma_channel->datr) &
- CCSR_DMA_ATR_ESAD_MASK) << 32;
-#endif
- }
-
- /*
- * When capture is started, the SSI immediately starts to fill its FIFO.
- * This means that the DMA controller is not started until the FIFO is
- * full. However, ALSA calls this function before that happens, when
- * MR.DAR is still zero. In this case, just return zero to indicate
- * that nothing has been received yet.
- */
- if (!position)
- return 0;
-
- if ((position < dma_private->dma_buf_phys) ||
- (position > dma_private->dma_buf_end)) {
- dev_err(dev, "dma pointer is out of range, halting stream\n");
- return SNDRV_PCM_POS_XRUN;
- }
-
- frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
-
- /*
- * If the current address is just past the end of the buffer, wrap it
- * around.
- */
- if (frames == runtime->buffer_size)
- frames = 0;
-
- return frames;
-}
-
-/**
- * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
- *
- * Release the resources allocated in fsl_dma_hw_params() and de-program the
- * registers.
- *
- * This function can be called multiple times.
- */
-static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
-{
- struct snd_pcm_runtime *runtime = substream->runtime;
- struct fsl_dma_private *dma_private = runtime->private_data;
-
- if (dma_private) {
- struct ccsr_dma_channel __iomem *dma_channel;
-
- dma_channel = dma_private->dma_channel;
-
- /* Stop the DMA */
- out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
- out_be32(&dma_channel->mr, 0);
-
- /* Reset all the other registers */
- out_be32(&dma_channel->sr, -1);
- out_be32(&dma_channel->clndar, 0);
- out_be32(&dma_channel->eclndar, 0);
- out_be32(&dma_channel->satr, 0);
- out_be32(&dma_channel->sar, 0);
- out_be32(&dma_channel->datr, 0);
- out_be32(&dma_channel->dar, 0);
- out_be32(&dma_channel->bcr, 0);
- out_be32(&dma_channel->nlndar, 0);
- out_be32(&dma_channel->enlndar, 0);
- }
-
- return 0;
-}
-
-/**
- * fsl_dma_close: close the stream.
- */
-static int fsl_dma_close(struct snd_pcm_substream *substream)
-{
- struct snd_pcm_runtime *runtime = substream->runtime;
- struct fsl_dma_private *dma_private = runtime->private_data;
- struct snd_soc_pcm_runtime *rtd = substream->private_data;
- struct device *dev = rtd->platform->dev;
- struct dma_object *dma =
- container_of(rtd->platform->driver, struct dma_object, dai);
-
- if (dma_private) {
- if (dma_private->irq)
- free_irq(dma_private->irq, dma_private);
-
- if (dma_private->ld_buf_phys) {
- dma_unmap_single(dev, dma_private->ld_buf_phys,
- sizeof(dma_private->link),
- DMA_TO_DEVICE);
- }
-
- /* Deallocate the fsl_dma_private structure */
- dma_free_coherent(dev, sizeof(struct fsl_dma_private),
- dma_private, dma_private->ld_buf_phys);
- substream->runtime->private_data = NULL;
- }
-
- dma->assigned = 0;
-
- return 0;
-}
-
-/*
- * Remove this PCM driver.
- */
-static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
-{
- struct snd_pcm_substream *substream;
- unsigned int i;
-
- for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
- substream = pcm->streams[i].substream;
- if (substream) {
- snd_dma_free_pages(&substream->dma_buffer);
- substream->dma_buffer.area = NULL;
- substream->dma_buffer.addr = 0;
- }
- }
-}
-
-/**
- * find_ssi_node -- returns the SSI node that points to his DMA channel node
- *
- * Although this DMA driver attempts to operate independently of the other
- * devices, it still needs to determine some information about the SSI device
- * that it's working with. Unfortunately, the device tree does not contain
- * a pointer from the DMA channel node to the SSI node -- the pointer goes the
- * other way. So we need to scan the device tree for SSI nodes until we find
- * the one that points to the given DMA channel node. It's ugly, but at least
- * it's contained in this one function.
- */
-static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
-{
- struct device_node *ssi_np, *np;
-
- for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
- /* Check each DMA phandle to see if it points to us. We
- * assume that device_node pointers are a valid comparison.
- */
- np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
- of_node_put(np);
- if (np == dma_channel_np)
- return ssi_np;
-
- np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
- of_node_put(np);
- if (np == dma_channel_np)
- return ssi_np;
- }
-
- return NULL;
-}
-
-static struct snd_pcm_ops fsl_dma_ops = {
- .open = fsl_dma_open,
- .close = fsl_dma_close,
- .ioctl = snd_pcm_lib_ioctl,
- .hw_params = fsl_dma_hw_params,
- .hw_free = fsl_dma_hw_free,
- .pointer = fsl_dma_pointer,
-};
-
-static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
- {
- struct dma_object *dma;
- struct device_node *np = pdev->dev.of_node;
- struct device_node *ssi_np;
- struct resource res;
- const uint32_t *iprop;
- int ret;
-
- /* Find the SSI node that points to us. */
- ssi_np = find_ssi_node(np);
- if (!ssi_np) {
- dev_err(&pdev->dev, "cannot find parent SSI node\n");
- return -ENODEV;
- }
-
- ret = of_address_to_resource(ssi_np, 0, &res);
- if (ret) {
- dev_err(&pdev->dev, "could not determine resources for %s\n",
- ssi_np->full_name);
- of_node_put(ssi_np);
- return ret;
- }
-
- dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
- if (!dma) {
- dev_err(&pdev->dev, "could not allocate dma object\n");
- of_node_put(ssi_np);
- return -ENOMEM;
- }
-
- strcpy(dma->path, np->full_name);
- dma->dai.ops = &fsl_dma_ops;
- dma->dai.pcm_new = fsl_dma_new;
- dma->dai.pcm_free = fsl_dma_free_dma_buffers;
-
- /* Store the SSI-specific information that we need */
- dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
- dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
-
- iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
- if (iprop)
- dma->ssi_fifo_depth = be32_to_cpup(iprop);
- else
- /* Older 8610 DTs didn't have the fifo-depth property */
- dma->ssi_fifo_depth = 8;
-
- of_node_put(ssi_np);
-
- ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
- if (ret) {
- dev_err(&pdev->dev, "could not register platform\n");
- kfree(dma);
- return ret;
- }
-
- dma->channel = of_iomap(np, 0);
- dma->irq = irq_of_parse_and_map(np, 0);
-
- dev_set_drvdata(&pdev->dev, dma);
-
- return 0;
-}
-
-static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
-{
- struct dma_object *dma = dev_get_drvdata(&pdev->dev);
-
- snd_soc_unregister_platform(&pdev->dev);
- iounmap(dma->channel);
- irq_dispose_mapping(dma->irq);
- kfree(dma);
-
- return 0;
-}
-
-static const struct of_device_id fsl_soc_dma_ids[] = {
- { .compatible = "fsl,ssi-dma-channel", },
- {}
-};
-MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
-
-static struct platform_driver fsl_soc_dma_driver = {
- .driver = {
- .name = "fsl-pcm-audio",
- .owner = THIS_MODULE,
- .of_match_table = fsl_soc_dma_ids,
- },
- .probe = fsl_soc_dma_probe,
- .remove = __devexit_p(fsl_soc_dma_remove),
-};
-
-module_platform_driver(fsl_soc_dma_driver);
-
-MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
-MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
-MODULE_LICENSE("GPL v2");