diff options
Diffstat (limited to 'ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c')
-rw-r--r-- | ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c | 999 |
1 files changed, 0 insertions, 999 deletions
diff --git a/ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c b/ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c deleted file mode 100644 index 96bb92dd..00000000 --- a/ANDROID_3.4.5/sound/soc/fsl/fsl_dma.c +++ /dev/null @@ -1,999 +0,0 @@ -/* - * Freescale DMA ALSA SoC PCM driver - * - * Author: Timur Tabi <timur@freescale.com> - * - * Copyright 2007-2010 Freescale Semiconductor, Inc. - * - * This file is licensed under the terms of the GNU General Public License - * version 2. This program is licensed "as is" without any warranty of any - * kind, whether express or implied. - * - * This driver implements ASoC support for the Elo DMA controller, which is - * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms, - * the PCM driver is what handles the DMA buffer. - */ - -#include <linux/module.h> -#include <linux/init.h> -#include <linux/platform_device.h> -#include <linux/dma-mapping.h> -#include <linux/interrupt.h> -#include <linux/delay.h> -#include <linux/gfp.h> -#include <linux/of_platform.h> -#include <linux/list.h> -#include <linux/slab.h> - -#include <sound/core.h> -#include <sound/pcm.h> -#include <sound/pcm_params.h> -#include <sound/soc.h> - -#include <asm/io.h> - -#include "fsl_dma.h" -#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */ - -/* - * The formats that the DMA controller supports, which is anything - * that is 8, 16, or 32 bits. - */ -#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ - SNDRV_PCM_FMTBIT_U8 | \ - SNDRV_PCM_FMTBIT_S16_LE | \ - SNDRV_PCM_FMTBIT_S16_BE | \ - SNDRV_PCM_FMTBIT_U16_LE | \ - SNDRV_PCM_FMTBIT_U16_BE | \ - SNDRV_PCM_FMTBIT_S24_LE | \ - SNDRV_PCM_FMTBIT_S24_BE | \ - SNDRV_PCM_FMTBIT_U24_LE | \ - SNDRV_PCM_FMTBIT_U24_BE | \ - SNDRV_PCM_FMTBIT_S32_LE | \ - SNDRV_PCM_FMTBIT_S32_BE | \ - SNDRV_PCM_FMTBIT_U32_LE | \ - SNDRV_PCM_FMTBIT_U32_BE) - -#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \ - SNDRV_PCM_RATE_CONTINUOUS) - -struct dma_object { - struct snd_soc_platform_driver dai; - dma_addr_t ssi_stx_phys; - dma_addr_t ssi_srx_phys; - unsigned int ssi_fifo_depth; - struct ccsr_dma_channel __iomem *channel; - unsigned int irq; - bool assigned; - char path[1]; -}; - -/* - * The number of DMA links to use. Two is the bare minimum, but if you - * have really small links you might need more. - */ -#define NUM_DMA_LINKS 2 - -/** fsl_dma_private: p-substream DMA data - * - * Each substream has a 1-to-1 association with a DMA channel. - * - * The link[] array is first because it needs to be aligned on a 32-byte - * boundary, so putting it first will ensure alignment without padding the - * structure. - * - * @link[]: array of link descriptors - * @dma_channel: pointer to the DMA channel's registers - * @irq: IRQ for this DMA channel - * @substream: pointer to the substream object, needed by the ISR - * @ssi_sxx_phys: bus address of the STX or SRX register to use - * @ld_buf_phys: physical address of the LD buffer - * @current_link: index into link[] of the link currently being processed - * @dma_buf_phys: physical address of the DMA buffer - * @dma_buf_next: physical address of the next period to process - * @dma_buf_end: physical address of the byte after the end of the DMA - * @buffer period_size: the size of a single period - * @num_periods: the number of periods in the DMA buffer - */ -struct fsl_dma_private { - struct fsl_dma_link_descriptor link[NUM_DMA_LINKS]; - struct ccsr_dma_channel __iomem *dma_channel; - unsigned int irq; - struct snd_pcm_substream *substream; - dma_addr_t ssi_sxx_phys; - unsigned int ssi_fifo_depth; - dma_addr_t ld_buf_phys; - unsigned int current_link; - dma_addr_t dma_buf_phys; - dma_addr_t dma_buf_next; - dma_addr_t dma_buf_end; - size_t period_size; - unsigned int num_periods; -}; - -/** - * fsl_dma_hardare: define characteristics of the PCM hardware. - * - * The PCM hardware is the Freescale DMA controller. This structure defines - * the capabilities of that hardware. - * - * Since the sampling rate and data format are not controlled by the DMA - * controller, we specify no limits for those values. The only exception is - * period_bytes_min, which is set to a reasonably low value to prevent the - * DMA controller from generating too many interrupts per second. - * - * Since each link descriptor has a 32-bit byte count field, we set - * period_bytes_max to the largest 32-bit number. We also have no maximum - * number of periods. - * - * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a - * limitation in the SSI driver requires the sample rates for playback and - * capture to be the same. - */ -static const struct snd_pcm_hardware fsl_dma_hardware = { - - .info = SNDRV_PCM_INFO_INTERLEAVED | - SNDRV_PCM_INFO_MMAP | - SNDRV_PCM_INFO_MMAP_VALID | - SNDRV_PCM_INFO_JOINT_DUPLEX | - SNDRV_PCM_INFO_PAUSE, - .formats = FSLDMA_PCM_FORMATS, - .rates = FSLDMA_PCM_RATES, - .rate_min = 5512, - .rate_max = 192000, - .period_bytes_min = 512, /* A reasonable limit */ - .period_bytes_max = (u32) -1, - .periods_min = NUM_DMA_LINKS, - .periods_max = (unsigned int) -1, - .buffer_bytes_max = 128 * 1024, /* A reasonable limit */ -}; - -/** - * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted - * - * This function should be called by the ISR whenever the DMA controller - * halts data transfer. - */ -static void fsl_dma_abort_stream(struct snd_pcm_substream *substream) -{ - unsigned long flags; - - snd_pcm_stream_lock_irqsave(substream, flags); - - if (snd_pcm_running(substream)) - snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); - - snd_pcm_stream_unlock_irqrestore(substream, flags); -} - -/** - * fsl_dma_update_pointers - update LD pointers to point to the next period - * - * As each period is completed, this function changes the the link - * descriptor pointers for that period to point to the next period. - */ -static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private) -{ - struct fsl_dma_link_descriptor *link = - &dma_private->link[dma_private->current_link]; - - /* Update our link descriptors to point to the next period. On a 36-bit - * system, we also need to update the ESAD bits. We also set (keep) the - * snoop bits. See the comments in fsl_dma_hw_params() about snooping. - */ - if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { - link->source_addr = cpu_to_be32(dma_private->dma_buf_next); -#ifdef CONFIG_PHYS_64BIT - link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | - upper_32_bits(dma_private->dma_buf_next)); -#endif - } else { - link->dest_addr = cpu_to_be32(dma_private->dma_buf_next); -#ifdef CONFIG_PHYS_64BIT - link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | - upper_32_bits(dma_private->dma_buf_next)); -#endif - } - - /* Update our variables for next time */ - dma_private->dma_buf_next += dma_private->period_size; - - if (dma_private->dma_buf_next >= dma_private->dma_buf_end) - dma_private->dma_buf_next = dma_private->dma_buf_phys; - - if (++dma_private->current_link >= NUM_DMA_LINKS) - dma_private->current_link = 0; -} - -/** - * fsl_dma_isr: interrupt handler for the DMA controller - * - * @irq: IRQ of the DMA channel - * @dev_id: pointer to the dma_private structure for this DMA channel - */ -static irqreturn_t fsl_dma_isr(int irq, void *dev_id) -{ - struct fsl_dma_private *dma_private = dev_id; - struct snd_pcm_substream *substream = dma_private->substream; - struct snd_soc_pcm_runtime *rtd = substream->private_data; - struct device *dev = rtd->platform->dev; - struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; - irqreturn_t ret = IRQ_NONE; - u32 sr, sr2 = 0; - - /* We got an interrupt, so read the status register to see what we - were interrupted for. - */ - sr = in_be32(&dma_channel->sr); - - if (sr & CCSR_DMA_SR_TE) { - dev_err(dev, "dma transmit error\n"); - fsl_dma_abort_stream(substream); - sr2 |= CCSR_DMA_SR_TE; - ret = IRQ_HANDLED; - } - - if (sr & CCSR_DMA_SR_CH) - ret = IRQ_HANDLED; - - if (sr & CCSR_DMA_SR_PE) { - dev_err(dev, "dma programming error\n"); - fsl_dma_abort_stream(substream); - sr2 |= CCSR_DMA_SR_PE; - ret = IRQ_HANDLED; - } - - if (sr & CCSR_DMA_SR_EOLNI) { - sr2 |= CCSR_DMA_SR_EOLNI; - ret = IRQ_HANDLED; - } - - if (sr & CCSR_DMA_SR_CB) - ret = IRQ_HANDLED; - - if (sr & CCSR_DMA_SR_EOSI) { - /* Tell ALSA we completed a period. */ - snd_pcm_period_elapsed(substream); - - /* - * Update our link descriptors to point to the next period. We - * only need to do this if the number of periods is not equal to - * the number of links. - */ - if (dma_private->num_periods != NUM_DMA_LINKS) - fsl_dma_update_pointers(dma_private); - - sr2 |= CCSR_DMA_SR_EOSI; - ret = IRQ_HANDLED; - } - - if (sr & CCSR_DMA_SR_EOLSI) { - sr2 |= CCSR_DMA_SR_EOLSI; - ret = IRQ_HANDLED; - } - - /* Clear the bits that we set */ - if (sr2) - out_be32(&dma_channel->sr, sr2); - - return ret; -} - -/** - * fsl_dma_new: initialize this PCM driver. - * - * This function is called when the codec driver calls snd_soc_new_pcms(), - * once for each .dai_link in the machine driver's snd_soc_card - * structure. - * - * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which - * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM - * is specified. Therefore, any DMA buffers we allocate will always be in low - * memory, but we support for 36-bit physical addresses anyway. - * - * Regardless of where the memory is actually allocated, since the device can - * technically DMA to any 36-bit address, we do need to set the DMA mask to 36. - */ -static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd) -{ - struct snd_card *card = rtd->card->snd_card; - struct snd_pcm *pcm = rtd->pcm; - static u64 fsl_dma_dmamask = DMA_BIT_MASK(36); - int ret; - - if (!card->dev->dma_mask) - card->dev->dma_mask = &fsl_dma_dmamask; - - if (!card->dev->coherent_dma_mask) - card->dev->coherent_dma_mask = fsl_dma_dmamask; - - /* Some codecs have separate DAIs for playback and capture, so we - * should allocate a DMA buffer only for the streams that are valid. - */ - - if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) { - ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, - fsl_dma_hardware.buffer_bytes_max, - &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); - if (ret) { - dev_err(card->dev, "can't alloc playback dma buffer\n"); - return ret; - } - } - - if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) { - ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev, - fsl_dma_hardware.buffer_bytes_max, - &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer); - if (ret) { - dev_err(card->dev, "can't alloc capture dma buffer\n"); - snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer); - return ret; - } - } - - return 0; -} - -/** - * fsl_dma_open: open a new substream. - * - * Each substream has its own DMA buffer. - * - * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link - * descriptors that ping-pong from one period to the next. For example, if - * there are six periods and two link descriptors, this is how they look - * before playback starts: - * - * The last link descriptor - * ____________ points back to the first - * | | - * V | - * ___ ___ | - * | |->| |->| - * |___| |___| - * | | - * | | - * V V - * _________________________________________ - * | | | | | | | The DMA buffer is - * | | | | | | | divided into 6 parts - * |______|______|______|______|______|______| - * - * and here's how they look after the first period is finished playing: - * - * ____________ - * | | - * V | - * ___ ___ | - * | |->| |->| - * |___| |___| - * | | - * |______________ - * | | - * V V - * _________________________________________ - * | | | | | | | - * | | | | | | | - * |______|______|______|______|______|______| - * - * The first link descriptor now points to the third period. The DMA - * controller is currently playing the second period. When it finishes, it - * will jump back to the first descriptor and play the third period. - * - * There are four reasons we do this: - * - * 1. The only way to get the DMA controller to automatically restart the - * transfer when it gets to the end of the buffer is to use chaining - * mode. Basic direct mode doesn't offer that feature. - * 2. We need to receive an interrupt at the end of every period. The DMA - * controller can generate an interrupt at the end of every link transfer - * (aka segment). Making each period into a DMA segment will give us the - * interrupts we need. - * 3. By creating only two link descriptors, regardless of the number of - * periods, we do not need to reallocate the link descriptors if the - * number of periods changes. - * 4. All of the audio data is still stored in a single, contiguous DMA - * buffer, which is what ALSA expects. We're just dividing it into - * contiguous parts, and creating a link descriptor for each one. - */ -static int fsl_dma_open(struct snd_pcm_substream *substream) -{ - struct snd_pcm_runtime *runtime = substream->runtime; - struct snd_soc_pcm_runtime *rtd = substream->private_data; - struct device *dev = rtd->platform->dev; - struct dma_object *dma = - container_of(rtd->platform->driver, struct dma_object, dai); - struct fsl_dma_private *dma_private; - struct ccsr_dma_channel __iomem *dma_channel; - dma_addr_t ld_buf_phys; - u64 temp_link; /* Pointer to next link descriptor */ - u32 mr; - unsigned int channel; - int ret = 0; - unsigned int i; - - /* - * Reject any DMA buffer whose size is not a multiple of the period - * size. We need to make sure that the DMA buffer can be evenly divided - * into periods. - */ - ret = snd_pcm_hw_constraint_integer(runtime, - SNDRV_PCM_HW_PARAM_PERIODS); - if (ret < 0) { - dev_err(dev, "invalid buffer size\n"); - return ret; - } - - channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1; - - if (dma->assigned) { - dev_err(dev, "dma channel already assigned\n"); - return -EBUSY; - } - - dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private), - &ld_buf_phys, GFP_KERNEL); - if (!dma_private) { - dev_err(dev, "can't allocate dma private data\n"); - return -ENOMEM; - } - if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) - dma_private->ssi_sxx_phys = dma->ssi_stx_phys; - else - dma_private->ssi_sxx_phys = dma->ssi_srx_phys; - - dma_private->ssi_fifo_depth = dma->ssi_fifo_depth; - dma_private->dma_channel = dma->channel; - dma_private->irq = dma->irq; - dma_private->substream = substream; - dma_private->ld_buf_phys = ld_buf_phys; - dma_private->dma_buf_phys = substream->dma_buffer.addr; - - ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio", - dma_private); - if (ret) { - dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n", - dma_private->irq, ret); - dma_free_coherent(dev, sizeof(struct fsl_dma_private), - dma_private, dma_private->ld_buf_phys); - return ret; - } - - dma->assigned = 1; - - snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); - snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); - runtime->private_data = dma_private; - - /* Program the fixed DMA controller parameters */ - - dma_channel = dma_private->dma_channel; - - temp_link = dma_private->ld_buf_phys + - sizeof(struct fsl_dma_link_descriptor); - - for (i = 0; i < NUM_DMA_LINKS; i++) { - dma_private->link[i].next = cpu_to_be64(temp_link); - - temp_link += sizeof(struct fsl_dma_link_descriptor); - } - /* The last link descriptor points to the first */ - dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys); - - /* Tell the DMA controller where the first link descriptor is */ - out_be32(&dma_channel->clndar, - CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys)); - out_be32(&dma_channel->eclndar, - CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys)); - - /* The manual says the BCR must be clear before enabling EMP */ - out_be32(&dma_channel->bcr, 0); - - /* - * Program the mode register for interrupts, external master control, - * and source/destination hold. Also clear the Channel Abort bit. - */ - mr = in_be32(&dma_channel->mr) & - ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE); - - /* - * We want External Master Start and External Master Pause enabled, - * because the SSI is controlling the DMA controller. We want the DMA - * controller to be set up in advance, and then we signal only the SSI - * to start transferring. - * - * We want End-Of-Segment Interrupts enabled, because this will generate - * an interrupt at the end of each segment (each link descriptor - * represents one segment). Each DMA segment is the same thing as an - * ALSA period, so this is how we get an interrupt at the end of every - * period. - * - * We want Error Interrupt enabled, so that we can get an error if - * the DMA controller is mis-programmed somehow. - */ - mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN | - CCSR_DMA_MR_EMS_EN; - - /* For playback, we want the destination address to be held. For - capture, set the source address to be held. */ - mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? - CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE; - - out_be32(&dma_channel->mr, mr); - - return 0; -} - -/** - * fsl_dma_hw_params: continue initializing the DMA links - * - * This function obtains hardware parameters about the opened stream and - * programs the DMA controller accordingly. - * - * One drawback of big-endian is that when copying integers of different - * sizes to a fixed-sized register, the address to which the integer must be - * copied is dependent on the size of the integer. - * - * For example, if P is the address of a 32-bit register, and X is a 32-bit - * integer, then X should be copied to address P. However, if X is a 16-bit - * integer, then it should be copied to P+2. If X is an 8-bit register, - * then it should be copied to P+3. - * - * So for playback of 8-bit samples, the DMA controller must transfer single - * bytes from the DMA buffer to the last byte of the STX0 register, i.e. - * offset by 3 bytes. For 16-bit samples, the offset is two bytes. - * - * For 24-bit samples, the offset is 1 byte. However, the DMA controller - * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4, - * and 8 bytes at a time). So we do not support packed 24-bit samples. - * 24-bit data must be padded to 32 bits. - */ -static int fsl_dma_hw_params(struct snd_pcm_substream *substream, - struct snd_pcm_hw_params *hw_params) -{ - struct snd_pcm_runtime *runtime = substream->runtime; - struct fsl_dma_private *dma_private = runtime->private_data; - struct snd_soc_pcm_runtime *rtd = substream->private_data; - struct device *dev = rtd->platform->dev; - - /* Number of bits per sample */ - unsigned int sample_bits = - snd_pcm_format_physical_width(params_format(hw_params)); - - /* Number of bytes per frame */ - unsigned int sample_bytes = sample_bits / 8; - - /* Bus address of SSI STX register */ - dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys; - - /* Size of the DMA buffer, in bytes */ - size_t buffer_size = params_buffer_bytes(hw_params); - - /* Number of bytes per period */ - size_t period_size = params_period_bytes(hw_params); - - /* Pointer to next period */ - dma_addr_t temp_addr = substream->dma_buffer.addr; - - /* Pointer to DMA controller */ - struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; - - u32 mr; /* DMA Mode Register */ - - unsigned int i; - - /* Initialize our DMA tracking variables */ - dma_private->period_size = period_size; - dma_private->num_periods = params_periods(hw_params); - dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size; - dma_private->dma_buf_next = dma_private->dma_buf_phys + - (NUM_DMA_LINKS * period_size); - - if (dma_private->dma_buf_next >= dma_private->dma_buf_end) - /* This happens if the number of periods == NUM_DMA_LINKS */ - dma_private->dma_buf_next = dma_private->dma_buf_phys; - - mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | - CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); - - /* Due to a quirk of the SSI's STX register, the target address - * for the DMA operations depends on the sample size. So we calculate - * that offset here. While we're at it, also tell the DMA controller - * how much data to transfer per sample. - */ - switch (sample_bits) { - case 8: - mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; - ssi_sxx_phys += 3; - break; - case 16: - mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2; - ssi_sxx_phys += 2; - break; - case 32: - mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; - break; - default: - /* We should never get here */ - dev_err(dev, "unsupported sample size %u\n", sample_bits); - return -EINVAL; - } - - /* - * BWC determines how many bytes are sent/received before the DMA - * controller checks the SSI to see if it needs to stop. BWC should - * always be a multiple of the frame size, so that we always transmit - * whole frames. Each frame occupies two slots in the FIFO. The - * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two - * (MR[BWC] can only represent even powers of two). - * - * To simplify the process, we set BWC to the largest value that is - * less than or equal to the FIFO watermark. For playback, this ensures - * that we transfer the maximum amount without overrunning the FIFO. - * For capture, this ensures that we transfer the maximum amount without - * underrunning the FIFO. - * - * f = SSI FIFO depth - * w = SSI watermark value (which equals f - 2) - * b = DMA bandwidth count (in bytes) - * s = sample size (in bytes, which equals frame_size * 2) - * - * For playback, we never transmit more than the transmit FIFO - * watermark, otherwise we might write more data than the FIFO can hold. - * The watermark is equal to the FIFO depth minus two. - * - * For capture, two equations must hold: - * w > f - (b / s) - * w >= b / s - * - * So, b > 2 * s, but b must also be <= s * w. To simplify, we set - * b = s * w, which is equal to - * (dma_private->ssi_fifo_depth - 2) * sample_bytes. - */ - mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes); - - out_be32(&dma_channel->mr, mr); - - for (i = 0; i < NUM_DMA_LINKS; i++) { - struct fsl_dma_link_descriptor *link = &dma_private->link[i]; - - link->count = cpu_to_be32(period_size); - - /* The snoop bit tells the DMA controller whether it should tell - * the ECM to snoop during a read or write to an address. For - * audio, we use DMA to transfer data between memory and an I/O - * device (the SSI's STX0 or SRX0 register). Snooping is only - * needed if there is a cache, so we need to snoop memory - * addresses only. For playback, that means we snoop the source - * but not the destination. For capture, we snoop the - * destination but not the source. - * - * Note that failing to snoop properly is unlikely to cause - * cache incoherency if the period size is larger than the - * size of L1 cache. This is because filling in one period will - * flush out the data for the previous period. So if you - * increased period_bytes_min to a large enough size, you might - * get more performance by not snooping, and you'll still be - * okay. You'll need to update fsl_dma_update_pointers() also. - */ - if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { - link->source_addr = cpu_to_be32(temp_addr); - link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | - upper_32_bits(temp_addr)); - - link->dest_addr = cpu_to_be32(ssi_sxx_phys); - link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | - upper_32_bits(ssi_sxx_phys)); - } else { - link->source_addr = cpu_to_be32(ssi_sxx_phys); - link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP | - upper_32_bits(ssi_sxx_phys)); - - link->dest_addr = cpu_to_be32(temp_addr); - link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP | - upper_32_bits(temp_addr)); - } - - temp_addr += period_size; - } - - return 0; -} - -/** - * fsl_dma_pointer: determine the current position of the DMA transfer - * - * This function is called by ALSA when ALSA wants to know where in the - * stream buffer the hardware currently is. - * - * For playback, the SAR register contains the physical address of the most - * recent DMA transfer. For capture, the value is in the DAR register. - * - * The base address of the buffer is stored in the source_addr field of the - * first link descriptor. - */ -static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream) -{ - struct snd_pcm_runtime *runtime = substream->runtime; - struct fsl_dma_private *dma_private = runtime->private_data; - struct snd_soc_pcm_runtime *rtd = substream->private_data; - struct device *dev = rtd->platform->dev; - struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; - dma_addr_t position; - snd_pcm_uframes_t frames; - - /* Obtain the current DMA pointer, but don't read the ESAD bits if we - * only have 32-bit DMA addresses. This function is typically called - * in interrupt context, so we need to optimize it. - */ - if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { - position = in_be32(&dma_channel->sar); -#ifdef CONFIG_PHYS_64BIT - position |= (u64)(in_be32(&dma_channel->satr) & - CCSR_DMA_ATR_ESAD_MASK) << 32; -#endif - } else { - position = in_be32(&dma_channel->dar); -#ifdef CONFIG_PHYS_64BIT - position |= (u64)(in_be32(&dma_channel->datr) & - CCSR_DMA_ATR_ESAD_MASK) << 32; -#endif - } - - /* - * When capture is started, the SSI immediately starts to fill its FIFO. - * This means that the DMA controller is not started until the FIFO is - * full. However, ALSA calls this function before that happens, when - * MR.DAR is still zero. In this case, just return zero to indicate - * that nothing has been received yet. - */ - if (!position) - return 0; - - if ((position < dma_private->dma_buf_phys) || - (position > dma_private->dma_buf_end)) { - dev_err(dev, "dma pointer is out of range, halting stream\n"); - return SNDRV_PCM_POS_XRUN; - } - - frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys); - - /* - * If the current address is just past the end of the buffer, wrap it - * around. - */ - if (frames == runtime->buffer_size) - frames = 0; - - return frames; -} - -/** - * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params() - * - * Release the resources allocated in fsl_dma_hw_params() and de-program the - * registers. - * - * This function can be called multiple times. - */ -static int fsl_dma_hw_free(struct snd_pcm_substream *substream) -{ - struct snd_pcm_runtime *runtime = substream->runtime; - struct fsl_dma_private *dma_private = runtime->private_data; - - if (dma_private) { - struct ccsr_dma_channel __iomem *dma_channel; - - dma_channel = dma_private->dma_channel; - - /* Stop the DMA */ - out_be32(&dma_channel->mr, CCSR_DMA_MR_CA); - out_be32(&dma_channel->mr, 0); - - /* Reset all the other registers */ - out_be32(&dma_channel->sr, -1); - out_be32(&dma_channel->clndar, 0); - out_be32(&dma_channel->eclndar, 0); - out_be32(&dma_channel->satr, 0); - out_be32(&dma_channel->sar, 0); - out_be32(&dma_channel->datr, 0); - out_be32(&dma_channel->dar, 0); - out_be32(&dma_channel->bcr, 0); - out_be32(&dma_channel->nlndar, 0); - out_be32(&dma_channel->enlndar, 0); - } - - return 0; -} - -/** - * fsl_dma_close: close the stream. - */ -static int fsl_dma_close(struct snd_pcm_substream *substream) -{ - struct snd_pcm_runtime *runtime = substream->runtime; - struct fsl_dma_private *dma_private = runtime->private_data; - struct snd_soc_pcm_runtime *rtd = substream->private_data; - struct device *dev = rtd->platform->dev; - struct dma_object *dma = - container_of(rtd->platform->driver, struct dma_object, dai); - - if (dma_private) { - if (dma_private->irq) - free_irq(dma_private->irq, dma_private); - - if (dma_private->ld_buf_phys) { - dma_unmap_single(dev, dma_private->ld_buf_phys, - sizeof(dma_private->link), - DMA_TO_DEVICE); - } - - /* Deallocate the fsl_dma_private structure */ - dma_free_coherent(dev, sizeof(struct fsl_dma_private), - dma_private, dma_private->ld_buf_phys); - substream->runtime->private_data = NULL; - } - - dma->assigned = 0; - - return 0; -} - -/* - * Remove this PCM driver. - */ -static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm) -{ - struct snd_pcm_substream *substream; - unsigned int i; - - for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) { - substream = pcm->streams[i].substream; - if (substream) { - snd_dma_free_pages(&substream->dma_buffer); - substream->dma_buffer.area = NULL; - substream->dma_buffer.addr = 0; - } - } -} - -/** - * find_ssi_node -- returns the SSI node that points to his DMA channel node - * - * Although this DMA driver attempts to operate independently of the other - * devices, it still needs to determine some information about the SSI device - * that it's working with. Unfortunately, the device tree does not contain - * a pointer from the DMA channel node to the SSI node -- the pointer goes the - * other way. So we need to scan the device tree for SSI nodes until we find - * the one that points to the given DMA channel node. It's ugly, but at least - * it's contained in this one function. - */ -static struct device_node *find_ssi_node(struct device_node *dma_channel_np) -{ - struct device_node *ssi_np, *np; - - for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") { - /* Check each DMA phandle to see if it points to us. We - * assume that device_node pointers are a valid comparison. - */ - np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0); - of_node_put(np); - if (np == dma_channel_np) - return ssi_np; - - np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0); - of_node_put(np); - if (np == dma_channel_np) - return ssi_np; - } - - return NULL; -} - -static struct snd_pcm_ops fsl_dma_ops = { - .open = fsl_dma_open, - .close = fsl_dma_close, - .ioctl = snd_pcm_lib_ioctl, - .hw_params = fsl_dma_hw_params, - .hw_free = fsl_dma_hw_free, - .pointer = fsl_dma_pointer, -}; - -static int __devinit fsl_soc_dma_probe(struct platform_device *pdev) - { - struct dma_object *dma; - struct device_node *np = pdev->dev.of_node; - struct device_node *ssi_np; - struct resource res; - const uint32_t *iprop; - int ret; - - /* Find the SSI node that points to us. */ - ssi_np = find_ssi_node(np); - if (!ssi_np) { - dev_err(&pdev->dev, "cannot find parent SSI node\n"); - return -ENODEV; - } - - ret = of_address_to_resource(ssi_np, 0, &res); - if (ret) { - dev_err(&pdev->dev, "could not determine resources for %s\n", - ssi_np->full_name); - of_node_put(ssi_np); - return ret; - } - - dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL); - if (!dma) { - dev_err(&pdev->dev, "could not allocate dma object\n"); - of_node_put(ssi_np); - return -ENOMEM; - } - - strcpy(dma->path, np->full_name); - dma->dai.ops = &fsl_dma_ops; - dma->dai.pcm_new = fsl_dma_new; - dma->dai.pcm_free = fsl_dma_free_dma_buffers; - - /* Store the SSI-specific information that we need */ - dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0); - dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0); - - iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL); - if (iprop) - dma->ssi_fifo_depth = be32_to_cpup(iprop); - else - /* Older 8610 DTs didn't have the fifo-depth property */ - dma->ssi_fifo_depth = 8; - - of_node_put(ssi_np); - - ret = snd_soc_register_platform(&pdev->dev, &dma->dai); - if (ret) { - dev_err(&pdev->dev, "could not register platform\n"); - kfree(dma); - return ret; - } - - dma->channel = of_iomap(np, 0); - dma->irq = irq_of_parse_and_map(np, 0); - - dev_set_drvdata(&pdev->dev, dma); - - return 0; -} - -static int __devexit fsl_soc_dma_remove(struct platform_device *pdev) -{ - struct dma_object *dma = dev_get_drvdata(&pdev->dev); - - snd_soc_unregister_platform(&pdev->dev); - iounmap(dma->channel); - irq_dispose_mapping(dma->irq); - kfree(dma); - - return 0; -} - -static const struct of_device_id fsl_soc_dma_ids[] = { - { .compatible = "fsl,ssi-dma-channel", }, - {} -}; -MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids); - -static struct platform_driver fsl_soc_dma_driver = { - .driver = { - .name = "fsl-pcm-audio", - .owner = THIS_MODULE, - .of_match_table = fsl_soc_dma_ids, - }, - .probe = fsl_soc_dma_probe, - .remove = __devexit_p(fsl_soc_dma_remove), -}; - -module_platform_driver(fsl_soc_dma_driver); - -MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); -MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver"); -MODULE_LICENSE("GPL v2"); |