summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/fs/ubifs
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/fs/ubifs')
-rw-r--r--ANDROID_3.4.5/fs/ubifs/Kconfig60
-rw-r--r--ANDROID_3.4.5/fs/ubifs/Makefile9
-rw-r--r--ANDROID_3.4.5/fs/ubifs/budget.c732
-rw-r--r--ANDROID_3.4.5/fs/ubifs/commit.c738
-rw-r--r--ANDROID_3.4.5/fs/ubifs/compress.c251
-rw-r--r--ANDROID_3.4.5/fs/ubifs/debug.c3193
-rw-r--r--ANDROID_3.4.5/fs/ubifs/debug.h480
-rw-r--r--ANDROID_3.4.5/fs/ubifs/dir.c1208
-rw-r--r--ANDROID_3.4.5/fs/ubifs/file.c1597
-rw-r--r--ANDROID_3.4.5/fs/ubifs/find.c977
-rw-r--r--ANDROID_3.4.5/fs/ubifs/gc.c985
-rw-r--r--ANDROID_3.4.5/fs/ubifs/io.c1156
-rw-r--r--ANDROID_3.4.5/fs/ubifs/ioctl.c205
-rw-r--r--ANDROID_3.4.5/fs/ubifs/journal.c1465
-rw-r--r--ANDROID_3.4.5/fs/ubifs/key.h548
-rw-r--r--ANDROID_3.4.5/fs/ubifs/log.c771
-rw-r--r--ANDROID_3.4.5/fs/ubifs/lprops.c1319
-rw-r--r--ANDROID_3.4.5/fs/ubifs/lpt.c2278
-rw-r--r--ANDROID_3.4.5/fs/ubifs/lpt_commit.c2050
-rw-r--r--ANDROID_3.4.5/fs/ubifs/master.c457
-rw-r--r--ANDROID_3.4.5/fs/ubifs/misc.h303
-rw-r--r--ANDROID_3.4.5/fs/ubifs/orphan.c972
-rw-r--r--ANDROID_3.4.5/fs/ubifs/recovery.c1572
-rw-r--r--ANDROID_3.4.5/fs/ubifs/replay.c1079
-rw-r--r--ANDROID_3.4.5/fs/ubifs/sb.c816
-rw-r--r--ANDROID_3.4.5/fs/ubifs/scan.c380
-rw-r--r--ANDROID_3.4.5/fs/ubifs/shrinker.c325
-rw-r--r--ANDROID_3.4.5/fs/ubifs/super.c2414
-rw-r--r--ANDROID_3.4.5/fs/ubifs/tnc.c3347
-rw-r--r--ANDROID_3.4.5/fs/ubifs/tnc_commit.c1089
-rw-r--r--ANDROID_3.4.5/fs/ubifs/tnc_misc.c552
-rw-r--r--ANDROID_3.4.5/fs/ubifs/ubifs-media.h784
-rw-r--r--ANDROID_3.4.5/fs/ubifs/ubifs.h1790
-rw-r--r--ANDROID_3.4.5/fs/ubifs/xattr.c570
34 files changed, 0 insertions, 36472 deletions
diff --git a/ANDROID_3.4.5/fs/ubifs/Kconfig b/ANDROID_3.4.5/fs/ubifs/Kconfig
deleted file mode 100644
index f8b0160d..00000000
--- a/ANDROID_3.4.5/fs/ubifs/Kconfig
+++ /dev/null
@@ -1,60 +0,0 @@
-config UBIFS_FS
- tristate "UBIFS file system support"
- select CRC16
- select CRC32
- select CRYPTO if UBIFS_FS_ADVANCED_COMPR
- select CRYPTO if UBIFS_FS_LZO
- select CRYPTO if UBIFS_FS_ZLIB
- select CRYPTO_LZO if UBIFS_FS_LZO
- select CRYPTO_DEFLATE if UBIFS_FS_ZLIB
- depends on MTD_UBI
- help
- UBIFS is a file system for flash devices which works on top of UBI.
-
-config UBIFS_FS_XATTR
- bool "Extended attributes support"
- depends on UBIFS_FS
- help
- This option enables support of extended attributes.
-
-config UBIFS_FS_ADVANCED_COMPR
- bool "Advanced compression options"
- depends on UBIFS_FS
- help
- This option allows to explicitly choose which compressions, if any,
- are enabled in UBIFS. Removing compressors means inability to read
- existing file systems.
-
- If unsure, say 'N'.
-
-config UBIFS_FS_LZO
- bool "LZO compression support" if UBIFS_FS_ADVANCED_COMPR
- depends on UBIFS_FS
- default y
- help
- LZO compressor is generally faster than zlib but compresses worse.
- Say 'Y' if unsure.
-
-config UBIFS_FS_ZLIB
- bool "ZLIB compression support" if UBIFS_FS_ADVANCED_COMPR
- depends on UBIFS_FS
- default y
- help
- Zlib compresses better than LZO but it is slower. Say 'Y' if unsure.
-
-# Debugging-related stuff
-config UBIFS_FS_DEBUG
- bool "Enable debugging support"
- depends on UBIFS_FS
- select DEBUG_FS
- select KALLSYMS
- help
- This option enables UBIFS debugging support. It makes sure various
- assertions, self-checks, debugging messages and test modes are compiled
- in (this all is compiled out otherwise). Assertions are light-weight
- and this option also enables them. Self-checks, debugging messages and
- test modes are switched off by default. Thus, it is safe and actually
- recommended to have debugging support enabled, and it should not slow
- down UBIFS. You can then further enable / disable individual debugging
- features using UBIFS module parameters and the corresponding sysfs
- interfaces.
diff --git a/ANDROID_3.4.5/fs/ubifs/Makefile b/ANDROID_3.4.5/fs/ubifs/Makefile
deleted file mode 100644
index 80e93c35..00000000
--- a/ANDROID_3.4.5/fs/ubifs/Makefile
+++ /dev/null
@@ -1,9 +0,0 @@
-obj-$(CONFIG_UBIFS_FS) += ubifs.o
-
-ubifs-y += shrinker.o journal.o file.o dir.o super.o sb.o io.o
-ubifs-y += tnc.o master.o scan.o replay.o log.o commit.o gc.o orphan.o
-ubifs-y += budget.o find.o tnc_commit.o compress.o lpt.o lprops.o
-ubifs-y += recovery.o ioctl.o lpt_commit.o tnc_misc.o
-
-ubifs-$(CONFIG_UBIFS_FS_DEBUG) += debug.o
-ubifs-$(CONFIG_UBIFS_FS_XATTR) += xattr.o
diff --git a/ANDROID_3.4.5/fs/ubifs/budget.c b/ANDROID_3.4.5/fs/ubifs/budget.c
deleted file mode 100644
index bc4f94b2..00000000
--- a/ANDROID_3.4.5/fs/ubifs/budget.c
+++ /dev/null
@@ -1,732 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements the budgeting sub-system which is responsible for UBIFS
- * space management.
- *
- * Factors such as compression, wasted space at the ends of LEBs, space in other
- * journal heads, the effect of updates on the index, and so on, make it
- * impossible to accurately predict the amount of space needed. Consequently
- * approximations are used.
- */
-
-#include "ubifs.h"
-#include <linux/writeback.h>
-#include <linux/math64.h>
-
-/*
- * When pessimistic budget calculations say that there is no enough space,
- * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
- * or committing. The below constant defines maximum number of times UBIFS
- * repeats the operations.
- */
-#define MAX_MKSPC_RETRIES 3
-
-/*
- * The below constant defines amount of dirty pages which should be written
- * back at when trying to shrink the liability.
- */
-#define NR_TO_WRITE 16
-
-/**
- * shrink_liability - write-back some dirty pages/inodes.
- * @c: UBIFS file-system description object
- * @nr_to_write: how many dirty pages to write-back
- *
- * This function shrinks UBIFS liability by means of writing back some amount
- * of dirty inodes and their pages.
- *
- * Note, this function synchronizes even VFS inodes which are locked
- * (@i_mutex) by the caller of the budgeting function, because write-back does
- * not touch @i_mutex.
- */
-static void shrink_liability(struct ubifs_info *c, int nr_to_write)
-{
- down_read(&c->vfs_sb->s_umount);
- writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
- up_read(&c->vfs_sb->s_umount);
-}
-
-/**
- * run_gc - run garbage collector.
- * @c: UBIFS file-system description object
- *
- * This function runs garbage collector to make some more free space. Returns
- * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
- * negative error code in case of failure.
- */
-static int run_gc(struct ubifs_info *c)
-{
- int err, lnum;
-
- /* Make some free space by garbage-collecting dirty space */
- down_read(&c->commit_sem);
- lnum = ubifs_garbage_collect(c, 1);
- up_read(&c->commit_sem);
- if (lnum < 0)
- return lnum;
-
- /* GC freed one LEB, return it to lprops */
- dbg_budg("GC freed LEB %d", lnum);
- err = ubifs_return_leb(c, lnum);
- if (err)
- return err;
- return 0;
-}
-
-/**
- * get_liability - calculate current liability.
- * @c: UBIFS file-system description object
- *
- * This function calculates and returns current UBIFS liability, i.e. the
- * amount of bytes UBIFS has "promised" to write to the media.
- */
-static long long get_liability(struct ubifs_info *c)
-{
- long long liab;
-
- spin_lock(&c->space_lock);
- liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
- spin_unlock(&c->space_lock);
- return liab;
-}
-
-/**
- * make_free_space - make more free space on the file-system.
- * @c: UBIFS file-system description object
- *
- * This function is called when an operation cannot be budgeted because there
- * is supposedly no free space. But in most cases there is some free space:
- * o budgeting is pessimistic, so it always budgets more than it is actually
- * needed, so shrinking the liability is one way to make free space - the
- * cached data will take less space then it was budgeted for;
- * o GC may turn some dark space into free space (budgeting treats dark space
- * as not available);
- * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
- *
- * So this function tries to do the above. Returns %-EAGAIN if some free space
- * was presumably made and the caller has to re-try budgeting the operation.
- * Returns %-ENOSPC if it couldn't do more free space, and other negative error
- * codes on failures.
- */
-static int make_free_space(struct ubifs_info *c)
-{
- int err, retries = 0;
- long long liab1, liab2;
-
- do {
- liab1 = get_liability(c);
- /*
- * We probably have some dirty pages or inodes (liability), try
- * to write them back.
- */
- dbg_budg("liability %lld, run write-back", liab1);
- shrink_liability(c, NR_TO_WRITE);
-
- liab2 = get_liability(c);
- if (liab2 < liab1)
- return -EAGAIN;
-
- dbg_budg("new liability %lld (not shrunk)", liab2);
-
- /* Liability did not shrink again, try GC */
- dbg_budg("Run GC");
- err = run_gc(c);
- if (!err)
- return -EAGAIN;
-
- if (err != -EAGAIN && err != -ENOSPC)
- /* Some real error happened */
- return err;
-
- dbg_budg("Run commit (retries %d)", retries);
- err = ubifs_run_commit(c);
- if (err)
- return err;
- } while (retries++ < MAX_MKSPC_RETRIES);
-
- return -ENOSPC;
-}
-
-/**
- * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
- * @c: UBIFS file-system description object
- *
- * This function calculates and returns the number of LEBs which should be kept
- * for index usage.
- */
-int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
-{
- int idx_lebs;
- long long idx_size;
-
- idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
- /* And make sure we have thrice the index size of space reserved */
- idx_size += idx_size << 1;
- /*
- * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
- * pair, nor similarly the two variables for the new index size, so we
- * have to do this costly 64-bit division on fast-path.
- */
- idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
- /*
- * The index head is not available for the in-the-gaps method, so add an
- * extra LEB to compensate.
- */
- idx_lebs += 1;
- if (idx_lebs < MIN_INDEX_LEBS)
- idx_lebs = MIN_INDEX_LEBS;
- return idx_lebs;
-}
-
-/**
- * ubifs_calc_available - calculate available FS space.
- * @c: UBIFS file-system description object
- * @min_idx_lebs: minimum number of LEBs reserved for the index
- *
- * This function calculates and returns amount of FS space available for use.
- */
-long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
-{
- int subtract_lebs;
- long long available;
-
- available = c->main_bytes - c->lst.total_used;
-
- /*
- * Now 'available' contains theoretically available flash space
- * assuming there is no index, so we have to subtract the space which
- * is reserved for the index.
- */
- subtract_lebs = min_idx_lebs;
-
- /* Take into account that GC reserves one LEB for its own needs */
- subtract_lebs += 1;
-
- /*
- * The GC journal head LEB is not really accessible. And since
- * different write types go to different heads, we may count only on
- * one head's space.
- */
- subtract_lebs += c->jhead_cnt - 1;
-
- /* We also reserve one LEB for deletions, which bypass budgeting */
- subtract_lebs += 1;
-
- available -= (long long)subtract_lebs * c->leb_size;
-
- /* Subtract the dead space which is not available for use */
- available -= c->lst.total_dead;
-
- /*
- * Subtract dark space, which might or might not be usable - it depends
- * on the data which we have on the media and which will be written. If
- * this is a lot of uncompressed or not-compressible data, the dark
- * space cannot be used.
- */
- available -= c->lst.total_dark;
-
- /*
- * However, there is more dark space. The index may be bigger than
- * @min_idx_lebs. Those extra LEBs are assumed to be available, but
- * their dark space is not included in total_dark, so it is subtracted
- * here.
- */
- if (c->lst.idx_lebs > min_idx_lebs) {
- subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
- available -= subtract_lebs * c->dark_wm;
- }
-
- /* The calculations are rough and may end up with a negative number */
- return available > 0 ? available : 0;
-}
-
-/**
- * can_use_rp - check whether the user is allowed to use reserved pool.
- * @c: UBIFS file-system description object
- *
- * UBIFS has so-called "reserved pool" which is flash space reserved
- * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
- * This function checks whether current user is allowed to use reserved pool.
- * Returns %1 current user is allowed to use reserved pool and %0 otherwise.
- */
-static int can_use_rp(struct ubifs_info *c)
-{
- if (current_fsuid() == c->rp_uid || capable(CAP_SYS_RESOURCE) ||
- (c->rp_gid != 0 && in_group_p(c->rp_gid)))
- return 1;
- return 0;
-}
-
-/**
- * do_budget_space - reserve flash space for index and data growth.
- * @c: UBIFS file-system description object
- *
- * This function makes sure UBIFS has enough free LEBs for index growth and
- * data.
- *
- * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
- * would take if it was consolidated and written to the flash. This guarantees
- * that the "in-the-gaps" commit method always succeeds and UBIFS will always
- * be able to commit dirty index. So this function basically adds amount of
- * budgeted index space to the size of the current index, multiplies this by 3,
- * and makes sure this does not exceed the amount of free LEBs.
- *
- * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
- * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
- * be large, because UBIFS does not do any index consolidation as long as
- * there is free space. IOW, the index may take a lot of LEBs, but the LEBs
- * will contain a lot of dirt.
- * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
- * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
- *
- * This function returns zero in case of success, and %-ENOSPC in case of
- * failure.
- */
-static int do_budget_space(struct ubifs_info *c)
-{
- long long outstanding, available;
- int lebs, rsvd_idx_lebs, min_idx_lebs;
-
- /* First budget index space */
- min_idx_lebs = ubifs_calc_min_idx_lebs(c);
-
- /* Now 'min_idx_lebs' contains number of LEBs to reserve */
- if (min_idx_lebs > c->lst.idx_lebs)
- rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
- else
- rsvd_idx_lebs = 0;
-
- /*
- * The number of LEBs that are available to be used by the index is:
- *
- * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
- * @c->lst.taken_empty_lebs
- *
- * @c->lst.empty_lebs are available because they are empty.
- * @c->freeable_cnt are available because they contain only free and
- * dirty space, @c->idx_gc_cnt are available because they are index
- * LEBs that have been garbage collected and are awaiting the commit
- * before they can be used. And the in-the-gaps method will grab these
- * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
- * already been allocated for some purpose.
- *
- * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
- * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
- * are taken until after the commit).
- *
- * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
- * because of the way we serialize LEB allocations and budgeting. See a
- * comment in 'ubifs_find_free_space()'.
- */
- lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
- c->lst.taken_empty_lebs;
- if (unlikely(rsvd_idx_lebs > lebs)) {
- dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
- "rsvd_idx_lebs %d", min_idx_lebs, c->bi.min_idx_lebs,
- rsvd_idx_lebs);
- return -ENOSPC;
- }
-
- available = ubifs_calc_available(c, min_idx_lebs);
- outstanding = c->bi.data_growth + c->bi.dd_growth;
-
- if (unlikely(available < outstanding)) {
- dbg_budg("out of data space: available %lld, outstanding %lld",
- available, outstanding);
- return -ENOSPC;
- }
-
- if (available - outstanding <= c->rp_size && !can_use_rp(c))
- return -ENOSPC;
-
- c->bi.min_idx_lebs = min_idx_lebs;
- return 0;
-}
-
-/**
- * calc_idx_growth - calculate approximate index growth from budgeting request.
- * @c: UBIFS file-system description object
- * @req: budgeting request
- *
- * For now we assume each new node adds one znode. But this is rather poor
- * approximation, though.
- */
-static int calc_idx_growth(const struct ubifs_info *c,
- const struct ubifs_budget_req *req)
-{
- int znodes;
-
- znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
- req->new_dent;
- return znodes * c->max_idx_node_sz;
-}
-
-/**
- * calc_data_growth - calculate approximate amount of new data from budgeting
- * request.
- * @c: UBIFS file-system description object
- * @req: budgeting request
- */
-static int calc_data_growth(const struct ubifs_info *c,
- const struct ubifs_budget_req *req)
-{
- int data_growth;
-
- data_growth = req->new_ino ? c->bi.inode_budget : 0;
- if (req->new_page)
- data_growth += c->bi.page_budget;
- if (req->new_dent)
- data_growth += c->bi.dent_budget;
- data_growth += req->new_ino_d;
- return data_growth;
-}
-
-/**
- * calc_dd_growth - calculate approximate amount of data which makes other data
- * dirty from budgeting request.
- * @c: UBIFS file-system description object
- * @req: budgeting request
- */
-static int calc_dd_growth(const struct ubifs_info *c,
- const struct ubifs_budget_req *req)
-{
- int dd_growth;
-
- dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
-
- if (req->dirtied_ino)
- dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
- if (req->mod_dent)
- dd_growth += c->bi.dent_budget;
- dd_growth += req->dirtied_ino_d;
- return dd_growth;
-}
-
-/**
- * ubifs_budget_space - ensure there is enough space to complete an operation.
- * @c: UBIFS file-system description object
- * @req: budget request
- *
- * This function allocates budget for an operation. It uses pessimistic
- * approximation of how much flash space the operation needs. The goal of this
- * function is to make sure UBIFS always has flash space to flush all dirty
- * pages, dirty inodes, and dirty znodes (liability). This function may force
- * commit, garbage-collection or write-back. Returns zero in case of success,
- * %-ENOSPC if there is no free space and other negative error codes in case of
- * failures.
- */
-int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
-{
- int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
- int err, idx_growth, data_growth, dd_growth, retried = 0;
-
- ubifs_assert(req->new_page <= 1);
- ubifs_assert(req->dirtied_page <= 1);
- ubifs_assert(req->new_dent <= 1);
- ubifs_assert(req->mod_dent <= 1);
- ubifs_assert(req->new_ino <= 1);
- ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
- ubifs_assert(req->dirtied_ino <= 4);
- ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
- ubifs_assert(!(req->new_ino_d & 7));
- ubifs_assert(!(req->dirtied_ino_d & 7));
-
- data_growth = calc_data_growth(c, req);
- dd_growth = calc_dd_growth(c, req);
- if (!data_growth && !dd_growth)
- return 0;
- idx_growth = calc_idx_growth(c, req);
-
-again:
- spin_lock(&c->space_lock);
- ubifs_assert(c->bi.idx_growth >= 0);
- ubifs_assert(c->bi.data_growth >= 0);
- ubifs_assert(c->bi.dd_growth >= 0);
-
- if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
- dbg_budg("no space");
- spin_unlock(&c->space_lock);
- return -ENOSPC;
- }
-
- c->bi.idx_growth += idx_growth;
- c->bi.data_growth += data_growth;
- c->bi.dd_growth += dd_growth;
-
- err = do_budget_space(c);
- if (likely(!err)) {
- req->idx_growth = idx_growth;
- req->data_growth = data_growth;
- req->dd_growth = dd_growth;
- spin_unlock(&c->space_lock);
- return 0;
- }
-
- /* Restore the old values */
- c->bi.idx_growth -= idx_growth;
- c->bi.data_growth -= data_growth;
- c->bi.dd_growth -= dd_growth;
- spin_unlock(&c->space_lock);
-
- if (req->fast) {
- dbg_budg("no space for fast budgeting");
- return err;
- }
-
- err = make_free_space(c);
- cond_resched();
- if (err == -EAGAIN) {
- dbg_budg("try again");
- goto again;
- } else if (err == -ENOSPC) {
- if (!retried) {
- retried = 1;
- dbg_budg("-ENOSPC, but anyway try once again");
- goto again;
- }
- dbg_budg("FS is full, -ENOSPC");
- c->bi.nospace = 1;
- if (can_use_rp(c) || c->rp_size == 0)
- c->bi.nospace_rp = 1;
- smp_wmb();
- } else
- ubifs_err("cannot budget space, error %d", err);
- return err;
-}
-
-/**
- * ubifs_release_budget - release budgeted free space.
- * @c: UBIFS file-system description object
- * @req: budget request
- *
- * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
- * since the index changes (which were budgeted for in @req->idx_growth) will
- * only be written to the media on commit, this function moves the index budget
- * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
- * by the commit operation.
- */
-void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
-{
- ubifs_assert(req->new_page <= 1);
- ubifs_assert(req->dirtied_page <= 1);
- ubifs_assert(req->new_dent <= 1);
- ubifs_assert(req->mod_dent <= 1);
- ubifs_assert(req->new_ino <= 1);
- ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
- ubifs_assert(req->dirtied_ino <= 4);
- ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
- ubifs_assert(!(req->new_ino_d & 7));
- ubifs_assert(!(req->dirtied_ino_d & 7));
- if (!req->recalculate) {
- ubifs_assert(req->idx_growth >= 0);
- ubifs_assert(req->data_growth >= 0);
- ubifs_assert(req->dd_growth >= 0);
- }
-
- if (req->recalculate) {
- req->data_growth = calc_data_growth(c, req);
- req->dd_growth = calc_dd_growth(c, req);
- req->idx_growth = calc_idx_growth(c, req);
- }
-
- if (!req->data_growth && !req->dd_growth)
- return;
-
- c->bi.nospace = c->bi.nospace_rp = 0;
- smp_wmb();
-
- spin_lock(&c->space_lock);
- c->bi.idx_growth -= req->idx_growth;
- c->bi.uncommitted_idx += req->idx_growth;
- c->bi.data_growth -= req->data_growth;
- c->bi.dd_growth -= req->dd_growth;
- c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
-
- ubifs_assert(c->bi.idx_growth >= 0);
- ubifs_assert(c->bi.data_growth >= 0);
- ubifs_assert(c->bi.dd_growth >= 0);
- ubifs_assert(c->bi.min_idx_lebs < c->main_lebs);
- ubifs_assert(!(c->bi.idx_growth & 7));
- ubifs_assert(!(c->bi.data_growth & 7));
- ubifs_assert(!(c->bi.dd_growth & 7));
- spin_unlock(&c->space_lock);
-}
-
-/**
- * ubifs_convert_page_budget - convert budget of a new page.
- * @c: UBIFS file-system description object
- *
- * This function converts budget which was allocated for a new page of data to
- * the budget of changing an existing page of data. The latter is smaller than
- * the former, so this function only does simple re-calculation and does not
- * involve any write-back.
- */
-void ubifs_convert_page_budget(struct ubifs_info *c)
-{
- spin_lock(&c->space_lock);
- /* Release the index growth reservation */
- c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
- /* Release the data growth reservation */
- c->bi.data_growth -= c->bi.page_budget;
- /* Increase the dirty data growth reservation instead */
- c->bi.dd_growth += c->bi.page_budget;
- /* And re-calculate the indexing space reservation */
- c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
- spin_unlock(&c->space_lock);
-}
-
-/**
- * ubifs_release_dirty_inode_budget - release dirty inode budget.
- * @c: UBIFS file-system description object
- * @ui: UBIFS inode to release the budget for
- *
- * This function releases budget corresponding to a dirty inode. It is usually
- * called when after the inode has been written to the media and marked as
- * clean. It also causes the "no space" flags to be cleared.
- */
-void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
- struct ubifs_inode *ui)
-{
- struct ubifs_budget_req req;
-
- memset(&req, 0, sizeof(struct ubifs_budget_req));
- /* The "no space" flags will be cleared because dd_growth is > 0 */
- req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
- ubifs_release_budget(c, &req);
-}
-
-/**
- * ubifs_reported_space - calculate reported free space.
- * @c: the UBIFS file-system description object
- * @free: amount of free space
- *
- * This function calculates amount of free space which will be reported to
- * user-space. User-space application tend to expect that if the file-system
- * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
- * are able to write a file of size N. UBIFS attaches node headers to each data
- * node and it has to write indexing nodes as well. This introduces additional
- * overhead, and UBIFS has to report slightly less free space to meet the above
- * expectations.
- *
- * This function assumes free space is made up of uncompressed data nodes and
- * full index nodes (one per data node, tripled because we always allow enough
- * space to write the index thrice).
- *
- * Note, the calculation is pessimistic, which means that most of the time
- * UBIFS reports less space than it actually has.
- */
-long long ubifs_reported_space(const struct ubifs_info *c, long long free)
-{
- int divisor, factor, f;
-
- /*
- * Reported space size is @free * X, where X is UBIFS block size
- * divided by UBIFS block size + all overhead one data block
- * introduces. The overhead is the node header + indexing overhead.
- *
- * Indexing overhead calculations are based on the following formula:
- * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
- * of data nodes, f - fanout. Because effective UBIFS fanout is twice
- * as less than maximum fanout, we assume that each data node
- * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
- * Note, the multiplier 3 is because UBIFS reserves thrice as more space
- * for the index.
- */
- f = c->fanout > 3 ? c->fanout >> 1 : 2;
- factor = UBIFS_BLOCK_SIZE;
- divisor = UBIFS_MAX_DATA_NODE_SZ;
- divisor += (c->max_idx_node_sz * 3) / (f - 1);
- free *= factor;
- return div_u64(free, divisor);
-}
-
-/**
- * ubifs_get_free_space_nolock - return amount of free space.
- * @c: UBIFS file-system description object
- *
- * This function calculates amount of free space to report to user-space.
- *
- * Because UBIFS may introduce substantial overhead (the index, node headers,
- * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
- * free flash space it has (well, because not all dirty space is reclaimable,
- * UBIFS does not actually know the real amount). If UBIFS did so, it would
- * bread user expectations about what free space is. Users seem to accustomed
- * to assume that if the file-system reports N bytes of free space, they would
- * be able to fit a file of N bytes to the FS. This almost works for
- * traditional file-systems, because they have way less overhead than UBIFS.
- * So, to keep users happy, UBIFS tries to take the overhead into account.
- */
-long long ubifs_get_free_space_nolock(struct ubifs_info *c)
-{
- int rsvd_idx_lebs, lebs;
- long long available, outstanding, free;
-
- ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
- outstanding = c->bi.data_growth + c->bi.dd_growth;
- available = ubifs_calc_available(c, c->bi.min_idx_lebs);
-
- /*
- * When reporting free space to user-space, UBIFS guarantees that it is
- * possible to write a file of free space size. This means that for
- * empty LEBs we may use more precise calculations than
- * 'ubifs_calc_available()' is using. Namely, we know that in empty
- * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
- * Thus, amend the available space.
- *
- * Note, the calculations below are similar to what we have in
- * 'do_budget_space()', so refer there for comments.
- */
- if (c->bi.min_idx_lebs > c->lst.idx_lebs)
- rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
- else
- rsvd_idx_lebs = 0;
- lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
- c->lst.taken_empty_lebs;
- lebs -= rsvd_idx_lebs;
- available += lebs * (c->dark_wm - c->leb_overhead);
-
- if (available > outstanding)
- free = ubifs_reported_space(c, available - outstanding);
- else
- free = 0;
- return free;
-}
-
-/**
- * ubifs_get_free_space - return amount of free space.
- * @c: UBIFS file-system description object
- *
- * This function calculates and returns amount of free space to report to
- * user-space.
- */
-long long ubifs_get_free_space(struct ubifs_info *c)
-{
- long long free;
-
- spin_lock(&c->space_lock);
- free = ubifs_get_free_space_nolock(c);
- spin_unlock(&c->space_lock);
-
- return free;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/commit.c b/ANDROID_3.4.5/fs/ubifs/commit.c
deleted file mode 100644
index fb3b5c81..00000000
--- a/ANDROID_3.4.5/fs/ubifs/commit.c
+++ /dev/null
@@ -1,738 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements functions that manage the running of the commit process.
- * Each affected module has its own functions to accomplish their part in the
- * commit and those functions are called here.
- *
- * The commit is the process whereby all updates to the index and LEB properties
- * are written out together and the journal becomes empty. This keeps the
- * file system consistent - at all times the state can be recreated by reading
- * the index and LEB properties and then replaying the journal.
- *
- * The commit is split into two parts named "commit start" and "commit end".
- * During commit start, the commit process has exclusive access to the journal
- * by holding the commit semaphore down for writing. As few I/O operations as
- * possible are performed during commit start, instead the nodes that are to be
- * written are merely identified. During commit end, the commit semaphore is no
- * longer held and the journal is again in operation, allowing users to continue
- * to use the file system while the bulk of the commit I/O is performed. The
- * purpose of this two-step approach is to prevent the commit from causing any
- * latency blips. Note that in any case, the commit does not prevent lookups
- * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
- * cache.
- */
-
-#include <linux/freezer.h>
-#include <linux/kthread.h>
-#include <linux/slab.h>
-#include "ubifs.h"
-
-/*
- * nothing_to_commit - check if there is nothing to commit.
- * @c: UBIFS file-system description object
- *
- * This is a helper function which checks if there is anything to commit. It is
- * used as an optimization to avoid starting the commit if it is not really
- * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
- * writing the commit start node to the log), and it is better to avoid doing
- * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
- * nothing to commit, it is more optimal to avoid any flash I/O.
- *
- * This function has to be called with @c->commit_sem locked for writing -
- * this function does not take LPT/TNC locks because the @c->commit_sem
- * guarantees that we have exclusive access to the TNC and LPT data structures.
- *
- * This function returns %1 if there is nothing to commit and %0 otherwise.
- */
-static int nothing_to_commit(struct ubifs_info *c)
-{
- /*
- * During mounting or remounting from R/O mode to R/W mode we may
- * commit for various recovery-related reasons.
- */
- if (c->mounting || c->remounting_rw)
- return 0;
-
- /*
- * If the root TNC node is dirty, we definitely have something to
- * commit.
- */
- if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
- return 0;
-
- /*
- * Even though the TNC is clean, the LPT tree may have dirty nodes. For
- * example, this may happen if the budgeting subsystem invoked GC to
- * make some free space, and the GC found an LEB with only dirty and
- * free space. In this case GC would just change the lprops of this
- * LEB (by turning all space into free space) and unmap it.
- */
- if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
- return 0;
-
- ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
- ubifs_assert(c->dirty_pn_cnt == 0);
- ubifs_assert(c->dirty_nn_cnt == 0);
-
- return 1;
-}
-
-/**
- * do_commit - commit the journal.
- * @c: UBIFS file-system description object
- *
- * This function implements UBIFS commit. It has to be called with commit lock
- * locked. Returns zero in case of success and a negative error code in case of
- * failure.
- */
-static int do_commit(struct ubifs_info *c)
-{
- int err, new_ltail_lnum, old_ltail_lnum, i;
- struct ubifs_zbranch zroot;
- struct ubifs_lp_stats lst;
-
- dbg_cmt("start");
- ubifs_assert(!c->ro_media && !c->ro_mount);
-
- if (c->ro_error) {
- err = -EROFS;
- goto out_up;
- }
-
- if (nothing_to_commit(c)) {
- up_write(&c->commit_sem);
- err = 0;
- goto out_cancel;
- }
-
- /* Sync all write buffers (necessary for recovery) */
- for (i = 0; i < c->jhead_cnt; i++) {
- err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
- if (err)
- goto out_up;
- }
-
- c->cmt_no += 1;
- err = ubifs_gc_start_commit(c);
- if (err)
- goto out_up;
- err = dbg_check_lprops(c);
- if (err)
- goto out_up;
- err = ubifs_log_start_commit(c, &new_ltail_lnum);
- if (err)
- goto out_up;
- err = ubifs_tnc_start_commit(c, &zroot);
- if (err)
- goto out_up;
- err = ubifs_lpt_start_commit(c);
- if (err)
- goto out_up;
- err = ubifs_orphan_start_commit(c);
- if (err)
- goto out_up;
-
- ubifs_get_lp_stats(c, &lst);
-
- up_write(&c->commit_sem);
-
- err = ubifs_tnc_end_commit(c);
- if (err)
- goto out;
- err = ubifs_lpt_end_commit(c);
- if (err)
- goto out;
- err = ubifs_orphan_end_commit(c);
- if (err)
- goto out;
- old_ltail_lnum = c->ltail_lnum;
- err = ubifs_log_end_commit(c, new_ltail_lnum);
- if (err)
- goto out;
- err = dbg_check_old_index(c, &zroot);
- if (err)
- goto out;
-
- mutex_lock(&c->mst_mutex);
- c->mst_node->cmt_no = cpu_to_le64(c->cmt_no);
- c->mst_node->log_lnum = cpu_to_le32(new_ltail_lnum);
- c->mst_node->root_lnum = cpu_to_le32(zroot.lnum);
- c->mst_node->root_offs = cpu_to_le32(zroot.offs);
- c->mst_node->root_len = cpu_to_le32(zroot.len);
- c->mst_node->ihead_lnum = cpu_to_le32(c->ihead_lnum);
- c->mst_node->ihead_offs = cpu_to_le32(c->ihead_offs);
- c->mst_node->index_size = cpu_to_le64(c->bi.old_idx_sz);
- c->mst_node->lpt_lnum = cpu_to_le32(c->lpt_lnum);
- c->mst_node->lpt_offs = cpu_to_le32(c->lpt_offs);
- c->mst_node->nhead_lnum = cpu_to_le32(c->nhead_lnum);
- c->mst_node->nhead_offs = cpu_to_le32(c->nhead_offs);
- c->mst_node->ltab_lnum = cpu_to_le32(c->ltab_lnum);
- c->mst_node->ltab_offs = cpu_to_le32(c->ltab_offs);
- c->mst_node->lsave_lnum = cpu_to_le32(c->lsave_lnum);
- c->mst_node->lsave_offs = cpu_to_le32(c->lsave_offs);
- c->mst_node->lscan_lnum = cpu_to_le32(c->lscan_lnum);
- c->mst_node->empty_lebs = cpu_to_le32(lst.empty_lebs);
- c->mst_node->idx_lebs = cpu_to_le32(lst.idx_lebs);
- c->mst_node->total_free = cpu_to_le64(lst.total_free);
- c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
- c->mst_node->total_used = cpu_to_le64(lst.total_used);
- c->mst_node->total_dead = cpu_to_le64(lst.total_dead);
- c->mst_node->total_dark = cpu_to_le64(lst.total_dark);
- if (c->no_orphs)
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
- else
- c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
- err = ubifs_write_master(c);
- mutex_unlock(&c->mst_mutex);
- if (err)
- goto out;
-
- err = ubifs_log_post_commit(c, old_ltail_lnum);
- if (err)
- goto out;
- err = ubifs_gc_end_commit(c);
- if (err)
- goto out;
- err = ubifs_lpt_post_commit(c);
- if (err)
- goto out;
-
-out_cancel:
- spin_lock(&c->cs_lock);
- c->cmt_state = COMMIT_RESTING;
- wake_up(&c->cmt_wq);
- dbg_cmt("commit end");
- spin_unlock(&c->cs_lock);
- return 0;
-
-out_up:
- up_write(&c->commit_sem);
-out:
- ubifs_err("commit failed, error %d", err);
- spin_lock(&c->cs_lock);
- c->cmt_state = COMMIT_BROKEN;
- wake_up(&c->cmt_wq);
- spin_unlock(&c->cs_lock);
- ubifs_ro_mode(c, err);
- return err;
-}
-
-/**
- * run_bg_commit - run background commit if it is needed.
- * @c: UBIFS file-system description object
- *
- * This function runs background commit if it is needed. Returns zero in case
- * of success and a negative error code in case of failure.
- */
-static int run_bg_commit(struct ubifs_info *c)
-{
- spin_lock(&c->cs_lock);
- /*
- * Run background commit only if background commit was requested or if
- * commit is required.
- */
- if (c->cmt_state != COMMIT_BACKGROUND &&
- c->cmt_state != COMMIT_REQUIRED)
- goto out;
- spin_unlock(&c->cs_lock);
-
- down_write(&c->commit_sem);
- spin_lock(&c->cs_lock);
- if (c->cmt_state == COMMIT_REQUIRED)
- c->cmt_state = COMMIT_RUNNING_REQUIRED;
- else if (c->cmt_state == COMMIT_BACKGROUND)
- c->cmt_state = COMMIT_RUNNING_BACKGROUND;
- else
- goto out_cmt_unlock;
- spin_unlock(&c->cs_lock);
-
- return do_commit(c);
-
-out_cmt_unlock:
- up_write(&c->commit_sem);
-out:
- spin_unlock(&c->cs_lock);
- return 0;
-}
-
-/**
- * ubifs_bg_thread - UBIFS background thread function.
- * @info: points to the file-system description object
- *
- * This function implements various file-system background activities:
- * o when a write-buffer timer expires it synchronizes the appropriate
- * write-buffer;
- * o when the journal is about to be full, it starts in-advance commit.
- *
- * Note, other stuff like background garbage collection may be added here in
- * future.
- */
-int ubifs_bg_thread(void *info)
-{
- int err;
- struct ubifs_info *c = info;
-
- dbg_msg("background thread \"%s\" started, PID %d",
- c->bgt_name, current->pid);
- set_freezable();
-
- while (1) {
- if (kthread_should_stop())
- break;
-
- if (try_to_freeze())
- continue;
-
- set_current_state(TASK_INTERRUPTIBLE);
- /* Check if there is something to do */
- if (!c->need_bgt) {
- /*
- * Nothing prevents us from going sleep now and
- * be never woken up and block the task which
- * could wait in 'kthread_stop()' forever.
- */
- if (kthread_should_stop())
- break;
- schedule();
- continue;
- } else
- __set_current_state(TASK_RUNNING);
-
- c->need_bgt = 0;
- err = ubifs_bg_wbufs_sync(c);
- if (err)
- ubifs_ro_mode(c, err);
-
- run_bg_commit(c);
- cond_resched();
- }
-
- dbg_msg("background thread \"%s\" stops", c->bgt_name);
- return 0;
-}
-
-/**
- * ubifs_commit_required - set commit state to "required".
- * @c: UBIFS file-system description object
- *
- * This function is called if a commit is required but cannot be done from the
- * calling function, so it is just flagged instead.
- */
-void ubifs_commit_required(struct ubifs_info *c)
-{
- spin_lock(&c->cs_lock);
- switch (c->cmt_state) {
- case COMMIT_RESTING:
- case COMMIT_BACKGROUND:
- dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
- dbg_cstate(COMMIT_REQUIRED));
- c->cmt_state = COMMIT_REQUIRED;
- break;
- case COMMIT_RUNNING_BACKGROUND:
- dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
- dbg_cstate(COMMIT_RUNNING_REQUIRED));
- c->cmt_state = COMMIT_RUNNING_REQUIRED;
- break;
- case COMMIT_REQUIRED:
- case COMMIT_RUNNING_REQUIRED:
- case COMMIT_BROKEN:
- break;
- }
- spin_unlock(&c->cs_lock);
-}
-
-/**
- * ubifs_request_bg_commit - notify the background thread to do a commit.
- * @c: UBIFS file-system description object
- *
- * This function is called if the journal is full enough to make a commit
- * worthwhile, so background thread is kicked to start it.
- */
-void ubifs_request_bg_commit(struct ubifs_info *c)
-{
- spin_lock(&c->cs_lock);
- if (c->cmt_state == COMMIT_RESTING) {
- dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
- dbg_cstate(COMMIT_BACKGROUND));
- c->cmt_state = COMMIT_BACKGROUND;
- spin_unlock(&c->cs_lock);
- ubifs_wake_up_bgt(c);
- } else
- spin_unlock(&c->cs_lock);
-}
-
-/**
- * wait_for_commit - wait for commit.
- * @c: UBIFS file-system description object
- *
- * This function sleeps until the commit operation is no longer running.
- */
-static int wait_for_commit(struct ubifs_info *c)
-{
- dbg_cmt("pid %d goes sleep", current->pid);
-
- /*
- * The following sleeps if the condition is false, and will be woken
- * when the commit ends. It is possible, although very unlikely, that we
- * will wake up and see the subsequent commit running, rather than the
- * one we were waiting for, and go back to sleep. However, we will be
- * woken again, so there is no danger of sleeping forever.
- */
- wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
- c->cmt_state != COMMIT_RUNNING_REQUIRED);
- dbg_cmt("commit finished, pid %d woke up", current->pid);
- return 0;
-}
-
-/**
- * ubifs_run_commit - run or wait for commit.
- * @c: UBIFS file-system description object
- *
- * This function runs commit and returns zero in case of success and a negative
- * error code in case of failure.
- */
-int ubifs_run_commit(struct ubifs_info *c)
-{
- int err = 0;
-
- spin_lock(&c->cs_lock);
- if (c->cmt_state == COMMIT_BROKEN) {
- err = -EROFS;
- goto out;
- }
-
- if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
- /*
- * We set the commit state to 'running required' to indicate
- * that we want it to complete as quickly as possible.
- */
- c->cmt_state = COMMIT_RUNNING_REQUIRED;
-
- if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
- spin_unlock(&c->cs_lock);
- return wait_for_commit(c);
- }
- spin_unlock(&c->cs_lock);
-
- /* Ok, the commit is indeed needed */
-
- down_write(&c->commit_sem);
- spin_lock(&c->cs_lock);
- /*
- * Since we unlocked 'c->cs_lock', the state may have changed, so
- * re-check it.
- */
- if (c->cmt_state == COMMIT_BROKEN) {
- err = -EROFS;
- goto out_cmt_unlock;
- }
-
- if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
- c->cmt_state = COMMIT_RUNNING_REQUIRED;
-
- if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
- up_write(&c->commit_sem);
- spin_unlock(&c->cs_lock);
- return wait_for_commit(c);
- }
- c->cmt_state = COMMIT_RUNNING_REQUIRED;
- spin_unlock(&c->cs_lock);
-
- err = do_commit(c);
- return err;
-
-out_cmt_unlock:
- up_write(&c->commit_sem);
-out:
- spin_unlock(&c->cs_lock);
- return err;
-}
-
-/**
- * ubifs_gc_should_commit - determine if it is time for GC to run commit.
- * @c: UBIFS file-system description object
- *
- * This function is called by garbage collection to determine if commit should
- * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
- * is full enough to start commit, this function returns true. It is not
- * absolutely necessary to commit yet, but it feels like this should be better
- * then to keep doing GC. This function returns %1 if GC has to initiate commit
- * and %0 if not.
- */
-int ubifs_gc_should_commit(struct ubifs_info *c)
-{
- int ret = 0;
-
- spin_lock(&c->cs_lock);
- if (c->cmt_state == COMMIT_BACKGROUND) {
- dbg_cmt("commit required now");
- c->cmt_state = COMMIT_REQUIRED;
- } else
- dbg_cmt("commit not requested");
- if (c->cmt_state == COMMIT_REQUIRED)
- ret = 1;
- spin_unlock(&c->cs_lock);
- return ret;
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-/**
- * struct idx_node - hold index nodes during index tree traversal.
- * @list: list
- * @iip: index in parent (slot number of this indexing node in the parent
- * indexing node)
- * @upper_key: all keys in this indexing node have to be less or equivalent to
- * this key
- * @idx: index node (8-byte aligned because all node structures must be 8-byte
- * aligned)
- */
-struct idx_node {
- struct list_head list;
- int iip;
- union ubifs_key upper_key;
- struct ubifs_idx_node idx __attribute__((aligned(8)));
-};
-
-/**
- * dbg_old_index_check_init - get information for the next old index check.
- * @c: UBIFS file-system description object
- * @zroot: root of the index
- *
- * This function records information about the index that will be needed for the
- * next old index check i.e. 'dbg_check_old_index()'.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
-{
- struct ubifs_idx_node *idx;
- int lnum, offs, len, err = 0;
- struct ubifs_debug_info *d = c->dbg;
-
- d->old_zroot = *zroot;
- lnum = d->old_zroot.lnum;
- offs = d->old_zroot.offs;
- len = d->old_zroot.len;
-
- idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
- if (!idx)
- return -ENOMEM;
-
- err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
- if (err)
- goto out;
-
- d->old_zroot_level = le16_to_cpu(idx->level);
- d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
-out:
- kfree(idx);
- return err;
-}
-
-/**
- * dbg_check_old_index - check the old copy of the index.
- * @c: UBIFS file-system description object
- * @zroot: root of the new index
- *
- * In order to be able to recover from an unclean unmount, a complete copy of
- * the index must exist on flash. This is the "old" index. The commit process
- * must write the "new" index to flash without overwriting or destroying any
- * part of the old index. This function is run at commit end in order to check
- * that the old index does indeed exist completely intact.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
-{
- int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
- int first = 1, iip;
- struct ubifs_debug_info *d = c->dbg;
- union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
- unsigned long long uninitialized_var(last_sqnum);
- struct ubifs_idx_node *idx;
- struct list_head list;
- struct idx_node *i;
- size_t sz;
-
- if (!dbg_is_chk_index(c))
- return 0;
-
- INIT_LIST_HEAD(&list);
-
- sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
- UBIFS_IDX_NODE_SZ;
-
- /* Start at the old zroot */
- lnum = d->old_zroot.lnum;
- offs = d->old_zroot.offs;
- len = d->old_zroot.len;
- iip = 0;
-
- /*
- * Traverse the index tree preorder depth-first i.e. do a node and then
- * its subtrees from left to right.
- */
- while (1) {
- struct ubifs_branch *br;
-
- /* Get the next index node */
- i = kmalloc(sz, GFP_NOFS);
- if (!i) {
- err = -ENOMEM;
- goto out_free;
- }
- i->iip = iip;
- /* Keep the index nodes on our path in a linked list */
- list_add_tail(&i->list, &list);
- /* Read the index node */
- idx = &i->idx;
- err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
- if (err)
- goto out_free;
- /* Validate index node */
- child_cnt = le16_to_cpu(idx->child_cnt);
- if (child_cnt < 1 || child_cnt > c->fanout) {
- err = 1;
- goto out_dump;
- }
- if (first) {
- first = 0;
- /* Check root level and sqnum */
- if (le16_to_cpu(idx->level) != d->old_zroot_level) {
- err = 2;
- goto out_dump;
- }
- if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
- err = 3;
- goto out_dump;
- }
- /* Set last values as though root had a parent */
- last_level = le16_to_cpu(idx->level) + 1;
- last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
- key_read(c, ubifs_idx_key(c, idx), &lower_key);
- highest_ino_key(c, &upper_key, INUM_WATERMARK);
- }
- key_copy(c, &upper_key, &i->upper_key);
- if (le16_to_cpu(idx->level) != last_level - 1) {
- err = 3;
- goto out_dump;
- }
- /*
- * The index is always written bottom up hence a child's sqnum
- * is always less than the parents.
- */
- if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
- err = 4;
- goto out_dump;
- }
- /* Check key range */
- key_read(c, ubifs_idx_key(c, idx), &l_key);
- br = ubifs_idx_branch(c, idx, child_cnt - 1);
- key_read(c, &br->key, &u_key);
- if (keys_cmp(c, &lower_key, &l_key) > 0) {
- err = 5;
- goto out_dump;
- }
- if (keys_cmp(c, &upper_key, &u_key) < 0) {
- err = 6;
- goto out_dump;
- }
- if (keys_cmp(c, &upper_key, &u_key) == 0)
- if (!is_hash_key(c, &u_key)) {
- err = 7;
- goto out_dump;
- }
- /* Go to next index node */
- if (le16_to_cpu(idx->level) == 0) {
- /* At the bottom, so go up until can go right */
- while (1) {
- /* Drop the bottom of the list */
- list_del(&i->list);
- kfree(i);
- /* No more list means we are done */
- if (list_empty(&list))
- goto out;
- /* Look at the new bottom */
- i = list_entry(list.prev, struct idx_node,
- list);
- idx = &i->idx;
- /* Can we go right */
- if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
- iip = iip + 1;
- break;
- } else
- /* Nope, so go up again */
- iip = i->iip;
- }
- } else
- /* Go down left */
- iip = 0;
- /*
- * We have the parent in 'idx' and now we set up for reading the
- * child pointed to by slot 'iip'.
- */
- last_level = le16_to_cpu(idx->level);
- last_sqnum = le64_to_cpu(idx->ch.sqnum);
- br = ubifs_idx_branch(c, idx, iip);
- lnum = le32_to_cpu(br->lnum);
- offs = le32_to_cpu(br->offs);
- len = le32_to_cpu(br->len);
- key_read(c, &br->key, &lower_key);
- if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
- br = ubifs_idx_branch(c, idx, iip + 1);
- key_read(c, &br->key, &upper_key);
- } else
- key_copy(c, &i->upper_key, &upper_key);
- }
-out:
- err = dbg_old_index_check_init(c, zroot);
- if (err)
- goto out_free;
-
- return 0;
-
-out_dump:
- dbg_err("dumping index node (iip=%d)", i->iip);
- dbg_dump_node(c, idx);
- list_del(&i->list);
- kfree(i);
- if (!list_empty(&list)) {
- i = list_entry(list.prev, struct idx_node, list);
- dbg_err("dumping parent index node");
- dbg_dump_node(c, &i->idx);
- }
-out_free:
- while (!list_empty(&list)) {
- i = list_entry(list.next, struct idx_node, list);
- list_del(&i->list);
- kfree(i);
- }
- ubifs_err("failed, error %d", err);
- if (err > 0)
- err = -EINVAL;
- return err;
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/compress.c b/ANDROID_3.4.5/fs/ubifs/compress.c
deleted file mode 100644
index 11e4132f..00000000
--- a/ANDROID_3.4.5/fs/ubifs/compress.c
+++ /dev/null
@@ -1,251 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- * Copyright (C) 2006, 2007 University of Szeged, Hungary
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- * Zoltan Sogor
- */
-
-/*
- * This file provides a single place to access to compression and
- * decompression.
- */
-
-#include <linux/crypto.h>
-#include "ubifs.h"
-
-/* Fake description object for the "none" compressor */
-static struct ubifs_compressor none_compr = {
- .compr_type = UBIFS_COMPR_NONE,
- .name = "none",
- .capi_name = "",
-};
-
-#ifdef CONFIG_UBIFS_FS_LZO
-static DEFINE_MUTEX(lzo_mutex);
-
-static struct ubifs_compressor lzo_compr = {
- .compr_type = UBIFS_COMPR_LZO,
- .comp_mutex = &lzo_mutex,
- .name = "lzo",
- .capi_name = "lzo",
-};
-#else
-static struct ubifs_compressor lzo_compr = {
- .compr_type = UBIFS_COMPR_LZO,
- .name = "lzo",
-};
-#endif
-
-#ifdef CONFIG_UBIFS_FS_ZLIB
-static DEFINE_MUTEX(deflate_mutex);
-static DEFINE_MUTEX(inflate_mutex);
-
-static struct ubifs_compressor zlib_compr = {
- .compr_type = UBIFS_COMPR_ZLIB,
- .comp_mutex = &deflate_mutex,
- .decomp_mutex = &inflate_mutex,
- .name = "zlib",
- .capi_name = "deflate",
-};
-#else
-static struct ubifs_compressor zlib_compr = {
- .compr_type = UBIFS_COMPR_ZLIB,
- .name = "zlib",
-};
-#endif
-
-/* All UBIFS compressors */
-struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
-
-/**
- * ubifs_compress - compress data.
- * @in_buf: data to compress
- * @in_len: length of the data to compress
- * @out_buf: output buffer where compressed data should be stored
- * @out_len: output buffer length is returned here
- * @compr_type: type of compression to use on enter, actually used compression
- * type on exit
- *
- * This function compresses input buffer @in_buf of length @in_len and stores
- * the result in the output buffer @out_buf and the resulting length in
- * @out_len. If the input buffer does not compress, it is just copied to the
- * @out_buf. The same happens if @compr_type is %UBIFS_COMPR_NONE or if
- * compression error occurred.
- *
- * Note, if the input buffer was not compressed, it is copied to the output
- * buffer and %UBIFS_COMPR_NONE is returned in @compr_type.
- */
-void ubifs_compress(const void *in_buf, int in_len, void *out_buf, int *out_len,
- int *compr_type)
-{
- int err;
- struct ubifs_compressor *compr = ubifs_compressors[*compr_type];
-
- if (*compr_type == UBIFS_COMPR_NONE)
- goto no_compr;
-
- /* If the input data is small, do not even try to compress it */
- if (in_len < UBIFS_MIN_COMPR_LEN)
- goto no_compr;
-
- if (compr->comp_mutex)
- mutex_lock(compr->comp_mutex);
- err = crypto_comp_compress(compr->cc, in_buf, in_len, out_buf,
- (unsigned int *)out_len);
- if (compr->comp_mutex)
- mutex_unlock(compr->comp_mutex);
- if (unlikely(err)) {
- ubifs_warn("cannot compress %d bytes, compressor %s, "
- "error %d, leave data uncompressed",
- in_len, compr->name, err);
- goto no_compr;
- }
-
- /*
- * If the data compressed only slightly, it is better to leave it
- * uncompressed to improve read speed.
- */
- if (in_len - *out_len < UBIFS_MIN_COMPRESS_DIFF)
- goto no_compr;
-
- return;
-
-no_compr:
- memcpy(out_buf, in_buf, in_len);
- *out_len = in_len;
- *compr_type = UBIFS_COMPR_NONE;
-}
-
-/**
- * ubifs_decompress - decompress data.
- * @in_buf: data to decompress
- * @in_len: length of the data to decompress
- * @out_buf: output buffer where decompressed data should
- * @out_len: output length is returned here
- * @compr_type: type of compression
- *
- * This function decompresses data from buffer @in_buf into buffer @out_buf.
- * The length of the uncompressed data is returned in @out_len. This functions
- * returns %0 on success or a negative error code on failure.
- */
-int ubifs_decompress(const void *in_buf, int in_len, void *out_buf,
- int *out_len, int compr_type)
-{
- int err;
- struct ubifs_compressor *compr;
-
- if (unlikely(compr_type < 0 || compr_type >= UBIFS_COMPR_TYPES_CNT)) {
- ubifs_err("invalid compression type %d", compr_type);
- return -EINVAL;
- }
-
- compr = ubifs_compressors[compr_type];
-
- if (unlikely(!compr->capi_name)) {
- ubifs_err("%s compression is not compiled in", compr->name);
- return -EINVAL;
- }
-
- if (compr_type == UBIFS_COMPR_NONE) {
- memcpy(out_buf, in_buf, in_len);
- *out_len = in_len;
- return 0;
- }
-
- if (compr->decomp_mutex)
- mutex_lock(compr->decomp_mutex);
- err = crypto_comp_decompress(compr->cc, in_buf, in_len, out_buf,
- (unsigned int *)out_len);
- if (compr->decomp_mutex)
- mutex_unlock(compr->decomp_mutex);
- if (err)
- ubifs_err("cannot decompress %d bytes, compressor %s, "
- "error %d", in_len, compr->name, err);
-
- return err;
-}
-
-/**
- * compr_init - initialize a compressor.
- * @compr: compressor description object
- *
- * This function initializes the requested compressor and returns zero in case
- * of success or a negative error code in case of failure.
- */
-static int __init compr_init(struct ubifs_compressor *compr)
-{
- if (compr->capi_name) {
- compr->cc = crypto_alloc_comp(compr->capi_name, 0, 0);
- if (IS_ERR(compr->cc)) {
- ubifs_err("cannot initialize compressor %s, error %ld",
- compr->name, PTR_ERR(compr->cc));
- return PTR_ERR(compr->cc);
- }
- }
-
- ubifs_compressors[compr->compr_type] = compr;
- return 0;
-}
-
-/**
- * compr_exit - de-initialize a compressor.
- * @compr: compressor description object
- */
-static void compr_exit(struct ubifs_compressor *compr)
-{
- if (compr->capi_name)
- crypto_free_comp(compr->cc);
- return;
-}
-
-/**
- * ubifs_compressors_init - initialize UBIFS compressors.
- *
- * This function initializes the compressor which were compiled in. Returns
- * zero in case of success and a negative error code in case of failure.
- */
-int __init ubifs_compressors_init(void)
-{
- int err;
-
- err = compr_init(&lzo_compr);
- if (err)
- return err;
-
- err = compr_init(&zlib_compr);
- if (err)
- goto out_lzo;
-
- ubifs_compressors[UBIFS_COMPR_NONE] = &none_compr;
- return 0;
-
-out_lzo:
- compr_exit(&lzo_compr);
- return err;
-}
-
-/**
- * ubifs_compressors_exit - de-initialize UBIFS compressors.
- */
-void ubifs_compressors_exit(void)
-{
- compr_exit(&lzo_compr);
- compr_exit(&zlib_compr);
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/debug.c b/ANDROID_3.4.5/fs/ubifs/debug.c
deleted file mode 100644
index 1934084e..00000000
--- a/ANDROID_3.4.5/fs/ubifs/debug.c
+++ /dev/null
@@ -1,3193 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file implements most of the debugging stuff which is compiled in only
- * when it is enabled. But some debugging check functions are implemented in
- * corresponding subsystem, just because they are closely related and utilize
- * various local functions of those subsystems.
- */
-
-#include <linux/module.h>
-#include <linux/debugfs.h>
-#include <linux/math64.h>
-#include <linux/uaccess.h>
-#include <linux/random.h>
-#include "ubifs.h"
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-static DEFINE_SPINLOCK(dbg_lock);
-
-static const char *get_key_fmt(int fmt)
-{
- switch (fmt) {
- case UBIFS_SIMPLE_KEY_FMT:
- return "simple";
- default:
- return "unknown/invalid format";
- }
-}
-
-static const char *get_key_hash(int hash)
-{
- switch (hash) {
- case UBIFS_KEY_HASH_R5:
- return "R5";
- case UBIFS_KEY_HASH_TEST:
- return "test";
- default:
- return "unknown/invalid name hash";
- }
-}
-
-static const char *get_key_type(int type)
-{
- switch (type) {
- case UBIFS_INO_KEY:
- return "inode";
- case UBIFS_DENT_KEY:
- return "direntry";
- case UBIFS_XENT_KEY:
- return "xentry";
- case UBIFS_DATA_KEY:
- return "data";
- case UBIFS_TRUN_KEY:
- return "truncate";
- default:
- return "unknown/invalid key";
- }
-}
-
-static const char *get_dent_type(int type)
-{
- switch (type) {
- case UBIFS_ITYPE_REG:
- return "file";
- case UBIFS_ITYPE_DIR:
- return "dir";
- case UBIFS_ITYPE_LNK:
- return "symlink";
- case UBIFS_ITYPE_BLK:
- return "blkdev";
- case UBIFS_ITYPE_CHR:
- return "char dev";
- case UBIFS_ITYPE_FIFO:
- return "fifo";
- case UBIFS_ITYPE_SOCK:
- return "socket";
- default:
- return "unknown/invalid type";
- }
-}
-
-const char *dbg_snprintf_key(const struct ubifs_info *c,
- const union ubifs_key *key, char *buffer, int len)
-{
- char *p = buffer;
- int type = key_type(c, key);
-
- if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
- switch (type) {
- case UBIFS_INO_KEY:
- len -= snprintf(p, len, "(%lu, %s)",
- (unsigned long)key_inum(c, key),
- get_key_type(type));
- break;
- case UBIFS_DENT_KEY:
- case UBIFS_XENT_KEY:
- len -= snprintf(p, len, "(%lu, %s, %#08x)",
- (unsigned long)key_inum(c, key),
- get_key_type(type), key_hash(c, key));
- break;
- case UBIFS_DATA_KEY:
- len -= snprintf(p, len, "(%lu, %s, %u)",
- (unsigned long)key_inum(c, key),
- get_key_type(type), key_block(c, key));
- break;
- case UBIFS_TRUN_KEY:
- len -= snprintf(p, len, "(%lu, %s)",
- (unsigned long)key_inum(c, key),
- get_key_type(type));
- break;
- default:
- len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
- key->u32[0], key->u32[1]);
- }
- } else
- len -= snprintf(p, len, "bad key format %d", c->key_fmt);
- ubifs_assert(len > 0);
- return p;
-}
-
-const char *dbg_ntype(int type)
-{
- switch (type) {
- case UBIFS_PAD_NODE:
- return "padding node";
- case UBIFS_SB_NODE:
- return "superblock node";
- case UBIFS_MST_NODE:
- return "master node";
- case UBIFS_REF_NODE:
- return "reference node";
- case UBIFS_INO_NODE:
- return "inode node";
- case UBIFS_DENT_NODE:
- return "direntry node";
- case UBIFS_XENT_NODE:
- return "xentry node";
- case UBIFS_DATA_NODE:
- return "data node";
- case UBIFS_TRUN_NODE:
- return "truncate node";
- case UBIFS_IDX_NODE:
- return "indexing node";
- case UBIFS_CS_NODE:
- return "commit start node";
- case UBIFS_ORPH_NODE:
- return "orphan node";
- default:
- return "unknown node";
- }
-}
-
-static const char *dbg_gtype(int type)
-{
- switch (type) {
- case UBIFS_NO_NODE_GROUP:
- return "no node group";
- case UBIFS_IN_NODE_GROUP:
- return "in node group";
- case UBIFS_LAST_OF_NODE_GROUP:
- return "last of node group";
- default:
- return "unknown";
- }
-}
-
-const char *dbg_cstate(int cmt_state)
-{
- switch (cmt_state) {
- case COMMIT_RESTING:
- return "commit resting";
- case COMMIT_BACKGROUND:
- return "background commit requested";
- case COMMIT_REQUIRED:
- return "commit required";
- case COMMIT_RUNNING_BACKGROUND:
- return "BACKGROUND commit running";
- case COMMIT_RUNNING_REQUIRED:
- return "commit running and required";
- case COMMIT_BROKEN:
- return "broken commit";
- default:
- return "unknown commit state";
- }
-}
-
-const char *dbg_jhead(int jhead)
-{
- switch (jhead) {
- case GCHD:
- return "0 (GC)";
- case BASEHD:
- return "1 (base)";
- case DATAHD:
- return "2 (data)";
- default:
- return "unknown journal head";
- }
-}
-
-static void dump_ch(const struct ubifs_ch *ch)
-{
- printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic));
- printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc));
- printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type,
- dbg_ntype(ch->node_type));
- printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type,
- dbg_gtype(ch->group_type));
- printk(KERN_ERR "\tsqnum %llu\n",
- (unsigned long long)le64_to_cpu(ch->sqnum));
- printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len));
-}
-
-void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
-{
- const struct ubifs_inode *ui = ubifs_inode(inode);
- struct qstr nm = { .name = NULL };
- union ubifs_key key;
- struct ubifs_dent_node *dent, *pdent = NULL;
- int count = 2;
-
- printk(KERN_ERR "Dump in-memory inode:");
- printk(KERN_ERR "\tinode %lu\n", inode->i_ino);
- printk(KERN_ERR "\tsize %llu\n",
- (unsigned long long)i_size_read(inode));
- printk(KERN_ERR "\tnlink %u\n", inode->i_nlink);
- printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid);
- printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid);
- printk(KERN_ERR "\tatime %u.%u\n",
- (unsigned int)inode->i_atime.tv_sec,
- (unsigned int)inode->i_atime.tv_nsec);
- printk(KERN_ERR "\tmtime %u.%u\n",
- (unsigned int)inode->i_mtime.tv_sec,
- (unsigned int)inode->i_mtime.tv_nsec);
- printk(KERN_ERR "\tctime %u.%u\n",
- (unsigned int)inode->i_ctime.tv_sec,
- (unsigned int)inode->i_ctime.tv_nsec);
- printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum);
- printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size);
- printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt);
- printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names);
- printk(KERN_ERR "\tdirty %u\n", ui->dirty);
- printk(KERN_ERR "\txattr %u\n", ui->xattr);
- printk(KERN_ERR "\tbulk_read %u\n", ui->xattr);
- printk(KERN_ERR "\tsynced_i_size %llu\n",
- (unsigned long long)ui->synced_i_size);
- printk(KERN_ERR "\tui_size %llu\n",
- (unsigned long long)ui->ui_size);
- printk(KERN_ERR "\tflags %d\n", ui->flags);
- printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type);
- printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
- printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row);
- printk(KERN_ERR "\tdata_len %d\n", ui->data_len);
-
- if (!S_ISDIR(inode->i_mode))
- return;
-
- printk(KERN_ERR "List of directory entries:\n");
- ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
-
- lowest_dent_key(c, &key, inode->i_ino);
- while (1) {
- dent = ubifs_tnc_next_ent(c, &key, &nm);
- if (IS_ERR(dent)) {
- if (PTR_ERR(dent) != -ENOENT)
- printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
- break;
- }
-
- printk(KERN_ERR "\t%d: %s (%s)\n",
- count++, dent->name, get_dent_type(dent->type));
-
- nm.name = dent->name;
- nm.len = le16_to_cpu(dent->nlen);
- kfree(pdent);
- pdent = dent;
- key_read(c, &dent->key, &key);
- }
- kfree(pdent);
-}
-
-void dbg_dump_node(const struct ubifs_info *c, const void *node)
-{
- int i, n;
- union ubifs_key key;
- const struct ubifs_ch *ch = node;
- char key_buf[DBG_KEY_BUF_LEN];
-
- if (dbg_is_tst_rcvry(c))
- return;
-
- /* If the magic is incorrect, just hexdump the first bytes */
- if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
- printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
- print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
- (void *)node, UBIFS_CH_SZ, 1);
- return;
- }
-
- spin_lock(&dbg_lock);
- dump_ch(node);
-
- switch (ch->node_type) {
- case UBIFS_PAD_NODE:
- {
- const struct ubifs_pad_node *pad = node;
-
- printk(KERN_ERR "\tpad_len %u\n",
- le32_to_cpu(pad->pad_len));
- break;
- }
- case UBIFS_SB_NODE:
- {
- const struct ubifs_sb_node *sup = node;
- unsigned int sup_flags = le32_to_cpu(sup->flags);
-
- printk(KERN_ERR "\tkey_hash %d (%s)\n",
- (int)sup->key_hash, get_key_hash(sup->key_hash));
- printk(KERN_ERR "\tkey_fmt %d (%s)\n",
- (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
- printk(KERN_ERR "\tflags %#x\n", sup_flags);
- printk(KERN_ERR "\t big_lpt %u\n",
- !!(sup_flags & UBIFS_FLG_BIGLPT));
- printk(KERN_ERR "\t space_fixup %u\n",
- !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
- printk(KERN_ERR "\tmin_io_size %u\n",
- le32_to_cpu(sup->min_io_size));
- printk(KERN_ERR "\tleb_size %u\n",
- le32_to_cpu(sup->leb_size));
- printk(KERN_ERR "\tleb_cnt %u\n",
- le32_to_cpu(sup->leb_cnt));
- printk(KERN_ERR "\tmax_leb_cnt %u\n",
- le32_to_cpu(sup->max_leb_cnt));
- printk(KERN_ERR "\tmax_bud_bytes %llu\n",
- (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
- printk(KERN_ERR "\tlog_lebs %u\n",
- le32_to_cpu(sup->log_lebs));
- printk(KERN_ERR "\tlpt_lebs %u\n",
- le32_to_cpu(sup->lpt_lebs));
- printk(KERN_ERR "\torph_lebs %u\n",
- le32_to_cpu(sup->orph_lebs));
- printk(KERN_ERR "\tjhead_cnt %u\n",
- le32_to_cpu(sup->jhead_cnt));
- printk(KERN_ERR "\tfanout %u\n",
- le32_to_cpu(sup->fanout));
- printk(KERN_ERR "\tlsave_cnt %u\n",
- le32_to_cpu(sup->lsave_cnt));
- printk(KERN_ERR "\tdefault_compr %u\n",
- (int)le16_to_cpu(sup->default_compr));
- printk(KERN_ERR "\trp_size %llu\n",
- (unsigned long long)le64_to_cpu(sup->rp_size));
- printk(KERN_ERR "\trp_uid %u\n",
- le32_to_cpu(sup->rp_uid));
- printk(KERN_ERR "\trp_gid %u\n",
- le32_to_cpu(sup->rp_gid));
- printk(KERN_ERR "\tfmt_version %u\n",
- le32_to_cpu(sup->fmt_version));
- printk(KERN_ERR "\ttime_gran %u\n",
- le32_to_cpu(sup->time_gran));
- printk(KERN_ERR "\tUUID %pUB\n",
- sup->uuid);
- break;
- }
- case UBIFS_MST_NODE:
- {
- const struct ubifs_mst_node *mst = node;
-
- printk(KERN_ERR "\thighest_inum %llu\n",
- (unsigned long long)le64_to_cpu(mst->highest_inum));
- printk(KERN_ERR "\tcommit number %llu\n",
- (unsigned long long)le64_to_cpu(mst->cmt_no));
- printk(KERN_ERR "\tflags %#x\n",
- le32_to_cpu(mst->flags));
- printk(KERN_ERR "\tlog_lnum %u\n",
- le32_to_cpu(mst->log_lnum));
- printk(KERN_ERR "\troot_lnum %u\n",
- le32_to_cpu(mst->root_lnum));
- printk(KERN_ERR "\troot_offs %u\n",
- le32_to_cpu(mst->root_offs));
- printk(KERN_ERR "\troot_len %u\n",
- le32_to_cpu(mst->root_len));
- printk(KERN_ERR "\tgc_lnum %u\n",
- le32_to_cpu(mst->gc_lnum));
- printk(KERN_ERR "\tihead_lnum %u\n",
- le32_to_cpu(mst->ihead_lnum));
- printk(KERN_ERR "\tihead_offs %u\n",
- le32_to_cpu(mst->ihead_offs));
- printk(KERN_ERR "\tindex_size %llu\n",
- (unsigned long long)le64_to_cpu(mst->index_size));
- printk(KERN_ERR "\tlpt_lnum %u\n",
- le32_to_cpu(mst->lpt_lnum));
- printk(KERN_ERR "\tlpt_offs %u\n",
- le32_to_cpu(mst->lpt_offs));
- printk(KERN_ERR "\tnhead_lnum %u\n",
- le32_to_cpu(mst->nhead_lnum));
- printk(KERN_ERR "\tnhead_offs %u\n",
- le32_to_cpu(mst->nhead_offs));
- printk(KERN_ERR "\tltab_lnum %u\n",
- le32_to_cpu(mst->ltab_lnum));
- printk(KERN_ERR "\tltab_offs %u\n",
- le32_to_cpu(mst->ltab_offs));
- printk(KERN_ERR "\tlsave_lnum %u\n",
- le32_to_cpu(mst->lsave_lnum));
- printk(KERN_ERR "\tlsave_offs %u\n",
- le32_to_cpu(mst->lsave_offs));
- printk(KERN_ERR "\tlscan_lnum %u\n",
- le32_to_cpu(mst->lscan_lnum));
- printk(KERN_ERR "\tleb_cnt %u\n",
- le32_to_cpu(mst->leb_cnt));
- printk(KERN_ERR "\tempty_lebs %u\n",
- le32_to_cpu(mst->empty_lebs));
- printk(KERN_ERR "\tidx_lebs %u\n",
- le32_to_cpu(mst->idx_lebs));
- printk(KERN_ERR "\ttotal_free %llu\n",
- (unsigned long long)le64_to_cpu(mst->total_free));
- printk(KERN_ERR "\ttotal_dirty %llu\n",
- (unsigned long long)le64_to_cpu(mst->total_dirty));
- printk(KERN_ERR "\ttotal_used %llu\n",
- (unsigned long long)le64_to_cpu(mst->total_used));
- printk(KERN_ERR "\ttotal_dead %llu\n",
- (unsigned long long)le64_to_cpu(mst->total_dead));
- printk(KERN_ERR "\ttotal_dark %llu\n",
- (unsigned long long)le64_to_cpu(mst->total_dark));
- break;
- }
- case UBIFS_REF_NODE:
- {
- const struct ubifs_ref_node *ref = node;
-
- printk(KERN_ERR "\tlnum %u\n",
- le32_to_cpu(ref->lnum));
- printk(KERN_ERR "\toffs %u\n",
- le32_to_cpu(ref->offs));
- printk(KERN_ERR "\tjhead %u\n",
- le32_to_cpu(ref->jhead));
- break;
- }
- case UBIFS_INO_NODE:
- {
- const struct ubifs_ino_node *ino = node;
-
- key_read(c, &ino->key, &key);
- printk(KERN_ERR "\tkey %s\n",
- dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
- printk(KERN_ERR "\tcreat_sqnum %llu\n",
- (unsigned long long)le64_to_cpu(ino->creat_sqnum));
- printk(KERN_ERR "\tsize %llu\n",
- (unsigned long long)le64_to_cpu(ino->size));
- printk(KERN_ERR "\tnlink %u\n",
- le32_to_cpu(ino->nlink));
- printk(KERN_ERR "\tatime %lld.%u\n",
- (long long)le64_to_cpu(ino->atime_sec),
- le32_to_cpu(ino->atime_nsec));
- printk(KERN_ERR "\tmtime %lld.%u\n",
- (long long)le64_to_cpu(ino->mtime_sec),
- le32_to_cpu(ino->mtime_nsec));
- printk(KERN_ERR "\tctime %lld.%u\n",
- (long long)le64_to_cpu(ino->ctime_sec),
- le32_to_cpu(ino->ctime_nsec));
- printk(KERN_ERR "\tuid %u\n",
- le32_to_cpu(ino->uid));
- printk(KERN_ERR "\tgid %u\n",
- le32_to_cpu(ino->gid));
- printk(KERN_ERR "\tmode %u\n",
- le32_to_cpu(ino->mode));
- printk(KERN_ERR "\tflags %#x\n",
- le32_to_cpu(ino->flags));
- printk(KERN_ERR "\txattr_cnt %u\n",
- le32_to_cpu(ino->xattr_cnt));
- printk(KERN_ERR "\txattr_size %u\n",
- le32_to_cpu(ino->xattr_size));
- printk(KERN_ERR "\txattr_names %u\n",
- le32_to_cpu(ino->xattr_names));
- printk(KERN_ERR "\tcompr_type %#x\n",
- (int)le16_to_cpu(ino->compr_type));
- printk(KERN_ERR "\tdata len %u\n",
- le32_to_cpu(ino->data_len));
- break;
- }
- case UBIFS_DENT_NODE:
- case UBIFS_XENT_NODE:
- {
- const struct ubifs_dent_node *dent = node;
- int nlen = le16_to_cpu(dent->nlen);
-
- key_read(c, &dent->key, &key);
- printk(KERN_ERR "\tkey %s\n",
- dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
- printk(KERN_ERR "\tinum %llu\n",
- (unsigned long long)le64_to_cpu(dent->inum));
- printk(KERN_ERR "\ttype %d\n", (int)dent->type);
- printk(KERN_ERR "\tnlen %d\n", nlen);
- printk(KERN_ERR "\tname ");
-
- if (nlen > UBIFS_MAX_NLEN)
- printk(KERN_ERR "(bad name length, not printing, "
- "bad or corrupted node)");
- else {
- for (i = 0; i < nlen && dent->name[i]; i++)
- printk(KERN_CONT "%c", dent->name[i]);
- }
- printk(KERN_CONT "\n");
-
- break;
- }
- case UBIFS_DATA_NODE:
- {
- const struct ubifs_data_node *dn = node;
- int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
-
- key_read(c, &dn->key, &key);
- printk(KERN_ERR "\tkey %s\n",
- dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
- printk(KERN_ERR "\tsize %u\n",
- le32_to_cpu(dn->size));
- printk(KERN_ERR "\tcompr_typ %d\n",
- (int)le16_to_cpu(dn->compr_type));
- printk(KERN_ERR "\tdata size %d\n",
- dlen);
- printk(KERN_ERR "\tdata:\n");
- print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
- (void *)&dn->data, dlen, 0);
- break;
- }
- case UBIFS_TRUN_NODE:
- {
- const struct ubifs_trun_node *trun = node;
-
- printk(KERN_ERR "\tinum %u\n",
- le32_to_cpu(trun->inum));
- printk(KERN_ERR "\told_size %llu\n",
- (unsigned long long)le64_to_cpu(trun->old_size));
- printk(KERN_ERR "\tnew_size %llu\n",
- (unsigned long long)le64_to_cpu(trun->new_size));
- break;
- }
- case UBIFS_IDX_NODE:
- {
- const struct ubifs_idx_node *idx = node;
-
- n = le16_to_cpu(idx->child_cnt);
- printk(KERN_ERR "\tchild_cnt %d\n", n);
- printk(KERN_ERR "\tlevel %d\n",
- (int)le16_to_cpu(idx->level));
- printk(KERN_ERR "\tBranches:\n");
-
- for (i = 0; i < n && i < c->fanout - 1; i++) {
- const struct ubifs_branch *br;
-
- br = ubifs_idx_branch(c, idx, i);
- key_read(c, &br->key, &key);
- printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
- i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
- le32_to_cpu(br->len),
- dbg_snprintf_key(c, &key, key_buf,
- DBG_KEY_BUF_LEN));
- }
- break;
- }
- case UBIFS_CS_NODE:
- break;
- case UBIFS_ORPH_NODE:
- {
- const struct ubifs_orph_node *orph = node;
-
- printk(KERN_ERR "\tcommit number %llu\n",
- (unsigned long long)
- le64_to_cpu(orph->cmt_no) & LLONG_MAX);
- printk(KERN_ERR "\tlast node flag %llu\n",
- (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
- n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
- printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
- for (i = 0; i < n; i++)
- printk(KERN_ERR "\t ino %llu\n",
- (unsigned long long)le64_to_cpu(orph->inos[i]));
- break;
- }
- default:
- printk(KERN_ERR "node type %d was not recognized\n",
- (int)ch->node_type);
- }
- spin_unlock(&dbg_lock);
-}
-
-void dbg_dump_budget_req(const struct ubifs_budget_req *req)
-{
- spin_lock(&dbg_lock);
- printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
- req->new_ino, req->dirtied_ino);
- printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n",
- req->new_ino_d, req->dirtied_ino_d);
- printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n",
- req->new_page, req->dirtied_page);
- printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n",
- req->new_dent, req->mod_dent);
- printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth);
- printk(KERN_ERR "\tdata_growth %d dd_growth %d\n",
- req->data_growth, req->dd_growth);
- spin_unlock(&dbg_lock);
-}
-
-void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
-{
- spin_lock(&dbg_lock);
- printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
- "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
- printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
- "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
- lst->total_dirty);
- printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
- "total_dead %lld\n", lst->total_used, lst->total_dark,
- lst->total_dead);
- spin_unlock(&dbg_lock);
-}
-
-void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
-{
- int i;
- struct rb_node *rb;
- struct ubifs_bud *bud;
- struct ubifs_gced_idx_leb *idx_gc;
- long long available, outstanding, free;
-
- spin_lock(&c->space_lock);
- spin_lock(&dbg_lock);
- printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
- "total budget sum %lld\n", current->pid,
- bi->data_growth + bi->dd_growth,
- bi->data_growth + bi->dd_growth + bi->idx_growth);
- printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
- "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
- bi->idx_growth);
- printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
- "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
- bi->uncommitted_idx);
- printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
- bi->page_budget, bi->inode_budget, bi->dent_budget);
- printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
- bi->nospace, bi->nospace_rp);
- printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
- c->dark_wm, c->dead_wm, c->max_idx_node_sz);
-
- if (bi != &c->bi)
- /*
- * If we are dumping saved budgeting data, do not print
- * additional information which is about the current state, not
- * the old one which corresponded to the saved budgeting data.
- */
- goto out_unlock;
-
- printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
- c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
- printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
- "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
- atomic_long_read(&c->dirty_zn_cnt),
- atomic_long_read(&c->clean_zn_cnt));
- printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
- c->gc_lnum, c->ihead_lnum);
-
- /* If we are in R/O mode, journal heads do not exist */
- if (c->jheads)
- for (i = 0; i < c->jhead_cnt; i++)
- printk(KERN_ERR "\tjhead %s\t LEB %d\n",
- dbg_jhead(c->jheads[i].wbuf.jhead),
- c->jheads[i].wbuf.lnum);
- for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
- bud = rb_entry(rb, struct ubifs_bud, rb);
- printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
- }
- list_for_each_entry(bud, &c->old_buds, list)
- printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
- list_for_each_entry(idx_gc, &c->idx_gc, list)
- printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
- idx_gc->lnum, idx_gc->unmap);
- printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
-
- /* Print budgeting predictions */
- available = ubifs_calc_available(c, c->bi.min_idx_lebs);
- outstanding = c->bi.data_growth + c->bi.dd_growth;
- free = ubifs_get_free_space_nolock(c);
- printk(KERN_ERR "Budgeting predictions:\n");
- printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
- available, outstanding, free);
-out_unlock:
- spin_unlock(&dbg_lock);
- spin_unlock(&c->space_lock);
-}
-
-void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
-{
- int i, spc, dark = 0, dead = 0;
- struct rb_node *rb;
- struct ubifs_bud *bud;
-
- spc = lp->free + lp->dirty;
- if (spc < c->dead_wm)
- dead = spc;
- else
- dark = ubifs_calc_dark(c, spc);
-
- if (lp->flags & LPROPS_INDEX)
- printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
- "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
- lp->dirty, c->leb_size - spc, spc, lp->flags);
- else
- printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
- "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
- "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
- c->leb_size - spc, spc, dark, dead,
- (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
-
- if (lp->flags & LPROPS_TAKEN) {
- if (lp->flags & LPROPS_INDEX)
- printk(KERN_CONT "index, taken");
- else
- printk(KERN_CONT "taken");
- } else {
- const char *s;
-
- if (lp->flags & LPROPS_INDEX) {
- switch (lp->flags & LPROPS_CAT_MASK) {
- case LPROPS_DIRTY_IDX:
- s = "dirty index";
- break;
- case LPROPS_FRDI_IDX:
- s = "freeable index";
- break;
- default:
- s = "index";
- }
- } else {
- switch (lp->flags & LPROPS_CAT_MASK) {
- case LPROPS_UNCAT:
- s = "not categorized";
- break;
- case LPROPS_DIRTY:
- s = "dirty";
- break;
- case LPROPS_FREE:
- s = "free";
- break;
- case LPROPS_EMPTY:
- s = "empty";
- break;
- case LPROPS_FREEABLE:
- s = "freeable";
- break;
- default:
- s = NULL;
- break;
- }
- }
- printk(KERN_CONT "%s", s);
- }
-
- for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
- bud = rb_entry(rb, struct ubifs_bud, rb);
- if (bud->lnum == lp->lnum) {
- int head = 0;
- for (i = 0; i < c->jhead_cnt; i++) {
- /*
- * Note, if we are in R/O mode or in the middle
- * of mounting/re-mounting, the write-buffers do
- * not exist.
- */
- if (c->jheads &&
- lp->lnum == c->jheads[i].wbuf.lnum) {
- printk(KERN_CONT ", jhead %s",
- dbg_jhead(i));
- head = 1;
- }
- }
- if (!head)
- printk(KERN_CONT ", bud of jhead %s",
- dbg_jhead(bud->jhead));
- }
- }
- if (lp->lnum == c->gc_lnum)
- printk(KERN_CONT ", GC LEB");
- printk(KERN_CONT ")\n");
-}
-
-void dbg_dump_lprops(struct ubifs_info *c)
-{
- int lnum, err;
- struct ubifs_lprops lp;
- struct ubifs_lp_stats lst;
-
- printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
- current->pid);
- ubifs_get_lp_stats(c, &lst);
- dbg_dump_lstats(&lst);
-
- for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
- err = ubifs_read_one_lp(c, lnum, &lp);
- if (err)
- ubifs_err("cannot read lprops for LEB %d", lnum);
-
- dbg_dump_lprop(c, &lp);
- }
- printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
- current->pid);
-}
-
-void dbg_dump_lpt_info(struct ubifs_info *c)
-{
- int i;
-
- spin_lock(&dbg_lock);
- printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
- printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz);
- printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz);
- printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz);
- printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz);
- printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz);
- printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt);
- printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght);
- printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt);
- printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt);
- printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
- printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
- printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt);
- printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits);
- printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
- printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
- printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
- printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits);
- printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits);
- printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
- printk(KERN_ERR "\tLPT head is at %d:%d\n",
- c->nhead_lnum, c->nhead_offs);
- printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
- c->ltab_lnum, c->ltab_offs);
- if (c->big_lpt)
- printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
- c->lsave_lnum, c->lsave_offs);
- for (i = 0; i < c->lpt_lebs; i++)
- printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
- "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
- c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
- spin_unlock(&dbg_lock);
-}
-
-void dbg_dump_sleb(const struct ubifs_info *c,
- const struct ubifs_scan_leb *sleb, int offs)
-{
- struct ubifs_scan_node *snod;
-
- printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
- current->pid, sleb->lnum, offs);
-
- list_for_each_entry(snod, &sleb->nodes, list) {
- cond_resched();
- printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
- snod->offs, snod->len);
- dbg_dump_node(c, snod->node);
- }
-}
-
-void dbg_dump_leb(const struct ubifs_info *c, int lnum)
-{
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
- void *buf;
-
- if (dbg_is_tst_rcvry(c))
- return;
-
- printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
- current->pid, lnum);
-
- buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
- if (!buf) {
- ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
- return;
- }
-
- sleb = ubifs_scan(c, lnum, 0, buf, 0);
- if (IS_ERR(sleb)) {
- ubifs_err("scan error %d", (int)PTR_ERR(sleb));
- goto out;
- }
-
- printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
- sleb->nodes_cnt, sleb->endpt);
-
- list_for_each_entry(snod, &sleb->nodes, list) {
- cond_resched();
- printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
- snod->offs, snod->len);
- dbg_dump_node(c, snod->node);
- }
-
- printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
- current->pid, lnum);
- ubifs_scan_destroy(sleb);
-
-out:
- vfree(buf);
- return;
-}
-
-void dbg_dump_znode(const struct ubifs_info *c,
- const struct ubifs_znode *znode)
-{
- int n;
- const struct ubifs_zbranch *zbr;
- char key_buf[DBG_KEY_BUF_LEN];
-
- spin_lock(&dbg_lock);
- if (znode->parent)
- zbr = &znode->parent->zbranch[znode->iip];
- else
- zbr = &c->zroot;
-
- printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
- " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
- zbr->len, znode->parent, znode->iip, znode->level,
- znode->child_cnt, znode->flags);
-
- if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
- spin_unlock(&dbg_lock);
- return;
- }
-
- printk(KERN_ERR "zbranches:\n");
- for (n = 0; n < znode->child_cnt; n++) {
- zbr = &znode->zbranch[n];
- if (znode->level > 0)
- printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
- "%s\n", n, zbr->znode, zbr->lnum,
- zbr->offs, zbr->len,
- dbg_snprintf_key(c, &zbr->key,
- key_buf,
- DBG_KEY_BUF_LEN));
- else
- printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
- "%s\n", n, zbr->znode, zbr->lnum,
- zbr->offs, zbr->len,
- dbg_snprintf_key(c, &zbr->key,
- key_buf,
- DBG_KEY_BUF_LEN));
- }
- spin_unlock(&dbg_lock);
-}
-
-void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
-{
- int i;
-
- printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
- current->pid, cat, heap->cnt);
- for (i = 0; i < heap->cnt; i++) {
- struct ubifs_lprops *lprops = heap->arr[i];
-
- printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
- "flags %d\n", i, lprops->lnum, lprops->hpos,
- lprops->free, lprops->dirty, lprops->flags);
- }
- printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
-}
-
-void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
- struct ubifs_nnode *parent, int iip)
-{
- int i;
-
- printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
- printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
- (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
- printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
- pnode->flags, iip, pnode->level, pnode->num);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- struct ubifs_lprops *lp = &pnode->lprops[i];
-
- printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
- i, lp->free, lp->dirty, lp->flags, lp->lnum);
- }
-}
-
-void dbg_dump_tnc(struct ubifs_info *c)
-{
- struct ubifs_znode *znode;
- int level;
-
- printk(KERN_ERR "\n");
- printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
- znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
- level = znode->level;
- printk(KERN_ERR "== Level %d ==\n", level);
- while (znode) {
- if (level != znode->level) {
- level = znode->level;
- printk(KERN_ERR "== Level %d ==\n", level);
- }
- dbg_dump_znode(c, znode);
- znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
- }
- printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
-}
-
-static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
- void *priv)
-{
- dbg_dump_znode(c, znode);
- return 0;
-}
-
-/**
- * dbg_dump_index - dump the on-flash index.
- * @c: UBIFS file-system description object
- *
- * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
- * which dumps only in-memory znodes and does not read znodes which from flash.
- */
-void dbg_dump_index(struct ubifs_info *c)
-{
- dbg_walk_index(c, NULL, dump_znode, NULL);
-}
-
-/**
- * dbg_save_space_info - save information about flash space.
- * @c: UBIFS file-system description object
- *
- * This function saves information about UBIFS free space, dirty space, etc, in
- * order to check it later.
- */
-void dbg_save_space_info(struct ubifs_info *c)
-{
- struct ubifs_debug_info *d = c->dbg;
- int freeable_cnt;
-
- spin_lock(&c->space_lock);
- memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
- memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
- d->saved_idx_gc_cnt = c->idx_gc_cnt;
-
- /*
- * We use a dirty hack here and zero out @c->freeable_cnt, because it
- * affects the free space calculations, and UBIFS might not know about
- * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
- * only when we read their lprops, and we do this only lazily, upon the
- * need. So at any given point of time @c->freeable_cnt might be not
- * exactly accurate.
- *
- * Just one example about the issue we hit when we did not zero
- * @c->freeable_cnt.
- * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
- * amount of free space in @d->saved_free
- * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
- * information from flash, where we cache LEBs from various
- * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
- * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
- * -> 'ubifs_get_pnode()' -> 'update_cats()'
- * -> 'ubifs_add_to_cat()').
- * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
- * becomes %1.
- * 4. We calculate the amount of free space when the re-mount is
- * finished in 'dbg_check_space_info()' and it does not match
- * @d->saved_free.
- */
- freeable_cnt = c->freeable_cnt;
- c->freeable_cnt = 0;
- d->saved_free = ubifs_get_free_space_nolock(c);
- c->freeable_cnt = freeable_cnt;
- spin_unlock(&c->space_lock);
-}
-
-/**
- * dbg_check_space_info - check flash space information.
- * @c: UBIFS file-system description object
- *
- * This function compares current flash space information with the information
- * which was saved when the 'dbg_save_space_info()' function was called.
- * Returns zero if the information has not changed, and %-EINVAL it it has
- * changed.
- */
-int dbg_check_space_info(struct ubifs_info *c)
-{
- struct ubifs_debug_info *d = c->dbg;
- struct ubifs_lp_stats lst;
- long long free;
- int freeable_cnt;
-
- spin_lock(&c->space_lock);
- freeable_cnt = c->freeable_cnt;
- c->freeable_cnt = 0;
- free = ubifs_get_free_space_nolock(c);
- c->freeable_cnt = freeable_cnt;
- spin_unlock(&c->space_lock);
-
- if (free != d->saved_free) {
- ubifs_err("free space changed from %lld to %lld",
- d->saved_free, free);
- goto out;
- }
-
- return 0;
-
-out:
- ubifs_msg("saved lprops statistics dump");
- dbg_dump_lstats(&d->saved_lst);
- ubifs_msg("saved budgeting info dump");
- dbg_dump_budg(c, &d->saved_bi);
- ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
- ubifs_msg("current lprops statistics dump");
- ubifs_get_lp_stats(c, &lst);
- dbg_dump_lstats(&lst);
- ubifs_msg("current budgeting info dump");
- dbg_dump_budg(c, &c->bi);
- dump_stack();
- return -EINVAL;
-}
-
-/**
- * dbg_check_synced_i_size - check synchronized inode size.
- * @c: UBIFS file-system description object
- * @inode: inode to check
- *
- * If inode is clean, synchronized inode size has to be equivalent to current
- * inode size. This function has to be called only for locked inodes (@i_mutex
- * has to be locked). Returns %0 if synchronized inode size if correct, and
- * %-EINVAL if not.
- */
-int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
-{
- int err = 0;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- if (!dbg_is_chk_gen(c))
- return 0;
- if (!S_ISREG(inode->i_mode))
- return 0;
-
- mutex_lock(&ui->ui_mutex);
- spin_lock(&ui->ui_lock);
- if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
- ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
- "is clean", ui->ui_size, ui->synced_i_size);
- ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
- inode->i_mode, i_size_read(inode));
- dbg_dump_stack();
- err = -EINVAL;
- }
- spin_unlock(&ui->ui_lock);
- mutex_unlock(&ui->ui_mutex);
- return err;
-}
-
-/*
- * dbg_check_dir - check directory inode size and link count.
- * @c: UBIFS file-system description object
- * @dir: the directory to calculate size for
- * @size: the result is returned here
- *
- * This function makes sure that directory size and link count are correct.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- *
- * Note, it is good idea to make sure the @dir->i_mutex is locked before
- * calling this function.
- */
-int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
-{
- unsigned int nlink = 2;
- union ubifs_key key;
- struct ubifs_dent_node *dent, *pdent = NULL;
- struct qstr nm = { .name = NULL };
- loff_t size = UBIFS_INO_NODE_SZ;
-
- if (!dbg_is_chk_gen(c))
- return 0;
-
- if (!S_ISDIR(dir->i_mode))
- return 0;
-
- lowest_dent_key(c, &key, dir->i_ino);
- while (1) {
- int err;
-
- dent = ubifs_tnc_next_ent(c, &key, &nm);
- if (IS_ERR(dent)) {
- err = PTR_ERR(dent);
- if (err == -ENOENT)
- break;
- return err;
- }
-
- nm.name = dent->name;
- nm.len = le16_to_cpu(dent->nlen);
- size += CALC_DENT_SIZE(nm.len);
- if (dent->type == UBIFS_ITYPE_DIR)
- nlink += 1;
- kfree(pdent);
- pdent = dent;
- key_read(c, &dent->key, &key);
- }
- kfree(pdent);
-
- if (i_size_read(dir) != size) {
- ubifs_err("directory inode %lu has size %llu, "
- "but calculated size is %llu", dir->i_ino,
- (unsigned long long)i_size_read(dir),
- (unsigned long long)size);
- dbg_dump_inode(c, dir);
- dump_stack();
- return -EINVAL;
- }
- if (dir->i_nlink != nlink) {
- ubifs_err("directory inode %lu has nlink %u, but calculated "
- "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
- dbg_dump_inode(c, dir);
- dump_stack();
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * dbg_check_key_order - make sure that colliding keys are properly ordered.
- * @c: UBIFS file-system description object
- * @zbr1: first zbranch
- * @zbr2: following zbranch
- *
- * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
- * names of the direntries/xentries which are referred by the keys. This
- * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
- * sure the name of direntry/xentry referred by @zbr1 is less than
- * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
- * and a negative error code in case of failure.
- */
-static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
- struct ubifs_zbranch *zbr2)
-{
- int err, nlen1, nlen2, cmp;
- struct ubifs_dent_node *dent1, *dent2;
- union ubifs_key key;
- char key_buf[DBG_KEY_BUF_LEN];
-
- ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
- dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
- if (!dent1)
- return -ENOMEM;
- dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
- if (!dent2) {
- err = -ENOMEM;
- goto out_free;
- }
-
- err = ubifs_tnc_read_node(c, zbr1, dent1);
- if (err)
- goto out_free;
- err = ubifs_validate_entry(c, dent1);
- if (err)
- goto out_free;
-
- err = ubifs_tnc_read_node(c, zbr2, dent2);
- if (err)
- goto out_free;
- err = ubifs_validate_entry(c, dent2);
- if (err)
- goto out_free;
-
- /* Make sure node keys are the same as in zbranch */
- err = 1;
- key_read(c, &dent1->key, &key);
- if (keys_cmp(c, &zbr1->key, &key)) {
- dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
- zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
- DBG_KEY_BUF_LEN));
- dbg_err("but it should have key %s according to tnc",
- dbg_snprintf_key(c, &zbr1->key, key_buf,
- DBG_KEY_BUF_LEN));
- dbg_dump_node(c, dent1);
- goto out_free;
- }
-
- key_read(c, &dent2->key, &key);
- if (keys_cmp(c, &zbr2->key, &key)) {
- dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
- zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
- DBG_KEY_BUF_LEN));
- dbg_err("but it should have key %s according to tnc",
- dbg_snprintf_key(c, &zbr2->key, key_buf,
- DBG_KEY_BUF_LEN));
- dbg_dump_node(c, dent2);
- goto out_free;
- }
-
- nlen1 = le16_to_cpu(dent1->nlen);
- nlen2 = le16_to_cpu(dent2->nlen);
-
- cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
- if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
- err = 0;
- goto out_free;
- }
- if (cmp == 0 && nlen1 == nlen2)
- dbg_err("2 xent/dent nodes with the same name");
- else
- dbg_err("bad order of colliding key %s",
- dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
-
- ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
- dbg_dump_node(c, dent1);
- ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
- dbg_dump_node(c, dent2);
-
-out_free:
- kfree(dent2);
- kfree(dent1);
- return err;
-}
-
-/**
- * dbg_check_znode - check if znode is all right.
- * @c: UBIFS file-system description object
- * @zbr: zbranch which points to this znode
- *
- * This function makes sure that znode referred to by @zbr is all right.
- * Returns zero if it is, and %-EINVAL if it is not.
- */
-static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
-{
- struct ubifs_znode *znode = zbr->znode;
- struct ubifs_znode *zp = znode->parent;
- int n, err, cmp;
-
- if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
- err = 1;
- goto out;
- }
- if (znode->level < 0) {
- err = 2;
- goto out;
- }
- if (znode->iip < 0 || znode->iip >= c->fanout) {
- err = 3;
- goto out;
- }
-
- if (zbr->len == 0)
- /* Only dirty zbranch may have no on-flash nodes */
- if (!ubifs_zn_dirty(znode)) {
- err = 4;
- goto out;
- }
-
- if (ubifs_zn_dirty(znode)) {
- /*
- * If znode is dirty, its parent has to be dirty as well. The
- * order of the operation is important, so we have to have
- * memory barriers.
- */
- smp_mb();
- if (zp && !ubifs_zn_dirty(zp)) {
- /*
- * The dirty flag is atomic and is cleared outside the
- * TNC mutex, so znode's dirty flag may now have
- * been cleared. The child is always cleared before the
- * parent, so we just need to check again.
- */
- smp_mb();
- if (ubifs_zn_dirty(znode)) {
- err = 5;
- goto out;
- }
- }
- }
-
- if (zp) {
- const union ubifs_key *min, *max;
-
- if (znode->level != zp->level - 1) {
- err = 6;
- goto out;
- }
-
- /* Make sure the 'parent' pointer in our znode is correct */
- err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
- if (!err) {
- /* This zbranch does not exist in the parent */
- err = 7;
- goto out;
- }
-
- if (znode->iip >= zp->child_cnt) {
- err = 8;
- goto out;
- }
-
- if (znode->iip != n) {
- /* This may happen only in case of collisions */
- if (keys_cmp(c, &zp->zbranch[n].key,
- &zp->zbranch[znode->iip].key)) {
- err = 9;
- goto out;
- }
- n = znode->iip;
- }
-
- /*
- * Make sure that the first key in our znode is greater than or
- * equal to the key in the pointing zbranch.
- */
- min = &zbr->key;
- cmp = keys_cmp(c, min, &znode->zbranch[0].key);
- if (cmp == 1) {
- err = 10;
- goto out;
- }
-
- if (n + 1 < zp->child_cnt) {
- max = &zp->zbranch[n + 1].key;
-
- /*
- * Make sure the last key in our znode is less or
- * equivalent than the key in the zbranch which goes
- * after our pointing zbranch.
- */
- cmp = keys_cmp(c, max,
- &znode->zbranch[znode->child_cnt - 1].key);
- if (cmp == -1) {
- err = 11;
- goto out;
- }
- }
- } else {
- /* This may only be root znode */
- if (zbr != &c->zroot) {
- err = 12;
- goto out;
- }
- }
-
- /*
- * Make sure that next key is greater or equivalent then the previous
- * one.
- */
- for (n = 1; n < znode->child_cnt; n++) {
- cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
- &znode->zbranch[n].key);
- if (cmp > 0) {
- err = 13;
- goto out;
- }
- if (cmp == 0) {
- /* This can only be keys with colliding hash */
- if (!is_hash_key(c, &znode->zbranch[n].key)) {
- err = 14;
- goto out;
- }
-
- if (znode->level != 0 || c->replaying)
- continue;
-
- /*
- * Colliding keys should follow binary order of
- * corresponding xentry/dentry names.
- */
- err = dbg_check_key_order(c, &znode->zbranch[n - 1],
- &znode->zbranch[n]);
- if (err < 0)
- return err;
- if (err) {
- err = 15;
- goto out;
- }
- }
- }
-
- for (n = 0; n < znode->child_cnt; n++) {
- if (!znode->zbranch[n].znode &&
- (znode->zbranch[n].lnum == 0 ||
- znode->zbranch[n].len == 0)) {
- err = 16;
- goto out;
- }
-
- if (znode->zbranch[n].lnum != 0 &&
- znode->zbranch[n].len == 0) {
- err = 17;
- goto out;
- }
-
- if (znode->zbranch[n].lnum == 0 &&
- znode->zbranch[n].len != 0) {
- err = 18;
- goto out;
- }
-
- if (znode->zbranch[n].lnum == 0 &&
- znode->zbranch[n].offs != 0) {
- err = 19;
- goto out;
- }
-
- if (znode->level != 0 && znode->zbranch[n].znode)
- if (znode->zbranch[n].znode->parent != znode) {
- err = 20;
- goto out;
- }
- }
-
- return 0;
-
-out:
- ubifs_err("failed, error %d", err);
- ubifs_msg("dump of the znode");
- dbg_dump_znode(c, znode);
- if (zp) {
- ubifs_msg("dump of the parent znode");
- dbg_dump_znode(c, zp);
- }
- dump_stack();
- return -EINVAL;
-}
-
-/**
- * dbg_check_tnc - check TNC tree.
- * @c: UBIFS file-system description object
- * @extra: do extra checks that are possible at start commit
- *
- * This function traverses whole TNC tree and checks every znode. Returns zero
- * if everything is all right and %-EINVAL if something is wrong with TNC.
- */
-int dbg_check_tnc(struct ubifs_info *c, int extra)
-{
- struct ubifs_znode *znode;
- long clean_cnt = 0, dirty_cnt = 0;
- int err, last;
-
- if (!dbg_is_chk_index(c))
- return 0;
-
- ubifs_assert(mutex_is_locked(&c->tnc_mutex));
- if (!c->zroot.znode)
- return 0;
-
- znode = ubifs_tnc_postorder_first(c->zroot.znode);
- while (1) {
- struct ubifs_znode *prev;
- struct ubifs_zbranch *zbr;
-
- if (!znode->parent)
- zbr = &c->zroot;
- else
- zbr = &znode->parent->zbranch[znode->iip];
-
- err = dbg_check_znode(c, zbr);
- if (err)
- return err;
-
- if (extra) {
- if (ubifs_zn_dirty(znode))
- dirty_cnt += 1;
- else
- clean_cnt += 1;
- }
-
- prev = znode;
- znode = ubifs_tnc_postorder_next(znode);
- if (!znode)
- break;
-
- /*
- * If the last key of this znode is equivalent to the first key
- * of the next znode (collision), then check order of the keys.
- */
- last = prev->child_cnt - 1;
- if (prev->level == 0 && znode->level == 0 && !c->replaying &&
- !keys_cmp(c, &prev->zbranch[last].key,
- &znode->zbranch[0].key)) {
- err = dbg_check_key_order(c, &prev->zbranch[last],
- &znode->zbranch[0]);
- if (err < 0)
- return err;
- if (err) {
- ubifs_msg("first znode");
- dbg_dump_znode(c, prev);
- ubifs_msg("second znode");
- dbg_dump_znode(c, znode);
- return -EINVAL;
- }
- }
- }
-
- if (extra) {
- if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
- ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
- atomic_long_read(&c->clean_zn_cnt),
- clean_cnt);
- return -EINVAL;
- }
- if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
- ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
- atomic_long_read(&c->dirty_zn_cnt),
- dirty_cnt);
- return -EINVAL;
- }
- }
-
- return 0;
-}
-
-/**
- * dbg_walk_index - walk the on-flash index.
- * @c: UBIFS file-system description object
- * @leaf_cb: called for each leaf node
- * @znode_cb: called for each indexing node
- * @priv: private data which is passed to callbacks
- *
- * This function walks the UBIFS index and calls the @leaf_cb for each leaf
- * node and @znode_cb for each indexing node. Returns zero in case of success
- * and a negative error code in case of failure.
- *
- * It would be better if this function removed every znode it pulled to into
- * the TNC, so that the behavior more closely matched the non-debugging
- * behavior.
- */
-int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
- dbg_znode_callback znode_cb, void *priv)
-{
- int err;
- struct ubifs_zbranch *zbr;
- struct ubifs_znode *znode, *child;
-
- mutex_lock(&c->tnc_mutex);
- /* If the root indexing node is not in TNC - pull it */
- if (!c->zroot.znode) {
- c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
- if (IS_ERR(c->zroot.znode)) {
- err = PTR_ERR(c->zroot.znode);
- c->zroot.znode = NULL;
- goto out_unlock;
- }
- }
-
- /*
- * We are going to traverse the indexing tree in the postorder manner.
- * Go down and find the leftmost indexing node where we are going to
- * start from.
- */
- znode = c->zroot.znode;
- while (znode->level > 0) {
- zbr = &znode->zbranch[0];
- child = zbr->znode;
- if (!child) {
- child = ubifs_load_znode(c, zbr, znode, 0);
- if (IS_ERR(child)) {
- err = PTR_ERR(child);
- goto out_unlock;
- }
- zbr->znode = child;
- }
-
- znode = child;
- }
-
- /* Iterate over all indexing nodes */
- while (1) {
- int idx;
-
- cond_resched();
-
- if (znode_cb) {
- err = znode_cb(c, znode, priv);
- if (err) {
- ubifs_err("znode checking function returned "
- "error %d", err);
- dbg_dump_znode(c, znode);
- goto out_dump;
- }
- }
- if (leaf_cb && znode->level == 0) {
- for (idx = 0; idx < znode->child_cnt; idx++) {
- zbr = &znode->zbranch[idx];
- err = leaf_cb(c, zbr, priv);
- if (err) {
- ubifs_err("leaf checking function "
- "returned error %d, for leaf "
- "at LEB %d:%d",
- err, zbr->lnum, zbr->offs);
- goto out_dump;
- }
- }
- }
-
- if (!znode->parent)
- break;
-
- idx = znode->iip + 1;
- znode = znode->parent;
- if (idx < znode->child_cnt) {
- /* Switch to the next index in the parent */
- zbr = &znode->zbranch[idx];
- child = zbr->znode;
- if (!child) {
- child = ubifs_load_znode(c, zbr, znode, idx);
- if (IS_ERR(child)) {
- err = PTR_ERR(child);
- goto out_unlock;
- }
- zbr->znode = child;
- }
- znode = child;
- } else
- /*
- * This is the last child, switch to the parent and
- * continue.
- */
- continue;
-
- /* Go to the lowest leftmost znode in the new sub-tree */
- while (znode->level > 0) {
- zbr = &znode->zbranch[0];
- child = zbr->znode;
- if (!child) {
- child = ubifs_load_znode(c, zbr, znode, 0);
- if (IS_ERR(child)) {
- err = PTR_ERR(child);
- goto out_unlock;
- }
- zbr->znode = child;
- }
- znode = child;
- }
- }
-
- mutex_unlock(&c->tnc_mutex);
- return 0;
-
-out_dump:
- if (znode->parent)
- zbr = &znode->parent->zbranch[znode->iip];
- else
- zbr = &c->zroot;
- ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
- dbg_dump_znode(c, znode);
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * add_size - add znode size to partially calculated index size.
- * @c: UBIFS file-system description object
- * @znode: znode to add size for
- * @priv: partially calculated index size
- *
- * This is a helper function for 'dbg_check_idx_size()' which is called for
- * every indexing node and adds its size to the 'long long' variable pointed to
- * by @priv.
- */
-static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
-{
- long long *idx_size = priv;
- int add;
-
- add = ubifs_idx_node_sz(c, znode->child_cnt);
- add = ALIGN(add, 8);
- *idx_size += add;
- return 0;
-}
-
-/**
- * dbg_check_idx_size - check index size.
- * @c: UBIFS file-system description object
- * @idx_size: size to check
- *
- * This function walks the UBIFS index, calculates its size and checks that the
- * size is equivalent to @idx_size. Returns zero in case of success and a
- * negative error code in case of failure.
- */
-int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
-{
- int err;
- long long calc = 0;
-
- if (!dbg_is_chk_index(c))
- return 0;
-
- err = dbg_walk_index(c, NULL, add_size, &calc);
- if (err) {
- ubifs_err("error %d while walking the index", err);
- return err;
- }
-
- if (calc != idx_size) {
- ubifs_err("index size check failed: calculated size is %lld, "
- "should be %lld", calc, idx_size);
- dump_stack();
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * struct fsck_inode - information about an inode used when checking the file-system.
- * @rb: link in the RB-tree of inodes
- * @inum: inode number
- * @mode: inode type, permissions, etc
- * @nlink: inode link count
- * @xattr_cnt: count of extended attributes
- * @references: how many directory/xattr entries refer this inode (calculated
- * while walking the index)
- * @calc_cnt: for directory inode count of child directories
- * @size: inode size (read from on-flash inode)
- * @xattr_sz: summary size of all extended attributes (read from on-flash
- * inode)
- * @calc_sz: for directories calculated directory size
- * @calc_xcnt: count of extended attributes
- * @calc_xsz: calculated summary size of all extended attributes
- * @xattr_nms: sum of lengths of all extended attribute names belonging to this
- * inode (read from on-flash inode)
- * @calc_xnms: calculated sum of lengths of all extended attribute names
- */
-struct fsck_inode {
- struct rb_node rb;
- ino_t inum;
- umode_t mode;
- unsigned int nlink;
- unsigned int xattr_cnt;
- int references;
- int calc_cnt;
- long long size;
- unsigned int xattr_sz;
- long long calc_sz;
- long long calc_xcnt;
- long long calc_xsz;
- unsigned int xattr_nms;
- long long calc_xnms;
-};
-
-/**
- * struct fsck_data - private FS checking information.
- * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
- */
-struct fsck_data {
- struct rb_root inodes;
-};
-
-/**
- * add_inode - add inode information to RB-tree of inodes.
- * @c: UBIFS file-system description object
- * @fsckd: FS checking information
- * @ino: raw UBIFS inode to add
- *
- * This is a helper function for 'check_leaf()' which adds information about
- * inode @ino to the RB-tree of inodes. Returns inode information pointer in
- * case of success and a negative error code in case of failure.
- */
-static struct fsck_inode *add_inode(struct ubifs_info *c,
- struct fsck_data *fsckd,
- struct ubifs_ino_node *ino)
-{
- struct rb_node **p, *parent = NULL;
- struct fsck_inode *fscki;
- ino_t inum = key_inum_flash(c, &ino->key);
- struct inode *inode;
- struct ubifs_inode *ui;
-
- p = &fsckd->inodes.rb_node;
- while (*p) {
- parent = *p;
- fscki = rb_entry(parent, struct fsck_inode, rb);
- if (inum < fscki->inum)
- p = &(*p)->rb_left;
- else if (inum > fscki->inum)
- p = &(*p)->rb_right;
- else
- return fscki;
- }
-
- if (inum > c->highest_inum) {
- ubifs_err("too high inode number, max. is %lu",
- (unsigned long)c->highest_inum);
- return ERR_PTR(-EINVAL);
- }
-
- fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
- if (!fscki)
- return ERR_PTR(-ENOMEM);
-
- inode = ilookup(c->vfs_sb, inum);
-
- fscki->inum = inum;
- /*
- * If the inode is present in the VFS inode cache, use it instead of
- * the on-flash inode which might be out-of-date. E.g., the size might
- * be out-of-date. If we do not do this, the following may happen, for
- * example:
- * 1. A power cut happens
- * 2. We mount the file-system R/O, the replay process fixes up the
- * inode size in the VFS cache, but on on-flash.
- * 3. 'check_leaf()' fails because it hits a data node beyond inode
- * size.
- */
- if (!inode) {
- fscki->nlink = le32_to_cpu(ino->nlink);
- fscki->size = le64_to_cpu(ino->size);
- fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
- fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
- fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
- fscki->mode = le32_to_cpu(ino->mode);
- } else {
- ui = ubifs_inode(inode);
- fscki->nlink = inode->i_nlink;
- fscki->size = inode->i_size;
- fscki->xattr_cnt = ui->xattr_cnt;
- fscki->xattr_sz = ui->xattr_size;
- fscki->xattr_nms = ui->xattr_names;
- fscki->mode = inode->i_mode;
- iput(inode);
- }
-
- if (S_ISDIR(fscki->mode)) {
- fscki->calc_sz = UBIFS_INO_NODE_SZ;
- fscki->calc_cnt = 2;
- }
-
- rb_link_node(&fscki->rb, parent, p);
- rb_insert_color(&fscki->rb, &fsckd->inodes);
-
- return fscki;
-}
-
-/**
- * search_inode - search inode in the RB-tree of inodes.
- * @fsckd: FS checking information
- * @inum: inode number to search
- *
- * This is a helper function for 'check_leaf()' which searches inode @inum in
- * the RB-tree of inodes and returns an inode information pointer or %NULL if
- * the inode was not found.
- */
-static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
-{
- struct rb_node *p;
- struct fsck_inode *fscki;
-
- p = fsckd->inodes.rb_node;
- while (p) {
- fscki = rb_entry(p, struct fsck_inode, rb);
- if (inum < fscki->inum)
- p = p->rb_left;
- else if (inum > fscki->inum)
- p = p->rb_right;
- else
- return fscki;
- }
- return NULL;
-}
-
-/**
- * read_add_inode - read inode node and add it to RB-tree of inodes.
- * @c: UBIFS file-system description object
- * @fsckd: FS checking information
- * @inum: inode number to read
- *
- * This is a helper function for 'check_leaf()' which finds inode node @inum in
- * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
- * information pointer in case of success and a negative error code in case of
- * failure.
- */
-static struct fsck_inode *read_add_inode(struct ubifs_info *c,
- struct fsck_data *fsckd, ino_t inum)
-{
- int n, err;
- union ubifs_key key;
- struct ubifs_znode *znode;
- struct ubifs_zbranch *zbr;
- struct ubifs_ino_node *ino;
- struct fsck_inode *fscki;
-
- fscki = search_inode(fsckd, inum);
- if (fscki)
- return fscki;
-
- ino_key_init(c, &key, inum);
- err = ubifs_lookup_level0(c, &key, &znode, &n);
- if (!err) {
- ubifs_err("inode %lu not found in index", (unsigned long)inum);
- return ERR_PTR(-ENOENT);
- } else if (err < 0) {
- ubifs_err("error %d while looking up inode %lu",
- err, (unsigned long)inum);
- return ERR_PTR(err);
- }
-
- zbr = &znode->zbranch[n];
- if (zbr->len < UBIFS_INO_NODE_SZ) {
- ubifs_err("bad node %lu node length %d",
- (unsigned long)inum, zbr->len);
- return ERR_PTR(-EINVAL);
- }
-
- ino = kmalloc(zbr->len, GFP_NOFS);
- if (!ino)
- return ERR_PTR(-ENOMEM);
-
- err = ubifs_tnc_read_node(c, zbr, ino);
- if (err) {
- ubifs_err("cannot read inode node at LEB %d:%d, error %d",
- zbr->lnum, zbr->offs, err);
- kfree(ino);
- return ERR_PTR(err);
- }
-
- fscki = add_inode(c, fsckd, ino);
- kfree(ino);
- if (IS_ERR(fscki)) {
- ubifs_err("error %ld while adding inode %lu node",
- PTR_ERR(fscki), (unsigned long)inum);
- return fscki;
- }
-
- return fscki;
-}
-
-/**
- * check_leaf - check leaf node.
- * @c: UBIFS file-system description object
- * @zbr: zbranch of the leaf node to check
- * @priv: FS checking information
- *
- * This is a helper function for 'dbg_check_filesystem()' which is called for
- * every single leaf node while walking the indexing tree. It checks that the
- * leaf node referred from the indexing tree exists, has correct CRC, and does
- * some other basic validation. This function is also responsible for building
- * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
- * calculates reference count, size, etc for each inode in order to later
- * compare them to the information stored inside the inodes and detect possible
- * inconsistencies. Returns zero in case of success and a negative error code
- * in case of failure.
- */
-static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- void *priv)
-{
- ino_t inum;
- void *node;
- struct ubifs_ch *ch;
- int err, type = key_type(c, &zbr->key);
- struct fsck_inode *fscki;
-
- if (zbr->len < UBIFS_CH_SZ) {
- ubifs_err("bad leaf length %d (LEB %d:%d)",
- zbr->len, zbr->lnum, zbr->offs);
- return -EINVAL;
- }
-
- node = kmalloc(zbr->len, GFP_NOFS);
- if (!node)
- return -ENOMEM;
-
- err = ubifs_tnc_read_node(c, zbr, node);
- if (err) {
- ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
- zbr->lnum, zbr->offs, err);
- goto out_free;
- }
-
- /* If this is an inode node, add it to RB-tree of inodes */
- if (type == UBIFS_INO_KEY) {
- fscki = add_inode(c, priv, node);
- if (IS_ERR(fscki)) {
- err = PTR_ERR(fscki);
- ubifs_err("error %d while adding inode node", err);
- goto out_dump;
- }
- goto out;
- }
-
- if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
- type != UBIFS_DATA_KEY) {
- ubifs_err("unexpected node type %d at LEB %d:%d",
- type, zbr->lnum, zbr->offs);
- err = -EINVAL;
- goto out_free;
- }
-
- ch = node;
- if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
- ubifs_err("too high sequence number, max. is %llu",
- c->max_sqnum);
- err = -EINVAL;
- goto out_dump;
- }
-
- if (type == UBIFS_DATA_KEY) {
- long long blk_offs;
- struct ubifs_data_node *dn = node;
-
- /*
- * Search the inode node this data node belongs to and insert
- * it to the RB-tree of inodes.
- */
- inum = key_inum_flash(c, &dn->key);
- fscki = read_add_inode(c, priv, inum);
- if (IS_ERR(fscki)) {
- err = PTR_ERR(fscki);
- ubifs_err("error %d while processing data node and "
- "trying to find inode node %lu",
- err, (unsigned long)inum);
- goto out_dump;
- }
-
- /* Make sure the data node is within inode size */
- blk_offs = key_block_flash(c, &dn->key);
- blk_offs <<= UBIFS_BLOCK_SHIFT;
- blk_offs += le32_to_cpu(dn->size);
- if (blk_offs > fscki->size) {
- ubifs_err("data node at LEB %d:%d is not within inode "
- "size %lld", zbr->lnum, zbr->offs,
- fscki->size);
- err = -EINVAL;
- goto out_dump;
- }
- } else {
- int nlen;
- struct ubifs_dent_node *dent = node;
- struct fsck_inode *fscki1;
-
- err = ubifs_validate_entry(c, dent);
- if (err)
- goto out_dump;
-
- /*
- * Search the inode node this entry refers to and the parent
- * inode node and insert them to the RB-tree of inodes.
- */
- inum = le64_to_cpu(dent->inum);
- fscki = read_add_inode(c, priv, inum);
- if (IS_ERR(fscki)) {
- err = PTR_ERR(fscki);
- ubifs_err("error %d while processing entry node and "
- "trying to find inode node %lu",
- err, (unsigned long)inum);
- goto out_dump;
- }
-
- /* Count how many direntries or xentries refers this inode */
- fscki->references += 1;
-
- inum = key_inum_flash(c, &dent->key);
- fscki1 = read_add_inode(c, priv, inum);
- if (IS_ERR(fscki1)) {
- err = PTR_ERR(fscki1);
- ubifs_err("error %d while processing entry node and "
- "trying to find parent inode node %lu",
- err, (unsigned long)inum);
- goto out_dump;
- }
-
- nlen = le16_to_cpu(dent->nlen);
- if (type == UBIFS_XENT_KEY) {
- fscki1->calc_xcnt += 1;
- fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
- fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
- fscki1->calc_xnms += nlen;
- } else {
- fscki1->calc_sz += CALC_DENT_SIZE(nlen);
- if (dent->type == UBIFS_ITYPE_DIR)
- fscki1->calc_cnt += 1;
- }
- }
-
-out:
- kfree(node);
- return 0;
-
-out_dump:
- ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
- dbg_dump_node(c, node);
-out_free:
- kfree(node);
- return err;
-}
-
-/**
- * free_inodes - free RB-tree of inodes.
- * @fsckd: FS checking information
- */
-static void free_inodes(struct fsck_data *fsckd)
-{
- struct rb_node *this = fsckd->inodes.rb_node;
- struct fsck_inode *fscki;
-
- while (this) {
- if (this->rb_left)
- this = this->rb_left;
- else if (this->rb_right)
- this = this->rb_right;
- else {
- fscki = rb_entry(this, struct fsck_inode, rb);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &fscki->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
- kfree(fscki);
- }
- }
-}
-
-/**
- * check_inodes - checks all inodes.
- * @c: UBIFS file-system description object
- * @fsckd: FS checking information
- *
- * This is a helper function for 'dbg_check_filesystem()' which walks the
- * RB-tree of inodes after the index scan has been finished, and checks that
- * inode nlink, size, etc are correct. Returns zero if inodes are fine,
- * %-EINVAL if not, and a negative error code in case of failure.
- */
-static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
-{
- int n, err;
- union ubifs_key key;
- struct ubifs_znode *znode;
- struct ubifs_zbranch *zbr;
- struct ubifs_ino_node *ino;
- struct fsck_inode *fscki;
- struct rb_node *this = rb_first(&fsckd->inodes);
-
- while (this) {
- fscki = rb_entry(this, struct fsck_inode, rb);
- this = rb_next(this);
-
- if (S_ISDIR(fscki->mode)) {
- /*
- * Directories have to have exactly one reference (they
- * cannot have hardlinks), although root inode is an
- * exception.
- */
- if (fscki->inum != UBIFS_ROOT_INO &&
- fscki->references != 1) {
- ubifs_err("directory inode %lu has %d "
- "direntries which refer it, but "
- "should be 1",
- (unsigned long)fscki->inum,
- fscki->references);
- goto out_dump;
- }
- if (fscki->inum == UBIFS_ROOT_INO &&
- fscki->references != 0) {
- ubifs_err("root inode %lu has non-zero (%d) "
- "direntries which refer it",
- (unsigned long)fscki->inum,
- fscki->references);
- goto out_dump;
- }
- if (fscki->calc_sz != fscki->size) {
- ubifs_err("directory inode %lu size is %lld, "
- "but calculated size is %lld",
- (unsigned long)fscki->inum,
- fscki->size, fscki->calc_sz);
- goto out_dump;
- }
- if (fscki->calc_cnt != fscki->nlink) {
- ubifs_err("directory inode %lu nlink is %d, "
- "but calculated nlink is %d",
- (unsigned long)fscki->inum,
- fscki->nlink, fscki->calc_cnt);
- goto out_dump;
- }
- } else {
- if (fscki->references != fscki->nlink) {
- ubifs_err("inode %lu nlink is %d, but "
- "calculated nlink is %d",
- (unsigned long)fscki->inum,
- fscki->nlink, fscki->references);
- goto out_dump;
- }
- }
- if (fscki->xattr_sz != fscki->calc_xsz) {
- ubifs_err("inode %lu has xattr size %u, but "
- "calculated size is %lld",
- (unsigned long)fscki->inum, fscki->xattr_sz,
- fscki->calc_xsz);
- goto out_dump;
- }
- if (fscki->xattr_cnt != fscki->calc_xcnt) {
- ubifs_err("inode %lu has %u xattrs, but "
- "calculated count is %lld",
- (unsigned long)fscki->inum,
- fscki->xattr_cnt, fscki->calc_xcnt);
- goto out_dump;
- }
- if (fscki->xattr_nms != fscki->calc_xnms) {
- ubifs_err("inode %lu has xattr names' size %u, but "
- "calculated names' size is %lld",
- (unsigned long)fscki->inum, fscki->xattr_nms,
- fscki->calc_xnms);
- goto out_dump;
- }
- }
-
- return 0;
-
-out_dump:
- /* Read the bad inode and dump it */
- ino_key_init(c, &key, fscki->inum);
- err = ubifs_lookup_level0(c, &key, &znode, &n);
- if (!err) {
- ubifs_err("inode %lu not found in index",
- (unsigned long)fscki->inum);
- return -ENOENT;
- } else if (err < 0) {
- ubifs_err("error %d while looking up inode %lu",
- err, (unsigned long)fscki->inum);
- return err;
- }
-
- zbr = &znode->zbranch[n];
- ino = kmalloc(zbr->len, GFP_NOFS);
- if (!ino)
- return -ENOMEM;
-
- err = ubifs_tnc_read_node(c, zbr, ino);
- if (err) {
- ubifs_err("cannot read inode node at LEB %d:%d, error %d",
- zbr->lnum, zbr->offs, err);
- kfree(ino);
- return err;
- }
-
- ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
- (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
- dbg_dump_node(c, ino);
- kfree(ino);
- return -EINVAL;
-}
-
-/**
- * dbg_check_filesystem - check the file-system.
- * @c: UBIFS file-system description object
- *
- * This function checks the file system, namely:
- * o makes sure that all leaf nodes exist and their CRCs are correct;
- * o makes sure inode nlink, size, xattr size/count are correct (for all
- * inodes).
- *
- * The function reads whole indexing tree and all nodes, so it is pretty
- * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
- * not, and a negative error code in case of failure.
- */
-int dbg_check_filesystem(struct ubifs_info *c)
-{
- int err;
- struct fsck_data fsckd;
-
- if (!dbg_is_chk_fs(c))
- return 0;
-
- fsckd.inodes = RB_ROOT;
- err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
- if (err)
- goto out_free;
-
- err = check_inodes(c, &fsckd);
- if (err)
- goto out_free;
-
- free_inodes(&fsckd);
- return 0;
-
-out_free:
- ubifs_err("file-system check failed with error %d", err);
- dump_stack();
- free_inodes(&fsckd);
- return err;
-}
-
-/**
- * dbg_check_data_nodes_order - check that list of data nodes is sorted.
- * @c: UBIFS file-system description object
- * @head: the list of nodes ('struct ubifs_scan_node' objects)
- *
- * This function returns zero if the list of data nodes is sorted correctly,
- * and %-EINVAL if not.
- */
-int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
-{
- struct list_head *cur;
- struct ubifs_scan_node *sa, *sb;
-
- if (!dbg_is_chk_gen(c))
- return 0;
-
- for (cur = head->next; cur->next != head; cur = cur->next) {
- ino_t inuma, inumb;
- uint32_t blka, blkb;
-
- cond_resched();
- sa = container_of(cur, struct ubifs_scan_node, list);
- sb = container_of(cur->next, struct ubifs_scan_node, list);
-
- if (sa->type != UBIFS_DATA_NODE) {
- ubifs_err("bad node type %d", sa->type);
- dbg_dump_node(c, sa->node);
- return -EINVAL;
- }
- if (sb->type != UBIFS_DATA_NODE) {
- ubifs_err("bad node type %d", sb->type);
- dbg_dump_node(c, sb->node);
- return -EINVAL;
- }
-
- inuma = key_inum(c, &sa->key);
- inumb = key_inum(c, &sb->key);
-
- if (inuma < inumb)
- continue;
- if (inuma > inumb) {
- ubifs_err("larger inum %lu goes before inum %lu",
- (unsigned long)inuma, (unsigned long)inumb);
- goto error_dump;
- }
-
- blka = key_block(c, &sa->key);
- blkb = key_block(c, &sb->key);
-
- if (blka > blkb) {
- ubifs_err("larger block %u goes before %u", blka, blkb);
- goto error_dump;
- }
- if (blka == blkb) {
- ubifs_err("two data nodes for the same block");
- goto error_dump;
- }
- }
-
- return 0;
-
-error_dump:
- dbg_dump_node(c, sa->node);
- dbg_dump_node(c, sb->node);
- return -EINVAL;
-}
-
-/**
- * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
- * @c: UBIFS file-system description object
- * @head: the list of nodes ('struct ubifs_scan_node' objects)
- *
- * This function returns zero if the list of non-data nodes is sorted correctly,
- * and %-EINVAL if not.
- */
-int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
-{
- struct list_head *cur;
- struct ubifs_scan_node *sa, *sb;
-
- if (!dbg_is_chk_gen(c))
- return 0;
-
- for (cur = head->next; cur->next != head; cur = cur->next) {
- ino_t inuma, inumb;
- uint32_t hasha, hashb;
-
- cond_resched();
- sa = container_of(cur, struct ubifs_scan_node, list);
- sb = container_of(cur->next, struct ubifs_scan_node, list);
-
- if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
- sa->type != UBIFS_XENT_NODE) {
- ubifs_err("bad node type %d", sa->type);
- dbg_dump_node(c, sa->node);
- return -EINVAL;
- }
- if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
- sa->type != UBIFS_XENT_NODE) {
- ubifs_err("bad node type %d", sb->type);
- dbg_dump_node(c, sb->node);
- return -EINVAL;
- }
-
- if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
- ubifs_err("non-inode node goes before inode node");
- goto error_dump;
- }
-
- if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
- continue;
-
- if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
- /* Inode nodes are sorted in descending size order */
- if (sa->len < sb->len) {
- ubifs_err("smaller inode node goes first");
- goto error_dump;
- }
- continue;
- }
-
- /*
- * This is either a dentry or xentry, which should be sorted in
- * ascending (parent ino, hash) order.
- */
- inuma = key_inum(c, &sa->key);
- inumb = key_inum(c, &sb->key);
-
- if (inuma < inumb)
- continue;
- if (inuma > inumb) {
- ubifs_err("larger inum %lu goes before inum %lu",
- (unsigned long)inuma, (unsigned long)inumb);
- goto error_dump;
- }
-
- hasha = key_block(c, &sa->key);
- hashb = key_block(c, &sb->key);
-
- if (hasha > hashb) {
- ubifs_err("larger hash %u goes before %u",
- hasha, hashb);
- goto error_dump;
- }
- }
-
- return 0;
-
-error_dump:
- ubifs_msg("dumping first node");
- dbg_dump_node(c, sa->node);
- ubifs_msg("dumping second node");
- dbg_dump_node(c, sb->node);
- return -EINVAL;
- return 0;
-}
-
-static inline int chance(unsigned int n, unsigned int out_of)
-{
- return !!((random32() % out_of) + 1 <= n);
-
-}
-
-static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
-{
- struct ubifs_debug_info *d = c->dbg;
-
- ubifs_assert(dbg_is_tst_rcvry(c));
-
- if (!d->pc_cnt) {
- /* First call - decide delay to the power cut */
- if (chance(1, 2)) {
- unsigned long delay;
-
- if (chance(1, 2)) {
- d->pc_delay = 1;
- /* Fail withing 1 minute */
- delay = random32() % 60000;
- d->pc_timeout = jiffies;
- d->pc_timeout += msecs_to_jiffies(delay);
- ubifs_warn("failing after %lums", delay);
- } else {
- d->pc_delay = 2;
- delay = random32() % 10000;
- /* Fail within 10000 operations */
- d->pc_cnt_max = delay;
- ubifs_warn("failing after %lu calls", delay);
- }
- }
-
- d->pc_cnt += 1;
- }
-
- /* Determine if failure delay has expired */
- if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
- return 0;
- if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
- return 0;
-
- if (lnum == UBIFS_SB_LNUM) {
- if (write && chance(1, 2))
- return 0;
- if (chance(19, 20))
- return 0;
- ubifs_warn("failing in super block LEB %d", lnum);
- } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
- if (chance(19, 20))
- return 0;
- ubifs_warn("failing in master LEB %d", lnum);
- } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
- if (write && chance(99, 100))
- return 0;
- if (chance(399, 400))
- return 0;
- ubifs_warn("failing in log LEB %d", lnum);
- } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
- if (write && chance(7, 8))
- return 0;
- if (chance(19, 20))
- return 0;
- ubifs_warn("failing in LPT LEB %d", lnum);
- } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
- if (write && chance(1, 2))
- return 0;
- if (chance(9, 10))
- return 0;
- ubifs_warn("failing in orphan LEB %d", lnum);
- } else if (lnum == c->ihead_lnum) {
- if (chance(99, 100))
- return 0;
- ubifs_warn("failing in index head LEB %d", lnum);
- } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
- if (chance(9, 10))
- return 0;
- ubifs_warn("failing in GC head LEB %d", lnum);
- } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
- !ubifs_search_bud(c, lnum)) {
- if (chance(19, 20))
- return 0;
- ubifs_warn("failing in non-bud LEB %d", lnum);
- } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
- c->cmt_state == COMMIT_RUNNING_REQUIRED) {
- if (chance(999, 1000))
- return 0;
- ubifs_warn("failing in bud LEB %d commit running", lnum);
- } else {
- if (chance(9999, 10000))
- return 0;
- ubifs_warn("failing in bud LEB %d commit not running", lnum);
- }
-
- d->pc_happened = 1;
- ubifs_warn("========== Power cut emulated ==========");
- dump_stack();
- return 1;
-}
-
-static void cut_data(const void *buf, unsigned int len)
-{
- unsigned int from, to, i, ffs = chance(1, 2);
- unsigned char *p = (void *)buf;
-
- from = random32() % (len + 1);
- if (chance(1, 2))
- to = random32() % (len - from + 1);
- else
- to = len;
-
- if (from < to)
- ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
- ffs ? "0xFFs" : "random data");
-
- if (ffs)
- for (i = from; i < to; i++)
- p[i] = 0xFF;
- else
- for (i = from; i < to; i++)
- p[i] = random32() % 0x100;
-}
-
-int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
- int offs, int len, int dtype)
-{
- int err, failing;
-
- if (c->dbg->pc_happened)
- return -EROFS;
-
- failing = power_cut_emulated(c, lnum, 1);
- if (failing)
- cut_data(buf, len);
- err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
- if (err)
- return err;
- if (failing)
- return -EROFS;
- return 0;
-}
-
-int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
- int len, int dtype)
-{
- int err;
-
- if (c->dbg->pc_happened)
- return -EROFS;
- if (power_cut_emulated(c, lnum, 1))
- return -EROFS;
- err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
- if (err)
- return err;
- if (power_cut_emulated(c, lnum, 1))
- return -EROFS;
- return 0;
-}
-
-int dbg_leb_unmap(struct ubifs_info *c, int lnum)
-{
- int err;
-
- if (c->dbg->pc_happened)
- return -EROFS;
- if (power_cut_emulated(c, lnum, 0))
- return -EROFS;
- err = ubi_leb_unmap(c->ubi, lnum);
- if (err)
- return err;
- if (power_cut_emulated(c, lnum, 0))
- return -EROFS;
- return 0;
-}
-
-int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
-{
- int err;
-
- if (c->dbg->pc_happened)
- return -EROFS;
- if (power_cut_emulated(c, lnum, 0))
- return -EROFS;
- err = ubi_leb_map(c->ubi, lnum, dtype);
- if (err)
- return err;
- if (power_cut_emulated(c, lnum, 0))
- return -EROFS;
- return 0;
-}
-
-/*
- * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
- * contain the stuff specific to particular file-system mounts.
- */
-static struct dentry *dfs_rootdir;
-
-static int dfs_file_open(struct inode *inode, struct file *file)
-{
- file->private_data = inode->i_private;
- return nonseekable_open(inode, file);
-}
-
-/**
- * provide_user_output - provide output to the user reading a debugfs file.
- * @val: boolean value for the answer
- * @u: the buffer to store the answer at
- * @count: size of the buffer
- * @ppos: position in the @u output buffer
- *
- * This is a simple helper function which stores @val boolean value in the user
- * buffer when the user reads one of UBIFS debugfs files. Returns amount of
- * bytes written to @u in case of success and a negative error code in case of
- * failure.
- */
-static int provide_user_output(int val, char __user *u, size_t count,
- loff_t *ppos)
-{
- char buf[3];
-
- if (val)
- buf[0] = '1';
- else
- buf[0] = '0';
- buf[1] = '\n';
- buf[2] = 0x00;
-
- return simple_read_from_buffer(u, count, ppos, buf, 2);
-}
-
-static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
- loff_t *ppos)
-{
- struct dentry *dent = file->f_path.dentry;
- struct ubifs_info *c = file->private_data;
- struct ubifs_debug_info *d = c->dbg;
- int val;
-
- if (dent == d->dfs_chk_gen)
- val = d->chk_gen;
- else if (dent == d->dfs_chk_index)
- val = d->chk_index;
- else if (dent == d->dfs_chk_orph)
- val = d->chk_orph;
- else if (dent == d->dfs_chk_lprops)
- val = d->chk_lprops;
- else if (dent == d->dfs_chk_fs)
- val = d->chk_fs;
- else if (dent == d->dfs_tst_rcvry)
- val = d->tst_rcvry;
- else
- return -EINVAL;
-
- return provide_user_output(val, u, count, ppos);
-}
-
-/**
- * interpret_user_input - interpret user debugfs file input.
- * @u: user-provided buffer with the input
- * @count: buffer size
- *
- * This is a helper function which interpret user input to a boolean UBIFS
- * debugfs file. Returns %0 or %1 in case of success and a negative error code
- * in case of failure.
- */
-static int interpret_user_input(const char __user *u, size_t count)
-{
- size_t buf_size;
- char buf[8];
-
- buf_size = min_t(size_t, count, (sizeof(buf) - 1));
- if (copy_from_user(buf, u, buf_size))
- return -EFAULT;
-
- if (buf[0] == '1')
- return 1;
- else if (buf[0] == '0')
- return 0;
-
- return -EINVAL;
-}
-
-static ssize_t dfs_file_write(struct file *file, const char __user *u,
- size_t count, loff_t *ppos)
-{
- struct ubifs_info *c = file->private_data;
- struct ubifs_debug_info *d = c->dbg;
- struct dentry *dent = file->f_path.dentry;
- int val;
-
- /*
- * TODO: this is racy - the file-system might have already been
- * unmounted and we'd oops in this case. The plan is to fix it with
- * help of 'iterate_supers_type()' which we should have in v3.0: when
- * a debugfs opened, we rember FS's UUID in file->private_data. Then
- * whenever we access the FS via a debugfs file, we iterate all UBIFS
- * superblocks and fine the one with the same UUID, and take the
- * locking right.
- *
- * The other way to go suggested by Al Viro is to create a separate
- * 'ubifs-debug' file-system instead.
- */
- if (file->f_path.dentry == d->dfs_dump_lprops) {
- dbg_dump_lprops(c);
- return count;
- }
- if (file->f_path.dentry == d->dfs_dump_budg) {
- dbg_dump_budg(c, &c->bi);
- return count;
- }
- if (file->f_path.dentry == d->dfs_dump_tnc) {
- mutex_lock(&c->tnc_mutex);
- dbg_dump_tnc(c);
- mutex_unlock(&c->tnc_mutex);
- return count;
- }
-
- val = interpret_user_input(u, count);
- if (val < 0)
- return val;
-
- if (dent == d->dfs_chk_gen)
- d->chk_gen = val;
- else if (dent == d->dfs_chk_index)
- d->chk_index = val;
- else if (dent == d->dfs_chk_orph)
- d->chk_orph = val;
- else if (dent == d->dfs_chk_lprops)
- d->chk_lprops = val;
- else if (dent == d->dfs_chk_fs)
- d->chk_fs = val;
- else if (dent == d->dfs_tst_rcvry)
- d->tst_rcvry = val;
- else
- return -EINVAL;
-
- return count;
-}
-
-static const struct file_operations dfs_fops = {
- .open = dfs_file_open,
- .read = dfs_file_read,
- .write = dfs_file_write,
- .owner = THIS_MODULE,
- .llseek = no_llseek,
-};
-
-/**
- * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
- * @c: UBIFS file-system description object
- *
- * This function creates all debugfs files for this instance of UBIFS. Returns
- * zero in case of success and a negative error code in case of failure.
- *
- * Note, the only reason we have not merged this function with the
- * 'ubifs_debugging_init()' function is because it is better to initialize
- * debugfs interfaces at the very end of the mount process, and remove them at
- * the very beginning of the mount process.
- */
-int dbg_debugfs_init_fs(struct ubifs_info *c)
-{
- int err, n;
- const char *fname;
- struct dentry *dent;
- struct ubifs_debug_info *d = c->dbg;
-
- n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
- c->vi.ubi_num, c->vi.vol_id);
- if (n == UBIFS_DFS_DIR_LEN) {
- /* The array size is too small */
- fname = UBIFS_DFS_DIR_NAME;
- dent = ERR_PTR(-EINVAL);
- goto out;
- }
-
- fname = d->dfs_dir_name;
- dent = debugfs_create_dir(fname, dfs_rootdir);
- if (IS_ERR_OR_NULL(dent))
- goto out;
- d->dfs_dir = dent;
-
- fname = "dump_lprops";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_dump_lprops = dent;
-
- fname = "dump_budg";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_dump_budg = dent;
-
- fname = "dump_tnc";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_dump_tnc = dent;
-
- fname = "chk_general";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_gen = dent;
-
- fname = "chk_index";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_index = dent;
-
- fname = "chk_orphans";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_orph = dent;
-
- fname = "chk_lprops";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_lprops = dent;
-
- fname = "chk_fs";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_fs = dent;
-
- fname = "tst_recovery";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_tst_rcvry = dent;
-
- return 0;
-
-out_remove:
- debugfs_remove_recursive(d->dfs_dir);
-out:
- err = dent ? PTR_ERR(dent) : -ENODEV;
- ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
- fname, err);
- return err;
-}
-
-/**
- * dbg_debugfs_exit_fs - remove all debugfs files.
- * @c: UBIFS file-system description object
- */
-void dbg_debugfs_exit_fs(struct ubifs_info *c)
-{
- debugfs_remove_recursive(c->dbg->dfs_dir);
-}
-
-struct ubifs_global_debug_info ubifs_dbg;
-
-static struct dentry *dfs_chk_gen;
-static struct dentry *dfs_chk_index;
-static struct dentry *dfs_chk_orph;
-static struct dentry *dfs_chk_lprops;
-static struct dentry *dfs_chk_fs;
-static struct dentry *dfs_tst_rcvry;
-
-static ssize_t dfs_global_file_read(struct file *file, char __user *u,
- size_t count, loff_t *ppos)
-{
- struct dentry *dent = file->f_path.dentry;
- int val;
-
- if (dent == dfs_chk_gen)
- val = ubifs_dbg.chk_gen;
- else if (dent == dfs_chk_index)
- val = ubifs_dbg.chk_index;
- else if (dent == dfs_chk_orph)
- val = ubifs_dbg.chk_orph;
- else if (dent == dfs_chk_lprops)
- val = ubifs_dbg.chk_lprops;
- else if (dent == dfs_chk_fs)
- val = ubifs_dbg.chk_fs;
- else if (dent == dfs_tst_rcvry)
- val = ubifs_dbg.tst_rcvry;
- else
- return -EINVAL;
-
- return provide_user_output(val, u, count, ppos);
-}
-
-static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
- size_t count, loff_t *ppos)
-{
- struct dentry *dent = file->f_path.dentry;
- int val;
-
- val = interpret_user_input(u, count);
- if (val < 0)
- return val;
-
- if (dent == dfs_chk_gen)
- ubifs_dbg.chk_gen = val;
- else if (dent == dfs_chk_index)
- ubifs_dbg.chk_index = val;
- else if (dent == dfs_chk_orph)
- ubifs_dbg.chk_orph = val;
- else if (dent == dfs_chk_lprops)
- ubifs_dbg.chk_lprops = val;
- else if (dent == dfs_chk_fs)
- ubifs_dbg.chk_fs = val;
- else if (dent == dfs_tst_rcvry)
- ubifs_dbg.tst_rcvry = val;
- else
- return -EINVAL;
-
- return count;
-}
-
-static const struct file_operations dfs_global_fops = {
- .read = dfs_global_file_read,
- .write = dfs_global_file_write,
- .owner = THIS_MODULE,
- .llseek = no_llseek,
-};
-
-/**
- * dbg_debugfs_init - initialize debugfs file-system.
- *
- * UBIFS uses debugfs file-system to expose various debugging knobs to
- * user-space. This function creates "ubifs" directory in the debugfs
- * file-system. Returns zero in case of success and a negative error code in
- * case of failure.
- */
-int dbg_debugfs_init(void)
-{
- int err;
- const char *fname;
- struct dentry *dent;
-
- fname = "ubifs";
- dent = debugfs_create_dir(fname, NULL);
- if (IS_ERR_OR_NULL(dent))
- goto out;
- dfs_rootdir = dent;
-
- fname = "chk_general";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
- &dfs_global_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- dfs_chk_gen = dent;
-
- fname = "chk_index";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
- &dfs_global_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- dfs_chk_index = dent;
-
- fname = "chk_orphans";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
- &dfs_global_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- dfs_chk_orph = dent;
-
- fname = "chk_lprops";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
- &dfs_global_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- dfs_chk_lprops = dent;
-
- fname = "chk_fs";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
- &dfs_global_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- dfs_chk_fs = dent;
-
- fname = "tst_recovery";
- dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
- &dfs_global_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- dfs_tst_rcvry = dent;
-
- return 0;
-
-out_remove:
- debugfs_remove_recursive(dfs_rootdir);
-out:
- err = dent ? PTR_ERR(dent) : -ENODEV;
- ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
- fname, err);
- return err;
-}
-
-/**
- * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
- */
-void dbg_debugfs_exit(void)
-{
- debugfs_remove_recursive(dfs_rootdir);
-}
-
-/**
- * ubifs_debugging_init - initialize UBIFS debugging.
- * @c: UBIFS file-system description object
- *
- * This function initializes debugging-related data for the file system.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_debugging_init(struct ubifs_info *c)
-{
- c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
- if (!c->dbg)
- return -ENOMEM;
-
- return 0;
-}
-
-/**
- * ubifs_debugging_exit - free debugging data.
- * @c: UBIFS file-system description object
- */
-void ubifs_debugging_exit(struct ubifs_info *c)
-{
- kfree(c->dbg);
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/debug.h b/ANDROID_3.4.5/fs/ubifs/debug.h
deleted file mode 100644
index 9f717655..00000000
--- a/ANDROID_3.4.5/fs/ubifs/debug.h
+++ /dev/null
@@ -1,480 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-#ifndef __UBIFS_DEBUG_H__
-#define __UBIFS_DEBUG_H__
-
-/* Checking helper functions */
-typedef int (*dbg_leaf_callback)(struct ubifs_info *c,
- struct ubifs_zbranch *zbr, void *priv);
-typedef int (*dbg_znode_callback)(struct ubifs_info *c,
- struct ubifs_znode *znode, void *priv);
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-/*
- * The UBIFS debugfs directory name pattern and maximum name length (3 for "ubi"
- * + 1 for "_" and plus 2x2 for 2 UBI numbers and 1 for the trailing zero byte.
- */
-#define UBIFS_DFS_DIR_NAME "ubi%d_%d"
-#define UBIFS_DFS_DIR_LEN (3 + 1 + 2*2 + 1)
-
-/**
- * ubifs_debug_info - per-FS debugging information.
- * @old_zroot: old index root - used by 'dbg_check_old_index()'
- * @old_zroot_level: old index root level - used by 'dbg_check_old_index()'
- * @old_zroot_sqnum: old index root sqnum - used by 'dbg_check_old_index()'
- *
- * @pc_happened: non-zero if an emulated power cut happened
- * @pc_delay: 0=>don't delay, 1=>delay a time, 2=>delay a number of calls
- * @pc_timeout: time in jiffies when delay of failure mode expires
- * @pc_cnt: current number of calls to failure mode I/O functions
- * @pc_cnt_max: number of calls by which to delay failure mode
- *
- * @chk_lpt_sz: used by LPT tree size checker
- * @chk_lpt_sz2: used by LPT tree size checker
- * @chk_lpt_wastage: used by LPT tree size checker
- * @chk_lpt_lebs: used by LPT tree size checker
- * @new_nhead_offs: used by LPT tree size checker
- * @new_ihead_lnum: used by debugging to check @c->ihead_lnum
- * @new_ihead_offs: used by debugging to check @c->ihead_offs
- *
- * @saved_lst: saved lprops statistics (used by 'dbg_save_space_info()')
- * @saved_bi: saved budgeting information
- * @saved_free: saved amount of free space
- * @saved_idx_gc_cnt: saved value of @c->idx_gc_cnt
- *
- * @chk_gen: if general extra checks are enabled
- * @chk_index: if index xtra checks are enabled
- * @chk_orph: if orphans extra checks are enabled
- * @chk_lprops: if lprops extra checks are enabled
- * @chk_fs: if UBIFS contents extra checks are enabled
- * @tst_rcvry: if UBIFS recovery testing mode enabled
- *
- * @dfs_dir_name: name of debugfs directory containing this file-system's files
- * @dfs_dir: direntry object of the file-system debugfs directory
- * @dfs_dump_lprops: "dump lprops" debugfs knob
- * @dfs_dump_budg: "dump budgeting information" debugfs knob
- * @dfs_dump_tnc: "dump TNC" debugfs knob
- * @dfs_chk_gen: debugfs knob to enable UBIFS general extra checks
- * @dfs_chk_index: debugfs knob to enable UBIFS index extra checks
- * @dfs_chk_orph: debugfs knob to enable UBIFS orphans extra checks
- * @dfs_chk_lprops: debugfs knob to enable UBIFS LEP properties extra checks
- * @dfs_chk_fs: debugfs knob to enable UBIFS contents extra checks
- * @dfs_tst_rcvry: debugfs knob to enable UBIFS recovery testing
- */
-struct ubifs_debug_info {
- struct ubifs_zbranch old_zroot;
- int old_zroot_level;
- unsigned long long old_zroot_sqnum;
-
- int pc_happened;
- int pc_delay;
- unsigned long pc_timeout;
- unsigned int pc_cnt;
- unsigned int pc_cnt_max;
-
- long long chk_lpt_sz;
- long long chk_lpt_sz2;
- long long chk_lpt_wastage;
- int chk_lpt_lebs;
- int new_nhead_offs;
- int new_ihead_lnum;
- int new_ihead_offs;
-
- struct ubifs_lp_stats saved_lst;
- struct ubifs_budg_info saved_bi;
- long long saved_free;
- int saved_idx_gc_cnt;
-
- unsigned int chk_gen:1;
- unsigned int chk_index:1;
- unsigned int chk_orph:1;
- unsigned int chk_lprops:1;
- unsigned int chk_fs:1;
- unsigned int tst_rcvry:1;
-
- char dfs_dir_name[UBIFS_DFS_DIR_LEN + 1];
- struct dentry *dfs_dir;
- struct dentry *dfs_dump_lprops;
- struct dentry *dfs_dump_budg;
- struct dentry *dfs_dump_tnc;
- struct dentry *dfs_chk_gen;
- struct dentry *dfs_chk_index;
- struct dentry *dfs_chk_orph;
- struct dentry *dfs_chk_lprops;
- struct dentry *dfs_chk_fs;
- struct dentry *dfs_tst_rcvry;
-};
-
-/**
- * ubifs_global_debug_info - global (not per-FS) UBIFS debugging information.
- *
- * @chk_gen: if general extra checks are enabled
- * @chk_index: if index xtra checks are enabled
- * @chk_orph: if orphans extra checks are enabled
- * @chk_lprops: if lprops extra checks are enabled
- * @chk_fs: if UBIFS contents extra checks are enabled
- * @tst_rcvry: if UBIFS recovery testing mode enabled
- */
-struct ubifs_global_debug_info {
- unsigned int chk_gen:1;
- unsigned int chk_index:1;
- unsigned int chk_orph:1;
- unsigned int chk_lprops:1;
- unsigned int chk_fs:1;
- unsigned int tst_rcvry:1;
-};
-
-#define ubifs_assert(expr) do { \
- if (unlikely(!(expr))) { \
- printk(KERN_CRIT "UBIFS assert failed in %s at %u (pid %d)\n", \
- __func__, __LINE__, current->pid); \
- dbg_dump_stack(); \
- } \
-} while (0)
-
-#define ubifs_assert_cmt_locked(c) do { \
- if (unlikely(down_write_trylock(&(c)->commit_sem))) { \
- up_write(&(c)->commit_sem); \
- printk(KERN_CRIT "commit lock is not locked!\n"); \
- ubifs_assert(0); \
- } \
-} while (0)
-
-#define dbg_dump_stack() dump_stack()
-
-#define dbg_err(fmt, ...) do { \
- ubifs_err(fmt, ##__VA_ARGS__); \
-} while (0)
-
-#define ubifs_dbg_msg(type, fmt, ...) \
- pr_debug("UBIFS DBG " type ": " fmt "\n", ##__VA_ARGS__)
-
-#define DBG_KEY_BUF_LEN 32
-#define ubifs_dbg_msg_key(type, key, fmt, ...) do { \
- char __tmp_key_buf[DBG_KEY_BUF_LEN]; \
- pr_debug("UBIFS DBG " type ": " fmt "%s\n", ##__VA_ARGS__, \
- dbg_snprintf_key(c, key, __tmp_key_buf, DBG_KEY_BUF_LEN)); \
-} while (0)
-
-/* Just a debugging messages not related to any specific UBIFS subsystem */
-#define dbg_msg(fmt, ...) \
- printk(KERN_DEBUG "UBIFS DBG (pid %d): %s: " fmt "\n", current->pid, \
- __func__, ##__VA_ARGS__)
-
-/* General messages */
-#define dbg_gen(fmt, ...) ubifs_dbg_msg("gen", fmt, ##__VA_ARGS__)
-/* Additional journal messages */
-#define dbg_jnl(fmt, ...) ubifs_dbg_msg("jnl", fmt, ##__VA_ARGS__)
-#define dbg_jnlk(key, fmt, ...) \
- ubifs_dbg_msg_key("jnl", key, fmt, ##__VA_ARGS__)
-/* Additional TNC messages */
-#define dbg_tnc(fmt, ...) ubifs_dbg_msg("tnc", fmt, ##__VA_ARGS__)
-#define dbg_tnck(key, fmt, ...) \
- ubifs_dbg_msg_key("tnc", key, fmt, ##__VA_ARGS__)
-/* Additional lprops messages */
-#define dbg_lp(fmt, ...) ubifs_dbg_msg("lp", fmt, ##__VA_ARGS__)
-/* Additional LEB find messages */
-#define dbg_find(fmt, ...) ubifs_dbg_msg("find", fmt, ##__VA_ARGS__)
-/* Additional mount messages */
-#define dbg_mnt(fmt, ...) ubifs_dbg_msg("mnt", fmt, ##__VA_ARGS__)
-#define dbg_mntk(key, fmt, ...) \
- ubifs_dbg_msg_key("mnt", key, fmt, ##__VA_ARGS__)
-/* Additional I/O messages */
-#define dbg_io(fmt, ...) ubifs_dbg_msg("io", fmt, ##__VA_ARGS__)
-/* Additional commit messages */
-#define dbg_cmt(fmt, ...) ubifs_dbg_msg("cmt", fmt, ##__VA_ARGS__)
-/* Additional budgeting messages */
-#define dbg_budg(fmt, ...) ubifs_dbg_msg("budg", fmt, ##__VA_ARGS__)
-/* Additional log messages */
-#define dbg_log(fmt, ...) ubifs_dbg_msg("log", fmt, ##__VA_ARGS__)
-/* Additional gc messages */
-#define dbg_gc(fmt, ...) ubifs_dbg_msg("gc", fmt, ##__VA_ARGS__)
-/* Additional scan messages */
-#define dbg_scan(fmt, ...) ubifs_dbg_msg("scan", fmt, ##__VA_ARGS__)
-/* Additional recovery messages */
-#define dbg_rcvry(fmt, ...) ubifs_dbg_msg("rcvry", fmt, ##__VA_ARGS__)
-
-extern struct ubifs_global_debug_info ubifs_dbg;
-
-static inline int dbg_is_chk_gen(const struct ubifs_info *c)
-{
- return !!(ubifs_dbg.chk_gen || c->dbg->chk_gen);
-}
-static inline int dbg_is_chk_index(const struct ubifs_info *c)
-{
- return !!(ubifs_dbg.chk_index || c->dbg->chk_index);
-}
-static inline int dbg_is_chk_orph(const struct ubifs_info *c)
-{
- return !!(ubifs_dbg.chk_orph || c->dbg->chk_orph);
-}
-static inline int dbg_is_chk_lprops(const struct ubifs_info *c)
-{
- return !!(ubifs_dbg.chk_lprops || c->dbg->chk_lprops);
-}
-static inline int dbg_is_chk_fs(const struct ubifs_info *c)
-{
- return !!(ubifs_dbg.chk_fs || c->dbg->chk_fs);
-}
-static inline int dbg_is_tst_rcvry(const struct ubifs_info *c)
-{
- return !!(ubifs_dbg.tst_rcvry || c->dbg->tst_rcvry);
-}
-static inline int dbg_is_power_cut(const struct ubifs_info *c)
-{
- return !!c->dbg->pc_happened;
-}
-
-int ubifs_debugging_init(struct ubifs_info *c);
-void ubifs_debugging_exit(struct ubifs_info *c);
-
-/* Dump functions */
-const char *dbg_ntype(int type);
-const char *dbg_cstate(int cmt_state);
-const char *dbg_jhead(int jhead);
-const char *dbg_get_key_dump(const struct ubifs_info *c,
- const union ubifs_key *key);
-const char *dbg_snprintf_key(const struct ubifs_info *c,
- const union ubifs_key *key, char *buffer, int len);
-void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode);
-void dbg_dump_node(const struct ubifs_info *c, const void *node);
-void dbg_dump_lpt_node(const struct ubifs_info *c, void *node, int lnum,
- int offs);
-void dbg_dump_budget_req(const struct ubifs_budget_req *req);
-void dbg_dump_lstats(const struct ubifs_lp_stats *lst);
-void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi);
-void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp);
-void dbg_dump_lprops(struct ubifs_info *c);
-void dbg_dump_lpt_info(struct ubifs_info *c);
-void dbg_dump_leb(const struct ubifs_info *c, int lnum);
-void dbg_dump_sleb(const struct ubifs_info *c,
- const struct ubifs_scan_leb *sleb, int offs);
-void dbg_dump_znode(const struct ubifs_info *c,
- const struct ubifs_znode *znode);
-void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat);
-void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
- struct ubifs_nnode *parent, int iip);
-void dbg_dump_tnc(struct ubifs_info *c);
-void dbg_dump_index(struct ubifs_info *c);
-void dbg_dump_lpt_lebs(const struct ubifs_info *c);
-
-int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
- dbg_znode_callback znode_cb, void *priv);
-
-/* Checking functions */
-void dbg_save_space_info(struct ubifs_info *c);
-int dbg_check_space_info(struct ubifs_info *c);
-int dbg_check_lprops(struct ubifs_info *c);
-int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot);
-int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot);
-int dbg_check_cats(struct ubifs_info *c);
-int dbg_check_ltab(struct ubifs_info *c);
-int dbg_chk_lpt_free_spc(struct ubifs_info *c);
-int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len);
-int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode);
-int dbg_check_dir(struct ubifs_info *c, const struct inode *dir);
-int dbg_check_tnc(struct ubifs_info *c, int extra);
-int dbg_check_idx_size(struct ubifs_info *c, long long idx_size);
-int dbg_check_filesystem(struct ubifs_info *c);
-void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
- int add_pos);
-int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
- int row, int col);
-int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
- loff_t size);
-int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head);
-int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head);
-
-int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
- int len, int dtype);
-int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
- int dtype);
-int dbg_leb_unmap(struct ubifs_info *c, int lnum);
-int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype);
-
-/* Debugfs-related stuff */
-int dbg_debugfs_init(void);
-void dbg_debugfs_exit(void);
-int dbg_debugfs_init_fs(struct ubifs_info *c);
-void dbg_debugfs_exit_fs(struct ubifs_info *c);
-
-#else /* !CONFIG_UBIFS_FS_DEBUG */
-
-/* Use "if (0)" to make compiler check arguments even if debugging is off */
-#define ubifs_assert(expr) do { \
- if (0) \
- printk(KERN_CRIT "UBIFS assert failed in %s at %u (pid %d)\n", \
- __func__, __LINE__, current->pid); \
-} while (0)
-
-#define dbg_err(fmt, ...) do { \
- if (0) \
- ubifs_err(fmt, ##__VA_ARGS__); \
-} while (0)
-
-#define DBGKEY(key) ((char *)(key))
-#define DBGKEY1(key) ((char *)(key))
-
-#define ubifs_dbg_msg(fmt, ...) do { \
- if (0) \
- printk(KERN_DEBUG fmt "\n", ##__VA_ARGS__); \
-} while (0)
-
-#define dbg_dump_stack()
-#define ubifs_assert_cmt_locked(c)
-
-#define dbg_msg(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_gen(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_jnl(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_jnlk(key, fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_tnc(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_tnck(key, fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_lp(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_find(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_mnt(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_mntk(key, fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_io(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_cmt(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_budg(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_log(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_gc(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_scan(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-#define dbg_rcvry(fmt, ...) ubifs_dbg_msg(fmt, ##__VA_ARGS__)
-
-static inline int ubifs_debugging_init(struct ubifs_info *c) { return 0; }
-static inline void ubifs_debugging_exit(struct ubifs_info *c) { return; }
-static inline const char *dbg_ntype(int type) { return ""; }
-static inline const char *dbg_cstate(int cmt_state) { return ""; }
-static inline const char *dbg_jhead(int jhead) { return ""; }
-static inline const char *
-dbg_get_key_dump(const struct ubifs_info *c,
- const union ubifs_key *key) { return ""; }
-static inline const char *
-dbg_snprintf_key(const struct ubifs_info *c,
- const union ubifs_key *key, char *buffer,
- int len) { return ""; }
-static inline void dbg_dump_inode(struct ubifs_info *c,
- const struct inode *inode) { return; }
-static inline void dbg_dump_node(const struct ubifs_info *c,
- const void *node) { return; }
-static inline void dbg_dump_lpt_node(const struct ubifs_info *c,
- void *node, int lnum,
- int offs) { return; }
-static inline void
-dbg_dump_budget_req(const struct ubifs_budget_req *req) { return; }
-static inline void
-dbg_dump_lstats(const struct ubifs_lp_stats *lst) { return; }
-static inline void
-dbg_dump_budg(struct ubifs_info *c,
- const struct ubifs_budg_info *bi) { return; }
-static inline void dbg_dump_lprop(const struct ubifs_info *c,
- const struct ubifs_lprops *lp) { return; }
-static inline void dbg_dump_lprops(struct ubifs_info *c) { return; }
-static inline void dbg_dump_lpt_info(struct ubifs_info *c) { return; }
-static inline void dbg_dump_leb(const struct ubifs_info *c,
- int lnum) { return; }
-static inline void
-dbg_dump_sleb(const struct ubifs_info *c,
- const struct ubifs_scan_leb *sleb, int offs) { return; }
-static inline void
-dbg_dump_znode(const struct ubifs_info *c,
- const struct ubifs_znode *znode) { return; }
-static inline void dbg_dump_heap(struct ubifs_info *c,
- struct ubifs_lpt_heap *heap,
- int cat) { return; }
-static inline void dbg_dump_pnode(struct ubifs_info *c,
- struct ubifs_pnode *pnode,
- struct ubifs_nnode *parent,
- int iip) { return; }
-static inline void dbg_dump_tnc(struct ubifs_info *c) { return; }
-static inline void dbg_dump_index(struct ubifs_info *c) { return; }
-static inline void dbg_dump_lpt_lebs(const struct ubifs_info *c) { return; }
-
-static inline int dbg_walk_index(struct ubifs_info *c,
- dbg_leaf_callback leaf_cb,
- dbg_znode_callback znode_cb,
- void *priv) { return 0; }
-static inline void dbg_save_space_info(struct ubifs_info *c) { return; }
-static inline int dbg_check_space_info(struct ubifs_info *c) { return 0; }
-static inline int dbg_check_lprops(struct ubifs_info *c) { return 0; }
-static inline int
-dbg_old_index_check_init(struct ubifs_info *c,
- struct ubifs_zbranch *zroot) { return 0; }
-static inline int
-dbg_check_old_index(struct ubifs_info *c,
- struct ubifs_zbranch *zroot) { return 0; }
-static inline int dbg_check_cats(struct ubifs_info *c) { return 0; }
-static inline int dbg_check_ltab(struct ubifs_info *c) { return 0; }
-static inline int dbg_chk_lpt_free_spc(struct ubifs_info *c) { return 0; }
-static inline int dbg_chk_lpt_sz(struct ubifs_info *c,
- int action, int len) { return 0; }
-static inline int
-dbg_check_synced_i_size(const struct ubifs_info *c,
- struct inode *inode) { return 0; }
-static inline int dbg_check_dir(struct ubifs_info *c,
- const struct inode *dir) { return 0; }
-static inline int dbg_check_tnc(struct ubifs_info *c, int extra) { return 0; }
-static inline int dbg_check_idx_size(struct ubifs_info *c,
- long long idx_size) { return 0; }
-static inline int dbg_check_filesystem(struct ubifs_info *c) { return 0; }
-static inline void dbg_check_heap(struct ubifs_info *c,
- struct ubifs_lpt_heap *heap,
- int cat, int add_pos) { return; }
-static inline int dbg_check_lpt_nodes(struct ubifs_info *c,
- struct ubifs_cnode *cnode, int row, int col) { return 0; }
-static inline int dbg_check_inode_size(struct ubifs_info *c,
- const struct inode *inode,
- loff_t size) { return 0; }
-static inline int
-dbg_check_data_nodes_order(struct ubifs_info *c,
- struct list_head *head) { return 0; }
-static inline int
-dbg_check_nondata_nodes_order(struct ubifs_info *c,
- struct list_head *head) { return 0; }
-
-static inline int dbg_leb_write(struct ubifs_info *c, int lnum,
- const void *buf, int offset,
- int len, int dtype) { return 0; }
-static inline int dbg_leb_change(struct ubifs_info *c, int lnum,
- const void *buf, int len,
- int dtype) { return 0; }
-static inline int dbg_leb_unmap(struct ubifs_info *c, int lnum) { return 0; }
-static inline int dbg_leb_map(struct ubifs_info *c, int lnum,
- int dtype) { return 0; }
-
-static inline int dbg_is_chk_gen(const struct ubifs_info *c) { return 0; }
-static inline int dbg_is_chk_index(const struct ubifs_info *c) { return 0; }
-static inline int dbg_is_chk_orph(const struct ubifs_info *c) { return 0; }
-static inline int dbg_is_chk_lprops(const struct ubifs_info *c) { return 0; }
-static inline int dbg_is_chk_fs(const struct ubifs_info *c) { return 0; }
-static inline int dbg_is_tst_rcvry(const struct ubifs_info *c) { return 0; }
-static inline int dbg_is_power_cut(const struct ubifs_info *c) { return 0; }
-
-static inline int dbg_debugfs_init(void) { return 0; }
-static inline void dbg_debugfs_exit(void) { return; }
-static inline int dbg_debugfs_init_fs(struct ubifs_info *c) { return 0; }
-static inline int dbg_debugfs_exit_fs(struct ubifs_info *c) { return 0; }
-
-#endif /* !CONFIG_UBIFS_FS_DEBUG */
-#endif /* !__UBIFS_DEBUG_H__ */
diff --git a/ANDROID_3.4.5/fs/ubifs/dir.c b/ANDROID_3.4.5/fs/ubifs/dir.c
deleted file mode 100644
index ec9f1870..00000000
--- a/ANDROID_3.4.5/fs/ubifs/dir.c
+++ /dev/null
@@ -1,1208 +0,0 @@
-/* * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- * Copyright (C) 2006, 2007 University of Szeged, Hungary
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- * Zoltan Sogor
- */
-
-/*
- * This file implements directory operations.
- *
- * All FS operations in this file allocate budget before writing anything to the
- * media. If they fail to allocate it, the error is returned. The only
- * exceptions are 'ubifs_unlink()' and 'ubifs_rmdir()' which keep working even
- * if they unable to allocate the budget, because deletion %-ENOSPC failure is
- * not what users are usually ready to get. UBIFS budgeting subsystem has some
- * space reserved for these purposes.
- *
- * All operations in this file write all inodes which they change straight
- * away, instead of marking them dirty. For example, 'ubifs_link()' changes
- * @i_size of the parent inode and writes the parent inode together with the
- * target inode. This was done to simplify file-system recovery which would
- * otherwise be very difficult to do. The only exception is rename which marks
- * the re-named inode dirty (because its @i_ctime is updated) but does not
- * write it, but just marks it as dirty.
- */
-
-#include "ubifs.h"
-
-/**
- * inherit_flags - inherit flags of the parent inode.
- * @dir: parent inode
- * @mode: new inode mode flags
- *
- * This is a helper function for 'ubifs_new_inode()' which inherits flag of the
- * parent directory inode @dir. UBIFS inodes inherit the following flags:
- * o %UBIFS_COMPR_FL, which is useful to switch compression on/of on
- * sub-directory basis;
- * o %UBIFS_SYNC_FL - useful for the same reasons;
- * o %UBIFS_DIRSYNC_FL - similar, but relevant only to directories.
- *
- * This function returns the inherited flags.
- */
-static int inherit_flags(const struct inode *dir, umode_t mode)
-{
- int flags;
- const struct ubifs_inode *ui = ubifs_inode(dir);
-
- if (!S_ISDIR(dir->i_mode))
- /*
- * The parent is not a directory, which means that an extended
- * attribute inode is being created. No flags.
- */
- return 0;
-
- flags = ui->flags & (UBIFS_COMPR_FL | UBIFS_SYNC_FL | UBIFS_DIRSYNC_FL);
- if (!S_ISDIR(mode))
- /* The "DIRSYNC" flag only applies to directories */
- flags &= ~UBIFS_DIRSYNC_FL;
- return flags;
-}
-
-/**
- * ubifs_new_inode - allocate new UBIFS inode object.
- * @c: UBIFS file-system description object
- * @dir: parent directory inode
- * @mode: inode mode flags
- *
- * This function finds an unused inode number, allocates new inode and
- * initializes it. Returns new inode in case of success and an error code in
- * case of failure.
- */
-struct inode *ubifs_new_inode(struct ubifs_info *c, const struct inode *dir,
- umode_t mode)
-{
- struct inode *inode;
- struct ubifs_inode *ui;
-
- inode = new_inode(c->vfs_sb);
- ui = ubifs_inode(inode);
- if (!inode)
- return ERR_PTR(-ENOMEM);
-
- /*
- * Set 'S_NOCMTIME' to prevent VFS form updating [mc]time of inodes and
- * marking them dirty in file write path (see 'file_update_time()').
- * UBIFS has to fully control "clean <-> dirty" transitions of inodes
- * to make budgeting work.
- */
- inode->i_flags |= S_NOCMTIME;
-
- inode_init_owner(inode, dir, mode);
- inode->i_mtime = inode->i_atime = inode->i_ctime =
- ubifs_current_time(inode);
- inode->i_mapping->nrpages = 0;
- /* Disable readahead */
- inode->i_mapping->backing_dev_info = &c->bdi;
-
- switch (mode & S_IFMT) {
- case S_IFREG:
- inode->i_mapping->a_ops = &ubifs_file_address_operations;
- inode->i_op = &ubifs_file_inode_operations;
- inode->i_fop = &ubifs_file_operations;
- break;
- case S_IFDIR:
- inode->i_op = &ubifs_dir_inode_operations;
- inode->i_fop = &ubifs_dir_operations;
- inode->i_size = ui->ui_size = UBIFS_INO_NODE_SZ;
- break;
- case S_IFLNK:
- inode->i_op = &ubifs_symlink_inode_operations;
- break;
- case S_IFSOCK:
- case S_IFIFO:
- case S_IFBLK:
- case S_IFCHR:
- inode->i_op = &ubifs_file_inode_operations;
- break;
- default:
- BUG();
- }
-
- ui->flags = inherit_flags(dir, mode);
- ubifs_set_inode_flags(inode);
- if (S_ISREG(mode))
- ui->compr_type = c->default_compr;
- else
- ui->compr_type = UBIFS_COMPR_NONE;
- ui->synced_i_size = 0;
-
- spin_lock(&c->cnt_lock);
- /* Inode number overflow is currently not supported */
- if (c->highest_inum >= INUM_WARN_WATERMARK) {
- if (c->highest_inum >= INUM_WATERMARK) {
- spin_unlock(&c->cnt_lock);
- ubifs_err("out of inode numbers");
- make_bad_inode(inode);
- iput(inode);
- return ERR_PTR(-EINVAL);
- }
- ubifs_warn("running out of inode numbers (current %lu, max %d)",
- (unsigned long)c->highest_inum, INUM_WATERMARK);
- }
-
- inode->i_ino = ++c->highest_inum;
- /*
- * The creation sequence number remains with this inode for its
- * lifetime. All nodes for this inode have a greater sequence number,
- * and so it is possible to distinguish obsolete nodes belonging to a
- * previous incarnation of the same inode number - for example, for the
- * purpose of rebuilding the index.
- */
- ui->creat_sqnum = ++c->max_sqnum;
- spin_unlock(&c->cnt_lock);
- return inode;
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-static int dbg_check_name(const struct ubifs_info *c,
- const struct ubifs_dent_node *dent,
- const struct qstr *nm)
-{
- if (!dbg_is_chk_gen(c))
- return 0;
- if (le16_to_cpu(dent->nlen) != nm->len)
- return -EINVAL;
- if (memcmp(dent->name, nm->name, nm->len))
- return -EINVAL;
- return 0;
-}
-
-#else
-
-#define dbg_check_name(c, dent, nm) 0
-
-#endif
-
-static struct dentry *ubifs_lookup(struct inode *dir, struct dentry *dentry,
- struct nameidata *nd)
-{
- int err;
- union ubifs_key key;
- struct inode *inode = NULL;
- struct ubifs_dent_node *dent;
- struct ubifs_info *c = dir->i_sb->s_fs_info;
-
- dbg_gen("'%.*s' in dir ino %lu",
- dentry->d_name.len, dentry->d_name.name, dir->i_ino);
-
- if (dentry->d_name.len > UBIFS_MAX_NLEN)
- return ERR_PTR(-ENAMETOOLONG);
-
- dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
- if (!dent)
- return ERR_PTR(-ENOMEM);
-
- dent_key_init(c, &key, dir->i_ino, &dentry->d_name);
-
- err = ubifs_tnc_lookup_nm(c, &key, dent, &dentry->d_name);
- if (err) {
- if (err == -ENOENT) {
- dbg_gen("not found");
- goto done;
- }
- goto out;
- }
-
- if (dbg_check_name(c, dent, &dentry->d_name)) {
- err = -EINVAL;
- goto out;
- }
-
- inode = ubifs_iget(dir->i_sb, le64_to_cpu(dent->inum));
- if (IS_ERR(inode)) {
- /*
- * This should not happen. Probably the file-system needs
- * checking.
- */
- err = PTR_ERR(inode);
- ubifs_err("dead directory entry '%.*s', error %d",
- dentry->d_name.len, dentry->d_name.name, err);
- ubifs_ro_mode(c, err);
- goto out;
- }
-
-done:
- kfree(dent);
- /*
- * Note, d_splice_alias() would be required instead if we supported
- * NFS.
- */
- d_add(dentry, inode);
- return NULL;
-
-out:
- kfree(dent);
- return ERR_PTR(err);
-}
-
-static int ubifs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
- struct nameidata *nd)
-{
- struct inode *inode;
- struct ubifs_info *c = dir->i_sb->s_fs_info;
- int err, sz_change = CALC_DENT_SIZE(dentry->d_name.len);
- struct ubifs_budget_req req = { .new_ino = 1, .new_dent = 1,
- .dirtied_ino = 1 };
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
-
- /*
- * Budget request settings: new inode, new direntry, changing the
- * parent directory inode.
- */
-
- dbg_gen("dent '%.*s', mode %#hx in dir ino %lu",
- dentry->d_name.len, dentry->d_name.name, mode, dir->i_ino);
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- inode = ubifs_new_inode(c, dir, mode);
- if (IS_ERR(inode)) {
- err = PTR_ERR(inode);
- goto out_budg;
- }
-
- mutex_lock(&dir_ui->ui_mutex);
- dir->i_size += sz_change;
- dir_ui->ui_size = dir->i_size;
- dir->i_mtime = dir->i_ctime = inode->i_ctime;
- err = ubifs_jnl_update(c, dir, &dentry->d_name, inode, 0, 0);
- if (err)
- goto out_cancel;
- mutex_unlock(&dir_ui->ui_mutex);
-
- ubifs_release_budget(c, &req);
- insert_inode_hash(inode);
- d_instantiate(dentry, inode);
- return 0;
-
-out_cancel:
- dir->i_size -= sz_change;
- dir_ui->ui_size = dir->i_size;
- mutex_unlock(&dir_ui->ui_mutex);
- make_bad_inode(inode);
- iput(inode);
-out_budg:
- ubifs_release_budget(c, &req);
- ubifs_err("cannot create regular file, error %d", err);
- return err;
-}
-
-/**
- * vfs_dent_type - get VFS directory entry type.
- * @type: UBIFS directory entry type
- *
- * This function converts UBIFS directory entry type into VFS directory entry
- * type.
- */
-static unsigned int vfs_dent_type(uint8_t type)
-{
- switch (type) {
- case UBIFS_ITYPE_REG:
- return DT_REG;
- case UBIFS_ITYPE_DIR:
- return DT_DIR;
- case UBIFS_ITYPE_LNK:
- return DT_LNK;
- case UBIFS_ITYPE_BLK:
- return DT_BLK;
- case UBIFS_ITYPE_CHR:
- return DT_CHR;
- case UBIFS_ITYPE_FIFO:
- return DT_FIFO;
- case UBIFS_ITYPE_SOCK:
- return DT_SOCK;
- default:
- BUG();
- }
- return 0;
-}
-
-/*
- * The classical Unix view for directory is that it is a linear array of
- * (name, inode number) entries. Linux/VFS assumes this model as well.
- * Particularly, 'readdir()' call wants us to return a directory entry offset
- * which later may be used to continue 'readdir()'ing the directory or to
- * 'seek()' to that specific direntry. Obviously UBIFS does not really fit this
- * model because directory entries are identified by keys, which may collide.
- *
- * UBIFS uses directory entry hash value for directory offsets, so
- * 'seekdir()'/'telldir()' may not always work because of possible key
- * collisions. But UBIFS guarantees that consecutive 'readdir()' calls work
- * properly by means of saving full directory entry name in the private field
- * of the file description object.
- *
- * This means that UBIFS cannot support NFS which requires full
- * 'seekdir()'/'telldir()' support.
- */
-static int ubifs_readdir(struct file *file, void *dirent, filldir_t filldir)
-{
- int err, over = 0;
- struct qstr nm;
- union ubifs_key key;
- struct ubifs_dent_node *dent;
- struct inode *dir = file->f_path.dentry->d_inode;
- struct ubifs_info *c = dir->i_sb->s_fs_info;
-
- dbg_gen("dir ino %lu, f_pos %#llx", dir->i_ino, file->f_pos);
-
- if (file->f_pos > UBIFS_S_KEY_HASH_MASK || file->f_pos == 2)
- /*
- * The directory was seek'ed to a senseless position or there
- * are no more entries.
- */
- return 0;
-
- /* File positions 0 and 1 correspond to "." and ".." */
- if (file->f_pos == 0) {
- ubifs_assert(!file->private_data);
- over = filldir(dirent, ".", 1, 0, dir->i_ino, DT_DIR);
- if (over)
- return 0;
- file->f_pos = 1;
- }
-
- if (file->f_pos == 1) {
- ubifs_assert(!file->private_data);
- over = filldir(dirent, "..", 2, 1,
- parent_ino(file->f_path.dentry), DT_DIR);
- if (over)
- return 0;
-
- /* Find the first entry in TNC and save it */
- lowest_dent_key(c, &key, dir->i_ino);
- nm.name = NULL;
- dent = ubifs_tnc_next_ent(c, &key, &nm);
- if (IS_ERR(dent)) {
- err = PTR_ERR(dent);
- goto out;
- }
-
- file->f_pos = key_hash_flash(c, &dent->key);
- file->private_data = dent;
- }
-
- dent = file->private_data;
- if (!dent) {
- /*
- * The directory was seek'ed to and is now readdir'ed.
- * Find the entry corresponding to @file->f_pos or the
- * closest one.
- */
- dent_key_init_hash(c, &key, dir->i_ino, file->f_pos);
- nm.name = NULL;
- dent = ubifs_tnc_next_ent(c, &key, &nm);
- if (IS_ERR(dent)) {
- err = PTR_ERR(dent);
- goto out;
- }
- file->f_pos = key_hash_flash(c, &dent->key);
- file->private_data = dent;
- }
-
- while (1) {
- dbg_gen("feed '%s', ino %llu, new f_pos %#x",
- dent->name, (unsigned long long)le64_to_cpu(dent->inum),
- key_hash_flash(c, &dent->key));
- ubifs_assert(le64_to_cpu(dent->ch.sqnum) >
- ubifs_inode(dir)->creat_sqnum);
-
- nm.len = le16_to_cpu(dent->nlen);
- over = filldir(dirent, dent->name, nm.len, file->f_pos,
- le64_to_cpu(dent->inum),
- vfs_dent_type(dent->type));
- if (over)
- return 0;
-
- /* Switch to the next entry */
- key_read(c, &dent->key, &key);
- nm.name = dent->name;
- dent = ubifs_tnc_next_ent(c, &key, &nm);
- if (IS_ERR(dent)) {
- err = PTR_ERR(dent);
- goto out;
- }
-
- kfree(file->private_data);
- file->f_pos = key_hash_flash(c, &dent->key);
- file->private_data = dent;
- cond_resched();
- }
-
-out:
- if (err != -ENOENT) {
- ubifs_err("cannot find next direntry, error %d", err);
- return err;
- }
-
- kfree(file->private_data);
- file->private_data = NULL;
- file->f_pos = 2;
- return 0;
-}
-
-/* If a directory is seeked, we have to free saved readdir() state */
-static loff_t ubifs_dir_llseek(struct file *file, loff_t offset, int origin)
-{
- kfree(file->private_data);
- file->private_data = NULL;
- return generic_file_llseek(file, offset, origin);
-}
-
-/* Free saved readdir() state when the directory is closed */
-static int ubifs_dir_release(struct inode *dir, struct file *file)
-{
- kfree(file->private_data);
- file->private_data = NULL;
- return 0;
-}
-
-/**
- * lock_2_inodes - a wrapper for locking two UBIFS inodes.
- * @inode1: first inode
- * @inode2: second inode
- *
- * We do not implement any tricks to guarantee strict lock ordering, because
- * VFS has already done it for us on the @i_mutex. So this is just a simple
- * wrapper function.
- */
-static void lock_2_inodes(struct inode *inode1, struct inode *inode2)
-{
- mutex_lock_nested(&ubifs_inode(inode1)->ui_mutex, WB_MUTEX_1);
- mutex_lock_nested(&ubifs_inode(inode2)->ui_mutex, WB_MUTEX_2);
-}
-
-/**
- * unlock_2_inodes - a wrapper for unlocking two UBIFS inodes.
- * @inode1: first inode
- * @inode2: second inode
- */
-static void unlock_2_inodes(struct inode *inode1, struct inode *inode2)
-{
- mutex_unlock(&ubifs_inode(inode2)->ui_mutex);
- mutex_unlock(&ubifs_inode(inode1)->ui_mutex);
-}
-
-static int ubifs_link(struct dentry *old_dentry, struct inode *dir,
- struct dentry *dentry)
-{
- struct ubifs_info *c = dir->i_sb->s_fs_info;
- struct inode *inode = old_dentry->d_inode;
- struct ubifs_inode *ui = ubifs_inode(inode);
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
- int err, sz_change = CALC_DENT_SIZE(dentry->d_name.len);
- struct ubifs_budget_req req = { .new_dent = 1, .dirtied_ino = 2,
- .dirtied_ino_d = ALIGN(ui->data_len, 8) };
-
- /*
- * Budget request settings: new direntry, changing the target inode,
- * changing the parent inode.
- */
-
- dbg_gen("dent '%.*s' to ino %lu (nlink %d) in dir ino %lu",
- dentry->d_name.len, dentry->d_name.name, inode->i_ino,
- inode->i_nlink, dir->i_ino);
- ubifs_assert(mutex_is_locked(&dir->i_mutex));
- ubifs_assert(mutex_is_locked(&inode->i_mutex));
-
- err = dbg_check_synced_i_size(c, inode);
- if (err)
- return err;
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- lock_2_inodes(dir, inode);
- inc_nlink(inode);
- ihold(inode);
- inode->i_ctime = ubifs_current_time(inode);
- dir->i_size += sz_change;
- dir_ui->ui_size = dir->i_size;
- dir->i_mtime = dir->i_ctime = inode->i_ctime;
- err = ubifs_jnl_update(c, dir, &dentry->d_name, inode, 0, 0);
- if (err)
- goto out_cancel;
- unlock_2_inodes(dir, inode);
-
- ubifs_release_budget(c, &req);
- d_instantiate(dentry, inode);
- return 0;
-
-out_cancel:
- dir->i_size -= sz_change;
- dir_ui->ui_size = dir->i_size;
- drop_nlink(inode);
- unlock_2_inodes(dir, inode);
- ubifs_release_budget(c, &req);
- iput(inode);
- return err;
-}
-
-static int ubifs_unlink(struct inode *dir, struct dentry *dentry)
-{
- struct ubifs_info *c = dir->i_sb->s_fs_info;
- struct inode *inode = dentry->d_inode;
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
- int sz_change = CALC_DENT_SIZE(dentry->d_name.len);
- int err, budgeted = 1;
- struct ubifs_budget_req req = { .mod_dent = 1, .dirtied_ino = 2 };
- unsigned int saved_nlink = inode->i_nlink;
-
- /*
- * Budget request settings: deletion direntry, deletion inode (+1 for
- * @dirtied_ino), changing the parent directory inode. If budgeting
- * fails, go ahead anyway because we have extra space reserved for
- * deletions.
- */
-
- dbg_gen("dent '%.*s' from ino %lu (nlink %d) in dir ino %lu",
- dentry->d_name.len, dentry->d_name.name, inode->i_ino,
- inode->i_nlink, dir->i_ino);
- ubifs_assert(mutex_is_locked(&dir->i_mutex));
- ubifs_assert(mutex_is_locked(&inode->i_mutex));
- err = dbg_check_synced_i_size(c, inode);
- if (err)
- return err;
-
- err = ubifs_budget_space(c, &req);
- if (err) {
- if (err != -ENOSPC)
- return err;
- budgeted = 0;
- }
-
- lock_2_inodes(dir, inode);
- inode->i_ctime = ubifs_current_time(dir);
- drop_nlink(inode);
- dir->i_size -= sz_change;
- dir_ui->ui_size = dir->i_size;
- dir->i_mtime = dir->i_ctime = inode->i_ctime;
- err = ubifs_jnl_update(c, dir, &dentry->d_name, inode, 1, 0);
- if (err)
- goto out_cancel;
- unlock_2_inodes(dir, inode);
-
- if (budgeted)
- ubifs_release_budget(c, &req);
- else {
- /* We've deleted something - clean the "no space" flags */
- c->bi.nospace = c->bi.nospace_rp = 0;
- smp_wmb();
- }
- return 0;
-
-out_cancel:
- dir->i_size += sz_change;
- dir_ui->ui_size = dir->i_size;
- set_nlink(inode, saved_nlink);
- unlock_2_inodes(dir, inode);
- if (budgeted)
- ubifs_release_budget(c, &req);
- return err;
-}
-
-/**
- * check_dir_empty - check if a directory is empty or not.
- * @c: UBIFS file-system description object
- * @dir: VFS inode object of the directory to check
- *
- * This function checks if directory @dir is empty. Returns zero if the
- * directory is empty, %-ENOTEMPTY if it is not, and other negative error codes
- * in case of of errors.
- */
-static int check_dir_empty(struct ubifs_info *c, struct inode *dir)
-{
- struct qstr nm = { .name = NULL };
- struct ubifs_dent_node *dent;
- union ubifs_key key;
- int err;
-
- lowest_dent_key(c, &key, dir->i_ino);
- dent = ubifs_tnc_next_ent(c, &key, &nm);
- if (IS_ERR(dent)) {
- err = PTR_ERR(dent);
- if (err == -ENOENT)
- err = 0;
- } else {
- kfree(dent);
- err = -ENOTEMPTY;
- }
- return err;
-}
-
-static int ubifs_rmdir(struct inode *dir, struct dentry *dentry)
-{
- struct ubifs_info *c = dir->i_sb->s_fs_info;
- struct inode *inode = dentry->d_inode;
- int sz_change = CALC_DENT_SIZE(dentry->d_name.len);
- int err, budgeted = 1;
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
- struct ubifs_budget_req req = { .mod_dent = 1, .dirtied_ino = 2 };
-
- /*
- * Budget request settings: deletion direntry, deletion inode and
- * changing the parent inode. If budgeting fails, go ahead anyway
- * because we have extra space reserved for deletions.
- */
-
- dbg_gen("directory '%.*s', ino %lu in dir ino %lu", dentry->d_name.len,
- dentry->d_name.name, inode->i_ino, dir->i_ino);
- ubifs_assert(mutex_is_locked(&dir->i_mutex));
- ubifs_assert(mutex_is_locked(&inode->i_mutex));
- err = check_dir_empty(c, dentry->d_inode);
- if (err)
- return err;
-
- err = ubifs_budget_space(c, &req);
- if (err) {
- if (err != -ENOSPC)
- return err;
- budgeted = 0;
- }
-
- lock_2_inodes(dir, inode);
- inode->i_ctime = ubifs_current_time(dir);
- clear_nlink(inode);
- drop_nlink(dir);
- dir->i_size -= sz_change;
- dir_ui->ui_size = dir->i_size;
- dir->i_mtime = dir->i_ctime = inode->i_ctime;
- err = ubifs_jnl_update(c, dir, &dentry->d_name, inode, 1, 0);
- if (err)
- goto out_cancel;
- unlock_2_inodes(dir, inode);
-
- if (budgeted)
- ubifs_release_budget(c, &req);
- else {
- /* We've deleted something - clean the "no space" flags */
- c->bi.nospace = c->bi.nospace_rp = 0;
- smp_wmb();
- }
- return 0;
-
-out_cancel:
- dir->i_size += sz_change;
- dir_ui->ui_size = dir->i_size;
- inc_nlink(dir);
- set_nlink(inode, 2);
- unlock_2_inodes(dir, inode);
- if (budgeted)
- ubifs_release_budget(c, &req);
- return err;
-}
-
-static int ubifs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
-{
- struct inode *inode;
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
- struct ubifs_info *c = dir->i_sb->s_fs_info;
- int err, sz_change = CALC_DENT_SIZE(dentry->d_name.len);
- struct ubifs_budget_req req = { .new_ino = 1, .new_dent = 1 };
-
- /*
- * Budget request settings: new inode, new direntry and changing parent
- * directory inode.
- */
-
- dbg_gen("dent '%.*s', mode %#hx in dir ino %lu",
- dentry->d_name.len, dentry->d_name.name, mode, dir->i_ino);
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- inode = ubifs_new_inode(c, dir, S_IFDIR | mode);
- if (IS_ERR(inode)) {
- err = PTR_ERR(inode);
- goto out_budg;
- }
-
- mutex_lock(&dir_ui->ui_mutex);
- insert_inode_hash(inode);
- inc_nlink(inode);
- inc_nlink(dir);
- dir->i_size += sz_change;
- dir_ui->ui_size = dir->i_size;
- dir->i_mtime = dir->i_ctime = inode->i_ctime;
- err = ubifs_jnl_update(c, dir, &dentry->d_name, inode, 0, 0);
- if (err) {
- ubifs_err("cannot create directory, error %d", err);
- goto out_cancel;
- }
- mutex_unlock(&dir_ui->ui_mutex);
-
- ubifs_release_budget(c, &req);
- d_instantiate(dentry, inode);
- return 0;
-
-out_cancel:
- dir->i_size -= sz_change;
- dir_ui->ui_size = dir->i_size;
- drop_nlink(dir);
- mutex_unlock(&dir_ui->ui_mutex);
- make_bad_inode(inode);
- iput(inode);
-out_budg:
- ubifs_release_budget(c, &req);
- return err;
-}
-
-static int ubifs_mknod(struct inode *dir, struct dentry *dentry,
- umode_t mode, dev_t rdev)
-{
- struct inode *inode;
- struct ubifs_inode *ui;
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
- struct ubifs_info *c = dir->i_sb->s_fs_info;
- union ubifs_dev_desc *dev = NULL;
- int sz_change = CALC_DENT_SIZE(dentry->d_name.len);
- int err, devlen = 0;
- struct ubifs_budget_req req = { .new_ino = 1, .new_dent = 1,
- .new_ino_d = ALIGN(devlen, 8),
- .dirtied_ino = 1 };
-
- /*
- * Budget request settings: new inode, new direntry and changing parent
- * directory inode.
- */
-
- dbg_gen("dent '%.*s' in dir ino %lu",
- dentry->d_name.len, dentry->d_name.name, dir->i_ino);
-
- if (!new_valid_dev(rdev))
- return -EINVAL;
-
- if (S_ISBLK(mode) || S_ISCHR(mode)) {
- dev = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
- if (!dev)
- return -ENOMEM;
- devlen = ubifs_encode_dev(dev, rdev);
- }
-
- err = ubifs_budget_space(c, &req);
- if (err) {
- kfree(dev);
- return err;
- }
-
- inode = ubifs_new_inode(c, dir, mode);
- if (IS_ERR(inode)) {
- kfree(dev);
- err = PTR_ERR(inode);
- goto out_budg;
- }
-
- init_special_inode(inode, inode->i_mode, rdev);
- inode->i_size = ubifs_inode(inode)->ui_size = devlen;
- ui = ubifs_inode(inode);
- ui->data = dev;
- ui->data_len = devlen;
-
- mutex_lock(&dir_ui->ui_mutex);
- dir->i_size += sz_change;
- dir_ui->ui_size = dir->i_size;
- dir->i_mtime = dir->i_ctime = inode->i_ctime;
- err = ubifs_jnl_update(c, dir, &dentry->d_name, inode, 0, 0);
- if (err)
- goto out_cancel;
- mutex_unlock(&dir_ui->ui_mutex);
-
- ubifs_release_budget(c, &req);
- insert_inode_hash(inode);
- d_instantiate(dentry, inode);
- return 0;
-
-out_cancel:
- dir->i_size -= sz_change;
- dir_ui->ui_size = dir->i_size;
- mutex_unlock(&dir_ui->ui_mutex);
- make_bad_inode(inode);
- iput(inode);
-out_budg:
- ubifs_release_budget(c, &req);
- return err;
-}
-
-static int ubifs_symlink(struct inode *dir, struct dentry *dentry,
- const char *symname)
-{
- struct inode *inode;
- struct ubifs_inode *ui;
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
- struct ubifs_info *c = dir->i_sb->s_fs_info;
- int err, len = strlen(symname);
- int sz_change = CALC_DENT_SIZE(dentry->d_name.len);
- struct ubifs_budget_req req = { .new_ino = 1, .new_dent = 1,
- .new_ino_d = ALIGN(len, 8),
- .dirtied_ino = 1 };
-
- /*
- * Budget request settings: new inode, new direntry and changing parent
- * directory inode.
- */
-
- dbg_gen("dent '%.*s', target '%s' in dir ino %lu", dentry->d_name.len,
- dentry->d_name.name, symname, dir->i_ino);
-
- if (len > UBIFS_MAX_INO_DATA)
- return -ENAMETOOLONG;
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- inode = ubifs_new_inode(c, dir, S_IFLNK | S_IRWXUGO);
- if (IS_ERR(inode)) {
- err = PTR_ERR(inode);
- goto out_budg;
- }
-
- ui = ubifs_inode(inode);
- ui->data = kmalloc(len + 1, GFP_NOFS);
- if (!ui->data) {
- err = -ENOMEM;
- goto out_inode;
- }
-
- memcpy(ui->data, symname, len);
- ((char *)ui->data)[len] = '\0';
- /*
- * The terminating zero byte is not written to the flash media and it
- * is put just to make later in-memory string processing simpler. Thus,
- * data length is @len, not @len + %1.
- */
- ui->data_len = len;
- inode->i_size = ubifs_inode(inode)->ui_size = len;
-
- mutex_lock(&dir_ui->ui_mutex);
- dir->i_size += sz_change;
- dir_ui->ui_size = dir->i_size;
- dir->i_mtime = dir->i_ctime = inode->i_ctime;
- err = ubifs_jnl_update(c, dir, &dentry->d_name, inode, 0, 0);
- if (err)
- goto out_cancel;
- mutex_unlock(&dir_ui->ui_mutex);
-
- ubifs_release_budget(c, &req);
- insert_inode_hash(inode);
- d_instantiate(dentry, inode);
- return 0;
-
-out_cancel:
- dir->i_size -= sz_change;
- dir_ui->ui_size = dir->i_size;
- mutex_unlock(&dir_ui->ui_mutex);
-out_inode:
- make_bad_inode(inode);
- iput(inode);
-out_budg:
- ubifs_release_budget(c, &req);
- return err;
-}
-
-/**
- * lock_3_inodes - a wrapper for locking three UBIFS inodes.
- * @inode1: first inode
- * @inode2: second inode
- * @inode3: third inode
- *
- * This function is used for 'ubifs_rename()' and @inode1 may be the same as
- * @inode2 whereas @inode3 may be %NULL.
- *
- * We do not implement any tricks to guarantee strict lock ordering, because
- * VFS has already done it for us on the @i_mutex. So this is just a simple
- * wrapper function.
- */
-static void lock_3_inodes(struct inode *inode1, struct inode *inode2,
- struct inode *inode3)
-{
- mutex_lock_nested(&ubifs_inode(inode1)->ui_mutex, WB_MUTEX_1);
- if (inode2 != inode1)
- mutex_lock_nested(&ubifs_inode(inode2)->ui_mutex, WB_MUTEX_2);
- if (inode3)
- mutex_lock_nested(&ubifs_inode(inode3)->ui_mutex, WB_MUTEX_3);
-}
-
-/**
- * unlock_3_inodes - a wrapper for unlocking three UBIFS inodes for rename.
- * @inode1: first inode
- * @inode2: second inode
- * @inode3: third inode
- */
-static void unlock_3_inodes(struct inode *inode1, struct inode *inode2,
- struct inode *inode3)
-{
- if (inode3)
- mutex_unlock(&ubifs_inode(inode3)->ui_mutex);
- if (inode1 != inode2)
- mutex_unlock(&ubifs_inode(inode2)->ui_mutex);
- mutex_unlock(&ubifs_inode(inode1)->ui_mutex);
-}
-
-static int ubifs_rename(struct inode *old_dir, struct dentry *old_dentry,
- struct inode *new_dir, struct dentry *new_dentry)
-{
- struct ubifs_info *c = old_dir->i_sb->s_fs_info;
- struct inode *old_inode = old_dentry->d_inode;
- struct inode *new_inode = new_dentry->d_inode;
- struct ubifs_inode *old_inode_ui = ubifs_inode(old_inode);
- int err, release, sync = 0, move = (new_dir != old_dir);
- int is_dir = S_ISDIR(old_inode->i_mode);
- int unlink = !!new_inode;
- int new_sz = CALC_DENT_SIZE(new_dentry->d_name.len);
- int old_sz = CALC_DENT_SIZE(old_dentry->d_name.len);
- struct ubifs_budget_req req = { .new_dent = 1, .mod_dent = 1,
- .dirtied_ino = 3 };
- struct ubifs_budget_req ino_req = { .dirtied_ino = 1,
- .dirtied_ino_d = ALIGN(old_inode_ui->data_len, 8) };
- struct timespec time;
- unsigned int saved_nlink;
-
- /*
- * Budget request settings: deletion direntry, new direntry, removing
- * the old inode, and changing old and new parent directory inodes.
- *
- * However, this operation also marks the target inode as dirty and
- * does not write it, so we allocate budget for the target inode
- * separately.
- */
-
- dbg_gen("dent '%.*s' ino %lu in dir ino %lu to dent '%.*s' in "
- "dir ino %lu", old_dentry->d_name.len, old_dentry->d_name.name,
- old_inode->i_ino, old_dir->i_ino, new_dentry->d_name.len,
- new_dentry->d_name.name, new_dir->i_ino);
- ubifs_assert(mutex_is_locked(&old_dir->i_mutex));
- ubifs_assert(mutex_is_locked(&new_dir->i_mutex));
- if (unlink)
- ubifs_assert(mutex_is_locked(&new_inode->i_mutex));
-
-
- if (unlink && is_dir) {
- err = check_dir_empty(c, new_inode);
- if (err)
- return err;
- }
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
- err = ubifs_budget_space(c, &ino_req);
- if (err) {
- ubifs_release_budget(c, &req);
- return err;
- }
-
- lock_3_inodes(old_dir, new_dir, new_inode);
-
- /*
- * Like most other Unix systems, set the @i_ctime for inodes on a
- * rename.
- */
- time = ubifs_current_time(old_dir);
- old_inode->i_ctime = time;
-
- /* We must adjust parent link count when renaming directories */
- if (is_dir) {
- if (move) {
- /*
- * @old_dir loses a link because we are moving
- * @old_inode to a different directory.
- */
- drop_nlink(old_dir);
- /*
- * @new_dir only gains a link if we are not also
- * overwriting an existing directory.
- */
- if (!unlink)
- inc_nlink(new_dir);
- } else {
- /*
- * @old_inode is not moving to a different directory,
- * but @old_dir still loses a link if we are
- * overwriting an existing directory.
- */
- if (unlink)
- drop_nlink(old_dir);
- }
- }
-
- old_dir->i_size -= old_sz;
- ubifs_inode(old_dir)->ui_size = old_dir->i_size;
- old_dir->i_mtime = old_dir->i_ctime = time;
- new_dir->i_mtime = new_dir->i_ctime = time;
-
- /*
- * And finally, if we unlinked a direntry which happened to have the
- * same name as the moved direntry, we have to decrement @i_nlink of
- * the unlinked inode and change its ctime.
- */
- if (unlink) {
- /*
- * Directories cannot have hard-links, so if this is a
- * directory, just clear @i_nlink.
- */
- saved_nlink = new_inode->i_nlink;
- if (is_dir)
- clear_nlink(new_inode);
- else
- drop_nlink(new_inode);
- new_inode->i_ctime = time;
- } else {
- new_dir->i_size += new_sz;
- ubifs_inode(new_dir)->ui_size = new_dir->i_size;
- }
-
- /*
- * Do not ask 'ubifs_jnl_rename()' to flush write-buffer if @old_inode
- * is dirty, because this will be done later on at the end of
- * 'ubifs_rename()'.
- */
- if (IS_SYNC(old_inode)) {
- sync = IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir);
- if (unlink && IS_SYNC(new_inode))
- sync = 1;
- }
- err = ubifs_jnl_rename(c, old_dir, old_dentry, new_dir, new_dentry,
- sync);
- if (err)
- goto out_cancel;
-
- unlock_3_inodes(old_dir, new_dir, new_inode);
- ubifs_release_budget(c, &req);
-
- mutex_lock(&old_inode_ui->ui_mutex);
- release = old_inode_ui->dirty;
- mark_inode_dirty_sync(old_inode);
- mutex_unlock(&old_inode_ui->ui_mutex);
-
- if (release)
- ubifs_release_budget(c, &ino_req);
- if (IS_SYNC(old_inode))
- err = old_inode->i_sb->s_op->write_inode(old_inode, NULL);
- return err;
-
-out_cancel:
- if (unlink) {
- set_nlink(new_inode, saved_nlink);
- } else {
- new_dir->i_size -= new_sz;
- ubifs_inode(new_dir)->ui_size = new_dir->i_size;
- }
- old_dir->i_size += old_sz;
- ubifs_inode(old_dir)->ui_size = old_dir->i_size;
- if (is_dir) {
- if (move) {
- inc_nlink(old_dir);
- if (!unlink)
- drop_nlink(new_dir);
- } else {
- if (unlink)
- inc_nlink(old_dir);
- }
- }
- unlock_3_inodes(old_dir, new_dir, new_inode);
- ubifs_release_budget(c, &ino_req);
- ubifs_release_budget(c, &req);
- return err;
-}
-
-int ubifs_getattr(struct vfsmount *mnt, struct dentry *dentry,
- struct kstat *stat)
-{
- loff_t size;
- struct inode *inode = dentry->d_inode;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- mutex_lock(&ui->ui_mutex);
- stat->dev = inode->i_sb->s_dev;
- stat->ino = inode->i_ino;
- stat->mode = inode->i_mode;
- stat->nlink = inode->i_nlink;
- stat->uid = inode->i_uid;
- stat->gid = inode->i_gid;
- stat->rdev = inode->i_rdev;
- stat->atime = inode->i_atime;
- stat->mtime = inode->i_mtime;
- stat->ctime = inode->i_ctime;
- stat->blksize = UBIFS_BLOCK_SIZE;
- stat->size = ui->ui_size;
-
- /*
- * Unfortunately, the 'stat()' system call was designed for block
- * device based file systems, and it is not appropriate for UBIFS,
- * because UBIFS does not have notion of "block". For example, it is
- * difficult to tell how many block a directory takes - it actually
- * takes less than 300 bytes, but we have to round it to block size,
- * which introduces large mistake. This makes utilities like 'du' to
- * report completely senseless numbers. This is the reason why UBIFS
- * goes the same way as JFFS2 - it reports zero blocks for everything
- * but regular files, which makes more sense than reporting completely
- * wrong sizes.
- */
- if (S_ISREG(inode->i_mode)) {
- size = ui->xattr_size;
- size += stat->size;
- size = ALIGN(size, UBIFS_BLOCK_SIZE);
- /*
- * Note, user-space expects 512-byte blocks count irrespectively
- * of what was reported in @stat->size.
- */
- stat->blocks = size >> 9;
- } else
- stat->blocks = 0;
- mutex_unlock(&ui->ui_mutex);
- return 0;
-}
-
-const struct inode_operations ubifs_dir_inode_operations = {
- .lookup = ubifs_lookup,
- .create = ubifs_create,
- .link = ubifs_link,
- .symlink = ubifs_symlink,
- .unlink = ubifs_unlink,
- .mkdir = ubifs_mkdir,
- .rmdir = ubifs_rmdir,
- .mknod = ubifs_mknod,
- .rename = ubifs_rename,
- .setattr = ubifs_setattr,
- .getattr = ubifs_getattr,
-#ifdef CONFIG_UBIFS_FS_XATTR
- .setxattr = ubifs_setxattr,
- .getxattr = ubifs_getxattr,
- .listxattr = ubifs_listxattr,
- .removexattr = ubifs_removexattr,
-#endif
-};
-
-const struct file_operations ubifs_dir_operations = {
- .llseek = ubifs_dir_llseek,
- .release = ubifs_dir_release,
- .read = generic_read_dir,
- .readdir = ubifs_readdir,
- .fsync = ubifs_fsync,
- .unlocked_ioctl = ubifs_ioctl,
-#ifdef CONFIG_COMPAT
- .compat_ioctl = ubifs_compat_ioctl,
-#endif
-};
diff --git a/ANDROID_3.4.5/fs/ubifs/file.c b/ANDROID_3.4.5/fs/ubifs/file.c
deleted file mode 100644
index 9acb0fa3..00000000
--- a/ANDROID_3.4.5/fs/ubifs/file.c
+++ /dev/null
@@ -1,1597 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file implements VFS file and inode operations for regular files, device
- * nodes and symlinks as well as address space operations.
- *
- * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
- * the page is dirty and is used for optimization purposes - dirty pages are
- * not budgeted so the flag shows that 'ubifs_write_end()' should not release
- * the budget for this page. The @PG_checked flag is set if full budgeting is
- * required for the page e.g., when it corresponds to a file hole or it is
- * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
- * it is OK to fail in this function, and the budget is released in
- * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
- * information about how the page was budgeted, to make it possible to release
- * the budget properly.
- *
- * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
- * implement. However, this is not true for 'ubifs_writepage()', which may be
- * called with @i_mutex unlocked. For example, when pdflush is doing background
- * write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. At "normal"
- * work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. in the
- * "sys_write -> alloc_pages -> direct reclaim path". So, in 'ubifs_writepage()'
- * we are only guaranteed that the page is locked.
- *
- * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
- * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
- * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
- * set as well. However, UBIFS disables readahead.
- */
-
-#include "ubifs.h"
-#include <linux/mount.h>
-#include <linux/namei.h>
-#include <linux/slab.h>
-
-static int read_block(struct inode *inode, void *addr, unsigned int block,
- struct ubifs_data_node *dn)
-{
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- int err, len, out_len;
- union ubifs_key key;
- unsigned int dlen;
-
- data_key_init(c, &key, inode->i_ino, block);
- err = ubifs_tnc_lookup(c, &key, dn);
- if (err) {
- if (err == -ENOENT)
- /* Not found, so it must be a hole */
- memset(addr, 0, UBIFS_BLOCK_SIZE);
- return err;
- }
-
- ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
- ubifs_inode(inode)->creat_sqnum);
- len = le32_to_cpu(dn->size);
- if (len <= 0 || len > UBIFS_BLOCK_SIZE)
- goto dump;
-
- dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
- out_len = UBIFS_BLOCK_SIZE;
- err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
- le16_to_cpu(dn->compr_type));
- if (err || len != out_len)
- goto dump;
-
- /*
- * Data length can be less than a full block, even for blocks that are
- * not the last in the file (e.g., as a result of making a hole and
- * appending data). Ensure that the remainder is zeroed out.
- */
- if (len < UBIFS_BLOCK_SIZE)
- memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
-
- return 0;
-
-dump:
- ubifs_err("bad data node (block %u, inode %lu)",
- block, inode->i_ino);
- dbg_dump_node(c, dn);
- return -EINVAL;
-}
-
-static int do_readpage(struct page *page)
-{
- void *addr;
- int err = 0, i;
- unsigned int block, beyond;
- struct ubifs_data_node *dn;
- struct inode *inode = page->mapping->host;
- loff_t i_size = i_size_read(inode);
-
- dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
- inode->i_ino, page->index, i_size, page->flags);
- ubifs_assert(!PageChecked(page));
- ubifs_assert(!PagePrivate(page));
-
- addr = kmap(page);
-
- block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
- beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
- if (block >= beyond) {
- /* Reading beyond inode */
- SetPageChecked(page);
- memset(addr, 0, PAGE_CACHE_SIZE);
- goto out;
- }
-
- dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
- if (!dn) {
- err = -ENOMEM;
- goto error;
- }
-
- i = 0;
- while (1) {
- int ret;
-
- if (block >= beyond) {
- /* Reading beyond inode */
- err = -ENOENT;
- memset(addr, 0, UBIFS_BLOCK_SIZE);
- } else {
- ret = read_block(inode, addr, block, dn);
- if (ret) {
- err = ret;
- if (err != -ENOENT)
- break;
- } else if (block + 1 == beyond) {
- int dlen = le32_to_cpu(dn->size);
- int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
-
- if (ilen && ilen < dlen)
- memset(addr + ilen, 0, dlen - ilen);
- }
- }
- if (++i >= UBIFS_BLOCKS_PER_PAGE)
- break;
- block += 1;
- addr += UBIFS_BLOCK_SIZE;
- }
- if (err) {
- if (err == -ENOENT) {
- /* Not found, so it must be a hole */
- SetPageChecked(page);
- dbg_gen("hole");
- goto out_free;
- }
- ubifs_err("cannot read page %lu of inode %lu, error %d",
- page->index, inode->i_ino, err);
- goto error;
- }
-
-out_free:
- kfree(dn);
-out:
- SetPageUptodate(page);
- ClearPageError(page);
- flush_dcache_page(page);
- kunmap(page);
- return 0;
-
-error:
- kfree(dn);
- ClearPageUptodate(page);
- SetPageError(page);
- flush_dcache_page(page);
- kunmap(page);
- return err;
-}
-
-/**
- * release_new_page_budget - release budget of a new page.
- * @c: UBIFS file-system description object
- *
- * This is a helper function which releases budget corresponding to the budget
- * of one new page of data.
- */
-static void release_new_page_budget(struct ubifs_info *c)
-{
- struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
-
- ubifs_release_budget(c, &req);
-}
-
-/**
- * release_existing_page_budget - release budget of an existing page.
- * @c: UBIFS file-system description object
- *
- * This is a helper function which releases budget corresponding to the budget
- * of changing one one page of data which already exists on the flash media.
- */
-static void release_existing_page_budget(struct ubifs_info *c)
-{
- struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
-
- ubifs_release_budget(c, &req);
-}
-
-static int write_begin_slow(struct address_space *mapping,
- loff_t pos, unsigned len, struct page **pagep,
- unsigned flags)
-{
- struct inode *inode = mapping->host;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- pgoff_t index = pos >> PAGE_CACHE_SHIFT;
- struct ubifs_budget_req req = { .new_page = 1 };
- int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
- struct page *page;
-
- dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
- inode->i_ino, pos, len, inode->i_size);
-
- /*
- * At the slow path we have to budget before locking the page, because
- * budgeting may force write-back, which would wait on locked pages and
- * deadlock if we had the page locked. At this point we do not know
- * anything about the page, so assume that this is a new page which is
- * written to a hole. This corresponds to largest budget. Later the
- * budget will be amended if this is not true.
- */
- if (appending)
- /* We are appending data, budget for inode change */
- req.dirtied_ino = 1;
-
- err = ubifs_budget_space(c, &req);
- if (unlikely(err))
- return err;
-
- page = grab_cache_page_write_begin(mapping, index, flags);
- if (unlikely(!page)) {
- ubifs_release_budget(c, &req);
- return -ENOMEM;
- }
-
- if (!PageUptodate(page)) {
- if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
- SetPageChecked(page);
- else {
- err = do_readpage(page);
- if (err) {
- unlock_page(page);
- page_cache_release(page);
- return err;
- }
- }
-
- SetPageUptodate(page);
- ClearPageError(page);
- }
-
- if (PagePrivate(page))
- /*
- * The page is dirty, which means it was budgeted twice:
- * o first time the budget was allocated by the task which
- * made the page dirty and set the PG_private flag;
- * o and then we budgeted for it for the second time at the
- * very beginning of this function.
- *
- * So what we have to do is to release the page budget we
- * allocated.
- */
- release_new_page_budget(c);
- else if (!PageChecked(page))
- /*
- * We are changing a page which already exists on the media.
- * This means that changing the page does not make the amount
- * of indexing information larger, and this part of the budget
- * which we have already acquired may be released.
- */
- ubifs_convert_page_budget(c);
-
- if (appending) {
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- /*
- * 'ubifs_write_end()' is optimized from the fast-path part of
- * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
- * if data is appended.
- */
- mutex_lock(&ui->ui_mutex);
- if (ui->dirty)
- /*
- * The inode is dirty already, so we may free the
- * budget we allocated.
- */
- ubifs_release_dirty_inode_budget(c, ui);
- }
-
- *pagep = page;
- return 0;
-}
-
-/**
- * allocate_budget - allocate budget for 'ubifs_write_begin()'.
- * @c: UBIFS file-system description object
- * @page: page to allocate budget for
- * @ui: UBIFS inode object the page belongs to
- * @appending: non-zero if the page is appended
- *
- * This is a helper function for 'ubifs_write_begin()' which allocates budget
- * for the operation. The budget is allocated differently depending on whether
- * this is appending, whether the page is dirty or not, and so on. This
- * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
- * in case of success and %-ENOSPC in case of failure.
- */
-static int allocate_budget(struct ubifs_info *c, struct page *page,
- struct ubifs_inode *ui, int appending)
-{
- struct ubifs_budget_req req = { .fast = 1 };
-
- if (PagePrivate(page)) {
- if (!appending)
- /*
- * The page is dirty and we are not appending, which
- * means no budget is needed at all.
- */
- return 0;
-
- mutex_lock(&ui->ui_mutex);
- if (ui->dirty)
- /*
- * The page is dirty and we are appending, so the inode
- * has to be marked as dirty. However, it is already
- * dirty, so we do not need any budget. We may return,
- * but @ui->ui_mutex hast to be left locked because we
- * should prevent write-back from flushing the inode
- * and freeing the budget. The lock will be released in
- * 'ubifs_write_end()'.
- */
- return 0;
-
- /*
- * The page is dirty, we are appending, the inode is clean, so
- * we need to budget the inode change.
- */
- req.dirtied_ino = 1;
- } else {
- if (PageChecked(page))
- /*
- * The page corresponds to a hole and does not
- * exist on the media. So changing it makes
- * make the amount of indexing information
- * larger, and we have to budget for a new
- * page.
- */
- req.new_page = 1;
- else
- /*
- * Not a hole, the change will not add any new
- * indexing information, budget for page
- * change.
- */
- req.dirtied_page = 1;
-
- if (appending) {
- mutex_lock(&ui->ui_mutex);
- if (!ui->dirty)
- /*
- * The inode is clean but we will have to mark
- * it as dirty because we are appending. This
- * needs a budget.
- */
- req.dirtied_ino = 1;
- }
- }
-
- return ubifs_budget_space(c, &req);
-}
-
-/*
- * This function is called when a page of data is going to be written. Since
- * the page of data will not necessarily go to the flash straight away, UBIFS
- * has to reserve space on the media for it, which is done by means of
- * budgeting.
- *
- * This is the hot-path of the file-system and we are trying to optimize it as
- * much as possible. For this reasons it is split on 2 parts - slow and fast.
- *
- * There many budgeting cases:
- * o a new page is appended - we have to budget for a new page and for
- * changing the inode; however, if the inode is already dirty, there is
- * no need to budget for it;
- * o an existing clean page is changed - we have budget for it; if the page
- * does not exist on the media (a hole), we have to budget for a new
- * page; otherwise, we may budget for changing an existing page; the
- * difference between these cases is that changing an existing page does
- * not introduce anything new to the FS indexing information, so it does
- * not grow, and smaller budget is acquired in this case;
- * o an existing dirty page is changed - no need to budget at all, because
- * the page budget has been acquired by earlier, when the page has been
- * marked dirty.
- *
- * UBIFS budgeting sub-system may force write-back if it thinks there is no
- * space to reserve. This imposes some locking restrictions and makes it
- * impossible to take into account the above cases, and makes it impossible to
- * optimize budgeting.
- *
- * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
- * there is a plenty of flash space and the budget will be acquired quickly,
- * without forcing write-back. The slow path does not make this assumption.
- */
-static int ubifs_write_begin(struct file *file, struct address_space *mapping,
- loff_t pos, unsigned len, unsigned flags,
- struct page **pagep, void **fsdata)
-{
- struct inode *inode = mapping->host;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- struct ubifs_inode *ui = ubifs_inode(inode);
- pgoff_t index = pos >> PAGE_CACHE_SHIFT;
- int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
- int skipped_read = 0;
- struct page *page;
-
- ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
- ubifs_assert(!c->ro_media && !c->ro_mount);
-
- if (unlikely(c->ro_error))
- return -EROFS;
-
- /* Try out the fast-path part first */
- page = grab_cache_page_write_begin(mapping, index, flags);
- if (unlikely(!page))
- return -ENOMEM;
-
- if (!PageUptodate(page)) {
- /* The page is not loaded from the flash */
- if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
- /*
- * We change whole page so no need to load it. But we
- * do not know whether this page exists on the media or
- * not, so we assume the latter because it requires
- * larger budget. The assumption is that it is better
- * to budget a bit more than to read the page from the
- * media. Thus, we are setting the @PG_checked flag
- * here.
- */
- SetPageChecked(page);
- skipped_read = 1;
- } else {
- err = do_readpage(page);
- if (err) {
- unlock_page(page);
- page_cache_release(page);
- return err;
- }
- }
-
- SetPageUptodate(page);
- ClearPageError(page);
- }
-
- err = allocate_budget(c, page, ui, appending);
- if (unlikely(err)) {
- ubifs_assert(err == -ENOSPC);
- /*
- * If we skipped reading the page because we were going to
- * write all of it, then it is not up to date.
- */
- if (skipped_read) {
- ClearPageChecked(page);
- ClearPageUptodate(page);
- }
- /*
- * Budgeting failed which means it would have to force
- * write-back but didn't, because we set the @fast flag in the
- * request. Write-back cannot be done now, while we have the
- * page locked, because it would deadlock. Unlock and free
- * everything and fall-back to slow-path.
- */
- if (appending) {
- ubifs_assert(mutex_is_locked(&ui->ui_mutex));
- mutex_unlock(&ui->ui_mutex);
- }
- unlock_page(page);
- page_cache_release(page);
-
- return write_begin_slow(mapping, pos, len, pagep, flags);
- }
-
- /*
- * Whee, we acquired budgeting quickly - without involving
- * garbage-collection, committing or forcing write-back. We return
- * with @ui->ui_mutex locked if we are appending pages, and unlocked
- * otherwise. This is an optimization (slightly hacky though).
- */
- *pagep = page;
- return 0;
-
-}
-
-/**
- * cancel_budget - cancel budget.
- * @c: UBIFS file-system description object
- * @page: page to cancel budget for
- * @ui: UBIFS inode object the page belongs to
- * @appending: non-zero if the page is appended
- *
- * This is a helper function for a page write operation. It unlocks the
- * @ui->ui_mutex in case of appending.
- */
-static void cancel_budget(struct ubifs_info *c, struct page *page,
- struct ubifs_inode *ui, int appending)
-{
- if (appending) {
- if (!ui->dirty)
- ubifs_release_dirty_inode_budget(c, ui);
- mutex_unlock(&ui->ui_mutex);
- }
- if (!PagePrivate(page)) {
- if (PageChecked(page))
- release_new_page_budget(c);
- else
- release_existing_page_budget(c);
- }
-}
-
-static int ubifs_write_end(struct file *file, struct address_space *mapping,
- loff_t pos, unsigned len, unsigned copied,
- struct page *page, void *fsdata)
-{
- struct inode *inode = mapping->host;
- struct ubifs_inode *ui = ubifs_inode(inode);
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- loff_t end_pos = pos + len;
- int appending = !!(end_pos > inode->i_size);
-
- dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
- inode->i_ino, pos, page->index, len, copied, inode->i_size);
-
- if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
- /*
- * VFS copied less data to the page that it intended and
- * declared in its '->write_begin()' call via the @len
- * argument. If the page was not up-to-date, and @len was
- * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
- * not load it from the media (for optimization reasons). This
- * means that part of the page contains garbage. So read the
- * page now.
- */
- dbg_gen("copied %d instead of %d, read page and repeat",
- copied, len);
- cancel_budget(c, page, ui, appending);
- ClearPageChecked(page);
-
- /*
- * Return 0 to force VFS to repeat the whole operation, or the
- * error code if 'do_readpage()' fails.
- */
- copied = do_readpage(page);
- goto out;
- }
-
- if (!PagePrivate(page)) {
- SetPagePrivate(page);
- atomic_long_inc(&c->dirty_pg_cnt);
- __set_page_dirty_nobuffers(page);
- }
-
- if (appending) {
- i_size_write(inode, end_pos);
- ui->ui_size = end_pos;
- /*
- * Note, we do not set @I_DIRTY_PAGES (which means that the
- * inode has dirty pages), this has been done in
- * '__set_page_dirty_nobuffers()'.
- */
- __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
- ubifs_assert(mutex_is_locked(&ui->ui_mutex));
- mutex_unlock(&ui->ui_mutex);
- }
-
-out:
- unlock_page(page);
- page_cache_release(page);
- return copied;
-}
-
-/**
- * populate_page - copy data nodes into a page for bulk-read.
- * @c: UBIFS file-system description object
- * @page: page
- * @bu: bulk-read information
- * @n: next zbranch slot
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int populate_page(struct ubifs_info *c, struct page *page,
- struct bu_info *bu, int *n)
-{
- int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
- struct inode *inode = page->mapping->host;
- loff_t i_size = i_size_read(inode);
- unsigned int page_block;
- void *addr, *zaddr;
- pgoff_t end_index;
-
- dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
- inode->i_ino, page->index, i_size, page->flags);
-
- addr = zaddr = kmap(page);
-
- end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
- if (!i_size || page->index > end_index) {
- hole = 1;
- memset(addr, 0, PAGE_CACHE_SIZE);
- goto out_hole;
- }
-
- page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
- while (1) {
- int err, len, out_len, dlen;
-
- if (nn >= bu->cnt) {
- hole = 1;
- memset(addr, 0, UBIFS_BLOCK_SIZE);
- } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
- struct ubifs_data_node *dn;
-
- dn = bu->buf + (bu->zbranch[nn].offs - offs);
-
- ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
- ubifs_inode(inode)->creat_sqnum);
-
- len = le32_to_cpu(dn->size);
- if (len <= 0 || len > UBIFS_BLOCK_SIZE)
- goto out_err;
-
- dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
- out_len = UBIFS_BLOCK_SIZE;
- err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
- le16_to_cpu(dn->compr_type));
- if (err || len != out_len)
- goto out_err;
-
- if (len < UBIFS_BLOCK_SIZE)
- memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
-
- nn += 1;
- read = (i << UBIFS_BLOCK_SHIFT) + len;
- } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
- nn += 1;
- continue;
- } else {
- hole = 1;
- memset(addr, 0, UBIFS_BLOCK_SIZE);
- }
- if (++i >= UBIFS_BLOCKS_PER_PAGE)
- break;
- addr += UBIFS_BLOCK_SIZE;
- page_block += 1;
- }
-
- if (end_index == page->index) {
- int len = i_size & (PAGE_CACHE_SIZE - 1);
-
- if (len && len < read)
- memset(zaddr + len, 0, read - len);
- }
-
-out_hole:
- if (hole) {
- SetPageChecked(page);
- dbg_gen("hole");
- }
-
- SetPageUptodate(page);
- ClearPageError(page);
- flush_dcache_page(page);
- kunmap(page);
- *n = nn;
- return 0;
-
-out_err:
- ClearPageUptodate(page);
- SetPageError(page);
- flush_dcache_page(page);
- kunmap(page);
- ubifs_err("bad data node (block %u, inode %lu)",
- page_block, inode->i_ino);
- return -EINVAL;
-}
-
-/**
- * ubifs_do_bulk_read - do bulk-read.
- * @c: UBIFS file-system description object
- * @bu: bulk-read information
- * @page1: first page to read
- *
- * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
- */
-static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
- struct page *page1)
-{
- pgoff_t offset = page1->index, end_index;
- struct address_space *mapping = page1->mapping;
- struct inode *inode = mapping->host;
- struct ubifs_inode *ui = ubifs_inode(inode);
- int err, page_idx, page_cnt, ret = 0, n = 0;
- int allocate = bu->buf ? 0 : 1;
- loff_t isize;
-
- err = ubifs_tnc_get_bu_keys(c, bu);
- if (err)
- goto out_warn;
-
- if (bu->eof) {
- /* Turn off bulk-read at the end of the file */
- ui->read_in_a_row = 1;
- ui->bulk_read = 0;
- }
-
- page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
- if (!page_cnt) {
- /*
- * This happens when there are multiple blocks per page and the
- * blocks for the first page we are looking for, are not
- * together. If all the pages were like this, bulk-read would
- * reduce performance, so we turn it off for a while.
- */
- goto out_bu_off;
- }
-
- if (bu->cnt) {
- if (allocate) {
- /*
- * Allocate bulk-read buffer depending on how many data
- * nodes we are going to read.
- */
- bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
- bu->zbranch[bu->cnt - 1].len -
- bu->zbranch[0].offs;
- ubifs_assert(bu->buf_len > 0);
- ubifs_assert(bu->buf_len <= c->leb_size);
- bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
- if (!bu->buf)
- goto out_bu_off;
- }
-
- err = ubifs_tnc_bulk_read(c, bu);
- if (err)
- goto out_warn;
- }
-
- err = populate_page(c, page1, bu, &n);
- if (err)
- goto out_warn;
-
- unlock_page(page1);
- ret = 1;
-
- isize = i_size_read(inode);
- if (isize == 0)
- goto out_free;
- end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
-
- for (page_idx = 1; page_idx < page_cnt; page_idx++) {
- pgoff_t page_offset = offset + page_idx;
- struct page *page;
-
- if (page_offset > end_index)
- break;
- page = find_or_create_page(mapping, page_offset,
- GFP_NOFS | __GFP_COLD);
- if (!page)
- break;
- if (!PageUptodate(page))
- err = populate_page(c, page, bu, &n);
- unlock_page(page);
- page_cache_release(page);
- if (err)
- break;
- }
-
- ui->last_page_read = offset + page_idx - 1;
-
-out_free:
- if (allocate)
- kfree(bu->buf);
- return ret;
-
-out_warn:
- ubifs_warn("ignoring error %d and skipping bulk-read", err);
- goto out_free;
-
-out_bu_off:
- ui->read_in_a_row = ui->bulk_read = 0;
- goto out_free;
-}
-
-/**
- * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
- * @page: page from which to start bulk-read.
- *
- * Some flash media are capable of reading sequentially at faster rates. UBIFS
- * bulk-read facility is designed to take advantage of that, by reading in one
- * go consecutive data nodes that are also located consecutively in the same
- * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
- */
-static int ubifs_bulk_read(struct page *page)
-{
- struct inode *inode = page->mapping->host;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- struct ubifs_inode *ui = ubifs_inode(inode);
- pgoff_t index = page->index, last_page_read = ui->last_page_read;
- struct bu_info *bu;
- int err = 0, allocated = 0;
-
- ui->last_page_read = index;
- if (!c->bulk_read)
- return 0;
-
- /*
- * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
- * so don't bother if we cannot lock the mutex.
- */
- if (!mutex_trylock(&ui->ui_mutex))
- return 0;
-
- if (index != last_page_read + 1) {
- /* Turn off bulk-read if we stop reading sequentially */
- ui->read_in_a_row = 1;
- if (ui->bulk_read)
- ui->bulk_read = 0;
- goto out_unlock;
- }
-
- if (!ui->bulk_read) {
- ui->read_in_a_row += 1;
- if (ui->read_in_a_row < 3)
- goto out_unlock;
- /* Three reads in a row, so switch on bulk-read */
- ui->bulk_read = 1;
- }
-
- /*
- * If possible, try to use pre-allocated bulk-read information, which
- * is protected by @c->bu_mutex.
- */
- if (mutex_trylock(&c->bu_mutex))
- bu = &c->bu;
- else {
- bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
- if (!bu)
- goto out_unlock;
-
- bu->buf = NULL;
- allocated = 1;
- }
-
- bu->buf_len = c->max_bu_buf_len;
- data_key_init(c, &bu->key, inode->i_ino,
- page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
- err = ubifs_do_bulk_read(c, bu, page);
-
- if (!allocated)
- mutex_unlock(&c->bu_mutex);
- else
- kfree(bu);
-
-out_unlock:
- mutex_unlock(&ui->ui_mutex);
- return err;
-}
-
-static int ubifs_readpage(struct file *file, struct page *page)
-{
- if (ubifs_bulk_read(page))
- return 0;
- do_readpage(page);
- unlock_page(page);
- return 0;
-}
-
-static int do_writepage(struct page *page, int len)
-{
- int err = 0, i, blen;
- unsigned int block;
- void *addr;
- union ubifs_key key;
- struct inode *inode = page->mapping->host;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
-
-#ifdef UBIFS_DEBUG
- spin_lock(&ui->ui_lock);
- ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
- spin_unlock(&ui->ui_lock);
-#endif
-
- /* Update radix tree tags */
- set_page_writeback(page);
-
- addr = kmap(page);
- block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
- i = 0;
- while (len) {
- blen = min_t(int, len, UBIFS_BLOCK_SIZE);
- data_key_init(c, &key, inode->i_ino, block);
- err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
- if (err)
- break;
- if (++i >= UBIFS_BLOCKS_PER_PAGE)
- break;
- block += 1;
- addr += blen;
- len -= blen;
- }
- if (err) {
- SetPageError(page);
- ubifs_err("cannot write page %lu of inode %lu, error %d",
- page->index, inode->i_ino, err);
- ubifs_ro_mode(c, err);
- }
-
- ubifs_assert(PagePrivate(page));
- if (PageChecked(page))
- release_new_page_budget(c);
- else
- release_existing_page_budget(c);
-
- atomic_long_dec(&c->dirty_pg_cnt);
- ClearPagePrivate(page);
- ClearPageChecked(page);
-
- kunmap(page);
- unlock_page(page);
- end_page_writeback(page);
- return err;
-}
-
-/*
- * When writing-back dirty inodes, VFS first writes-back pages belonging to the
- * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
- * situation when a we have an inode with size 0, then a megabyte of data is
- * appended to the inode, then write-back starts and flushes some amount of the
- * dirty pages, the journal becomes full, commit happens and finishes, and then
- * an unclean reboot happens. When the file system is mounted next time, the
- * inode size would still be 0, but there would be many pages which are beyond
- * the inode size, they would be indexed and consume flash space. Because the
- * journal has been committed, the replay would not be able to detect this
- * situation and correct the inode size. This means UBIFS would have to scan
- * whole index and correct all inode sizes, which is long an unacceptable.
- *
- * To prevent situations like this, UBIFS writes pages back only if they are
- * within the last synchronized inode size, i.e. the size which has been
- * written to the flash media last time. Otherwise, UBIFS forces inode
- * write-back, thus making sure the on-flash inode contains current inode size,
- * and then keeps writing pages back.
- *
- * Some locking issues explanation. 'ubifs_writepage()' first is called with
- * the page locked, and it locks @ui_mutex. However, write-back does take inode
- * @i_mutex, which means other VFS operations may be run on this inode at the
- * same time. And the problematic one is truncation to smaller size, from where
- * we have to call 'truncate_setsize()', which first changes @inode->i_size,
- * then drops the truncated pages. And while dropping the pages, it takes the
- * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
- * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
- * This means that @inode->i_size is changed while @ui_mutex is unlocked.
- *
- * XXX(truncate): with the new truncate sequence this is not true anymore,
- * and the calls to truncate_setsize can be move around freely. They should
- * be moved to the very end of the truncate sequence.
- *
- * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
- * inode size. How do we do this if @inode->i_size may became smaller while we
- * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
- * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
- * internally and updates it under @ui_mutex.
- *
- * Q: why we do not worry that if we race with truncation, we may end up with a
- * situation when the inode is truncated while we are in the middle of
- * 'do_writepage()', so we do write beyond inode size?
- * A: If we are in the middle of 'do_writepage()', truncation would be locked
- * on the page lock and it would not write the truncated inode node to the
- * journal before we have finished.
- */
-static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
-{
- struct inode *inode = page->mapping->host;
- struct ubifs_inode *ui = ubifs_inode(inode);
- loff_t i_size = i_size_read(inode), synced_i_size;
- pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
- int err, len = i_size & (PAGE_CACHE_SIZE - 1);
- void *kaddr;
-
- dbg_gen("ino %lu, pg %lu, pg flags %#lx",
- inode->i_ino, page->index, page->flags);
- ubifs_assert(PagePrivate(page));
-
- /* Is the page fully outside @i_size? (truncate in progress) */
- if (page->index > end_index || (page->index == end_index && !len)) {
- err = 0;
- goto out_unlock;
- }
-
- spin_lock(&ui->ui_lock);
- synced_i_size = ui->synced_i_size;
- spin_unlock(&ui->ui_lock);
-
- /* Is the page fully inside @i_size? */
- if (page->index < end_index) {
- if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
- err = inode->i_sb->s_op->write_inode(inode, NULL);
- if (err)
- goto out_unlock;
- /*
- * The inode has been written, but the write-buffer has
- * not been synchronized, so in case of an unclean
- * reboot we may end up with some pages beyond inode
- * size, but they would be in the journal (because
- * commit flushes write buffers) and recovery would deal
- * with this.
- */
- }
- return do_writepage(page, PAGE_CACHE_SIZE);
- }
-
- /*
- * The page straddles @i_size. It must be zeroed out on each and every
- * writepage invocation because it may be mmapped. "A file is mapped
- * in multiples of the page size. For a file that is not a multiple of
- * the page size, the remaining memory is zeroed when mapped, and
- * writes to that region are not written out to the file."
- */
- kaddr = kmap_atomic(page);
- memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
- flush_dcache_page(page);
- kunmap_atomic(kaddr);
-
- if (i_size > synced_i_size) {
- err = inode->i_sb->s_op->write_inode(inode, NULL);
- if (err)
- goto out_unlock;
- }
-
- return do_writepage(page, len);
-
-out_unlock:
- unlock_page(page);
- return err;
-}
-
-/**
- * do_attr_changes - change inode attributes.
- * @inode: inode to change attributes for
- * @attr: describes attributes to change
- */
-static void do_attr_changes(struct inode *inode, const struct iattr *attr)
-{
- if (attr->ia_valid & ATTR_UID)
- inode->i_uid = attr->ia_uid;
- if (attr->ia_valid & ATTR_GID)
- inode->i_gid = attr->ia_gid;
- if (attr->ia_valid & ATTR_ATIME)
- inode->i_atime = timespec_trunc(attr->ia_atime,
- inode->i_sb->s_time_gran);
- if (attr->ia_valid & ATTR_MTIME)
- inode->i_mtime = timespec_trunc(attr->ia_mtime,
- inode->i_sb->s_time_gran);
- if (attr->ia_valid & ATTR_CTIME)
- inode->i_ctime = timespec_trunc(attr->ia_ctime,
- inode->i_sb->s_time_gran);
- if (attr->ia_valid & ATTR_MODE) {
- umode_t mode = attr->ia_mode;
-
- if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
- mode &= ~S_ISGID;
- inode->i_mode = mode;
- }
-}
-
-/**
- * do_truncation - truncate an inode.
- * @c: UBIFS file-system description object
- * @inode: inode to truncate
- * @attr: inode attribute changes description
- *
- * This function implements VFS '->setattr()' call when the inode is truncated
- * to a smaller size. Returns zero in case of success and a negative error code
- * in case of failure.
- */
-static int do_truncation(struct ubifs_info *c, struct inode *inode,
- const struct iattr *attr)
-{
- int err;
- struct ubifs_budget_req req;
- loff_t old_size = inode->i_size, new_size = attr->ia_size;
- int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
- memset(&req, 0, sizeof(struct ubifs_budget_req));
-
- /*
- * If this is truncation to a smaller size, and we do not truncate on a
- * block boundary, budget for changing one data block, because the last
- * block will be re-written.
- */
- if (new_size & (UBIFS_BLOCK_SIZE - 1))
- req.dirtied_page = 1;
-
- req.dirtied_ino = 1;
- /* A funny way to budget for truncation node */
- req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
- err = ubifs_budget_space(c, &req);
- if (err) {
- /*
- * Treat truncations to zero as deletion and always allow them,
- * just like we do for '->unlink()'.
- */
- if (new_size || err != -ENOSPC)
- return err;
- budgeted = 0;
- }
-
- truncate_setsize(inode, new_size);
-
- if (offset) {
- pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
- struct page *page;
-
- page = find_lock_page(inode->i_mapping, index);
- if (page) {
- if (PageDirty(page)) {
- /*
- * 'ubifs_jnl_truncate()' will try to truncate
- * the last data node, but it contains
- * out-of-date data because the page is dirty.
- * Write the page now, so that
- * 'ubifs_jnl_truncate()' will see an already
- * truncated (and up to date) data node.
- */
- ubifs_assert(PagePrivate(page));
-
- clear_page_dirty_for_io(page);
- if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
- offset = new_size &
- (PAGE_CACHE_SIZE - 1);
- err = do_writepage(page, offset);
- page_cache_release(page);
- if (err)
- goto out_budg;
- /*
- * We could now tell 'ubifs_jnl_truncate()' not
- * to read the last block.
- */
- } else {
- /*
- * We could 'kmap()' the page and pass the data
- * to 'ubifs_jnl_truncate()' to save it from
- * having to read it.
- */
- unlock_page(page);
- page_cache_release(page);
- }
- }
- }
-
- mutex_lock(&ui->ui_mutex);
- ui->ui_size = inode->i_size;
- /* Truncation changes inode [mc]time */
- inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
- /* Other attributes may be changed at the same time as well */
- do_attr_changes(inode, attr);
- err = ubifs_jnl_truncate(c, inode, old_size, new_size);
- mutex_unlock(&ui->ui_mutex);
-
-out_budg:
- if (budgeted)
- ubifs_release_budget(c, &req);
- else {
- c->bi.nospace = c->bi.nospace_rp = 0;
- smp_wmb();
- }
- return err;
-}
-
-/**
- * do_setattr - change inode attributes.
- * @c: UBIFS file-system description object
- * @inode: inode to change attributes for
- * @attr: inode attribute changes description
- *
- * This function implements VFS '->setattr()' call for all cases except
- * truncations to smaller size. Returns zero in case of success and a negative
- * error code in case of failure.
- */
-static int do_setattr(struct ubifs_info *c, struct inode *inode,
- const struct iattr *attr)
-{
- int err, release;
- loff_t new_size = attr->ia_size;
- struct ubifs_inode *ui = ubifs_inode(inode);
- struct ubifs_budget_req req = { .dirtied_ino = 1,
- .dirtied_ino_d = ALIGN(ui->data_len, 8) };
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- if (attr->ia_valid & ATTR_SIZE) {
- dbg_gen("size %lld -> %lld", inode->i_size, new_size);
- truncate_setsize(inode, new_size);
- }
-
- mutex_lock(&ui->ui_mutex);
- if (attr->ia_valid & ATTR_SIZE) {
- /* Truncation changes inode [mc]time */
- inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
- /* 'truncate_setsize()' changed @i_size, update @ui_size */
- ui->ui_size = inode->i_size;
- }
-
- do_attr_changes(inode, attr);
-
- release = ui->dirty;
- if (attr->ia_valid & ATTR_SIZE)
- /*
- * Inode length changed, so we have to make sure
- * @I_DIRTY_DATASYNC is set.
- */
- __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
- else
- mark_inode_dirty_sync(inode);
- mutex_unlock(&ui->ui_mutex);
-
- if (release)
- ubifs_release_budget(c, &req);
- if (IS_SYNC(inode))
- err = inode->i_sb->s_op->write_inode(inode, NULL);
- return err;
-}
-
-int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
-{
- int err;
- struct inode *inode = dentry->d_inode;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
-
- dbg_gen("ino %lu, mode %#x, ia_valid %#x",
- inode->i_ino, inode->i_mode, attr->ia_valid);
- err = inode_change_ok(inode, attr);
- if (err)
- return err;
-
- err = dbg_check_synced_i_size(c, inode);
- if (err)
- return err;
-
- if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
- /* Truncation to a smaller size */
- err = do_truncation(c, inode, attr);
- else
- err = do_setattr(c, inode, attr);
-
- return err;
-}
-
-static void ubifs_invalidatepage(struct page *page, unsigned long offset)
-{
- struct inode *inode = page->mapping->host;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
-
- ubifs_assert(PagePrivate(page));
- if (offset)
- /* Partial page remains dirty */
- return;
-
- if (PageChecked(page))
- release_new_page_budget(c);
- else
- release_existing_page_budget(c);
-
- atomic_long_dec(&c->dirty_pg_cnt);
- ClearPagePrivate(page);
- ClearPageChecked(page);
-}
-
-static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
-{
- struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
-
- nd_set_link(nd, ui->data);
- return NULL;
-}
-
-int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
-{
- struct inode *inode = file->f_mapping->host;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- int err;
-
- dbg_gen("syncing inode %lu", inode->i_ino);
-
- if (c->ro_mount)
- /*
- * For some really strange reasons VFS does not filter out
- * 'fsync()' for R/O mounted file-systems as per 2.6.39.
- */
- return 0;
-
- if (c->vfs_sb->s_flags & MS_RDONLY)
- return 0;
-
- err = filemap_write_and_wait_range(inode->i_mapping, start, end);
- if (err)
- return err;
- mutex_lock(&inode->i_mutex);
-
- /* Synchronize the inode unless this is a 'datasync()' call. */
- if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
- err = inode->i_sb->s_op->write_inode(inode, NULL);
- if (err)
- goto out;
- }
-
- /*
- * Nodes related to this inode may still sit in a write-buffer. Flush
- * them.
- */
- err = ubifs_sync_wbufs_by_inode(c, inode);
-out:
- mutex_unlock(&inode->i_mutex);
- return err;
-}
-
-/**
- * mctime_update_needed - check if mtime or ctime update is needed.
- * @inode: the inode to do the check for
- * @now: current time
- *
- * This helper function checks if the inode mtime/ctime should be updated or
- * not. If current values of the time-stamps are within the UBIFS inode time
- * granularity, they are not updated. This is an optimization.
- */
-static inline int mctime_update_needed(const struct inode *inode,
- const struct timespec *now)
-{
- if (!timespec_equal(&inode->i_mtime, now) ||
- !timespec_equal(&inode->i_ctime, now))
- return 1;
- return 0;
-}
-
-/**
- * update_ctime - update mtime and ctime of an inode.
- * @c: UBIFS file-system description object
- * @inode: inode to update
- *
- * This function updates mtime and ctime of the inode if it is not equivalent to
- * current time. Returns zero in case of success and a negative error code in
- * case of failure.
- */
-static int update_mctime(struct ubifs_info *c, struct inode *inode)
-{
- struct timespec now = ubifs_current_time(inode);
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- if (mctime_update_needed(inode, &now)) {
- int err, release;
- struct ubifs_budget_req req = { .dirtied_ino = 1,
- .dirtied_ino_d = ALIGN(ui->data_len, 8) };
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- mutex_lock(&ui->ui_mutex);
- inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
- release = ui->dirty;
- mark_inode_dirty_sync(inode);
- mutex_unlock(&ui->ui_mutex);
- if (release)
- ubifs_release_budget(c, &req);
- }
-
- return 0;
-}
-
-static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
- unsigned long nr_segs, loff_t pos)
-{
- int err;
- struct inode *inode = iocb->ki_filp->f_mapping->host;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
-
- err = update_mctime(c, inode);
- if (err)
- return err;
-
- return generic_file_aio_write(iocb, iov, nr_segs, pos);
-}
-
-static int ubifs_set_page_dirty(struct page *page)
-{
- int ret;
-
- ret = __set_page_dirty_nobuffers(page);
- /*
- * An attempt to dirty a page without budgeting for it - should not
- * happen.
- */
- ubifs_assert(ret == 0);
- return ret;
-}
-
-static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
-{
- /*
- * An attempt to release a dirty page without budgeting for it - should
- * not happen.
- */
- if (PageWriteback(page))
- return 0;
- ubifs_assert(PagePrivate(page));
- ubifs_assert(0);
- ClearPagePrivate(page);
- ClearPageChecked(page);
- return 1;
-}
-
-/*
- * mmap()d file has taken write protection fault and is being made writable.
- * UBIFS must ensure page is budgeted for.
- */
-static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
- struct vm_fault *vmf)
-{
- struct page *page = vmf->page;
- struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- struct timespec now = ubifs_current_time(inode);
- struct ubifs_budget_req req = { .new_page = 1 };
- int err, update_time;
-
- dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
- i_size_read(inode));
- ubifs_assert(!c->ro_media && !c->ro_mount);
-
- if (unlikely(c->ro_error))
- return VM_FAULT_SIGBUS; /* -EROFS */
-
- /*
- * We have not locked @page so far so we may budget for changing the
- * page. Note, we cannot do this after we locked the page, because
- * budgeting may cause write-back which would cause deadlock.
- *
- * At the moment we do not know whether the page is dirty or not, so we
- * assume that it is not and budget for a new page. We could look at
- * the @PG_private flag and figure this out, but we may race with write
- * back and the page state may change by the time we lock it, so this
- * would need additional care. We do not bother with this at the
- * moment, although it might be good idea to do. Instead, we allocate
- * budget for a new page and amend it later on if the page was in fact
- * dirty.
- *
- * The budgeting-related logic of this function is similar to what we
- * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
- * for more comments.
- */
- update_time = mctime_update_needed(inode, &now);
- if (update_time)
- /*
- * We have to change inode time stamp which requires extra
- * budgeting.
- */
- req.dirtied_ino = 1;
-
- err = ubifs_budget_space(c, &req);
- if (unlikely(err)) {
- if (err == -ENOSPC)
- ubifs_warn("out of space for mmapped file "
- "(inode number %lu)", inode->i_ino);
- return VM_FAULT_SIGBUS;
- }
-
- lock_page(page);
- if (unlikely(page->mapping != inode->i_mapping ||
- page_offset(page) > i_size_read(inode))) {
- /* Page got truncated out from underneath us */
- err = -EINVAL;
- goto out_unlock;
- }
-
- if (PagePrivate(page))
- release_new_page_budget(c);
- else {
- if (!PageChecked(page))
- ubifs_convert_page_budget(c);
- SetPagePrivate(page);
- atomic_long_inc(&c->dirty_pg_cnt);
- __set_page_dirty_nobuffers(page);
- }
-
- if (update_time) {
- int release;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- mutex_lock(&ui->ui_mutex);
- inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
- release = ui->dirty;
- mark_inode_dirty_sync(inode);
- mutex_unlock(&ui->ui_mutex);
- if (release)
- ubifs_release_dirty_inode_budget(c, ui);
- }
-
- unlock_page(page);
- return 0;
-
-out_unlock:
- unlock_page(page);
- ubifs_release_budget(c, &req);
- if (err)
- err = VM_FAULT_SIGBUS;
- return err;
-}
-
-static const struct vm_operations_struct ubifs_file_vm_ops = {
- .fault = filemap_fault,
- .page_mkwrite = ubifs_vm_page_mkwrite,
-};
-
-static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
-{
- int err;
-
- err = generic_file_mmap(file, vma);
- if (err)
- return err;
- vma->vm_ops = &ubifs_file_vm_ops;
- return 0;
-}
-
-const struct address_space_operations ubifs_file_address_operations = {
- .readpage = ubifs_readpage,
- .writepage = ubifs_writepage,
- .write_begin = ubifs_write_begin,
- .write_end = ubifs_write_end,
- .invalidatepage = ubifs_invalidatepage,
- .set_page_dirty = ubifs_set_page_dirty,
- .releasepage = ubifs_releasepage,
-};
-
-const struct inode_operations ubifs_file_inode_operations = {
- .setattr = ubifs_setattr,
- .getattr = ubifs_getattr,
-#ifdef CONFIG_UBIFS_FS_XATTR
- .setxattr = ubifs_setxattr,
- .getxattr = ubifs_getxattr,
- .listxattr = ubifs_listxattr,
- .removexattr = ubifs_removexattr,
-#endif
-};
-
-const struct inode_operations ubifs_symlink_inode_operations = {
- .readlink = generic_readlink,
- .follow_link = ubifs_follow_link,
- .setattr = ubifs_setattr,
- .getattr = ubifs_getattr,
-};
-
-const struct file_operations ubifs_file_operations = {
- .llseek = generic_file_llseek,
- .read = do_sync_read,
- .write = do_sync_write,
- .aio_read = generic_file_aio_read,
- .aio_write = ubifs_aio_write,
- .mmap = ubifs_file_mmap,
- .fsync = ubifs_fsync,
- .unlocked_ioctl = ubifs_ioctl,
- .splice_read = generic_file_splice_read,
- .splice_write = generic_file_splice_write,
-#ifdef CONFIG_COMPAT
- .compat_ioctl = ubifs_compat_ioctl,
-#endif
-};
diff --git a/ANDROID_3.4.5/fs/ubifs/find.c b/ANDROID_3.4.5/fs/ubifs/find.c
deleted file mode 100644
index 2559d174..00000000
--- a/ANDROID_3.4.5/fs/ubifs/find.c
+++ /dev/null
@@ -1,977 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file contains functions for finding LEBs for various purposes e.g.
- * garbage collection. In general, lprops category heaps and lists are used
- * for fast access, falling back on scanning the LPT as a last resort.
- */
-
-#include <linux/sort.h>
-#include "ubifs.h"
-
-/**
- * struct scan_data - data provided to scan callback functions
- * @min_space: minimum number of bytes for which to scan
- * @pick_free: whether it is OK to scan for empty LEBs
- * @lnum: LEB number found is returned here
- * @exclude_index: whether to exclude index LEBs
- */
-struct scan_data {
- int min_space;
- int pick_free;
- int lnum;
- int exclude_index;
-};
-
-/**
- * valuable - determine whether LEB properties are valuable.
- * @c: the UBIFS file-system description object
- * @lprops: LEB properties
- *
- * This function return %1 if the LEB properties should be added to the LEB
- * properties tree in memory. Otherwise %0 is returned.
- */
-static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops)
-{
- int n, cat = lprops->flags & LPROPS_CAT_MASK;
- struct ubifs_lpt_heap *heap;
-
- switch (cat) {
- case LPROPS_DIRTY:
- case LPROPS_DIRTY_IDX:
- case LPROPS_FREE:
- heap = &c->lpt_heap[cat - 1];
- if (heap->cnt < heap->max_cnt)
- return 1;
- if (lprops->free + lprops->dirty >= c->dark_wm)
- return 1;
- return 0;
- case LPROPS_EMPTY:
- n = c->lst.empty_lebs + c->freeable_cnt -
- c->lst.taken_empty_lebs;
- if (n < c->lsave_cnt)
- return 1;
- return 0;
- case LPROPS_FREEABLE:
- return 1;
- case LPROPS_FRDI_IDX:
- return 1;
- }
- return 0;
-}
-
-/**
- * scan_for_dirty_cb - dirty space scan callback.
- * @c: the UBIFS file-system description object
- * @lprops: LEB properties to scan
- * @in_tree: whether the LEB properties are in main memory
- * @data: information passed to and from the caller of the scan
- *
- * This function returns a code that indicates whether the scan should continue
- * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
- * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
- * (%LPT_SCAN_STOP).
- */
-static int scan_for_dirty_cb(struct ubifs_info *c,
- const struct ubifs_lprops *lprops, int in_tree,
- struct scan_data *data)
-{
- int ret = LPT_SCAN_CONTINUE;
-
- /* Exclude LEBs that are currently in use */
- if (lprops->flags & LPROPS_TAKEN)
- return LPT_SCAN_CONTINUE;
- /* Determine whether to add these LEB properties to the tree */
- if (!in_tree && valuable(c, lprops))
- ret |= LPT_SCAN_ADD;
- /* Exclude LEBs with too little space */
- if (lprops->free + lprops->dirty < data->min_space)
- return ret;
- /* If specified, exclude index LEBs */
- if (data->exclude_index && lprops->flags & LPROPS_INDEX)
- return ret;
- /* If specified, exclude empty or freeable LEBs */
- if (lprops->free + lprops->dirty == c->leb_size) {
- if (!data->pick_free)
- return ret;
- /* Exclude LEBs with too little dirty space (unless it is empty) */
- } else if (lprops->dirty < c->dead_wm)
- return ret;
- /* Finally we found space */
- data->lnum = lprops->lnum;
- return LPT_SCAN_ADD | LPT_SCAN_STOP;
-}
-
-/**
- * scan_for_dirty - find a data LEB with free space.
- * @c: the UBIFS file-system description object
- * @min_space: minimum amount free plus dirty space the returned LEB has to
- * have
- * @pick_free: if it is OK to return a free or freeable LEB
- * @exclude_index: whether to exclude index LEBs
- *
- * This function returns a pointer to the LEB properties found or a negative
- * error code.
- */
-static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c,
- int min_space, int pick_free,
- int exclude_index)
-{
- const struct ubifs_lprops *lprops;
- struct ubifs_lpt_heap *heap;
- struct scan_data data;
- int err, i;
-
- /* There may be an LEB with enough dirty space on the free heap */
- heap = &c->lpt_heap[LPROPS_FREE - 1];
- for (i = 0; i < heap->cnt; i++) {
- lprops = heap->arr[i];
- if (lprops->free + lprops->dirty < min_space)
- continue;
- if (lprops->dirty < c->dead_wm)
- continue;
- return lprops;
- }
- /*
- * A LEB may have fallen off of the bottom of the dirty heap, and ended
- * up as uncategorized even though it has enough dirty space for us now,
- * so check the uncategorized list. N.B. neither empty nor freeable LEBs
- * can end up as uncategorized because they are kept on lists not
- * finite-sized heaps.
- */
- list_for_each_entry(lprops, &c->uncat_list, list) {
- if (lprops->flags & LPROPS_TAKEN)
- continue;
- if (lprops->free + lprops->dirty < min_space)
- continue;
- if (exclude_index && (lprops->flags & LPROPS_INDEX))
- continue;
- if (lprops->dirty < c->dead_wm)
- continue;
- return lprops;
- }
- /* We have looked everywhere in main memory, now scan the flash */
- if (c->pnodes_have >= c->pnode_cnt)
- /* All pnodes are in memory, so skip scan */
- return ERR_PTR(-ENOSPC);
- data.min_space = min_space;
- data.pick_free = pick_free;
- data.lnum = -1;
- data.exclude_index = exclude_index;
- err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
- (ubifs_lpt_scan_callback)scan_for_dirty_cb,
- &data);
- if (err)
- return ERR_PTR(err);
- ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
- c->lscan_lnum = data.lnum;
- lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
- if (IS_ERR(lprops))
- return lprops;
- ubifs_assert(lprops->lnum == data.lnum);
- ubifs_assert(lprops->free + lprops->dirty >= min_space);
- ubifs_assert(lprops->dirty >= c->dead_wm ||
- (pick_free &&
- lprops->free + lprops->dirty == c->leb_size));
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert(!exclude_index || !(lprops->flags & LPROPS_INDEX));
- return lprops;
-}
-
-/**
- * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
- * @c: the UBIFS file-system description object
- * @ret_lp: LEB properties are returned here on exit
- * @min_space: minimum amount free plus dirty space the returned LEB has to
- * have
- * @pick_free: controls whether it is OK to pick empty or index LEBs
- *
- * This function tries to find a dirty logical eraseblock which has at least
- * @min_space free and dirty space. It prefers to take an LEB from the dirty or
- * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
- * or do not have an LEB which satisfies the @min_space criteria.
- *
- * Note, LEBs which have less than dead watermark of free + dirty space are
- * never picked by this function.
- *
- * The additional @pick_free argument controls if this function has to return a
- * free or freeable LEB if one is present. For example, GC must to set it to %1,
- * when called from the journal space reservation function, because the
- * appearance of free space may coincide with the loss of enough dirty space
- * for GC to succeed anyway.
- *
- * In contrast, if the Garbage Collector is called from budgeting, it should
- * just make free space, not return LEBs which are already free or freeable.
- *
- * In addition @pick_free is set to %2 by the recovery process in order to
- * recover gc_lnum in which case an index LEB must not be returned.
- *
- * This function returns zero and the LEB properties of found dirty LEB in case
- * of success, %-ENOSPC if no dirty LEB was found and a negative error code in
- * case of other failures. The returned LEB is marked as "taken".
- */
-int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
- int min_space, int pick_free)
-{
- int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0;
- const struct ubifs_lprops *lp = NULL, *idx_lp = NULL;
- struct ubifs_lpt_heap *heap, *idx_heap;
-
- ubifs_get_lprops(c);
-
- if (pick_free) {
- int lebs, rsvd_idx_lebs = 0;
-
- spin_lock(&c->space_lock);
- lebs = c->lst.empty_lebs + c->idx_gc_cnt;
- lebs += c->freeable_cnt - c->lst.taken_empty_lebs;
-
- /*
- * Note, the index may consume more LEBs than have been reserved
- * for it. It is OK because it might be consolidated by GC.
- * But if the index takes fewer LEBs than it is reserved for it,
- * this function must avoid picking those reserved LEBs.
- */
- if (c->bi.min_idx_lebs >= c->lst.idx_lebs) {
- rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
- exclude_index = 1;
- }
- spin_unlock(&c->space_lock);
-
- /* Check if there are enough free LEBs for the index */
- if (rsvd_idx_lebs < lebs) {
- /* OK, try to find an empty LEB */
- lp = ubifs_fast_find_empty(c);
- if (lp)
- goto found;
-
- /* Or a freeable LEB */
- lp = ubifs_fast_find_freeable(c);
- if (lp)
- goto found;
- } else
- /*
- * We cannot pick free/freeable LEBs in the below code.
- */
- pick_free = 0;
- } else {
- spin_lock(&c->space_lock);
- exclude_index = (c->bi.min_idx_lebs >= c->lst.idx_lebs);
- spin_unlock(&c->space_lock);
- }
-
- /* Look on the dirty and dirty index heaps */
- heap = &c->lpt_heap[LPROPS_DIRTY - 1];
- idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
-
- if (idx_heap->cnt && !exclude_index) {
- idx_lp = idx_heap->arr[0];
- sum = idx_lp->free + idx_lp->dirty;
- /*
- * Since we reserve thrice as much space for the index than it
- * actually takes, it does not make sense to pick indexing LEBs
- * with less than, say, half LEB of dirty space. May be half is
- * not the optimal boundary - this should be tested and
- * checked. This boundary should determine how much we use
- * in-the-gaps to consolidate the index comparing to how much
- * we use garbage collector to consolidate it. The "half"
- * criteria just feels to be fine.
- */
- if (sum < min_space || sum < c->half_leb_size)
- idx_lp = NULL;
- }
-
- if (heap->cnt) {
- lp = heap->arr[0];
- if (lp->dirty + lp->free < min_space)
- lp = NULL;
- }
-
- /* Pick the LEB with most space */
- if (idx_lp && lp) {
- if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty)
- lp = idx_lp;
- } else if (idx_lp && !lp)
- lp = idx_lp;
-
- if (lp) {
- ubifs_assert(lp->free + lp->dirty >= c->dead_wm);
- goto found;
- }
-
- /* Did not find a dirty LEB on the dirty heaps, have to scan */
- dbg_find("scanning LPT for a dirty LEB");
- lp = scan_for_dirty(c, min_space, pick_free, exclude_index);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
- ubifs_assert(lp->dirty >= c->dead_wm ||
- (pick_free && lp->free + lp->dirty == c->leb_size));
-
-found:
- dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
- lp->lnum, lp->free, lp->dirty, lp->flags);
-
- lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
- lp->flags | LPROPS_TAKEN, 0);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
-
- memcpy(ret_lp, lp, sizeof(struct ubifs_lprops));
-
-out:
- ubifs_release_lprops(c);
- return err;
-}
-
-/**
- * scan_for_free_cb - free space scan callback.
- * @c: the UBIFS file-system description object
- * @lprops: LEB properties to scan
- * @in_tree: whether the LEB properties are in main memory
- * @data: information passed to and from the caller of the scan
- *
- * This function returns a code that indicates whether the scan should continue
- * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
- * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
- * (%LPT_SCAN_STOP).
- */
-static int scan_for_free_cb(struct ubifs_info *c,
- const struct ubifs_lprops *lprops, int in_tree,
- struct scan_data *data)
-{
- int ret = LPT_SCAN_CONTINUE;
-
- /* Exclude LEBs that are currently in use */
- if (lprops->flags & LPROPS_TAKEN)
- return LPT_SCAN_CONTINUE;
- /* Determine whether to add these LEB properties to the tree */
- if (!in_tree && valuable(c, lprops))
- ret |= LPT_SCAN_ADD;
- /* Exclude index LEBs */
- if (lprops->flags & LPROPS_INDEX)
- return ret;
- /* Exclude LEBs with too little space */
- if (lprops->free < data->min_space)
- return ret;
- /* If specified, exclude empty LEBs */
- if (!data->pick_free && lprops->free == c->leb_size)
- return ret;
- /*
- * LEBs that have only free and dirty space must not be allocated
- * because they may have been unmapped already or they may have data
- * that is obsolete only because of nodes that are still sitting in a
- * wbuf.
- */
- if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0)
- return ret;
- /* Finally we found space */
- data->lnum = lprops->lnum;
- return LPT_SCAN_ADD | LPT_SCAN_STOP;
-}
-
-/**
- * do_find_free_space - find a data LEB with free space.
- * @c: the UBIFS file-system description object
- * @min_space: minimum amount of free space required
- * @pick_free: whether it is OK to scan for empty LEBs
- * @squeeze: whether to try to find space in a non-empty LEB first
- *
- * This function returns a pointer to the LEB properties found or a negative
- * error code.
- */
-static
-const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c,
- int min_space, int pick_free,
- int squeeze)
-{
- const struct ubifs_lprops *lprops;
- struct ubifs_lpt_heap *heap;
- struct scan_data data;
- int err, i;
-
- if (squeeze) {
- lprops = ubifs_fast_find_free(c);
- if (lprops && lprops->free >= min_space)
- return lprops;
- }
- if (pick_free) {
- lprops = ubifs_fast_find_empty(c);
- if (lprops)
- return lprops;
- }
- if (!squeeze) {
- lprops = ubifs_fast_find_free(c);
- if (lprops && lprops->free >= min_space)
- return lprops;
- }
- /* There may be an LEB with enough free space on the dirty heap */
- heap = &c->lpt_heap[LPROPS_DIRTY - 1];
- for (i = 0; i < heap->cnt; i++) {
- lprops = heap->arr[i];
- if (lprops->free >= min_space)
- return lprops;
- }
- /*
- * A LEB may have fallen off of the bottom of the free heap, and ended
- * up as uncategorized even though it has enough free space for us now,
- * so check the uncategorized list. N.B. neither empty nor freeable LEBs
- * can end up as uncategorized because they are kept on lists not
- * finite-sized heaps.
- */
- list_for_each_entry(lprops, &c->uncat_list, list) {
- if (lprops->flags & LPROPS_TAKEN)
- continue;
- if (lprops->flags & LPROPS_INDEX)
- continue;
- if (lprops->free >= min_space)
- return lprops;
- }
- /* We have looked everywhere in main memory, now scan the flash */
- if (c->pnodes_have >= c->pnode_cnt)
- /* All pnodes are in memory, so skip scan */
- return ERR_PTR(-ENOSPC);
- data.min_space = min_space;
- data.pick_free = pick_free;
- data.lnum = -1;
- err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
- (ubifs_lpt_scan_callback)scan_for_free_cb,
- &data);
- if (err)
- return ERR_PTR(err);
- ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
- c->lscan_lnum = data.lnum;
- lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
- if (IS_ERR(lprops))
- return lprops;
- ubifs_assert(lprops->lnum == data.lnum);
- ubifs_assert(lprops->free >= min_space);
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert(!(lprops->flags & LPROPS_INDEX));
- return lprops;
-}
-
-/**
- * ubifs_find_free_space - find a data LEB with free space.
- * @c: the UBIFS file-system description object
- * @min_space: minimum amount of required free space
- * @offs: contains offset of where free space starts on exit
- * @squeeze: whether to try to find space in a non-empty LEB first
- *
- * This function looks for an LEB with at least @min_space bytes of free space.
- * It tries to find an empty LEB if possible. If no empty LEBs are available,
- * this function searches for a non-empty data LEB. The returned LEB is marked
- * as "taken".
- *
- * This function returns found LEB number in case of success, %-ENOSPC if it
- * failed to find a LEB with @min_space bytes of free space and other a negative
- * error codes in case of failure.
- */
-int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
- int squeeze)
-{
- const struct ubifs_lprops *lprops;
- int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags;
-
- dbg_find("min_space %d", min_space);
- ubifs_get_lprops(c);
-
- /* Check if there are enough empty LEBs for commit */
- spin_lock(&c->space_lock);
- if (c->bi.min_idx_lebs > c->lst.idx_lebs)
- rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
- else
- rsvd_idx_lebs = 0;
- lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
- c->lst.taken_empty_lebs;
- if (rsvd_idx_lebs < lebs)
- /*
- * OK to allocate an empty LEB, but we still don't want to go
- * looking for one if there aren't any.
- */
- if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
- pick_free = 1;
- /*
- * Because we release the space lock, we must account
- * for this allocation here. After the LEB properties
- * flags have been updated, we subtract one. Note, the
- * result of this is that lprops also decreases
- * @taken_empty_lebs in 'ubifs_change_lp()', so it is
- * off by one for a short period of time which may
- * introduce a small disturbance to budgeting
- * calculations, but this is harmless because at the
- * worst case this would make the budgeting subsystem
- * be more pessimistic than needed.
- *
- * Fundamentally, this is about serialization of the
- * budgeting and lprops subsystems. We could make the
- * @space_lock a mutex and avoid dropping it before
- * calling 'ubifs_change_lp()', but mutex is more
- * heavy-weight, and we want budgeting to be as fast as
- * possible.
- */
- c->lst.taken_empty_lebs += 1;
- }
- spin_unlock(&c->space_lock);
-
- lprops = do_find_free_space(c, min_space, pick_free, squeeze);
- if (IS_ERR(lprops)) {
- err = PTR_ERR(lprops);
- goto out;
- }
-
- lnum = lprops->lnum;
- flags = lprops->flags | LPROPS_TAKEN;
-
- lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0);
- if (IS_ERR(lprops)) {
- err = PTR_ERR(lprops);
- goto out;
- }
-
- if (pick_free) {
- spin_lock(&c->space_lock);
- c->lst.taken_empty_lebs -= 1;
- spin_unlock(&c->space_lock);
- }
-
- *offs = c->leb_size - lprops->free;
- ubifs_release_lprops(c);
-
- if (*offs == 0) {
- /*
- * Ensure that empty LEBs have been unmapped. They may not have
- * been, for example, because of an unclean unmount. Also
- * LEBs that were freeable LEBs (free + dirty == leb_size) will
- * not have been unmapped.
- */
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- }
-
- dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs);
- ubifs_assert(*offs <= c->leb_size - min_space);
- return lnum;
-
-out:
- if (pick_free) {
- spin_lock(&c->space_lock);
- c->lst.taken_empty_lebs -= 1;
- spin_unlock(&c->space_lock);
- }
- ubifs_release_lprops(c);
- return err;
-}
-
-/**
- * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
- * @c: the UBIFS file-system description object
- * @lprops: LEB properties to scan
- * @in_tree: whether the LEB properties are in main memory
- * @data: information passed to and from the caller of the scan
- *
- * This function returns a code that indicates whether the scan should continue
- * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
- * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
- * (%LPT_SCAN_STOP).
- */
-static int scan_for_idx_cb(struct ubifs_info *c,
- const struct ubifs_lprops *lprops, int in_tree,
- struct scan_data *data)
-{
- int ret = LPT_SCAN_CONTINUE;
-
- /* Exclude LEBs that are currently in use */
- if (lprops->flags & LPROPS_TAKEN)
- return LPT_SCAN_CONTINUE;
- /* Determine whether to add these LEB properties to the tree */
- if (!in_tree && valuable(c, lprops))
- ret |= LPT_SCAN_ADD;
- /* Exclude index LEBS */
- if (lprops->flags & LPROPS_INDEX)
- return ret;
- /* Exclude LEBs that cannot be made empty */
- if (lprops->free + lprops->dirty != c->leb_size)
- return ret;
- /*
- * We are allocating for the index so it is safe to allocate LEBs with
- * only free and dirty space, because write buffers are sync'd at commit
- * start.
- */
- data->lnum = lprops->lnum;
- return LPT_SCAN_ADD | LPT_SCAN_STOP;
-}
-
-/**
- * scan_for_leb_for_idx - scan for a free LEB for the index.
- * @c: the UBIFS file-system description object
- */
-static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
- struct scan_data data;
- int err;
-
- data.lnum = -1;
- err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
- (ubifs_lpt_scan_callback)scan_for_idx_cb,
- &data);
- if (err)
- return ERR_PTR(err);
- ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
- c->lscan_lnum = data.lnum;
- lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
- if (IS_ERR(lprops))
- return lprops;
- ubifs_assert(lprops->lnum == data.lnum);
- ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert(!(lprops->flags & LPROPS_INDEX));
- return lprops;
-}
-
-/**
- * ubifs_find_free_leb_for_idx - find a free LEB for the index.
- * @c: the UBIFS file-system description object
- *
- * This function looks for a free LEB and returns that LEB number. The returned
- * LEB is marked as "taken", "index".
- *
- * Only empty LEBs are allocated. This is for two reasons. First, the commit
- * calculates the number of LEBs to allocate based on the assumption that they
- * will be empty. Secondly, free space at the end of an index LEB is not
- * guaranteed to be empty because it may have been used by the in-the-gaps
- * method prior to an unclean unmount.
- *
- * If no LEB is found %-ENOSPC is returned. For other failures another negative
- * error code is returned.
- */
-int ubifs_find_free_leb_for_idx(struct ubifs_info *c)
-{
- const struct ubifs_lprops *lprops;
- int lnum = -1, err, flags;
-
- ubifs_get_lprops(c);
-
- lprops = ubifs_fast_find_empty(c);
- if (!lprops) {
- lprops = ubifs_fast_find_freeable(c);
- if (!lprops) {
- ubifs_assert(c->freeable_cnt == 0);
- if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
- lprops = scan_for_leb_for_idx(c);
- if (IS_ERR(lprops)) {
- err = PTR_ERR(lprops);
- goto out;
- }
- }
- }
- }
-
- if (!lprops) {
- err = -ENOSPC;
- goto out;
- }
-
- lnum = lprops->lnum;
-
- dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
- lnum, lprops->free, lprops->dirty, lprops->flags);
-
- flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX;
- lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0);
- if (IS_ERR(lprops)) {
- err = PTR_ERR(lprops);
- goto out;
- }
-
- ubifs_release_lprops(c);
-
- /*
- * Ensure that empty LEBs have been unmapped. They may not have been,
- * for example, because of an unclean unmount. Also LEBs that were
- * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
- */
- err = ubifs_leb_unmap(c, lnum);
- if (err) {
- ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
- LPROPS_TAKEN | LPROPS_INDEX, 0);
- return err;
- }
-
- return lnum;
-
-out:
- ubifs_release_lprops(c);
- return err;
-}
-
-static int cmp_dirty_idx(const struct ubifs_lprops **a,
- const struct ubifs_lprops **b)
-{
- const struct ubifs_lprops *lpa = *a;
- const struct ubifs_lprops *lpb = *b;
-
- return lpa->dirty + lpa->free - lpb->dirty - lpb->free;
-}
-
-static void swap_dirty_idx(struct ubifs_lprops **a, struct ubifs_lprops **b,
- int size)
-{
- struct ubifs_lprops *t = *a;
-
- *a = *b;
- *b = t;
-}
-
-/**
- * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
- * @c: the UBIFS file-system description object
- *
- * This function is called each commit to create an array of LEB numbers of
- * dirty index LEBs sorted in order of dirty and free space. This is used by
- * the in-the-gaps method of TNC commit.
- */
-int ubifs_save_dirty_idx_lnums(struct ubifs_info *c)
-{
- int i;
-
- ubifs_get_lprops(c);
- /* Copy the LPROPS_DIRTY_IDX heap */
- c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt;
- memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr,
- sizeof(void *) * c->dirty_idx.cnt);
- /* Sort it so that the dirtiest is now at the end */
- sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *),
- (int (*)(const void *, const void *))cmp_dirty_idx,
- (void (*)(void *, void *, int))swap_dirty_idx);
- dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt);
- if (c->dirty_idx.cnt)
- dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
- c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum,
- c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty,
- c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free);
- /* Replace the lprops pointers with LEB numbers */
- for (i = 0; i < c->dirty_idx.cnt; i++)
- c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum;
- ubifs_release_lprops(c);
- return 0;
-}
-
-/**
- * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
- * @c: the UBIFS file-system description object
- * @lprops: LEB properties to scan
- * @in_tree: whether the LEB properties are in main memory
- * @data: information passed to and from the caller of the scan
- *
- * This function returns a code that indicates whether the scan should continue
- * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
- * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
- * (%LPT_SCAN_STOP).
- */
-static int scan_dirty_idx_cb(struct ubifs_info *c,
- const struct ubifs_lprops *lprops, int in_tree,
- struct scan_data *data)
-{
- int ret = LPT_SCAN_CONTINUE;
-
- /* Exclude LEBs that are currently in use */
- if (lprops->flags & LPROPS_TAKEN)
- return LPT_SCAN_CONTINUE;
- /* Determine whether to add these LEB properties to the tree */
- if (!in_tree && valuable(c, lprops))
- ret |= LPT_SCAN_ADD;
- /* Exclude non-index LEBs */
- if (!(lprops->flags & LPROPS_INDEX))
- return ret;
- /* Exclude LEBs with too little space */
- if (lprops->free + lprops->dirty < c->min_idx_node_sz)
- return ret;
- /* Finally we found space */
- data->lnum = lprops->lnum;
- return LPT_SCAN_ADD | LPT_SCAN_STOP;
-}
-
-/**
- * find_dirty_idx_leb - find a dirty index LEB.
- * @c: the UBIFS file-system description object
- *
- * This function returns LEB number upon success and a negative error code upon
- * failure. In particular, -ENOSPC is returned if a dirty index LEB is not
- * found.
- *
- * Note that this function scans the entire LPT but it is called very rarely.
- */
-static int find_dirty_idx_leb(struct ubifs_info *c)
-{
- const struct ubifs_lprops *lprops;
- struct ubifs_lpt_heap *heap;
- struct scan_data data;
- int err, i, ret;
-
- /* Check all structures in memory first */
- data.lnum = -1;
- heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
- for (i = 0; i < heap->cnt; i++) {
- lprops = heap->arr[i];
- ret = scan_dirty_idx_cb(c, lprops, 1, &data);
- if (ret & LPT_SCAN_STOP)
- goto found;
- }
- list_for_each_entry(lprops, &c->frdi_idx_list, list) {
- ret = scan_dirty_idx_cb(c, lprops, 1, &data);
- if (ret & LPT_SCAN_STOP)
- goto found;
- }
- list_for_each_entry(lprops, &c->uncat_list, list) {
- ret = scan_dirty_idx_cb(c, lprops, 1, &data);
- if (ret & LPT_SCAN_STOP)
- goto found;
- }
- if (c->pnodes_have >= c->pnode_cnt)
- /* All pnodes are in memory, so skip scan */
- return -ENOSPC;
- err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
- (ubifs_lpt_scan_callback)scan_dirty_idx_cb,
- &data);
- if (err)
- return err;
-found:
- ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
- c->lscan_lnum = data.lnum;
- lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
- if (IS_ERR(lprops))
- return PTR_ERR(lprops);
- ubifs_assert(lprops->lnum == data.lnum);
- ubifs_assert(lprops->free + lprops->dirty >= c->min_idx_node_sz);
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert((lprops->flags & LPROPS_INDEX));
-
- dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
- lprops->lnum, lprops->free, lprops->dirty, lprops->flags);
-
- lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC,
- lprops->flags | LPROPS_TAKEN, 0);
- if (IS_ERR(lprops))
- return PTR_ERR(lprops);
-
- return lprops->lnum;
-}
-
-/**
- * get_idx_gc_leb - try to get a LEB number from trivial GC.
- * @c: the UBIFS file-system description object
- */
-static int get_idx_gc_leb(struct ubifs_info *c)
-{
- const struct ubifs_lprops *lp;
- int err, lnum;
-
- err = ubifs_get_idx_gc_leb(c);
- if (err < 0)
- return err;
- lnum = err;
- /*
- * The LEB was due to be unmapped after the commit but
- * it is needed now for this commit.
- */
- lp = ubifs_lpt_lookup_dirty(c, lnum);
- if (IS_ERR(lp))
- return PTR_ERR(lp);
- lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
- lp->flags | LPROPS_INDEX, -1);
- if (IS_ERR(lp))
- return PTR_ERR(lp);
- dbg_find("LEB %d, dirty %d and free %d flags %#x",
- lp->lnum, lp->dirty, lp->free, lp->flags);
- return lnum;
-}
-
-/**
- * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
- * @c: the UBIFS file-system description object
- */
-static int find_dirtiest_idx_leb(struct ubifs_info *c)
-{
- const struct ubifs_lprops *lp;
- int lnum;
-
- while (1) {
- if (!c->dirty_idx.cnt)
- return -ENOSPC;
- /* The lprops pointers were replaced by LEB numbers */
- lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt];
- lp = ubifs_lpt_lookup(c, lnum);
- if (IS_ERR(lp))
- return PTR_ERR(lp);
- if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX))
- continue;
- lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
- lp->flags | LPROPS_TAKEN, 0);
- if (IS_ERR(lp))
- return PTR_ERR(lp);
- break;
- }
- dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty,
- lp->free, lp->flags);
- ubifs_assert(lp->flags | LPROPS_TAKEN);
- ubifs_assert(lp->flags | LPROPS_INDEX);
- return lnum;
-}
-
-/**
- * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
- * @c: the UBIFS file-system description object
- *
- * This function attempts to find an untaken index LEB with the most free and
- * dirty space that can be used without overwriting index nodes that were in the
- * last index committed.
- */
-int ubifs_find_dirty_idx_leb(struct ubifs_info *c)
-{
- int err;
-
- ubifs_get_lprops(c);
-
- /*
- * We made an array of the dirtiest index LEB numbers as at the start of
- * last commit. Try that array first.
- */
- err = find_dirtiest_idx_leb(c);
-
- /* Next try scanning the entire LPT */
- if (err == -ENOSPC)
- err = find_dirty_idx_leb(c);
-
- /* Finally take any index LEBs awaiting trivial GC */
- if (err == -ENOSPC)
- err = get_idx_gc_leb(c);
-
- ubifs_release_lprops(c);
- return err;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/gc.c b/ANDROID_3.4.5/fs/ubifs/gc.c
deleted file mode 100644
index ded29f62..00000000
--- a/ANDROID_3.4.5/fs/ubifs/gc.c
+++ /dev/null
@@ -1,985 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements garbage collection. The procedure for garbage collection
- * is different depending on whether a LEB as an index LEB (contains index
- * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
- * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
- * nodes to the journal, at which point the garbage-collected LEB is free to be
- * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
- * dirty in the TNC, and after the next commit, the garbage-collected LEB is
- * to be reused. Garbage collection will cause the number of dirty index nodes
- * to grow, however sufficient space is reserved for the index to ensure the
- * commit will never run out of space.
- *
- * Notes about dead watermark. At current UBIFS implementation we assume that
- * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
- * and not worth garbage-collecting. The dead watermark is one min. I/O unit
- * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
- * Garbage Collector has to synchronize the GC head's write buffer before
- * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
- * actually reclaim even very small pieces of dirty space by garbage collecting
- * enough dirty LEBs, but we do not bother doing this at this implementation.
- *
- * Notes about dark watermark. The results of GC work depends on how big are
- * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
- * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
- * have to waste large pieces of free space at the end of LEB B, because nodes
- * from LEB A would not fit. And the worst situation is when all nodes are of
- * maximum size. So dark watermark is the amount of free + dirty space in LEB
- * which are guaranteed to be reclaimable. If LEB has less space, the GC might
- * be unable to reclaim it. So, LEBs with free + dirty greater than dark
- * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
- * good, and GC takes extra care when moving them.
- */
-
-#include <linux/slab.h>
-#include <linux/pagemap.h>
-#include <linux/list_sort.h>
-#include "ubifs.h"
-
-/*
- * GC may need to move more than one LEB to make progress. The below constants
- * define "soft" and "hard" limits on the number of LEBs the garbage collector
- * may move.
- */
-#define SOFT_LEBS_LIMIT 4
-#define HARD_LEBS_LIMIT 32
-
-/**
- * switch_gc_head - switch the garbage collection journal head.
- * @c: UBIFS file-system description object
- * @buf: buffer to write
- * @len: length of the buffer to write
- * @lnum: LEB number written is returned here
- * @offs: offset written is returned here
- *
- * This function switch the GC head to the next LEB which is reserved in
- * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
- * and other negative error code in case of failures.
- */
-static int switch_gc_head(struct ubifs_info *c)
-{
- int err, gc_lnum = c->gc_lnum;
- struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
-
- ubifs_assert(gc_lnum != -1);
- dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
- wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
- c->leb_size - wbuf->offs - wbuf->used);
-
- err = ubifs_wbuf_sync_nolock(wbuf);
- if (err)
- return err;
-
- /*
- * The GC write-buffer was synchronized, we may safely unmap
- * 'c->gc_lnum'.
- */
- err = ubifs_leb_unmap(c, gc_lnum);
- if (err)
- return err;
-
- err = ubifs_wbuf_sync_nolock(wbuf);
- if (err)
- return err;
-
- err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
- if (err)
- return err;
-
- c->gc_lnum = -1;
- err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
- return err;
-}
-
-/**
- * data_nodes_cmp - compare 2 data nodes.
- * @priv: UBIFS file-system description object
- * @a: first data node
- * @a: second data node
- *
- * This function compares data nodes @a and @b. Returns %1 if @a has greater
- * inode or block number, and %-1 otherwise.
- */
-static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
-{
- ino_t inuma, inumb;
- struct ubifs_info *c = priv;
- struct ubifs_scan_node *sa, *sb;
-
- cond_resched();
- if (a == b)
- return 0;
-
- sa = list_entry(a, struct ubifs_scan_node, list);
- sb = list_entry(b, struct ubifs_scan_node, list);
-
- ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
- ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
- ubifs_assert(sa->type == UBIFS_DATA_NODE);
- ubifs_assert(sb->type == UBIFS_DATA_NODE);
-
- inuma = key_inum(c, &sa->key);
- inumb = key_inum(c, &sb->key);
-
- if (inuma == inumb) {
- unsigned int blka = key_block(c, &sa->key);
- unsigned int blkb = key_block(c, &sb->key);
-
- if (blka <= blkb)
- return -1;
- } else if (inuma <= inumb)
- return -1;
-
- return 1;
-}
-
-/*
- * nondata_nodes_cmp - compare 2 non-data nodes.
- * @priv: UBIFS file-system description object
- * @a: first node
- * @a: second node
- *
- * This function compares nodes @a and @b. It makes sure that inode nodes go
- * first and sorted by length in descending order. Directory entry nodes go
- * after inode nodes and are sorted in ascending hash valuer order.
- */
-static int nondata_nodes_cmp(void *priv, struct list_head *a,
- struct list_head *b)
-{
- ino_t inuma, inumb;
- struct ubifs_info *c = priv;
- struct ubifs_scan_node *sa, *sb;
-
- cond_resched();
- if (a == b)
- return 0;
-
- sa = list_entry(a, struct ubifs_scan_node, list);
- sb = list_entry(b, struct ubifs_scan_node, list);
-
- ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
- key_type(c, &sb->key) != UBIFS_DATA_KEY);
- ubifs_assert(sa->type != UBIFS_DATA_NODE &&
- sb->type != UBIFS_DATA_NODE);
-
- /* Inodes go before directory entries */
- if (sa->type == UBIFS_INO_NODE) {
- if (sb->type == UBIFS_INO_NODE)
- return sb->len - sa->len;
- return -1;
- }
- if (sb->type == UBIFS_INO_NODE)
- return 1;
-
- ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
- key_type(c, &sa->key) == UBIFS_XENT_KEY);
- ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
- key_type(c, &sb->key) == UBIFS_XENT_KEY);
- ubifs_assert(sa->type == UBIFS_DENT_NODE ||
- sa->type == UBIFS_XENT_NODE);
- ubifs_assert(sb->type == UBIFS_DENT_NODE ||
- sb->type == UBIFS_XENT_NODE);
-
- inuma = key_inum(c, &sa->key);
- inumb = key_inum(c, &sb->key);
-
- if (inuma == inumb) {
- uint32_t hasha = key_hash(c, &sa->key);
- uint32_t hashb = key_hash(c, &sb->key);
-
- if (hasha <= hashb)
- return -1;
- } else if (inuma <= inumb)
- return -1;
-
- return 1;
-}
-
-/**
- * sort_nodes - sort nodes for GC.
- * @c: UBIFS file-system description object
- * @sleb: describes nodes to sort and contains the result on exit
- * @nondata: contains non-data nodes on exit
- * @min: minimum node size is returned here
- *
- * This function sorts the list of inodes to garbage collect. First of all, it
- * kills obsolete nodes and separates data and non-data nodes to the
- * @sleb->nodes and @nondata lists correspondingly.
- *
- * Data nodes are then sorted in block number order - this is important for
- * bulk-read; data nodes with lower inode number go before data nodes with
- * higher inode number, and data nodes with lower block number go before data
- * nodes with higher block number;
- *
- * Non-data nodes are sorted as follows.
- * o First go inode nodes - they are sorted in descending length order.
- * o Then go directory entry nodes - they are sorted in hash order, which
- * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
- * inode number go before direntry nodes with higher parent inode number,
- * and direntry nodes with lower name hash values go before direntry nodes
- * with higher name hash values.
- *
- * This function returns zero in case of success and a negative error code in
- * case of failure.
- */
-static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- struct list_head *nondata, int *min)
-{
- int err;
- struct ubifs_scan_node *snod, *tmp;
-
- *min = INT_MAX;
-
- /* Separate data nodes and non-data nodes */
- list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
- ubifs_assert(snod->type == UBIFS_INO_NODE ||
- snod->type == UBIFS_DATA_NODE ||
- snod->type == UBIFS_DENT_NODE ||
- snod->type == UBIFS_XENT_NODE ||
- snod->type == UBIFS_TRUN_NODE);
-
- if (snod->type != UBIFS_INO_NODE &&
- snod->type != UBIFS_DATA_NODE &&
- snod->type != UBIFS_DENT_NODE &&
- snod->type != UBIFS_XENT_NODE) {
- /* Probably truncation node, zap it */
- list_del(&snod->list);
- kfree(snod);
- continue;
- }
-
- ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
- key_type(c, &snod->key) == UBIFS_INO_KEY ||
- key_type(c, &snod->key) == UBIFS_DENT_KEY ||
- key_type(c, &snod->key) == UBIFS_XENT_KEY);
-
- err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
- snod->offs, 0);
- if (err < 0)
- return err;
-
- if (!err) {
- /* The node is obsolete, remove it from the list */
- list_del(&snod->list);
- kfree(snod);
- continue;
- }
-
- if (snod->len < *min)
- *min = snod->len;
-
- if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
- list_move_tail(&snod->list, nondata);
- }
-
- /* Sort data and non-data nodes */
- list_sort(c, &sleb->nodes, &data_nodes_cmp);
- list_sort(c, nondata, &nondata_nodes_cmp);
-
- err = dbg_check_data_nodes_order(c, &sleb->nodes);
- if (err)
- return err;
- err = dbg_check_nondata_nodes_order(c, nondata);
- if (err)
- return err;
- return 0;
-}
-
-/**
- * move_node - move a node.
- * @c: UBIFS file-system description object
- * @sleb: describes the LEB to move nodes from
- * @snod: the mode to move
- * @wbuf: write-buffer to move node to
- *
- * This function moves node @snod to @wbuf, changes TNC correspondingly, and
- * destroys @snod. Returns zero in case of success and a negative error code in
- * case of failure.
- */
-static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
-{
- int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
-
- cond_resched();
- err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
- if (err)
- return err;
-
- err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
- snod->offs, new_lnum, new_offs,
- snod->len);
- list_del(&snod->list);
- kfree(snod);
- return err;
-}
-
-/**
- * move_nodes - move nodes.
- * @c: UBIFS file-system description object
- * @sleb: describes the LEB to move nodes from
- *
- * This function moves valid nodes from data LEB described by @sleb to the GC
- * journal head. This function returns zero in case of success, %-EAGAIN if
- * commit is required, and other negative error codes in case of other
- * failures.
- */
-static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
-{
- int err, min;
- LIST_HEAD(nondata);
- struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
-
- if (wbuf->lnum == -1) {
- /*
- * The GC journal head is not set, because it is the first GC
- * invocation since mount.
- */
- err = switch_gc_head(c);
- if (err)
- return err;
- }
-
- err = sort_nodes(c, sleb, &nondata, &min);
- if (err)
- goto out;
-
- /* Write nodes to their new location. Use the first-fit strategy */
- while (1) {
- int avail;
- struct ubifs_scan_node *snod, *tmp;
-
- /* Move data nodes */
- list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
- avail = c->leb_size - wbuf->offs - wbuf->used;
- if (snod->len > avail)
- /*
- * Do not skip data nodes in order to optimize
- * bulk-read.
- */
- break;
-
- err = move_node(c, sleb, snod, wbuf);
- if (err)
- goto out;
- }
-
- /* Move non-data nodes */
- list_for_each_entry_safe(snod, tmp, &nondata, list) {
- avail = c->leb_size - wbuf->offs - wbuf->used;
- if (avail < min)
- break;
-
- if (snod->len > avail) {
- /*
- * Keep going only if this is an inode with
- * some data. Otherwise stop and switch the GC
- * head. IOW, we assume that data-less inode
- * nodes and direntry nodes are roughly of the
- * same size.
- */
- if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
- snod->len == UBIFS_INO_NODE_SZ)
- break;
- continue;
- }
-
- err = move_node(c, sleb, snod, wbuf);
- if (err)
- goto out;
- }
-
- if (list_empty(&sleb->nodes) && list_empty(&nondata))
- break;
-
- /*
- * Waste the rest of the space in the LEB and switch to the
- * next LEB.
- */
- err = switch_gc_head(c);
- if (err)
- goto out;
- }
-
- return 0;
-
-out:
- list_splice_tail(&nondata, &sleb->nodes);
- return err;
-}
-
-/**
- * gc_sync_wbufs - sync write-buffers for GC.
- * @c: UBIFS file-system description object
- *
- * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
- * be in a write-buffer instead. That is, a node could be written to a
- * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
- * erased before the write-buffer is sync'd and then there is an unclean
- * unmount, then an existing node is lost. To avoid this, we sync all
- * write-buffers.
- *
- * This function returns %0 on success or a negative error code on failure.
- */
-static int gc_sync_wbufs(struct ubifs_info *c)
-{
- int err, i;
-
- for (i = 0; i < c->jhead_cnt; i++) {
- if (i == GCHD)
- continue;
- err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
- if (err)
- return err;
- }
- return 0;
-}
-
-/**
- * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
- * @c: UBIFS file-system description object
- * @lp: describes the LEB to garbage collect
- *
- * This function garbage-collects an LEB and returns one of the @LEB_FREED,
- * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
- * required, and other negative error codes in case of failures.
- */
-int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
-{
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
- struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
- int err = 0, lnum = lp->lnum;
-
- ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
- c->need_recovery);
- ubifs_assert(c->gc_lnum != lnum);
- ubifs_assert(wbuf->lnum != lnum);
-
- if (lp->free + lp->dirty == c->leb_size) {
- /* Special case - a free LEB */
- dbg_gc("LEB %d is free, return it", lp->lnum);
- ubifs_assert(!(lp->flags & LPROPS_INDEX));
-
- if (lp->free != c->leb_size) {
- /*
- * Write buffers must be sync'd before unmapping
- * freeable LEBs, because one of them may contain data
- * which obsoletes something in 'lp->pnum'.
- */
- err = gc_sync_wbufs(c);
- if (err)
- return err;
- err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
- 0, 0, 0, 0);
- if (err)
- return err;
- }
- err = ubifs_leb_unmap(c, lp->lnum);
- if (err)
- return err;
-
- if (c->gc_lnum == -1) {
- c->gc_lnum = lnum;
- return LEB_RETAINED;
- }
-
- return LEB_FREED;
- }
-
- /*
- * We scan the entire LEB even though we only really need to scan up to
- * (c->leb_size - lp->free).
- */
- sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
- if (IS_ERR(sleb))
- return PTR_ERR(sleb);
-
- ubifs_assert(!list_empty(&sleb->nodes));
- snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
-
- if (snod->type == UBIFS_IDX_NODE) {
- struct ubifs_gced_idx_leb *idx_gc;
-
- dbg_gc("indexing LEB %d (free %d, dirty %d)",
- lnum, lp->free, lp->dirty);
- list_for_each_entry(snod, &sleb->nodes, list) {
- struct ubifs_idx_node *idx = snod->node;
- int level = le16_to_cpu(idx->level);
-
- ubifs_assert(snod->type == UBIFS_IDX_NODE);
- key_read(c, ubifs_idx_key(c, idx), &snod->key);
- err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
- snod->offs);
- if (err)
- goto out;
- }
-
- idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
- if (!idx_gc) {
- err = -ENOMEM;
- goto out;
- }
-
- idx_gc->lnum = lnum;
- idx_gc->unmap = 0;
- list_add(&idx_gc->list, &c->idx_gc);
-
- /*
- * Don't release the LEB until after the next commit, because
- * it may contain data which is needed for recovery. So
- * although we freed this LEB, it will become usable only after
- * the commit.
- */
- err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
- LPROPS_INDEX, 1);
- if (err)
- goto out;
- err = LEB_FREED_IDX;
- } else {
- dbg_gc("data LEB %d (free %d, dirty %d)",
- lnum, lp->free, lp->dirty);
-
- err = move_nodes(c, sleb);
- if (err)
- goto out_inc_seq;
-
- err = gc_sync_wbufs(c);
- if (err)
- goto out_inc_seq;
-
- err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
- if (err)
- goto out_inc_seq;
-
- /* Allow for races with TNC */
- c->gced_lnum = lnum;
- smp_wmb();
- c->gc_seq += 1;
- smp_wmb();
-
- if (c->gc_lnum == -1) {
- c->gc_lnum = lnum;
- err = LEB_RETAINED;
- } else {
- err = ubifs_wbuf_sync_nolock(wbuf);
- if (err)
- goto out;
-
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- goto out;
-
- err = LEB_FREED;
- }
- }
-
-out:
- ubifs_scan_destroy(sleb);
- return err;
-
-out_inc_seq:
- /* We may have moved at least some nodes so allow for races with TNC */
- c->gced_lnum = lnum;
- smp_wmb();
- c->gc_seq += 1;
- smp_wmb();
- goto out;
-}
-
-/**
- * ubifs_garbage_collect - UBIFS garbage collector.
- * @c: UBIFS file-system description object
- * @anyway: do GC even if there are free LEBs
- *
- * This function does out-of-place garbage collection. The return codes are:
- * o positive LEB number if the LEB has been freed and may be used;
- * o %-EAGAIN if the caller has to run commit;
- * o %-ENOSPC if GC failed to make any progress;
- * o other negative error codes in case of other errors.
- *
- * Garbage collector writes data to the journal when GC'ing data LEBs, and just
- * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
- * commit may be required. But commit cannot be run from inside GC, because the
- * caller might be holding the commit lock, so %-EAGAIN is returned instead;
- * And this error code means that the caller has to run commit, and re-run GC
- * if there is still no free space.
- *
- * There are many reasons why this function may return %-EAGAIN:
- * o the log is full and there is no space to write an LEB reference for
- * @c->gc_lnum;
- * o the journal is too large and exceeds size limitations;
- * o GC moved indexing LEBs, but they can be used only after the commit;
- * o the shrinker fails to find clean znodes to free and requests the commit;
- * o etc.
- *
- * Note, if the file-system is close to be full, this function may return
- * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
- * the function. E.g., this happens if the limits on the journal size are too
- * tough and GC writes too much to the journal before an LEB is freed. This
- * might also mean that the journal is too large, and the TNC becomes to big,
- * so that the shrinker is constantly called, finds not clean znodes to free,
- * and requests commit. Well, this may also happen if the journal is all right,
- * but another kernel process consumes too much memory. Anyway, infinite
- * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
- */
-int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
-{
- int i, err, ret, min_space = c->dead_wm;
- struct ubifs_lprops lp;
- struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
-
- ubifs_assert_cmt_locked(c);
- ubifs_assert(!c->ro_media && !c->ro_mount);
-
- if (ubifs_gc_should_commit(c))
- return -EAGAIN;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
-
- if (c->ro_error) {
- ret = -EROFS;
- goto out_unlock;
- }
-
- /* We expect the write-buffer to be empty on entry */
- ubifs_assert(!wbuf->used);
-
- for (i = 0; ; i++) {
- int space_before = c->leb_size - wbuf->offs - wbuf->used;
- int space_after;
-
- cond_resched();
-
- /* Give the commit an opportunity to run */
- if (ubifs_gc_should_commit(c)) {
- ret = -EAGAIN;
- break;
- }
-
- if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
- /*
- * We've done enough iterations. Indexing LEBs were
- * moved and will be available after the commit.
- */
- dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
- ubifs_commit_required(c);
- ret = -EAGAIN;
- break;
- }
-
- if (i > HARD_LEBS_LIMIT) {
- /*
- * We've moved too many LEBs and have not made
- * progress, give up.
- */
- dbg_gc("hard limit, -ENOSPC");
- ret = -ENOSPC;
- break;
- }
-
- /*
- * Empty and freeable LEBs can turn up while we waited for
- * the wbuf lock, or while we have been running GC. In that
- * case, we should just return one of those instead of
- * continuing to GC dirty LEBs. Hence we request
- * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
- */
- ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
- if (ret) {
- if (ret == -ENOSPC)
- dbg_gc("no more dirty LEBs");
- break;
- }
-
- dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
- "(min. space %d)", lp.lnum, lp.free, lp.dirty,
- lp.free + lp.dirty, min_space);
-
- space_before = c->leb_size - wbuf->offs - wbuf->used;
- if (wbuf->lnum == -1)
- space_before = 0;
-
- ret = ubifs_garbage_collect_leb(c, &lp);
- if (ret < 0) {
- if (ret == -EAGAIN) {
- /*
- * This is not error, so we have to return the
- * LEB to lprops. But if 'ubifs_return_leb()'
- * fails, its failure code is propagated to the
- * caller instead of the original '-EAGAIN'.
- */
- err = ubifs_return_leb(c, lp.lnum);
- if (err)
- ret = err;
- break;
- }
- goto out;
- }
-
- if (ret == LEB_FREED) {
- /* An LEB has been freed and is ready for use */
- dbg_gc("LEB %d freed, return", lp.lnum);
- ret = lp.lnum;
- break;
- }
-
- if (ret == LEB_FREED_IDX) {
- /*
- * This was an indexing LEB and it cannot be
- * immediately used. And instead of requesting the
- * commit straight away, we try to garbage collect some
- * more.
- */
- dbg_gc("indexing LEB %d freed, continue", lp.lnum);
- continue;
- }
-
- ubifs_assert(ret == LEB_RETAINED);
- space_after = c->leb_size - wbuf->offs - wbuf->used;
- dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
- space_after - space_before);
-
- if (space_after > space_before) {
- /* GC makes progress, keep working */
- min_space >>= 1;
- if (min_space < c->dead_wm)
- min_space = c->dead_wm;
- continue;
- }
-
- dbg_gc("did not make progress");
-
- /*
- * GC moved an LEB bud have not done any progress. This means
- * that the previous GC head LEB contained too few free space
- * and the LEB which was GC'ed contained only large nodes which
- * did not fit that space.
- *
- * We can do 2 things:
- * 1. pick another LEB in a hope it'll contain a small node
- * which will fit the space we have at the end of current GC
- * head LEB, but there is no guarantee, so we try this out
- * unless we have already been working for too long;
- * 2. request an LEB with more dirty space, which will force
- * 'ubifs_find_dirty_leb()' to start scanning the lprops
- * table, instead of just picking one from the heap
- * (previously it already picked the dirtiest LEB).
- */
- if (i < SOFT_LEBS_LIMIT) {
- dbg_gc("try again");
- continue;
- }
-
- min_space <<= 1;
- if (min_space > c->dark_wm)
- min_space = c->dark_wm;
- dbg_gc("set min. space to %d", min_space);
- }
-
- if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
- dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
- ubifs_commit_required(c);
- ret = -EAGAIN;
- }
-
- err = ubifs_wbuf_sync_nolock(wbuf);
- if (!err)
- err = ubifs_leb_unmap(c, c->gc_lnum);
- if (err) {
- ret = err;
- goto out;
- }
-out_unlock:
- mutex_unlock(&wbuf->io_mutex);
- return ret;
-
-out:
- ubifs_assert(ret < 0);
- ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
- ubifs_wbuf_sync_nolock(wbuf);
- ubifs_ro_mode(c, ret);
- mutex_unlock(&wbuf->io_mutex);
- ubifs_return_leb(c, lp.lnum);
- return ret;
-}
-
-/**
- * ubifs_gc_start_commit - garbage collection at start of commit.
- * @c: UBIFS file-system description object
- *
- * If a LEB has only dirty and free space, then we may safely unmap it and make
- * it free. Note, we cannot do this with indexing LEBs because dirty space may
- * correspond index nodes that are required for recovery. In that case, the
- * LEB cannot be unmapped until after the next commit.
- *
- * This function returns %0 upon success and a negative error code upon failure.
- */
-int ubifs_gc_start_commit(struct ubifs_info *c)
-{
- struct ubifs_gced_idx_leb *idx_gc;
- const struct ubifs_lprops *lp;
- int err = 0, flags;
-
- ubifs_get_lprops(c);
-
- /*
- * Unmap (non-index) freeable LEBs. Note that recovery requires that all
- * wbufs are sync'd before this, which is done in 'do_commit()'.
- */
- while (1) {
- lp = ubifs_fast_find_freeable(c);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
- if (!lp)
- break;
- ubifs_assert(!(lp->flags & LPROPS_TAKEN));
- ubifs_assert(!(lp->flags & LPROPS_INDEX));
- err = ubifs_leb_unmap(c, lp->lnum);
- if (err)
- goto out;
- lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
- ubifs_assert(!(lp->flags & LPROPS_TAKEN));
- ubifs_assert(!(lp->flags & LPROPS_INDEX));
- }
-
- /* Mark GC'd index LEBs OK to unmap after this commit finishes */
- list_for_each_entry(idx_gc, &c->idx_gc, list)
- idx_gc->unmap = 1;
-
- /* Record index freeable LEBs for unmapping after commit */
- while (1) {
- lp = ubifs_fast_find_frdi_idx(c);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
- if (!lp)
- break;
- idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
- if (!idx_gc) {
- err = -ENOMEM;
- goto out;
- }
- ubifs_assert(!(lp->flags & LPROPS_TAKEN));
- ubifs_assert(lp->flags & LPROPS_INDEX);
- /* Don't release the LEB until after the next commit */
- flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
- lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- kfree(idx_gc);
- goto out;
- }
- ubifs_assert(lp->flags & LPROPS_TAKEN);
- ubifs_assert(!(lp->flags & LPROPS_INDEX));
- idx_gc->lnum = lp->lnum;
- idx_gc->unmap = 1;
- list_add(&idx_gc->list, &c->idx_gc);
- }
-out:
- ubifs_release_lprops(c);
- return err;
-}
-
-/**
- * ubifs_gc_end_commit - garbage collection at end of commit.
- * @c: UBIFS file-system description object
- *
- * This function completes out-of-place garbage collection of index LEBs.
- */
-int ubifs_gc_end_commit(struct ubifs_info *c)
-{
- struct ubifs_gced_idx_leb *idx_gc, *tmp;
- struct ubifs_wbuf *wbuf;
- int err = 0;
-
- wbuf = &c->jheads[GCHD].wbuf;
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
- if (idx_gc->unmap) {
- dbg_gc("LEB %d", idx_gc->lnum);
- err = ubifs_leb_unmap(c, idx_gc->lnum);
- if (err)
- goto out;
- err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
- LPROPS_NC, 0, LPROPS_TAKEN, -1);
- if (err)
- goto out;
- list_del(&idx_gc->list);
- kfree(idx_gc);
- }
-out:
- mutex_unlock(&wbuf->io_mutex);
- return err;
-}
-
-/**
- * ubifs_destroy_idx_gc - destroy idx_gc list.
- * @c: UBIFS file-system description object
- *
- * This function destroys the @c->idx_gc list. It is called when unmounting
- * so locks are not needed. Returns zero in case of success and a negative
- * error code in case of failure.
- */
-void ubifs_destroy_idx_gc(struct ubifs_info *c)
-{
- while (!list_empty(&c->idx_gc)) {
- struct ubifs_gced_idx_leb *idx_gc;
-
- idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
- list);
- c->idx_gc_cnt -= 1;
- list_del(&idx_gc->list);
- kfree(idx_gc);
- }
-}
-
-/**
- * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
- * @c: UBIFS file-system description object
- *
- * Called during start commit so locks are not needed.
- */
-int ubifs_get_idx_gc_leb(struct ubifs_info *c)
-{
- struct ubifs_gced_idx_leb *idx_gc;
- int lnum;
-
- if (list_empty(&c->idx_gc))
- return -ENOSPC;
- idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
- lnum = idx_gc->lnum;
- /* c->idx_gc_cnt is updated by the caller when lprops are updated */
- list_del(&idx_gc->list);
- kfree(idx_gc);
- return lnum;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/io.c b/ANDROID_3.4.5/fs/ubifs/io.c
deleted file mode 100644
index 21780502..00000000
--- a/ANDROID_3.4.5/fs/ubifs/io.c
+++ /dev/null
@@ -1,1156 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- * Copyright (C) 2006, 2007 University of Szeged, Hungary
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- * Zoltan Sogor
- */
-
-/*
- * This file implements UBIFS I/O subsystem which provides various I/O-related
- * helper functions (reading/writing/checking/validating nodes) and implements
- * write-buffering support. Write buffers help to save space which otherwise
- * would have been wasted for padding to the nearest minimal I/O unit boundary.
- * Instead, data first goes to the write-buffer and is flushed when the
- * buffer is full or when it is not used for some time (by timer). This is
- * similar to the mechanism is used by JFFS2.
- *
- * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
- * write size (@c->max_write_size). The latter is the maximum amount of bytes
- * the underlying flash is able to program at a time, and writing in
- * @c->max_write_size units should presumably be faster. Obviously,
- * @c->min_io_size <= @c->max_write_size. Write-buffers are of
- * @c->max_write_size bytes in size for maximum performance. However, when a
- * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
- * boundary) which contains data is written, not the whole write-buffer,
- * because this is more space-efficient.
- *
- * This optimization adds few complications to the code. Indeed, on the one
- * hand, we want to write in optimal @c->max_write_size bytes chunks, which
- * also means aligning writes at the @c->max_write_size bytes offsets. On the
- * other hand, we do not want to waste space when synchronizing the write
- * buffer, so during synchronization we writes in smaller chunks. And this makes
- * the next write offset to be not aligned to @c->max_write_size bytes. So the
- * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
- * to @c->max_write_size bytes again. We do this by temporarily shrinking
- * write-buffer size (@wbuf->size).
- *
- * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
- * mutexes defined inside these objects. Since sometimes upper-level code
- * has to lock the write-buffer (e.g. journal space reservation code), many
- * functions related to write-buffers have "nolock" suffix which means that the
- * caller has to lock the write-buffer before calling this function.
- *
- * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
- * aligned, UBIFS starts the next node from the aligned address, and the padded
- * bytes may contain any rubbish. In other words, UBIFS does not put padding
- * bytes in those small gaps. Common headers of nodes store real node lengths,
- * not aligned lengths. Indexing nodes also store real lengths in branches.
- *
- * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
- * uses padding nodes or padding bytes, if the padding node does not fit.
- *
- * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
- * they are read from the flash media.
- */
-
-#include <linux/crc32.h>
-#include <linux/slab.h>
-#include "ubifs.h"
-
-/**
- * ubifs_ro_mode - switch UBIFS to read read-only mode.
- * @c: UBIFS file-system description object
- * @err: error code which is the reason of switching to R/O mode
- */
-void ubifs_ro_mode(struct ubifs_info *c, int err)
-{
- if (!c->ro_error) {
- c->ro_error = 1;
- c->no_chk_data_crc = 0;
- c->vfs_sb->s_flags |= MS_RDONLY;
- ubifs_warn("switched to read-only mode, error %d", err);
- dump_stack();
- }
-}
-
-/*
- * Below are simple wrappers over UBI I/O functions which include some
- * additional checks and UBIFS debugging stuff. See corresponding UBI function
- * for more information.
- */
-
-int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
- int len, int even_ebadmsg)
-{
- int err;
-
- err = ubi_read(c->ubi, lnum, buf, offs, len);
- /*
- * In case of %-EBADMSG print the error message only if the
- * @even_ebadmsg is true.
- */
- if (err && (err != -EBADMSG || even_ebadmsg)) {
- ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
- len, lnum, offs, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
- int len, int dtype)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
- else
- err = dbg_leb_write(c, lnum, buf, offs, len, dtype);
- if (err) {
- ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
- len, lnum, offs, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
- int dtype)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_change(c->ubi, lnum, buf, len);
- else
- err = dbg_leb_change(c, lnum, buf, len, dtype);
- if (err) {
- ubifs_err("changing %d bytes in LEB %d failed, error %d",
- len, lnum, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_unmap(c->ubi, lnum);
- else
- err = dbg_leb_unmap(c, lnum);
- if (err) {
- ubifs_err("unmap LEB %d failed, error %d", lnum, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype)
-{
- int err;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
- if (!dbg_is_tst_rcvry(c))
- err = ubi_leb_map(c->ubi, lnum);
- else
- err = dbg_leb_map(c, lnum, dtype);
- if (err) {
- ubifs_err("mapping LEB %d failed, error %d", lnum, err);
- ubifs_ro_mode(c, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
-{
- int err;
-
- err = ubi_is_mapped(c->ubi, lnum);
- if (err < 0) {
- ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
- lnum, err);
- dbg_dump_stack();
- }
- return err;
-}
-
-/**
- * ubifs_check_node - check node.
- * @c: UBIFS file-system description object
- * @buf: node to check
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- * @quiet: print no messages
- * @must_chk_crc: indicates whether to always check the CRC
- *
- * This function checks node magic number and CRC checksum. This function also
- * validates node length to prevent UBIFS from becoming crazy when an attacker
- * feeds it a file-system image with incorrect nodes. For example, too large
- * node length in the common header could cause UBIFS to read memory outside of
- * allocated buffer when checking the CRC checksum.
- *
- * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
- * true, which is controlled by corresponding UBIFS mount option. However, if
- * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
- * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
- * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
- * is checked. This is because during mounting or re-mounting from R/O mode to
- * R/W mode we may read journal nodes (when replying the journal or doing the
- * recovery) and the journal nodes may potentially be corrupted, so checking is
- * required.
- *
- * This function returns zero in case of success and %-EUCLEAN in case of bad
- * CRC or magic.
- */
-int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
- int offs, int quiet, int must_chk_crc)
-{
- int err = -EINVAL, type, node_len;
- uint32_t crc, node_crc, magic;
- struct ubifs_ch *ch = (struct ubifs_ch*)buf;
-
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(!(offs & 7) && offs < c->leb_size);
-
- magic = le32_to_cpu(ch->magic);
- if (magic != UBIFS_NODE_MAGIC) {
- if (!quiet)
- ubifs_err("bad magic %#08x, expected %#08x",
- magic, UBIFS_NODE_MAGIC);
- err = -EUCLEAN;
- goto out;
- }
-
- type = ch->node_type;
- if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
- if (!quiet)
- ubifs_err("bad node type %d", type);
- goto out;
- }
-
- node_len = le32_to_cpu(ch->len);
- if (node_len + offs > c->leb_size)
- goto out_len;
-
- if (c->ranges[type].max_len == 0) {
- if (node_len != c->ranges[type].len)
- goto out_len;
- } else if (node_len < c->ranges[type].min_len ||
- node_len > c->ranges[type].max_len)
- goto out_len;
-
- if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
- !c->remounting_rw && c->no_chk_data_crc)
- return 0;
-
- crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
- node_crc = le32_to_cpu(ch->crc);
- if (crc != node_crc) {
- if (!quiet)
- ubifs_err("bad CRC: calculated %#08x, read %#08x",
- crc, node_crc);
- err = -EUCLEAN;
- goto out;
- }
-
- return 0;
-
-out_len:
- if (!quiet)
- ubifs_err("bad node length %d", node_len);
-out:
- if (!quiet) {
- ubifs_err("bad node at LEB %d:%d", lnum, offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- }
- return err;
-}
-
-/**
- * ubifs_pad - pad flash space.
- * @c: UBIFS file-system description object
- * @buf: buffer to put padding to
- * @pad: how many bytes to pad
- *
- * The flash media obliges us to write only in chunks of %c->min_io_size and
- * when we have to write less data we add padding node to the write-buffer and
- * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
- * media is being scanned. If the amount of wasted space is not enough to fit a
- * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
- * pattern (%UBIFS_PADDING_BYTE).
- *
- * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
- * used.
- */
-void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
-{
- uint32_t crc;
-
- ubifs_assert(pad >= 0 && !(pad & 7));
-
- if (pad >= UBIFS_PAD_NODE_SZ) {
- struct ubifs_ch *ch = buf;
- struct ubifs_pad_node *pad_node = buf;
-
- ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
- ch->node_type = UBIFS_PAD_NODE;
- ch->group_type = UBIFS_NO_NODE_GROUP;
- ch->padding[0] = ch->padding[1] = 0;
- ch->sqnum = 0;
- ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
- pad -= UBIFS_PAD_NODE_SZ;
- pad_node->pad_len = cpu_to_le32(pad);
- crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
- ch->crc = cpu_to_le32(crc);
- memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
- } else if (pad > 0)
- /* Too little space, padding node won't fit */
- memset(buf, UBIFS_PADDING_BYTE, pad);
-}
-
-/**
- * next_sqnum - get next sequence number.
- * @c: UBIFS file-system description object
- */
-static unsigned long long next_sqnum(struct ubifs_info *c)
-{
- unsigned long long sqnum;
-
- spin_lock(&c->cnt_lock);
- sqnum = ++c->max_sqnum;
- spin_unlock(&c->cnt_lock);
-
- if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
- if (sqnum >= SQNUM_WATERMARK) {
- ubifs_err("sequence number overflow %llu, end of life",
- sqnum);
- ubifs_ro_mode(c, -EINVAL);
- }
- ubifs_warn("running out of sequence numbers, end of life soon");
- }
-
- return sqnum;
-}
-
-/**
- * ubifs_prepare_node - prepare node to be written to flash.
- * @c: UBIFS file-system description object
- * @node: the node to pad
- * @len: node length
- * @pad: if the buffer has to be padded
- *
- * This function prepares node at @node to be written to the media - it
- * calculates node CRC, fills the common header, and adds proper padding up to
- * the next minimum I/O unit if @pad is not zero.
- */
-void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
-{
- uint32_t crc;
- struct ubifs_ch *ch = node;
- unsigned long long sqnum = next_sqnum(c);
-
- ubifs_assert(len >= UBIFS_CH_SZ);
-
- ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
- ch->len = cpu_to_le32(len);
- ch->group_type = UBIFS_NO_NODE_GROUP;
- ch->sqnum = cpu_to_le64(sqnum);
- ch->padding[0] = ch->padding[1] = 0;
- crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
- ch->crc = cpu_to_le32(crc);
-
- if (pad) {
- len = ALIGN(len, 8);
- pad = ALIGN(len, c->min_io_size) - len;
- ubifs_pad(c, node + len, pad);
- }
-}
-
-/**
- * ubifs_prep_grp_node - prepare node of a group to be written to flash.
- * @c: UBIFS file-system description object
- * @node: the node to pad
- * @len: node length
- * @last: indicates the last node of the group
- *
- * This function prepares node at @node to be written to the media - it
- * calculates node CRC and fills the common header.
- */
-void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
-{
- uint32_t crc;
- struct ubifs_ch *ch = node;
- unsigned long long sqnum = next_sqnum(c);
-
- ubifs_assert(len >= UBIFS_CH_SZ);
-
- ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
- ch->len = cpu_to_le32(len);
- if (last)
- ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
- else
- ch->group_type = UBIFS_IN_NODE_GROUP;
- ch->sqnum = cpu_to_le64(sqnum);
- ch->padding[0] = ch->padding[1] = 0;
- crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
- ch->crc = cpu_to_le32(crc);
-}
-
-/**
- * wbuf_timer_callback - write-buffer timer callback function.
- * @data: timer data (write-buffer descriptor)
- *
- * This function is called when the write-buffer timer expires.
- */
-static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
-{
- struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
-
- dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
- wbuf->need_sync = 1;
- wbuf->c->need_wbuf_sync = 1;
- ubifs_wake_up_bgt(wbuf->c);
- return HRTIMER_NORESTART;
-}
-
-/**
- * new_wbuf_timer - start new write-buffer timer.
- * @wbuf: write-buffer descriptor
- */
-static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
-{
- ubifs_assert(!hrtimer_active(&wbuf->timer));
-
- if (wbuf->no_timer)
- return;
- dbg_io("set timer for jhead %s, %llu-%llu millisecs",
- dbg_jhead(wbuf->jhead),
- div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
- div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
- USEC_PER_SEC));
- hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
- HRTIMER_MODE_REL);
-}
-
-/**
- * cancel_wbuf_timer - cancel write-buffer timer.
- * @wbuf: write-buffer descriptor
- */
-static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
-{
- if (wbuf->no_timer)
- return;
- wbuf->need_sync = 0;
- hrtimer_cancel(&wbuf->timer);
-}
-
-/**
- * ubifs_wbuf_sync_nolock - synchronize write-buffer.
- * @wbuf: write-buffer to synchronize
- *
- * This function synchronizes write-buffer @buf and returns zero in case of
- * success or a negative error code in case of failure.
- *
- * Note, although write-buffers are of @c->max_write_size, this function does
- * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
- * if the write-buffer is only partially filled with data, only the used part
- * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
- * This way we waste less space.
- */
-int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
-{
- struct ubifs_info *c = wbuf->c;
- int err, dirt, sync_len;
-
- cancel_wbuf_timer_nolock(wbuf);
- if (!wbuf->used || wbuf->lnum == -1)
- /* Write-buffer is empty or not seeked */
- return 0;
-
- dbg_io("LEB %d:%d, %d bytes, jhead %s",
- wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
- ubifs_assert(!(wbuf->avail & 7));
- ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
- ubifs_assert(wbuf->size >= c->min_io_size);
- ubifs_assert(wbuf->size <= c->max_write_size);
- ubifs_assert(wbuf->size % c->min_io_size == 0);
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
-
- if (c->ro_error)
- return -EROFS;
-
- /*
- * Do not write whole write buffer but write only the minimum necessary
- * amount of min. I/O units.
- */
- sync_len = ALIGN(wbuf->used, c->min_io_size);
- dirt = sync_len - wbuf->used;
- if (dirt)
- ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
- err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len,
- wbuf->dtype);
- if (err)
- return err;
-
- spin_lock(&wbuf->lock);
- wbuf->offs += sync_len;
- /*
- * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
- * But our goal is to optimize writes and make sure we write in
- * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
- * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
- * sure that @wbuf->offs + @wbuf->size is aligned to
- * @c->max_write_size. This way we make sure that after next
- * write-buffer flush we are again at the optimal offset (aligned to
- * @c->max_write_size).
- */
- if (c->leb_size - wbuf->offs < c->max_write_size)
- wbuf->size = c->leb_size - wbuf->offs;
- else if (wbuf->offs & (c->max_write_size - 1))
- wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
- else
- wbuf->size = c->max_write_size;
- wbuf->avail = wbuf->size;
- wbuf->used = 0;
- wbuf->next_ino = 0;
- spin_unlock(&wbuf->lock);
-
- if (wbuf->sync_callback)
- err = wbuf->sync_callback(c, wbuf->lnum,
- c->leb_size - wbuf->offs, dirt);
- return err;
-}
-
-/**
- * ubifs_wbuf_seek_nolock - seek write-buffer.
- * @wbuf: write-buffer
- * @lnum: logical eraseblock number to seek to
- * @offs: logical eraseblock offset to seek to
- * @dtype: data type
- *
- * This function targets the write-buffer to logical eraseblock @lnum:@offs.
- * The write-buffer has to be empty. Returns zero in case of success and a
- * negative error code in case of failure.
- */
-int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
- int dtype)
-{
- const struct ubifs_info *c = wbuf->c;
-
- dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
- ubifs_assert(offs >= 0 && offs <= c->leb_size);
- ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
- ubifs_assert(lnum != wbuf->lnum);
- ubifs_assert(wbuf->used == 0);
-
- spin_lock(&wbuf->lock);
- wbuf->lnum = lnum;
- wbuf->offs = offs;
- if (c->leb_size - wbuf->offs < c->max_write_size)
- wbuf->size = c->leb_size - wbuf->offs;
- else if (wbuf->offs & (c->max_write_size - 1))
- wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
- else
- wbuf->size = c->max_write_size;
- wbuf->avail = wbuf->size;
- wbuf->used = 0;
- spin_unlock(&wbuf->lock);
- wbuf->dtype = dtype;
-
- return 0;
-}
-
-/**
- * ubifs_bg_wbufs_sync - synchronize write-buffers.
- * @c: UBIFS file-system description object
- *
- * This function is called by background thread to synchronize write-buffers.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_bg_wbufs_sync(struct ubifs_info *c)
-{
- int err, i;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (!c->need_wbuf_sync)
- return 0;
- c->need_wbuf_sync = 0;
-
- if (c->ro_error) {
- err = -EROFS;
- goto out_timers;
- }
-
- dbg_io("synchronize");
- for (i = 0; i < c->jhead_cnt; i++) {
- struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
-
- cond_resched();
-
- /*
- * If the mutex is locked then wbuf is being changed, so
- * synchronization is not necessary.
- */
- if (mutex_is_locked(&wbuf->io_mutex))
- continue;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- if (!wbuf->need_sync) {
- mutex_unlock(&wbuf->io_mutex);
- continue;
- }
-
- err = ubifs_wbuf_sync_nolock(wbuf);
- mutex_unlock(&wbuf->io_mutex);
- if (err) {
- ubifs_err("cannot sync write-buffer, error %d", err);
- ubifs_ro_mode(c, err);
- goto out_timers;
- }
- }
-
- return 0;
-
-out_timers:
- /* Cancel all timers to prevent repeated errors */
- for (i = 0; i < c->jhead_cnt; i++) {
- struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- cancel_wbuf_timer_nolock(wbuf);
- mutex_unlock(&wbuf->io_mutex);
- }
- return err;
-}
-
-/**
- * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
- * @wbuf: write-buffer
- * @buf: node to write
- * @len: node length
- *
- * This function writes data to flash via write-buffer @wbuf. This means that
- * the last piece of the node won't reach the flash media immediately if it
- * does not take whole max. write unit (@c->max_write_size). Instead, the node
- * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
- * because more data are appended to the write-buffer).
- *
- * This function returns zero in case of success and a negative error code in
- * case of failure. If the node cannot be written because there is no more
- * space in this logical eraseblock, %-ENOSPC is returned.
- */
-int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
-{
- struct ubifs_info *c = wbuf->c;
- int err, written, n, aligned_len = ALIGN(len, 8);
-
- dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
- dbg_ntype(((struct ubifs_ch *)buf)->node_type),
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
- ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
- ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
- ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
- ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
- ubifs_assert(wbuf->size >= c->min_io_size);
- ubifs_assert(wbuf->size <= c->max_write_size);
- ubifs_assert(wbuf->size % c->min_io_size == 0);
- ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
- ubifs_assert(!c->ro_media && !c->ro_mount);
- ubifs_assert(!c->space_fixup);
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
-
- if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
- err = -ENOSPC;
- goto out;
- }
-
- cancel_wbuf_timer_nolock(wbuf);
-
- if (c->ro_error)
- return -EROFS;
-
- if (aligned_len <= wbuf->avail) {
- /*
- * The node is not very large and fits entirely within
- * write-buffer.
- */
- memcpy(wbuf->buf + wbuf->used, buf, len);
-
- if (aligned_len == wbuf->avail) {
- dbg_io("flush jhead %s wbuf to LEB %d:%d",
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
- err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
- wbuf->offs, wbuf->size,
- wbuf->dtype);
- if (err)
- goto out;
-
- spin_lock(&wbuf->lock);
- wbuf->offs += wbuf->size;
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- wbuf->size = c->max_write_size;
- else
- wbuf->size = c->leb_size - wbuf->offs;
- wbuf->avail = wbuf->size;
- wbuf->used = 0;
- wbuf->next_ino = 0;
- spin_unlock(&wbuf->lock);
- } else {
- spin_lock(&wbuf->lock);
- wbuf->avail -= aligned_len;
- wbuf->used += aligned_len;
- spin_unlock(&wbuf->lock);
- }
-
- goto exit;
- }
-
- written = 0;
-
- if (wbuf->used) {
- /*
- * The node is large enough and does not fit entirely within
- * current available space. We have to fill and flush
- * write-buffer and switch to the next max. write unit.
- */
- dbg_io("flush jhead %s wbuf to LEB %d:%d",
- dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
- memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
- err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
- wbuf->size, wbuf->dtype);
- if (err)
- goto out;
-
- wbuf->offs += wbuf->size;
- len -= wbuf->avail;
- aligned_len -= wbuf->avail;
- written += wbuf->avail;
- } else if (wbuf->offs & (c->max_write_size - 1)) {
- /*
- * The write-buffer offset is not aligned to
- * @c->max_write_size and @wbuf->size is less than
- * @c->max_write_size. Write @wbuf->size bytes to make sure the
- * following writes are done in optimal @c->max_write_size
- * chunks.
- */
- dbg_io("write %d bytes to LEB %d:%d",
- wbuf->size, wbuf->lnum, wbuf->offs);
- err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
- wbuf->size, wbuf->dtype);
- if (err)
- goto out;
-
- wbuf->offs += wbuf->size;
- len -= wbuf->size;
- aligned_len -= wbuf->size;
- written += wbuf->size;
- }
-
- /*
- * The remaining data may take more whole max. write units, so write the
- * remains multiple to max. write unit size directly to the flash media.
- * We align node length to 8-byte boundary because we anyway flash wbuf
- * if the remaining space is less than 8 bytes.
- */
- n = aligned_len >> c->max_write_shift;
- if (n) {
- n <<= c->max_write_shift;
- dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
- wbuf->offs);
- err = ubifs_leb_write(c, wbuf->lnum, buf + written,
- wbuf->offs, n, wbuf->dtype);
- if (err)
- goto out;
- wbuf->offs += n;
- aligned_len -= n;
- len -= n;
- written += n;
- }
-
- spin_lock(&wbuf->lock);
- if (aligned_len)
- /*
- * And now we have what's left and what does not take whole
- * max. write unit, so write it to the write-buffer and we are
- * done.
- */
- memcpy(wbuf->buf, buf + written, len);
-
- if (c->leb_size - wbuf->offs >= c->max_write_size)
- wbuf->size = c->max_write_size;
- else
- wbuf->size = c->leb_size - wbuf->offs;
- wbuf->avail = wbuf->size - aligned_len;
- wbuf->used = aligned_len;
- wbuf->next_ino = 0;
- spin_unlock(&wbuf->lock);
-
-exit:
- if (wbuf->sync_callback) {
- int free = c->leb_size - wbuf->offs - wbuf->used;
-
- err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
- if (err)
- goto out;
- }
-
- if (wbuf->used)
- new_wbuf_timer_nolock(wbuf);
-
- return 0;
-
-out:
- ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
- len, wbuf->lnum, wbuf->offs, err);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- dbg_dump_leb(c, wbuf->lnum);
- return err;
-}
-
-/**
- * ubifs_write_node - write node to the media.
- * @c: UBIFS file-system description object
- * @buf: the node to write
- * @len: node length
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
- *
- * This function automatically fills node magic number, assigns sequence
- * number, and calculates node CRC checksum. The length of the @buf buffer has
- * to be aligned to the minimal I/O unit size. This function automatically
- * appends padding node and padding bytes if needed. Returns zero in case of
- * success and a negative error code in case of failure.
- */
-int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
- int offs, int dtype)
-{
- int err, buf_len = ALIGN(len, c->min_io_size);
-
- dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
- lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
- buf_len);
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
- ubifs_assert(!c->ro_media && !c->ro_mount);
- ubifs_assert(!c->space_fixup);
-
- if (c->ro_error)
- return -EROFS;
-
- ubifs_prepare_node(c, buf, len, 1);
- err = ubifs_leb_write(c, lnum, buf, offs, buf_len, dtype);
- if (err)
- dbg_dump_node(c, buf);
-
- return err;
-}
-
-/**
- * ubifs_read_node_wbuf - read node from the media or write-buffer.
- * @wbuf: wbuf to check for un-written data
- * @buf: buffer to read to
- * @type: node type
- * @len: node length
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- *
- * This function reads a node of known type and length, checks it and stores
- * in @buf. If the node partially or fully sits in the write-buffer, this
- * function takes data from the buffer, otherwise it reads the flash media.
- * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
- * error code in case of failure.
- */
-int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
- int lnum, int offs)
-{
- const struct ubifs_info *c = wbuf->c;
- int err, rlen, overlap;
- struct ubifs_ch *ch = buf;
-
- dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
- dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
- ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(!(offs & 7) && offs < c->leb_size);
- ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
-
- spin_lock(&wbuf->lock);
- overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
- if (!overlap) {
- /* We may safely unlock the write-buffer and read the data */
- spin_unlock(&wbuf->lock);
- return ubifs_read_node(c, buf, type, len, lnum, offs);
- }
-
- /* Don't read under wbuf */
- rlen = wbuf->offs - offs;
- if (rlen < 0)
- rlen = 0;
-
- /* Copy the rest from the write-buffer */
- memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
- spin_unlock(&wbuf->lock);
-
- if (rlen > 0) {
- /* Read everything that goes before write-buffer */
- err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
- if (err && err != -EBADMSG)
- return err;
- }
-
- if (type != ch->node_type) {
- ubifs_err("bad node type (%d but expected %d)",
- ch->node_type, type);
- goto out;
- }
-
- err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
- if (err) {
- ubifs_err("expected node type %d", type);
- return err;
- }
-
- rlen = le32_to_cpu(ch->len);
- if (rlen != len) {
- ubifs_err("bad node length %d, expected %d", rlen, len);
- goto out;
- }
-
- return 0;
-
-out:
- ubifs_err("bad node at LEB %d:%d", lnum, offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- return -EINVAL;
-}
-
-/**
- * ubifs_read_node - read node.
- * @c: UBIFS file-system description object
- * @buf: buffer to read to
- * @type: node type
- * @len: node length (not aligned)
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- *
- * This function reads a node of known type and and length, checks it and
- * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
- * and a negative error code in case of failure.
- */
-int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
- int lnum, int offs)
-{
- int err, l;
- struct ubifs_ch *ch = buf;
-
- dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
- ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
- ubifs_assert(!(offs & 7) && offs < c->leb_size);
- ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
-
- err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
- if (err && err != -EBADMSG)
- return err;
-
- if (type != ch->node_type) {
- ubifs_err("bad node type (%d but expected %d)",
- ch->node_type, type);
- goto out;
- }
-
- err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
- if (err) {
- ubifs_err("expected node type %d", type);
- return err;
- }
-
- l = le32_to_cpu(ch->len);
- if (l != len) {
- ubifs_err("bad node length %d, expected %d", l, len);
- goto out;
- }
-
- return 0;
-
-out:
- ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
- ubi_is_mapped(c->ubi, lnum));
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- return -EINVAL;
-}
-
-/**
- * ubifs_wbuf_init - initialize write-buffer.
- * @c: UBIFS file-system description object
- * @wbuf: write-buffer to initialize
- *
- * This function initializes write-buffer. Returns zero in case of success
- * %-ENOMEM in case of failure.
- */
-int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
-{
- size_t size;
-
- wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
- if (!wbuf->buf)
- return -ENOMEM;
-
- size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
- wbuf->inodes = kmalloc(size, GFP_KERNEL);
- if (!wbuf->inodes) {
- kfree(wbuf->buf);
- wbuf->buf = NULL;
- return -ENOMEM;
- }
-
- wbuf->used = 0;
- wbuf->lnum = wbuf->offs = -1;
- /*
- * If the LEB starts at the max. write size aligned address, then
- * write-buffer size has to be set to @c->max_write_size. Otherwise,
- * set it to something smaller so that it ends at the closest max.
- * write size boundary.
- */
- size = c->max_write_size - (c->leb_start % c->max_write_size);
- wbuf->avail = wbuf->size = size;
- wbuf->dtype = UBI_UNKNOWN;
- wbuf->sync_callback = NULL;
- mutex_init(&wbuf->io_mutex);
- spin_lock_init(&wbuf->lock);
- wbuf->c = c;
- wbuf->next_ino = 0;
-
- hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- wbuf->timer.function = wbuf_timer_callback_nolock;
- wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
- wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
- wbuf->delta *= 1000000000ULL;
- ubifs_assert(wbuf->delta <= ULONG_MAX);
- return 0;
-}
-
-/**
- * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
- * @wbuf: the write-buffer where to add
- * @inum: the inode number
- *
- * This function adds an inode number to the inode array of the write-buffer.
- */
-void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
-{
- if (!wbuf->buf)
- /* NOR flash or something similar */
- return;
-
- spin_lock(&wbuf->lock);
- if (wbuf->used)
- wbuf->inodes[wbuf->next_ino++] = inum;
- spin_unlock(&wbuf->lock);
-}
-
-/**
- * wbuf_has_ino - returns if the wbuf contains data from the inode.
- * @wbuf: the write-buffer
- * @inum: the inode number
- *
- * This function returns with %1 if the write-buffer contains some data from the
- * given inode otherwise it returns with %0.
- */
-static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
-{
- int i, ret = 0;
-
- spin_lock(&wbuf->lock);
- for (i = 0; i < wbuf->next_ino; i++)
- if (inum == wbuf->inodes[i]) {
- ret = 1;
- break;
- }
- spin_unlock(&wbuf->lock);
-
- return ret;
-}
-
-/**
- * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
- * @c: UBIFS file-system description object
- * @inode: inode to synchronize
- *
- * This function synchronizes write-buffers which contain nodes belonging to
- * @inode. Returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
-{
- int i, err = 0;
-
- for (i = 0; i < c->jhead_cnt; i++) {
- struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
-
- if (i == GCHD)
- /*
- * GC head is special, do not look at it. Even if the
- * head contains something related to this inode, it is
- * a _copy_ of corresponding on-flash node which sits
- * somewhere else.
- */
- continue;
-
- if (!wbuf_has_ino(wbuf, inode->i_ino))
- continue;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- if (wbuf_has_ino(wbuf, inode->i_ino))
- err = ubifs_wbuf_sync_nolock(wbuf);
- mutex_unlock(&wbuf->io_mutex);
-
- if (err) {
- ubifs_ro_mode(c, err);
- return err;
- }
- }
- return 0;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/ioctl.c b/ANDROID_3.4.5/fs/ubifs/ioctl.c
deleted file mode 100644
index 1a7e2d8b..00000000
--- a/ANDROID_3.4.5/fs/ubifs/ioctl.c
+++ /dev/null
@@ -1,205 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- * Copyright (C) 2006, 2007 University of Szeged, Hungary
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Zoltan Sogor
- * Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/* This file implements EXT2-compatible extended attribute ioctl() calls */
-
-#include <linux/compat.h>
-#include <linux/mount.h>
-#include "ubifs.h"
-
-/**
- * ubifs_set_inode_flags - set VFS inode flags.
- * @inode: VFS inode to set flags for
- *
- * This function propagates flags from UBIFS inode object to VFS inode object.
- */
-void ubifs_set_inode_flags(struct inode *inode)
-{
- unsigned int flags = ubifs_inode(inode)->flags;
-
- inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_DIRSYNC);
- if (flags & UBIFS_SYNC_FL)
- inode->i_flags |= S_SYNC;
- if (flags & UBIFS_APPEND_FL)
- inode->i_flags |= S_APPEND;
- if (flags & UBIFS_IMMUTABLE_FL)
- inode->i_flags |= S_IMMUTABLE;
- if (flags & UBIFS_DIRSYNC_FL)
- inode->i_flags |= S_DIRSYNC;
-}
-
-/*
- * ioctl2ubifs - convert ioctl inode flags to UBIFS inode flags.
- * @ioctl_flags: flags to convert
- *
- * This function convert ioctl flags (@FS_COMPR_FL, etc) to UBIFS inode flags
- * (@UBIFS_COMPR_FL, etc).
- */
-static int ioctl2ubifs(int ioctl_flags)
-{
- int ubifs_flags = 0;
-
- if (ioctl_flags & FS_COMPR_FL)
- ubifs_flags |= UBIFS_COMPR_FL;
- if (ioctl_flags & FS_SYNC_FL)
- ubifs_flags |= UBIFS_SYNC_FL;
- if (ioctl_flags & FS_APPEND_FL)
- ubifs_flags |= UBIFS_APPEND_FL;
- if (ioctl_flags & FS_IMMUTABLE_FL)
- ubifs_flags |= UBIFS_IMMUTABLE_FL;
- if (ioctl_flags & FS_DIRSYNC_FL)
- ubifs_flags |= UBIFS_DIRSYNC_FL;
-
- return ubifs_flags;
-}
-
-/*
- * ubifs2ioctl - convert UBIFS inode flags to ioctl inode flags.
- * @ubifs_flags: flags to convert
- *
- * This function convert UBIFS (@UBIFS_COMPR_FL, etc) to ioctl flags
- * (@FS_COMPR_FL, etc).
- */
-static int ubifs2ioctl(int ubifs_flags)
-{
- int ioctl_flags = 0;
-
- if (ubifs_flags & UBIFS_COMPR_FL)
- ioctl_flags |= FS_COMPR_FL;
- if (ubifs_flags & UBIFS_SYNC_FL)
- ioctl_flags |= FS_SYNC_FL;
- if (ubifs_flags & UBIFS_APPEND_FL)
- ioctl_flags |= FS_APPEND_FL;
- if (ubifs_flags & UBIFS_IMMUTABLE_FL)
- ioctl_flags |= FS_IMMUTABLE_FL;
- if (ubifs_flags & UBIFS_DIRSYNC_FL)
- ioctl_flags |= FS_DIRSYNC_FL;
-
- return ioctl_flags;
-}
-
-static int setflags(struct inode *inode, int flags)
-{
- int oldflags, err, release;
- struct ubifs_inode *ui = ubifs_inode(inode);
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- struct ubifs_budget_req req = { .dirtied_ino = 1,
- .dirtied_ino_d = ui->data_len };
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- /*
- * The IMMUTABLE and APPEND_ONLY flags can only be changed by
- * the relevant capability.
- */
- mutex_lock(&ui->ui_mutex);
- oldflags = ubifs2ioctl(ui->flags);
- if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
- if (!capable(CAP_LINUX_IMMUTABLE)) {
- err = -EPERM;
- goto out_unlock;
- }
- }
-
- ui->flags = ioctl2ubifs(flags);
- ubifs_set_inode_flags(inode);
- inode->i_ctime = ubifs_current_time(inode);
- release = ui->dirty;
- mark_inode_dirty_sync(inode);
- mutex_unlock(&ui->ui_mutex);
-
- if (release)
- ubifs_release_budget(c, &req);
- if (IS_SYNC(inode))
- err = write_inode_now(inode, 1);
- return err;
-
-out_unlock:
- ubifs_err("can't modify inode %lu attributes", inode->i_ino);
- mutex_unlock(&ui->ui_mutex);
- ubifs_release_budget(c, &req);
- return err;
-}
-
-long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
-{
- int flags, err;
- struct inode *inode = file->f_path.dentry->d_inode;
-
- switch (cmd) {
- case FS_IOC_GETFLAGS:
- flags = ubifs2ioctl(ubifs_inode(inode)->flags);
-
- dbg_gen("get flags: %#x, i_flags %#x", flags, inode->i_flags);
- return put_user(flags, (int __user *) arg);
-
- case FS_IOC_SETFLAGS: {
- if (IS_RDONLY(inode))
- return -EROFS;
-
- if (!inode_owner_or_capable(inode))
- return -EACCES;
-
- if (get_user(flags, (int __user *) arg))
- return -EFAULT;
-
- if (!S_ISDIR(inode->i_mode))
- flags &= ~FS_DIRSYNC_FL;
-
- /*
- * Make sure the file-system is read-write and make sure it
- * will not become read-only while we are changing the flags.
- */
- err = mnt_want_write_file(file);
- if (err)
- return err;
- dbg_gen("set flags: %#x, i_flags %#x", flags, inode->i_flags);
- err = setflags(inode, flags);
- mnt_drop_write_file(file);
- return err;
- }
-
- default:
- return -ENOTTY;
- }
-}
-
-#ifdef CONFIG_COMPAT
-long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
-{
- switch (cmd) {
- case FS_IOC32_GETFLAGS:
- cmd = FS_IOC_GETFLAGS;
- break;
- case FS_IOC32_SETFLAGS:
- cmd = FS_IOC_SETFLAGS;
- break;
- default:
- return -ENOIOCTLCMD;
- }
- return ubifs_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
-}
-#endif
diff --git a/ANDROID_3.4.5/fs/ubifs/journal.c b/ANDROID_3.4.5/fs/ubifs/journal.c
deleted file mode 100644
index 2f438ab2..00000000
--- a/ANDROID_3.4.5/fs/ubifs/journal.c
+++ /dev/null
@@ -1,1465 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file implements UBIFS journal.
- *
- * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
- * length and position, while a bud logical eraseblock is any LEB in the main
- * area. Buds contain file system data - data nodes, inode nodes, etc. The log
- * contains only references to buds and some other stuff like commit
- * start node. The idea is that when we commit the journal, we do
- * not copy the data, the buds just become indexed. Since after the commit the
- * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
- * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
- * become leafs in the future.
- *
- * The journal is multi-headed because we want to write data to the journal as
- * optimally as possible. It is nice to have nodes belonging to the same inode
- * in one LEB, so we may write data owned by different inodes to different
- * journal heads, although at present only one data head is used.
- *
- * For recovery reasons, the base head contains all inode nodes, all directory
- * entry nodes and all truncate nodes. This means that the other heads contain
- * only data nodes.
- *
- * Bud LEBs may be half-indexed. For example, if the bud was not full at the
- * time of commit, the bud is retained to continue to be used in the journal,
- * even though the "front" of the LEB is now indexed. In that case, the log
- * reference contains the offset where the bud starts for the purposes of the
- * journal.
- *
- * The journal size has to be limited, because the larger is the journal, the
- * longer it takes to mount UBIFS (scanning the journal) and the more memory it
- * takes (indexing in the TNC).
- *
- * All the journal write operations like 'ubifs_jnl_update()' here, which write
- * multiple UBIFS nodes to the journal at one go, are atomic with respect to
- * unclean reboots. Should the unclean reboot happen, the recovery code drops
- * all the nodes.
- */
-
-#include "ubifs.h"
-
-/**
- * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
- * @ino: the inode to zero out
- */
-static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
-{
- memset(ino->padding1, 0, 4);
- memset(ino->padding2, 0, 26);
-}
-
-/**
- * zero_dent_node_unused - zero out unused fields of an on-flash directory
- * entry node.
- * @dent: the directory entry to zero out
- */
-static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
-{
- dent->padding1 = 0;
- memset(dent->padding2, 0, 4);
-}
-
-/**
- * zero_data_node_unused - zero out unused fields of an on-flash data node.
- * @data: the data node to zero out
- */
-static inline void zero_data_node_unused(struct ubifs_data_node *data)
-{
- memset(data->padding, 0, 2);
-}
-
-/**
- * zero_trun_node_unused - zero out unused fields of an on-flash truncation
- * node.
- * @trun: the truncation node to zero out
- */
-static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
-{
- memset(trun->padding, 0, 12);
-}
-
-/**
- * reserve_space - reserve space in the journal.
- * @c: UBIFS file-system description object
- * @jhead: journal head number
- * @len: node length
- *
- * This function reserves space in journal head @head. If the reservation
- * succeeded, the journal head stays locked and later has to be unlocked using
- * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
- * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
- * other negative error codes in case of other failures.
- */
-static int reserve_space(struct ubifs_info *c, int jhead, int len)
-{
- int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
- struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
-
- /*
- * Typically, the base head has smaller nodes written to it, so it is
- * better to try to allocate space at the ends of eraseblocks. This is
- * what the squeeze parameter does.
- */
- ubifs_assert(!c->ro_media && !c->ro_mount);
- squeeze = (jhead == BASEHD);
-again:
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
-
- if (c->ro_error) {
- err = -EROFS;
- goto out_unlock;
- }
-
- avail = c->leb_size - wbuf->offs - wbuf->used;
- if (wbuf->lnum != -1 && avail >= len)
- return 0;
-
- /*
- * Write buffer wasn't seek'ed or there is no enough space - look for an
- * LEB with some empty space.
- */
- lnum = ubifs_find_free_space(c, len, &offs, squeeze);
- if (lnum >= 0)
- goto out;
-
- err = lnum;
- if (err != -ENOSPC)
- goto out_unlock;
-
- /*
- * No free space, we have to run garbage collector to make
- * some. But the write-buffer mutex has to be unlocked because
- * GC also takes it.
- */
- dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
- mutex_unlock(&wbuf->io_mutex);
-
- lnum = ubifs_garbage_collect(c, 0);
- if (lnum < 0) {
- err = lnum;
- if (err != -ENOSPC)
- return err;
-
- /*
- * GC could not make a free LEB. But someone else may
- * have allocated new bud for this journal head,
- * because we dropped @wbuf->io_mutex, so try once
- * again.
- */
- dbg_jnl("GC couldn't make a free LEB for jhead %s",
- dbg_jhead(jhead));
- if (retries++ < 2) {
- dbg_jnl("retry (%d)", retries);
- goto again;
- }
-
- dbg_jnl("return -ENOSPC");
- return err;
- }
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
- avail = c->leb_size - wbuf->offs - wbuf->used;
-
- if (wbuf->lnum != -1 && avail >= len) {
- /*
- * Someone else has switched the journal head and we have
- * enough space now. This happens when more than one process is
- * trying to write to the same journal head at the same time.
- */
- dbg_jnl("return LEB %d back, already have LEB %d:%d",
- lnum, wbuf->lnum, wbuf->offs + wbuf->used);
- err = ubifs_return_leb(c, lnum);
- if (err)
- goto out_unlock;
- return 0;
- }
-
- offs = 0;
-
-out:
- /*
- * Make sure we synchronize the write-buffer before we add the new bud
- * to the log. Otherwise we may have a power cut after the log
- * reference node for the last bud (@lnum) is written but before the
- * write-buffer data are written to the next-to-last bud
- * (@wbuf->lnum). And the effect would be that the recovery would see
- * that there is corruption in the next-to-last bud.
- */
- err = ubifs_wbuf_sync_nolock(wbuf);
- if (err)
- goto out_return;
- err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
- if (err)
- goto out_return;
- err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
- if (err)
- goto out_unlock;
-
- return 0;
-
-out_unlock:
- mutex_unlock(&wbuf->io_mutex);
- return err;
-
-out_return:
- /* An error occurred and the LEB has to be returned to lprops */
- ubifs_assert(err < 0);
- err1 = ubifs_return_leb(c, lnum);
- if (err1 && err == -EAGAIN)
- /*
- * Return original error code only if it is not %-EAGAIN,
- * which is not really an error. Otherwise, return the error
- * code of 'ubifs_return_leb()'.
- */
- err = err1;
- mutex_unlock(&wbuf->io_mutex);
- return err;
-}
-
-/**
- * write_node - write node to a journal head.
- * @c: UBIFS file-system description object
- * @jhead: journal head
- * @node: node to write
- * @len: node length
- * @lnum: LEB number written is returned here
- * @offs: offset written is returned here
- *
- * This function writes a node to reserved space of journal head @jhead.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- */
-static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
- int *lnum, int *offs)
-{
- struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
-
- ubifs_assert(jhead != GCHD);
-
- *lnum = c->jheads[jhead].wbuf.lnum;
- *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
-
- dbg_jnl("jhead %s, LEB %d:%d, len %d",
- dbg_jhead(jhead), *lnum, *offs, len);
- ubifs_prepare_node(c, node, len, 0);
-
- return ubifs_wbuf_write_nolock(wbuf, node, len);
-}
-
-/**
- * write_head - write data to a journal head.
- * @c: UBIFS file-system description object
- * @jhead: journal head
- * @buf: buffer to write
- * @len: length to write
- * @lnum: LEB number written is returned here
- * @offs: offset written is returned here
- * @sync: non-zero if the write-buffer has to by synchronized
- *
- * This function is the same as 'write_node()' but it does not assume the
- * buffer it is writing is a node, so it does not prepare it (which means
- * initializing common header and calculating CRC).
- */
-static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
- int *lnum, int *offs, int sync)
-{
- int err;
- struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
-
- ubifs_assert(jhead != GCHD);
-
- *lnum = c->jheads[jhead].wbuf.lnum;
- *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
- dbg_jnl("jhead %s, LEB %d:%d, len %d",
- dbg_jhead(jhead), *lnum, *offs, len);
-
- err = ubifs_wbuf_write_nolock(wbuf, buf, len);
- if (err)
- return err;
- if (sync)
- err = ubifs_wbuf_sync_nolock(wbuf);
- return err;
-}
-
-/**
- * make_reservation - reserve journal space.
- * @c: UBIFS file-system description object
- * @jhead: journal head
- * @len: how many bytes to reserve
- *
- * This function makes space reservation in journal head @jhead. The function
- * takes the commit lock and locks the journal head, and the caller has to
- * unlock the head and finish the reservation with 'finish_reservation()'.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- *
- * Note, the journal head may be unlocked as soon as the data is written, while
- * the commit lock has to be released after the data has been added to the
- * TNC.
- */
-static int make_reservation(struct ubifs_info *c, int jhead, int len)
-{
- int err, cmt_retries = 0, nospc_retries = 0;
-
-again:
- down_read(&c->commit_sem);
- err = reserve_space(c, jhead, len);
- if (!err)
- return 0;
- up_read(&c->commit_sem);
-
- if (err == -ENOSPC) {
- /*
- * GC could not make any progress. We should try to commit
- * once because it could make some dirty space and GC would
- * make progress, so make the error -EAGAIN so that the below
- * will commit and re-try.
- */
- if (nospc_retries++ < 2) {
- dbg_jnl("no space, retry");
- err = -EAGAIN;
- }
-
- /*
- * This means that the budgeting is incorrect. We always have
- * to be able to write to the media, because all operations are
- * budgeted. Deletions are not budgeted, though, but we reserve
- * an extra LEB for them.
- */
- }
-
- if (err != -EAGAIN)
- goto out;
-
- /*
- * -EAGAIN means that the journal is full or too large, or the above
- * code wants to do one commit. Do this and re-try.
- */
- if (cmt_retries > 128) {
- /*
- * This should not happen unless the journal size limitations
- * are too tough.
- */
- ubifs_err("stuck in space allocation");
- err = -ENOSPC;
- goto out;
- } else if (cmt_retries > 32)
- ubifs_warn("too many space allocation re-tries (%d)",
- cmt_retries);
-
- dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
- cmt_retries);
- cmt_retries += 1;
-
- err = ubifs_run_commit(c);
- if (err)
- return err;
- goto again;
-
-out:
- ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
- len, jhead, err);
- if (err == -ENOSPC) {
- /* This are some budgeting problems, print useful information */
- down_write(&c->commit_sem);
- dbg_dump_stack();
- dbg_dump_budg(c, &c->bi);
- dbg_dump_lprops(c);
- cmt_retries = dbg_check_lprops(c);
- up_write(&c->commit_sem);
- }
- return err;
-}
-
-/**
- * release_head - release a journal head.
- * @c: UBIFS file-system description object
- * @jhead: journal head
- *
- * This function releases journal head @jhead which was locked by
- * the 'make_reservation()' function. It has to be called after each successful
- * 'make_reservation()' invocation.
- */
-static inline void release_head(struct ubifs_info *c, int jhead)
-{
- mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
-}
-
-/**
- * finish_reservation - finish a reservation.
- * @c: UBIFS file-system description object
- *
- * This function finishes journal space reservation. It must be called after
- * 'make_reservation()'.
- */
-static void finish_reservation(struct ubifs_info *c)
-{
- up_read(&c->commit_sem);
-}
-
-/**
- * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
- * @mode: inode mode
- */
-static int get_dent_type(int mode)
-{
- switch (mode & S_IFMT) {
- case S_IFREG:
- return UBIFS_ITYPE_REG;
- case S_IFDIR:
- return UBIFS_ITYPE_DIR;
- case S_IFLNK:
- return UBIFS_ITYPE_LNK;
- case S_IFBLK:
- return UBIFS_ITYPE_BLK;
- case S_IFCHR:
- return UBIFS_ITYPE_CHR;
- case S_IFIFO:
- return UBIFS_ITYPE_FIFO;
- case S_IFSOCK:
- return UBIFS_ITYPE_SOCK;
- default:
- BUG();
- }
- return 0;
-}
-
-/**
- * pack_inode - pack an inode node.
- * @c: UBIFS file-system description object
- * @ino: buffer in which to pack inode node
- * @inode: inode to pack
- * @last: indicates the last node of the group
- */
-static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
- const struct inode *inode, int last)
-{
- int data_len = 0, last_reference = !inode->i_nlink;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- ino->ch.node_type = UBIFS_INO_NODE;
- ino_key_init_flash(c, &ino->key, inode->i_ino);
- ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
- ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
- ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
- ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
- ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
- ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
- ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
- ino->uid = cpu_to_le32(inode->i_uid);
- ino->gid = cpu_to_le32(inode->i_gid);
- ino->mode = cpu_to_le32(inode->i_mode);
- ino->flags = cpu_to_le32(ui->flags);
- ino->size = cpu_to_le64(ui->ui_size);
- ino->nlink = cpu_to_le32(inode->i_nlink);
- ino->compr_type = cpu_to_le16(ui->compr_type);
- ino->data_len = cpu_to_le32(ui->data_len);
- ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
- ino->xattr_size = cpu_to_le32(ui->xattr_size);
- ino->xattr_names = cpu_to_le32(ui->xattr_names);
- zero_ino_node_unused(ino);
-
- /*
- * Drop the attached data if this is a deletion inode, the data is not
- * needed anymore.
- */
- if (!last_reference) {
- memcpy(ino->data, ui->data, ui->data_len);
- data_len = ui->data_len;
- }
-
- ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
-}
-
-/**
- * mark_inode_clean - mark UBIFS inode as clean.
- * @c: UBIFS file-system description object
- * @ui: UBIFS inode to mark as clean
- *
- * This helper function marks UBIFS inode @ui as clean by cleaning the
- * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
- * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
- * just do nothing.
- */
-static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
-{
- if (ui->dirty)
- ubifs_release_dirty_inode_budget(c, ui);
- ui->dirty = 0;
-}
-
-/**
- * ubifs_jnl_update - update inode.
- * @c: UBIFS file-system description object
- * @dir: parent inode or host inode in case of extended attributes
- * @nm: directory entry name
- * @inode: inode to update
- * @deletion: indicates a directory entry deletion i.e unlink or rmdir
- * @xent: non-zero if the directory entry is an extended attribute entry
- *
- * This function updates an inode by writing a directory entry (or extended
- * attribute entry), the inode itself, and the parent directory inode (or the
- * host inode) to the journal.
- *
- * The function writes the host inode @dir last, which is important in case of
- * extended attributes. Indeed, then we guarantee that if the host inode gets
- * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
- * the extended attribute inode gets flushed too. And this is exactly what the
- * user expects - synchronizing the host inode synchronizes its extended
- * attributes. Similarly, this guarantees that if @dir is synchronized, its
- * directory entry corresponding to @nm gets synchronized too.
- *
- * If the inode (@inode) or the parent directory (@dir) are synchronous, this
- * function synchronizes the write-buffer.
- *
- * This function marks the @dir and @inode inodes as clean and returns zero on
- * success. In case of failure, a negative error code is returned.
- */
-int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
- const struct qstr *nm, const struct inode *inode,
- int deletion, int xent)
-{
- int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
- int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
- int last_reference = !!(deletion && inode->i_nlink == 0);
- struct ubifs_inode *ui = ubifs_inode(inode);
- struct ubifs_inode *dir_ui = ubifs_inode(dir);
- struct ubifs_dent_node *dent;
- struct ubifs_ino_node *ino;
- union ubifs_key dent_key, ino_key;
-
- dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
- inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
- ubifs_assert(dir_ui->data_len == 0);
- ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
-
- dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
- ilen = UBIFS_INO_NODE_SZ;
-
- /*
- * If the last reference to the inode is being deleted, then there is
- * no need to attach and write inode data, it is being deleted anyway.
- * And if the inode is being deleted, no need to synchronize
- * write-buffer even if the inode is synchronous.
- */
- if (!last_reference) {
- ilen += ui->data_len;
- sync |= IS_SYNC(inode);
- }
-
- aligned_dlen = ALIGN(dlen, 8);
- aligned_ilen = ALIGN(ilen, 8);
- len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
- dent = kmalloc(len, GFP_NOFS);
- if (!dent)
- return -ENOMEM;
-
- /* Make reservation before allocating sequence numbers */
- err = make_reservation(c, BASEHD, len);
- if (err)
- goto out_free;
-
- if (!xent) {
- dent->ch.node_type = UBIFS_DENT_NODE;
- dent_key_init(c, &dent_key, dir->i_ino, nm);
- } else {
- dent->ch.node_type = UBIFS_XENT_NODE;
- xent_key_init(c, &dent_key, dir->i_ino, nm);
- }
-
- key_write(c, &dent_key, dent->key);
- dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
- dent->type = get_dent_type(inode->i_mode);
- dent->nlen = cpu_to_le16(nm->len);
- memcpy(dent->name, nm->name, nm->len);
- dent->name[nm->len] = '\0';
- zero_dent_node_unused(dent);
- ubifs_prep_grp_node(c, dent, dlen, 0);
-
- ino = (void *)dent + aligned_dlen;
- pack_inode(c, ino, inode, 0);
- ino = (void *)ino + aligned_ilen;
- pack_inode(c, ino, dir, 1);
-
- if (last_reference) {
- err = ubifs_add_orphan(c, inode->i_ino);
- if (err) {
- release_head(c, BASEHD);
- goto out_finish;
- }
- ui->del_cmtno = c->cmt_no;
- }
-
- err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
- if (err)
- goto out_release;
- if (!sync) {
- struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
-
- ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
- ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
- }
- release_head(c, BASEHD);
- kfree(dent);
-
- if (deletion) {
- err = ubifs_tnc_remove_nm(c, &dent_key, nm);
- if (err)
- goto out_ro;
- err = ubifs_add_dirt(c, lnum, dlen);
- } else
- err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
- if (err)
- goto out_ro;
-
- /*
- * Note, we do not remove the inode from TNC even if the last reference
- * to it has just been deleted, because the inode may still be opened.
- * Instead, the inode has been added to orphan lists and the orphan
- * subsystem will take further care about it.
- */
- ino_key_init(c, &ino_key, inode->i_ino);
- ino_offs = dent_offs + aligned_dlen;
- err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
- if (err)
- goto out_ro;
-
- ino_key_init(c, &ino_key, dir->i_ino);
- ino_offs += aligned_ilen;
- err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
- if (err)
- goto out_ro;
-
- finish_reservation(c);
- spin_lock(&ui->ui_lock);
- ui->synced_i_size = ui->ui_size;
- spin_unlock(&ui->ui_lock);
- mark_inode_clean(c, ui);
- mark_inode_clean(c, dir_ui);
- return 0;
-
-out_finish:
- finish_reservation(c);
-out_free:
- kfree(dent);
- return err;
-
-out_release:
- release_head(c, BASEHD);
- kfree(dent);
-out_ro:
- ubifs_ro_mode(c, err);
- if (last_reference)
- ubifs_delete_orphan(c, inode->i_ino);
- finish_reservation(c);
- return err;
-}
-
-/**
- * ubifs_jnl_write_data - write a data node to the journal.
- * @c: UBIFS file-system description object
- * @inode: inode the data node belongs to
- * @key: node key
- * @buf: buffer to write
- * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
- *
- * This function writes a data node to the journal. Returns %0 if the data node
- * was successfully written, and a negative error code in case of failure.
- */
-int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
- const union ubifs_key *key, const void *buf, int len)
-{
- struct ubifs_data_node *data;
- int err, lnum, offs, compr_type, out_len;
- int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
- (unsigned long)key_inum(c, key), key_block(c, key), len);
- ubifs_assert(len <= UBIFS_BLOCK_SIZE);
-
- data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
- if (!data) {
- /*
- * Fall-back to the write reserve buffer. Note, we might be
- * currently on the memory reclaim path, when the kernel is
- * trying to free some memory by writing out dirty pages. The
- * write reserve buffer helps us to guarantee that we are
- * always able to write the data.
- */
- allocated = 0;
- mutex_lock(&c->write_reserve_mutex);
- data = c->write_reserve_buf;
- }
-
- data->ch.node_type = UBIFS_DATA_NODE;
- key_write(c, key, &data->key);
- data->size = cpu_to_le32(len);
- zero_data_node_unused(data);
-
- if (!(ui->flags & UBIFS_COMPR_FL))
- /* Compression is disabled for this inode */
- compr_type = UBIFS_COMPR_NONE;
- else
- compr_type = ui->compr_type;
-
- out_len = dlen - UBIFS_DATA_NODE_SZ;
- ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
- ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
-
- dlen = UBIFS_DATA_NODE_SZ + out_len;
- data->compr_type = cpu_to_le16(compr_type);
-
- /* Make reservation before allocating sequence numbers */
- err = make_reservation(c, DATAHD, dlen);
- if (err)
- goto out_free;
-
- err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
- if (err)
- goto out_release;
- ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
- release_head(c, DATAHD);
-
- err = ubifs_tnc_add(c, key, lnum, offs, dlen);
- if (err)
- goto out_ro;
-
- finish_reservation(c);
- if (!allocated)
- mutex_unlock(&c->write_reserve_mutex);
- else
- kfree(data);
- return 0;
-
-out_release:
- release_head(c, DATAHD);
-out_ro:
- ubifs_ro_mode(c, err);
- finish_reservation(c);
-out_free:
- if (!allocated)
- mutex_unlock(&c->write_reserve_mutex);
- else
- kfree(data);
- return err;
-}
-
-/**
- * ubifs_jnl_write_inode - flush inode to the journal.
- * @c: UBIFS file-system description object
- * @inode: inode to flush
- *
- * This function writes inode @inode to the journal. If the inode is
- * synchronous, it also synchronizes the write-buffer. Returns zero in case of
- * success and a negative error code in case of failure.
- */
-int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
-{
- int err, lnum, offs;
- struct ubifs_ino_node *ino;
- struct ubifs_inode *ui = ubifs_inode(inode);
- int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
-
- dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
-
- /*
- * If the inode is being deleted, do not write the attached data. No
- * need to synchronize the write-buffer either.
- */
- if (!last_reference) {
- len += ui->data_len;
- sync = IS_SYNC(inode);
- }
- ino = kmalloc(len, GFP_NOFS);
- if (!ino)
- return -ENOMEM;
-
- /* Make reservation before allocating sequence numbers */
- err = make_reservation(c, BASEHD, len);
- if (err)
- goto out_free;
-
- pack_inode(c, ino, inode, 1);
- err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
- if (err)
- goto out_release;
- if (!sync)
- ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
- inode->i_ino);
- release_head(c, BASEHD);
-
- if (last_reference) {
- err = ubifs_tnc_remove_ino(c, inode->i_ino);
- if (err)
- goto out_ro;
- ubifs_delete_orphan(c, inode->i_ino);
- err = ubifs_add_dirt(c, lnum, len);
- } else {
- union ubifs_key key;
-
- ino_key_init(c, &key, inode->i_ino);
- err = ubifs_tnc_add(c, &key, lnum, offs, len);
- }
- if (err)
- goto out_ro;
-
- finish_reservation(c);
- spin_lock(&ui->ui_lock);
- ui->synced_i_size = ui->ui_size;
- spin_unlock(&ui->ui_lock);
- kfree(ino);
- return 0;
-
-out_release:
- release_head(c, BASEHD);
-out_ro:
- ubifs_ro_mode(c, err);
- finish_reservation(c);
-out_free:
- kfree(ino);
- return err;
-}
-
-/**
- * ubifs_jnl_delete_inode - delete an inode.
- * @c: UBIFS file-system description object
- * @inode: inode to delete
- *
- * This function deletes inode @inode which includes removing it from orphans,
- * deleting it from TNC and, in some cases, writing a deletion inode to the
- * journal.
- *
- * When regular file inodes are unlinked or a directory inode is removed, the
- * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
- * direntry to the media, and adds the inode to orphans. After this, when the
- * last reference to this inode has been dropped, this function is called. In
- * general, it has to write one more deletion inode to the media, because if
- * a commit happened between 'ubifs_jnl_update()' and
- * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
- * anymore, and in fact it might not be on the flash anymore, because it might
- * have been garbage-collected already. And for optimization reasons UBIFS does
- * not read the orphan area if it has been unmounted cleanly, so it would have
- * no indication in the journal that there is a deleted inode which has to be
- * removed from TNC.
- *
- * However, if there was no commit between 'ubifs_jnl_update()' and
- * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
- * inode to the media for the second time. And this is quite a typical case.
- *
- * This function returns zero in case of success and a negative error code in
- * case of failure.
- */
-int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
-{
- int err;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- ubifs_assert(inode->i_nlink == 0);
-
- if (ui->del_cmtno != c->cmt_no)
- /* A commit happened for sure */
- return ubifs_jnl_write_inode(c, inode);
-
- down_read(&c->commit_sem);
- /*
- * Check commit number again, because the first test has been done
- * without @c->commit_sem, so a commit might have happened.
- */
- if (ui->del_cmtno != c->cmt_no) {
- up_read(&c->commit_sem);
- return ubifs_jnl_write_inode(c, inode);
- }
-
- err = ubifs_tnc_remove_ino(c, inode->i_ino);
- if (err)
- ubifs_ro_mode(c, err);
- else
- ubifs_delete_orphan(c, inode->i_ino);
- up_read(&c->commit_sem);
- return err;
-}
-
-/**
- * ubifs_jnl_rename - rename a directory entry.
- * @c: UBIFS file-system description object
- * @old_dir: parent inode of directory entry to rename
- * @old_dentry: directory entry to rename
- * @new_dir: parent inode of directory entry to rename
- * @new_dentry: new directory entry (or directory entry to replace)
- * @sync: non-zero if the write-buffer has to be synchronized
- *
- * This function implements the re-name operation which may involve writing up
- * to 3 inodes and 2 directory entries. It marks the written inodes as clean
- * and returns zero on success. In case of failure, a negative error code is
- * returned.
- */
-int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
- const struct dentry *old_dentry,
- const struct inode *new_dir,
- const struct dentry *new_dentry, int sync)
-{
- void *p;
- union ubifs_key key;
- struct ubifs_dent_node *dent, *dent2;
- int err, dlen1, dlen2, ilen, lnum, offs, len;
- const struct inode *old_inode = old_dentry->d_inode;
- const struct inode *new_inode = new_dentry->d_inode;
- int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
- int last_reference = !!(new_inode && new_inode->i_nlink == 0);
- int move = (old_dir != new_dir);
- struct ubifs_inode *uninitialized_var(new_ui);
-
- dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
- old_dentry->d_name.len, old_dentry->d_name.name,
- old_dir->i_ino, new_dentry->d_name.len,
- new_dentry->d_name.name, new_dir->i_ino);
- ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
- ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
- ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
- ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
-
- dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
- dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
- if (new_inode) {
- new_ui = ubifs_inode(new_inode);
- ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
- ilen = UBIFS_INO_NODE_SZ;
- if (!last_reference)
- ilen += new_ui->data_len;
- } else
- ilen = 0;
-
- aligned_dlen1 = ALIGN(dlen1, 8);
- aligned_dlen2 = ALIGN(dlen2, 8);
- len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
- if (old_dir != new_dir)
- len += plen;
- dent = kmalloc(len, GFP_NOFS);
- if (!dent)
- return -ENOMEM;
-
- /* Make reservation before allocating sequence numbers */
- err = make_reservation(c, BASEHD, len);
- if (err)
- goto out_free;
-
- /* Make new dent */
- dent->ch.node_type = UBIFS_DENT_NODE;
- dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
- dent->inum = cpu_to_le64(old_inode->i_ino);
- dent->type = get_dent_type(old_inode->i_mode);
- dent->nlen = cpu_to_le16(new_dentry->d_name.len);
- memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
- dent->name[new_dentry->d_name.len] = '\0';
- zero_dent_node_unused(dent);
- ubifs_prep_grp_node(c, dent, dlen1, 0);
-
- /* Make deletion dent */
- dent2 = (void *)dent + aligned_dlen1;
- dent2->ch.node_type = UBIFS_DENT_NODE;
- dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
- &old_dentry->d_name);
- dent2->inum = 0;
- dent2->type = DT_UNKNOWN;
- dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
- memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
- dent2->name[old_dentry->d_name.len] = '\0';
- zero_dent_node_unused(dent2);
- ubifs_prep_grp_node(c, dent2, dlen2, 0);
-
- p = (void *)dent2 + aligned_dlen2;
- if (new_inode) {
- pack_inode(c, p, new_inode, 0);
- p += ALIGN(ilen, 8);
- }
-
- if (!move)
- pack_inode(c, p, old_dir, 1);
- else {
- pack_inode(c, p, old_dir, 0);
- p += ALIGN(plen, 8);
- pack_inode(c, p, new_dir, 1);
- }
-
- if (last_reference) {
- err = ubifs_add_orphan(c, new_inode->i_ino);
- if (err) {
- release_head(c, BASEHD);
- goto out_finish;
- }
- new_ui->del_cmtno = c->cmt_no;
- }
-
- err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
- if (err)
- goto out_release;
- if (!sync) {
- struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
-
- ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
- ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
- if (new_inode)
- ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
- new_inode->i_ino);
- }
- release_head(c, BASEHD);
-
- dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
- err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
- if (err)
- goto out_ro;
-
- err = ubifs_add_dirt(c, lnum, dlen2);
- if (err)
- goto out_ro;
-
- dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
- err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
- if (err)
- goto out_ro;
-
- offs += aligned_dlen1 + aligned_dlen2;
- if (new_inode) {
- ino_key_init(c, &key, new_inode->i_ino);
- err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
- if (err)
- goto out_ro;
- offs += ALIGN(ilen, 8);
- }
-
- ino_key_init(c, &key, old_dir->i_ino);
- err = ubifs_tnc_add(c, &key, lnum, offs, plen);
- if (err)
- goto out_ro;
-
- if (old_dir != new_dir) {
- offs += ALIGN(plen, 8);
- ino_key_init(c, &key, new_dir->i_ino);
- err = ubifs_tnc_add(c, &key, lnum, offs, plen);
- if (err)
- goto out_ro;
- }
-
- finish_reservation(c);
- if (new_inode) {
- mark_inode_clean(c, new_ui);
- spin_lock(&new_ui->ui_lock);
- new_ui->synced_i_size = new_ui->ui_size;
- spin_unlock(&new_ui->ui_lock);
- }
- mark_inode_clean(c, ubifs_inode(old_dir));
- if (move)
- mark_inode_clean(c, ubifs_inode(new_dir));
- kfree(dent);
- return 0;
-
-out_release:
- release_head(c, BASEHD);
-out_ro:
- ubifs_ro_mode(c, err);
- if (last_reference)
- ubifs_delete_orphan(c, new_inode->i_ino);
-out_finish:
- finish_reservation(c);
-out_free:
- kfree(dent);
- return err;
-}
-
-/**
- * recomp_data_node - re-compress a truncated data node.
- * @dn: data node to re-compress
- * @new_len: new length
- *
- * This function is used when an inode is truncated and the last data node of
- * the inode has to be re-compressed and re-written.
- */
-static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
-{
- void *buf;
- int err, len, compr_type, out_len;
-
- out_len = le32_to_cpu(dn->size);
- buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
- if (!buf)
- return -ENOMEM;
-
- len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
- compr_type = le16_to_cpu(dn->compr_type);
- err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
- if (err)
- goto out;
-
- ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
- ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
- dn->compr_type = cpu_to_le16(compr_type);
- dn->size = cpu_to_le32(*new_len);
- *new_len = UBIFS_DATA_NODE_SZ + out_len;
-out:
- kfree(buf);
- return err;
-}
-
-/**
- * ubifs_jnl_truncate - update the journal for a truncation.
- * @c: UBIFS file-system description object
- * @inode: inode to truncate
- * @old_size: old size
- * @new_size: new size
- *
- * When the size of a file decreases due to truncation, a truncation node is
- * written, the journal tree is updated, and the last data block is re-written
- * if it has been affected. The inode is also updated in order to synchronize
- * the new inode size.
- *
- * This function marks the inode as clean and returns zero on success. In case
- * of failure, a negative error code is returned.
- */
-int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
- loff_t old_size, loff_t new_size)
-{
- union ubifs_key key, to_key;
- struct ubifs_ino_node *ino;
- struct ubifs_trun_node *trun;
- struct ubifs_data_node *uninitialized_var(dn);
- int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
- struct ubifs_inode *ui = ubifs_inode(inode);
- ino_t inum = inode->i_ino;
- unsigned int blk;
-
- dbg_jnl("ino %lu, size %lld -> %lld",
- (unsigned long)inum, old_size, new_size);
- ubifs_assert(!ui->data_len);
- ubifs_assert(S_ISREG(inode->i_mode));
- ubifs_assert(mutex_is_locked(&ui->ui_mutex));
-
- sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
- UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
- ino = kmalloc(sz, GFP_NOFS);
- if (!ino)
- return -ENOMEM;
-
- trun = (void *)ino + UBIFS_INO_NODE_SZ;
- trun->ch.node_type = UBIFS_TRUN_NODE;
- trun->inum = cpu_to_le32(inum);
- trun->old_size = cpu_to_le64(old_size);
- trun->new_size = cpu_to_le64(new_size);
- zero_trun_node_unused(trun);
-
- dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
- if (dlen) {
- /* Get last data block so it can be truncated */
- dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
- blk = new_size >> UBIFS_BLOCK_SHIFT;
- data_key_init(c, &key, inum, blk);
- dbg_jnlk(&key, "last block key ");
- err = ubifs_tnc_lookup(c, &key, dn);
- if (err == -ENOENT)
- dlen = 0; /* Not found (so it is a hole) */
- else if (err)
- goto out_free;
- else {
- if (le32_to_cpu(dn->size) <= dlen)
- dlen = 0; /* Nothing to do */
- else {
- int compr_type = le16_to_cpu(dn->compr_type);
-
- if (compr_type != UBIFS_COMPR_NONE) {
- err = recomp_data_node(dn, &dlen);
- if (err)
- goto out_free;
- } else {
- dn->size = cpu_to_le32(dlen);
- dlen += UBIFS_DATA_NODE_SZ;
- }
- zero_data_node_unused(dn);
- }
- }
- }
-
- /* Must make reservation before allocating sequence numbers */
- len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
- if (dlen)
- len += dlen;
- err = make_reservation(c, BASEHD, len);
- if (err)
- goto out_free;
-
- pack_inode(c, ino, inode, 0);
- ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
- if (dlen)
- ubifs_prep_grp_node(c, dn, dlen, 1);
-
- err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
- if (err)
- goto out_release;
- if (!sync)
- ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
- release_head(c, BASEHD);
-
- if (dlen) {
- sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
- err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
- if (err)
- goto out_ro;
- }
-
- ino_key_init(c, &key, inum);
- err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
- if (err)
- goto out_ro;
-
- err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
- if (err)
- goto out_ro;
-
- bit = new_size & (UBIFS_BLOCK_SIZE - 1);
- blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
- data_key_init(c, &key, inum, blk);
-
- bit = old_size & (UBIFS_BLOCK_SIZE - 1);
- blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
- data_key_init(c, &to_key, inum, blk);
-
- err = ubifs_tnc_remove_range(c, &key, &to_key);
- if (err)
- goto out_ro;
-
- finish_reservation(c);
- spin_lock(&ui->ui_lock);
- ui->synced_i_size = ui->ui_size;
- spin_unlock(&ui->ui_lock);
- mark_inode_clean(c, ui);
- kfree(ino);
- return 0;
-
-out_release:
- release_head(c, BASEHD);
-out_ro:
- ubifs_ro_mode(c, err);
- finish_reservation(c);
-out_free:
- kfree(ino);
- return err;
-}
-
-#ifdef CONFIG_UBIFS_FS_XATTR
-
-/**
- * ubifs_jnl_delete_xattr - delete an extended attribute.
- * @c: UBIFS file-system description object
- * @host: host inode
- * @inode: extended attribute inode
- * @nm: extended attribute entry name
- *
- * This function delete an extended attribute which is very similar to
- * un-linking regular files - it writes a deletion xentry, a deletion inode and
- * updates the target inode. Returns zero in case of success and a negative
- * error code in case of failure.
- */
-int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
- const struct inode *inode, const struct qstr *nm)
-{
- int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
- struct ubifs_dent_node *xent;
- struct ubifs_ino_node *ino;
- union ubifs_key xent_key, key1, key2;
- int sync = IS_DIRSYNC(host);
- struct ubifs_inode *host_ui = ubifs_inode(host);
-
- dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
- host->i_ino, inode->i_ino, nm->name,
- ubifs_inode(inode)->data_len);
- ubifs_assert(inode->i_nlink == 0);
- ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
-
- /*
- * Since we are deleting the inode, we do not bother to attach any data
- * to it and assume its length is %UBIFS_INO_NODE_SZ.
- */
- xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
- aligned_xlen = ALIGN(xlen, 8);
- hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
- len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
-
- xent = kmalloc(len, GFP_NOFS);
- if (!xent)
- return -ENOMEM;
-
- /* Make reservation before allocating sequence numbers */
- err = make_reservation(c, BASEHD, len);
- if (err) {
- kfree(xent);
- return err;
- }
-
- xent->ch.node_type = UBIFS_XENT_NODE;
- xent_key_init(c, &xent_key, host->i_ino, nm);
- key_write(c, &xent_key, xent->key);
- xent->inum = 0;
- xent->type = get_dent_type(inode->i_mode);
- xent->nlen = cpu_to_le16(nm->len);
- memcpy(xent->name, nm->name, nm->len);
- xent->name[nm->len] = '\0';
- zero_dent_node_unused(xent);
- ubifs_prep_grp_node(c, xent, xlen, 0);
-
- ino = (void *)xent + aligned_xlen;
- pack_inode(c, ino, inode, 0);
- ino = (void *)ino + UBIFS_INO_NODE_SZ;
- pack_inode(c, ino, host, 1);
-
- err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
- if (!sync && !err)
- ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
- release_head(c, BASEHD);
- kfree(xent);
- if (err)
- goto out_ro;
-
- /* Remove the extended attribute entry from TNC */
- err = ubifs_tnc_remove_nm(c, &xent_key, nm);
- if (err)
- goto out_ro;
- err = ubifs_add_dirt(c, lnum, xlen);
- if (err)
- goto out_ro;
-
- /*
- * Remove all nodes belonging to the extended attribute inode from TNC.
- * Well, there actually must be only one node - the inode itself.
- */
- lowest_ino_key(c, &key1, inode->i_ino);
- highest_ino_key(c, &key2, inode->i_ino);
- err = ubifs_tnc_remove_range(c, &key1, &key2);
- if (err)
- goto out_ro;
- err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
- if (err)
- goto out_ro;
-
- /* And update TNC with the new host inode position */
- ino_key_init(c, &key1, host->i_ino);
- err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
- if (err)
- goto out_ro;
-
- finish_reservation(c);
- spin_lock(&host_ui->ui_lock);
- host_ui->synced_i_size = host_ui->ui_size;
- spin_unlock(&host_ui->ui_lock);
- mark_inode_clean(c, host_ui);
- return 0;
-
-out_ro:
- ubifs_ro_mode(c, err);
- finish_reservation(c);
- return err;
-}
-
-/**
- * ubifs_jnl_change_xattr - change an extended attribute.
- * @c: UBIFS file-system description object
- * @inode: extended attribute inode
- * @host: host inode
- *
- * This function writes the updated version of an extended attribute inode and
- * the host inode to the journal (to the base head). The host inode is written
- * after the extended attribute inode in order to guarantee that the extended
- * attribute will be flushed when the inode is synchronized by 'fsync()' and
- * consequently, the write-buffer is synchronized. This function returns zero
- * in case of success and a negative error code in case of failure.
- */
-int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
- const struct inode *host)
-{
- int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
- struct ubifs_inode *host_ui = ubifs_inode(host);
- struct ubifs_ino_node *ino;
- union ubifs_key key;
- int sync = IS_DIRSYNC(host);
-
- dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
- ubifs_assert(host->i_nlink > 0);
- ubifs_assert(inode->i_nlink > 0);
- ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
-
- len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
- len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
- aligned_len1 = ALIGN(len1, 8);
- aligned_len = aligned_len1 + ALIGN(len2, 8);
-
- ino = kmalloc(aligned_len, GFP_NOFS);
- if (!ino)
- return -ENOMEM;
-
- /* Make reservation before allocating sequence numbers */
- err = make_reservation(c, BASEHD, aligned_len);
- if (err)
- goto out_free;
-
- pack_inode(c, ino, host, 0);
- pack_inode(c, (void *)ino + aligned_len1, inode, 1);
-
- err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
- if (!sync && !err) {
- struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
-
- ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
- ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
- }
- release_head(c, BASEHD);
- if (err)
- goto out_ro;
-
- ino_key_init(c, &key, host->i_ino);
- err = ubifs_tnc_add(c, &key, lnum, offs, len1);
- if (err)
- goto out_ro;
-
- ino_key_init(c, &key, inode->i_ino);
- err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
- if (err)
- goto out_ro;
-
- finish_reservation(c);
- spin_lock(&host_ui->ui_lock);
- host_ui->synced_i_size = host_ui->ui_size;
- spin_unlock(&host_ui->ui_lock);
- mark_inode_clean(c, host_ui);
- kfree(ino);
- return 0;
-
-out_ro:
- ubifs_ro_mode(c, err);
- finish_reservation(c);
-out_free:
- kfree(ino);
- return err;
-}
-
-#endif /* CONFIG_UBIFS_FS_XATTR */
diff --git a/ANDROID_3.4.5/fs/ubifs/key.h b/ANDROID_3.4.5/fs/ubifs/key.h
deleted file mode 100644
index 92a8491a..00000000
--- a/ANDROID_3.4.5/fs/ubifs/key.h
+++ /dev/null
@@ -1,548 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This header contains various key-related definitions and helper function.
- * UBIFS allows several key schemes, so we access key fields only via these
- * helpers. At the moment only one key scheme is supported.
- *
- * Simple key scheme
- * ~~~~~~~~~~~~~~~~~
- *
- * Keys are 64-bits long. First 32-bits are inode number (parent inode number
- * in case of direntry key). Next 3 bits are node type. The last 29 bits are
- * 4KiB offset in case of inode node, and direntry hash in case of a direntry
- * node. We use "r5" hash borrowed from reiserfs.
- */
-
-#ifndef __UBIFS_KEY_H__
-#define __UBIFS_KEY_H__
-
-/**
- * key_mask_hash - mask a valid hash value.
- * @val: value to be masked
- *
- * We use hash values as offset in directories, so values %0 and %1 are
- * reserved for "." and "..". %2 is reserved for "end of readdir" marker. This
- * function makes sure the reserved values are not used.
- */
-static inline uint32_t key_mask_hash(uint32_t hash)
-{
- hash &= UBIFS_S_KEY_HASH_MASK;
- if (unlikely(hash <= 2))
- hash += 3;
- return hash;
-}
-
-/**
- * key_r5_hash - R5 hash function (borrowed from reiserfs).
- * @s: direntry name
- * @len: name length
- */
-static inline uint32_t key_r5_hash(const char *s, int len)
-{
- uint32_t a = 0;
- const signed char *str = (const signed char *)s;
-
- while (*str) {
- a += *str << 4;
- a += *str >> 4;
- a *= 11;
- str++;
- }
-
- return key_mask_hash(a);
-}
-
-/**
- * key_test_hash - testing hash function.
- * @str: direntry name
- * @len: name length
- */
-static inline uint32_t key_test_hash(const char *str, int len)
-{
- uint32_t a = 0;
-
- len = min_t(uint32_t, len, 4);
- memcpy(&a, str, len);
- return key_mask_hash(a);
-}
-
-/**
- * ino_key_init - initialize inode key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: inode number
- */
-static inline void ino_key_init(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum)
-{
- key->u32[0] = inum;
- key->u32[1] = UBIFS_INO_KEY << UBIFS_S_KEY_BLOCK_BITS;
-}
-
-/**
- * ino_key_init_flash - initialize on-flash inode key.
- * @c: UBIFS file-system description object
- * @k: key to initialize
- * @inum: inode number
- */
-static inline void ino_key_init_flash(const struct ubifs_info *c, void *k,
- ino_t inum)
-{
- union ubifs_key *key = k;
-
- key->j32[0] = cpu_to_le32(inum);
- key->j32[1] = cpu_to_le32(UBIFS_INO_KEY << UBIFS_S_KEY_BLOCK_BITS);
- memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
-}
-
-/**
- * lowest_ino_key - get the lowest possible inode key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: inode number
- */
-static inline void lowest_ino_key(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum)
-{
- key->u32[0] = inum;
- key->u32[1] = 0;
-}
-
-/**
- * highest_ino_key - get the highest possible inode key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: inode number
- */
-static inline void highest_ino_key(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum)
-{
- key->u32[0] = inum;
- key->u32[1] = 0xffffffff;
-}
-
-/**
- * dent_key_init - initialize directory entry key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: parent inode number
- * @nm: direntry name and length
- */
-static inline void dent_key_init(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum,
- const struct qstr *nm)
-{
- uint32_t hash = c->key_hash(nm->name, nm->len);
-
- ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
- key->u32[0] = inum;
- key->u32[1] = hash | (UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS);
-}
-
-/**
- * dent_key_init_hash - initialize directory entry key without re-calculating
- * hash function.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: parent inode number
- * @hash: direntry name hash
- */
-static inline void dent_key_init_hash(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum,
- uint32_t hash)
-{
- ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
- key->u32[0] = inum;
- key->u32[1] = hash | (UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS);
-}
-
-/**
- * dent_key_init_flash - initialize on-flash directory entry key.
- * @c: UBIFS file-system description object
- * @k: key to initialize
- * @inum: parent inode number
- * @nm: direntry name and length
- */
-static inline void dent_key_init_flash(const struct ubifs_info *c, void *k,
- ino_t inum, const struct qstr *nm)
-{
- union ubifs_key *key = k;
- uint32_t hash = c->key_hash(nm->name, nm->len);
-
- ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
- key->j32[0] = cpu_to_le32(inum);
- key->j32[1] = cpu_to_le32(hash |
- (UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS));
- memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
-}
-
-/**
- * lowest_dent_key - get the lowest possible directory entry key.
- * @c: UBIFS file-system description object
- * @key: where to store the lowest key
- * @inum: parent inode number
- */
-static inline void lowest_dent_key(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum)
-{
- key->u32[0] = inum;
- key->u32[1] = UBIFS_DENT_KEY << UBIFS_S_KEY_HASH_BITS;
-}
-
-/**
- * xent_key_init - initialize extended attribute entry key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: host inode number
- * @nm: extended attribute entry name and length
- */
-static inline void xent_key_init(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum,
- const struct qstr *nm)
-{
- uint32_t hash = c->key_hash(nm->name, nm->len);
-
- ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
- key->u32[0] = inum;
- key->u32[1] = hash | (UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS);
-}
-
-/**
- * xent_key_init_flash - initialize on-flash extended attribute entry key.
- * @c: UBIFS file-system description object
- * @k: key to initialize
- * @inum: host inode number
- * @nm: extended attribute entry name and length
- */
-static inline void xent_key_init_flash(const struct ubifs_info *c, void *k,
- ino_t inum, const struct qstr *nm)
-{
- union ubifs_key *key = k;
- uint32_t hash = c->key_hash(nm->name, nm->len);
-
- ubifs_assert(!(hash & ~UBIFS_S_KEY_HASH_MASK));
- key->j32[0] = cpu_to_le32(inum);
- key->j32[1] = cpu_to_le32(hash |
- (UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS));
- memset(k + 8, 0, UBIFS_MAX_KEY_LEN - 8);
-}
-
-/**
- * lowest_xent_key - get the lowest possible extended attribute entry key.
- * @c: UBIFS file-system description object
- * @key: where to store the lowest key
- * @inum: host inode number
- */
-static inline void lowest_xent_key(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum)
-{
- key->u32[0] = inum;
- key->u32[1] = UBIFS_XENT_KEY << UBIFS_S_KEY_HASH_BITS;
-}
-
-/**
- * data_key_init - initialize data key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: inode number
- * @block: block number
- */
-static inline void data_key_init(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum,
- unsigned int block)
-{
- ubifs_assert(!(block & ~UBIFS_S_KEY_BLOCK_MASK));
- key->u32[0] = inum;
- key->u32[1] = block | (UBIFS_DATA_KEY << UBIFS_S_KEY_BLOCK_BITS);
-}
-
-/**
- * highest_data_key - get the highest possible data key for an inode.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: inode number
- */
-static inline void highest_data_key(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum)
-{
- data_key_init(c, key, inum, UBIFS_S_KEY_BLOCK_MASK);
-}
-
-/**
- * trun_key_init - initialize truncation node key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- * @inum: inode number
- *
- * Note, UBIFS does not have truncation keys on the media and this function is
- * only used for purposes of replay.
- */
-static inline void trun_key_init(const struct ubifs_info *c,
- union ubifs_key *key, ino_t inum)
-{
- key->u32[0] = inum;
- key->u32[1] = UBIFS_TRUN_KEY << UBIFS_S_KEY_BLOCK_BITS;
-}
-
-/**
- * invalid_key_init - initialize invalid node key.
- * @c: UBIFS file-system description object
- * @key: key to initialize
- *
- * This is a helper function which marks a @key object as invalid.
- */
-static inline void invalid_key_init(const struct ubifs_info *c,
- union ubifs_key *key)
-{
- key->u32[0] = 0xDEADBEAF;
- key->u32[1] = UBIFS_INVALID_KEY;
-}
-
-/**
- * key_type - get key type.
- * @c: UBIFS file-system description object
- * @key: key to get type of
- */
-static inline int key_type(const struct ubifs_info *c,
- const union ubifs_key *key)
-{
- return key->u32[1] >> UBIFS_S_KEY_BLOCK_BITS;
-}
-
-/**
- * key_type_flash - get type of a on-flash formatted key.
- * @c: UBIFS file-system description object
- * @k: key to get type of
- */
-static inline int key_type_flash(const struct ubifs_info *c, const void *k)
-{
- const union ubifs_key *key = k;
-
- return le32_to_cpu(key->j32[1]) >> UBIFS_S_KEY_BLOCK_BITS;
-}
-
-/**
- * key_inum - fetch inode number from key.
- * @c: UBIFS file-system description object
- * @k: key to fetch inode number from
- */
-static inline ino_t key_inum(const struct ubifs_info *c, const void *k)
-{
- const union ubifs_key *key = k;
-
- return key->u32[0];
-}
-
-/**
- * key_inum_flash - fetch inode number from an on-flash formatted key.
- * @c: UBIFS file-system description object
- * @k: key to fetch inode number from
- */
-static inline ino_t key_inum_flash(const struct ubifs_info *c, const void *k)
-{
- const union ubifs_key *key = k;
-
- return le32_to_cpu(key->j32[0]);
-}
-
-/**
- * key_hash - get directory entry hash.
- * @c: UBIFS file-system description object
- * @key: the key to get hash from
- */
-static inline uint32_t key_hash(const struct ubifs_info *c,
- const union ubifs_key *key)
-{
- return key->u32[1] & UBIFS_S_KEY_HASH_MASK;
-}
-
-/**
- * key_hash_flash - get directory entry hash from an on-flash formatted key.
- * @c: UBIFS file-system description object
- * @k: the key to get hash from
- */
-static inline uint32_t key_hash_flash(const struct ubifs_info *c, const void *k)
-{
- const union ubifs_key *key = k;
-
- return le32_to_cpu(key->j32[1]) & UBIFS_S_KEY_HASH_MASK;
-}
-
-/**
- * key_block - get data block number.
- * @c: UBIFS file-system description object
- * @key: the key to get the block number from
- */
-static inline unsigned int key_block(const struct ubifs_info *c,
- const union ubifs_key *key)
-{
- return key->u32[1] & UBIFS_S_KEY_BLOCK_MASK;
-}
-
-/**
- * key_block_flash - get data block number from an on-flash formatted key.
- * @c: UBIFS file-system description object
- * @k: the key to get the block number from
- */
-static inline unsigned int key_block_flash(const struct ubifs_info *c,
- const void *k)
-{
- const union ubifs_key *key = k;
-
- return le32_to_cpu(key->j32[1]) & UBIFS_S_KEY_BLOCK_MASK;
-}
-
-/**
- * key_read - transform a key to in-memory format.
- * @c: UBIFS file-system description object
- * @from: the key to transform
- * @to: the key to store the result
- */
-static inline void key_read(const struct ubifs_info *c, const void *from,
- union ubifs_key *to)
-{
- const union ubifs_key *f = from;
-
- to->u32[0] = le32_to_cpu(f->j32[0]);
- to->u32[1] = le32_to_cpu(f->j32[1]);
-}
-
-/**
- * key_write - transform a key from in-memory format.
- * @c: UBIFS file-system description object
- * @from: the key to transform
- * @to: the key to store the result
- */
-static inline void key_write(const struct ubifs_info *c,
- const union ubifs_key *from, void *to)
-{
- union ubifs_key *t = to;
-
- t->j32[0] = cpu_to_le32(from->u32[0]);
- t->j32[1] = cpu_to_le32(from->u32[1]);
- memset(to + 8, 0, UBIFS_MAX_KEY_LEN - 8);
-}
-
-/**
- * key_write_idx - transform a key from in-memory format for the index.
- * @c: UBIFS file-system description object
- * @from: the key to transform
- * @to: the key to store the result
- */
-static inline void key_write_idx(const struct ubifs_info *c,
- const union ubifs_key *from, void *to)
-{
- union ubifs_key *t = to;
-
- t->j32[0] = cpu_to_le32(from->u32[0]);
- t->j32[1] = cpu_to_le32(from->u32[1]);
-}
-
-/**
- * key_copy - copy a key.
- * @c: UBIFS file-system description object
- * @from: the key to copy from
- * @to: the key to copy to
- */
-static inline void key_copy(const struct ubifs_info *c,
- const union ubifs_key *from, union ubifs_key *to)
-{
- to->u64[0] = from->u64[0];
-}
-
-/**
- * keys_cmp - compare keys.
- * @c: UBIFS file-system description object
- * @key1: the first key to compare
- * @key2: the second key to compare
- *
- * This function compares 2 keys and returns %-1 if @key1 is less than
- * @key2, %0 if the keys are equivalent and %1 if @key1 is greater than @key2.
- */
-static inline int keys_cmp(const struct ubifs_info *c,
- const union ubifs_key *key1,
- const union ubifs_key *key2)
-{
- if (key1->u32[0] < key2->u32[0])
- return -1;
- if (key1->u32[0] > key2->u32[0])
- return 1;
- if (key1->u32[1] < key2->u32[1])
- return -1;
- if (key1->u32[1] > key2->u32[1])
- return 1;
-
- return 0;
-}
-
-/**
- * keys_eq - determine if keys are equivalent.
- * @c: UBIFS file-system description object
- * @key1: the first key to compare
- * @key2: the second key to compare
- *
- * This function compares 2 keys and returns %1 if @key1 is equal to @key2 and
- * %0 if not.
- */
-static inline int keys_eq(const struct ubifs_info *c,
- const union ubifs_key *key1,
- const union ubifs_key *key2)
-{
- if (key1->u32[0] != key2->u32[0])
- return 0;
- if (key1->u32[1] != key2->u32[1])
- return 0;
- return 1;
-}
-
-/**
- * is_hash_key - is a key vulnerable to hash collisions.
- * @c: UBIFS file-system description object
- * @key: key
- *
- * This function returns %1 if @key is a hashed key or %0 otherwise.
- */
-static inline int is_hash_key(const struct ubifs_info *c,
- const union ubifs_key *key)
-{
- int type = key_type(c, key);
-
- return type == UBIFS_DENT_KEY || type == UBIFS_XENT_KEY;
-}
-
-/**
- * key_max_inode_size - get maximum file size allowed by current key format.
- * @c: UBIFS file-system description object
- */
-static inline unsigned long long key_max_inode_size(const struct ubifs_info *c)
-{
- switch (c->key_fmt) {
- case UBIFS_SIMPLE_KEY_FMT:
- return (1ULL << UBIFS_S_KEY_BLOCK_BITS) * UBIFS_BLOCK_SIZE;
- default:
- return 0;
- }
-}
-
-#endif /* !__UBIFS_KEY_H__ */
diff --git a/ANDROID_3.4.5/fs/ubifs/log.c b/ANDROID_3.4.5/fs/ubifs/log.c
deleted file mode 100644
index f9fd068d..00000000
--- a/ANDROID_3.4.5/fs/ubifs/log.c
+++ /dev/null
@@ -1,771 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file is a part of UBIFS journal implementation and contains various
- * functions which manipulate the log. The log is a fixed area on the flash
- * which does not contain any data but refers to buds. The log is a part of the
- * journal.
- */
-
-#include "ubifs.h"
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-static int dbg_check_bud_bytes(struct ubifs_info *c);
-#else
-#define dbg_check_bud_bytes(c) 0
-#endif
-
-/**
- * ubifs_search_bud - search bud LEB.
- * @c: UBIFS file-system description object
- * @lnum: logical eraseblock number to search
- *
- * This function searches bud LEB @lnum. Returns bud description object in case
- * of success and %NULL if there is no bud with this LEB number.
- */
-struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum)
-{
- struct rb_node *p;
- struct ubifs_bud *bud;
-
- spin_lock(&c->buds_lock);
- p = c->buds.rb_node;
- while (p) {
- bud = rb_entry(p, struct ubifs_bud, rb);
- if (lnum < bud->lnum)
- p = p->rb_left;
- else if (lnum > bud->lnum)
- p = p->rb_right;
- else {
- spin_unlock(&c->buds_lock);
- return bud;
- }
- }
- spin_unlock(&c->buds_lock);
- return NULL;
-}
-
-/**
- * ubifs_get_wbuf - get the wbuf associated with a LEB, if there is one.
- * @c: UBIFS file-system description object
- * @lnum: logical eraseblock number to search
- *
- * This functions returns the wbuf for @lnum or %NULL if there is not one.
- */
-struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum)
-{
- struct rb_node *p;
- struct ubifs_bud *bud;
- int jhead;
-
- if (!c->jheads)
- return NULL;
-
- spin_lock(&c->buds_lock);
- p = c->buds.rb_node;
- while (p) {
- bud = rb_entry(p, struct ubifs_bud, rb);
- if (lnum < bud->lnum)
- p = p->rb_left;
- else if (lnum > bud->lnum)
- p = p->rb_right;
- else {
- jhead = bud->jhead;
- spin_unlock(&c->buds_lock);
- return &c->jheads[jhead].wbuf;
- }
- }
- spin_unlock(&c->buds_lock);
- return NULL;
-}
-
-/**
- * empty_log_bytes - calculate amount of empty space in the log.
- * @c: UBIFS file-system description object
- */
-static inline long long empty_log_bytes(const struct ubifs_info *c)
-{
- long long h, t;
-
- h = (long long)c->lhead_lnum * c->leb_size + c->lhead_offs;
- t = (long long)c->ltail_lnum * c->leb_size;
-
- if (h >= t)
- return c->log_bytes - h + t;
- else
- return t - h;
-}
-
-/**
- * ubifs_add_bud - add bud LEB to the tree of buds and its journal head list.
- * @c: UBIFS file-system description object
- * @bud: the bud to add
- */
-void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud)
-{
- struct rb_node **p, *parent = NULL;
- struct ubifs_bud *b;
- struct ubifs_jhead *jhead;
-
- spin_lock(&c->buds_lock);
- p = &c->buds.rb_node;
- while (*p) {
- parent = *p;
- b = rb_entry(parent, struct ubifs_bud, rb);
- ubifs_assert(bud->lnum != b->lnum);
- if (bud->lnum < b->lnum)
- p = &(*p)->rb_left;
- else
- p = &(*p)->rb_right;
- }
-
- rb_link_node(&bud->rb, parent, p);
- rb_insert_color(&bud->rb, &c->buds);
- if (c->jheads) {
- jhead = &c->jheads[bud->jhead];
- list_add_tail(&bud->list, &jhead->buds_list);
- } else
- ubifs_assert(c->replaying && c->ro_mount);
-
- /*
- * Note, although this is a new bud, we anyway account this space now,
- * before any data has been written to it, because this is about to
- * guarantee fixed mount time, and this bud will anyway be read and
- * scanned.
- */
- c->bud_bytes += c->leb_size - bud->start;
-
- dbg_log("LEB %d:%d, jhead %s, bud_bytes %lld", bud->lnum,
- bud->start, dbg_jhead(bud->jhead), c->bud_bytes);
- spin_unlock(&c->buds_lock);
-}
-
-/**
- * ubifs_add_bud_to_log - add a new bud to the log.
- * @c: UBIFS file-system description object
- * @jhead: journal head the bud belongs to
- * @lnum: LEB number of the bud
- * @offs: starting offset of the bud
- *
- * This function writes reference node for the new bud LEB @lnum it to the log,
- * and adds it to the buds tress. It also makes sure that log size does not
- * exceed the 'c->max_bud_bytes' limit. Returns zero in case of success,
- * %-EAGAIN if commit is required, and a negative error codes in case of
- * failure.
- */
-int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs)
-{
- int err;
- struct ubifs_bud *bud;
- struct ubifs_ref_node *ref;
-
- bud = kmalloc(sizeof(struct ubifs_bud), GFP_NOFS);
- if (!bud)
- return -ENOMEM;
- ref = kzalloc(c->ref_node_alsz, GFP_NOFS);
- if (!ref) {
- kfree(bud);
- return -ENOMEM;
- }
-
- mutex_lock(&c->log_mutex);
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error) {
- err = -EROFS;
- goto out_unlock;
- }
-
- /* Make sure we have enough space in the log */
- if (empty_log_bytes(c) - c->ref_node_alsz < c->min_log_bytes) {
- dbg_log("not enough log space - %lld, required %d",
- empty_log_bytes(c), c->min_log_bytes);
- ubifs_commit_required(c);
- err = -EAGAIN;
- goto out_unlock;
- }
-
- /*
- * Make sure the amount of space in buds will not exceed the
- * 'c->max_bud_bytes' limit, because we want to guarantee mount time
- * limits.
- *
- * It is not necessary to hold @c->buds_lock when reading @c->bud_bytes
- * because we are holding @c->log_mutex. All @c->bud_bytes take place
- * when both @c->log_mutex and @c->bud_bytes are locked.
- */
- if (c->bud_bytes + c->leb_size - offs > c->max_bud_bytes) {
- dbg_log("bud bytes %lld (%lld max), require commit",
- c->bud_bytes, c->max_bud_bytes);
- ubifs_commit_required(c);
- err = -EAGAIN;
- goto out_unlock;
- }
-
- /*
- * If the journal is full enough - start background commit. Note, it is
- * OK to read 'c->cmt_state' without spinlock because integer reads
- * are atomic in the kernel.
- */
- if (c->bud_bytes >= c->bg_bud_bytes &&
- c->cmt_state == COMMIT_RESTING) {
- dbg_log("bud bytes %lld (%lld max), initiate BG commit",
- c->bud_bytes, c->max_bud_bytes);
- ubifs_request_bg_commit(c);
- }
-
- bud->lnum = lnum;
- bud->start = offs;
- bud->jhead = jhead;
-
- ref->ch.node_type = UBIFS_REF_NODE;
- ref->lnum = cpu_to_le32(bud->lnum);
- ref->offs = cpu_to_le32(bud->start);
- ref->jhead = cpu_to_le32(jhead);
-
- if (c->lhead_offs > c->leb_size - c->ref_node_alsz) {
- c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
- c->lhead_offs = 0;
- }
-
- if (c->lhead_offs == 0) {
- /* Must ensure next log LEB has been unmapped */
- err = ubifs_leb_unmap(c, c->lhead_lnum);
- if (err)
- goto out_unlock;
- }
-
- if (bud->start == 0) {
- /*
- * Before writing the LEB reference which refers an empty LEB
- * to the log, we have to make sure it is mapped, because
- * otherwise we'd risk to refer an LEB with garbage in case of
- * an unclean reboot, because the target LEB might have been
- * unmapped, but not yet physically erased.
- */
- err = ubifs_leb_map(c, bud->lnum, UBI_SHORTTERM);
- if (err)
- goto out_unlock;
- }
-
- dbg_log("write ref LEB %d:%d",
- c->lhead_lnum, c->lhead_offs);
- err = ubifs_write_node(c, ref, UBIFS_REF_NODE_SZ, c->lhead_lnum,
- c->lhead_offs, UBI_SHORTTERM);
- if (err)
- goto out_unlock;
-
- c->lhead_offs += c->ref_node_alsz;
-
- ubifs_add_bud(c, bud);
-
- mutex_unlock(&c->log_mutex);
- kfree(ref);
- return 0;
-
-out_unlock:
- mutex_unlock(&c->log_mutex);
- kfree(ref);
- kfree(bud);
- return err;
-}
-
-/**
- * remove_buds - remove used buds.
- * @c: UBIFS file-system description object
- *
- * This function removes use buds from the buds tree. It does not remove the
- * buds which are pointed to by journal heads.
- */
-static void remove_buds(struct ubifs_info *c)
-{
- struct rb_node *p;
-
- ubifs_assert(list_empty(&c->old_buds));
- c->cmt_bud_bytes = 0;
- spin_lock(&c->buds_lock);
- p = rb_first(&c->buds);
- while (p) {
- struct rb_node *p1 = p;
- struct ubifs_bud *bud;
- struct ubifs_wbuf *wbuf;
-
- p = rb_next(p);
- bud = rb_entry(p1, struct ubifs_bud, rb);
- wbuf = &c->jheads[bud->jhead].wbuf;
-
- if (wbuf->lnum == bud->lnum) {
- /*
- * Do not remove buds which are pointed to by journal
- * heads (non-closed buds).
- */
- c->cmt_bud_bytes += wbuf->offs - bud->start;
- dbg_log("preserve %d:%d, jhead %s, bud bytes %d, "
- "cmt_bud_bytes %lld", bud->lnum, bud->start,
- dbg_jhead(bud->jhead), wbuf->offs - bud->start,
- c->cmt_bud_bytes);
- bud->start = wbuf->offs;
- } else {
- c->cmt_bud_bytes += c->leb_size - bud->start;
- dbg_log("remove %d:%d, jhead %s, bud bytes %d, "
- "cmt_bud_bytes %lld", bud->lnum, bud->start,
- dbg_jhead(bud->jhead), c->leb_size - bud->start,
- c->cmt_bud_bytes);
- rb_erase(p1, &c->buds);
- /*
- * If the commit does not finish, the recovery will need
- * to replay the journal, in which case the old buds
- * must be unchanged. Do not release them until post
- * commit i.e. do not allow them to be garbage
- * collected.
- */
- list_move(&bud->list, &c->old_buds);
- }
- }
- spin_unlock(&c->buds_lock);
-}
-
-/**
- * ubifs_log_start_commit - start commit.
- * @c: UBIFS file-system description object
- * @ltail_lnum: return new log tail LEB number
- *
- * The commit operation starts with writing "commit start" node to the log and
- * reference nodes for all journal heads which will define new journal after
- * the commit has been finished. The commit start and reference nodes are
- * written in one go to the nearest empty log LEB (hence, when commit is
- * finished UBIFS may safely unmap all the previous log LEBs). This function
- * returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum)
-{
- void *buf;
- struct ubifs_cs_node *cs;
- struct ubifs_ref_node *ref;
- int err, i, max_len, len;
-
- err = dbg_check_bud_bytes(c);
- if (err)
- return err;
-
- max_len = UBIFS_CS_NODE_SZ + c->jhead_cnt * UBIFS_REF_NODE_SZ;
- max_len = ALIGN(max_len, c->min_io_size);
- buf = cs = kmalloc(max_len, GFP_NOFS);
- if (!buf)
- return -ENOMEM;
-
- cs->ch.node_type = UBIFS_CS_NODE;
- cs->cmt_no = cpu_to_le64(c->cmt_no);
- ubifs_prepare_node(c, cs, UBIFS_CS_NODE_SZ, 0);
-
- /*
- * Note, we do not lock 'c->log_mutex' because this is the commit start
- * phase and we are exclusively using the log. And we do not lock
- * write-buffer because nobody can write to the file-system at this
- * phase.
- */
-
- len = UBIFS_CS_NODE_SZ;
- for (i = 0; i < c->jhead_cnt; i++) {
- int lnum = c->jheads[i].wbuf.lnum;
- int offs = c->jheads[i].wbuf.offs;
-
- if (lnum == -1 || offs == c->leb_size)
- continue;
-
- dbg_log("add ref to LEB %d:%d for jhead %s",
- lnum, offs, dbg_jhead(i));
- ref = buf + len;
- ref->ch.node_type = UBIFS_REF_NODE;
- ref->lnum = cpu_to_le32(lnum);
- ref->offs = cpu_to_le32(offs);
- ref->jhead = cpu_to_le32(i);
-
- ubifs_prepare_node(c, ref, UBIFS_REF_NODE_SZ, 0);
- len += UBIFS_REF_NODE_SZ;
- }
-
- ubifs_pad(c, buf + len, ALIGN(len, c->min_io_size) - len);
-
- /* Switch to the next log LEB */
- if (c->lhead_offs) {
- c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
- c->lhead_offs = 0;
- }
-
- if (c->lhead_offs == 0) {
- /* Must ensure next LEB has been unmapped */
- err = ubifs_leb_unmap(c, c->lhead_lnum);
- if (err)
- goto out;
- }
-
- len = ALIGN(len, c->min_io_size);
- dbg_log("writing commit start at LEB %d:0, len %d", c->lhead_lnum, len);
- err = ubifs_leb_write(c, c->lhead_lnum, cs, 0, len, UBI_SHORTTERM);
- if (err)
- goto out;
-
- *ltail_lnum = c->lhead_lnum;
-
- c->lhead_offs += len;
- if (c->lhead_offs == c->leb_size) {
- c->lhead_lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
- c->lhead_offs = 0;
- }
-
- remove_buds(c);
-
- /*
- * We have started the commit and now users may use the rest of the log
- * for new writes.
- */
- c->min_log_bytes = 0;
-
-out:
- kfree(buf);
- return err;
-}
-
-/**
- * ubifs_log_end_commit - end commit.
- * @c: UBIFS file-system description object
- * @ltail_lnum: new log tail LEB number
- *
- * This function is called on when the commit operation was finished. It
- * moves log tail to new position and unmaps LEBs which contain obsolete data.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_log_end_commit(struct ubifs_info *c, int ltail_lnum)
-{
- int err;
-
- /*
- * At this phase we have to lock 'c->log_mutex' because UBIFS allows FS
- * writes during commit. Its only short "commit" start phase when
- * writers are blocked.
- */
- mutex_lock(&c->log_mutex);
-
- dbg_log("old tail was LEB %d:0, new tail is LEB %d:0",
- c->ltail_lnum, ltail_lnum);
-
- c->ltail_lnum = ltail_lnum;
- /*
- * The commit is finished and from now on it must be guaranteed that
- * there is always enough space for the next commit.
- */
- c->min_log_bytes = c->leb_size;
-
- spin_lock(&c->buds_lock);
- c->bud_bytes -= c->cmt_bud_bytes;
- spin_unlock(&c->buds_lock);
-
- err = dbg_check_bud_bytes(c);
-
- mutex_unlock(&c->log_mutex);
- return err;
-}
-
-/**
- * ubifs_log_post_commit - things to do after commit is completed.
- * @c: UBIFS file-system description object
- * @old_ltail_lnum: old log tail LEB number
- *
- * Release buds only after commit is completed, because they must be unchanged
- * if recovery is needed.
- *
- * Unmap log LEBs only after commit is completed, because they may be needed for
- * recovery.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum)
-{
- int lnum, err = 0;
-
- while (!list_empty(&c->old_buds)) {
- struct ubifs_bud *bud;
-
- bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
- err = ubifs_return_leb(c, bud->lnum);
- if (err)
- return err;
- list_del(&bud->list);
- kfree(bud);
- }
- mutex_lock(&c->log_mutex);
- for (lnum = old_ltail_lnum; lnum != c->ltail_lnum;
- lnum = ubifs_next_log_lnum(c, lnum)) {
- dbg_log("unmap log LEB %d", lnum);
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- goto out;
- }
-out:
- mutex_unlock(&c->log_mutex);
- return err;
-}
-
-/**
- * struct done_ref - references that have been done.
- * @rb: rb-tree node
- * @lnum: LEB number
- */
-struct done_ref {
- struct rb_node rb;
- int lnum;
-};
-
-/**
- * done_already - determine if a reference has been done already.
- * @done_tree: rb-tree to store references that have been done
- * @lnum: LEB number of reference
- *
- * This function returns %1 if the reference has been done, %0 if not, otherwise
- * a negative error code is returned.
- */
-static int done_already(struct rb_root *done_tree, int lnum)
-{
- struct rb_node **p = &done_tree->rb_node, *parent = NULL;
- struct done_ref *dr;
-
- while (*p) {
- parent = *p;
- dr = rb_entry(parent, struct done_ref, rb);
- if (lnum < dr->lnum)
- p = &(*p)->rb_left;
- else if (lnum > dr->lnum)
- p = &(*p)->rb_right;
- else
- return 1;
- }
-
- dr = kzalloc(sizeof(struct done_ref), GFP_NOFS);
- if (!dr)
- return -ENOMEM;
-
- dr->lnum = lnum;
-
- rb_link_node(&dr->rb, parent, p);
- rb_insert_color(&dr->rb, done_tree);
-
- return 0;
-}
-
-/**
- * destroy_done_tree - destroy the done tree.
- * @done_tree: done tree to destroy
- */
-static void destroy_done_tree(struct rb_root *done_tree)
-{
- struct rb_node *this = done_tree->rb_node;
- struct done_ref *dr;
-
- while (this) {
- if (this->rb_left) {
- this = this->rb_left;
- continue;
- } else if (this->rb_right) {
- this = this->rb_right;
- continue;
- }
- dr = rb_entry(this, struct done_ref, rb);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &dr->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
- kfree(dr);
- }
-}
-
-/**
- * add_node - add a node to the consolidated log.
- * @c: UBIFS file-system description object
- * @buf: buffer to which to add
- * @lnum: LEB number to which to write is passed and returned here
- * @offs: offset to where to write is passed and returned here
- * @node: node to add
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int add_node(struct ubifs_info *c, void *buf, int *lnum, int *offs,
- void *node)
-{
- struct ubifs_ch *ch = node;
- int len = le32_to_cpu(ch->len), remains = c->leb_size - *offs;
-
- if (len > remains) {
- int sz = ALIGN(*offs, c->min_io_size), err;
-
- ubifs_pad(c, buf + *offs, sz - *offs);
- err = ubifs_leb_change(c, *lnum, buf, sz, UBI_SHORTTERM);
- if (err)
- return err;
- *lnum = ubifs_next_log_lnum(c, *lnum);
- *offs = 0;
- }
- memcpy(buf + *offs, node, len);
- *offs += ALIGN(len, 8);
- return 0;
-}
-
-/**
- * ubifs_consolidate_log - consolidate the log.
- * @c: UBIFS file-system description object
- *
- * Repeated failed commits could cause the log to be full, but at least 1 LEB is
- * needed for commit. This function rewrites the reference nodes in the log
- * omitting duplicates, and failed CS nodes, and leaving no gaps.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_consolidate_log(struct ubifs_info *c)
-{
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
- struct rb_root done_tree = RB_ROOT;
- int lnum, err, first = 1, write_lnum, offs = 0;
- void *buf;
-
- dbg_rcvry("log tail LEB %d, log head LEB %d", c->ltail_lnum,
- c->lhead_lnum);
- buf = vmalloc(c->leb_size);
- if (!buf)
- return -ENOMEM;
- lnum = c->ltail_lnum;
- write_lnum = lnum;
- while (1) {
- sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
- if (IS_ERR(sleb)) {
- err = PTR_ERR(sleb);
- goto out_free;
- }
- list_for_each_entry(snod, &sleb->nodes, list) {
- switch (snod->type) {
- case UBIFS_REF_NODE: {
- struct ubifs_ref_node *ref = snod->node;
- int ref_lnum = le32_to_cpu(ref->lnum);
-
- err = done_already(&done_tree, ref_lnum);
- if (err < 0)
- goto out_scan;
- if (err != 1) {
- err = add_node(c, buf, &write_lnum,
- &offs, snod->node);
- if (err)
- goto out_scan;
- }
- break;
- }
- case UBIFS_CS_NODE:
- if (!first)
- break;
- err = add_node(c, buf, &write_lnum, &offs,
- snod->node);
- if (err)
- goto out_scan;
- first = 0;
- break;
- }
- }
- ubifs_scan_destroy(sleb);
- if (lnum == c->lhead_lnum)
- break;
- lnum = ubifs_next_log_lnum(c, lnum);
- }
- if (offs) {
- int sz = ALIGN(offs, c->min_io_size);
-
- ubifs_pad(c, buf + offs, sz - offs);
- err = ubifs_leb_change(c, write_lnum, buf, sz, UBI_SHORTTERM);
- if (err)
- goto out_free;
- offs = ALIGN(offs, c->min_io_size);
- }
- destroy_done_tree(&done_tree);
- vfree(buf);
- if (write_lnum == c->lhead_lnum) {
- ubifs_err("log is too full");
- return -EINVAL;
- }
- /* Unmap remaining LEBs */
- lnum = write_lnum;
- do {
- lnum = ubifs_next_log_lnum(c, lnum);
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- } while (lnum != c->lhead_lnum);
- c->lhead_lnum = write_lnum;
- c->lhead_offs = offs;
- dbg_rcvry("new log head at %d:%d", c->lhead_lnum, c->lhead_offs);
- return 0;
-
-out_scan:
- ubifs_scan_destroy(sleb);
-out_free:
- destroy_done_tree(&done_tree);
- vfree(buf);
- return err;
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-/**
- * dbg_check_bud_bytes - make sure bud bytes calculation are all right.
- * @c: UBIFS file-system description object
- *
- * This function makes sure the amount of flash space used by closed buds
- * ('c->bud_bytes' is correct). Returns zero in case of success and %-EINVAL in
- * case of failure.
- */
-static int dbg_check_bud_bytes(struct ubifs_info *c)
-{
- int i, err = 0;
- struct ubifs_bud *bud;
- long long bud_bytes = 0;
-
- if (!dbg_is_chk_gen(c))
- return 0;
-
- spin_lock(&c->buds_lock);
- for (i = 0; i < c->jhead_cnt; i++)
- list_for_each_entry(bud, &c->jheads[i].buds_list, list)
- bud_bytes += c->leb_size - bud->start;
-
- if (c->bud_bytes != bud_bytes) {
- ubifs_err("bad bud_bytes %lld, calculated %lld",
- c->bud_bytes, bud_bytes);
- err = -EINVAL;
- }
- spin_unlock(&c->buds_lock);
-
- return err;
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/lprops.c b/ANDROID_3.4.5/fs/ubifs/lprops.c
deleted file mode 100644
index f8a181e6..00000000
--- a/ANDROID_3.4.5/fs/ubifs/lprops.c
+++ /dev/null
@@ -1,1319 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements the functions that access LEB properties and their
- * categories. LEBs are categorized based on the needs of UBIFS, and the
- * categories are stored as either heaps or lists to provide a fast way of
- * finding a LEB in a particular category. For example, UBIFS may need to find
- * an empty LEB for the journal, or a very dirty LEB for garbage collection.
- */
-
-#include "ubifs.h"
-
-/**
- * get_heap_comp_val - get the LEB properties value for heap comparisons.
- * @lprops: LEB properties
- * @cat: LEB category
- */
-static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
-{
- switch (cat) {
- case LPROPS_FREE:
- return lprops->free;
- case LPROPS_DIRTY_IDX:
- return lprops->free + lprops->dirty;
- default:
- return lprops->dirty;
- }
-}
-
-/**
- * move_up_lpt_heap - move a new heap entry up as far as possible.
- * @c: UBIFS file-system description object
- * @heap: LEB category heap
- * @lprops: LEB properties to move
- * @cat: LEB category
- *
- * New entries to a heap are added at the bottom and then moved up until the
- * parent's value is greater. In the case of LPT's category heaps, the value
- * is either the amount of free space or the amount of dirty space, depending
- * on the category.
- */
-static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
- struct ubifs_lprops *lprops, int cat)
-{
- int val1, val2, hpos;
-
- hpos = lprops->hpos;
- if (!hpos)
- return; /* Already top of the heap */
- val1 = get_heap_comp_val(lprops, cat);
- /* Compare to parent and, if greater, move up the heap */
- do {
- int ppos = (hpos - 1) / 2;
-
- val2 = get_heap_comp_val(heap->arr[ppos], cat);
- if (val2 >= val1)
- return;
- /* Greater than parent so move up */
- heap->arr[ppos]->hpos = hpos;
- heap->arr[hpos] = heap->arr[ppos];
- heap->arr[ppos] = lprops;
- lprops->hpos = ppos;
- hpos = ppos;
- } while (hpos);
-}
-
-/**
- * adjust_lpt_heap - move a changed heap entry up or down the heap.
- * @c: UBIFS file-system description object
- * @heap: LEB category heap
- * @lprops: LEB properties to move
- * @hpos: heap position of @lprops
- * @cat: LEB category
- *
- * Changed entries in a heap are moved up or down until the parent's value is
- * greater. In the case of LPT's category heaps, the value is either the amount
- * of free space or the amount of dirty space, depending on the category.
- */
-static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
- struct ubifs_lprops *lprops, int hpos, int cat)
-{
- int val1, val2, val3, cpos;
-
- val1 = get_heap_comp_val(lprops, cat);
- /* Compare to parent and, if greater than parent, move up the heap */
- if (hpos) {
- int ppos = (hpos - 1) / 2;
-
- val2 = get_heap_comp_val(heap->arr[ppos], cat);
- if (val1 > val2) {
- /* Greater than parent so move up */
- while (1) {
- heap->arr[ppos]->hpos = hpos;
- heap->arr[hpos] = heap->arr[ppos];
- heap->arr[ppos] = lprops;
- lprops->hpos = ppos;
- hpos = ppos;
- if (!hpos)
- return;
- ppos = (hpos - 1) / 2;
- val2 = get_heap_comp_val(heap->arr[ppos], cat);
- if (val1 <= val2)
- return;
- /* Still greater than parent so keep going */
- }
- }
- }
-
- /* Not greater than parent, so compare to children */
- while (1) {
- /* Compare to left child */
- cpos = hpos * 2 + 1;
- if (cpos >= heap->cnt)
- return;
- val2 = get_heap_comp_val(heap->arr[cpos], cat);
- if (val1 < val2) {
- /* Less than left child, so promote biggest child */
- if (cpos + 1 < heap->cnt) {
- val3 = get_heap_comp_val(heap->arr[cpos + 1],
- cat);
- if (val3 > val2)
- cpos += 1; /* Right child is bigger */
- }
- heap->arr[cpos]->hpos = hpos;
- heap->arr[hpos] = heap->arr[cpos];
- heap->arr[cpos] = lprops;
- lprops->hpos = cpos;
- hpos = cpos;
- continue;
- }
- /* Compare to right child */
- cpos += 1;
- if (cpos >= heap->cnt)
- return;
- val3 = get_heap_comp_val(heap->arr[cpos], cat);
- if (val1 < val3) {
- /* Less than right child, so promote right child */
- heap->arr[cpos]->hpos = hpos;
- heap->arr[hpos] = heap->arr[cpos];
- heap->arr[cpos] = lprops;
- lprops->hpos = cpos;
- hpos = cpos;
- continue;
- }
- return;
- }
-}
-
-/**
- * add_to_lpt_heap - add LEB properties to a LEB category heap.
- * @c: UBIFS file-system description object
- * @lprops: LEB properties to add
- * @cat: LEB category
- *
- * This function returns %1 if @lprops is added to the heap for LEB category
- * @cat, otherwise %0 is returned because the heap is full.
- */
-static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
- int cat)
-{
- struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
-
- if (heap->cnt >= heap->max_cnt) {
- const int b = LPT_HEAP_SZ / 2 - 1;
- int cpos, val1, val2;
-
- /* Compare to some other LEB on the bottom of heap */
- /* Pick a position kind of randomly */
- cpos = (((size_t)lprops >> 4) & b) + b;
- ubifs_assert(cpos >= b);
- ubifs_assert(cpos < LPT_HEAP_SZ);
- ubifs_assert(cpos < heap->cnt);
-
- val1 = get_heap_comp_val(lprops, cat);
- val2 = get_heap_comp_val(heap->arr[cpos], cat);
- if (val1 > val2) {
- struct ubifs_lprops *lp;
-
- lp = heap->arr[cpos];
- lp->flags &= ~LPROPS_CAT_MASK;
- lp->flags |= LPROPS_UNCAT;
- list_add(&lp->list, &c->uncat_list);
- lprops->hpos = cpos;
- heap->arr[cpos] = lprops;
- move_up_lpt_heap(c, heap, lprops, cat);
- dbg_check_heap(c, heap, cat, lprops->hpos);
- return 1; /* Added to heap */
- }
- dbg_check_heap(c, heap, cat, -1);
- return 0; /* Not added to heap */
- } else {
- lprops->hpos = heap->cnt++;
- heap->arr[lprops->hpos] = lprops;
- move_up_lpt_heap(c, heap, lprops, cat);
- dbg_check_heap(c, heap, cat, lprops->hpos);
- return 1; /* Added to heap */
- }
-}
-
-/**
- * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
- * @c: UBIFS file-system description object
- * @lprops: LEB properties to remove
- * @cat: LEB category
- */
-static void remove_from_lpt_heap(struct ubifs_info *c,
- struct ubifs_lprops *lprops, int cat)
-{
- struct ubifs_lpt_heap *heap;
- int hpos = lprops->hpos;
-
- heap = &c->lpt_heap[cat - 1];
- ubifs_assert(hpos >= 0 && hpos < heap->cnt);
- ubifs_assert(heap->arr[hpos] == lprops);
- heap->cnt -= 1;
- if (hpos < heap->cnt) {
- heap->arr[hpos] = heap->arr[heap->cnt];
- heap->arr[hpos]->hpos = hpos;
- adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
- }
- dbg_check_heap(c, heap, cat, -1);
-}
-
-/**
- * lpt_heap_replace - replace lprops in a category heap.
- * @c: UBIFS file-system description object
- * @old_lprops: LEB properties to replace
- * @new_lprops: LEB properties with which to replace
- * @cat: LEB category
- *
- * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
- * and the lprops that the pnode contains. When that happens, references in
- * the category heaps to those lprops must be updated to point to the new
- * lprops. This function does that.
- */
-static void lpt_heap_replace(struct ubifs_info *c,
- struct ubifs_lprops *old_lprops,
- struct ubifs_lprops *new_lprops, int cat)
-{
- struct ubifs_lpt_heap *heap;
- int hpos = new_lprops->hpos;
-
- heap = &c->lpt_heap[cat - 1];
- heap->arr[hpos] = new_lprops;
-}
-
-/**
- * ubifs_add_to_cat - add LEB properties to a category list or heap.
- * @c: UBIFS file-system description object
- * @lprops: LEB properties to add
- * @cat: LEB category to which to add
- *
- * LEB properties are categorized to enable fast find operations.
- */
-void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
- int cat)
-{
- switch (cat) {
- case LPROPS_DIRTY:
- case LPROPS_DIRTY_IDX:
- case LPROPS_FREE:
- if (add_to_lpt_heap(c, lprops, cat))
- break;
- /* No more room on heap so make it un-categorized */
- cat = LPROPS_UNCAT;
- /* Fall through */
- case LPROPS_UNCAT:
- list_add(&lprops->list, &c->uncat_list);
- break;
- case LPROPS_EMPTY:
- list_add(&lprops->list, &c->empty_list);
- break;
- case LPROPS_FREEABLE:
- list_add(&lprops->list, &c->freeable_list);
- c->freeable_cnt += 1;
- break;
- case LPROPS_FRDI_IDX:
- list_add(&lprops->list, &c->frdi_idx_list);
- break;
- default:
- ubifs_assert(0);
- }
- lprops->flags &= ~LPROPS_CAT_MASK;
- lprops->flags |= cat;
-}
-
-/**
- * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
- * @c: UBIFS file-system description object
- * @lprops: LEB properties to remove
- * @cat: LEB category from which to remove
- *
- * LEB properties are categorized to enable fast find operations.
- */
-static void ubifs_remove_from_cat(struct ubifs_info *c,
- struct ubifs_lprops *lprops, int cat)
-{
- switch (cat) {
- case LPROPS_DIRTY:
- case LPROPS_DIRTY_IDX:
- case LPROPS_FREE:
- remove_from_lpt_heap(c, lprops, cat);
- break;
- case LPROPS_FREEABLE:
- c->freeable_cnt -= 1;
- ubifs_assert(c->freeable_cnt >= 0);
- /* Fall through */
- case LPROPS_UNCAT:
- case LPROPS_EMPTY:
- case LPROPS_FRDI_IDX:
- ubifs_assert(!list_empty(&lprops->list));
- list_del(&lprops->list);
- break;
- default:
- ubifs_assert(0);
- }
-}
-
-/**
- * ubifs_replace_cat - replace lprops in a category list or heap.
- * @c: UBIFS file-system description object
- * @old_lprops: LEB properties to replace
- * @new_lprops: LEB properties with which to replace
- *
- * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
- * and the lprops that the pnode contains. When that happens, references in
- * category lists and heaps must be replaced. This function does that.
- */
-void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
- struct ubifs_lprops *new_lprops)
-{
- int cat;
-
- cat = new_lprops->flags & LPROPS_CAT_MASK;
- switch (cat) {
- case LPROPS_DIRTY:
- case LPROPS_DIRTY_IDX:
- case LPROPS_FREE:
- lpt_heap_replace(c, old_lprops, new_lprops, cat);
- break;
- case LPROPS_UNCAT:
- case LPROPS_EMPTY:
- case LPROPS_FREEABLE:
- case LPROPS_FRDI_IDX:
- list_replace(&old_lprops->list, &new_lprops->list);
- break;
- default:
- ubifs_assert(0);
- }
-}
-
-/**
- * ubifs_ensure_cat - ensure LEB properties are categorized.
- * @c: UBIFS file-system description object
- * @lprops: LEB properties
- *
- * A LEB may have fallen off of the bottom of a heap, and ended up as
- * un-categorized even though it has enough space for us now. If that is the
- * case this function will put the LEB back onto a heap.
- */
-void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
-{
- int cat = lprops->flags & LPROPS_CAT_MASK;
-
- if (cat != LPROPS_UNCAT)
- return;
- cat = ubifs_categorize_lprops(c, lprops);
- if (cat == LPROPS_UNCAT)
- return;
- ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
- ubifs_add_to_cat(c, lprops, cat);
-}
-
-/**
- * ubifs_categorize_lprops - categorize LEB properties.
- * @c: UBIFS file-system description object
- * @lprops: LEB properties to categorize
- *
- * LEB properties are categorized to enable fast find operations. This function
- * returns the LEB category to which the LEB properties belong. Note however
- * that if the LEB category is stored as a heap and the heap is full, the
- * LEB properties may have their category changed to %LPROPS_UNCAT.
- */
-int ubifs_categorize_lprops(const struct ubifs_info *c,
- const struct ubifs_lprops *lprops)
-{
- if (lprops->flags & LPROPS_TAKEN)
- return LPROPS_UNCAT;
-
- if (lprops->free == c->leb_size) {
- ubifs_assert(!(lprops->flags & LPROPS_INDEX));
- return LPROPS_EMPTY;
- }
-
- if (lprops->free + lprops->dirty == c->leb_size) {
- if (lprops->flags & LPROPS_INDEX)
- return LPROPS_FRDI_IDX;
- else
- return LPROPS_FREEABLE;
- }
-
- if (lprops->flags & LPROPS_INDEX) {
- if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
- return LPROPS_DIRTY_IDX;
- } else {
- if (lprops->dirty >= c->dead_wm &&
- lprops->dirty > lprops->free)
- return LPROPS_DIRTY;
- if (lprops->free > 0)
- return LPROPS_FREE;
- }
-
- return LPROPS_UNCAT;
-}
-
-/**
- * change_category - change LEB properties category.
- * @c: UBIFS file-system description object
- * @lprops: LEB properties to re-categorize
- *
- * LEB properties are categorized to enable fast find operations. When the LEB
- * properties change they must be re-categorized.
- */
-static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
-{
- int old_cat = lprops->flags & LPROPS_CAT_MASK;
- int new_cat = ubifs_categorize_lprops(c, lprops);
-
- if (old_cat == new_cat) {
- struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
-
- /* lprops on a heap now must be moved up or down */
- if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
- return; /* Not on a heap */
- heap = &c->lpt_heap[new_cat - 1];
- adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
- } else {
- ubifs_remove_from_cat(c, lprops, old_cat);
- ubifs_add_to_cat(c, lprops, new_cat);
- }
-}
-
-/**
- * ubifs_calc_dark - calculate LEB dark space size.
- * @c: the UBIFS file-system description object
- * @spc: amount of free and dirty space in the LEB
- *
- * This function calculates and returns amount of dark space in an LEB which
- * has @spc bytes of free and dirty space.
- *
- * UBIFS is trying to account the space which might not be usable, and this
- * space is called "dark space". For example, if an LEB has only %512 free
- * bytes, it is dark space, because it cannot fit a large data node.
- */
-int ubifs_calc_dark(const struct ubifs_info *c, int spc)
-{
- ubifs_assert(!(spc & 7));
-
- if (spc < c->dark_wm)
- return spc;
-
- /*
- * If we have slightly more space then the dark space watermark, we can
- * anyway safely assume it we'll be able to write a node of the
- * smallest size there.
- */
- if (spc - c->dark_wm < MIN_WRITE_SZ)
- return spc - MIN_WRITE_SZ;
-
- return c->dark_wm;
-}
-
-/**
- * is_lprops_dirty - determine if LEB properties are dirty.
- * @c: the UBIFS file-system description object
- * @lprops: LEB properties to test
- */
-static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
-{
- struct ubifs_pnode *pnode;
- int pos;
-
- pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
- pnode = (struct ubifs_pnode *)container_of(lprops - pos,
- struct ubifs_pnode,
- lprops[0]);
- return !test_bit(COW_CNODE, &pnode->flags) &&
- test_bit(DIRTY_CNODE, &pnode->flags);
-}
-
-/**
- * ubifs_change_lp - change LEB properties.
- * @c: the UBIFS file-system description object
- * @lp: LEB properties to change
- * @free: new free space amount
- * @dirty: new dirty space amount
- * @flags: new flags
- * @idx_gc_cnt: change to the count of @idx_gc list
- *
- * This function changes LEB properties (@free, @dirty or @flag). However, the
- * property which has the %LPROPS_NC value is not changed. Returns a pointer to
- * the updated LEB properties on success and a negative error code on failure.
- *
- * Note, the LEB properties may have had to be copied (due to COW) and
- * consequently the pointer returned may not be the same as the pointer
- * passed.
- */
-const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
- const struct ubifs_lprops *lp,
- int free, int dirty, int flags,
- int idx_gc_cnt)
-{
- /*
- * This is the only function that is allowed to change lprops, so we
- * discard the "const" qualifier.
- */
- struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
-
- dbg_lp("LEB %d, free %d, dirty %d, flags %d",
- lprops->lnum, free, dirty, flags);
-
- ubifs_assert(mutex_is_locked(&c->lp_mutex));
- ubifs_assert(c->lst.empty_lebs >= 0 &&
- c->lst.empty_lebs <= c->main_lebs);
- ubifs_assert(c->freeable_cnt >= 0);
- ubifs_assert(c->freeable_cnt <= c->main_lebs);
- ubifs_assert(c->lst.taken_empty_lebs >= 0);
- ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
- ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
- ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
- ubifs_assert(!(c->lst.total_used & 7));
- ubifs_assert(free == LPROPS_NC || free >= 0);
- ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
-
- if (!is_lprops_dirty(c, lprops)) {
- lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
- if (IS_ERR(lprops))
- return lprops;
- } else
- ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
-
- ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
-
- spin_lock(&c->space_lock);
- if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
- c->lst.taken_empty_lebs -= 1;
-
- if (!(lprops->flags & LPROPS_INDEX)) {
- int old_spc;
-
- old_spc = lprops->free + lprops->dirty;
- if (old_spc < c->dead_wm)
- c->lst.total_dead -= old_spc;
- else
- c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
-
- c->lst.total_used -= c->leb_size - old_spc;
- }
-
- if (free != LPROPS_NC) {
- free = ALIGN(free, 8);
- c->lst.total_free += free - lprops->free;
-
- /* Increase or decrease empty LEBs counter if needed */
- if (free == c->leb_size) {
- if (lprops->free != c->leb_size)
- c->lst.empty_lebs += 1;
- } else if (lprops->free == c->leb_size)
- c->lst.empty_lebs -= 1;
- lprops->free = free;
- }
-
- if (dirty != LPROPS_NC) {
- dirty = ALIGN(dirty, 8);
- c->lst.total_dirty += dirty - lprops->dirty;
- lprops->dirty = dirty;
- }
-
- if (flags != LPROPS_NC) {
- /* Take care about indexing LEBs counter if needed */
- if ((lprops->flags & LPROPS_INDEX)) {
- if (!(flags & LPROPS_INDEX))
- c->lst.idx_lebs -= 1;
- } else if (flags & LPROPS_INDEX)
- c->lst.idx_lebs += 1;
- lprops->flags = flags;
- }
-
- if (!(lprops->flags & LPROPS_INDEX)) {
- int new_spc;
-
- new_spc = lprops->free + lprops->dirty;
- if (new_spc < c->dead_wm)
- c->lst.total_dead += new_spc;
- else
- c->lst.total_dark += ubifs_calc_dark(c, new_spc);
-
- c->lst.total_used += c->leb_size - new_spc;
- }
-
- if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
- c->lst.taken_empty_lebs += 1;
-
- change_category(c, lprops);
- c->idx_gc_cnt += idx_gc_cnt;
- spin_unlock(&c->space_lock);
- return lprops;
-}
-
-/**
- * ubifs_get_lp_stats - get lprops statistics.
- * @c: UBIFS file-system description object
- * @st: return statistics
- */
-void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
-{
- spin_lock(&c->space_lock);
- memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
- spin_unlock(&c->space_lock);
-}
-
-/**
- * ubifs_change_one_lp - change LEB properties.
- * @c: the UBIFS file-system description object
- * @lnum: LEB to change properties for
- * @free: amount of free space
- * @dirty: amount of dirty space
- * @flags_set: flags to set
- * @flags_clean: flags to clean
- * @idx_gc_cnt: change to the count of idx_gc list
- *
- * This function changes properties of LEB @lnum. It is a helper wrapper over
- * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
- * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
- * a negative error code in case of failure.
- */
-int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
- int flags_set, int flags_clean, int idx_gc_cnt)
-{
- int err = 0, flags;
- const struct ubifs_lprops *lp;
-
- ubifs_get_lprops(c);
-
- lp = ubifs_lpt_lookup_dirty(c, lnum);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
-
- flags = (lp->flags | flags_set) & ~flags_clean;
- lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
- if (IS_ERR(lp))
- err = PTR_ERR(lp);
-
-out:
- ubifs_release_lprops(c);
- if (err)
- ubifs_err("cannot change properties of LEB %d, error %d",
- lnum, err);
- return err;
-}
-
-/**
- * ubifs_update_one_lp - update LEB properties.
- * @c: the UBIFS file-system description object
- * @lnum: LEB to change properties for
- * @free: amount of free space
- * @dirty: amount of dirty space to add
- * @flags_set: flags to set
- * @flags_clean: flags to clean
- *
- * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
- * current dirty space, not substitutes it.
- */
-int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
- int flags_set, int flags_clean)
-{
- int err = 0, flags;
- const struct ubifs_lprops *lp;
-
- ubifs_get_lprops(c);
-
- lp = ubifs_lpt_lookup_dirty(c, lnum);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
-
- flags = (lp->flags | flags_set) & ~flags_clean;
- lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
- if (IS_ERR(lp))
- err = PTR_ERR(lp);
-
-out:
- ubifs_release_lprops(c);
- if (err)
- ubifs_err("cannot update properties of LEB %d, error %d",
- lnum, err);
- return err;
-}
-
-/**
- * ubifs_read_one_lp - read LEB properties.
- * @c: the UBIFS file-system description object
- * @lnum: LEB to read properties for
- * @lp: where to store read properties
- *
- * This helper function reads properties of a LEB @lnum and stores them in @lp.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- */
-int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
-{
- int err = 0;
- const struct ubifs_lprops *lpp;
-
- ubifs_get_lprops(c);
-
- lpp = ubifs_lpt_lookup(c, lnum);
- if (IS_ERR(lpp)) {
- err = PTR_ERR(lpp);
- ubifs_err("cannot read properties of LEB %d, error %d",
- lnum, err);
- goto out;
- }
-
- memcpy(lp, lpp, sizeof(struct ubifs_lprops));
-
-out:
- ubifs_release_lprops(c);
- return err;
-}
-
-/**
- * ubifs_fast_find_free - try to find a LEB with free space quickly.
- * @c: the UBIFS file-system description object
- *
- * This function returns LEB properties for a LEB with free space or %NULL if
- * the function is unable to find a LEB quickly.
- */
-const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
- struct ubifs_lpt_heap *heap;
-
- ubifs_assert(mutex_is_locked(&c->lp_mutex));
-
- heap = &c->lpt_heap[LPROPS_FREE - 1];
- if (heap->cnt == 0)
- return NULL;
-
- lprops = heap->arr[0];
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert(!(lprops->flags & LPROPS_INDEX));
- return lprops;
-}
-
-/**
- * ubifs_fast_find_empty - try to find an empty LEB quickly.
- * @c: the UBIFS file-system description object
- *
- * This function returns LEB properties for an empty LEB or %NULL if the
- * function is unable to find an empty LEB quickly.
- */
-const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
-
- ubifs_assert(mutex_is_locked(&c->lp_mutex));
-
- if (list_empty(&c->empty_list))
- return NULL;
-
- lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert(!(lprops->flags & LPROPS_INDEX));
- ubifs_assert(lprops->free == c->leb_size);
- return lprops;
-}
-
-/**
- * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
- * @c: the UBIFS file-system description object
- *
- * This function returns LEB properties for a freeable LEB or %NULL if the
- * function is unable to find a freeable LEB quickly.
- */
-const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
-
- ubifs_assert(mutex_is_locked(&c->lp_mutex));
-
- if (list_empty(&c->freeable_list))
- return NULL;
-
- lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert(!(lprops->flags & LPROPS_INDEX));
- ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
- ubifs_assert(c->freeable_cnt > 0);
- return lprops;
-}
-
-/**
- * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
- * @c: the UBIFS file-system description object
- *
- * This function returns LEB properties for a freeable index LEB or %NULL if the
- * function is unable to find a freeable index LEB quickly.
- */
-const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
-
- ubifs_assert(mutex_is_locked(&c->lp_mutex));
-
- if (list_empty(&c->frdi_idx_list))
- return NULL;
-
- lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
- ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
- ubifs_assert((lprops->flags & LPROPS_INDEX));
- ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
- return lprops;
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-/**
- * dbg_check_cats - check category heaps and lists.
- * @c: UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int dbg_check_cats(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
- struct list_head *pos;
- int i, cat;
-
- if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
- return 0;
-
- list_for_each_entry(lprops, &c->empty_list, list) {
- if (lprops->free != c->leb_size) {
- ubifs_err("non-empty LEB %d on empty list "
- "(free %d dirty %d flags %d)", lprops->lnum,
- lprops->free, lprops->dirty, lprops->flags);
- return -EINVAL;
- }
- if (lprops->flags & LPROPS_TAKEN) {
- ubifs_err("taken LEB %d on empty list "
- "(free %d dirty %d flags %d)", lprops->lnum,
- lprops->free, lprops->dirty, lprops->flags);
- return -EINVAL;
- }
- }
-
- i = 0;
- list_for_each_entry(lprops, &c->freeable_list, list) {
- if (lprops->free + lprops->dirty != c->leb_size) {
- ubifs_err("non-freeable LEB %d on freeable list "
- "(free %d dirty %d flags %d)", lprops->lnum,
- lprops->free, lprops->dirty, lprops->flags);
- return -EINVAL;
- }
- if (lprops->flags & LPROPS_TAKEN) {
- ubifs_err("taken LEB %d on freeable list "
- "(free %d dirty %d flags %d)", lprops->lnum,
- lprops->free, lprops->dirty, lprops->flags);
- return -EINVAL;
- }
- i += 1;
- }
- if (i != c->freeable_cnt) {
- ubifs_err("freeable list count %d expected %d", i,
- c->freeable_cnt);
- return -EINVAL;
- }
-
- i = 0;
- list_for_each(pos, &c->idx_gc)
- i += 1;
- if (i != c->idx_gc_cnt) {
- ubifs_err("idx_gc list count %d expected %d", i,
- c->idx_gc_cnt);
- return -EINVAL;
- }
-
- list_for_each_entry(lprops, &c->frdi_idx_list, list) {
- if (lprops->free + lprops->dirty != c->leb_size) {
- ubifs_err("non-freeable LEB %d on frdi_idx list "
- "(free %d dirty %d flags %d)", lprops->lnum,
- lprops->free, lprops->dirty, lprops->flags);
- return -EINVAL;
- }
- if (lprops->flags & LPROPS_TAKEN) {
- ubifs_err("taken LEB %d on frdi_idx list "
- "(free %d dirty %d flags %d)", lprops->lnum,
- lprops->free, lprops->dirty, lprops->flags);
- return -EINVAL;
- }
- if (!(lprops->flags & LPROPS_INDEX)) {
- ubifs_err("non-index LEB %d on frdi_idx list "
- "(free %d dirty %d flags %d)", lprops->lnum,
- lprops->free, lprops->dirty, lprops->flags);
- return -EINVAL;
- }
- }
-
- for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
- struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
-
- for (i = 0; i < heap->cnt; i++) {
- lprops = heap->arr[i];
- if (!lprops) {
- ubifs_err("null ptr in LPT heap cat %d", cat);
- return -EINVAL;
- }
- if (lprops->hpos != i) {
- ubifs_err("bad ptr in LPT heap cat %d", cat);
- return -EINVAL;
- }
- if (lprops->flags & LPROPS_TAKEN) {
- ubifs_err("taken LEB in LPT heap cat %d", cat);
- return -EINVAL;
- }
- }
- }
-
- return 0;
-}
-
-void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
- int add_pos)
-{
- int i = 0, j, err = 0;
-
- if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
- return;
-
- for (i = 0; i < heap->cnt; i++) {
- struct ubifs_lprops *lprops = heap->arr[i];
- struct ubifs_lprops *lp;
-
- if (i != add_pos)
- if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
- err = 1;
- goto out;
- }
- if (lprops->hpos != i) {
- err = 2;
- goto out;
- }
- lp = ubifs_lpt_lookup(c, lprops->lnum);
- if (IS_ERR(lp)) {
- err = 3;
- goto out;
- }
- if (lprops != lp) {
- dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
- (size_t)lprops, (size_t)lp, lprops->lnum,
- lp->lnum);
- err = 4;
- goto out;
- }
- for (j = 0; j < i; j++) {
- lp = heap->arr[j];
- if (lp == lprops) {
- err = 5;
- goto out;
- }
- if (lp->lnum == lprops->lnum) {
- err = 6;
- goto out;
- }
- }
- }
-out:
- if (err) {
- dbg_msg("failed cat %d hpos %d err %d", cat, i, err);
- dbg_dump_stack();
- dbg_dump_heap(c, heap, cat);
- }
-}
-
-/**
- * scan_check_cb - scan callback.
- * @c: the UBIFS file-system description object
- * @lp: LEB properties to scan
- * @in_tree: whether the LEB properties are in main memory
- * @lst: lprops statistics to update
- *
- * This function returns a code that indicates whether the scan should continue
- * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
- * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
- * (%LPT_SCAN_STOP).
- */
-static int scan_check_cb(struct ubifs_info *c,
- const struct ubifs_lprops *lp, int in_tree,
- struct ubifs_lp_stats *lst)
-{
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
- int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
- void *buf = NULL;
-
- cat = lp->flags & LPROPS_CAT_MASK;
- if (cat != LPROPS_UNCAT) {
- cat = ubifs_categorize_lprops(c, lp);
- if (cat != (lp->flags & LPROPS_CAT_MASK)) {
- ubifs_err("bad LEB category %d expected %d",
- (lp->flags & LPROPS_CAT_MASK), cat);
- return -EINVAL;
- }
- }
-
- /* Check lp is on its category list (if it has one) */
- if (in_tree) {
- struct list_head *list = NULL;
-
- switch (cat) {
- case LPROPS_EMPTY:
- list = &c->empty_list;
- break;
- case LPROPS_FREEABLE:
- list = &c->freeable_list;
- break;
- case LPROPS_FRDI_IDX:
- list = &c->frdi_idx_list;
- break;
- case LPROPS_UNCAT:
- list = &c->uncat_list;
- break;
- }
- if (list) {
- struct ubifs_lprops *lprops;
- int found = 0;
-
- list_for_each_entry(lprops, list, list) {
- if (lprops == lp) {
- found = 1;
- break;
- }
- }
- if (!found) {
- ubifs_err("bad LPT list (category %d)", cat);
- return -EINVAL;
- }
- }
- }
-
- /* Check lp is on its category heap (if it has one) */
- if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
- struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
-
- if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
- lp != heap->arr[lp->hpos]) {
- ubifs_err("bad LPT heap (category %d)", cat);
- return -EINVAL;
- }
- }
-
- buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
- if (!buf)
- return -ENOMEM;
-
- /*
- * After an unclean unmount, empty and freeable LEBs
- * may contain garbage - do not scan them.
- */
- if (lp->free == c->leb_size) {
- lst->empty_lebs += 1;
- lst->total_free += c->leb_size;
- lst->total_dark += ubifs_calc_dark(c, c->leb_size);
- return LPT_SCAN_CONTINUE;
- }
- if (lp->free + lp->dirty == c->leb_size &&
- !(lp->flags & LPROPS_INDEX)) {
- lst->total_free += lp->free;
- lst->total_dirty += lp->dirty;
- lst->total_dark += ubifs_calc_dark(c, c->leb_size);
- return LPT_SCAN_CONTINUE;
- }
-
- sleb = ubifs_scan(c, lnum, 0, buf, 0);
- if (IS_ERR(sleb)) {
- ret = PTR_ERR(sleb);
- if (ret == -EUCLEAN) {
- dbg_dump_lprops(c);
- dbg_dump_budg(c, &c->bi);
- }
- goto out;
- }
-
- is_idx = -1;
- list_for_each_entry(snod, &sleb->nodes, list) {
- int found, level = 0;
-
- cond_resched();
-
- if (is_idx == -1)
- is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
-
- if (is_idx && snod->type != UBIFS_IDX_NODE) {
- ubifs_err("indexing node in data LEB %d:%d",
- lnum, snod->offs);
- goto out_destroy;
- }
-
- if (snod->type == UBIFS_IDX_NODE) {
- struct ubifs_idx_node *idx = snod->node;
-
- key_read(c, ubifs_idx_key(c, idx), &snod->key);
- level = le16_to_cpu(idx->level);
- }
-
- found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
- snod->offs, is_idx);
- if (found) {
- if (found < 0)
- goto out_destroy;
- used += ALIGN(snod->len, 8);
- }
- }
-
- free = c->leb_size - sleb->endpt;
- dirty = sleb->endpt - used;
-
- if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
- dirty < 0) {
- ubifs_err("bad calculated accounting for LEB %d: "
- "free %d, dirty %d", lnum, free, dirty);
- goto out_destroy;
- }
-
- if (lp->free + lp->dirty == c->leb_size &&
- free + dirty == c->leb_size)
- if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
- (!is_idx && free == c->leb_size) ||
- lp->free == c->leb_size) {
- /*
- * Empty or freeable LEBs could contain index
- * nodes from an uncompleted commit due to an
- * unclean unmount. Or they could be empty for
- * the same reason. Or it may simply not have been
- * unmapped.
- */
- free = lp->free;
- dirty = lp->dirty;
- is_idx = 0;
- }
-
- if (is_idx && lp->free + lp->dirty == free + dirty &&
- lnum != c->ihead_lnum) {
- /*
- * After an unclean unmount, an index LEB could have a different
- * amount of free space than the value recorded by lprops. That
- * is because the in-the-gaps method may use free space or
- * create free space (as a side-effect of using ubi_leb_change
- * and not writing the whole LEB). The incorrect free space
- * value is not a problem because the index is only ever
- * allocated empty LEBs, so there will never be an attempt to
- * write to the free space at the end of an index LEB - except
- * by the in-the-gaps method for which it is not a problem.
- */
- free = lp->free;
- dirty = lp->dirty;
- }
-
- if (lp->free != free || lp->dirty != dirty)
- goto out_print;
-
- if (is_idx && !(lp->flags & LPROPS_INDEX)) {
- if (free == c->leb_size)
- /* Free but not unmapped LEB, it's fine */
- is_idx = 0;
- else {
- ubifs_err("indexing node without indexing "
- "flag");
- goto out_print;
- }
- }
-
- if (!is_idx && (lp->flags & LPROPS_INDEX)) {
- ubifs_err("data node with indexing flag");
- goto out_print;
- }
-
- if (free == c->leb_size)
- lst->empty_lebs += 1;
-
- if (is_idx)
- lst->idx_lebs += 1;
-
- if (!(lp->flags & LPROPS_INDEX))
- lst->total_used += c->leb_size - free - dirty;
- lst->total_free += free;
- lst->total_dirty += dirty;
-
- if (!(lp->flags & LPROPS_INDEX)) {
- int spc = free + dirty;
-
- if (spc < c->dead_wm)
- lst->total_dead += spc;
- else
- lst->total_dark += ubifs_calc_dark(c, spc);
- }
-
- ubifs_scan_destroy(sleb);
- vfree(buf);
- return LPT_SCAN_CONTINUE;
-
-out_print:
- ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
- "should be free %d, dirty %d",
- lnum, lp->free, lp->dirty, lp->flags, free, dirty);
- dbg_dump_leb(c, lnum);
-out_destroy:
- ubifs_scan_destroy(sleb);
- ret = -EINVAL;
-out:
- vfree(buf);
- return ret;
-}
-
-/**
- * dbg_check_lprops - check all LEB properties.
- * @c: UBIFS file-system description object
- *
- * This function checks all LEB properties and makes sure they are all correct.
- * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
- * and other negative error codes in case of other errors. This function is
- * called while the file system is locked (because of commit start), so no
- * additional locking is required. Note that locking the LPT mutex would cause
- * a circular lock dependency with the TNC mutex.
- */
-int dbg_check_lprops(struct ubifs_info *c)
-{
- int i, err;
- struct ubifs_lp_stats lst;
-
- if (!dbg_is_chk_lprops(c))
- return 0;
-
- /*
- * As we are going to scan the media, the write buffers have to be
- * synchronized.
- */
- for (i = 0; i < c->jhead_cnt; i++) {
- err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
- if (err)
- return err;
- }
-
- memset(&lst, 0, sizeof(struct ubifs_lp_stats));
- err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
- (ubifs_lpt_scan_callback)scan_check_cb,
- &lst);
- if (err && err != -ENOSPC)
- goto out;
-
- if (lst.empty_lebs != c->lst.empty_lebs ||
- lst.idx_lebs != c->lst.idx_lebs ||
- lst.total_free != c->lst.total_free ||
- lst.total_dirty != c->lst.total_dirty ||
- lst.total_used != c->lst.total_used) {
- ubifs_err("bad overall accounting");
- ubifs_err("calculated: empty_lebs %d, idx_lebs %d, "
- "total_free %lld, total_dirty %lld, total_used %lld",
- lst.empty_lebs, lst.idx_lebs, lst.total_free,
- lst.total_dirty, lst.total_used);
- ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, "
- "total_free %lld, total_dirty %lld, total_used %lld",
- c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
- c->lst.total_dirty, c->lst.total_used);
- err = -EINVAL;
- goto out;
- }
-
- if (lst.total_dead != c->lst.total_dead ||
- lst.total_dark != c->lst.total_dark) {
- ubifs_err("bad dead/dark space accounting");
- ubifs_err("calculated: total_dead %lld, total_dark %lld",
- lst.total_dead, lst.total_dark);
- ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
- c->lst.total_dead, c->lst.total_dark);
- err = -EINVAL;
- goto out;
- }
-
- err = dbg_check_cats(c);
-out:
- return err;
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/lpt.c b/ANDROID_3.4.5/fs/ubifs/lpt.c
deleted file mode 100644
index 66d59d0a..00000000
--- a/ANDROID_3.4.5/fs/ubifs/lpt.c
+++ /dev/null
@@ -1,2278 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements the LEB properties tree (LPT) area. The LPT area
- * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
- * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
- * between the log and the orphan area.
- *
- * The LPT area is like a miniature self-contained file system. It is required
- * that it never runs out of space, is fast to access and update, and scales
- * logarithmically. The LEB properties tree is implemented as a wandering tree
- * much like the TNC, and the LPT area has its own garbage collection.
- *
- * The LPT has two slightly different forms called the "small model" and the
- * "big model". The small model is used when the entire LEB properties table
- * can be written into a single eraseblock. In that case, garbage collection
- * consists of just writing the whole table, which therefore makes all other
- * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
- * selected for garbage collection, which consists of marking the clean nodes in
- * that LEB as dirty, and then only the dirty nodes are written out. Also, in
- * the case of the big model, a table of LEB numbers is saved so that the entire
- * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
- * mounted.
- */
-
-#include "ubifs.h"
-#include <linux/crc16.h>
-#include <linux/math64.h>
-#include <linux/slab.h>
-
-/**
- * do_calc_lpt_geom - calculate sizes for the LPT area.
- * @c: the UBIFS file-system description object
- *
- * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
- * properties of the flash and whether LPT is "big" (c->big_lpt).
- */
-static void do_calc_lpt_geom(struct ubifs_info *c)
-{
- int i, n, bits, per_leb_wastage, max_pnode_cnt;
- long long sz, tot_wastage;
-
- n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
- max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
-
- c->lpt_hght = 1;
- n = UBIFS_LPT_FANOUT;
- while (n < max_pnode_cnt) {
- c->lpt_hght += 1;
- n <<= UBIFS_LPT_FANOUT_SHIFT;
- }
-
- c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
-
- n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
- c->nnode_cnt = n;
- for (i = 1; i < c->lpt_hght; i++) {
- n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
- c->nnode_cnt += n;
- }
-
- c->space_bits = fls(c->leb_size) - 3;
- c->lpt_lnum_bits = fls(c->lpt_lebs);
- c->lpt_offs_bits = fls(c->leb_size - 1);
- c->lpt_spc_bits = fls(c->leb_size);
-
- n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
- c->pcnt_bits = fls(n - 1);
-
- c->lnum_bits = fls(c->max_leb_cnt - 1);
-
- bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
- (c->big_lpt ? c->pcnt_bits : 0) +
- (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
- c->pnode_sz = (bits + 7) / 8;
-
- bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
- (c->big_lpt ? c->pcnt_bits : 0) +
- (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
- c->nnode_sz = (bits + 7) / 8;
-
- bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
- c->lpt_lebs * c->lpt_spc_bits * 2;
- c->ltab_sz = (bits + 7) / 8;
-
- bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
- c->lnum_bits * c->lsave_cnt;
- c->lsave_sz = (bits + 7) / 8;
-
- /* Calculate the minimum LPT size */
- c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
- c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
- c->lpt_sz += c->ltab_sz;
- if (c->big_lpt)
- c->lpt_sz += c->lsave_sz;
-
- /* Add wastage */
- sz = c->lpt_sz;
- per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
- sz += per_leb_wastage;
- tot_wastage = per_leb_wastage;
- while (sz > c->leb_size) {
- sz += per_leb_wastage;
- sz -= c->leb_size;
- tot_wastage += per_leb_wastage;
- }
- tot_wastage += ALIGN(sz, c->min_io_size) - sz;
- c->lpt_sz += tot_wastage;
-}
-
-/**
- * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
- * @c: the UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_calc_lpt_geom(struct ubifs_info *c)
-{
- int lebs_needed;
- long long sz;
-
- do_calc_lpt_geom(c);
-
- /* Verify that lpt_lebs is big enough */
- sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
- lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
- if (lebs_needed > c->lpt_lebs) {
- ubifs_err("too few LPT LEBs");
- return -EINVAL;
- }
-
- /* Verify that ltab fits in a single LEB (since ltab is a single node */
- if (c->ltab_sz > c->leb_size) {
- ubifs_err("LPT ltab too big");
- return -EINVAL;
- }
-
- c->check_lpt_free = c->big_lpt;
- return 0;
-}
-
-/**
- * calc_dflt_lpt_geom - calculate default LPT geometry.
- * @c: the UBIFS file-system description object
- * @main_lebs: number of main area LEBs is passed and returned here
- * @big_lpt: whether the LPT area is "big" is returned here
- *
- * The size of the LPT area depends on parameters that themselves are dependent
- * on the size of the LPT area. This function, successively recalculates the LPT
- * area geometry until the parameters and resultant geometry are consistent.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
- int *big_lpt)
-{
- int i, lebs_needed;
- long long sz;
-
- /* Start by assuming the minimum number of LPT LEBs */
- c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
- c->main_lebs = *main_lebs - c->lpt_lebs;
- if (c->main_lebs <= 0)
- return -EINVAL;
-
- /* And assume we will use the small LPT model */
- c->big_lpt = 0;
-
- /*
- * Calculate the geometry based on assumptions above and then see if it
- * makes sense
- */
- do_calc_lpt_geom(c);
-
- /* Small LPT model must have lpt_sz < leb_size */
- if (c->lpt_sz > c->leb_size) {
- /* Nope, so try again using big LPT model */
- c->big_lpt = 1;
- do_calc_lpt_geom(c);
- }
-
- /* Now check there are enough LPT LEBs */
- for (i = 0; i < 64 ; i++) {
- sz = c->lpt_sz * 4; /* Allow 4 times the size */
- lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
- if (lebs_needed > c->lpt_lebs) {
- /* Not enough LPT LEBs so try again with more */
- c->lpt_lebs = lebs_needed;
- c->main_lebs = *main_lebs - c->lpt_lebs;
- if (c->main_lebs <= 0)
- return -EINVAL;
- do_calc_lpt_geom(c);
- continue;
- }
- if (c->ltab_sz > c->leb_size) {
- ubifs_err("LPT ltab too big");
- return -EINVAL;
- }
- *main_lebs = c->main_lebs;
- *big_lpt = c->big_lpt;
- return 0;
- }
- return -EINVAL;
-}
-
-/**
- * pack_bits - pack bit fields end-to-end.
- * @addr: address at which to pack (passed and next address returned)
- * @pos: bit position at which to pack (passed and next position returned)
- * @val: value to pack
- * @nrbits: number of bits of value to pack (1-32)
- */
-static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
-{
- uint8_t *p = *addr;
- int b = *pos;
-
- ubifs_assert(nrbits > 0);
- ubifs_assert(nrbits <= 32);
- ubifs_assert(*pos >= 0);
- ubifs_assert(*pos < 8);
- ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
- if (b) {
- *p |= ((uint8_t)val) << b;
- nrbits += b;
- if (nrbits > 8) {
- *++p = (uint8_t)(val >>= (8 - b));
- if (nrbits > 16) {
- *++p = (uint8_t)(val >>= 8);
- if (nrbits > 24) {
- *++p = (uint8_t)(val >>= 8);
- if (nrbits > 32)
- *++p = (uint8_t)(val >>= 8);
- }
- }
- }
- } else {
- *p = (uint8_t)val;
- if (nrbits > 8) {
- *++p = (uint8_t)(val >>= 8);
- if (nrbits > 16) {
- *++p = (uint8_t)(val >>= 8);
- if (nrbits > 24)
- *++p = (uint8_t)(val >>= 8);
- }
- }
- }
- b = nrbits & 7;
- if (b == 0)
- p++;
- *addr = p;
- *pos = b;
-}
-
-/**
- * ubifs_unpack_bits - unpack bit fields.
- * @addr: address at which to unpack (passed and next address returned)
- * @pos: bit position at which to unpack (passed and next position returned)
- * @nrbits: number of bits of value to unpack (1-32)
- *
- * This functions returns the value unpacked.
- */
-uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
-{
- const int k = 32 - nrbits;
- uint8_t *p = *addr;
- int b = *pos;
- uint32_t uninitialized_var(val);
- const int bytes = (nrbits + b + 7) >> 3;
-
- ubifs_assert(nrbits > 0);
- ubifs_assert(nrbits <= 32);
- ubifs_assert(*pos >= 0);
- ubifs_assert(*pos < 8);
- if (b) {
- switch (bytes) {
- case 2:
- val = p[1];
- break;
- case 3:
- val = p[1] | ((uint32_t)p[2] << 8);
- break;
- case 4:
- val = p[1] | ((uint32_t)p[2] << 8) |
- ((uint32_t)p[3] << 16);
- break;
- case 5:
- val = p[1] | ((uint32_t)p[2] << 8) |
- ((uint32_t)p[3] << 16) |
- ((uint32_t)p[4] << 24);
- }
- val <<= (8 - b);
- val |= *p >> b;
- nrbits += b;
- } else {
- switch (bytes) {
- case 1:
- val = p[0];
- break;
- case 2:
- val = p[0] | ((uint32_t)p[1] << 8);
- break;
- case 3:
- val = p[0] | ((uint32_t)p[1] << 8) |
- ((uint32_t)p[2] << 16);
- break;
- case 4:
- val = p[0] | ((uint32_t)p[1] << 8) |
- ((uint32_t)p[2] << 16) |
- ((uint32_t)p[3] << 24);
- break;
- }
- }
- val <<= k;
- val >>= k;
- b = nrbits & 7;
- p += nrbits >> 3;
- *addr = p;
- *pos = b;
- ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
- return val;
-}
-
-/**
- * ubifs_pack_pnode - pack all the bit fields of a pnode.
- * @c: UBIFS file-system description object
- * @buf: buffer into which to pack
- * @pnode: pnode to pack
- */
-void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
- struct ubifs_pnode *pnode)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0;
- uint16_t crc;
-
- pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
- if (c->big_lpt)
- pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
- c->space_bits);
- pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
- c->space_bits);
- if (pnode->lprops[i].flags & LPROPS_INDEX)
- pack_bits(&addr, &pos, 1, 1);
- else
- pack_bits(&addr, &pos, 0, 1);
- }
- crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
- c->pnode_sz - UBIFS_LPT_CRC_BYTES);
- addr = buf;
- pos = 0;
- pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
-}
-
-/**
- * ubifs_pack_nnode - pack all the bit fields of a nnode.
- * @c: UBIFS file-system description object
- * @buf: buffer into which to pack
- * @nnode: nnode to pack
- */
-void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
- struct ubifs_nnode *nnode)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0;
- uint16_t crc;
-
- pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
- if (c->big_lpt)
- pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- int lnum = nnode->nbranch[i].lnum;
-
- if (lnum == 0)
- lnum = c->lpt_last + 1;
- pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
- pack_bits(&addr, &pos, nnode->nbranch[i].offs,
- c->lpt_offs_bits);
- }
- crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
- c->nnode_sz - UBIFS_LPT_CRC_BYTES);
- addr = buf;
- pos = 0;
- pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
-}
-
-/**
- * ubifs_pack_ltab - pack the LPT's own lprops table.
- * @c: UBIFS file-system description object
- * @buf: buffer into which to pack
- * @ltab: LPT's own lprops table to pack
- */
-void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
- struct ubifs_lpt_lprops *ltab)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0;
- uint16_t crc;
-
- pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
- for (i = 0; i < c->lpt_lebs; i++) {
- pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
- pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
- }
- crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
- c->ltab_sz - UBIFS_LPT_CRC_BYTES);
- addr = buf;
- pos = 0;
- pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
-}
-
-/**
- * ubifs_pack_lsave - pack the LPT's save table.
- * @c: UBIFS file-system description object
- * @buf: buffer into which to pack
- * @lsave: LPT's save table to pack
- */
-void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0;
- uint16_t crc;
-
- pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
- for (i = 0; i < c->lsave_cnt; i++)
- pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
- crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
- c->lsave_sz - UBIFS_LPT_CRC_BYTES);
- addr = buf;
- pos = 0;
- pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
-}
-
-/**
- * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to which to add dirty space
- * @dirty: amount of dirty space to add
- */
-void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
-{
- if (!dirty || !lnum)
- return;
- dbg_lp("LEB %d add %d to %d",
- lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
- ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
- c->ltab[lnum - c->lpt_first].dirty += dirty;
-}
-
-/**
- * set_ltab - set LPT LEB properties.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @free: amount of free space
- * @dirty: amount of dirty space
- */
-static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
-{
- dbg_lp("LEB %d free %d dirty %d to %d %d",
- lnum, c->ltab[lnum - c->lpt_first].free,
- c->ltab[lnum - c->lpt_first].dirty, free, dirty);
- ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
- c->ltab[lnum - c->lpt_first].free = free;
- c->ltab[lnum - c->lpt_first].dirty = dirty;
-}
-
-/**
- * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
- * @c: UBIFS file-system description object
- * @nnode: nnode for which to add dirt
- */
-void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
-{
- struct ubifs_nnode *np = nnode->parent;
-
- if (np)
- ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
- c->nnode_sz);
- else {
- ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
- if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
- c->lpt_drty_flgs |= LTAB_DIRTY;
- ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
- }
- }
-}
-
-/**
- * add_pnode_dirt - add dirty space to LPT LEB properties.
- * @c: UBIFS file-system description object
- * @pnode: pnode for which to add dirt
- */
-static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
-{
- ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
- c->pnode_sz);
-}
-
-/**
- * calc_nnode_num - calculate nnode number.
- * @row: the row in the tree (root is zero)
- * @col: the column in the row (leftmost is zero)
- *
- * The nnode number is a number that uniquely identifies a nnode and can be used
- * easily to traverse the tree from the root to that nnode.
- *
- * This function calculates and returns the nnode number for the nnode at @row
- * and @col.
- */
-static int calc_nnode_num(int row, int col)
-{
- int num, bits;
-
- num = 1;
- while (row--) {
- bits = (col & (UBIFS_LPT_FANOUT - 1));
- col >>= UBIFS_LPT_FANOUT_SHIFT;
- num <<= UBIFS_LPT_FANOUT_SHIFT;
- num |= bits;
- }
- return num;
-}
-
-/**
- * calc_nnode_num_from_parent - calculate nnode number.
- * @c: UBIFS file-system description object
- * @parent: parent nnode
- * @iip: index in parent
- *
- * The nnode number is a number that uniquely identifies a nnode and can be used
- * easily to traverse the tree from the root to that nnode.
- *
- * This function calculates and returns the nnode number based on the parent's
- * nnode number and the index in parent.
- */
-static int calc_nnode_num_from_parent(const struct ubifs_info *c,
- struct ubifs_nnode *parent, int iip)
-{
- int num, shft;
-
- if (!parent)
- return 1;
- shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
- num = parent->num ^ (1 << shft);
- num |= (UBIFS_LPT_FANOUT + iip) << shft;
- return num;
-}
-
-/**
- * calc_pnode_num_from_parent - calculate pnode number.
- * @c: UBIFS file-system description object
- * @parent: parent nnode
- * @iip: index in parent
- *
- * The pnode number is a number that uniquely identifies a pnode and can be used
- * easily to traverse the tree from the root to that pnode.
- *
- * This function calculates and returns the pnode number based on the parent's
- * nnode number and the index in parent.
- */
-static int calc_pnode_num_from_parent(const struct ubifs_info *c,
- struct ubifs_nnode *parent, int iip)
-{
- int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
-
- for (i = 0; i < n; i++) {
- num <<= UBIFS_LPT_FANOUT_SHIFT;
- num |= pnum & (UBIFS_LPT_FANOUT - 1);
- pnum >>= UBIFS_LPT_FANOUT_SHIFT;
- }
- num <<= UBIFS_LPT_FANOUT_SHIFT;
- num |= iip;
- return num;
-}
-
-/**
- * ubifs_create_dflt_lpt - create default LPT.
- * @c: UBIFS file-system description object
- * @main_lebs: number of main area LEBs is passed and returned here
- * @lpt_first: LEB number of first LPT LEB
- * @lpt_lebs: number of LEBs for LPT is passed and returned here
- * @big_lpt: use big LPT model is passed and returned here
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
- int *lpt_lebs, int *big_lpt)
-{
- int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
- int blnum, boffs, bsz, bcnt;
- struct ubifs_pnode *pnode = NULL;
- struct ubifs_nnode *nnode = NULL;
- void *buf = NULL, *p;
- struct ubifs_lpt_lprops *ltab = NULL;
- int *lsave = NULL;
-
- err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
- if (err)
- return err;
- *lpt_lebs = c->lpt_lebs;
-
- /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
- c->lpt_first = lpt_first;
- /* Needed by 'set_ltab()' */
- c->lpt_last = lpt_first + c->lpt_lebs - 1;
- /* Needed by 'ubifs_pack_lsave()' */
- c->main_first = c->leb_cnt - *main_lebs;
-
- lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
- pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
- nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
- buf = vmalloc(c->leb_size);
- ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
- if (!pnode || !nnode || !buf || !ltab || !lsave) {
- err = -ENOMEM;
- goto out;
- }
-
- ubifs_assert(!c->ltab);
- c->ltab = ltab; /* Needed by set_ltab */
-
- /* Initialize LPT's own lprops */
- for (i = 0; i < c->lpt_lebs; i++) {
- ltab[i].free = c->leb_size;
- ltab[i].dirty = 0;
- ltab[i].tgc = 0;
- ltab[i].cmt = 0;
- }
-
- lnum = lpt_first;
- p = buf;
- /* Number of leaf nodes (pnodes) */
- cnt = c->pnode_cnt;
-
- /*
- * The first pnode contains the LEB properties for the LEBs that contain
- * the root inode node and the root index node of the index tree.
- */
- node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
- iopos = ALIGN(node_sz, c->min_io_size);
- pnode->lprops[0].free = c->leb_size - iopos;
- pnode->lprops[0].dirty = iopos - node_sz;
- pnode->lprops[0].flags = LPROPS_INDEX;
-
- node_sz = UBIFS_INO_NODE_SZ;
- iopos = ALIGN(node_sz, c->min_io_size);
- pnode->lprops[1].free = c->leb_size - iopos;
- pnode->lprops[1].dirty = iopos - node_sz;
-
- for (i = 2; i < UBIFS_LPT_FANOUT; i++)
- pnode->lprops[i].free = c->leb_size;
-
- /* Add first pnode */
- ubifs_pack_pnode(c, p, pnode);
- p += c->pnode_sz;
- len = c->pnode_sz;
- pnode->num += 1;
-
- /* Reset pnode values for remaining pnodes */
- pnode->lprops[0].free = c->leb_size;
- pnode->lprops[0].dirty = 0;
- pnode->lprops[0].flags = 0;
-
- pnode->lprops[1].free = c->leb_size;
- pnode->lprops[1].dirty = 0;
-
- /*
- * To calculate the internal node branches, we keep information about
- * the level below.
- */
- blnum = lnum; /* LEB number of level below */
- boffs = 0; /* Offset of level below */
- bcnt = cnt; /* Number of nodes in level below */
- bsz = c->pnode_sz; /* Size of nodes in level below */
-
- /* Add all remaining pnodes */
- for (i = 1; i < cnt; i++) {
- if (len + c->pnode_sz > c->leb_size) {
- alen = ALIGN(len, c->min_io_size);
- set_ltab(c, lnum, c->leb_size - alen, alen - len);
- memset(p, 0xff, alen - len);
- err = ubifs_leb_change(c, lnum++, buf, alen,
- UBI_SHORTTERM);
- if (err)
- goto out;
- p = buf;
- len = 0;
- }
- ubifs_pack_pnode(c, p, pnode);
- p += c->pnode_sz;
- len += c->pnode_sz;
- /*
- * pnodes are simply numbered left to right starting at zero,
- * which means the pnode number can be used easily to traverse
- * down the tree to the corresponding pnode.
- */
- pnode->num += 1;
- }
-
- row = 0;
- for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
- row += 1;
- /* Add all nnodes, one level at a time */
- while (1) {
- /* Number of internal nodes (nnodes) at next level */
- cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
- for (i = 0; i < cnt; i++) {
- if (len + c->nnode_sz > c->leb_size) {
- alen = ALIGN(len, c->min_io_size);
- set_ltab(c, lnum, c->leb_size - alen,
- alen - len);
- memset(p, 0xff, alen - len);
- err = ubifs_leb_change(c, lnum++, buf, alen,
- UBI_SHORTTERM);
- if (err)
- goto out;
- p = buf;
- len = 0;
- }
- /* Only 1 nnode at this level, so it is the root */
- if (cnt == 1) {
- c->lpt_lnum = lnum;
- c->lpt_offs = len;
- }
- /* Set branches to the level below */
- for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
- if (bcnt) {
- if (boffs + bsz > c->leb_size) {
- blnum += 1;
- boffs = 0;
- }
- nnode->nbranch[j].lnum = blnum;
- nnode->nbranch[j].offs = boffs;
- boffs += bsz;
- bcnt--;
- } else {
- nnode->nbranch[j].lnum = 0;
- nnode->nbranch[j].offs = 0;
- }
- }
- nnode->num = calc_nnode_num(row, i);
- ubifs_pack_nnode(c, p, nnode);
- p += c->nnode_sz;
- len += c->nnode_sz;
- }
- /* Only 1 nnode at this level, so it is the root */
- if (cnt == 1)
- break;
- /* Update the information about the level below */
- bcnt = cnt;
- bsz = c->nnode_sz;
- row -= 1;
- }
-
- if (*big_lpt) {
- /* Need to add LPT's save table */
- if (len + c->lsave_sz > c->leb_size) {
- alen = ALIGN(len, c->min_io_size);
- set_ltab(c, lnum, c->leb_size - alen, alen - len);
- memset(p, 0xff, alen - len);
- err = ubifs_leb_change(c, lnum++, buf, alen,
- UBI_SHORTTERM);
- if (err)
- goto out;
- p = buf;
- len = 0;
- }
-
- c->lsave_lnum = lnum;
- c->lsave_offs = len;
-
- for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
- lsave[i] = c->main_first + i;
- for (; i < c->lsave_cnt; i++)
- lsave[i] = c->main_first;
-
- ubifs_pack_lsave(c, p, lsave);
- p += c->lsave_sz;
- len += c->lsave_sz;
- }
-
- /* Need to add LPT's own LEB properties table */
- if (len + c->ltab_sz > c->leb_size) {
- alen = ALIGN(len, c->min_io_size);
- set_ltab(c, lnum, c->leb_size - alen, alen - len);
- memset(p, 0xff, alen - len);
- err = ubifs_leb_change(c, lnum++, buf, alen, UBI_SHORTTERM);
- if (err)
- goto out;
- p = buf;
- len = 0;
- }
-
- c->ltab_lnum = lnum;
- c->ltab_offs = len;
-
- /* Update ltab before packing it */
- len += c->ltab_sz;
- alen = ALIGN(len, c->min_io_size);
- set_ltab(c, lnum, c->leb_size - alen, alen - len);
-
- ubifs_pack_ltab(c, p, ltab);
- p += c->ltab_sz;
-
- /* Write remaining buffer */
- memset(p, 0xff, alen - len);
- err = ubifs_leb_change(c, lnum, buf, alen, UBI_SHORTTERM);
- if (err)
- goto out;
-
- c->nhead_lnum = lnum;
- c->nhead_offs = ALIGN(len, c->min_io_size);
-
- dbg_lp("space_bits %d", c->space_bits);
- dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
- dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
- dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
- dbg_lp("pcnt_bits %d", c->pcnt_bits);
- dbg_lp("lnum_bits %d", c->lnum_bits);
- dbg_lp("pnode_sz %d", c->pnode_sz);
- dbg_lp("nnode_sz %d", c->nnode_sz);
- dbg_lp("ltab_sz %d", c->ltab_sz);
- dbg_lp("lsave_sz %d", c->lsave_sz);
- dbg_lp("lsave_cnt %d", c->lsave_cnt);
- dbg_lp("lpt_hght %d", c->lpt_hght);
- dbg_lp("big_lpt %d", c->big_lpt);
- dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
- dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
- dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
- if (c->big_lpt)
- dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
-out:
- c->ltab = NULL;
- kfree(lsave);
- vfree(ltab);
- vfree(buf);
- kfree(nnode);
- kfree(pnode);
- return err;
-}
-
-/**
- * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
- * @c: UBIFS file-system description object
- * @pnode: pnode
- *
- * When a pnode is loaded into memory, the LEB properties it contains are added,
- * by this function, to the LEB category lists and heaps.
- */
-static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
-{
- int i;
-
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
- int lnum = pnode->lprops[i].lnum;
-
- if (!lnum)
- return;
- ubifs_add_to_cat(c, &pnode->lprops[i], cat);
- }
-}
-
-/**
- * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
- * @c: UBIFS file-system description object
- * @old_pnode: pnode copied
- * @new_pnode: pnode copy
- *
- * During commit it is sometimes necessary to copy a pnode
- * (see dirty_cow_pnode). When that happens, references in
- * category lists and heaps must be replaced. This function does that.
- */
-static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
- struct ubifs_pnode *new_pnode)
-{
- int i;
-
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- if (!new_pnode->lprops[i].lnum)
- return;
- ubifs_replace_cat(c, &old_pnode->lprops[i],
- &new_pnode->lprops[i]);
- }
-}
-
-/**
- * check_lpt_crc - check LPT node crc is correct.
- * @c: UBIFS file-system description object
- * @buf: buffer containing node
- * @len: length of node
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int check_lpt_crc(void *buf, int len)
-{
- int pos = 0;
- uint8_t *addr = buf;
- uint16_t crc, calc_crc;
-
- crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
- calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
- len - UBIFS_LPT_CRC_BYTES);
- if (crc != calc_crc) {
- ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
- calc_crc);
- dbg_dump_stack();
- return -EINVAL;
- }
- return 0;
-}
-
-/**
- * check_lpt_type - check LPT node type is correct.
- * @c: UBIFS file-system description object
- * @addr: address of type bit field is passed and returned updated here
- * @pos: position of type bit field is passed and returned updated here
- * @type: expected type
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int check_lpt_type(uint8_t **addr, int *pos, int type)
-{
- int node_type;
-
- node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
- if (node_type != type) {
- ubifs_err("invalid type (%d) in LPT node type %d", node_type,
- type);
- dbg_dump_stack();
- return -EINVAL;
- }
- return 0;
-}
-
-/**
- * unpack_pnode - unpack a pnode.
- * @c: UBIFS file-system description object
- * @buf: buffer containing packed pnode to unpack
- * @pnode: pnode structure to fill
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int unpack_pnode(const struct ubifs_info *c, void *buf,
- struct ubifs_pnode *pnode)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0, err;
-
- err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
- if (err)
- return err;
- if (c->big_lpt)
- pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- struct ubifs_lprops * const lprops = &pnode->lprops[i];
-
- lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
- lprops->free <<= 3;
- lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
- lprops->dirty <<= 3;
-
- if (ubifs_unpack_bits(&addr, &pos, 1))
- lprops->flags = LPROPS_INDEX;
- else
- lprops->flags = 0;
- lprops->flags |= ubifs_categorize_lprops(c, lprops);
- }
- err = check_lpt_crc(buf, c->pnode_sz);
- return err;
-}
-
-/**
- * ubifs_unpack_nnode - unpack a nnode.
- * @c: UBIFS file-system description object
- * @buf: buffer containing packed nnode to unpack
- * @nnode: nnode structure to fill
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
- struct ubifs_nnode *nnode)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0, err;
-
- err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
- if (err)
- return err;
- if (c->big_lpt)
- nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- int lnum;
-
- lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
- c->lpt_first;
- if (lnum == c->lpt_last + 1)
- lnum = 0;
- nnode->nbranch[i].lnum = lnum;
- nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
- c->lpt_offs_bits);
- }
- err = check_lpt_crc(buf, c->nnode_sz);
- return err;
-}
-
-/**
- * unpack_ltab - unpack the LPT's own lprops table.
- * @c: UBIFS file-system description object
- * @buf: buffer from which to unpack
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int unpack_ltab(const struct ubifs_info *c, void *buf)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0, err;
-
- err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
- if (err)
- return err;
- for (i = 0; i < c->lpt_lebs; i++) {
- int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
- int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
-
- if (free < 0 || free > c->leb_size || dirty < 0 ||
- dirty > c->leb_size || free + dirty > c->leb_size)
- return -EINVAL;
-
- c->ltab[i].free = free;
- c->ltab[i].dirty = dirty;
- c->ltab[i].tgc = 0;
- c->ltab[i].cmt = 0;
- }
- err = check_lpt_crc(buf, c->ltab_sz);
- return err;
-}
-
-/**
- * unpack_lsave - unpack the LPT's save table.
- * @c: UBIFS file-system description object
- * @buf: buffer from which to unpack
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int unpack_lsave(const struct ubifs_info *c, void *buf)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int i, pos = 0, err;
-
- err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
- if (err)
- return err;
- for (i = 0; i < c->lsave_cnt; i++) {
- int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
-
- if (lnum < c->main_first || lnum >= c->leb_cnt)
- return -EINVAL;
- c->lsave[i] = lnum;
- }
- err = check_lpt_crc(buf, c->lsave_sz);
- return err;
-}
-
-/**
- * validate_nnode - validate a nnode.
- * @c: UBIFS file-system description object
- * @nnode: nnode to validate
- * @parent: parent nnode (or NULL for the root nnode)
- * @iip: index in parent
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
- struct ubifs_nnode *parent, int iip)
-{
- int i, lvl, max_offs;
-
- if (c->big_lpt) {
- int num = calc_nnode_num_from_parent(c, parent, iip);
-
- if (nnode->num != num)
- return -EINVAL;
- }
- lvl = parent ? parent->level - 1 : c->lpt_hght;
- if (lvl < 1)
- return -EINVAL;
- if (lvl == 1)
- max_offs = c->leb_size - c->pnode_sz;
- else
- max_offs = c->leb_size - c->nnode_sz;
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- int lnum = nnode->nbranch[i].lnum;
- int offs = nnode->nbranch[i].offs;
-
- if (lnum == 0) {
- if (offs != 0)
- return -EINVAL;
- continue;
- }
- if (lnum < c->lpt_first || lnum > c->lpt_last)
- return -EINVAL;
- if (offs < 0 || offs > max_offs)
- return -EINVAL;
- }
- return 0;
-}
-
-/**
- * validate_pnode - validate a pnode.
- * @c: UBIFS file-system description object
- * @pnode: pnode to validate
- * @parent: parent nnode
- * @iip: index in parent
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
- struct ubifs_nnode *parent, int iip)
-{
- int i;
-
- if (c->big_lpt) {
- int num = calc_pnode_num_from_parent(c, parent, iip);
-
- if (pnode->num != num)
- return -EINVAL;
- }
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- int free = pnode->lprops[i].free;
- int dirty = pnode->lprops[i].dirty;
-
- if (free < 0 || free > c->leb_size || free % c->min_io_size ||
- (free & 7))
- return -EINVAL;
- if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
- return -EINVAL;
- if (dirty + free > c->leb_size)
- return -EINVAL;
- }
- return 0;
-}
-
-/**
- * set_pnode_lnum - set LEB numbers on a pnode.
- * @c: UBIFS file-system description object
- * @pnode: pnode to update
- *
- * This function calculates the LEB numbers for the LEB properties it contains
- * based on the pnode number.
- */
-static void set_pnode_lnum(const struct ubifs_info *c,
- struct ubifs_pnode *pnode)
-{
- int i, lnum;
-
- lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- if (lnum >= c->leb_cnt)
- return;
- pnode->lprops[i].lnum = lnum++;
- }
-}
-
-/**
- * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
- * @c: UBIFS file-system description object
- * @parent: parent nnode (or NULL for the root)
- * @iip: index in parent
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
-{
- struct ubifs_nbranch *branch = NULL;
- struct ubifs_nnode *nnode = NULL;
- void *buf = c->lpt_nod_buf;
- int err, lnum, offs;
-
- if (parent) {
- branch = &parent->nbranch[iip];
- lnum = branch->lnum;
- offs = branch->offs;
- } else {
- lnum = c->lpt_lnum;
- offs = c->lpt_offs;
- }
- nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
- if (!nnode) {
- err = -ENOMEM;
- goto out;
- }
- if (lnum == 0) {
- /*
- * This nnode was not written which just means that the LEB
- * properties in the subtree below it describe empty LEBs. We
- * make the nnode as though we had read it, which in fact means
- * doing almost nothing.
- */
- if (c->big_lpt)
- nnode->num = calc_nnode_num_from_parent(c, parent, iip);
- } else {
- err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
- if (err)
- goto out;
- err = ubifs_unpack_nnode(c, buf, nnode);
- if (err)
- goto out;
- }
- err = validate_nnode(c, nnode, parent, iip);
- if (err)
- goto out;
- if (!c->big_lpt)
- nnode->num = calc_nnode_num_from_parent(c, parent, iip);
- if (parent) {
- branch->nnode = nnode;
- nnode->level = parent->level - 1;
- } else {
- c->nroot = nnode;
- nnode->level = c->lpt_hght;
- }
- nnode->parent = parent;
- nnode->iip = iip;
- return 0;
-
-out:
- ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
- dbg_dump_stack();
- kfree(nnode);
- return err;
-}
-
-/**
- * read_pnode - read a pnode from flash and link it to the tree in memory.
- * @c: UBIFS file-system description object
- * @parent: parent nnode
- * @iip: index in parent
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
-{
- struct ubifs_nbranch *branch;
- struct ubifs_pnode *pnode = NULL;
- void *buf = c->lpt_nod_buf;
- int err, lnum, offs;
-
- branch = &parent->nbranch[iip];
- lnum = branch->lnum;
- offs = branch->offs;
- pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
- if (!pnode)
- return -ENOMEM;
-
- if (lnum == 0) {
- /*
- * This pnode was not written which just means that the LEB
- * properties in it describe empty LEBs. We make the pnode as
- * though we had read it.
- */
- int i;
-
- if (c->big_lpt)
- pnode->num = calc_pnode_num_from_parent(c, parent, iip);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- struct ubifs_lprops * const lprops = &pnode->lprops[i];
-
- lprops->free = c->leb_size;
- lprops->flags = ubifs_categorize_lprops(c, lprops);
- }
- } else {
- err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
- if (err)
- goto out;
- err = unpack_pnode(c, buf, pnode);
- if (err)
- goto out;
- }
- err = validate_pnode(c, pnode, parent, iip);
- if (err)
- goto out;
- if (!c->big_lpt)
- pnode->num = calc_pnode_num_from_parent(c, parent, iip);
- branch->pnode = pnode;
- pnode->parent = parent;
- pnode->iip = iip;
- set_pnode_lnum(c, pnode);
- c->pnodes_have += 1;
- return 0;
-
-out:
- ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
- dbg_dump_pnode(c, pnode, parent, iip);
- dbg_dump_stack();
- dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
- kfree(pnode);
- return err;
-}
-
-/**
- * read_ltab - read LPT's own lprops table.
- * @c: UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int read_ltab(struct ubifs_info *c)
-{
- int err;
- void *buf;
-
- buf = vmalloc(c->ltab_sz);
- if (!buf)
- return -ENOMEM;
- err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
- if (err)
- goto out;
- err = unpack_ltab(c, buf);
-out:
- vfree(buf);
- return err;
-}
-
-/**
- * read_lsave - read LPT's save table.
- * @c: UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int read_lsave(struct ubifs_info *c)
-{
- int err, i;
- void *buf;
-
- buf = vmalloc(c->lsave_sz);
- if (!buf)
- return -ENOMEM;
- err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
- c->lsave_sz, 1);
- if (err)
- goto out;
- err = unpack_lsave(c, buf);
- if (err)
- goto out;
- for (i = 0; i < c->lsave_cnt; i++) {
- int lnum = c->lsave[i];
- struct ubifs_lprops *lprops;
-
- /*
- * Due to automatic resizing, the values in the lsave table
- * could be beyond the volume size - just ignore them.
- */
- if (lnum >= c->leb_cnt)
- continue;
- lprops = ubifs_lpt_lookup(c, lnum);
- if (IS_ERR(lprops)) {
- err = PTR_ERR(lprops);
- goto out;
- }
- }
-out:
- vfree(buf);
- return err;
-}
-
-/**
- * ubifs_get_nnode - get a nnode.
- * @c: UBIFS file-system description object
- * @parent: parent nnode (or NULL for the root)
- * @iip: index in parent
- *
- * This function returns a pointer to the nnode on success or a negative error
- * code on failure.
- */
-struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
- struct ubifs_nnode *parent, int iip)
-{
- struct ubifs_nbranch *branch;
- struct ubifs_nnode *nnode;
- int err;
-
- branch = &parent->nbranch[iip];
- nnode = branch->nnode;
- if (nnode)
- return nnode;
- err = ubifs_read_nnode(c, parent, iip);
- if (err)
- return ERR_PTR(err);
- return branch->nnode;
-}
-
-/**
- * ubifs_get_pnode - get a pnode.
- * @c: UBIFS file-system description object
- * @parent: parent nnode
- * @iip: index in parent
- *
- * This function returns a pointer to the pnode on success or a negative error
- * code on failure.
- */
-struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
- struct ubifs_nnode *parent, int iip)
-{
- struct ubifs_nbranch *branch;
- struct ubifs_pnode *pnode;
- int err;
-
- branch = &parent->nbranch[iip];
- pnode = branch->pnode;
- if (pnode)
- return pnode;
- err = read_pnode(c, parent, iip);
- if (err)
- return ERR_PTR(err);
- update_cats(c, branch->pnode);
- return branch->pnode;
-}
-
-/**
- * ubifs_lpt_lookup - lookup LEB properties in the LPT.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to lookup
- *
- * This function returns a pointer to the LEB properties on success or a
- * negative error code on failure.
- */
-struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
-{
- int err, i, h, iip, shft;
- struct ubifs_nnode *nnode;
- struct ubifs_pnode *pnode;
-
- if (!c->nroot) {
- err = ubifs_read_nnode(c, NULL, 0);
- if (err)
- return ERR_PTR(err);
- }
- nnode = c->nroot;
- i = lnum - c->main_first;
- shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
- for (h = 1; h < c->lpt_hght; h++) {
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- shft -= UBIFS_LPT_FANOUT_SHIFT;
- nnode = ubifs_get_nnode(c, nnode, iip);
- if (IS_ERR(nnode))
- return ERR_CAST(nnode);
- }
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- shft -= UBIFS_LPT_FANOUT_SHIFT;
- pnode = ubifs_get_pnode(c, nnode, iip);
- if (IS_ERR(pnode))
- return ERR_CAST(pnode);
- iip = (i & (UBIFS_LPT_FANOUT - 1));
- dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
- pnode->lprops[iip].free, pnode->lprops[iip].dirty,
- pnode->lprops[iip].flags);
- return &pnode->lprops[iip];
-}
-
-/**
- * dirty_cow_nnode - ensure a nnode is not being committed.
- * @c: UBIFS file-system description object
- * @nnode: nnode to check
- *
- * Returns dirtied nnode on success or negative error code on failure.
- */
-static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
- struct ubifs_nnode *nnode)
-{
- struct ubifs_nnode *n;
- int i;
-
- if (!test_bit(COW_CNODE, &nnode->flags)) {
- /* nnode is not being committed */
- if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
- c->dirty_nn_cnt += 1;
- ubifs_add_nnode_dirt(c, nnode);
- }
- return nnode;
- }
-
- /* nnode is being committed, so copy it */
- n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
- if (unlikely(!n))
- return ERR_PTR(-ENOMEM);
-
- memcpy(n, nnode, sizeof(struct ubifs_nnode));
- n->cnext = NULL;
- __set_bit(DIRTY_CNODE, &n->flags);
- __clear_bit(COW_CNODE, &n->flags);
-
- /* The children now have new parent */
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- struct ubifs_nbranch *branch = &n->nbranch[i];
-
- if (branch->cnode)
- branch->cnode->parent = n;
- }
-
- ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
- __set_bit(OBSOLETE_CNODE, &nnode->flags);
-
- c->dirty_nn_cnt += 1;
- ubifs_add_nnode_dirt(c, nnode);
- if (nnode->parent)
- nnode->parent->nbranch[n->iip].nnode = n;
- else
- c->nroot = n;
- return n;
-}
-
-/**
- * dirty_cow_pnode - ensure a pnode is not being committed.
- * @c: UBIFS file-system description object
- * @pnode: pnode to check
- *
- * Returns dirtied pnode on success or negative error code on failure.
- */
-static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
- struct ubifs_pnode *pnode)
-{
- struct ubifs_pnode *p;
-
- if (!test_bit(COW_CNODE, &pnode->flags)) {
- /* pnode is not being committed */
- if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
- c->dirty_pn_cnt += 1;
- add_pnode_dirt(c, pnode);
- }
- return pnode;
- }
-
- /* pnode is being committed, so copy it */
- p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
- if (unlikely(!p))
- return ERR_PTR(-ENOMEM);
-
- memcpy(p, pnode, sizeof(struct ubifs_pnode));
- p->cnext = NULL;
- __set_bit(DIRTY_CNODE, &p->flags);
- __clear_bit(COW_CNODE, &p->flags);
- replace_cats(c, pnode, p);
-
- ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
- __set_bit(OBSOLETE_CNODE, &pnode->flags);
-
- c->dirty_pn_cnt += 1;
- add_pnode_dirt(c, pnode);
- pnode->parent->nbranch[p->iip].pnode = p;
- return p;
-}
-
-/**
- * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to lookup
- *
- * This function returns a pointer to the LEB properties on success or a
- * negative error code on failure.
- */
-struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
-{
- int err, i, h, iip, shft;
- struct ubifs_nnode *nnode;
- struct ubifs_pnode *pnode;
-
- if (!c->nroot) {
- err = ubifs_read_nnode(c, NULL, 0);
- if (err)
- return ERR_PTR(err);
- }
- nnode = c->nroot;
- nnode = dirty_cow_nnode(c, nnode);
- if (IS_ERR(nnode))
- return ERR_CAST(nnode);
- i = lnum - c->main_first;
- shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
- for (h = 1; h < c->lpt_hght; h++) {
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- shft -= UBIFS_LPT_FANOUT_SHIFT;
- nnode = ubifs_get_nnode(c, nnode, iip);
- if (IS_ERR(nnode))
- return ERR_CAST(nnode);
- nnode = dirty_cow_nnode(c, nnode);
- if (IS_ERR(nnode))
- return ERR_CAST(nnode);
- }
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- shft -= UBIFS_LPT_FANOUT_SHIFT;
- pnode = ubifs_get_pnode(c, nnode, iip);
- if (IS_ERR(pnode))
- return ERR_CAST(pnode);
- pnode = dirty_cow_pnode(c, pnode);
- if (IS_ERR(pnode))
- return ERR_CAST(pnode);
- iip = (i & (UBIFS_LPT_FANOUT - 1));
- dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
- pnode->lprops[iip].free, pnode->lprops[iip].dirty,
- pnode->lprops[iip].flags);
- ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
- return &pnode->lprops[iip];
-}
-
-/**
- * lpt_init_rd - initialize the LPT for reading.
- * @c: UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int lpt_init_rd(struct ubifs_info *c)
-{
- int err, i;
-
- c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
- if (!c->ltab)
- return -ENOMEM;
-
- i = max_t(int, c->nnode_sz, c->pnode_sz);
- c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
- if (!c->lpt_nod_buf)
- return -ENOMEM;
-
- for (i = 0; i < LPROPS_HEAP_CNT; i++) {
- c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
- GFP_KERNEL);
- if (!c->lpt_heap[i].arr)
- return -ENOMEM;
- c->lpt_heap[i].cnt = 0;
- c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
- }
-
- c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
- if (!c->dirty_idx.arr)
- return -ENOMEM;
- c->dirty_idx.cnt = 0;
- c->dirty_idx.max_cnt = LPT_HEAP_SZ;
-
- err = read_ltab(c);
- if (err)
- return err;
-
- dbg_lp("space_bits %d", c->space_bits);
- dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
- dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
- dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
- dbg_lp("pcnt_bits %d", c->pcnt_bits);
- dbg_lp("lnum_bits %d", c->lnum_bits);
- dbg_lp("pnode_sz %d", c->pnode_sz);
- dbg_lp("nnode_sz %d", c->nnode_sz);
- dbg_lp("ltab_sz %d", c->ltab_sz);
- dbg_lp("lsave_sz %d", c->lsave_sz);
- dbg_lp("lsave_cnt %d", c->lsave_cnt);
- dbg_lp("lpt_hght %d", c->lpt_hght);
- dbg_lp("big_lpt %d", c->big_lpt);
- dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
- dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
- dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
- if (c->big_lpt)
- dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
-
- return 0;
-}
-
-/**
- * lpt_init_wr - initialize the LPT for writing.
- * @c: UBIFS file-system description object
- *
- * 'lpt_init_rd()' must have been called already.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int lpt_init_wr(struct ubifs_info *c)
-{
- int err, i;
-
- c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
- if (!c->ltab_cmt)
- return -ENOMEM;
-
- c->lpt_buf = vmalloc(c->leb_size);
- if (!c->lpt_buf)
- return -ENOMEM;
-
- if (c->big_lpt) {
- c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
- if (!c->lsave)
- return -ENOMEM;
- err = read_lsave(c);
- if (err)
- return err;
- }
-
- for (i = 0; i < c->lpt_lebs; i++)
- if (c->ltab[i].free == c->leb_size) {
- err = ubifs_leb_unmap(c, i + c->lpt_first);
- if (err)
- return err;
- }
-
- return 0;
-}
-
-/**
- * ubifs_lpt_init - initialize the LPT.
- * @c: UBIFS file-system description object
- * @rd: whether to initialize lpt for reading
- * @wr: whether to initialize lpt for writing
- *
- * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
- * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
- * true.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
-{
- int err;
-
- if (rd) {
- err = lpt_init_rd(c);
- if (err)
- return err;
- }
-
- if (wr) {
- err = lpt_init_wr(c);
- if (err)
- return err;
- }
-
- return 0;
-}
-
-/**
- * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
- * @nnode: where to keep a nnode
- * @pnode: where to keep a pnode
- * @cnode: where to keep a cnode
- * @in_tree: is the node in the tree in memory
- * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
- * the tree
- * @ptr.pnode: ditto for pnode
- * @ptr.cnode: ditto for cnode
- */
-struct lpt_scan_node {
- union {
- struct ubifs_nnode nnode;
- struct ubifs_pnode pnode;
- struct ubifs_cnode cnode;
- };
- int in_tree;
- union {
- struct ubifs_nnode *nnode;
- struct ubifs_pnode *pnode;
- struct ubifs_cnode *cnode;
- } ptr;
-};
-
-/**
- * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
- * @c: the UBIFS file-system description object
- * @path: where to put the nnode
- * @parent: parent of the nnode
- * @iip: index in parent of the nnode
- *
- * This function returns a pointer to the nnode on success or a negative error
- * code on failure.
- */
-static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
- struct lpt_scan_node *path,
- struct ubifs_nnode *parent, int iip)
-{
- struct ubifs_nbranch *branch;
- struct ubifs_nnode *nnode;
- void *buf = c->lpt_nod_buf;
- int err;
-
- branch = &parent->nbranch[iip];
- nnode = branch->nnode;
- if (nnode) {
- path->in_tree = 1;
- path->ptr.nnode = nnode;
- return nnode;
- }
- nnode = &path->nnode;
- path->in_tree = 0;
- path->ptr.nnode = nnode;
- memset(nnode, 0, sizeof(struct ubifs_nnode));
- if (branch->lnum == 0) {
- /*
- * This nnode was not written which just means that the LEB
- * properties in the subtree below it describe empty LEBs. We
- * make the nnode as though we had read it, which in fact means
- * doing almost nothing.
- */
- if (c->big_lpt)
- nnode->num = calc_nnode_num_from_parent(c, parent, iip);
- } else {
- err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
- c->nnode_sz, 1);
- if (err)
- return ERR_PTR(err);
- err = ubifs_unpack_nnode(c, buf, nnode);
- if (err)
- return ERR_PTR(err);
- }
- err = validate_nnode(c, nnode, parent, iip);
- if (err)
- return ERR_PTR(err);
- if (!c->big_lpt)
- nnode->num = calc_nnode_num_from_parent(c, parent, iip);
- nnode->level = parent->level - 1;
- nnode->parent = parent;
- nnode->iip = iip;
- return nnode;
-}
-
-/**
- * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
- * @c: the UBIFS file-system description object
- * @path: where to put the pnode
- * @parent: parent of the pnode
- * @iip: index in parent of the pnode
- *
- * This function returns a pointer to the pnode on success or a negative error
- * code on failure.
- */
-static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
- struct lpt_scan_node *path,
- struct ubifs_nnode *parent, int iip)
-{
- struct ubifs_nbranch *branch;
- struct ubifs_pnode *pnode;
- void *buf = c->lpt_nod_buf;
- int err;
-
- branch = &parent->nbranch[iip];
- pnode = branch->pnode;
- if (pnode) {
- path->in_tree = 1;
- path->ptr.pnode = pnode;
- return pnode;
- }
- pnode = &path->pnode;
- path->in_tree = 0;
- path->ptr.pnode = pnode;
- memset(pnode, 0, sizeof(struct ubifs_pnode));
- if (branch->lnum == 0) {
- /*
- * This pnode was not written which just means that the LEB
- * properties in it describe empty LEBs. We make the pnode as
- * though we had read it.
- */
- int i;
-
- if (c->big_lpt)
- pnode->num = calc_pnode_num_from_parent(c, parent, iip);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- struct ubifs_lprops * const lprops = &pnode->lprops[i];
-
- lprops->free = c->leb_size;
- lprops->flags = ubifs_categorize_lprops(c, lprops);
- }
- } else {
- ubifs_assert(branch->lnum >= c->lpt_first &&
- branch->lnum <= c->lpt_last);
- ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
- err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
- c->pnode_sz, 1);
- if (err)
- return ERR_PTR(err);
- err = unpack_pnode(c, buf, pnode);
- if (err)
- return ERR_PTR(err);
- }
- err = validate_pnode(c, pnode, parent, iip);
- if (err)
- return ERR_PTR(err);
- if (!c->big_lpt)
- pnode->num = calc_pnode_num_from_parent(c, parent, iip);
- pnode->parent = parent;
- pnode->iip = iip;
- set_pnode_lnum(c, pnode);
- return pnode;
-}
-
-/**
- * ubifs_lpt_scan_nolock - scan the LPT.
- * @c: the UBIFS file-system description object
- * @start_lnum: LEB number from which to start scanning
- * @end_lnum: LEB number at which to stop scanning
- * @scan_cb: callback function called for each lprops
- * @data: data to be passed to the callback function
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
- ubifs_lpt_scan_callback scan_cb, void *data)
-{
- int err = 0, i, h, iip, shft;
- struct ubifs_nnode *nnode;
- struct ubifs_pnode *pnode;
- struct lpt_scan_node *path;
-
- if (start_lnum == -1) {
- start_lnum = end_lnum + 1;
- if (start_lnum >= c->leb_cnt)
- start_lnum = c->main_first;
- }
-
- ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
- ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
-
- if (!c->nroot) {
- err = ubifs_read_nnode(c, NULL, 0);
- if (err)
- return err;
- }
-
- path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
- GFP_NOFS);
- if (!path)
- return -ENOMEM;
-
- path[0].ptr.nnode = c->nroot;
- path[0].in_tree = 1;
-again:
- /* Descend to the pnode containing start_lnum */
- nnode = c->nroot;
- i = start_lnum - c->main_first;
- shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
- for (h = 1; h < c->lpt_hght; h++) {
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- shft -= UBIFS_LPT_FANOUT_SHIFT;
- nnode = scan_get_nnode(c, path + h, nnode, iip);
- if (IS_ERR(nnode)) {
- err = PTR_ERR(nnode);
- goto out;
- }
- }
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- shft -= UBIFS_LPT_FANOUT_SHIFT;
- pnode = scan_get_pnode(c, path + h, nnode, iip);
- if (IS_ERR(pnode)) {
- err = PTR_ERR(pnode);
- goto out;
- }
- iip = (i & (UBIFS_LPT_FANOUT - 1));
-
- /* Loop for each lprops */
- while (1) {
- struct ubifs_lprops *lprops = &pnode->lprops[iip];
- int ret, lnum = lprops->lnum;
-
- ret = scan_cb(c, lprops, path[h].in_tree, data);
- if (ret < 0) {
- err = ret;
- goto out;
- }
- if (ret & LPT_SCAN_ADD) {
- /* Add all the nodes in path to the tree in memory */
- for (h = 1; h < c->lpt_hght; h++) {
- const size_t sz = sizeof(struct ubifs_nnode);
- struct ubifs_nnode *parent;
-
- if (path[h].in_tree)
- continue;
- nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
- if (!nnode) {
- err = -ENOMEM;
- goto out;
- }
- parent = nnode->parent;
- parent->nbranch[nnode->iip].nnode = nnode;
- path[h].ptr.nnode = nnode;
- path[h].in_tree = 1;
- path[h + 1].cnode.parent = nnode;
- }
- if (path[h].in_tree)
- ubifs_ensure_cat(c, lprops);
- else {
- const size_t sz = sizeof(struct ubifs_pnode);
- struct ubifs_nnode *parent;
-
- pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
- if (!pnode) {
- err = -ENOMEM;
- goto out;
- }
- parent = pnode->parent;
- parent->nbranch[pnode->iip].pnode = pnode;
- path[h].ptr.pnode = pnode;
- path[h].in_tree = 1;
- update_cats(c, pnode);
- c->pnodes_have += 1;
- }
- err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
- c->nroot, 0, 0);
- if (err)
- goto out;
- err = dbg_check_cats(c);
- if (err)
- goto out;
- }
- if (ret & LPT_SCAN_STOP) {
- err = 0;
- break;
- }
- /* Get the next lprops */
- if (lnum == end_lnum) {
- /*
- * We got to the end without finding what we were
- * looking for
- */
- err = -ENOSPC;
- goto out;
- }
- if (lnum + 1 >= c->leb_cnt) {
- /* Wrap-around to the beginning */
- start_lnum = c->main_first;
- goto again;
- }
- if (iip + 1 < UBIFS_LPT_FANOUT) {
- /* Next lprops is in the same pnode */
- iip += 1;
- continue;
- }
- /* We need to get the next pnode. Go up until we can go right */
- iip = pnode->iip;
- while (1) {
- h -= 1;
- ubifs_assert(h >= 0);
- nnode = path[h].ptr.nnode;
- if (iip + 1 < UBIFS_LPT_FANOUT)
- break;
- iip = nnode->iip;
- }
- /* Go right */
- iip += 1;
- /* Descend to the pnode */
- h += 1;
- for (; h < c->lpt_hght; h++) {
- nnode = scan_get_nnode(c, path + h, nnode, iip);
- if (IS_ERR(nnode)) {
- err = PTR_ERR(nnode);
- goto out;
- }
- iip = 0;
- }
- pnode = scan_get_pnode(c, path + h, nnode, iip);
- if (IS_ERR(pnode)) {
- err = PTR_ERR(pnode);
- goto out;
- }
- iip = 0;
- }
-out:
- kfree(path);
- return err;
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-/**
- * dbg_chk_pnode - check a pnode.
- * @c: the UBIFS file-system description object
- * @pnode: pnode to check
- * @col: pnode column
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
- int col)
-{
- int i;
-
- if (pnode->num != col) {
- dbg_err("pnode num %d expected %d parent num %d iip %d",
- pnode->num, col, pnode->parent->num, pnode->iip);
- return -EINVAL;
- }
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
- int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
- c->main_first;
- int found, cat = lprops->flags & LPROPS_CAT_MASK;
- struct ubifs_lpt_heap *heap;
- struct list_head *list = NULL;
-
- if (lnum >= c->leb_cnt)
- continue;
- if (lprops->lnum != lnum) {
- dbg_err("bad LEB number %d expected %d",
- lprops->lnum, lnum);
- return -EINVAL;
- }
- if (lprops->flags & LPROPS_TAKEN) {
- if (cat != LPROPS_UNCAT) {
- dbg_err("LEB %d taken but not uncat %d",
- lprops->lnum, cat);
- return -EINVAL;
- }
- continue;
- }
- if (lprops->flags & LPROPS_INDEX) {
- switch (cat) {
- case LPROPS_UNCAT:
- case LPROPS_DIRTY_IDX:
- case LPROPS_FRDI_IDX:
- break;
- default:
- dbg_err("LEB %d index but cat %d",
- lprops->lnum, cat);
- return -EINVAL;
- }
- } else {
- switch (cat) {
- case LPROPS_UNCAT:
- case LPROPS_DIRTY:
- case LPROPS_FREE:
- case LPROPS_EMPTY:
- case LPROPS_FREEABLE:
- break;
- default:
- dbg_err("LEB %d not index but cat %d",
- lprops->lnum, cat);
- return -EINVAL;
- }
- }
- switch (cat) {
- case LPROPS_UNCAT:
- list = &c->uncat_list;
- break;
- case LPROPS_EMPTY:
- list = &c->empty_list;
- break;
- case LPROPS_FREEABLE:
- list = &c->freeable_list;
- break;
- case LPROPS_FRDI_IDX:
- list = &c->frdi_idx_list;
- break;
- }
- found = 0;
- switch (cat) {
- case LPROPS_DIRTY:
- case LPROPS_DIRTY_IDX:
- case LPROPS_FREE:
- heap = &c->lpt_heap[cat - 1];
- if (lprops->hpos < heap->cnt &&
- heap->arr[lprops->hpos] == lprops)
- found = 1;
- break;
- case LPROPS_UNCAT:
- case LPROPS_EMPTY:
- case LPROPS_FREEABLE:
- case LPROPS_FRDI_IDX:
- list_for_each_entry(lp, list, list)
- if (lprops == lp) {
- found = 1;
- break;
- }
- break;
- }
- if (!found) {
- dbg_err("LEB %d cat %d not found in cat heap/list",
- lprops->lnum, cat);
- return -EINVAL;
- }
- switch (cat) {
- case LPROPS_EMPTY:
- if (lprops->free != c->leb_size) {
- dbg_err("LEB %d cat %d free %d dirty %d",
- lprops->lnum, cat, lprops->free,
- lprops->dirty);
- return -EINVAL;
- }
- case LPROPS_FREEABLE:
- case LPROPS_FRDI_IDX:
- if (lprops->free + lprops->dirty != c->leb_size) {
- dbg_err("LEB %d cat %d free %d dirty %d",
- lprops->lnum, cat, lprops->free,
- lprops->dirty);
- return -EINVAL;
- }
- }
- }
- return 0;
-}
-
-/**
- * dbg_check_lpt_nodes - check nnodes and pnodes.
- * @c: the UBIFS file-system description object
- * @cnode: next cnode (nnode or pnode) to check
- * @row: row of cnode (root is zero)
- * @col: column of cnode (leftmost is zero)
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
- int row, int col)
-{
- struct ubifs_nnode *nnode, *nn;
- struct ubifs_cnode *cn;
- int num, iip = 0, err;
-
- if (!dbg_is_chk_lprops(c))
- return 0;
-
- while (cnode) {
- ubifs_assert(row >= 0);
- nnode = cnode->parent;
- if (cnode->level) {
- /* cnode is a nnode */
- num = calc_nnode_num(row, col);
- if (cnode->num != num) {
- dbg_err("nnode num %d expected %d "
- "parent num %d iip %d", cnode->num, num,
- (nnode ? nnode->num : 0), cnode->iip);
- return -EINVAL;
- }
- nn = (struct ubifs_nnode *)cnode;
- while (iip < UBIFS_LPT_FANOUT) {
- cn = nn->nbranch[iip].cnode;
- if (cn) {
- /* Go down */
- row += 1;
- col <<= UBIFS_LPT_FANOUT_SHIFT;
- col += iip;
- iip = 0;
- cnode = cn;
- break;
- }
- /* Go right */
- iip += 1;
- }
- if (iip < UBIFS_LPT_FANOUT)
- continue;
- } else {
- struct ubifs_pnode *pnode;
-
- /* cnode is a pnode */
- pnode = (struct ubifs_pnode *)cnode;
- err = dbg_chk_pnode(c, pnode, col);
- if (err)
- return err;
- }
- /* Go up and to the right */
- row -= 1;
- col >>= UBIFS_LPT_FANOUT_SHIFT;
- iip = cnode->iip + 1;
- cnode = (struct ubifs_cnode *)nnode;
- }
- return 0;
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/lpt_commit.c b/ANDROID_3.4.5/fs/ubifs/lpt_commit.c
deleted file mode 100644
index cddd6bd2..00000000
--- a/ANDROID_3.4.5/fs/ubifs/lpt_commit.c
+++ /dev/null
@@ -1,2050 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements commit-related functionality of the LEB properties
- * subsystem.
- */
-
-#include <linux/crc16.h>
-#include <linux/slab.h>
-#include <linux/random.h>
-#include "ubifs.h"
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-static int dbg_populate_lsave(struct ubifs_info *c);
-#else
-#define dbg_populate_lsave(c) 0
-#endif
-
-/**
- * first_dirty_cnode - find first dirty cnode.
- * @c: UBIFS file-system description object
- * @nnode: nnode at which to start
- *
- * This function returns the first dirty cnode or %NULL if there is not one.
- */
-static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
-{
- ubifs_assert(nnode);
- while (1) {
- int i, cont = 0;
-
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- struct ubifs_cnode *cnode;
-
- cnode = nnode->nbranch[i].cnode;
- if (cnode &&
- test_bit(DIRTY_CNODE, &cnode->flags)) {
- if (cnode->level == 0)
- return cnode;
- nnode = (struct ubifs_nnode *)cnode;
- cont = 1;
- break;
- }
- }
- if (!cont)
- return (struct ubifs_cnode *)nnode;
- }
-}
-
-/**
- * next_dirty_cnode - find next dirty cnode.
- * @cnode: cnode from which to begin searching
- *
- * This function returns the next dirty cnode or %NULL if there is not one.
- */
-static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
-{
- struct ubifs_nnode *nnode;
- int i;
-
- ubifs_assert(cnode);
- nnode = cnode->parent;
- if (!nnode)
- return NULL;
- for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
- cnode = nnode->nbranch[i].cnode;
- if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
- if (cnode->level == 0)
- return cnode; /* cnode is a pnode */
- /* cnode is a nnode */
- return first_dirty_cnode((struct ubifs_nnode *)cnode);
- }
- }
- return (struct ubifs_cnode *)nnode;
-}
-
-/**
- * get_cnodes_to_commit - create list of dirty cnodes to commit.
- * @c: UBIFS file-system description object
- *
- * This function returns the number of cnodes to commit.
- */
-static int get_cnodes_to_commit(struct ubifs_info *c)
-{
- struct ubifs_cnode *cnode, *cnext;
- int cnt = 0;
-
- if (!c->nroot)
- return 0;
-
- if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
- return 0;
-
- c->lpt_cnext = first_dirty_cnode(c->nroot);
- cnode = c->lpt_cnext;
- if (!cnode)
- return 0;
- cnt += 1;
- while (1) {
- ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
- __set_bit(COW_CNODE, &cnode->flags);
- cnext = next_dirty_cnode(cnode);
- if (!cnext) {
- cnode->cnext = c->lpt_cnext;
- break;
- }
- cnode->cnext = cnext;
- cnode = cnext;
- cnt += 1;
- }
- dbg_cmt("committing %d cnodes", cnt);
- dbg_lp("committing %d cnodes", cnt);
- ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
- return cnt;
-}
-
-/**
- * upd_ltab - update LPT LEB properties.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @free: amount of free space
- * @dirty: amount of dirty space to add
- */
-static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
-{
- dbg_lp("LEB %d free %d dirty %d to %d +%d",
- lnum, c->ltab[lnum - c->lpt_first].free,
- c->ltab[lnum - c->lpt_first].dirty, free, dirty);
- ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
- c->ltab[lnum - c->lpt_first].free = free;
- c->ltab[lnum - c->lpt_first].dirty += dirty;
-}
-
-/**
- * alloc_lpt_leb - allocate an LPT LEB that is empty.
- * @c: UBIFS file-system description object
- * @lnum: LEB number is passed and returned here
- *
- * This function finds the next empty LEB in the ltab starting from @lnum. If a
- * an empty LEB is found it is returned in @lnum and the function returns %0.
- * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
- * never to run out of space.
- */
-static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
-{
- int i, n;
-
- n = *lnum - c->lpt_first + 1;
- for (i = n; i < c->lpt_lebs; i++) {
- if (c->ltab[i].tgc || c->ltab[i].cmt)
- continue;
- if (c->ltab[i].free == c->leb_size) {
- c->ltab[i].cmt = 1;
- *lnum = i + c->lpt_first;
- return 0;
- }
- }
-
- for (i = 0; i < n; i++) {
- if (c->ltab[i].tgc || c->ltab[i].cmt)
- continue;
- if (c->ltab[i].free == c->leb_size) {
- c->ltab[i].cmt = 1;
- *lnum = i + c->lpt_first;
- return 0;
- }
- }
- return -ENOSPC;
-}
-
-/**
- * layout_cnodes - layout cnodes for commit.
- * @c: UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int layout_cnodes(struct ubifs_info *c)
-{
- int lnum, offs, len, alen, done_lsave, done_ltab, err;
- struct ubifs_cnode *cnode;
-
- err = dbg_chk_lpt_sz(c, 0, 0);
- if (err)
- return err;
- cnode = c->lpt_cnext;
- if (!cnode)
- return 0;
- lnum = c->nhead_lnum;
- offs = c->nhead_offs;
- /* Try to place lsave and ltab nicely */
- done_lsave = !c->big_lpt;
- done_ltab = 0;
- if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
- done_lsave = 1;
- c->lsave_lnum = lnum;
- c->lsave_offs = offs;
- offs += c->lsave_sz;
- dbg_chk_lpt_sz(c, 1, c->lsave_sz);
- }
-
- if (offs + c->ltab_sz <= c->leb_size) {
- done_ltab = 1;
- c->ltab_lnum = lnum;
- c->ltab_offs = offs;
- offs += c->ltab_sz;
- dbg_chk_lpt_sz(c, 1, c->ltab_sz);
- }
-
- do {
- if (cnode->level) {
- len = c->nnode_sz;
- c->dirty_nn_cnt -= 1;
- } else {
- len = c->pnode_sz;
- c->dirty_pn_cnt -= 1;
- }
- while (offs + len > c->leb_size) {
- alen = ALIGN(offs, c->min_io_size);
- upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
- dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
- err = alloc_lpt_leb(c, &lnum);
- if (err)
- goto no_space;
- offs = 0;
- ubifs_assert(lnum >= c->lpt_first &&
- lnum <= c->lpt_last);
- /* Try to place lsave and ltab nicely */
- if (!done_lsave) {
- done_lsave = 1;
- c->lsave_lnum = lnum;
- c->lsave_offs = offs;
- offs += c->lsave_sz;
- dbg_chk_lpt_sz(c, 1, c->lsave_sz);
- continue;
- }
- if (!done_ltab) {
- done_ltab = 1;
- c->ltab_lnum = lnum;
- c->ltab_offs = offs;
- offs += c->ltab_sz;
- dbg_chk_lpt_sz(c, 1, c->ltab_sz);
- continue;
- }
- break;
- }
- if (cnode->parent) {
- cnode->parent->nbranch[cnode->iip].lnum = lnum;
- cnode->parent->nbranch[cnode->iip].offs = offs;
- } else {
- c->lpt_lnum = lnum;
- c->lpt_offs = offs;
- }
- offs += len;
- dbg_chk_lpt_sz(c, 1, len);
- cnode = cnode->cnext;
- } while (cnode && cnode != c->lpt_cnext);
-
- /* Make sure to place LPT's save table */
- if (!done_lsave) {
- if (offs + c->lsave_sz > c->leb_size) {
- alen = ALIGN(offs, c->min_io_size);
- upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
- dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
- err = alloc_lpt_leb(c, &lnum);
- if (err)
- goto no_space;
- offs = 0;
- ubifs_assert(lnum >= c->lpt_first &&
- lnum <= c->lpt_last);
- }
- done_lsave = 1;
- c->lsave_lnum = lnum;
- c->lsave_offs = offs;
- offs += c->lsave_sz;
- dbg_chk_lpt_sz(c, 1, c->lsave_sz);
- }
-
- /* Make sure to place LPT's own lprops table */
- if (!done_ltab) {
- if (offs + c->ltab_sz > c->leb_size) {
- alen = ALIGN(offs, c->min_io_size);
- upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
- dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
- err = alloc_lpt_leb(c, &lnum);
- if (err)
- goto no_space;
- offs = 0;
- ubifs_assert(lnum >= c->lpt_first &&
- lnum <= c->lpt_last);
- }
- done_ltab = 1;
- c->ltab_lnum = lnum;
- c->ltab_offs = offs;
- offs += c->ltab_sz;
- dbg_chk_lpt_sz(c, 1, c->ltab_sz);
- }
-
- alen = ALIGN(offs, c->min_io_size);
- upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
- dbg_chk_lpt_sz(c, 4, alen - offs);
- err = dbg_chk_lpt_sz(c, 3, alen);
- if (err)
- return err;
- return 0;
-
-no_space:
- ubifs_err("LPT out of space");
- dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
- "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
- dbg_dump_lpt_info(c);
- dbg_dump_lpt_lebs(c);
- dump_stack();
- return err;
-}
-
-/**
- * realloc_lpt_leb - allocate an LPT LEB that is empty.
- * @c: UBIFS file-system description object
- * @lnum: LEB number is passed and returned here
- *
- * This function duplicates exactly the results of the function alloc_lpt_leb.
- * It is used during end commit to reallocate the same LEB numbers that were
- * allocated by alloc_lpt_leb during start commit.
- *
- * This function finds the next LEB that was allocated by the alloc_lpt_leb
- * function starting from @lnum. If a LEB is found it is returned in @lnum and
- * the function returns %0. Otherwise the function returns -ENOSPC.
- * Note however, that LPT is designed never to run out of space.
- */
-static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
-{
- int i, n;
-
- n = *lnum - c->lpt_first + 1;
- for (i = n; i < c->lpt_lebs; i++)
- if (c->ltab[i].cmt) {
- c->ltab[i].cmt = 0;
- *lnum = i + c->lpt_first;
- return 0;
- }
-
- for (i = 0; i < n; i++)
- if (c->ltab[i].cmt) {
- c->ltab[i].cmt = 0;
- *lnum = i + c->lpt_first;
- return 0;
- }
- return -ENOSPC;
-}
-
-/**
- * write_cnodes - write cnodes for commit.
- * @c: UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int write_cnodes(struct ubifs_info *c)
-{
- int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
- struct ubifs_cnode *cnode;
- void *buf = c->lpt_buf;
-
- cnode = c->lpt_cnext;
- if (!cnode)
- return 0;
- lnum = c->nhead_lnum;
- offs = c->nhead_offs;
- from = offs;
- /* Ensure empty LEB is unmapped */
- if (offs == 0) {
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- }
- /* Try to place lsave and ltab nicely */
- done_lsave = !c->big_lpt;
- done_ltab = 0;
- if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
- done_lsave = 1;
- ubifs_pack_lsave(c, buf + offs, c->lsave);
- offs += c->lsave_sz;
- dbg_chk_lpt_sz(c, 1, c->lsave_sz);
- }
-
- if (offs + c->ltab_sz <= c->leb_size) {
- done_ltab = 1;
- ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
- offs += c->ltab_sz;
- dbg_chk_lpt_sz(c, 1, c->ltab_sz);
- }
-
- /* Loop for each cnode */
- do {
- if (cnode->level)
- len = c->nnode_sz;
- else
- len = c->pnode_sz;
- while (offs + len > c->leb_size) {
- wlen = offs - from;
- if (wlen) {
- alen = ALIGN(wlen, c->min_io_size);
- memset(buf + offs, 0xff, alen - wlen);
- err = ubifs_leb_write(c, lnum, buf + from, from,
- alen, UBI_SHORTTERM);
- if (err)
- return err;
- }
- dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
- err = realloc_lpt_leb(c, &lnum);
- if (err)
- goto no_space;
- offs = from = 0;
- ubifs_assert(lnum >= c->lpt_first &&
- lnum <= c->lpt_last);
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- /* Try to place lsave and ltab nicely */
- if (!done_lsave) {
- done_lsave = 1;
- ubifs_pack_lsave(c, buf + offs, c->lsave);
- offs += c->lsave_sz;
- dbg_chk_lpt_sz(c, 1, c->lsave_sz);
- continue;
- }
- if (!done_ltab) {
- done_ltab = 1;
- ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
- offs += c->ltab_sz;
- dbg_chk_lpt_sz(c, 1, c->ltab_sz);
- continue;
- }
- break;
- }
- if (cnode->level)
- ubifs_pack_nnode(c, buf + offs,
- (struct ubifs_nnode *)cnode);
- else
- ubifs_pack_pnode(c, buf + offs,
- (struct ubifs_pnode *)cnode);
- /*
- * The reason for the barriers is the same as in case of TNC.
- * See comment in 'write_index()'. 'dirty_cow_nnode()' and
- * 'dirty_cow_pnode()' are the functions for which this is
- * important.
- */
- clear_bit(DIRTY_CNODE, &cnode->flags);
- smp_mb__before_clear_bit();
- clear_bit(COW_CNODE, &cnode->flags);
- smp_mb__after_clear_bit();
- offs += len;
- dbg_chk_lpt_sz(c, 1, len);
- cnode = cnode->cnext;
- } while (cnode && cnode != c->lpt_cnext);
-
- /* Make sure to place LPT's save table */
- if (!done_lsave) {
- if (offs + c->lsave_sz > c->leb_size) {
- wlen = offs - from;
- alen = ALIGN(wlen, c->min_io_size);
- memset(buf + offs, 0xff, alen - wlen);
- err = ubifs_leb_write(c, lnum, buf + from, from, alen,
- UBI_SHORTTERM);
- if (err)
- return err;
- dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
- err = realloc_lpt_leb(c, &lnum);
- if (err)
- goto no_space;
- offs = from = 0;
- ubifs_assert(lnum >= c->lpt_first &&
- lnum <= c->lpt_last);
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- }
- done_lsave = 1;
- ubifs_pack_lsave(c, buf + offs, c->lsave);
- offs += c->lsave_sz;
- dbg_chk_lpt_sz(c, 1, c->lsave_sz);
- }
-
- /* Make sure to place LPT's own lprops table */
- if (!done_ltab) {
- if (offs + c->ltab_sz > c->leb_size) {
- wlen = offs - from;
- alen = ALIGN(wlen, c->min_io_size);
- memset(buf + offs, 0xff, alen - wlen);
- err = ubifs_leb_write(c, lnum, buf + from, from, alen,
- UBI_SHORTTERM);
- if (err)
- return err;
- dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
- err = realloc_lpt_leb(c, &lnum);
- if (err)
- goto no_space;
- offs = from = 0;
- ubifs_assert(lnum >= c->lpt_first &&
- lnum <= c->lpt_last);
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- }
- done_ltab = 1;
- ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
- offs += c->ltab_sz;
- dbg_chk_lpt_sz(c, 1, c->ltab_sz);
- }
-
- /* Write remaining data in buffer */
- wlen = offs - from;
- alen = ALIGN(wlen, c->min_io_size);
- memset(buf + offs, 0xff, alen - wlen);
- err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
- if (err)
- return err;
-
- dbg_chk_lpt_sz(c, 4, alen - wlen);
- err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
- if (err)
- return err;
-
- c->nhead_lnum = lnum;
- c->nhead_offs = ALIGN(offs, c->min_io_size);
-
- dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
- dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
- dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
- if (c->big_lpt)
- dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
-
- return 0;
-
-no_space:
- ubifs_err("LPT out of space mismatch");
- dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
- "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
- dbg_dump_lpt_info(c);
- dbg_dump_lpt_lebs(c);
- dump_stack();
- return err;
-}
-
-/**
- * next_pnode_to_dirty - find next pnode to dirty.
- * @c: UBIFS file-system description object
- * @pnode: pnode
- *
- * This function returns the next pnode to dirty or %NULL if there are no more
- * pnodes. Note that pnodes that have never been written (lnum == 0) are
- * skipped.
- */
-static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
- struct ubifs_pnode *pnode)
-{
- struct ubifs_nnode *nnode;
- int iip;
-
- /* Try to go right */
- nnode = pnode->parent;
- for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
- if (nnode->nbranch[iip].lnum)
- return ubifs_get_pnode(c, nnode, iip);
- }
-
- /* Go up while can't go right */
- do {
- iip = nnode->iip + 1;
- nnode = nnode->parent;
- if (!nnode)
- return NULL;
- for (; iip < UBIFS_LPT_FANOUT; iip++) {
- if (nnode->nbranch[iip].lnum)
- break;
- }
- } while (iip >= UBIFS_LPT_FANOUT);
-
- /* Go right */
- nnode = ubifs_get_nnode(c, nnode, iip);
- if (IS_ERR(nnode))
- return (void *)nnode;
-
- /* Go down to level 1 */
- while (nnode->level > 1) {
- for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
- if (nnode->nbranch[iip].lnum)
- break;
- }
- if (iip >= UBIFS_LPT_FANOUT) {
- /*
- * Should not happen, but we need to keep going
- * if it does.
- */
- iip = 0;
- }
- nnode = ubifs_get_nnode(c, nnode, iip);
- if (IS_ERR(nnode))
- return (void *)nnode;
- }
-
- for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
- if (nnode->nbranch[iip].lnum)
- break;
- if (iip >= UBIFS_LPT_FANOUT)
- /* Should not happen, but we need to keep going if it does */
- iip = 0;
- return ubifs_get_pnode(c, nnode, iip);
-}
-
-/**
- * pnode_lookup - lookup a pnode in the LPT.
- * @c: UBIFS file-system description object
- * @i: pnode number (0 to main_lebs - 1)
- *
- * This function returns a pointer to the pnode on success or a negative
- * error code on failure.
- */
-static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
-{
- int err, h, iip, shft;
- struct ubifs_nnode *nnode;
-
- if (!c->nroot) {
- err = ubifs_read_nnode(c, NULL, 0);
- if (err)
- return ERR_PTR(err);
- }
- i <<= UBIFS_LPT_FANOUT_SHIFT;
- nnode = c->nroot;
- shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
- for (h = 1; h < c->lpt_hght; h++) {
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- shft -= UBIFS_LPT_FANOUT_SHIFT;
- nnode = ubifs_get_nnode(c, nnode, iip);
- if (IS_ERR(nnode))
- return ERR_CAST(nnode);
- }
- iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
- return ubifs_get_pnode(c, nnode, iip);
-}
-
-/**
- * add_pnode_dirt - add dirty space to LPT LEB properties.
- * @c: UBIFS file-system description object
- * @pnode: pnode for which to add dirt
- */
-static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
-{
- ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
- c->pnode_sz);
-}
-
-/**
- * do_make_pnode_dirty - mark a pnode dirty.
- * @c: UBIFS file-system description object
- * @pnode: pnode to mark dirty
- */
-static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
-{
- /* Assumes cnext list is empty i.e. not called during commit */
- if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
- struct ubifs_nnode *nnode;
-
- c->dirty_pn_cnt += 1;
- add_pnode_dirt(c, pnode);
- /* Mark parent and ancestors dirty too */
- nnode = pnode->parent;
- while (nnode) {
- if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
- c->dirty_nn_cnt += 1;
- ubifs_add_nnode_dirt(c, nnode);
- nnode = nnode->parent;
- } else
- break;
- }
- }
-}
-
-/**
- * make_tree_dirty - mark the entire LEB properties tree dirty.
- * @c: UBIFS file-system description object
- *
- * This function is used by the "small" LPT model to cause the entire LEB
- * properties tree to be written. The "small" LPT model does not use LPT
- * garbage collection because it is more efficient to write the entire tree
- * (because it is small).
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int make_tree_dirty(struct ubifs_info *c)
-{
- struct ubifs_pnode *pnode;
-
- pnode = pnode_lookup(c, 0);
- if (IS_ERR(pnode))
- return PTR_ERR(pnode);
-
- while (pnode) {
- do_make_pnode_dirty(c, pnode);
- pnode = next_pnode_to_dirty(c, pnode);
- if (IS_ERR(pnode))
- return PTR_ERR(pnode);
- }
- return 0;
-}
-
-/**
- * need_write_all - determine if the LPT area is running out of free space.
- * @c: UBIFS file-system description object
- *
- * This function returns %1 if the LPT area is running out of free space and %0
- * if it is not.
- */
-static int need_write_all(struct ubifs_info *c)
-{
- long long free = 0;
- int i;
-
- for (i = 0; i < c->lpt_lebs; i++) {
- if (i + c->lpt_first == c->nhead_lnum)
- free += c->leb_size - c->nhead_offs;
- else if (c->ltab[i].free == c->leb_size)
- free += c->leb_size;
- else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
- free += c->leb_size;
- }
- /* Less than twice the size left */
- if (free <= c->lpt_sz * 2)
- return 1;
- return 0;
-}
-
-/**
- * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
- * @c: UBIFS file-system description object
- *
- * LPT trivial garbage collection is where a LPT LEB contains only dirty and
- * free space and so may be reused as soon as the next commit is completed.
- * This function is called during start commit to mark LPT LEBs for trivial GC.
- */
-static void lpt_tgc_start(struct ubifs_info *c)
-{
- int i;
-
- for (i = 0; i < c->lpt_lebs; i++) {
- if (i + c->lpt_first == c->nhead_lnum)
- continue;
- if (c->ltab[i].dirty > 0 &&
- c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
- c->ltab[i].tgc = 1;
- c->ltab[i].free = c->leb_size;
- c->ltab[i].dirty = 0;
- dbg_lp("LEB %d", i + c->lpt_first);
- }
- }
-}
-
-/**
- * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
- * @c: UBIFS file-system description object
- *
- * LPT trivial garbage collection is where a LPT LEB contains only dirty and
- * free space and so may be reused as soon as the next commit is completed.
- * This function is called after the commit is completed (master node has been
- * written) and un-maps LPT LEBs that were marked for trivial GC.
- */
-static int lpt_tgc_end(struct ubifs_info *c)
-{
- int i, err;
-
- for (i = 0; i < c->lpt_lebs; i++)
- if (c->ltab[i].tgc) {
- err = ubifs_leb_unmap(c, i + c->lpt_first);
- if (err)
- return err;
- c->ltab[i].tgc = 0;
- dbg_lp("LEB %d", i + c->lpt_first);
- }
- return 0;
-}
-
-/**
- * populate_lsave - fill the lsave array with important LEB numbers.
- * @c: the UBIFS file-system description object
- *
- * This function is only called for the "big" model. It records a small number
- * of LEB numbers of important LEBs. Important LEBs are ones that are (from
- * most important to least important): empty, freeable, freeable index, dirty
- * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
- * their pnodes into memory. That will stop us from having to scan the LPT
- * straight away. For the "small" model we assume that scanning the LPT is no
- * big deal.
- */
-static void populate_lsave(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
- struct ubifs_lpt_heap *heap;
- int i, cnt = 0;
-
- ubifs_assert(c->big_lpt);
- if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
- c->lpt_drty_flgs |= LSAVE_DIRTY;
- ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
- }
-
- if (dbg_populate_lsave(c))
- return;
-
- list_for_each_entry(lprops, &c->empty_list, list) {
- c->lsave[cnt++] = lprops->lnum;
- if (cnt >= c->lsave_cnt)
- return;
- }
- list_for_each_entry(lprops, &c->freeable_list, list) {
- c->lsave[cnt++] = lprops->lnum;
- if (cnt >= c->lsave_cnt)
- return;
- }
- list_for_each_entry(lprops, &c->frdi_idx_list, list) {
- c->lsave[cnt++] = lprops->lnum;
- if (cnt >= c->lsave_cnt)
- return;
- }
- heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
- for (i = 0; i < heap->cnt; i++) {
- c->lsave[cnt++] = heap->arr[i]->lnum;
- if (cnt >= c->lsave_cnt)
- return;
- }
- heap = &c->lpt_heap[LPROPS_DIRTY - 1];
- for (i = 0; i < heap->cnt; i++) {
- c->lsave[cnt++] = heap->arr[i]->lnum;
- if (cnt >= c->lsave_cnt)
- return;
- }
- heap = &c->lpt_heap[LPROPS_FREE - 1];
- for (i = 0; i < heap->cnt; i++) {
- c->lsave[cnt++] = heap->arr[i]->lnum;
- if (cnt >= c->lsave_cnt)
- return;
- }
- /* Fill it up completely */
- while (cnt < c->lsave_cnt)
- c->lsave[cnt++] = c->main_first;
-}
-
-/**
- * nnode_lookup - lookup a nnode in the LPT.
- * @c: UBIFS file-system description object
- * @i: nnode number
- *
- * This function returns a pointer to the nnode on success or a negative
- * error code on failure.
- */
-static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
-{
- int err, iip;
- struct ubifs_nnode *nnode;
-
- if (!c->nroot) {
- err = ubifs_read_nnode(c, NULL, 0);
- if (err)
- return ERR_PTR(err);
- }
- nnode = c->nroot;
- while (1) {
- iip = i & (UBIFS_LPT_FANOUT - 1);
- i >>= UBIFS_LPT_FANOUT_SHIFT;
- if (!i)
- break;
- nnode = ubifs_get_nnode(c, nnode, iip);
- if (IS_ERR(nnode))
- return nnode;
- }
- return nnode;
-}
-
-/**
- * make_nnode_dirty - find a nnode and, if found, make it dirty.
- * @c: UBIFS file-system description object
- * @node_num: nnode number of nnode to make dirty
- * @lnum: LEB number where nnode was written
- * @offs: offset where nnode was written
- *
- * This function is used by LPT garbage collection. LPT garbage collection is
- * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
- * simply involves marking all the nodes in the LEB being garbage-collected as
- * dirty. The dirty nodes are written next commit, after which the LEB is free
- * to be reused.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
- int offs)
-{
- struct ubifs_nnode *nnode;
-
- nnode = nnode_lookup(c, node_num);
- if (IS_ERR(nnode))
- return PTR_ERR(nnode);
- if (nnode->parent) {
- struct ubifs_nbranch *branch;
-
- branch = &nnode->parent->nbranch[nnode->iip];
- if (branch->lnum != lnum || branch->offs != offs)
- return 0; /* nnode is obsolete */
- } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
- return 0; /* nnode is obsolete */
- /* Assumes cnext list is empty i.e. not called during commit */
- if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
- c->dirty_nn_cnt += 1;
- ubifs_add_nnode_dirt(c, nnode);
- /* Mark parent and ancestors dirty too */
- nnode = nnode->parent;
- while (nnode) {
- if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
- c->dirty_nn_cnt += 1;
- ubifs_add_nnode_dirt(c, nnode);
- nnode = nnode->parent;
- } else
- break;
- }
- }
- return 0;
-}
-
-/**
- * make_pnode_dirty - find a pnode and, if found, make it dirty.
- * @c: UBIFS file-system description object
- * @node_num: pnode number of pnode to make dirty
- * @lnum: LEB number where pnode was written
- * @offs: offset where pnode was written
- *
- * This function is used by LPT garbage collection. LPT garbage collection is
- * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
- * simply involves marking all the nodes in the LEB being garbage-collected as
- * dirty. The dirty nodes are written next commit, after which the LEB is free
- * to be reused.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
- int offs)
-{
- struct ubifs_pnode *pnode;
- struct ubifs_nbranch *branch;
-
- pnode = pnode_lookup(c, node_num);
- if (IS_ERR(pnode))
- return PTR_ERR(pnode);
- branch = &pnode->parent->nbranch[pnode->iip];
- if (branch->lnum != lnum || branch->offs != offs)
- return 0;
- do_make_pnode_dirty(c, pnode);
- return 0;
-}
-
-/**
- * make_ltab_dirty - make ltab node dirty.
- * @c: UBIFS file-system description object
- * @lnum: LEB number where ltab was written
- * @offs: offset where ltab was written
- *
- * This function is used by LPT garbage collection. LPT garbage collection is
- * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
- * simply involves marking all the nodes in the LEB being garbage-collected as
- * dirty. The dirty nodes are written next commit, after which the LEB is free
- * to be reused.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
-{
- if (lnum != c->ltab_lnum || offs != c->ltab_offs)
- return 0; /* This ltab node is obsolete */
- if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
- c->lpt_drty_flgs |= LTAB_DIRTY;
- ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
- }
- return 0;
-}
-
-/**
- * make_lsave_dirty - make lsave node dirty.
- * @c: UBIFS file-system description object
- * @lnum: LEB number where lsave was written
- * @offs: offset where lsave was written
- *
- * This function is used by LPT garbage collection. LPT garbage collection is
- * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
- * simply involves marking all the nodes in the LEB being garbage-collected as
- * dirty. The dirty nodes are written next commit, after which the LEB is free
- * to be reused.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
-{
- if (lnum != c->lsave_lnum || offs != c->lsave_offs)
- return 0; /* This lsave node is obsolete */
- if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
- c->lpt_drty_flgs |= LSAVE_DIRTY;
- ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
- }
- return 0;
-}
-
-/**
- * make_node_dirty - make node dirty.
- * @c: UBIFS file-system description object
- * @node_type: LPT node type
- * @node_num: node number
- * @lnum: LEB number where node was written
- * @offs: offset where node was written
- *
- * This function is used by LPT garbage collection. LPT garbage collection is
- * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
- * simply involves marking all the nodes in the LEB being garbage-collected as
- * dirty. The dirty nodes are written next commit, after which the LEB is free
- * to be reused.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
- int lnum, int offs)
-{
- switch (node_type) {
- case UBIFS_LPT_NNODE:
- return make_nnode_dirty(c, node_num, lnum, offs);
- case UBIFS_LPT_PNODE:
- return make_pnode_dirty(c, node_num, lnum, offs);
- case UBIFS_LPT_LTAB:
- return make_ltab_dirty(c, lnum, offs);
- case UBIFS_LPT_LSAVE:
- return make_lsave_dirty(c, lnum, offs);
- }
- return -EINVAL;
-}
-
-/**
- * get_lpt_node_len - return the length of a node based on its type.
- * @c: UBIFS file-system description object
- * @node_type: LPT node type
- */
-static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
-{
- switch (node_type) {
- case UBIFS_LPT_NNODE:
- return c->nnode_sz;
- case UBIFS_LPT_PNODE:
- return c->pnode_sz;
- case UBIFS_LPT_LTAB:
- return c->ltab_sz;
- case UBIFS_LPT_LSAVE:
- return c->lsave_sz;
- }
- return 0;
-}
-
-/**
- * get_pad_len - return the length of padding in a buffer.
- * @c: UBIFS file-system description object
- * @buf: buffer
- * @len: length of buffer
- */
-static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
-{
- int offs, pad_len;
-
- if (c->min_io_size == 1)
- return 0;
- offs = c->leb_size - len;
- pad_len = ALIGN(offs, c->min_io_size) - offs;
- return pad_len;
-}
-
-/**
- * get_lpt_node_type - return type (and node number) of a node in a buffer.
- * @c: UBIFS file-system description object
- * @buf: buffer
- * @node_num: node number is returned here
- */
-static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
- int *node_num)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int pos = 0, node_type;
-
- node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
- *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
- return node_type;
-}
-
-/**
- * is_a_node - determine if a buffer contains a node.
- * @c: UBIFS file-system description object
- * @buf: buffer
- * @len: length of buffer
- *
- * This function returns %1 if the buffer contains a node or %0 if it does not.
- */
-static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
-{
- uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
- int pos = 0, node_type, node_len;
- uint16_t crc, calc_crc;
-
- if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
- return 0;
- node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
- if (node_type == UBIFS_LPT_NOT_A_NODE)
- return 0;
- node_len = get_lpt_node_len(c, node_type);
- if (!node_len || node_len > len)
- return 0;
- pos = 0;
- addr = buf;
- crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
- calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
- node_len - UBIFS_LPT_CRC_BYTES);
- if (crc != calc_crc)
- return 0;
- return 1;
-}
-
-/**
- * lpt_gc_lnum - garbage collect a LPT LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to garbage collect
- *
- * LPT garbage collection is used only for the "big" LPT model
- * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
- * in the LEB being garbage-collected as dirty. The dirty nodes are written
- * next commit, after which the LEB is free to be reused.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
-{
- int err, len = c->leb_size, node_type, node_num, node_len, offs;
- void *buf = c->lpt_buf;
-
- dbg_lp("LEB %d", lnum);
-
- err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
- if (err)
- return err;
-
- while (1) {
- if (!is_a_node(c, buf, len)) {
- int pad_len;
-
- pad_len = get_pad_len(c, buf, len);
- if (pad_len) {
- buf += pad_len;
- len -= pad_len;
- continue;
- }
- return 0;
- }
- node_type = get_lpt_node_type(c, buf, &node_num);
- node_len = get_lpt_node_len(c, node_type);
- offs = c->leb_size - len;
- ubifs_assert(node_len != 0);
- mutex_lock(&c->lp_mutex);
- err = make_node_dirty(c, node_type, node_num, lnum, offs);
- mutex_unlock(&c->lp_mutex);
- if (err)
- return err;
- buf += node_len;
- len -= node_len;
- }
- return 0;
-}
-
-/**
- * lpt_gc - LPT garbage collection.
- * @c: UBIFS file-system description object
- *
- * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
- * Returns %0 on success and a negative error code on failure.
- */
-static int lpt_gc(struct ubifs_info *c)
-{
- int i, lnum = -1, dirty = 0;
-
- mutex_lock(&c->lp_mutex);
- for (i = 0; i < c->lpt_lebs; i++) {
- ubifs_assert(!c->ltab[i].tgc);
- if (i + c->lpt_first == c->nhead_lnum ||
- c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
- continue;
- if (c->ltab[i].dirty > dirty) {
- dirty = c->ltab[i].dirty;
- lnum = i + c->lpt_first;
- }
- }
- mutex_unlock(&c->lp_mutex);
- if (lnum == -1)
- return -ENOSPC;
- return lpt_gc_lnum(c, lnum);
-}
-
-/**
- * ubifs_lpt_start_commit - UBIFS commit starts.
- * @c: the UBIFS file-system description object
- *
- * This function has to be called when UBIFS starts the commit operation.
- * This function "freezes" all currently dirty LEB properties and does not
- * change them anymore. Further changes are saved and tracked separately
- * because they are not part of this commit. This function returns zero in case
- * of success and a negative error code in case of failure.
- */
-int ubifs_lpt_start_commit(struct ubifs_info *c)
-{
- int err, cnt;
-
- dbg_lp("");
-
- mutex_lock(&c->lp_mutex);
- err = dbg_chk_lpt_free_spc(c);
- if (err)
- goto out;
- err = dbg_check_ltab(c);
- if (err)
- goto out;
-
- if (c->check_lpt_free) {
- /*
- * We ensure there is enough free space in
- * ubifs_lpt_post_commit() by marking nodes dirty. That
- * information is lost when we unmount, so we also need
- * to check free space once after mounting also.
- */
- c->check_lpt_free = 0;
- while (need_write_all(c)) {
- mutex_unlock(&c->lp_mutex);
- err = lpt_gc(c);
- if (err)
- return err;
- mutex_lock(&c->lp_mutex);
- }
- }
-
- lpt_tgc_start(c);
-
- if (!c->dirty_pn_cnt) {
- dbg_cmt("no cnodes to commit");
- err = 0;
- goto out;
- }
-
- if (!c->big_lpt && need_write_all(c)) {
- /* If needed, write everything */
- err = make_tree_dirty(c);
- if (err)
- goto out;
- lpt_tgc_start(c);
- }
-
- if (c->big_lpt)
- populate_lsave(c);
-
- cnt = get_cnodes_to_commit(c);
- ubifs_assert(cnt != 0);
-
- err = layout_cnodes(c);
- if (err)
- goto out;
-
- /* Copy the LPT's own lprops for end commit to write */
- memcpy(c->ltab_cmt, c->ltab,
- sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
- c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
-
-out:
- mutex_unlock(&c->lp_mutex);
- return err;
-}
-
-/**
- * free_obsolete_cnodes - free obsolete cnodes for commit end.
- * @c: UBIFS file-system description object
- */
-static void free_obsolete_cnodes(struct ubifs_info *c)
-{
- struct ubifs_cnode *cnode, *cnext;
-
- cnext = c->lpt_cnext;
- if (!cnext)
- return;
- do {
- cnode = cnext;
- cnext = cnode->cnext;
- if (test_bit(OBSOLETE_CNODE, &cnode->flags))
- kfree(cnode);
- else
- cnode->cnext = NULL;
- } while (cnext != c->lpt_cnext);
- c->lpt_cnext = NULL;
-}
-
-/**
- * ubifs_lpt_end_commit - finish the commit operation.
- * @c: the UBIFS file-system description object
- *
- * This function has to be called when the commit operation finishes. It
- * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
- * the media. Returns zero in case of success and a negative error code in case
- * of failure.
- */
-int ubifs_lpt_end_commit(struct ubifs_info *c)
-{
- int err;
-
- dbg_lp("");
-
- if (!c->lpt_cnext)
- return 0;
-
- err = write_cnodes(c);
- if (err)
- return err;
-
- mutex_lock(&c->lp_mutex);
- free_obsolete_cnodes(c);
- mutex_unlock(&c->lp_mutex);
-
- return 0;
-}
-
-/**
- * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
- * @c: UBIFS file-system description object
- *
- * LPT trivial GC is completed after a commit. Also LPT GC is done after a
- * commit for the "big" LPT model.
- */
-int ubifs_lpt_post_commit(struct ubifs_info *c)
-{
- int err;
-
- mutex_lock(&c->lp_mutex);
- err = lpt_tgc_end(c);
- if (err)
- goto out;
- if (c->big_lpt)
- while (need_write_all(c)) {
- mutex_unlock(&c->lp_mutex);
- err = lpt_gc(c);
- if (err)
- return err;
- mutex_lock(&c->lp_mutex);
- }
-out:
- mutex_unlock(&c->lp_mutex);
- return err;
-}
-
-/**
- * first_nnode - find the first nnode in memory.
- * @c: UBIFS file-system description object
- * @hght: height of tree where nnode found is returned here
- *
- * This function returns a pointer to the nnode found or %NULL if no nnode is
- * found. This function is a helper to 'ubifs_lpt_free()'.
- */
-static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
-{
- struct ubifs_nnode *nnode;
- int h, i, found;
-
- nnode = c->nroot;
- *hght = 0;
- if (!nnode)
- return NULL;
- for (h = 1; h < c->lpt_hght; h++) {
- found = 0;
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- if (nnode->nbranch[i].nnode) {
- found = 1;
- nnode = nnode->nbranch[i].nnode;
- *hght = h;
- break;
- }
- }
- if (!found)
- break;
- }
- return nnode;
-}
-
-/**
- * next_nnode - find the next nnode in memory.
- * @c: UBIFS file-system description object
- * @nnode: nnode from which to start.
- * @hght: height of tree where nnode is, is passed and returned here
- *
- * This function returns a pointer to the nnode found or %NULL if no nnode is
- * found. This function is a helper to 'ubifs_lpt_free()'.
- */
-static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
- struct ubifs_nnode *nnode, int *hght)
-{
- struct ubifs_nnode *parent;
- int iip, h, i, found;
-
- parent = nnode->parent;
- if (!parent)
- return NULL;
- if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
- *hght -= 1;
- return parent;
- }
- for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
- nnode = parent->nbranch[iip].nnode;
- if (nnode)
- break;
- }
- if (!nnode) {
- *hght -= 1;
- return parent;
- }
- for (h = *hght + 1; h < c->lpt_hght; h++) {
- found = 0;
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- if (nnode->nbranch[i].nnode) {
- found = 1;
- nnode = nnode->nbranch[i].nnode;
- *hght = h;
- break;
- }
- }
- if (!found)
- break;
- }
- return nnode;
-}
-
-/**
- * ubifs_lpt_free - free resources owned by the LPT.
- * @c: UBIFS file-system description object
- * @wr_only: free only resources used for writing
- */
-void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
-{
- struct ubifs_nnode *nnode;
- int i, hght;
-
- /* Free write-only things first */
-
- free_obsolete_cnodes(c); /* Leftover from a failed commit */
-
- vfree(c->ltab_cmt);
- c->ltab_cmt = NULL;
- vfree(c->lpt_buf);
- c->lpt_buf = NULL;
- kfree(c->lsave);
- c->lsave = NULL;
-
- if (wr_only)
- return;
-
- /* Now free the rest */
-
- nnode = first_nnode(c, &hght);
- while (nnode) {
- for (i = 0; i < UBIFS_LPT_FANOUT; i++)
- kfree(nnode->nbranch[i].nnode);
- nnode = next_nnode(c, nnode, &hght);
- }
- for (i = 0; i < LPROPS_HEAP_CNT; i++)
- kfree(c->lpt_heap[i].arr);
- kfree(c->dirty_idx.arr);
- kfree(c->nroot);
- vfree(c->ltab);
- kfree(c->lpt_nod_buf);
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-/**
- * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
- * @buf: buffer
- * @len: buffer length
- */
-static int dbg_is_all_ff(uint8_t *buf, int len)
-{
- int i;
-
- for (i = 0; i < len; i++)
- if (buf[i] != 0xff)
- return 0;
- return 1;
-}
-
-/**
- * dbg_is_nnode_dirty - determine if a nnode is dirty.
- * @c: the UBIFS file-system description object
- * @lnum: LEB number where nnode was written
- * @offs: offset where nnode was written
- */
-static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
-{
- struct ubifs_nnode *nnode;
- int hght;
-
- /* Entire tree is in memory so first_nnode / next_nnode are OK */
- nnode = first_nnode(c, &hght);
- for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
- struct ubifs_nbranch *branch;
-
- cond_resched();
- if (nnode->parent) {
- branch = &nnode->parent->nbranch[nnode->iip];
- if (branch->lnum != lnum || branch->offs != offs)
- continue;
- if (test_bit(DIRTY_CNODE, &nnode->flags))
- return 1;
- return 0;
- } else {
- if (c->lpt_lnum != lnum || c->lpt_offs != offs)
- continue;
- if (test_bit(DIRTY_CNODE, &nnode->flags))
- return 1;
- return 0;
- }
- }
- return 1;
-}
-
-/**
- * dbg_is_pnode_dirty - determine if a pnode is dirty.
- * @c: the UBIFS file-system description object
- * @lnum: LEB number where pnode was written
- * @offs: offset where pnode was written
- */
-static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
-{
- int i, cnt;
-
- cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
- for (i = 0; i < cnt; i++) {
- struct ubifs_pnode *pnode;
- struct ubifs_nbranch *branch;
-
- cond_resched();
- pnode = pnode_lookup(c, i);
- if (IS_ERR(pnode))
- return PTR_ERR(pnode);
- branch = &pnode->parent->nbranch[pnode->iip];
- if (branch->lnum != lnum || branch->offs != offs)
- continue;
- if (test_bit(DIRTY_CNODE, &pnode->flags))
- return 1;
- return 0;
- }
- return 1;
-}
-
-/**
- * dbg_is_ltab_dirty - determine if a ltab node is dirty.
- * @c: the UBIFS file-system description object
- * @lnum: LEB number where ltab node was written
- * @offs: offset where ltab node was written
- */
-static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
-{
- if (lnum != c->ltab_lnum || offs != c->ltab_offs)
- return 1;
- return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
-}
-
-/**
- * dbg_is_lsave_dirty - determine if a lsave node is dirty.
- * @c: the UBIFS file-system description object
- * @lnum: LEB number where lsave node was written
- * @offs: offset where lsave node was written
- */
-static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
-{
- if (lnum != c->lsave_lnum || offs != c->lsave_offs)
- return 1;
- return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
-}
-
-/**
- * dbg_is_node_dirty - determine if a node is dirty.
- * @c: the UBIFS file-system description object
- * @node_type: node type
- * @lnum: LEB number where node was written
- * @offs: offset where node was written
- */
-static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
- int offs)
-{
- switch (node_type) {
- case UBIFS_LPT_NNODE:
- return dbg_is_nnode_dirty(c, lnum, offs);
- case UBIFS_LPT_PNODE:
- return dbg_is_pnode_dirty(c, lnum, offs);
- case UBIFS_LPT_LTAB:
- return dbg_is_ltab_dirty(c, lnum, offs);
- case UBIFS_LPT_LSAVE:
- return dbg_is_lsave_dirty(c, lnum, offs);
- }
- return 1;
-}
-
-/**
- * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
- * @c: the UBIFS file-system description object
- * @lnum: LEB number where node was written
- * @offs: offset where node was written
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
-{
- int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
- int ret;
- void *buf, *p;
-
- if (!dbg_is_chk_lprops(c))
- return 0;
-
- buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
- if (!buf) {
- ubifs_err("cannot allocate memory for ltab checking");
- return 0;
- }
-
- dbg_lp("LEB %d", lnum);
-
- err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
- if (err)
- goto out;
-
- while (1) {
- if (!is_a_node(c, p, len)) {
- int i, pad_len;
-
- pad_len = get_pad_len(c, p, len);
- if (pad_len) {
- p += pad_len;
- len -= pad_len;
- dirty += pad_len;
- continue;
- }
- if (!dbg_is_all_ff(p, len)) {
- dbg_msg("invalid empty space in LEB %d at %d",
- lnum, c->leb_size - len);
- err = -EINVAL;
- }
- i = lnum - c->lpt_first;
- if (len != c->ltab[i].free) {
- dbg_msg("invalid free space in LEB %d "
- "(free %d, expected %d)",
- lnum, len, c->ltab[i].free);
- err = -EINVAL;
- }
- if (dirty != c->ltab[i].dirty) {
- dbg_msg("invalid dirty space in LEB %d "
- "(dirty %d, expected %d)",
- lnum, dirty, c->ltab[i].dirty);
- err = -EINVAL;
- }
- goto out;
- }
- node_type = get_lpt_node_type(c, p, &node_num);
- node_len = get_lpt_node_len(c, node_type);
- ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
- if (ret == 1)
- dirty += node_len;
- p += node_len;
- len -= node_len;
- }
-
- err = 0;
-out:
- vfree(buf);
- return err;
-}
-
-/**
- * dbg_check_ltab - check the free and dirty space in the ltab.
- * @c: the UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int dbg_check_ltab(struct ubifs_info *c)
-{
- int lnum, err, i, cnt;
-
- if (!dbg_is_chk_lprops(c))
- return 0;
-
- /* Bring the entire tree into memory */
- cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
- for (i = 0; i < cnt; i++) {
- struct ubifs_pnode *pnode;
-
- pnode = pnode_lookup(c, i);
- if (IS_ERR(pnode))
- return PTR_ERR(pnode);
- cond_resched();
- }
-
- /* Check nodes */
- err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
- if (err)
- return err;
-
- /* Check each LEB */
- for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
- err = dbg_check_ltab_lnum(c, lnum);
- if (err) {
- dbg_err("failed at LEB %d", lnum);
- return err;
- }
- }
-
- dbg_lp("succeeded");
- return 0;
-}
-
-/**
- * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
- * @c: the UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int dbg_chk_lpt_free_spc(struct ubifs_info *c)
-{
- long long free = 0;
- int i;
-
- if (!dbg_is_chk_lprops(c))
- return 0;
-
- for (i = 0; i < c->lpt_lebs; i++) {
- if (c->ltab[i].tgc || c->ltab[i].cmt)
- continue;
- if (i + c->lpt_first == c->nhead_lnum)
- free += c->leb_size - c->nhead_offs;
- else if (c->ltab[i].free == c->leb_size)
- free += c->leb_size;
- }
- if (free < c->lpt_sz) {
- dbg_err("LPT space error: free %lld lpt_sz %lld",
- free, c->lpt_sz);
- dbg_dump_lpt_info(c);
- dbg_dump_lpt_lebs(c);
- dump_stack();
- return -EINVAL;
- }
- return 0;
-}
-
-/**
- * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
- * @c: the UBIFS file-system description object
- * @action: what to do
- * @len: length written
- *
- * This function returns %0 on success and a negative error code on failure.
- * The @action argument may be one of:
- * o %0 - LPT debugging checking starts, initialize debugging variables;
- * o %1 - wrote an LPT node, increase LPT size by @len bytes;
- * o %2 - switched to a different LEB and wasted @len bytes;
- * o %3 - check that we've written the right number of bytes.
- * o %4 - wasted @len bytes;
- */
-int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
-{
- struct ubifs_debug_info *d = c->dbg;
- long long chk_lpt_sz, lpt_sz;
- int err = 0;
-
- if (!dbg_is_chk_lprops(c))
- return 0;
-
- switch (action) {
- case 0:
- d->chk_lpt_sz = 0;
- d->chk_lpt_sz2 = 0;
- d->chk_lpt_lebs = 0;
- d->chk_lpt_wastage = 0;
- if (c->dirty_pn_cnt > c->pnode_cnt) {
- dbg_err("dirty pnodes %d exceed max %d",
- c->dirty_pn_cnt, c->pnode_cnt);
- err = -EINVAL;
- }
- if (c->dirty_nn_cnt > c->nnode_cnt) {
- dbg_err("dirty nnodes %d exceed max %d",
- c->dirty_nn_cnt, c->nnode_cnt);
- err = -EINVAL;
- }
- return err;
- case 1:
- d->chk_lpt_sz += len;
- return 0;
- case 2:
- d->chk_lpt_sz += len;
- d->chk_lpt_wastage += len;
- d->chk_lpt_lebs += 1;
- return 0;
- case 3:
- chk_lpt_sz = c->leb_size;
- chk_lpt_sz *= d->chk_lpt_lebs;
- chk_lpt_sz += len - c->nhead_offs;
- if (d->chk_lpt_sz != chk_lpt_sz) {
- dbg_err("LPT wrote %lld but space used was %lld",
- d->chk_lpt_sz, chk_lpt_sz);
- err = -EINVAL;
- }
- if (d->chk_lpt_sz > c->lpt_sz) {
- dbg_err("LPT wrote %lld but lpt_sz is %lld",
- d->chk_lpt_sz, c->lpt_sz);
- err = -EINVAL;
- }
- if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
- dbg_err("LPT layout size %lld but wrote %lld",
- d->chk_lpt_sz, d->chk_lpt_sz2);
- err = -EINVAL;
- }
- if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
- dbg_err("LPT new nhead offs: expected %d was %d",
- d->new_nhead_offs, len);
- err = -EINVAL;
- }
- lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
- lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
- lpt_sz += c->ltab_sz;
- if (c->big_lpt)
- lpt_sz += c->lsave_sz;
- if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
- dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
- d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
- err = -EINVAL;
- }
- if (err) {
- dbg_dump_lpt_info(c);
- dbg_dump_lpt_lebs(c);
- dump_stack();
- }
- d->chk_lpt_sz2 = d->chk_lpt_sz;
- d->chk_lpt_sz = 0;
- d->chk_lpt_wastage = 0;
- d->chk_lpt_lebs = 0;
- d->new_nhead_offs = len;
- return err;
- case 4:
- d->chk_lpt_sz += len;
- d->chk_lpt_wastage += len;
- return 0;
- default:
- return -EINVAL;
- }
-}
-
-/**
- * dbg_dump_lpt_leb - dump an LPT LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number to dump
- *
- * This function dumps an LEB from LPT area. Nodes in this area are very
- * different to nodes in the main area (e.g., they do not have common headers,
- * they do not have 8-byte alignments, etc), so we have a separate function to
- * dump LPT area LEBs. Note, LPT has to be locked by the caller.
- */
-static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
-{
- int err, len = c->leb_size, node_type, node_num, node_len, offs;
- void *buf, *p;
-
- printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
- current->pid, lnum);
- buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
- if (!buf) {
- ubifs_err("cannot allocate memory to dump LPT");
- return;
- }
-
- err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
- if (err)
- goto out;
-
- while (1) {
- offs = c->leb_size - len;
- if (!is_a_node(c, p, len)) {
- int pad_len;
-
- pad_len = get_pad_len(c, p, len);
- if (pad_len) {
- printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
- lnum, offs, pad_len);
- p += pad_len;
- len -= pad_len;
- continue;
- }
- if (len)
- printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
- lnum, offs, len);
- break;
- }
-
- node_type = get_lpt_node_type(c, p, &node_num);
- switch (node_type) {
- case UBIFS_LPT_PNODE:
- {
- node_len = c->pnode_sz;
- if (c->big_lpt)
- printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
- lnum, offs, node_num);
- else
- printk(KERN_DEBUG "LEB %d:%d, pnode\n",
- lnum, offs);
- break;
- }
- case UBIFS_LPT_NNODE:
- {
- int i;
- struct ubifs_nnode nnode;
-
- node_len = c->nnode_sz;
- if (c->big_lpt)
- printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
- lnum, offs, node_num);
- else
- printk(KERN_DEBUG "LEB %d:%d, nnode, ",
- lnum, offs);
- err = ubifs_unpack_nnode(c, p, &nnode);
- for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
- printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
- nnode.nbranch[i].offs);
- if (i != UBIFS_LPT_FANOUT - 1)
- printk(KERN_CONT ", ");
- }
- printk(KERN_CONT "\n");
- break;
- }
- case UBIFS_LPT_LTAB:
- node_len = c->ltab_sz;
- printk(KERN_DEBUG "LEB %d:%d, ltab\n",
- lnum, offs);
- break;
- case UBIFS_LPT_LSAVE:
- node_len = c->lsave_sz;
- printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
- break;
- default:
- ubifs_err("LPT node type %d not recognized", node_type);
- goto out;
- }
-
- p += node_len;
- len -= node_len;
- }
-
- printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
- current->pid, lnum);
-out:
- vfree(buf);
- return;
-}
-
-/**
- * dbg_dump_lpt_lebs - dump LPT lebs.
- * @c: UBIFS file-system description object
- *
- * This function dumps all LPT LEBs. The caller has to make sure the LPT is
- * locked.
- */
-void dbg_dump_lpt_lebs(const struct ubifs_info *c)
-{
- int i;
-
- printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
- current->pid);
- for (i = 0; i < c->lpt_lebs; i++)
- dump_lpt_leb(c, i + c->lpt_first);
- printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
- current->pid);
-}
-
-/**
- * dbg_populate_lsave - debugging version of 'populate_lsave()'
- * @c: UBIFS file-system description object
- *
- * This is a debugging version for 'populate_lsave()' which populates lsave
- * with random LEBs instead of useful LEBs, which is good for test coverage.
- * Returns zero if lsave has not been populated (this debugging feature is
- * disabled) an non-zero if lsave has been populated.
- */
-static int dbg_populate_lsave(struct ubifs_info *c)
-{
- struct ubifs_lprops *lprops;
- struct ubifs_lpt_heap *heap;
- int i;
-
- if (!dbg_is_chk_gen(c))
- return 0;
- if (random32() & 3)
- return 0;
-
- for (i = 0; i < c->lsave_cnt; i++)
- c->lsave[i] = c->main_first;
-
- list_for_each_entry(lprops, &c->empty_list, list)
- c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
- list_for_each_entry(lprops, &c->freeable_list, list)
- c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
- list_for_each_entry(lprops, &c->frdi_idx_list, list)
- c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
-
- heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
- for (i = 0; i < heap->cnt; i++)
- c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
- heap = &c->lpt_heap[LPROPS_DIRTY - 1];
- for (i = 0; i < heap->cnt; i++)
- c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
- heap = &c->lpt_heap[LPROPS_FREE - 1];
- for (i = 0; i < heap->cnt; i++)
- c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
-
- return 1;
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/master.c b/ANDROID_3.4.5/fs/ubifs/master.c
deleted file mode 100644
index d4c85419..00000000
--- a/ANDROID_3.4.5/fs/ubifs/master.c
+++ /dev/null
@@ -1,457 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/* This file implements reading and writing the master node */
-
-#include "ubifs.h"
-
-/**
- * scan_for_master - search the valid master node.
- * @c: UBIFS file-system description object
- *
- * This function scans the master node LEBs and search for the latest master
- * node. Returns zero in case of success, %-EUCLEAN if there master area is
- * corrupted and requires recovery, and a negative error code in case of
- * failure.
- */
-#if 0
-static int scan_for_master(struct ubifs_info *c)
-{
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
- int lnum, offs = 0, nodes_cnt;
-
- lnum = UBIFS_MST_LNUM;
-
- sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
- if (IS_ERR(sleb))
- return PTR_ERR(sleb);
- nodes_cnt = sleb->nodes_cnt;
- if (nodes_cnt > 0) {
- snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
- list);
- if (snod->type != UBIFS_MST_NODE)
- goto out_dump;
- memcpy(c->mst_node, snod->node, snod->len);
- offs = snod->offs;
- }
- ubifs_scan_destroy(sleb);
-
- lnum += 1;
-
- sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
- if (IS_ERR(sleb))
- return PTR_ERR(sleb);
- if (sleb->nodes_cnt != nodes_cnt)
- goto out;
- if (!sleb->nodes_cnt)
- goto out;
- snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, list);
- if (snod->type != UBIFS_MST_NODE)
- goto out_dump;
- if (snod->offs != offs)
- goto out;
- if (memcmp((void *)c->mst_node + UBIFS_CH_SZ,
- (void *)snod->node + UBIFS_CH_SZ,
- UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
- goto out;
- c->mst_offs = offs;
- ubifs_scan_destroy(sleb);
- return 0;
-
-out:
- ubifs_scan_destroy(sleb);
- return -EUCLEAN;
-
-out_dump:
- ubifs_err("unexpected node type %d master LEB %d:%d",
- snod->type, lnum, snod->offs);
- ubifs_scan_destroy(sleb);
- return -EINVAL;
-}
-#endif
-static int search_blk(struct ubifs_info *c, int lnum)
-{
- struct ubifs_ch *ch;
- int tmp_low, tmp_high, tmp_mid;
- int tmp_offs;
- uint32_t magic;
-
- tmp_low = 0;
- tmp_high = c->leb_size / c->min_io_size - 1;
-
- while(tmp_low <= tmp_high)
- {
- tmp_mid = (tmp_low + tmp_high) / 2;
- tmp_offs = tmp_mid * c->min_io_size;
- ubifs_leb_read(c, lnum, c->sbuf, tmp_offs, c->min_io_size, 0);
- ch = c->sbuf;
- magic = le32_to_cpu(ch->magic);
- if (magic == 0xFFFFFFFF) {
- tmp_high = tmp_mid - 1;
- } else {
- tmp_low = tmp_mid + 1;
- }
- }
- tmp_mid = (tmp_low + tmp_high) / 2;
- return tmp_mid;
-}
-/* add by Johnny Liu 2013.09.24*/
-static int scan_for_master(struct ubifs_info *c)
-{
- struct ubifs_ch *ch;
- int lnum, first_cnt, second_cnt;
- lnum = UBIFS_MST_LNUM;
- first_cnt = search_blk(c, lnum);
- ubifs_leb_read(c, lnum, c->sbuf, first_cnt * c->min_io_size, c->min_io_size, 0);
- ch = c->sbuf;
- if (ch->node_type != UBIFS_MST_NODE)
- goto out_dump;
- memcpy(c->mst_node, c->sbuf, ch->len);
-
- lnum += 1;
-
- second_cnt = search_blk(c, lnum);
- if(first_cnt != second_cnt)
- goto out;
- ubifs_leb_read(c, lnum, c->sbuf, second_cnt * c->min_io_size, c->min_io_size, 0);
- if (memcmp((void *)c->mst_node + UBIFS_CH_SZ,
- (void *)c->sbuf + UBIFS_CH_SZ,
- UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
- goto out;
-
- c->mst_offs = first_cnt * c->min_io_size;
- return 0;
-out:
- ubifs_err("unexpected master node in master LEB");
- return -EUCLEAN;
-
-out_dump:
- ubifs_err("unexpected node type master LEB %d",lnum);
- return -EINVAL;
-}
-/**
- * validate_master - validate master node.
- * @c: UBIFS file-system description object
- *
- * This function validates data which was read from master node. Returns zero
- * if the data is all right and %-EINVAL if not.
- */
-static int validate_master(const struct ubifs_info *c)
-{
- long long main_sz;
- int err;
-
- if (c->max_sqnum >= SQNUM_WATERMARK) {
- err = 1;
- goto out;
- }
-
- if (c->cmt_no >= c->max_sqnum) {
- err = 2;
- goto out;
- }
-
- if (c->highest_inum >= INUM_WATERMARK) {
- err = 3;
- goto out;
- }
-
- if (c->lhead_lnum < UBIFS_LOG_LNUM ||
- c->lhead_lnum >= UBIFS_LOG_LNUM + c->log_lebs ||
- c->lhead_offs < 0 || c->lhead_offs >= c->leb_size ||
- c->lhead_offs & (c->min_io_size - 1)) {
- err = 4;
- goto out;
- }
-
- if (c->zroot.lnum >= c->leb_cnt || c->zroot.lnum < c->main_first ||
- c->zroot.offs >= c->leb_size || c->zroot.offs & 7) {
- err = 5;
- goto out;
- }
-
- if (c->zroot.len < c->ranges[UBIFS_IDX_NODE].min_len ||
- c->zroot.len > c->ranges[UBIFS_IDX_NODE].max_len) {
- err = 6;
- goto out;
- }
-
- if (c->gc_lnum >= c->leb_cnt || c->gc_lnum < c->main_first) {
- err = 7;
- goto out;
- }
-
- if (c->ihead_lnum >= c->leb_cnt || c->ihead_lnum < c->main_first ||
- c->ihead_offs % c->min_io_size || c->ihead_offs < 0 ||
- c->ihead_offs > c->leb_size || c->ihead_offs & 7) {
- err = 8;
- goto out;
- }
-
- main_sz = (long long)c->main_lebs * c->leb_size;
- if (c->bi.old_idx_sz & 7 || c->bi.old_idx_sz >= main_sz) {
- err = 9;
- goto out;
- }
-
- if (c->lpt_lnum < c->lpt_first || c->lpt_lnum > c->lpt_last ||
- c->lpt_offs < 0 || c->lpt_offs + c->nnode_sz > c->leb_size) {
- err = 10;
- goto out;
- }
-
- if (c->nhead_lnum < c->lpt_first || c->nhead_lnum > c->lpt_last ||
- c->nhead_offs < 0 || c->nhead_offs % c->min_io_size ||
- c->nhead_offs > c->leb_size) {
- err = 11;
- goto out;
- }
-
- if (c->ltab_lnum < c->lpt_first || c->ltab_lnum > c->lpt_last ||
- c->ltab_offs < 0 ||
- c->ltab_offs + c->ltab_sz > c->leb_size) {
- err = 12;
- goto out;
- }
-
- if (c->big_lpt && (c->lsave_lnum < c->lpt_first ||
- c->lsave_lnum > c->lpt_last || c->lsave_offs < 0 ||
- c->lsave_offs + c->lsave_sz > c->leb_size)) {
- err = 13;
- goto out;
- }
-
- if (c->lscan_lnum < c->main_first || c->lscan_lnum >= c->leb_cnt) {
- err = 14;
- goto out;
- }
-
- if (c->lst.empty_lebs < 0 || c->lst.empty_lebs > c->main_lebs - 2) {
- err = 15;
- goto out;
- }
-
- if (c->lst.idx_lebs < 0 || c->lst.idx_lebs > c->main_lebs - 1) {
- err = 16;
- goto out;
- }
-
- if (c->lst.total_free < 0 || c->lst.total_free > main_sz ||
- c->lst.total_free & 7) {
- err = 17;
- goto out;
- }
-
- if (c->lst.total_dirty < 0 || (c->lst.total_dirty & 7)) {
- err = 18;
- goto out;
- }
-
- if (c->lst.total_used < 0 || (c->lst.total_used & 7)) {
- err = 19;
- goto out;
- }
-
- if (c->lst.total_free + c->lst.total_dirty +
- c->lst.total_used > main_sz) {
- err = 20;
- goto out;
- }
-
- if (c->lst.total_dead + c->lst.total_dark +
- c->lst.total_used + c->bi.old_idx_sz > main_sz) {
- err = 21;
- goto out;
- }
-
- if (c->lst.total_dead < 0 ||
- c->lst.total_dead > c->lst.total_free + c->lst.total_dirty ||
- c->lst.total_dead & 7) {
- err = 22;
- goto out;
- }
-
- if (c->lst.total_dark < 0 ||
- c->lst.total_dark > c->lst.total_free + c->lst.total_dirty ||
- c->lst.total_dark & 7) {
- err = 23;
- goto out;
- }
-
- return 0;
-
-out:
- ubifs_err("bad master node at offset %d error %d", c->mst_offs, err);
- dbg_dump_node(c, c->mst_node);
- return -EINVAL;
-}
-
-/**
- * ubifs_read_master - read master node.
- * @c: UBIFS file-system description object
- *
- * This function finds and reads the master node during file-system mount. If
- * the flash is empty, it creates default master node as well. Returns zero in
- * case of success and a negative error code in case of failure.
- */
-int ubifs_read_master(struct ubifs_info *c)
-{
- int err, old_leb_cnt;
-
- c->mst_node = kzalloc(c->mst_node_alsz, GFP_KERNEL);
- if (!c->mst_node)
- return -ENOMEM;
-
- err = scan_for_master(c);
- if (err) {
- if (err == -EUCLEAN)
- err = ubifs_recover_master_node(c);
- if (err)
- /*
- * Note, we do not free 'c->mst_node' here because the
- * unmount routine will take care of this.
- */
- return err;
- }
-
- /* Make sure that the recovery flag is clear */
- c->mst_node->flags &= cpu_to_le32(~UBIFS_MST_RCVRY);
-
- c->max_sqnum = le64_to_cpu(c->mst_node->ch.sqnum);
- c->highest_inum = le64_to_cpu(c->mst_node->highest_inum);
- c->cmt_no = le64_to_cpu(c->mst_node->cmt_no);
- c->zroot.lnum = le32_to_cpu(c->mst_node->root_lnum);
- c->zroot.offs = le32_to_cpu(c->mst_node->root_offs);
- c->zroot.len = le32_to_cpu(c->mst_node->root_len);
- c->lhead_lnum = le32_to_cpu(c->mst_node->log_lnum);
- c->gc_lnum = le32_to_cpu(c->mst_node->gc_lnum);
- c->ihead_lnum = le32_to_cpu(c->mst_node->ihead_lnum);
- c->ihead_offs = le32_to_cpu(c->mst_node->ihead_offs);
- c->bi.old_idx_sz = le64_to_cpu(c->mst_node->index_size);
- c->lpt_lnum = le32_to_cpu(c->mst_node->lpt_lnum);
- c->lpt_offs = le32_to_cpu(c->mst_node->lpt_offs);
- c->nhead_lnum = le32_to_cpu(c->mst_node->nhead_lnum);
- c->nhead_offs = le32_to_cpu(c->mst_node->nhead_offs);
- c->ltab_lnum = le32_to_cpu(c->mst_node->ltab_lnum);
- c->ltab_offs = le32_to_cpu(c->mst_node->ltab_offs);
- c->lsave_lnum = le32_to_cpu(c->mst_node->lsave_lnum);
- c->lsave_offs = le32_to_cpu(c->mst_node->lsave_offs);
- c->lscan_lnum = le32_to_cpu(c->mst_node->lscan_lnum);
- c->lst.empty_lebs = le32_to_cpu(c->mst_node->empty_lebs);
- c->lst.idx_lebs = le32_to_cpu(c->mst_node->idx_lebs);
- old_leb_cnt = le32_to_cpu(c->mst_node->leb_cnt);
- c->lst.total_free = le64_to_cpu(c->mst_node->total_free);
- c->lst.total_dirty = le64_to_cpu(c->mst_node->total_dirty);
- c->lst.total_used = le64_to_cpu(c->mst_node->total_used);
- c->lst.total_dead = le64_to_cpu(c->mst_node->total_dead);
- c->lst.total_dark = le64_to_cpu(c->mst_node->total_dark);
-
- c->calc_idx_sz = c->bi.old_idx_sz;
-
- if (c->mst_node->flags & cpu_to_le32(UBIFS_MST_NO_ORPHS))
- c->no_orphs = 1;
-
- if (old_leb_cnt != c->leb_cnt) {
- /* The file system has been resized */
- int growth = c->leb_cnt - old_leb_cnt;
-
- if (c->leb_cnt < old_leb_cnt ||
- c->leb_cnt < UBIFS_MIN_LEB_CNT) {
- ubifs_err("bad leb_cnt on master node");
- dbg_dump_node(c, c->mst_node);
- return -EINVAL;
- }
-
- dbg_mnt("Auto resizing (master) from %d LEBs to %d LEBs",
- old_leb_cnt, c->leb_cnt);
- c->lst.empty_lebs += growth;
- c->lst.total_free += growth * (long long)c->leb_size;
- c->lst.total_dark += growth * (long long)c->dark_wm;
-
- /*
- * Reflect changes back onto the master node. N.B. the master
- * node gets written immediately whenever mounting (or
- * remounting) in read-write mode, so we do not need to write it
- * here.
- */
- c->mst_node->leb_cnt = cpu_to_le32(c->leb_cnt);
- c->mst_node->empty_lebs = cpu_to_le32(c->lst.empty_lebs);
- c->mst_node->total_free = cpu_to_le64(c->lst.total_free);
- c->mst_node->total_dark = cpu_to_le64(c->lst.total_dark);
- }
-
- err = validate_master(c);
- if (err)
- return err;
-
- err = dbg_old_index_check_init(c, &c->zroot);
-
- return err;
-}
-
-/**
- * ubifs_write_master - write master node.
- * @c: UBIFS file-system description object
- *
- * This function writes the master node. The caller has to take the
- * @c->mst_mutex lock before calling this function. Returns zero in case of
- * success and a negative error code in case of failure. The master node is
- * written twice to enable recovery.
- */
-int ubifs_write_master(struct ubifs_info *c)
-{
- int err, lnum, offs, len;
-
- ubifs_assert(!c->ro_media && !c->ro_mount);
- if (c->ro_error)
- return -EROFS;
-
- lnum = UBIFS_MST_LNUM;
- offs = c->mst_offs + c->mst_node_alsz;
- len = UBIFS_MST_NODE_SZ;
-
- if (offs + UBIFS_MST_NODE_SZ > c->leb_size) {
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- offs = 0;
- }
-
- c->mst_offs = offs;
- c->mst_node->highest_inum = cpu_to_le64(c->highest_inum);
-
- err = ubifs_write_node(c, c->mst_node, len, lnum, offs, UBI_SHORTTERM);
- if (err)
- return err;
-
- lnum += 1;
-
- if (offs == 0) {
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- }
- err = ubifs_write_node(c, c->mst_node, len, lnum, offs, UBI_SHORTTERM);
-
- return err;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/misc.h b/ANDROID_3.4.5/fs/ubifs/misc.h
deleted file mode 100644
index ee7cb5eb..00000000
--- a/ANDROID_3.4.5/fs/ubifs/misc.h
+++ /dev/null
@@ -1,303 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file contains miscellaneous helper functions.
- */
-
-#ifndef __UBIFS_MISC_H__
-#define __UBIFS_MISC_H__
-
-/**
- * ubifs_zn_dirty - check if znode is dirty.
- * @znode: znode to check
- *
- * This helper function returns %1 if @znode is dirty and %0 otherwise.
- */
-static inline int ubifs_zn_dirty(const struct ubifs_znode *znode)
-{
- return !!test_bit(DIRTY_ZNODE, &znode->flags);
-}
-
-/**
- * ubifs_zn_obsolete - check if znode is obsolete.
- * @znode: znode to check
- *
- * This helper function returns %1 if @znode is obsolete and %0 otherwise.
- */
-static inline int ubifs_zn_obsolete(const struct ubifs_znode *znode)
-{
- return !!test_bit(OBSOLETE_ZNODE, &znode->flags);
-}
-
-/**
- * ubifs_zn_cow - check if znode has to be copied on write.
- * @znode: znode to check
- *
- * This helper function returns %1 if @znode is has COW flag set and %0
- * otherwise.
- */
-static inline int ubifs_zn_cow(const struct ubifs_znode *znode)
-{
- return !!test_bit(COW_ZNODE, &znode->flags);
-}
-
-/**
- * ubifs_wake_up_bgt - wake up background thread.
- * @c: UBIFS file-system description object
- */
-static inline void ubifs_wake_up_bgt(struct ubifs_info *c)
-{
- if (c->bgt && !c->need_bgt) {
- c->need_bgt = 1;
- wake_up_process(c->bgt);
- }
-}
-
-/**
- * ubifs_tnc_find_child - find next child in znode.
- * @znode: znode to search at
- * @start: the zbranch index to start at
- *
- * This helper function looks for znode child starting at index @start. Returns
- * the child or %NULL if no children were found.
- */
-static inline struct ubifs_znode *
-ubifs_tnc_find_child(struct ubifs_znode *znode, int start)
-{
- while (start < znode->child_cnt) {
- if (znode->zbranch[start].znode)
- return znode->zbranch[start].znode;
- start += 1;
- }
-
- return NULL;
-}
-
-/**
- * ubifs_inode - get UBIFS inode information by VFS 'struct inode' object.
- * @inode: the VFS 'struct inode' pointer
- */
-static inline struct ubifs_inode *ubifs_inode(const struct inode *inode)
-{
- return container_of(inode, struct ubifs_inode, vfs_inode);
-}
-
-/**
- * ubifs_compr_present - check if compressor was compiled in.
- * @compr_type: compressor type to check
- *
- * This function returns %1 of compressor of type @compr_type is present, and
- * %0 if not.
- */
-static inline int ubifs_compr_present(int compr_type)
-{
- ubifs_assert(compr_type >= 0 && compr_type < UBIFS_COMPR_TYPES_CNT);
- return !!ubifs_compressors[compr_type]->capi_name;
-}
-
-/**
- * ubifs_compr_name - get compressor name string by its type.
- * @compr_type: compressor type
- *
- * This function returns compressor type string.
- */
-static inline const char *ubifs_compr_name(int compr_type)
-{
- ubifs_assert(compr_type >= 0 && compr_type < UBIFS_COMPR_TYPES_CNT);
- return ubifs_compressors[compr_type]->name;
-}
-
-/**
- * ubifs_wbuf_sync - synchronize write-buffer.
- * @wbuf: write-buffer to synchronize
- *
- * This is the same as as 'ubifs_wbuf_sync_nolock()' but it does not assume
- * that the write-buffer is already locked.
- */
-static inline int ubifs_wbuf_sync(struct ubifs_wbuf *wbuf)
-{
- int err;
-
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- err = ubifs_wbuf_sync_nolock(wbuf);
- mutex_unlock(&wbuf->io_mutex);
- return err;
-}
-
-/**
- * ubifs_encode_dev - encode device node IDs.
- * @dev: UBIFS device node information
- * @rdev: device IDs to encode
- *
- * This is a helper function which encodes major/minor numbers of a device node
- * into UBIFS device node description. We use standard Linux "new" and "huge"
- * encodings.
- */
-static inline int ubifs_encode_dev(union ubifs_dev_desc *dev, dev_t rdev)
-{
- if (new_valid_dev(rdev)) {
- dev->new = cpu_to_le32(new_encode_dev(rdev));
- return sizeof(dev->new);
- } else {
- dev->huge = cpu_to_le64(huge_encode_dev(rdev));
- return sizeof(dev->huge);
- }
-}
-
-/**
- * ubifs_add_dirt - add dirty space to LEB properties.
- * @c: the UBIFS file-system description object
- * @lnum: LEB to add dirty space for
- * @dirty: dirty space to add
- *
- * This is a helper function which increased amount of dirty LEB space. Returns
- * zero in case of success and a negative error code in case of failure.
- */
-static inline int ubifs_add_dirt(struct ubifs_info *c, int lnum, int dirty)
-{
- return ubifs_update_one_lp(c, lnum, LPROPS_NC, dirty, 0, 0);
-}
-
-/**
- * ubifs_return_leb - return LEB to lprops.
- * @c: the UBIFS file-system description object
- * @lnum: LEB to return
- *
- * This helper function cleans the "taken" flag of a logical eraseblock in the
- * lprops. Returns zero in case of success and a negative error code in case of
- * failure.
- */
-static inline int ubifs_return_leb(struct ubifs_info *c, int lnum)
-{
- return ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
- LPROPS_TAKEN, 0);
-}
-
-/**
- * ubifs_idx_node_sz - return index node size.
- * @c: the UBIFS file-system description object
- * @child_cnt: number of children of this index node
- */
-static inline int ubifs_idx_node_sz(const struct ubifs_info *c, int child_cnt)
-{
- return UBIFS_IDX_NODE_SZ + (UBIFS_BRANCH_SZ + c->key_len) * child_cnt;
-}
-
-/**
- * ubifs_idx_branch - return pointer to an index branch.
- * @c: the UBIFS file-system description object
- * @idx: index node
- * @bnum: branch number
- */
-static inline
-struct ubifs_branch *ubifs_idx_branch(const struct ubifs_info *c,
- const struct ubifs_idx_node *idx,
- int bnum)
-{
- return (struct ubifs_branch *)((void *)idx->branches +
- (UBIFS_BRANCH_SZ + c->key_len) * bnum);
-}
-
-/**
- * ubifs_idx_key - return pointer to an index key.
- * @c: the UBIFS file-system description object
- * @idx: index node
- */
-static inline void *ubifs_idx_key(const struct ubifs_info *c,
- const struct ubifs_idx_node *idx)
-{
- return (void *)((struct ubifs_branch *)idx->branches)->key;
-}
-
-/**
- * ubifs_current_time - round current time to time granularity.
- * @inode: inode
- */
-static inline struct timespec ubifs_current_time(struct inode *inode)
-{
- return (inode->i_sb->s_time_gran < NSEC_PER_SEC) ?
- current_fs_time(inode->i_sb) : CURRENT_TIME_SEC;
-}
-
-/**
- * ubifs_tnc_lookup - look up a file-system node.
- * @c: UBIFS file-system description object
- * @key: node key to lookup
- * @node: the node is returned here
- *
- * This function look up and reads node with key @key. The caller has to make
- * sure the @node buffer is large enough to fit the node. Returns zero in case
- * of success, %-ENOENT if the node was not found, and a negative error code in
- * case of failure.
- */
-static inline int ubifs_tnc_lookup(struct ubifs_info *c,
- const union ubifs_key *key, void *node)
-{
- return ubifs_tnc_locate(c, key, node, NULL, NULL);
-}
-
-/**
- * ubifs_get_lprops - get reference to LEB properties.
- * @c: the UBIFS file-system description object
- *
- * This function locks lprops. Lprops have to be unlocked by
- * 'ubifs_release_lprops()'.
- */
-static inline void ubifs_get_lprops(struct ubifs_info *c)
-{
- mutex_lock(&c->lp_mutex);
-}
-
-/**
- * ubifs_release_lprops - release lprops lock.
- * @c: the UBIFS file-system description object
- *
- * This function has to be called after each 'ubifs_get_lprops()' call to
- * unlock lprops.
- */
-static inline void ubifs_release_lprops(struct ubifs_info *c)
-{
- ubifs_assert(mutex_is_locked(&c->lp_mutex));
- ubifs_assert(c->lst.empty_lebs >= 0 &&
- c->lst.empty_lebs <= c->main_lebs);
- mutex_unlock(&c->lp_mutex);
-}
-
-/**
- * ubifs_next_log_lnum - switch to the next log LEB.
- * @c: UBIFS file-system description object
- * @lnum: current log LEB
- *
- * This helper function returns the log LEB number which goes next after LEB
- * 'lnum'.
- */
-static inline int ubifs_next_log_lnum(const struct ubifs_info *c, int lnum)
-{
- lnum += 1;
- if (lnum > c->log_last)
- lnum = UBIFS_LOG_LNUM;
-
- return lnum;
-}
-
-#endif /* __UBIFS_MISC_H__ */
diff --git a/ANDROID_3.4.5/fs/ubifs/orphan.c b/ANDROID_3.4.5/fs/ubifs/orphan.c
deleted file mode 100644
index c542c73c..00000000
--- a/ANDROID_3.4.5/fs/ubifs/orphan.c
+++ /dev/null
@@ -1,972 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Author: Adrian Hunter
- */
-
-#include "ubifs.h"
-
-/*
- * An orphan is an inode number whose inode node has been committed to the index
- * with a link count of zero. That happens when an open file is deleted
- * (unlinked) and then a commit is run. In the normal course of events the inode
- * would be deleted when the file is closed. However in the case of an unclean
- * unmount, orphans need to be accounted for. After an unclean unmount, the
- * orphans' inodes must be deleted which means either scanning the entire index
- * looking for them, or keeping a list on flash somewhere. This unit implements
- * the latter approach.
- *
- * The orphan area is a fixed number of LEBs situated between the LPT area and
- * the main area. The number of orphan area LEBs is specified when the file
- * system is created. The minimum number is 1. The size of the orphan area
- * should be so that it can hold the maximum number of orphans that are expected
- * to ever exist at one time.
- *
- * The number of orphans that can fit in a LEB is:
- *
- * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
- *
- * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
- *
- * Orphans are accumulated in a rb-tree. When an inode's link count drops to
- * zero, the inode number is added to the rb-tree. It is removed from the tree
- * when the inode is deleted. Any new orphans that are in the orphan tree when
- * the commit is run, are written to the orphan area in 1 or more orphan nodes.
- * If the orphan area is full, it is consolidated to make space. There is
- * always enough space because validation prevents the user from creating more
- * than the maximum number of orphans allowed.
- */
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-static int dbg_check_orphans(struct ubifs_info *c);
-#else
-#define dbg_check_orphans(c) 0
-#endif
-
-/**
- * ubifs_add_orphan - add an orphan.
- * @c: UBIFS file-system description object
- * @inum: orphan inode number
- *
- * Add an orphan. This function is called when an inodes link count drops to
- * zero.
- */
-int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
-{
- struct ubifs_orphan *orphan, *o;
- struct rb_node **p, *parent = NULL;
-
- orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
- if (!orphan)
- return -ENOMEM;
- orphan->inum = inum;
- orphan->new = 1;
-
- spin_lock(&c->orphan_lock);
- if (c->tot_orphans >= c->max_orphans) {
- spin_unlock(&c->orphan_lock);
- kfree(orphan);
- return -ENFILE;
- }
- p = &c->orph_tree.rb_node;
- while (*p) {
- parent = *p;
- o = rb_entry(parent, struct ubifs_orphan, rb);
- if (inum < o->inum)
- p = &(*p)->rb_left;
- else if (inum > o->inum)
- p = &(*p)->rb_right;
- else {
- dbg_err("orphaned twice");
- spin_unlock(&c->orphan_lock);
- kfree(orphan);
- return 0;
- }
- }
- c->tot_orphans += 1;
- c->new_orphans += 1;
- rb_link_node(&orphan->rb, parent, p);
- rb_insert_color(&orphan->rb, &c->orph_tree);
- list_add_tail(&orphan->list, &c->orph_list);
- list_add_tail(&orphan->new_list, &c->orph_new);
- spin_unlock(&c->orphan_lock);
- dbg_gen("ino %lu", (unsigned long)inum);
- return 0;
-}
-
-/**
- * ubifs_delete_orphan - delete an orphan.
- * @c: UBIFS file-system description object
- * @inum: orphan inode number
- *
- * Delete an orphan. This function is called when an inode is deleted.
- */
-void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
-{
- struct ubifs_orphan *o;
- struct rb_node *p;
-
- spin_lock(&c->orphan_lock);
- p = c->orph_tree.rb_node;
- while (p) {
- o = rb_entry(p, struct ubifs_orphan, rb);
- if (inum < o->inum)
- p = p->rb_left;
- else if (inum > o->inum)
- p = p->rb_right;
- else {
- if (o->dnext) {
- spin_unlock(&c->orphan_lock);
- dbg_gen("deleted twice ino %lu",
- (unsigned long)inum);
- return;
- }
- if (o->cnext) {
- o->dnext = c->orph_dnext;
- c->orph_dnext = o;
- spin_unlock(&c->orphan_lock);
- dbg_gen("delete later ino %lu",
- (unsigned long)inum);
- return;
- }
- rb_erase(p, &c->orph_tree);
- list_del(&o->list);
- c->tot_orphans -= 1;
- if (o->new) {
- list_del(&o->new_list);
- c->new_orphans -= 1;
- }
- spin_unlock(&c->orphan_lock);
- kfree(o);
- dbg_gen("inum %lu", (unsigned long)inum);
- return;
- }
- }
- spin_unlock(&c->orphan_lock);
- dbg_err("missing orphan ino %lu", (unsigned long)inum);
- dbg_dump_stack();
-}
-
-/**
- * ubifs_orphan_start_commit - start commit of orphans.
- * @c: UBIFS file-system description object
- *
- * Start commit of orphans.
- */
-int ubifs_orphan_start_commit(struct ubifs_info *c)
-{
- struct ubifs_orphan *orphan, **last;
-
- spin_lock(&c->orphan_lock);
- last = &c->orph_cnext;
- list_for_each_entry(orphan, &c->orph_new, new_list) {
- ubifs_assert(orphan->new);
- orphan->new = 0;
- *last = orphan;
- last = &orphan->cnext;
- }
- *last = orphan->cnext;
- c->cmt_orphans = c->new_orphans;
- c->new_orphans = 0;
- dbg_cmt("%d orphans to commit", c->cmt_orphans);
- INIT_LIST_HEAD(&c->orph_new);
- if (c->tot_orphans == 0)
- c->no_orphs = 1;
- else
- c->no_orphs = 0;
- spin_unlock(&c->orphan_lock);
- return 0;
-}
-
-/**
- * avail_orphs - calculate available space.
- * @c: UBIFS file-system description object
- *
- * This function returns the number of orphans that can be written in the
- * available space.
- */
-static int avail_orphs(struct ubifs_info *c)
-{
- int avail_lebs, avail, gap;
-
- avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
- avail = avail_lebs *
- ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
- gap = c->leb_size - c->ohead_offs;
- if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
- avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
- return avail;
-}
-
-/**
- * tot_avail_orphs - calculate total space.
- * @c: UBIFS file-system description object
- *
- * This function returns the number of orphans that can be written in half
- * the total space. That leaves half the space for adding new orphans.
- */
-static int tot_avail_orphs(struct ubifs_info *c)
-{
- int avail_lebs, avail;
-
- avail_lebs = c->orph_lebs;
- avail = avail_lebs *
- ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
- return avail / 2;
-}
-
-/**
- * do_write_orph_node - write a node to the orphan head.
- * @c: UBIFS file-system description object
- * @len: length of node
- * @atomic: write atomically
- *
- * This function writes a node to the orphan head from the orphan buffer. If
- * %atomic is not zero, then the write is done atomically. On success, %0 is
- * returned, otherwise a negative error code is returned.
- */
-static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
-{
- int err = 0;
-
- if (atomic) {
- ubifs_assert(c->ohead_offs == 0);
- ubifs_prepare_node(c, c->orph_buf, len, 1);
- len = ALIGN(len, c->min_io_size);
- err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
- UBI_SHORTTERM);
- } else {
- if (c->ohead_offs == 0) {
- /* Ensure LEB has been unmapped */
- err = ubifs_leb_unmap(c, c->ohead_lnum);
- if (err)
- return err;
- }
- err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
- c->ohead_offs, UBI_SHORTTERM);
- }
- return err;
-}
-
-/**
- * write_orph_node - write an orphan node.
- * @c: UBIFS file-system description object
- * @atomic: write atomically
- *
- * This function builds an orphan node from the cnext list and writes it to the
- * orphan head. On success, %0 is returned, otherwise a negative error code
- * is returned.
- */
-static int write_orph_node(struct ubifs_info *c, int atomic)
-{
- struct ubifs_orphan *orphan, *cnext;
- struct ubifs_orph_node *orph;
- int gap, err, len, cnt, i;
-
- ubifs_assert(c->cmt_orphans > 0);
- gap = c->leb_size - c->ohead_offs;
- if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
- c->ohead_lnum += 1;
- c->ohead_offs = 0;
- gap = c->leb_size;
- if (c->ohead_lnum > c->orph_last) {
- /*
- * We limit the number of orphans so that this should
- * never happen.
- */
- ubifs_err("out of space in orphan area");
- return -EINVAL;
- }
- }
- cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
- if (cnt > c->cmt_orphans)
- cnt = c->cmt_orphans;
- len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
- ubifs_assert(c->orph_buf);
- orph = c->orph_buf;
- orph->ch.node_type = UBIFS_ORPH_NODE;
- spin_lock(&c->orphan_lock);
- cnext = c->orph_cnext;
- for (i = 0; i < cnt; i++) {
- orphan = cnext;
- orph->inos[i] = cpu_to_le64(orphan->inum);
- cnext = orphan->cnext;
- orphan->cnext = NULL;
- }
- c->orph_cnext = cnext;
- c->cmt_orphans -= cnt;
- spin_unlock(&c->orphan_lock);
- if (c->cmt_orphans)
- orph->cmt_no = cpu_to_le64(c->cmt_no);
- else
- /* Mark the last node of the commit */
- orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
- ubifs_assert(c->ohead_offs + len <= c->leb_size);
- ubifs_assert(c->ohead_lnum >= c->orph_first);
- ubifs_assert(c->ohead_lnum <= c->orph_last);
- err = do_write_orph_node(c, len, atomic);
- c->ohead_offs += ALIGN(len, c->min_io_size);
- c->ohead_offs = ALIGN(c->ohead_offs, 8);
- return err;
-}
-
-/**
- * write_orph_nodes - write orphan nodes until there are no more to commit.
- * @c: UBIFS file-system description object
- * @atomic: write atomically
- *
- * This function writes orphan nodes for all the orphans to commit. On success,
- * %0 is returned, otherwise a negative error code is returned.
- */
-static int write_orph_nodes(struct ubifs_info *c, int atomic)
-{
- int err;
-
- while (c->cmt_orphans > 0) {
- err = write_orph_node(c, atomic);
- if (err)
- return err;
- }
- if (atomic) {
- int lnum;
-
- /* Unmap any unused LEBs after consolidation */
- lnum = c->ohead_lnum + 1;
- for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- }
- }
- return 0;
-}
-
-/**
- * consolidate - consolidate the orphan area.
- * @c: UBIFS file-system description object
- *
- * This function enables consolidation by putting all the orphans into the list
- * to commit. The list is in the order that the orphans were added, and the
- * LEBs are written atomically in order, so at no time can orphans be lost by
- * an unclean unmount.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int consolidate(struct ubifs_info *c)
-{
- int tot_avail = tot_avail_orphs(c), err = 0;
-
- spin_lock(&c->orphan_lock);
- dbg_cmt("there is space for %d orphans and there are %d",
- tot_avail, c->tot_orphans);
- if (c->tot_orphans - c->new_orphans <= tot_avail) {
- struct ubifs_orphan *orphan, **last;
- int cnt = 0;
-
- /* Change the cnext list to include all non-new orphans */
- last = &c->orph_cnext;
- list_for_each_entry(orphan, &c->orph_list, list) {
- if (orphan->new)
- continue;
- *last = orphan;
- last = &orphan->cnext;
- cnt += 1;
- }
- *last = orphan->cnext;
- ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
- c->cmt_orphans = cnt;
- c->ohead_lnum = c->orph_first;
- c->ohead_offs = 0;
- } else {
- /*
- * We limit the number of orphans so that this should
- * never happen.
- */
- ubifs_err("out of space in orphan area");
- err = -EINVAL;
- }
- spin_unlock(&c->orphan_lock);
- return err;
-}
-
-/**
- * commit_orphans - commit orphans.
- * @c: UBIFS file-system description object
- *
- * This function commits orphans to flash. On success, %0 is returned,
- * otherwise a negative error code is returned.
- */
-static int commit_orphans(struct ubifs_info *c)
-{
- int avail, atomic = 0, err;
-
- ubifs_assert(c->cmt_orphans > 0);
- avail = avail_orphs(c);
- if (avail < c->cmt_orphans) {
- /* Not enough space to write new orphans, so consolidate */
- err = consolidate(c);
- if (err)
- return err;
- atomic = 1;
- }
- err = write_orph_nodes(c, atomic);
- return err;
-}
-
-/**
- * erase_deleted - erase the orphans marked for deletion.
- * @c: UBIFS file-system description object
- *
- * During commit, the orphans being committed cannot be deleted, so they are
- * marked for deletion and deleted by this function. Also, the recovery
- * adds killed orphans to the deletion list, and therefore they are deleted
- * here too.
- */
-static void erase_deleted(struct ubifs_info *c)
-{
- struct ubifs_orphan *orphan, *dnext;
-
- spin_lock(&c->orphan_lock);
- dnext = c->orph_dnext;
- while (dnext) {
- orphan = dnext;
- dnext = orphan->dnext;
- ubifs_assert(!orphan->new);
- rb_erase(&orphan->rb, &c->orph_tree);
- list_del(&orphan->list);
- c->tot_orphans -= 1;
- dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
- kfree(orphan);
- }
- c->orph_dnext = NULL;
- spin_unlock(&c->orphan_lock);
-}
-
-/**
- * ubifs_orphan_end_commit - end commit of orphans.
- * @c: UBIFS file-system description object
- *
- * End commit of orphans.
- */
-int ubifs_orphan_end_commit(struct ubifs_info *c)
-{
- int err;
-
- if (c->cmt_orphans != 0) {
- err = commit_orphans(c);
- if (err)
- return err;
- }
- erase_deleted(c);
- err = dbg_check_orphans(c);
- return err;
-}
-
-/**
- * ubifs_clear_orphans - erase all LEBs used for orphans.
- * @c: UBIFS file-system description object
- *
- * If recovery is not required, then the orphans from the previous session
- * are not needed. This function locates the LEBs used to record
- * orphans, and un-maps them.
- */
-int ubifs_clear_orphans(struct ubifs_info *c)
-{
- int lnum, err;
-
- for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- }
- c->ohead_lnum = c->orph_first;
- c->ohead_offs = 0;
- return 0;
-}
-
-/**
- * insert_dead_orphan - insert an orphan.
- * @c: UBIFS file-system description object
- * @inum: orphan inode number
- *
- * This function is a helper to the 'do_kill_orphans()' function. The orphan
- * must be kept until the next commit, so it is added to the rb-tree and the
- * deletion list.
- */
-static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
-{
- struct ubifs_orphan *orphan, *o;
- struct rb_node **p, *parent = NULL;
-
- orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
- if (!orphan)
- return -ENOMEM;
- orphan->inum = inum;
-
- p = &c->orph_tree.rb_node;
- while (*p) {
- parent = *p;
- o = rb_entry(parent, struct ubifs_orphan, rb);
- if (inum < o->inum)
- p = &(*p)->rb_left;
- else if (inum > o->inum)
- p = &(*p)->rb_right;
- else {
- /* Already added - no problem */
- kfree(orphan);
- return 0;
- }
- }
- c->tot_orphans += 1;
- rb_link_node(&orphan->rb, parent, p);
- rb_insert_color(&orphan->rb, &c->orph_tree);
- list_add_tail(&orphan->list, &c->orph_list);
- orphan->dnext = c->orph_dnext;
- c->orph_dnext = orphan;
- dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
- c->new_orphans, c->tot_orphans);
- return 0;
-}
-
-/**
- * do_kill_orphans - remove orphan inodes from the index.
- * @c: UBIFS file-system description object
- * @sleb: scanned LEB
- * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
- * @outofdate: whether the LEB is out of date is returned here
- * @last_flagged: whether the end orphan node is encountered
- *
- * This function is a helper to the 'kill_orphans()' function. It goes through
- * every orphan node in a LEB and for every inode number recorded, removes
- * all keys for that inode from the TNC.
- */
-static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- unsigned long long *last_cmt_no, int *outofdate,
- int *last_flagged)
-{
- struct ubifs_scan_node *snod;
- struct ubifs_orph_node *orph;
- unsigned long long cmt_no;
- ino_t inum;
- int i, n, err, first = 1;
-
- list_for_each_entry(snod, &sleb->nodes, list) {
- if (snod->type != UBIFS_ORPH_NODE) {
- ubifs_err("invalid node type %d in orphan area at "
- "%d:%d", snod->type, sleb->lnum, snod->offs);
- dbg_dump_node(c, snod->node);
- return -EINVAL;
- }
-
- orph = snod->node;
-
- /* Check commit number */
- cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
- /*
- * The commit number on the master node may be less, because
- * of a failed commit. If there are several failed commits in a
- * row, the commit number written on orphan nodes will continue
- * to increase (because the commit number is adjusted here) even
- * though the commit number on the master node stays the same
- * because the master node has not been re-written.
- */
- if (cmt_no > c->cmt_no)
- c->cmt_no = cmt_no;
- if (cmt_no < *last_cmt_no && *last_flagged) {
- /*
- * The last orphan node had a higher commit number and
- * was flagged as the last written for that commit
- * number. That makes this orphan node, out of date.
- */
- if (!first) {
- ubifs_err("out of order commit number %llu in "
- "orphan node at %d:%d",
- cmt_no, sleb->lnum, snod->offs);
- dbg_dump_node(c, snod->node);
- return -EINVAL;
- }
- dbg_rcvry("out of date LEB %d", sleb->lnum);
- *outofdate = 1;
- return 0;
- }
-
- if (first)
- first = 0;
-
- n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
- for (i = 0; i < n; i++) {
- inum = le64_to_cpu(orph->inos[i]);
- dbg_rcvry("deleting orphaned inode %lu",
- (unsigned long)inum);
- err = ubifs_tnc_remove_ino(c, inum);
- if (err)
- return err;
- err = insert_dead_orphan(c, inum);
- if (err)
- return err;
- }
-
- *last_cmt_no = cmt_no;
- if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
- dbg_rcvry("last orph node for commit %llu at %d:%d",
- cmt_no, sleb->lnum, snod->offs);
- *last_flagged = 1;
- } else
- *last_flagged = 0;
- }
-
- return 0;
-}
-
-/**
- * kill_orphans - remove all orphan inodes from the index.
- * @c: UBIFS file-system description object
- *
- * If recovery is required, then orphan inodes recorded during the previous
- * session (which ended with an unclean unmount) must be deleted from the index.
- * This is done by updating the TNC, but since the index is not updated until
- * the next commit, the LEBs where the orphan information is recorded are not
- * erased until the next commit.
- */
-static int kill_orphans(struct ubifs_info *c)
-{
- unsigned long long last_cmt_no = 0;
- int lnum, err = 0, outofdate = 0, last_flagged = 0;
-
- c->ohead_lnum = c->orph_first;
- c->ohead_offs = 0;
- /* Check no-orphans flag and skip this if no orphans */
- if (c->no_orphs) {
- dbg_rcvry("no orphans");
- return 0;
- }
- /*
- * Orph nodes always start at c->orph_first and are written to each
- * successive LEB in turn. Generally unused LEBs will have been unmapped
- * but may contain out of date orphan nodes if the unmap didn't go
- * through. In addition, the last orphan node written for each commit is
- * marked (top bit of orph->cmt_no is set to 1). It is possible that
- * there are orphan nodes from the next commit (i.e. the commit did not
- * complete successfully). In that case, no orphans will have been lost
- * due to the way that orphans are written, and any orphans added will
- * be valid orphans anyway and so can be deleted.
- */
- for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
- struct ubifs_scan_leb *sleb;
-
- dbg_rcvry("LEB %d", lnum);
- sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
- if (IS_ERR(sleb)) {
- if (PTR_ERR(sleb) == -EUCLEAN)
- sleb = ubifs_recover_leb(c, lnum, 0,
- c->sbuf, -1);
- if (IS_ERR(sleb)) {
- err = PTR_ERR(sleb);
- break;
- }
- }
- err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
- &last_flagged);
- if (err || outofdate) {
- ubifs_scan_destroy(sleb);
- break;
- }
- if (sleb->endpt) {
- c->ohead_lnum = lnum;
- c->ohead_offs = sleb->endpt;
- }
- ubifs_scan_destroy(sleb);
- }
- return err;
-}
-
-/**
- * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
- * @c: UBIFS file-system description object
- * @unclean: indicates recovery from unclean unmount
- * @read_only: indicates read only mount
- *
- * This function is called when mounting to erase orphans from the previous
- * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
- * orphans are deleted.
- */
-int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
-{
- int err = 0;
-
- c->max_orphans = tot_avail_orphs(c);
-
- if (!read_only) {
- c->orph_buf = vmalloc(c->leb_size);
- if (!c->orph_buf)
- return -ENOMEM;
- }
-
- if (unclean)
- err = kill_orphans(c);
- else if (!read_only)
- err = ubifs_clear_orphans(c);
-
- return err;
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-struct check_orphan {
- struct rb_node rb;
- ino_t inum;
-};
-
-struct check_info {
- unsigned long last_ino;
- unsigned long tot_inos;
- unsigned long missing;
- unsigned long long leaf_cnt;
- struct ubifs_ino_node *node;
- struct rb_root root;
-};
-
-static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
-{
- struct ubifs_orphan *o;
- struct rb_node *p;
-
- spin_lock(&c->orphan_lock);
- p = c->orph_tree.rb_node;
- while (p) {
- o = rb_entry(p, struct ubifs_orphan, rb);
- if (inum < o->inum)
- p = p->rb_left;
- else if (inum > o->inum)
- p = p->rb_right;
- else {
- spin_unlock(&c->orphan_lock);
- return 1;
- }
- }
- spin_unlock(&c->orphan_lock);
- return 0;
-}
-
-static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
-{
- struct check_orphan *orphan, *o;
- struct rb_node **p, *parent = NULL;
-
- orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
- if (!orphan)
- return -ENOMEM;
- orphan->inum = inum;
-
- p = &root->rb_node;
- while (*p) {
- parent = *p;
- o = rb_entry(parent, struct check_orphan, rb);
- if (inum < o->inum)
- p = &(*p)->rb_left;
- else if (inum > o->inum)
- p = &(*p)->rb_right;
- else {
- kfree(orphan);
- return 0;
- }
- }
- rb_link_node(&orphan->rb, parent, p);
- rb_insert_color(&orphan->rb, root);
- return 0;
-}
-
-static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
-{
- struct check_orphan *o;
- struct rb_node *p;
-
- p = root->rb_node;
- while (p) {
- o = rb_entry(p, struct check_orphan, rb);
- if (inum < o->inum)
- p = p->rb_left;
- else if (inum > o->inum)
- p = p->rb_right;
- else
- return 1;
- }
- return 0;
-}
-
-static void dbg_free_check_tree(struct rb_root *root)
-{
- struct rb_node *this = root->rb_node;
- struct check_orphan *o;
-
- while (this) {
- if (this->rb_left) {
- this = this->rb_left;
- continue;
- } else if (this->rb_right) {
- this = this->rb_right;
- continue;
- }
- o = rb_entry(this, struct check_orphan, rb);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &o->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
- kfree(o);
- }
-}
-
-static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- void *priv)
-{
- struct check_info *ci = priv;
- ino_t inum;
- int err;
-
- inum = key_inum(c, &zbr->key);
- if (inum != ci->last_ino) {
- /* Lowest node type is the inode node, so it comes first */
- if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
- ubifs_err("found orphan node ino %lu, type %d",
- (unsigned long)inum, key_type(c, &zbr->key));
- ci->last_ino = inum;
- ci->tot_inos += 1;
- err = ubifs_tnc_read_node(c, zbr, ci->node);
- if (err) {
- ubifs_err("node read failed, error %d", err);
- return err;
- }
- if (ci->node->nlink == 0)
- /* Must be recorded as an orphan */
- if (!dbg_find_check_orphan(&ci->root, inum) &&
- !dbg_find_orphan(c, inum)) {
- ubifs_err("missing orphan, ino %lu",
- (unsigned long)inum);
- ci->missing += 1;
- }
- }
- ci->leaf_cnt += 1;
- return 0;
-}
-
-static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
-{
- struct ubifs_scan_node *snod;
- struct ubifs_orph_node *orph;
- ino_t inum;
- int i, n, err;
-
- list_for_each_entry(snod, &sleb->nodes, list) {
- cond_resched();
- if (snod->type != UBIFS_ORPH_NODE)
- continue;
- orph = snod->node;
- n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
- for (i = 0; i < n; i++) {
- inum = le64_to_cpu(orph->inos[i]);
- err = dbg_ins_check_orphan(&ci->root, inum);
- if (err)
- return err;
- }
- }
- return 0;
-}
-
-static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
-{
- int lnum, err = 0;
- void *buf;
-
- /* Check no-orphans flag and skip this if no orphans */
- if (c->no_orphs)
- return 0;
-
- buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
- if (!buf) {
- ubifs_err("cannot allocate memory to check orphans");
- return 0;
- }
-
- for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
- struct ubifs_scan_leb *sleb;
-
- sleb = ubifs_scan(c, lnum, 0, buf, 0);
- if (IS_ERR(sleb)) {
- err = PTR_ERR(sleb);
- break;
- }
-
- err = dbg_read_orphans(ci, sleb);
- ubifs_scan_destroy(sleb);
- if (err)
- break;
- }
-
- vfree(buf);
- return err;
-}
-
-static int dbg_check_orphans(struct ubifs_info *c)
-{
- struct check_info ci;
- int err;
-
- if (!dbg_is_chk_orph(c))
- return 0;
-
- ci.last_ino = 0;
- ci.tot_inos = 0;
- ci.missing = 0;
- ci.leaf_cnt = 0;
- ci.root = RB_ROOT;
- ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
- if (!ci.node) {
- ubifs_err("out of memory");
- return -ENOMEM;
- }
-
- err = dbg_scan_orphans(c, &ci);
- if (err)
- goto out;
-
- err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
- if (err) {
- ubifs_err("cannot scan TNC, error %d", err);
- goto out;
- }
-
- if (ci.missing) {
- ubifs_err("%lu missing orphan(s)", ci.missing);
- err = -EINVAL;
- goto out;
- }
-
- dbg_cmt("last inode number is %lu", ci.last_ino);
- dbg_cmt("total number of inodes is %lu", ci.tot_inos);
- dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
-
-out:
- dbg_free_check_tree(&ci.root);
- kfree(ci.node);
- return err;
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/recovery.c b/ANDROID_3.4.5/fs/ubifs/recovery.c
deleted file mode 100644
index 0398d717..00000000
--- a/ANDROID_3.4.5/fs/ubifs/recovery.c
+++ /dev/null
@@ -1,1572 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements functions needed to recover from unclean un-mounts.
- * When UBIFS is mounted, it checks a flag on the master node to determine if
- * an un-mount was completed successfully. If not, the process of mounting
- * incorporates additional checking and fixing of on-flash data structures.
- * UBIFS always cleans away all remnants of an unclean un-mount, so that
- * errors do not accumulate. However UBIFS defers recovery if it is mounted
- * read-only, and the flash is not modified in that case.
- *
- * The general UBIFS approach to the recovery is that it recovers from
- * corruptions which could be caused by power cuts, but it refuses to recover
- * from corruption caused by other reasons. And UBIFS tries to distinguish
- * between these 2 reasons of corruptions and silently recover in the former
- * case and loudly complain in the latter case.
- *
- * UBIFS writes only to erased LEBs, so it writes only to the flash space
- * containing only 0xFFs. UBIFS also always writes strictly from the beginning
- * of the LEB to the end. And UBIFS assumes that the underlying flash media
- * writes in @c->max_write_size bytes at a time.
- *
- * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
- * I/O unit corresponding to offset X to contain corrupted data, all the
- * following min. I/O units have to contain empty space (all 0xFFs). If this is
- * not true, the corruption cannot be the result of a power cut, and UBIFS
- * refuses to mount.
- */
-
-#include <linux/crc32.h>
-#include <linux/slab.h>
-#include "ubifs.h"
-
-/**
- * is_empty - determine whether a buffer is empty (contains all 0xff).
- * @buf: buffer to clean
- * @len: length of buffer
- *
- * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
- * %0 is returned.
- */
-static int is_empty(void *buf, int len)
-{
- uint8_t *p = buf;
- int i;
-
- for (i = 0; i < len; i++)
- if (*p++ != 0xff)
- return 0;
- return 1;
-}
-
-/**
- * first_non_ff - find offset of the first non-0xff byte.
- * @buf: buffer to search in
- * @len: length of buffer
- *
- * This function returns offset of the first non-0xff byte in @buf or %-1 if
- * the buffer contains only 0xff bytes.
- */
-static int first_non_ff(void *buf, int len)
-{
- uint8_t *p = buf;
- int i;
-
- for (i = 0; i < len; i++)
- if (*p++ != 0xff)
- return i;
- return -1;
-}
-
-/**
- * get_master_node - get the last valid master node allowing for corruption.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @pbuf: buffer containing the LEB read, is returned here
- * @mst: master node, if found, is returned here
- * @cor: corruption, if found, is returned here
- *
- * This function allocates a buffer, reads the LEB into it, and finds and
- * returns the last valid master node allowing for one area of corruption.
- * The corrupt area, if there is one, must be consistent with the assumption
- * that it is the result of an unclean unmount while the master node was being
- * written. Under those circumstances, it is valid to use the previously written
- * master node.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
- struct ubifs_mst_node **mst, void **cor)
-{
- const int sz = c->mst_node_alsz;
- int err, offs, len;
- void *sbuf, *buf;
-
- sbuf = vmalloc(c->leb_size);
- if (!sbuf)
- return -ENOMEM;
-
- err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
- if (err && err != -EBADMSG)
- goto out_free;
-
- /* Find the first position that is definitely not a node */
- offs = 0;
- buf = sbuf;
- len = c->leb_size;
- while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
- struct ubifs_ch *ch = buf;
-
- if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
- break;
- offs += sz;
- buf += sz;
- len -= sz;
- }
- /* See if there was a valid master node before that */
- if (offs) {
- int ret;
-
- offs -= sz;
- buf -= sz;
- len += sz;
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
- if (ret != SCANNED_A_NODE && offs) {
- /* Could have been corruption so check one place back */
- offs -= sz;
- buf -= sz;
- len += sz;
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
- if (ret != SCANNED_A_NODE)
- /*
- * We accept only one area of corruption because
- * we are assuming that it was caused while
- * trying to write a master node.
- */
- goto out_err;
- }
- if (ret == SCANNED_A_NODE) {
- struct ubifs_ch *ch = buf;
-
- if (ch->node_type != UBIFS_MST_NODE)
- goto out_err;
- dbg_rcvry("found a master node at %d:%d", lnum, offs);
- *mst = buf;
- offs += sz;
- buf += sz;
- len -= sz;
- }
- }
- /* Check for corruption */
- if (offs < c->leb_size) {
- if (!is_empty(buf, min_t(int, len, sz))) {
- *cor = buf;
- dbg_rcvry("found corruption at %d:%d", lnum, offs);
- }
- offs += sz;
- buf += sz;
- len -= sz;
- }
- /* Check remaining empty space */
- if (offs < c->leb_size)
- if (!is_empty(buf, len))
- goto out_err;
- *pbuf = sbuf;
- return 0;
-
-out_err:
- err = -EINVAL;
-out_free:
- vfree(sbuf);
- *mst = NULL;
- *cor = NULL;
- return err;
-}
-
-/**
- * write_rcvrd_mst_node - write recovered master node.
- * @c: UBIFS file-system description object
- * @mst: master node
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int write_rcvrd_mst_node(struct ubifs_info *c,
- struct ubifs_mst_node *mst)
-{
- int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
- __le32 save_flags;
-
- dbg_rcvry("recovery");
-
- save_flags = mst->flags;
- mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
-
- ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
- err = ubifs_leb_change(c, lnum, mst, sz, UBI_SHORTTERM);
- if (err)
- goto out;
- err = ubifs_leb_change(c, lnum + 1, mst, sz, UBI_SHORTTERM);
- if (err)
- goto out;
-out:
- mst->flags = save_flags;
- return err;
-}
-
-/**
- * ubifs_recover_master_node - recover the master node.
- * @c: UBIFS file-system description object
- *
- * This function recovers the master node from corruption that may occur due to
- * an unclean unmount.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_recover_master_node(struct ubifs_info *c)
-{
- void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
- struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
- const int sz = c->mst_node_alsz;
- int err, offs1, offs2;
-
- dbg_rcvry("recovery");
-
- err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
- if (err)
- goto out_free;
-
- err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
- if (err)
- goto out_free;
-
- if (mst1) {
- offs1 = (void *)mst1 - buf1;
- if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
- (offs1 == 0 && !cor1)) {
- /*
- * mst1 was written by recovery at offset 0 with no
- * corruption.
- */
- dbg_rcvry("recovery recovery");
- mst = mst1;
- } else if (mst2) {
- offs2 = (void *)mst2 - buf2;
- if (offs1 == offs2) {
- /* Same offset, so must be the same */
- if (memcmp((void *)mst1 + UBIFS_CH_SZ,
- (void *)mst2 + UBIFS_CH_SZ,
- UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
- goto out_err;
- mst = mst1;
- } else if (offs2 + sz == offs1) {
- /* 1st LEB was written, 2nd was not */
- if (cor1)
- goto out_err;
- mst = mst1;
- } else if (offs1 == 0 &&
- c->leb_size - offs2 - sz < sz) {
- /* 1st LEB was unmapped and written, 2nd not */
- if (cor1)
- goto out_err;
- mst = mst1;
- } else
- goto out_err;
- } else {
- /*
- * 2nd LEB was unmapped and about to be written, so
- * there must be only one master node in the first LEB
- * and no corruption.
- */
- if (offs1 != 0 || cor1)
- goto out_err;
- mst = mst1;
- }
- } else {
- if (!mst2)
- goto out_err;
- /*
- * 1st LEB was unmapped and about to be written, so there must
- * be no room left in 2nd LEB.
- */
- offs2 = (void *)mst2 - buf2;
- if (offs2 + sz + sz <= c->leb_size)
- goto out_err;
- mst = mst2;
- }
-
- ubifs_msg("recovered master node from LEB %d",
- (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
-
- memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
-
- if (c->ro_mount) {
- /* Read-only mode. Keep a copy for switching to rw mode */
- c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
- if (!c->rcvrd_mst_node) {
- err = -ENOMEM;
- goto out_free;
- }
- memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
-
- /*
- * We had to recover the master node, which means there was an
- * unclean reboot. However, it is possible that the master node
- * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
- * E.g., consider the following chain of events:
- *
- * 1. UBIFS was cleanly unmounted, so the master node is clean
- * 2. UBIFS is being mounted R/W and starts changing the master
- * node in the first (%UBIFS_MST_LNUM). A power cut happens,
- * so this LEB ends up with some amount of garbage at the
- * end.
- * 3. UBIFS is being mounted R/O. We reach this place and
- * recover the master node from the second LEB
- * (%UBIFS_MST_LNUM + 1). But we cannot update the media
- * because we are being mounted R/O. We have to defer the
- * operation.
- * 4. However, this master node (@c->mst_node) is marked as
- * clean (since the step 1). And if we just return, the
- * mount code will be confused and won't recover the master
- * node when it is re-mounter R/W later.
- *
- * Thus, to force the recovery by marking the master node as
- * dirty.
- */
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- } else {
- /* Write the recovered master node */
- c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
- err = write_rcvrd_mst_node(c, c->mst_node);
- if (err)
- goto out_free;
- }
-
- vfree(buf2);
- vfree(buf1);
-
- return 0;
-
-out_err:
- err = -EINVAL;
-out_free:
- ubifs_err("failed to recover master node");
- if (mst1) {
- dbg_err("dumping first master node");
- dbg_dump_node(c, mst1);
- }
- if (mst2) {
- dbg_err("dumping second master node");
- dbg_dump_node(c, mst2);
- }
- vfree(buf2);
- vfree(buf1);
- return err;
-}
-
-/**
- * ubifs_write_rcvrd_mst_node - write the recovered master node.
- * @c: UBIFS file-system description object
- *
- * This function writes the master node that was recovered during mounting in
- * read-only mode and must now be written because we are remounting rw.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
-{
- int err;
-
- if (!c->rcvrd_mst_node)
- return 0;
- c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
- if (err)
- return err;
- kfree(c->rcvrd_mst_node);
- c->rcvrd_mst_node = NULL;
- return 0;
-}
-
-/**
- * is_last_write - determine if an offset was in the last write to a LEB.
- * @c: UBIFS file-system description object
- * @buf: buffer to check
- * @offs: offset to check
- *
- * This function returns %1 if @offs was in the last write to the LEB whose data
- * is in @buf, otherwise %0 is returned. The determination is made by checking
- * for subsequent empty space starting from the next @c->max_write_size
- * boundary.
- */
-static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
-{
- int empty_offs, check_len;
- uint8_t *p;
-
- /*
- * Round up to the next @c->max_write_size boundary i.e. @offs is in
- * the last wbuf written. After that should be empty space.
- */
- empty_offs = ALIGN(offs + 1, c->max_write_size);
- check_len = c->leb_size - empty_offs;
- p = buf + empty_offs - offs;
- return is_empty(p, check_len);
-}
-
-/**
- * clean_buf - clean the data from an LEB sitting in a buffer.
- * @c: UBIFS file-system description object
- * @buf: buffer to clean
- * @lnum: LEB number to clean
- * @offs: offset from which to clean
- * @len: length of buffer
- *
- * This function pads up to the next min_io_size boundary (if there is one) and
- * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
- * @c->min_io_size boundary.
- */
-static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
- int *offs, int *len)
-{
- int empty_offs, pad_len;
-
- lnum = lnum;
- dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
-
- ubifs_assert(!(*offs & 7));
- empty_offs = ALIGN(*offs, c->min_io_size);
- pad_len = empty_offs - *offs;
- ubifs_pad(c, *buf, pad_len);
- *offs += pad_len;
- *buf += pad_len;
- *len -= pad_len;
- memset(*buf, 0xff, c->leb_size - empty_offs);
-}
-
-/**
- * no_more_nodes - determine if there are no more nodes in a buffer.
- * @c: UBIFS file-system description object
- * @buf: buffer to check
- * @len: length of buffer
- * @lnum: LEB number of the LEB from which @buf was read
- * @offs: offset from which @buf was read
- *
- * This function ensures that the corrupted node at @offs is the last thing
- * written to a LEB. This function returns %1 if more data is not found and
- * %0 if more data is found.
- */
-static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
- int lnum, int offs)
-{
- struct ubifs_ch *ch = buf;
- int skip, dlen = le32_to_cpu(ch->len);
-
- /* Check for empty space after the corrupt node's common header */
- skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
- if (is_empty(buf + skip, len - skip))
- return 1;
- /*
- * The area after the common header size is not empty, so the common
- * header must be intact. Check it.
- */
- if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
- dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
- return 0;
- }
- /* Now we know the corrupt node's length we can skip over it */
- skip = ALIGN(offs + dlen, c->max_write_size) - offs;
- /* After which there should be empty space */
- if (is_empty(buf + skip, len - skip))
- return 1;
- dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
- return 0;
-}
-
-/**
- * fix_unclean_leb - fix an unclean LEB.
- * @c: UBIFS file-system description object
- * @sleb: scanned LEB information
- * @start: offset where scan started
- */
-static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- int start)
-{
- int lnum = sleb->lnum, endpt = start;
-
- /* Get the end offset of the last node we are keeping */
- if (!list_empty(&sleb->nodes)) {
- struct ubifs_scan_node *snod;
-
- snod = list_entry(sleb->nodes.prev,
- struct ubifs_scan_node, list);
- endpt = snod->offs + snod->len;
- }
-
- if (c->ro_mount && !c->remounting_rw) {
- /* Add to recovery list */
- struct ubifs_unclean_leb *ucleb;
-
- dbg_rcvry("need to fix LEB %d start %d endpt %d",
- lnum, start, sleb->endpt);
- ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
- if (!ucleb)
- return -ENOMEM;
- ucleb->lnum = lnum;
- ucleb->endpt = endpt;
- list_add_tail(&ucleb->list, &c->unclean_leb_list);
- } else {
- /* Write the fixed LEB back to flash */
- int err;
-
- dbg_rcvry("fixing LEB %d start %d endpt %d",
- lnum, start, sleb->endpt);
- if (endpt == 0) {
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- } else {
- int len = ALIGN(endpt, c->min_io_size);
-
- if (start) {
- err = ubifs_leb_read(c, lnum, sleb->buf, 0,
- start, 1);
- if (err)
- return err;
- }
- /* Pad to min_io_size */
- if (len > endpt) {
- int pad_len = len - ALIGN(endpt, 8);
-
- if (pad_len > 0) {
- void *buf = sleb->buf + len - pad_len;
-
- ubifs_pad(c, buf, pad_len);
- }
- }
- err = ubifs_leb_change(c, lnum, sleb->buf, len,
- UBI_UNKNOWN);
- if (err)
- return err;
- }
- }
- return 0;
-}
-
-/**
- * drop_last_group - drop the last group of nodes.
- * @sleb: scanned LEB information
- * @offs: offset of dropped nodes is returned here
- *
- * This is a helper function for 'ubifs_recover_leb()' which drops the last
- * group of nodes of the scanned LEB.
- */
-static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
-{
- while (!list_empty(&sleb->nodes)) {
- struct ubifs_scan_node *snod;
- struct ubifs_ch *ch;
-
- snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
- list);
- ch = snod->node;
- if (ch->group_type != UBIFS_IN_NODE_GROUP)
- break;
-
- dbg_rcvry("dropping grouped node at %d:%d",
- sleb->lnum, snod->offs);
- *offs = snod->offs;
- list_del(&snod->list);
- kfree(snod);
- sleb->nodes_cnt -= 1;
- }
-}
-
-/**
- * drop_last_node - drop the last node.
- * @sleb: scanned LEB information
- * @offs: offset of dropped nodes is returned here
- * @grouped: non-zero if whole group of nodes have to be dropped
- *
- * This is a helper function for 'ubifs_recover_leb()' which drops the last
- * node of the scanned LEB.
- */
-static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
-{
- struct ubifs_scan_node *snod;
-
- if (!list_empty(&sleb->nodes)) {
- snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
- list);
-
- dbg_rcvry("dropping last node at %d:%d", sleb->lnum, snod->offs);
- *offs = snod->offs;
- list_del(&snod->list);
- kfree(snod);
- sleb->nodes_cnt -= 1;
- }
-}
-
-/**
- * ubifs_recover_leb - scan and recover a LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @offs: offset
- * @sbuf: LEB-sized buffer to use
- * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
- * belong to any journal head)
- *
- * This function does a scan of a LEB, but caters for errors that might have
- * been caused by the unclean unmount from which we are attempting to recover.
- * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
- * found, and a negative error code in case of failure.
- */
-struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf, int jhead)
-{
- int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
- int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
- struct ubifs_scan_leb *sleb;
- void *buf = sbuf + offs;
- int corruption;
- dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
-
- sleb = ubifs_start_scan(c, lnum, offs, sbuf);
- if (IS_ERR(sleb))
- return sleb;
-
- ubifs_assert(len >= 8);
- while (len >= 8) {
- dbg_scan("look at LEB %d:%d (%d bytes left)",
- lnum, offs, len);
-
- cond_resched();
-
- /*
- * Scan quietly until there is an error from which we cannot
- * recover
- */
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
- if (ret == SCANNED_A_NODE) {
- /* A valid node, and not a padding node */
- struct ubifs_ch *ch = buf;
- int node_len;
-
- err = ubifs_add_snod(c, sleb, buf, offs);
- if (err)
- goto error;
- node_len = ALIGN(le32_to_cpu(ch->len), 8);
- offs += node_len;
- buf += node_len;
- len -= node_len;
- } else if (ret > 0) {
- /* Padding bytes or a valid padding node */
- offs += ret;
- buf += ret;
- len -= ret;
- } else if (ret == SCANNED_EMPTY_SPACE ||
- ret == SCANNED_GARBAGE ||
- ret == SCANNED_A_BAD_PAD_NODE ||
- ret == SCANNED_A_CORRUPT_NODE) {
- dbg_rcvry("found corruption (%d) at %d:%d",
- ret, lnum, offs);
- break;
- } else {
- dbg_err("unexpected return value %d", ret);
- err = -EINVAL;
- goto error;
- }
- }
-
- if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
- if (!is_last_write(c, buf, offs))
- goto corrupted_rescan;
- } else if (ret == SCANNED_A_CORRUPT_NODE) {
- if (!no_more_nodes(c, buf, len, lnum, offs))
- goto corrupted_rescan;
- } else if (!is_empty(buf, len)) {
- if (!is_last_write(c, buf, offs)) {
- corruption = first_non_ff(buf, len);
-
- /*
- * See header comment for this file for more
- * explanations about the reasons we have this check.
- */
- ubifs_err("corrupt empty space LEB %d:%d, corruption "
- "starts at %d", lnum, offs, corruption);
- /* Make sure we dump interesting non-0xFF data */
- offs += corruption;
- buf += corruption;
- goto corrupted;
- }
- }
-test:
- min_io_unit = round_down(offs, c->min_io_size);
- if (grouped)
- /*
- * If nodes are grouped, always drop the incomplete group at
- * the end.
- */
- drop_last_group(sleb, &offs);
-
- if (jhead == GCHD) {
- /*
- * If this LEB belongs to the GC head then while we are in the
- * middle of the same min. I/O unit keep dropping nodes. So
- * basically, what we want is to make sure that the last min.
- * I/O unit where we saw the corruption is dropped completely
- * with all the uncorrupted nodes which may possibly sit there.
- *
- * In other words, let's name the min. I/O unit where the
- * corruption starts B, and the previous min. I/O unit A. The
- * below code tries to deal with a situation when half of B
- * contains valid nodes or the end of a valid node, and the
- * second half of B contains corrupted data or garbage. This
- * means that UBIFS had been writing to B just before the power
- * cut happened. I do not know how realistic is this scenario
- * that half of the min. I/O unit had been written successfully
- * and the other half not, but this is possible in our 'failure
- * mode emulation' infrastructure at least.
- *
- * So what is the problem, why we need to drop those nodes? Why
- * can't we just clean-up the second half of B by putting a
- * padding node there? We can, and this works fine with one
- * exception which was reproduced with power cut emulation
- * testing and happens extremely rarely.
- *
- * Imagine the file-system is full, we run GC which starts
- * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
- * the current GC head LEB). The @c->gc_lnum is -1, which means
- * that GC will retain LEB X and will try to continue. Imagine
- * that LEB X is currently the dirtiest LEB, and the amount of
- * used space in LEB Y is exactly the same as amount of free
- * space in LEB X.
- *
- * And a power cut happens when nodes are moved from LEB X to
- * LEB Y. We are here trying to recover LEB Y which is the GC
- * head LEB. We find the min. I/O unit B as described above.
- * Then we clean-up LEB Y by padding min. I/O unit. And later
- * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
- * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
- * does not match because the amount of valid nodes there does
- * not fit the free space in LEB Y any more! And this is
- * because of the padding node which we added to LEB Y. The
- * user-visible effect of this which I once observed and
- * analysed is that we cannot mount the file-system with
- * -ENOSPC error.
- *
- * So obviously, to make sure that situation does not happen we
- * should free min. I/O unit B in LEB Y completely and the last
- * used min. I/O unit in LEB Y should be A. This is basically
- * what the below code tries to do.
- */
- while (offs > min_io_unit)
- drop_last_node(sleb, &offs);
- }
-
- buf = sbuf + offs;
- len = c->leb_size - offs;
-
- clean_buf(c, &buf, lnum, &offs, &len);
- ubifs_end_scan(c, sleb, lnum, offs);
-
- err = fix_unclean_leb(c, sleb, start);
- if (err)
- goto error;
-
- return sleb;
-
-corrupted_rescan:
- /* Re-scan the corrupted data with verbose messages */
- dbg_err("corruptio %d", ret);
- ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
-corrupted:
- ubifs_scanned_corruption(c, lnum, offs, buf);
- offs -= corruption;
- buf -= corruption;
- goto test;
- err = -EUCLEAN;
-error:
- ubifs_err("LEB %d scanning failed", lnum);
- ubifs_scan_destroy(sleb);
- return ERR_PTR(err);
-}
-
-/**
- * get_cs_sqnum - get commit start sequence number.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of commit start node
- * @offs: offset of commit start node
- * @cs_sqnum: commit start sequence number is returned here
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
- unsigned long long *cs_sqnum)
-{
- struct ubifs_cs_node *cs_node = NULL;
- int err, ret;
-
- dbg_rcvry("at %d:%d", lnum, offs);
- cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
- if (!cs_node)
- return -ENOMEM;
- if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
- goto out_err;
- err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
- UBIFS_CS_NODE_SZ, 0);
- if (err && err != -EBADMSG)
- goto out_free;
- ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
- if (ret != SCANNED_A_NODE) {
- dbg_err("Not a valid node");
- goto out_err;
- }
- if (cs_node->ch.node_type != UBIFS_CS_NODE) {
- dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
- goto out_err;
- }
- if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
- dbg_err("CS node cmt_no %llu != current cmt_no %llu",
- (unsigned long long)le64_to_cpu(cs_node->cmt_no),
- c->cmt_no);
- goto out_err;
- }
- *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
- dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
- kfree(cs_node);
- return 0;
-
-out_err:
- err = -EINVAL;
-out_free:
- ubifs_err("failed to get CS sqnum");
- kfree(cs_node);
- return err;
-}
-
-/**
- * ubifs_recover_log_leb - scan and recover a log LEB.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @offs: offset
- * @sbuf: LEB-sized buffer to use
- *
- * This function does a scan of a LEB, but caters for errors that might have
- * been caused by unclean reboots from which we are attempting to recover
- * (assume that only the last log LEB can be corrupted by an unclean reboot).
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf)
-{
- struct ubifs_scan_leb *sleb;
- int next_lnum;
-
- dbg_rcvry("LEB %d", lnum);
- next_lnum = lnum + 1;
- if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
- next_lnum = UBIFS_LOG_LNUM;
- if (next_lnum != c->ltail_lnum) {
- /*
- * We can only recover at the end of the log, so check that the
- * next log LEB is empty or out of date.
- */
- sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
- if (IS_ERR(sleb))
- return sleb;
- if (sleb->nodes_cnt) {
- struct ubifs_scan_node *snod;
- unsigned long long cs_sqnum = c->cs_sqnum;
-
- snod = list_entry(sleb->nodes.next,
- struct ubifs_scan_node, list);
- if (cs_sqnum == 0) {
- int err;
-
- err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
- if (err) {
- ubifs_scan_destroy(sleb);
- return ERR_PTR(err);
- }
- }
- if (snod->sqnum > cs_sqnum) {
- ubifs_err("unrecoverable log corruption "
- "in LEB %d", lnum);
- ubifs_scan_destroy(sleb);
- return ERR_PTR(-EUCLEAN);
- }
- }
- ubifs_scan_destroy(sleb);
- }
- return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
-}
-
-/**
- * recover_head - recover a head.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of head to recover
- * @offs: offset of head to recover
- * @sbuf: LEB-sized buffer to use
- *
- * This function ensures that there is no data on the flash at a head location.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
-{
- int len = c->max_write_size, err;
-
- if (offs + len > c->leb_size)
- len = c->leb_size - offs;
-
- if (!len)
- return 0;
-
- /* Read at the head location and check it is empty flash */
- err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
- if (err || !is_empty(sbuf, len)) {
- dbg_rcvry("cleaning head at %d:%d", lnum, offs);
- if (offs == 0)
- return ubifs_leb_unmap(c, lnum);
- err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
- if (err)
- return err;
- return ubifs_leb_change(c, lnum, sbuf, offs, UBI_UNKNOWN);
- }
-
- return 0;
-}
-
-/**
- * ubifs_recover_inl_heads - recover index and LPT heads.
- * @c: UBIFS file-system description object
- * @sbuf: LEB-sized buffer to use
- *
- * This function ensures that there is no data on the flash at the index and
- * LPT head locations.
- *
- * This deals with the recovery of a half-completed journal commit. UBIFS is
- * careful never to overwrite the last version of the index or the LPT. Because
- * the index and LPT are wandering trees, data from a half-completed commit will
- * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
- * assumed to be empty and will be unmapped anyway before use, or in the index
- * and LPT heads.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
-{
- int err;
-
- ubifs_assert(!c->ro_mount || c->remounting_rw);
-
- dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
- err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
- if (err)
- return err;
-
- dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
- err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
- if (err)
- return err;
-
- return 0;
-}
-
-/**
- * clean_an_unclean_leb - read and write a LEB to remove corruption.
- * @c: UBIFS file-system description object
- * @ucleb: unclean LEB information
- * @sbuf: LEB-sized buffer to use
- *
- * This function reads a LEB up to a point pre-determined by the mount recovery,
- * checks the nodes, and writes the result back to the flash, thereby cleaning
- * off any following corruption, or non-fatal ECC errors.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int clean_an_unclean_leb(struct ubifs_info *c,
- struct ubifs_unclean_leb *ucleb, void *sbuf)
-{
- int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
- void *buf = sbuf;
-
- dbg_rcvry("LEB %d len %d", lnum, len);
-
- if (len == 0) {
- /* Nothing to read, just unmap it */
- err = ubifs_leb_unmap(c, lnum);
- if (err)
- return err;
- return 0;
- }
-
- err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
- if (err && err != -EBADMSG)
- return err;
-
- while (len >= 8) {
- int ret;
-
- cond_resched();
-
- /* Scan quietly until there is an error */
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
-
- if (ret == SCANNED_A_NODE) {
- /* A valid node, and not a padding node */
- struct ubifs_ch *ch = buf;
- int node_len;
-
- node_len = ALIGN(le32_to_cpu(ch->len), 8);
- offs += node_len;
- buf += node_len;
- len -= node_len;
- continue;
- }
-
- if (ret > 0) {
- /* Padding bytes or a valid padding node */
- offs += ret;
- buf += ret;
- len -= ret;
- continue;
- }
-
- if (ret == SCANNED_EMPTY_SPACE) {
- ubifs_err("unexpected empty space at %d:%d",
- lnum, offs);
- return -EUCLEAN;
- }
-
- if (quiet) {
- /* Redo the last scan but noisily */
- quiet = 0;
- continue;
- }
-
- ubifs_scanned_corruption(c, lnum, offs, buf);
- return -EUCLEAN;
- }
-
- /* Pad to min_io_size */
- len = ALIGN(ucleb->endpt, c->min_io_size);
- if (len > ucleb->endpt) {
- int pad_len = len - ALIGN(ucleb->endpt, 8);
-
- if (pad_len > 0) {
- buf = c->sbuf + len - pad_len;
- ubifs_pad(c, buf, pad_len);
- }
- }
-
- /* Write back the LEB atomically */
- err = ubifs_leb_change(c, lnum, sbuf, len, UBI_UNKNOWN);
- if (err)
- return err;
-
- dbg_rcvry("cleaned LEB %d", lnum);
-
- return 0;
-}
-
-/**
- * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
- * @c: UBIFS file-system description object
- * @sbuf: LEB-sized buffer to use
- *
- * This function cleans a LEB identified during recovery that needs to be
- * written but was not because UBIFS was mounted read-only. This happens when
- * remounting to read-write mode.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
-{
- dbg_rcvry("recovery");
- while (!list_empty(&c->unclean_leb_list)) {
- struct ubifs_unclean_leb *ucleb;
- int err;
-
- ucleb = list_entry(c->unclean_leb_list.next,
- struct ubifs_unclean_leb, list);
- err = clean_an_unclean_leb(c, ucleb, sbuf);
- if (err)
- return err;
- list_del(&ucleb->list);
- kfree(ucleb);
- }
- return 0;
-}
-
-/**
- * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
- * @c: UBIFS file-system description object
- *
- * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
- * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
- * zero in case of success and a negative error code in case of failure.
- */
-static int grab_empty_leb(struct ubifs_info *c)
-{
- int lnum, err;
-
- /*
- * Note, it is very important to first search for an empty LEB and then
- * run the commit, not vice-versa. The reason is that there might be
- * only one empty LEB at the moment, the one which has been the
- * @c->gc_lnum just before the power cut happened. During the regular
- * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
- * one but GC can grab it. But at this moment this single empty LEB is
- * not marked as taken, so if we run commit - what happens? Right, the
- * commit will grab it and write the index there. Remember that the
- * index always expands as long as there is free space, and it only
- * starts consolidating when we run out of space.
- *
- * IOW, if we run commit now, we might not be able to find a free LEB
- * after this.
- */
- lnum = ubifs_find_free_leb_for_idx(c);
- if (lnum < 0) {
- dbg_err("could not find an empty LEB");
- dbg_dump_lprops(c);
- dbg_dump_budg(c, &c->bi);
- return lnum;
- }
-
- /* Reset the index flag */
- err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
- LPROPS_INDEX, 0);
- if (err)
- return err;
-
- c->gc_lnum = lnum;
- dbg_rcvry("found empty LEB %d, run commit", lnum);
-
- return ubifs_run_commit(c);
-}
-
-/**
- * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
- * @c: UBIFS file-system description object
- *
- * Out-of-place garbage collection requires always one empty LEB with which to
- * start garbage collection. The LEB number is recorded in c->gc_lnum and is
- * written to the master node on unmounting. In the case of an unclean unmount
- * the value of gc_lnum recorded in the master node is out of date and cannot
- * be used. Instead, recovery must allocate an empty LEB for this purpose.
- * However, there may not be enough empty space, in which case it must be
- * possible to GC the dirtiest LEB into the GC head LEB.
- *
- * This function also runs the commit which causes the TNC updates from
- * size-recovery and orphans to be written to the flash. That is important to
- * ensure correct replay order for subsequent mounts.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_rcvry_gc_commit(struct ubifs_info *c)
-{
- struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
- struct ubifs_lprops lp;
- int err;
-
- dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
-
- c->gc_lnum = -1;
- if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
- return grab_empty_leb(c);
-
- err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
- if (err) {
- if (err != -ENOSPC)
- return err;
-
- dbg_rcvry("could not find a dirty LEB");
- return grab_empty_leb(c);
- }
-
- ubifs_assert(!(lp.flags & LPROPS_INDEX));
- ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
-
- /*
- * We run the commit before garbage collection otherwise subsequent
- * mounts will see the GC and orphan deletion in a different order.
- */
- dbg_rcvry("committing");
- err = ubifs_run_commit(c);
- if (err)
- return err;
-
- dbg_rcvry("GC'ing LEB %d", lp.lnum);
- mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
- err = ubifs_garbage_collect_leb(c, &lp);
- if (err >= 0) {
- int err2 = ubifs_wbuf_sync_nolock(wbuf);
-
- if (err2)
- err = err2;
- }
- mutex_unlock(&wbuf->io_mutex);
- if (err < 0) {
- dbg_err("GC failed, error %d", err);
- if (err == -EAGAIN)
- err = -EINVAL;
- return err;
- }
-
- ubifs_assert(err == LEB_RETAINED);
- if (err != LEB_RETAINED)
- return -EINVAL;
-
- err = ubifs_leb_unmap(c, c->gc_lnum);
- if (err)
- return err;
-
- dbg_rcvry("allocated LEB %d for GC", lp.lnum);
- return 0;
-}
-
-/**
- * struct size_entry - inode size information for recovery.
- * @rb: link in the RB-tree of sizes
- * @inum: inode number
- * @i_size: size on inode
- * @d_size: maximum size based on data nodes
- * @exists: indicates whether the inode exists
- * @inode: inode if pinned in memory awaiting rw mode to fix it
- */
-struct size_entry {
- struct rb_node rb;
- ino_t inum;
- loff_t i_size;
- loff_t d_size;
- int exists;
- struct inode *inode;
-};
-
-/**
- * add_ino - add an entry to the size tree.
- * @c: UBIFS file-system description object
- * @inum: inode number
- * @i_size: size on inode
- * @d_size: maximum size based on data nodes
- * @exists: indicates whether the inode exists
- */
-static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
- loff_t d_size, int exists)
-{
- struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
- struct size_entry *e;
-
- while (*p) {
- parent = *p;
- e = rb_entry(parent, struct size_entry, rb);
- if (inum < e->inum)
- p = &(*p)->rb_left;
- else
- p = &(*p)->rb_right;
- }
-
- e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
- if (!e)
- return -ENOMEM;
-
- e->inum = inum;
- e->i_size = i_size;
- e->d_size = d_size;
- e->exists = exists;
-
- rb_link_node(&e->rb, parent, p);
- rb_insert_color(&e->rb, &c->size_tree);
-
- return 0;
-}
-
-/**
- * find_ino - find an entry on the size tree.
- * @c: UBIFS file-system description object
- * @inum: inode number
- */
-static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
-{
- struct rb_node *p = c->size_tree.rb_node;
- struct size_entry *e;
-
- while (p) {
- e = rb_entry(p, struct size_entry, rb);
- if (inum < e->inum)
- p = p->rb_left;
- else if (inum > e->inum)
- p = p->rb_right;
- else
- return e;
- }
- return NULL;
-}
-
-/**
- * remove_ino - remove an entry from the size tree.
- * @c: UBIFS file-system description object
- * @inum: inode number
- */
-static void remove_ino(struct ubifs_info *c, ino_t inum)
-{
- struct size_entry *e = find_ino(c, inum);
-
- if (!e)
- return;
- rb_erase(&e->rb, &c->size_tree);
- kfree(e);
-}
-
-/**
- * ubifs_destroy_size_tree - free resources related to the size tree.
- * @c: UBIFS file-system description object
- */
-void ubifs_destroy_size_tree(struct ubifs_info *c)
-{
- struct rb_node *this = c->size_tree.rb_node;
- struct size_entry *e;
-
- while (this) {
- if (this->rb_left) {
- this = this->rb_left;
- continue;
- } else if (this->rb_right) {
- this = this->rb_right;
- continue;
- }
- e = rb_entry(this, struct size_entry, rb);
- if (e->inode)
- iput(e->inode);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &e->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
- kfree(e);
- }
- c->size_tree = RB_ROOT;
-}
-
-/**
- * ubifs_recover_size_accum - accumulate inode sizes for recovery.
- * @c: UBIFS file-system description object
- * @key: node key
- * @deletion: node is for a deletion
- * @new_size: inode size
- *
- * This function has two purposes:
- * 1) to ensure there are no data nodes that fall outside the inode size
- * 2) to ensure there are no data nodes for inodes that do not exist
- * To accomplish those purposes, a rb-tree is constructed containing an entry
- * for each inode number in the journal that has not been deleted, and recording
- * the size from the inode node, the maximum size of any data node (also altered
- * by truncations) and a flag indicating a inode number for which no inode node
- * was present in the journal.
- *
- * Note that there is still the possibility that there are data nodes that have
- * been committed that are beyond the inode size, however the only way to find
- * them would be to scan the entire index. Alternatively, some provision could
- * be made to record the size of inodes at the start of commit, which would seem
- * very cumbersome for a scenario that is quite unlikely and the only negative
- * consequence of which is wasted space.
- *
- * This functions returns %0 on success and a negative error code on failure.
- */
-int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
- int deletion, loff_t new_size)
-{
- ino_t inum = key_inum(c, key);
- struct size_entry *e;
- int err;
-
- switch (key_type(c, key)) {
- case UBIFS_INO_KEY:
- if (deletion)
- remove_ino(c, inum);
- else {
- e = find_ino(c, inum);
- if (e) {
- e->i_size = new_size;
- e->exists = 1;
- } else {
- err = add_ino(c, inum, new_size, 0, 1);
- if (err)
- return err;
- }
- }
- break;
- case UBIFS_DATA_KEY:
- e = find_ino(c, inum);
- if (e) {
- if (new_size > e->d_size)
- e->d_size = new_size;
- } else {
- err = add_ino(c, inum, 0, new_size, 0);
- if (err)
- return err;
- }
- break;
- case UBIFS_TRUN_KEY:
- e = find_ino(c, inum);
- if (e)
- e->d_size = new_size;
- break;
- }
- return 0;
-}
-
-/**
- * fix_size_in_place - fix inode size in place on flash.
- * @c: UBIFS file-system description object
- * @e: inode size information for recovery
- */
-static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
-{
- struct ubifs_ino_node *ino = c->sbuf;
- unsigned char *p;
- union ubifs_key key;
- int err, lnum, offs, len;
- loff_t i_size;
- uint32_t crc;
-
- /* Locate the inode node LEB number and offset */
- ino_key_init(c, &key, e->inum);
- err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
- if (err)
- goto out;
- /*
- * If the size recorded on the inode node is greater than the size that
- * was calculated from nodes in the journal then don't change the inode.
- */
- i_size = le64_to_cpu(ino->size);
- if (i_size >= e->d_size)
- return 0;
- /* Read the LEB */
- err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
- if (err)
- goto out;
- /* Change the size field and recalculate the CRC */
- ino = c->sbuf + offs;
- ino->size = cpu_to_le64(e->d_size);
- len = le32_to_cpu(ino->ch.len);
- crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
- ino->ch.crc = cpu_to_le32(crc);
- /* Work out where data in the LEB ends and free space begins */
- p = c->sbuf;
- len = c->leb_size - 1;
- while (p[len] == 0xff)
- len -= 1;
- len = ALIGN(len + 1, c->min_io_size);
- /* Atomically write the fixed LEB back again */
- err = ubifs_leb_change(c, lnum, c->sbuf, len, UBI_UNKNOWN);
- if (err)
- goto out;
- dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
- (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
- return 0;
-
-out:
- ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
- (unsigned long)e->inum, e->i_size, e->d_size, err);
- return err;
-}
-
-/**
- * ubifs_recover_size - recover inode size.
- * @c: UBIFS file-system description object
- *
- * This function attempts to fix inode size discrepancies identified by the
- * 'ubifs_recover_size_accum()' function.
- *
- * This functions returns %0 on success and a negative error code on failure.
- */
-int ubifs_recover_size(struct ubifs_info *c)
-{
- struct rb_node *this = rb_first(&c->size_tree);
-
- while (this) {
- struct size_entry *e;
- int err;
-
- e = rb_entry(this, struct size_entry, rb);
- if (!e->exists) {
- union ubifs_key key;
-
- ino_key_init(c, &key, e->inum);
- err = ubifs_tnc_lookup(c, &key, c->sbuf);
- if (err && err != -ENOENT)
- return err;
- if (err == -ENOENT) {
- /* Remove data nodes that have no inode */
- dbg_rcvry("removing ino %lu",
- (unsigned long)e->inum);
- err = ubifs_tnc_remove_ino(c, e->inum);
- if (err)
- return err;
- } else {
- struct ubifs_ino_node *ino = c->sbuf;
-
- e->exists = 1;
- e->i_size = le64_to_cpu(ino->size);
- }
- }
-
- if (e->exists && e->i_size < e->d_size) {
- if (c->ro_mount) {
- /* Fix the inode size and pin it in memory */
- struct inode *inode;
- struct ubifs_inode *ui;
-
- ubifs_assert(!e->inode);
-
- inode = ubifs_iget(c->vfs_sb, e->inum);
- if (IS_ERR(inode))
- return PTR_ERR(inode);
-
- ui = ubifs_inode(inode);
- if (inode->i_size < e->d_size) {
- dbg_rcvry("ino %lu size %lld -> %lld",
- (unsigned long)e->inum,
- inode->i_size, e->d_size);
- inode->i_size = e->d_size;
- ui->ui_size = e->d_size;
- ui->synced_i_size = e->d_size;
- e->inode = inode;
- this = rb_next(this);
- continue;
- }
- iput(inode);
- } else {
- /* Fix the size in place */
- err = fix_size_in_place(c, e);
- if (err)
- return err;
- if (e->inode)
- iput(e->inode);
- }
- }
-
- this = rb_next(this);
- rb_erase(&e->rb, &c->size_tree);
- kfree(e);
- }
-
- return 0;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/replay.c b/ANDROID_3.4.5/fs/ubifs/replay.c
deleted file mode 100644
index b007637f..00000000
--- a/ANDROID_3.4.5/fs/ubifs/replay.c
+++ /dev/null
@@ -1,1079 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file contains journal replay code. It runs when the file-system is being
- * mounted and requires no locking.
- *
- * The larger is the journal, the longer it takes to scan it, so the longer it
- * takes to mount UBIFS. This is why the journal has limited size which may be
- * changed depending on the system requirements. But a larger journal gives
- * faster I/O speed because it writes the index less frequently. So this is a
- * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
- * larger is the journal, the more memory its index may consume.
- */
-
-#include "ubifs.h"
-#include <linux/list_sort.h>
-
-/**
- * struct replay_entry - replay list entry.
- * @lnum: logical eraseblock number of the node
- * @offs: node offset
- * @len: node length
- * @deletion: non-zero if this entry corresponds to a node deletion
- * @sqnum: node sequence number
- * @list: links the replay list
- * @key: node key
- * @nm: directory entry name
- * @old_size: truncation old size
- * @new_size: truncation new size
- *
- * The replay process first scans all buds and builds the replay list, then
- * sorts the replay list in nodes sequence number order, and then inserts all
- * the replay entries to the TNC.
- */
-struct replay_entry {
- int lnum;
- int offs;
- int len;
- unsigned int deletion:1;
- unsigned long long sqnum;
- struct list_head list;
- union ubifs_key key;
- union {
- struct qstr nm;
- struct {
- loff_t old_size;
- loff_t new_size;
- };
- };
-};
-
-/**
- * struct bud_entry - entry in the list of buds to replay.
- * @list: next bud in the list
- * @bud: bud description object
- * @sqnum: reference node sequence number
- * @free: free bytes in the bud
- * @dirty: dirty bytes in the bud
- */
-struct bud_entry {
- struct list_head list;
- struct ubifs_bud *bud;
- unsigned long long sqnum;
- int free;
- int dirty;
-};
-
-/**
- * set_bud_lprops - set free and dirty space used by a bud.
- * @c: UBIFS file-system description object
- * @b: bud entry which describes the bud
- *
- * This function makes sure the LEB properties of bud @b are set correctly
- * after the replay. Returns zero in case of success and a negative error code
- * in case of failure.
- */
-static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
-{
- const struct ubifs_lprops *lp;
- int err = 0, dirty;
-
- ubifs_get_lprops(c);
-
- lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
-
- dirty = lp->dirty;
- if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
- /*
- * The LEB was added to the journal with a starting offset of
- * zero which means the LEB must have been empty. The LEB
- * property values should be @lp->free == @c->leb_size and
- * @lp->dirty == 0, but that is not the case. The reason is that
- * the LEB had been garbage collected before it became the bud,
- * and there was not commit inbetween. The garbage collector
- * resets the free and dirty space without recording it
- * anywhere except lprops, so if there was no commit then
- * lprops does not have that information.
- *
- * We do not need to adjust free space because the scan has told
- * us the exact value which is recorded in the replay entry as
- * @b->free.
- *
- * However we do need to subtract from the dirty space the
- * amount of space that the garbage collector reclaimed, which
- * is the whole LEB minus the amount of space that was free.
- */
- dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
- lp->free, lp->dirty);
- dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
- lp->free, lp->dirty);
- dirty -= c->leb_size - lp->free;
- /*
- * If the replay order was perfect the dirty space would now be
- * zero. The order is not perfect because the journal heads
- * race with each other. This is not a problem but is does mean
- * that the dirty space may temporarily exceed c->leb_size
- * during the replay.
- */
- if (dirty != 0)
- dbg_msg("LEB %d lp: %d free %d dirty "
- "replay: %d free %d dirty", b->bud->lnum,
- lp->free, lp->dirty, b->free, b->dirty);
- }
- lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
- lp->flags | LPROPS_TAKEN, 0);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
-
- /* Make sure the journal head points to the latest bud */
- err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
- b->bud->lnum, c->leb_size - b->free,
- UBI_SHORTTERM);
-
-out:
- ubifs_release_lprops(c);
- return err;
-}
-
-/**
- * set_buds_lprops - set free and dirty space for all replayed buds.
- * @c: UBIFS file-system description object
- *
- * This function sets LEB properties for all replayed buds. Returns zero in
- * case of success and a negative error code in case of failure.
- */
-static int set_buds_lprops(struct ubifs_info *c)
-{
- struct bud_entry *b;
- int err;
-
- list_for_each_entry(b, &c->replay_buds, list) {
- err = set_bud_lprops(c, b);
- if (err)
- return err;
- }
-
- return 0;
-}
-
-/**
- * trun_remove_range - apply a replay entry for a truncation to the TNC.
- * @c: UBIFS file-system description object
- * @r: replay entry of truncation
- */
-static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
-{
- unsigned min_blk, max_blk;
- union ubifs_key min_key, max_key;
- ino_t ino;
-
- min_blk = r->new_size / UBIFS_BLOCK_SIZE;
- if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
- min_blk += 1;
-
- max_blk = r->old_size / UBIFS_BLOCK_SIZE;
- if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
- max_blk -= 1;
-
- ino = key_inum(c, &r->key);
-
- data_key_init(c, &min_key, ino, min_blk);
- data_key_init(c, &max_key, ino, max_blk);
-
- return ubifs_tnc_remove_range(c, &min_key, &max_key);
-}
-
-/**
- * apply_replay_entry - apply a replay entry to the TNC.
- * @c: UBIFS file-system description object
- * @r: replay entry to apply
- *
- * Apply a replay entry to the TNC.
- */
-static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
-{
- int err;
-
- dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
- r->lnum, r->offs, r->len, r->deletion, r->sqnum);
-
- /* Set c->replay_sqnum to help deal with dangling branches. */
- c->replay_sqnum = r->sqnum;
-
- if (is_hash_key(c, &r->key)) {
- if (r->deletion)
- err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
- else
- err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
- r->len, &r->nm);
- } else {
- if (r->deletion)
- switch (key_type(c, &r->key)) {
- case UBIFS_INO_KEY:
- {
- ino_t inum = key_inum(c, &r->key);
-
- err = ubifs_tnc_remove_ino(c, inum);
- break;
- }
- case UBIFS_TRUN_KEY:
- err = trun_remove_range(c, r);
- break;
- default:
- err = ubifs_tnc_remove(c, &r->key);
- break;
- }
- else
- err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
- r->len);
- if (err)
- return err;
-
- if (c->need_recovery)
- err = ubifs_recover_size_accum(c, &r->key, r->deletion,
- r->new_size);
- }
-
- return err;
-}
-
-/**
- * replay_entries_cmp - compare 2 replay entries.
- * @priv: UBIFS file-system description object
- * @a: first replay entry
- * @a: second replay entry
- *
- * This is a comparios function for 'list_sort()' which compares 2 replay
- * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
- * greater sequence number and %-1 otherwise.
- */
-static int replay_entries_cmp(void *priv, struct list_head *a,
- struct list_head *b)
-{
- struct replay_entry *ra, *rb;
-
- cond_resched();
- if (a == b)
- return 0;
-
- ra = list_entry(a, struct replay_entry, list);
- rb = list_entry(b, struct replay_entry, list);
- ubifs_assert(ra->sqnum != rb->sqnum);
- if (ra->sqnum > rb->sqnum)
- return 1;
- return -1;
-}
-
-/**
- * apply_replay_list - apply the replay list to the TNC.
- * @c: UBIFS file-system description object
- *
- * Apply all entries in the replay list to the TNC. Returns zero in case of
- * success and a negative error code in case of failure.
- */
-static int apply_replay_list(struct ubifs_info *c)
-{
- struct replay_entry *r;
- int err;
-
- list_sort(c, &c->replay_list, &replay_entries_cmp);
-
- list_for_each_entry(r, &c->replay_list, list) {
- cond_resched();
-
- err = apply_replay_entry(c, r);
- if (err)
- return err;
- }
-
- return 0;
-}
-
-/**
- * destroy_replay_list - destroy the replay.
- * @c: UBIFS file-system description object
- *
- * Destroy the replay list.
- */
-static void destroy_replay_list(struct ubifs_info *c)
-{
- struct replay_entry *r, *tmp;
-
- list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
- if (is_hash_key(c, &r->key))
- kfree(r->nm.name);
- list_del(&r->list);
- kfree(r);
- }
-}
-
-/**
- * insert_node - insert a node to the replay list
- * @c: UBIFS file-system description object
- * @lnum: node logical eraseblock number
- * @offs: node offset
- * @len: node length
- * @key: node key
- * @sqnum: sequence number
- * @deletion: non-zero if this is a deletion
- * @used: number of bytes in use in a LEB
- * @old_size: truncation old size
- * @new_size: truncation new size
- *
- * This function inserts a scanned non-direntry node to the replay list. The
- * replay list contains @struct replay_entry elements, and we sort this list in
- * sequence number order before applying it. The replay list is applied at the
- * very end of the replay process. Since the list is sorted in sequence number
- * order, the older modifications are applied first. This function returns zero
- * in case of success and a negative error code in case of failure.
- */
-static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
- union ubifs_key *key, unsigned long long sqnum,
- int deletion, int *used, loff_t old_size,
- loff_t new_size)
-{
- struct replay_entry *r;
-
- dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
-
- if (key_inum(c, key) >= c->highest_inum)
- c->highest_inum = key_inum(c, key);
-
- r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
- if (!r)
- return -ENOMEM;
-
- if (!deletion)
- *used += ALIGN(len, 8);
- r->lnum = lnum;
- r->offs = offs;
- r->len = len;
- r->deletion = !!deletion;
- r->sqnum = sqnum;
- key_copy(c, key, &r->key);
- r->old_size = old_size;
- r->new_size = new_size;
-
- list_add_tail(&r->list, &c->replay_list);
- return 0;
-}
-
-/**
- * insert_dent - insert a directory entry node into the replay list.
- * @c: UBIFS file-system description object
- * @lnum: node logical eraseblock number
- * @offs: node offset
- * @len: node length
- * @key: node key
- * @name: directory entry name
- * @nlen: directory entry name length
- * @sqnum: sequence number
- * @deletion: non-zero if this is a deletion
- * @used: number of bytes in use in a LEB
- *
- * This function inserts a scanned directory entry node or an extended
- * attribute entry to the replay list. Returns zero in case of success and a
- * negative error code in case of failure.
- */
-static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
- union ubifs_key *key, const char *name, int nlen,
- unsigned long long sqnum, int deletion, int *used)
-{
- struct replay_entry *r;
- char *nbuf;
-
- dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
- if (key_inum(c, key) >= c->highest_inum)
- c->highest_inum = key_inum(c, key);
-
- r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
- if (!r)
- return -ENOMEM;
-
- nbuf = kmalloc(nlen + 1, GFP_KERNEL);
- if (!nbuf) {
- kfree(r);
- return -ENOMEM;
- }
-
- if (!deletion)
- *used += ALIGN(len, 8);
- r->lnum = lnum;
- r->offs = offs;
- r->len = len;
- r->deletion = !!deletion;
- r->sqnum = sqnum;
- key_copy(c, key, &r->key);
- r->nm.len = nlen;
- memcpy(nbuf, name, nlen);
- nbuf[nlen] = '\0';
- r->nm.name = nbuf;
-
- list_add_tail(&r->list, &c->replay_list);
- return 0;
-}
-
-/**
- * ubifs_validate_entry - validate directory or extended attribute entry node.
- * @c: UBIFS file-system description object
- * @dent: the node to validate
- *
- * This function validates directory or extended attribute entry node @dent.
- * Returns zero if the node is all right and a %-EINVAL if not.
- */
-int ubifs_validate_entry(struct ubifs_info *c,
- const struct ubifs_dent_node *dent)
-{
- int key_type = key_type_flash(c, dent->key);
- int nlen = le16_to_cpu(dent->nlen);
-
- if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
- dent->type >= UBIFS_ITYPES_CNT ||
- nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
- strnlen(dent->name, nlen) != nlen ||
- le64_to_cpu(dent->inum) > MAX_INUM) {
- ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
- "directory entry" : "extended attribute entry");
- return -EINVAL;
- }
-
- if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
- ubifs_err("bad key type %d", key_type);
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * is_last_bud - check if the bud is the last in the journal head.
- * @c: UBIFS file-system description object
- * @bud: bud description object
- *
- * This function checks if bud @bud is the last bud in its journal head. This
- * information is then used by 'replay_bud()' to decide whether the bud can
- * have corruptions or not. Indeed, only last buds can be corrupted by power
- * cuts. Returns %1 if this is the last bud, and %0 if not.
- */
-static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
-{
- struct ubifs_jhead *jh = &c->jheads[bud->jhead];
- struct ubifs_bud *next;
- uint32_t data;
- int err;
-
- if (list_is_last(&bud->list, &jh->buds_list))
- return 1;
-
- /*
- * The following is a quirk to make sure we work correctly with UBIFS
- * images used with older UBIFS.
- *
- * Normally, the last bud will be the last in the journal head's list
- * of bud. However, there is one exception if the UBIFS image belongs
- * to older UBIFS. This is fairly unlikely: one would need to use old
- * UBIFS, then have a power cut exactly at the right point, and then
- * try to mount this image with new UBIFS.
- *
- * The exception is: it is possible to have 2 buds A and B, A goes
- * before B, and B is the last, bud B is contains no data, and bud A is
- * corrupted at the end. The reason is that in older versions when the
- * journal code switched the next bud (from A to B), it first added a
- * log reference node for the new bud (B), and only after this it
- * synchronized the write-buffer of current bud (A). But later this was
- * changed and UBIFS started to always synchronize the write-buffer of
- * the bud (A) before writing the log reference for the new bud (B).
- *
- * But because older UBIFS always synchronized A's write-buffer before
- * writing to B, we can recognize this exceptional situation but
- * checking the contents of bud B - if it is empty, then A can be
- * treated as the last and we can recover it.
- *
- * TODO: remove this piece of code in a couple of years (today it is
- * 16.05.2011).
- */
- next = list_entry(bud->list.next, struct ubifs_bud, list);
- if (!list_is_last(&next->list, &jh->buds_list))
- return 0;
-
- err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
- if (err)
- return 0;
-
- return data == 0xFFFFFFFF;
-}
-
-/**
- * replay_bud - replay a bud logical eraseblock.
- * @c: UBIFS file-system description object
- * @b: bud entry which describes the bud
- *
- * This function replays bud @bud, recovers it if needed, and adds all nodes
- * from this bud to the replay list. Returns zero in case of success and a
- * negative error code in case of failure.
- */
-static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
-{
- int is_last = is_last_bud(c, b->bud);
- int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
-
- dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
- lnum, b->bud->jhead, offs, is_last);
-
- if (c->need_recovery && is_last)
- /*
- * Recover only last LEBs in the journal heads, because power
- * cuts may cause corruptions only in these LEBs, because only
- * these LEBs could possibly be written to at the power cut
- * time.
- */
- sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
- else
- sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
- if (IS_ERR(sleb))
- return PTR_ERR(sleb);
-
- /*
- * The bud does not have to start from offset zero - the beginning of
- * the 'lnum' LEB may contain previously committed data. One of the
- * things we have to do in replay is to correctly update lprops with
- * newer information about this LEB.
- *
- * At this point lprops thinks that this LEB has 'c->leb_size - offs'
- * bytes of free space because it only contain information about
- * committed data.
- *
- * But we know that real amount of free space is 'c->leb_size -
- * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
- * 'sleb->endpt' is used by bud data. We have to correctly calculate
- * how much of these data are dirty and update lprops with this
- * information.
- *
- * The dirt in that LEB region is comprised of padding nodes, deletion
- * nodes, truncation nodes and nodes which are obsoleted by subsequent
- * nodes in this LEB. So instead of calculating clean space, we
- * calculate used space ('used' variable).
- */
-
- list_for_each_entry(snod, &sleb->nodes, list) {
- int deletion = 0;
-
- cond_resched();
-
- if (snod->sqnum >= SQNUM_WATERMARK) {
- ubifs_err("file system's life ended");
- goto out_dump;
- }
-
- if (snod->sqnum > c->max_sqnum)
- c->max_sqnum = snod->sqnum;
-
- switch (snod->type) {
- case UBIFS_INO_NODE:
- {
- struct ubifs_ino_node *ino = snod->node;
- loff_t new_size = le64_to_cpu(ino->size);
-
- if (le32_to_cpu(ino->nlink) == 0)
- deletion = 1;
- err = insert_node(c, lnum, snod->offs, snod->len,
- &snod->key, snod->sqnum, deletion,
- &used, 0, new_size);
- break;
- }
- case UBIFS_DATA_NODE:
- {
- struct ubifs_data_node *dn = snod->node;
- loff_t new_size = le32_to_cpu(dn->size) +
- key_block(c, &snod->key) *
- UBIFS_BLOCK_SIZE;
-
- err = insert_node(c, lnum, snod->offs, snod->len,
- &snod->key, snod->sqnum, deletion,
- &used, 0, new_size);
- break;
- }
- case UBIFS_DENT_NODE:
- case UBIFS_XENT_NODE:
- {
- struct ubifs_dent_node *dent = snod->node;
-
- err = ubifs_validate_entry(c, dent);
- if (err)
- goto out_dump;
-
- err = insert_dent(c, lnum, snod->offs, snod->len,
- &snod->key, dent->name,
- le16_to_cpu(dent->nlen), snod->sqnum,
- !le64_to_cpu(dent->inum), &used);
- break;
- }
- case UBIFS_TRUN_NODE:
- {
- struct ubifs_trun_node *trun = snod->node;
- loff_t old_size = le64_to_cpu(trun->old_size);
- loff_t new_size = le64_to_cpu(trun->new_size);
- union ubifs_key key;
-
- /* Validate truncation node */
- if (old_size < 0 || old_size > c->max_inode_sz ||
- new_size < 0 || new_size > c->max_inode_sz ||
- old_size <= new_size) {
- ubifs_err("bad truncation node");
- goto out_dump;
- }
-
- /*
- * Create a fake truncation key just to use the same
- * functions which expect nodes to have keys.
- */
- trun_key_init(c, &key, le32_to_cpu(trun->inum));
- err = insert_node(c, lnum, snod->offs, snod->len,
- &key, snod->sqnum, 1, &used,
- old_size, new_size);
- break;
- }
- default:
- ubifs_err("unexpected node type %d in bud LEB %d:%d",
- snod->type, lnum, snod->offs);
- err = -EINVAL;
- goto out_dump;
- }
- if (err)
- goto out;
- }
-
- ubifs_assert(ubifs_search_bud(c, lnum));
- ubifs_assert(sleb->endpt - offs >= used);
- ubifs_assert(sleb->endpt % c->min_io_size == 0);
-
- b->dirty = sleb->endpt - offs - used;
- b->free = c->leb_size - sleb->endpt;
- dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free);
-
-out:
- ubifs_scan_destroy(sleb);
- return err;
-
-out_dump:
- ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
- dbg_dump_node(c, snod->node);
- ubifs_scan_destroy(sleb);
- return -EINVAL;
-}
-
-/**
- * replay_buds - replay all buds.
- * @c: UBIFS file-system description object
- *
- * This function returns zero in case of success and a negative error code in
- * case of failure.
- */
-static int replay_buds(struct ubifs_info *c)
-{
- struct bud_entry *b;
- int err;
- unsigned long long prev_sqnum = 0;
-
- list_for_each_entry(b, &c->replay_buds, list) {
- err = replay_bud(c, b);
- if (err)
- return err;
-
- ubifs_assert(b->sqnum > prev_sqnum);
- prev_sqnum = b->sqnum;
- }
-
- return 0;
-}
-
-/**
- * destroy_bud_list - destroy the list of buds to replay.
- * @c: UBIFS file-system description object
- */
-static void destroy_bud_list(struct ubifs_info *c)
-{
- struct bud_entry *b;
-
- while (!list_empty(&c->replay_buds)) {
- b = list_entry(c->replay_buds.next, struct bud_entry, list);
- list_del(&b->list);
- kfree(b);
- }
-}
-
-/**
- * add_replay_bud - add a bud to the list of buds to replay.
- * @c: UBIFS file-system description object
- * @lnum: bud logical eraseblock number to replay
- * @offs: bud start offset
- * @jhead: journal head to which this bud belongs
- * @sqnum: reference node sequence number
- *
- * This function returns zero in case of success and a negative error code in
- * case of failure.
- */
-static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
- unsigned long long sqnum)
-{
- struct ubifs_bud *bud;
- struct bud_entry *b;
-
- dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
-
- bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
- if (!bud)
- return -ENOMEM;
-
- b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
- if (!b) {
- kfree(bud);
- return -ENOMEM;
- }
-
- bud->lnum = lnum;
- bud->start = offs;
- bud->jhead = jhead;
- ubifs_add_bud(c, bud);
-
- b->bud = bud;
- b->sqnum = sqnum;
- list_add_tail(&b->list, &c->replay_buds);
-
- return 0;
-}
-
-/**
- * validate_ref - validate a reference node.
- * @c: UBIFS file-system description object
- * @ref: the reference node to validate
- * @ref_lnum: LEB number of the reference node
- * @ref_offs: reference node offset
- *
- * This function returns %1 if a bud reference already exists for the LEB. %0 is
- * returned if the reference node is new, otherwise %-EINVAL is returned if
- * validation failed.
- */
-static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
-{
- struct ubifs_bud *bud;
- int lnum = le32_to_cpu(ref->lnum);
- unsigned int offs = le32_to_cpu(ref->offs);
- unsigned int jhead = le32_to_cpu(ref->jhead);
-
- /*
- * ref->offs may point to the end of LEB when the journal head points
- * to the end of LEB and we write reference node for it during commit.
- * So this is why we require 'offs > c->leb_size'.
- */
- if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
- lnum < c->main_first || offs > c->leb_size ||
- offs & (c->min_io_size - 1))
- return -EINVAL;
-
- /* Make sure we have not already looked at this bud */
- bud = ubifs_search_bud(c, lnum);
- if (bud) {
- if (bud->jhead == jhead && bud->start <= offs)
- return 1;
- ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * replay_log_leb - replay a log logical eraseblock.
- * @c: UBIFS file-system description object
- * @lnum: log logical eraseblock to replay
- * @offs: offset to start replaying from
- * @sbuf: scan buffer
- *
- * This function replays a log LEB and returns zero in case of success, %1 if
- * this is the last LEB in the log, and a negative error code in case of
- * failure.
- */
-static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
-{
- int err;
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
- const struct ubifs_cs_node *node;
-
- dbg_mnt("replay log LEB %d:%d", lnum, offs);
- sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
- if (IS_ERR(sleb)) {
- if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
- return PTR_ERR(sleb);
- /*
- * Note, the below function will recover this log LEB only if
- * it is the last, because unclean reboots can possibly corrupt
- * only the tail of the log.
- */
- sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
- if (IS_ERR(sleb))
- return PTR_ERR(sleb);
- }
-
- if (sleb->nodes_cnt == 0) {
- err = 1;
- goto out;
- }
-
- node = sleb->buf;
- snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
- if (c->cs_sqnum == 0) {
- /*
- * This is the first log LEB we are looking at, make sure that
- * the first node is a commit start node. Also record its
- * sequence number so that UBIFS can determine where the log
- * ends, because all nodes which were have higher sequence
- * numbers.
- */
- if (snod->type != UBIFS_CS_NODE) {
- dbg_err("first log node at LEB %d:%d is not CS node",
- lnum, offs);
- goto out_dump;
- }
- if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
- dbg_err("first CS node at LEB %d:%d has wrong "
- "commit number %llu expected %llu",
- lnum, offs,
- (unsigned long long)le64_to_cpu(node->cmt_no),
- c->cmt_no);
- goto out_dump;
- }
-
- c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
- dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
- }
-
- if (snod->sqnum < c->cs_sqnum) {
- /*
- * This means that we reached end of log and now
- * look to the older log data, which was already
- * committed but the eraseblock was not erased (UBIFS
- * only un-maps it). So this basically means we have to
- * exit with "end of log" code.
- */
- err = 1;
- goto out;
- }
-
- /* Make sure the first node sits at offset zero of the LEB */
- if (snod->offs != 0) {
- dbg_err("first node is not at zero offset");
- goto out_dump;
- }
-
- list_for_each_entry(snod, &sleb->nodes, list) {
- cond_resched();
-
- if (snod->sqnum >= SQNUM_WATERMARK) {
- ubifs_err("file system's life ended");
- goto out_dump;
- }
-
- if (snod->sqnum < c->cs_sqnum) {
- dbg_err("bad sqnum %llu, commit sqnum %llu",
- snod->sqnum, c->cs_sqnum);
- goto out_dump;
- }
-
- if (snod->sqnum > c->max_sqnum)
- c->max_sqnum = snod->sqnum;
-
- switch (snod->type) {
- case UBIFS_REF_NODE: {
- const struct ubifs_ref_node *ref = snod->node;
-
- err = validate_ref(c, ref);
- if (err == 1)
- break; /* Already have this bud */
- if (err)
- goto out_dump;
-
- err = add_replay_bud(c, le32_to_cpu(ref->lnum),
- le32_to_cpu(ref->offs),
- le32_to_cpu(ref->jhead),
- snod->sqnum);
- if (err)
- goto out;
-
- break;
- }
- case UBIFS_CS_NODE:
- /* Make sure it sits at the beginning of LEB */
- if (snod->offs != 0) {
- ubifs_err("unexpected node in log");
- goto out_dump;
- }
- break;
- default:
- ubifs_err("unexpected node in log");
- goto out_dump;
- }
- }
-
- if (sleb->endpt || c->lhead_offs >= c->leb_size) {
- c->lhead_lnum = lnum;
- c->lhead_offs = sleb->endpt;
- }
-
- err = !sleb->endpt;
-out:
- ubifs_scan_destroy(sleb);
- return err;
-
-out_dump:
- ubifs_err("log error detected while replaying the log at LEB %d:%d",
- lnum, offs + snod->offs);
- dbg_dump_node(c, snod->node);
- ubifs_scan_destroy(sleb);
- return -EINVAL;
-}
-
-/**
- * take_ihead - update the status of the index head in lprops to 'taken'.
- * @c: UBIFS file-system description object
- *
- * This function returns the amount of free space in the index head LEB or a
- * negative error code.
- */
-static int take_ihead(struct ubifs_info *c)
-{
- const struct ubifs_lprops *lp;
- int err, free;
-
- ubifs_get_lprops(c);
-
- lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
-
- free = lp->free;
-
- lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
- lp->flags | LPROPS_TAKEN, 0);
- if (IS_ERR(lp)) {
- err = PTR_ERR(lp);
- goto out;
- }
-
- err = free;
-out:
- ubifs_release_lprops(c);
- return err;
-}
-
-/**
- * ubifs_replay_journal - replay journal.
- * @c: UBIFS file-system description object
- *
- * This function scans the journal, replays and cleans it up. It makes sure all
- * memory data structures related to uncommitted journal are built (dirty TNC
- * tree, tree of buds, modified lprops, etc).
- */
-int ubifs_replay_journal(struct ubifs_info *c)
-{
- int err, i, lnum, offs, free;
-
- BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
-
- /* Update the status of the index head in lprops to 'taken' */
- free = take_ihead(c);
- if (free < 0)
- return free; /* Error code */
-
- if (c->ihead_offs != c->leb_size - free) {
- ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
- c->ihead_offs);
- return -EINVAL;
- }
-
- dbg_mnt("start replaying the journal");
- c->replaying = 1;
- lnum = c->ltail_lnum = c->lhead_lnum;
- offs = c->lhead_offs;
-
- for (i = 0; i < c->log_lebs; i++, lnum++) {
- if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
- /*
- * The log is logically circular, we reached the last
- * LEB, switch to the first one.
- */
- lnum = UBIFS_LOG_LNUM;
- offs = 0;
- }
- err = replay_log_leb(c, lnum, offs, c->sbuf);
- if (err == 1)
- /* We hit the end of the log */
- break;
- if (err)
- goto out;
- offs = 0;
- }
-
- err = replay_buds(c);
- if (err)
- goto out;
-
- err = apply_replay_list(c);
- if (err)
- goto out;
-
- err = set_buds_lprops(c);
- if (err)
- goto out;
-
- /*
- * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
- * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
- * depend on it. This means we have to initialize it to make sure
- * budgeting works properly.
- */
- c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
- c->bi.uncommitted_idx *= c->max_idx_node_sz;
-
- ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
- dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
- "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
- (unsigned long)c->highest_inum);
-out:
- destroy_replay_list(c);
- destroy_bud_list(c);
- c->replaying = 0;
- return err;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/sb.c b/ANDROID_3.4.5/fs/ubifs/sb.c
deleted file mode 100644
index a7be8e2b..00000000
--- a/ANDROID_3.4.5/fs/ubifs/sb.c
+++ /dev/null
@@ -1,816 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file implements UBIFS superblock. The superblock is stored at the first
- * LEB of the volume and is never changed by UBIFS. Only user-space tools may
- * change it. The superblock node mostly contains geometry information.
- */
-
-#include "ubifs.h"
-#include <linux/slab.h>
-#include <linux/random.h>
-#include <linux/math64.h>
-
-/*
- * Default journal size in logical eraseblocks as a percent of total
- * flash size.
- */
-#define DEFAULT_JNL_PERCENT 5
-
-/* Default maximum journal size in bytes */
-#define DEFAULT_MAX_JNL (32*1024*1024)
-
-/* Default indexing tree fanout */
-#define DEFAULT_FANOUT 8
-
-/* Default number of data journal heads */
-#define DEFAULT_JHEADS_CNT 1
-
-/* Default positions of different LEBs in the main area */
-#define DEFAULT_IDX_LEB 0
-#define DEFAULT_DATA_LEB 1
-#define DEFAULT_GC_LEB 2
-
-/* Default number of LEB numbers in LPT's save table */
-#define DEFAULT_LSAVE_CNT 256
-
-/* Default reserved pool size as a percent of maximum free space */
-#define DEFAULT_RP_PERCENT 5
-
-/* The default maximum size of reserved pool in bytes */
-#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
-
-/* Default time granularity in nanoseconds */
-#define DEFAULT_TIME_GRAN 1000000000
-
-/**
- * create_default_filesystem - format empty UBI volume.
- * @c: UBIFS file-system description object
- *
- * This function creates default empty file-system. Returns zero in case of
- * success and a negative error code in case of failure.
- */
-static int create_default_filesystem(struct ubifs_info *c)
-{
- struct ubifs_sb_node *sup;
- struct ubifs_mst_node *mst;
- struct ubifs_idx_node *idx;
- struct ubifs_branch *br;
- struct ubifs_ino_node *ino;
- struct ubifs_cs_node *cs;
- union ubifs_key key;
- int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
- int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
- int min_leb_cnt = UBIFS_MIN_LEB_CNT;
- long long tmp64, main_bytes;
- __le64 tmp_le64;
-
- /* Some functions called from here depend on the @c->key_len filed */
- c->key_len = UBIFS_SK_LEN;
-
- /*
- * First of all, we have to calculate default file-system geometry -
- * log size, journal size, etc.
- */
- if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
- /* We can first multiply then divide and have no overflow */
- jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
- else
- jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
-
- if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
- jnl_lebs = UBIFS_MIN_JNL_LEBS;
- if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
- jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
-
- /*
- * The log should be large enough to fit reference nodes for all bud
- * LEBs. Because buds do not have to start from the beginning of LEBs
- * (half of the LEB may contain committed data), the log should
- * generally be larger, make it twice as large.
- */
- tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
- log_lebs = tmp / c->leb_size;
- /* Plus one LEB reserved for commit */
- log_lebs += 1;
- if (c->leb_cnt - min_leb_cnt > 8) {
- /* And some extra space to allow writes while committing */
- log_lebs += 1;
- min_leb_cnt += 1;
- }
-
- max_buds = jnl_lebs - log_lebs;
- if (max_buds < UBIFS_MIN_BUD_LEBS)
- max_buds = UBIFS_MIN_BUD_LEBS;
-
- /*
- * Orphan nodes are stored in a separate area. One node can store a lot
- * of orphan inode numbers, but when new orphan comes we just add a new
- * orphan node. At some point the nodes are consolidated into one
- * orphan node.
- */
- orph_lebs = UBIFS_MIN_ORPH_LEBS;
-#ifdef CONFIG_UBIFS_FS_DEBUG
- if (c->leb_cnt - min_leb_cnt > 1)
- /*
- * For debugging purposes it is better to have at least 2
- * orphan LEBs, because the orphan subsystem would need to do
- * consolidations and would be stressed more.
- */
- orph_lebs += 1;
-#endif
-
- main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
- main_lebs -= orph_lebs;
-
- lpt_first = UBIFS_LOG_LNUM + log_lebs;
- c->lsave_cnt = DEFAULT_LSAVE_CNT;
- c->max_leb_cnt = c->leb_cnt;
- err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
- &big_lpt);
- if (err)
- return err;
-
- dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
- lpt_first + lpt_lebs - 1);
-
- main_first = c->leb_cnt - main_lebs;
-
- /* Create default superblock */
- tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
- sup = kzalloc(tmp, GFP_KERNEL);
- if (!sup)
- return -ENOMEM;
-
- tmp64 = (long long)max_buds * c->leb_size;
- if (big_lpt)
- sup_flags |= UBIFS_FLG_BIGLPT;
-
- sup->ch.node_type = UBIFS_SB_NODE;
- sup->key_hash = UBIFS_KEY_HASH_R5;
- sup->flags = cpu_to_le32(sup_flags);
- sup->min_io_size = cpu_to_le32(c->min_io_size);
- sup->leb_size = cpu_to_le32(c->leb_size);
- sup->leb_cnt = cpu_to_le32(c->leb_cnt);
- sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
- sup->max_bud_bytes = cpu_to_le64(tmp64);
- sup->log_lebs = cpu_to_le32(log_lebs);
- sup->lpt_lebs = cpu_to_le32(lpt_lebs);
- sup->orph_lebs = cpu_to_le32(orph_lebs);
- sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
- sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
- sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
- sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
- sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
- if (c->mount_opts.override_compr)
- sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
- else
- sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
-
- generate_random_uuid(sup->uuid);
-
- main_bytes = (long long)main_lebs * c->leb_size;
- tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
- if (tmp64 > DEFAULT_MAX_RP_SIZE)
- tmp64 = DEFAULT_MAX_RP_SIZE;
- sup->rp_size = cpu_to_le64(tmp64);
- sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
-
- err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0, UBI_LONGTERM);
- kfree(sup);
- if (err)
- return err;
-
- dbg_gen("default superblock created at LEB 0:0");
-
- /* Create default master node */
- mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
- if (!mst)
- return -ENOMEM;
-
- mst->ch.node_type = UBIFS_MST_NODE;
- mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
- mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
- mst->cmt_no = 0;
- mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
- mst->root_offs = 0;
- tmp = ubifs_idx_node_sz(c, 1);
- mst->root_len = cpu_to_le32(tmp);
- mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
- mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
- mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
- mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
- mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
- mst->lpt_offs = cpu_to_le32(c->lpt_offs);
- mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
- mst->nhead_offs = cpu_to_le32(c->nhead_offs);
- mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
- mst->ltab_offs = cpu_to_le32(c->ltab_offs);
- mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
- mst->lsave_offs = cpu_to_le32(c->lsave_offs);
- mst->lscan_lnum = cpu_to_le32(main_first);
- mst->empty_lebs = cpu_to_le32(main_lebs - 2);
- mst->idx_lebs = cpu_to_le32(1);
- mst->leb_cnt = cpu_to_le32(c->leb_cnt);
-
- /* Calculate lprops statistics */
- tmp64 = main_bytes;
- tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
- tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
- mst->total_free = cpu_to_le64(tmp64);
-
- tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
- ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
- UBIFS_INO_NODE_SZ;
- tmp64 += ino_waste;
- tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
- mst->total_dirty = cpu_to_le64(tmp64);
-
- /* The indexing LEB does not contribute to dark space */
- tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
- mst->total_dark = cpu_to_le64(tmp64);
-
- mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
-
- err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
- UBI_UNKNOWN);
- if (err) {
- kfree(mst);
- return err;
- }
- err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 0,
- UBI_UNKNOWN);
- kfree(mst);
- if (err)
- return err;
-
- dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
-
- /* Create the root indexing node */
- tmp = ubifs_idx_node_sz(c, 1);
- idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
- if (!idx)
- return -ENOMEM;
-
- c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
- c->key_hash = key_r5_hash;
-
- idx->ch.node_type = UBIFS_IDX_NODE;
- idx->child_cnt = cpu_to_le16(1);
- ino_key_init(c, &key, UBIFS_ROOT_INO);
- br = ubifs_idx_branch(c, idx, 0);
- key_write_idx(c, &key, &br->key);
- br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
- br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
- err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0,
- UBI_UNKNOWN);
- kfree(idx);
- if (err)
- return err;
-
- dbg_gen("default root indexing node created LEB %d:0",
- main_first + DEFAULT_IDX_LEB);
-
- /* Create default root inode */
- tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
- ino = kzalloc(tmp, GFP_KERNEL);
- if (!ino)
- return -ENOMEM;
-
- ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
- ino->ch.node_type = UBIFS_INO_NODE;
- ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
- ino->nlink = cpu_to_le32(2);
- tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
- ino->atime_sec = tmp_le64;
- ino->ctime_sec = tmp_le64;
- ino->mtime_sec = tmp_le64;
- ino->atime_nsec = 0;
- ino->ctime_nsec = 0;
- ino->mtime_nsec = 0;
- ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
- ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
-
- /* Set compression enabled by default */
- ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
-
- err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
- main_first + DEFAULT_DATA_LEB, 0,
- UBI_UNKNOWN);
- kfree(ino);
- if (err)
- return err;
-
- dbg_gen("root inode created at LEB %d:0",
- main_first + DEFAULT_DATA_LEB);
-
- /*
- * The first node in the log has to be the commit start node. This is
- * always the case during normal file-system operation. Write a fake
- * commit start node to the log.
- */
- tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
- cs = kzalloc(tmp, GFP_KERNEL);
- if (!cs)
- return -ENOMEM;
-
- cs->ch.node_type = UBIFS_CS_NODE;
- err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM,
- 0, UBI_UNKNOWN);
- kfree(cs);
-
- ubifs_msg("default file-system created");
- return 0;
-}
-
-/**
- * validate_sb - validate superblock node.
- * @c: UBIFS file-system description object
- * @sup: superblock node
- *
- * This function validates superblock node @sup. Since most of data was read
- * from the superblock and stored in @c, the function validates fields in @c
- * instead. Returns zero in case of success and %-EINVAL in case of validation
- * failure.
- */
-static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
-{
- long long max_bytes;
- int err = 1, min_leb_cnt;
-
- if (!c->key_hash) {
- err = 2;
- goto failed;
- }
-
- if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
- err = 3;
- goto failed;
- }
-
- if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
- ubifs_err("min. I/O unit mismatch: %d in superblock, %d real",
- le32_to_cpu(sup->min_io_size), c->min_io_size);
- goto failed;
- }
-
- if (le32_to_cpu(sup->leb_size) != c->leb_size) {
- ubifs_err("LEB size mismatch: %d in superblock, %d real",
- le32_to_cpu(sup->leb_size), c->leb_size);
- goto failed;
- }
-
- if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
- c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
- c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
- c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
- err = 4;
- goto failed;
- }
-
- /*
- * Calculate minimum allowed amount of main area LEBs. This is very
- * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
- * have just read from the superblock.
- */
- min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
- min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
-
- if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
- ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, "
- "%d minimum required", c->leb_cnt, c->vi.size,
- min_leb_cnt);
- goto failed;
- }
-
- if (c->max_leb_cnt < c->leb_cnt) {
- ubifs_err("max. LEB count %d less than LEB count %d",
- c->max_leb_cnt, c->leb_cnt);
- goto failed;
- }
-
- if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
- ubifs_err("too few main LEBs count %d, must be at least %d",
- c->main_lebs, UBIFS_MIN_MAIN_LEBS);
- goto failed;
- }
-
- max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
- if (c->max_bud_bytes < max_bytes) {
- ubifs_err("too small journal (%lld bytes), must be at least "
- "%lld bytes", c->max_bud_bytes, max_bytes);
- goto failed;
- }
-
- max_bytes = (long long)c->leb_size * c->main_lebs;
- if (c->max_bud_bytes > max_bytes) {
- ubifs_err("too large journal size (%lld bytes), only %lld bytes"
- "available in the main area",
- c->max_bud_bytes, max_bytes);
- goto failed;
- }
-
- if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
- c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
- err = 9;
- goto failed;
- }
-
- if (c->fanout < UBIFS_MIN_FANOUT ||
- ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
- err = 10;
- goto failed;
- }
-
- if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
- c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
- c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
- err = 11;
- goto failed;
- }
-
- if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
- c->orph_lebs + c->main_lebs != c->leb_cnt) {
- err = 12;
- goto failed;
- }
-
- if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
- err = 13;
- goto failed;
- }
-
- if (c->rp_size < 0 || max_bytes < c->rp_size) {
- err = 14;
- goto failed;
- }
-
- if (le32_to_cpu(sup->time_gran) > 1000000000 ||
- le32_to_cpu(sup->time_gran) < 1) {
- err = 15;
- goto failed;
- }
-
- return 0;
-
-failed:
- ubifs_err("bad superblock, error %d", err);
- dbg_dump_node(c, sup);
- return -EINVAL;
-}
-
-/**
- * ubifs_read_sb_node - read superblock node.
- * @c: UBIFS file-system description object
- *
- * This function returns a pointer to the superblock node or a negative error
- * code. Note, the user of this function is responsible of kfree()'ing the
- * returned superblock buffer.
- */
-struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
-{
- struct ubifs_sb_node *sup;
- int err;
-
- sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
- if (!sup)
- return ERR_PTR(-ENOMEM);
-
- err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
- UBIFS_SB_LNUM, 0);
- if (err) {
- kfree(sup);
- return ERR_PTR(err);
- }
-
- return sup;
-}
-
-/**
- * ubifs_write_sb_node - write superblock node.
- * @c: UBIFS file-system description object
- * @sup: superblock node read with 'ubifs_read_sb_node()'
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
-{
- int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
-
- ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
- return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len, UBI_LONGTERM);
-}
-
-/**
- * ubifs_read_superblock - read superblock.
- * @c: UBIFS file-system description object
- *
- * This function finds, reads and checks the superblock. If an empty UBI volume
- * is being mounted, this function creates default superblock. Returns zero in
- * case of success, and a negative error code in case of failure.
- */
-int ubifs_read_superblock(struct ubifs_info *c)
-{
- int err, sup_flags;
- struct ubifs_sb_node *sup;
-
- if (c->empty) {
- err = create_default_filesystem(c);
- if (err)
- return err;
- }
-
- sup = ubifs_read_sb_node(c);
- if (IS_ERR(sup))
- return PTR_ERR(sup);
-
- c->fmt_version = le32_to_cpu(sup->fmt_version);
- c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
-
- /*
- * The software supports all previous versions but not future versions,
- * due to the unavailability of time-travelling equipment.
- */
- if (c->fmt_version > UBIFS_FORMAT_VERSION) {
- ubifs_assert(!c->ro_media || c->ro_mount);
- if (!c->ro_mount ||
- c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
- ubifs_err("on-flash format version is w%d/r%d, but "
- "software only supports up to version "
- "w%d/r%d", c->fmt_version,
- c->ro_compat_version, UBIFS_FORMAT_VERSION,
- UBIFS_RO_COMPAT_VERSION);
- if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
- ubifs_msg("only R/O mounting is possible");
- err = -EROFS;
- } else
- err = -EINVAL;
- goto out;
- }
-
- /*
- * The FS is mounted R/O, and the media format is
- * R/O-compatible with the UBIFS implementation, so we can
- * mount.
- */
- c->rw_incompat = 1;
- }
-
- if (c->fmt_version < 3) {
- ubifs_err("on-flash format version %d is not supported",
- c->fmt_version);
- err = -EINVAL;
- goto out;
- }
-
- switch (sup->key_hash) {
- case UBIFS_KEY_HASH_R5:
- c->key_hash = key_r5_hash;
- c->key_hash_type = UBIFS_KEY_HASH_R5;
- break;
-
- case UBIFS_KEY_HASH_TEST:
- c->key_hash = key_test_hash;
- c->key_hash_type = UBIFS_KEY_HASH_TEST;
- break;
- };
-
- c->key_fmt = sup->key_fmt;
-
- switch (c->key_fmt) {
- case UBIFS_SIMPLE_KEY_FMT:
- c->key_len = UBIFS_SK_LEN;
- break;
- default:
- ubifs_err("unsupported key format");
- err = -EINVAL;
- goto out;
- }
-
- c->leb_cnt = le32_to_cpu(sup->leb_cnt);
- c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
- c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
- c->log_lebs = le32_to_cpu(sup->log_lebs);
- c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
- c->orph_lebs = le32_to_cpu(sup->orph_lebs);
- c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
- c->fanout = le32_to_cpu(sup->fanout);
- c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
- c->rp_size = le64_to_cpu(sup->rp_size);
- c->rp_uid = le32_to_cpu(sup->rp_uid);
- c->rp_gid = le32_to_cpu(sup->rp_gid);
- sup_flags = le32_to_cpu(sup->flags);
- if (!c->mount_opts.override_compr)
- c->default_compr = le16_to_cpu(sup->default_compr);
-
- c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
- memcpy(&c->uuid, &sup->uuid, 16);
- c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
- c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
-
- /* Automatically increase file system size to the maximum size */
- c->old_leb_cnt = c->leb_cnt;
- if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
- c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
- if (c->ro_mount)
- dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
- c->old_leb_cnt, c->leb_cnt);
- else {
- dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
- c->old_leb_cnt, c->leb_cnt);
- sup->leb_cnt = cpu_to_le32(c->leb_cnt);
- err = ubifs_write_sb_node(c, sup);
- if (err)
- goto out;
- c->old_leb_cnt = c->leb_cnt;
- }
- }
-
- c->log_bytes = (long long)c->log_lebs * c->leb_size;
- c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
- c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
- c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
- c->orph_first = c->lpt_last + 1;
- c->orph_last = c->orph_first + c->orph_lebs - 1;
- c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
- c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
- c->main_first = c->leb_cnt - c->main_lebs;
-
- err = validate_sb(c, sup);
-out:
- kfree(sup);
- return err;
-}
-
-/**
- * fixup_leb - fixup/unmap an LEB containing free space.
- * @c: UBIFS file-system description object
- * @lnum: the LEB number to fix up
- * @len: number of used bytes in LEB (starting at offset 0)
- *
- * This function reads the contents of the given LEB number @lnum, then fixes
- * it up, so that empty min. I/O units in the end of LEB are actually erased on
- * flash (rather than being just all-0xff real data). If the LEB is completely
- * empty, it is simply unmapped.
- */
-static int fixup_leb(struct ubifs_info *c, int lnum, int len)
-{
- int err;
-
- ubifs_assert(len >= 0);
- ubifs_assert(len % c->min_io_size == 0);
- ubifs_assert(len < c->leb_size);
-
- if (len == 0) {
- dbg_mnt("unmap empty LEB %d", lnum);
- return ubifs_leb_unmap(c, lnum);
- }
-
- dbg_mnt("fixup LEB %d, data len %d", lnum, len);
- err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
- if (err)
- return err;
-
- return ubifs_leb_change(c, lnum, c->sbuf, len, UBI_UNKNOWN);
-}
-
-/**
- * fixup_free_space - find & remap all LEBs containing free space.
- * @c: UBIFS file-system description object
- *
- * This function walks through all LEBs in the filesystem and fiexes up those
- * containing free/empty space.
- */
-static int fixup_free_space(struct ubifs_info *c)
-{
- int lnum, err = 0;
- struct ubifs_lprops *lprops;
-
- ubifs_get_lprops(c);
-
- /* Fixup LEBs in the master area */
- for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
- err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
- if (err)
- goto out;
- }
-
- /* Unmap unused log LEBs */
- lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
- while (lnum != c->ltail_lnum) {
- err = fixup_leb(c, lnum, 0);
- if (err)
- goto out;
- lnum = ubifs_next_log_lnum(c, lnum);
- }
-
- /*
- * Fixup the log head which contains the only a CS node at the
- * beginning.
- */
- err = fixup_leb(c, c->lhead_lnum,
- ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
- if (err)
- goto out;
-
- /* Fixup LEBs in the LPT area */
- for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
- int free = c->ltab[lnum - c->lpt_first].free;
-
- if (free > 0) {
- err = fixup_leb(c, lnum, c->leb_size - free);
- if (err)
- goto out;
- }
- }
-
- /* Unmap LEBs in the orphans area */
- for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
- err = fixup_leb(c, lnum, 0);
- if (err)
- goto out;
- }
-
- /* Fixup LEBs in the main area */
- for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
- lprops = ubifs_lpt_lookup(c, lnum);
- if (IS_ERR(lprops)) {
- err = PTR_ERR(lprops);
- goto out;
- }
-
- if (lprops->free > 0) {
- err = fixup_leb(c, lnum, c->leb_size - lprops->free);
- if (err)
- goto out;
- }
- }
-
-out:
- ubifs_release_lprops(c);
- return err;
-}
-
-/**
- * ubifs_fixup_free_space - find & fix all LEBs with free space.
- * @c: UBIFS file-system description object
- *
- * This function fixes up LEBs containing free space on first mount, if the
- * appropriate flag was set when the FS was created. Each LEB with one or more
- * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
- * the free space is actually erased. E.g., this is necessary for some NAND
- * chips, since the free space may have been programmed like real "0xff" data
- * (generating a non-0xff ECC), causing future writes to the not-really-erased
- * NAND pages to behave badly. After the space is fixed up, the superblock flag
- * is cleared, so that this is skipped for all future mounts.
- */
-int ubifs_fixup_free_space(struct ubifs_info *c)
-{
- int err;
- struct ubifs_sb_node *sup;
-
- ubifs_assert(c->space_fixup);
- ubifs_assert(!c->ro_mount);
-
- ubifs_msg("start fixing up free space");
-
- err = fixup_free_space(c);
- if (err)
- return err;
-
- sup = ubifs_read_sb_node(c);
- if (IS_ERR(sup))
- return PTR_ERR(sup);
-
- /* Free-space fixup is no longer required */
- c->space_fixup = 0;
- sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
-
- err = ubifs_write_sb_node(c, sup);
- kfree(sup);
- if (err)
- return err;
-
- ubifs_msg("free space fixup complete");
- return err;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/scan.c b/ANDROID_3.4.5/fs/ubifs/scan.c
deleted file mode 100644
index 33e01d31..00000000
--- a/ANDROID_3.4.5/fs/ubifs/scan.c
+++ /dev/null
@@ -1,380 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements the scan which is a general-purpose function for
- * determining what nodes are in an eraseblock. The scan is used to replay the
- * journal, to do garbage collection. for the TNC in-the-gaps method, and by
- * debugging functions.
- */
-
-#include "ubifs.h"
-
-/**
- * scan_padding_bytes - scan for padding bytes.
- * @buf: buffer to scan
- * @len: length of buffer
- *
- * This function returns the number of padding bytes on success and
- * %SCANNED_GARBAGE on failure.
- */
-static int scan_padding_bytes(void *buf, int len)
-{
- int pad_len = 0, max_pad_len = min_t(int, UBIFS_PAD_NODE_SZ, len);
- uint8_t *p = buf;
-
- dbg_scan("not a node");
-
- while (pad_len < max_pad_len && *p++ == UBIFS_PADDING_BYTE)
- pad_len += 1;
-
- if (!pad_len || (pad_len & 7))
- return SCANNED_GARBAGE;
-
- dbg_scan("%d padding bytes", pad_len);
-
- return pad_len;
-}
-
-/**
- * ubifs_scan_a_node - scan for a node or padding.
- * @c: UBIFS file-system description object
- * @buf: buffer to scan
- * @len: length of buffer
- * @lnum: logical eraseblock number
- * @offs: offset within the logical eraseblock
- * @quiet: print no messages
- *
- * This function returns a scanning code to indicate what was scanned.
- */
-int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
- int offs, int quiet)
-{
- struct ubifs_ch *ch = buf;
- uint32_t magic;
-
- magic = le32_to_cpu(ch->magic);
-
- if (magic == 0xFFFFFFFF) {
- dbg_scan("hit empty space");
- return SCANNED_EMPTY_SPACE;
- }
-
- if (magic != UBIFS_NODE_MAGIC)
- return scan_padding_bytes(buf, len);
-
- if (len < UBIFS_CH_SZ)
- return SCANNED_GARBAGE;
-
- dbg_scan("scanning %s", dbg_ntype(ch->node_type));
-
- if (ubifs_check_node(c, buf, lnum, offs, quiet, 1))
- return SCANNED_A_CORRUPT_NODE;
-
- if (ch->node_type == UBIFS_PAD_NODE) {
- struct ubifs_pad_node *pad = buf;
- int pad_len = le32_to_cpu(pad->pad_len);
- int node_len = le32_to_cpu(ch->len);
-
- /* Validate the padding node */
- if (pad_len < 0 ||
- offs + node_len + pad_len > c->leb_size) {
- if (!quiet) {
- ubifs_err("bad pad node at LEB %d:%d",
- lnum, offs);
- dbg_dump_node(c, pad);
- }
- return SCANNED_A_BAD_PAD_NODE;
- }
-
- /* Make the node pads to 8-byte boundary */
- if ((node_len + pad_len) & 7) {
- if (!quiet)
- dbg_err("bad padding length %d - %d",
- offs, offs + node_len + pad_len);
- return SCANNED_A_BAD_PAD_NODE;
- }
-
- dbg_scan("%d bytes padded, offset now %d",
- pad_len, ALIGN(offs + node_len + pad_len, 8));
-
- return node_len + pad_len;
- }
-
- return SCANNED_A_NODE;
-}
-
-/**
- * ubifs_start_scan - create LEB scanning information at start of scan.
- * @c: UBIFS file-system description object
- * @lnum: logical eraseblock number
- * @offs: offset to start at (usually zero)
- * @sbuf: scan buffer (must be c->leb_size)
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum,
- int offs, void *sbuf)
-{
- struct ubifs_scan_leb *sleb;
- int err;
-
- dbg_scan("scan LEB %d:%d", lnum, offs);
-
- sleb = kzalloc(sizeof(struct ubifs_scan_leb), GFP_NOFS);
- if (!sleb)
- return ERR_PTR(-ENOMEM);
-
- sleb->lnum = lnum;
- INIT_LIST_HEAD(&sleb->nodes);
- sleb->buf = sbuf;
-
- err = ubifs_leb_read(c, lnum, sbuf + offs, offs, c->leb_size - offs, 0);
- if (err && err != -EBADMSG) {
- ubifs_err("cannot read %d bytes from LEB %d:%d,"
- " error %d", c->leb_size - offs, lnum, offs, err);
- kfree(sleb);
- return ERR_PTR(err);
- }
-
- if (err == -EBADMSG)
- sleb->ecc = 1;
-
- return sleb;
-}
-
-/**
- * ubifs_end_scan - update LEB scanning information at end of scan.
- * @c: UBIFS file-system description object
- * @sleb: scanning information
- * @lnum: logical eraseblock number
- * @offs: offset to start at (usually zero)
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- int lnum, int offs)
-{
- lnum = lnum;
- dbg_scan("stop scanning LEB %d at offset %d", lnum, offs);
- ubifs_assert(offs % c->min_io_size == 0);
-
- sleb->endpt = ALIGN(offs, c->min_io_size);
-}
-
-/**
- * ubifs_add_snod - add a scanned node to LEB scanning information.
- * @c: UBIFS file-system description object
- * @sleb: scanning information
- * @buf: buffer containing node
- * @offs: offset of node on flash
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- void *buf, int offs)
-{
- struct ubifs_ch *ch = buf;
- struct ubifs_ino_node *ino = buf;
- struct ubifs_scan_node *snod;
-
- snod = kmalloc(sizeof(struct ubifs_scan_node), GFP_NOFS);
- if (!snod)
- return -ENOMEM;
-
- snod->sqnum = le64_to_cpu(ch->sqnum);
- snod->type = ch->node_type;
- snod->offs = offs;
- snod->len = le32_to_cpu(ch->len);
- snod->node = buf;
-
- switch (ch->node_type) {
- case UBIFS_INO_NODE:
- case UBIFS_DENT_NODE:
- case UBIFS_XENT_NODE:
- case UBIFS_DATA_NODE:
- /*
- * The key is in the same place in all keyed
- * nodes.
- */
- key_read(c, &ino->key, &snod->key);
- break;
- default:
- invalid_key_init(c, &snod->key);
- break;
- }
- list_add_tail(&snod->list, &sleb->nodes);
- sleb->nodes_cnt += 1;
- return 0;
-}
-
-/**
- * ubifs_scanned_corruption - print information after UBIFS scanned corruption.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of corruption
- * @offs: offset of corruption
- * @buf: buffer containing corruption
- */
-void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
- void *buf)
-{
- int len;
-
- ubifs_err("corruption at LEB %d:%d", lnum, offs);
- if (dbg_is_tst_rcvry(c))
- return;
- len = c->leb_size - offs;
- if (len > 8192)
- len = 8192;
- printk("\nfirst %d bytes from LEB %d:%d", len, lnum, offs);
- print_hex_dump(KERN_NOTICE, "", DUMP_PREFIX_OFFSET, 32, 4, buf, len, 1);
-}
-
-/**
- * ubifs_scan - scan a logical eraseblock.
- * @c: UBIFS file-system description object
- * @lnum: logical eraseblock number
- * @offs: offset to start at (usually zero)
- * @sbuf: scan buffer (must be of @c->leb_size bytes in size)
- * @quiet: print no messages
- *
- * This function scans LEB number @lnum and returns complete information about
- * its contents. Returns the scaned information in case of success and,
- * %-EUCLEAN if the LEB neads recovery, and other negative error codes in case
- * of failure.
- *
- * If @quiet is non-zero, this function does not print large and scary
- * error messages and flash dumps in case of errors.
- */
-struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
- int offs, void *sbuf, int quiet)
-{
- void *buf = sbuf + offs;
- int err, len = c->leb_size - offs;
- struct ubifs_scan_leb *sleb;
-
- sleb = ubifs_start_scan(c, lnum, offs, sbuf);
- if (IS_ERR(sleb))
- return sleb;
-
- while (len >= 8) {
- struct ubifs_ch *ch = buf;
- int node_len, ret;
-
- dbg_scan("look at LEB %d:%d (%d bytes left)",
- lnum, offs, len);
-
- cond_resched();
-
- ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
- if (ret > 0) {
- /* Padding bytes or a valid padding node */
- offs += ret;
- buf += ret;
- len -= ret;
- continue;
- }
-
- if (ret == SCANNED_EMPTY_SPACE)
- /* Empty space is checked later */
- break;
-
- switch (ret) {
- case SCANNED_GARBAGE:
- dbg_err("garbage");
- goto corrupted;
- case SCANNED_A_NODE:
- break;
- case SCANNED_A_CORRUPT_NODE:
- case SCANNED_A_BAD_PAD_NODE:
- dbg_err("bad node");
- goto corrupted;
- default:
- dbg_err("unknown");
- err = -EINVAL;
- goto error;
- }
-
- err = ubifs_add_snod(c, sleb, buf, offs);
- if (err)
- goto error;
-
- node_len = ALIGN(le32_to_cpu(ch->len), 8);
- offs += node_len;
- buf += node_len;
- len -= node_len;
- }
-
- if (offs % c->min_io_size) {
- if (!quiet)
- ubifs_err("empty space starts at non-aligned offset %d",
- offs);
- goto corrupted;
- }
-
- ubifs_end_scan(c, sleb, lnum, offs);
-
- for (; len > 4; offs += 4, buf = buf + 4, len -= 4)
- if (*(uint32_t *)buf != 0xffffffff)
- break;
- for (; len; offs++, buf++, len--)
- if (*(uint8_t *)buf != 0xff) {
- if (!quiet)
- ubifs_err("corrupt empty space at LEB %d:%d",
- lnum, offs);
- goto corrupted;
- }
-
- return sleb;
-
-corrupted:
- if (!quiet) {
- ubifs_scanned_corruption(c, lnum, offs, buf);
- ubifs_err("LEB %d scanning failed", lnum);
- }
- err = -EUCLEAN;
- ubifs_scan_destroy(sleb);
- return ERR_PTR(err);
-
-error:
- ubifs_err("LEB %d scanning failed, error %d", lnum, err);
- ubifs_scan_destroy(sleb);
- return ERR_PTR(err);
-}
-
-/**
- * ubifs_scan_destroy - destroy LEB scanning information.
- * @sleb: scanning information to free
- */
-void ubifs_scan_destroy(struct ubifs_scan_leb *sleb)
-{
- struct ubifs_scan_node *node;
- struct list_head *head;
-
- head = &sleb->nodes;
- while (!list_empty(head)) {
- node = list_entry(head->next, struct ubifs_scan_node, list);
- list_del(&node->list);
- kfree(node);
- }
- kfree(sleb);
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/shrinker.c b/ANDROID_3.4.5/fs/ubifs/shrinker.c
deleted file mode 100644
index 9e1d0566..00000000
--- a/ANDROID_3.4.5/fs/ubifs/shrinker.c
+++ /dev/null
@@ -1,325 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file implements UBIFS shrinker which evicts clean znodes from the TNC
- * tree when Linux VM needs more RAM.
- *
- * We do not implement any LRU lists to find oldest znodes to free because it
- * would add additional overhead to the file system fast paths. So the shrinker
- * just walks the TNC tree when searching for znodes to free.
- *
- * If the root of a TNC sub-tree is clean and old enough, then the children are
- * also clean and old enough. So the shrinker walks the TNC in level order and
- * dumps entire sub-trees.
- *
- * The age of znodes is just the time-stamp when they were last looked at.
- * The current shrinker first tries to evict old znodes, then young ones.
- *
- * Since the shrinker is global, it has to protect against races with FS
- * un-mounts, which is done by the 'ubifs_infos_lock' and 'c->umount_mutex'.
- */
-
-#include "ubifs.h"
-
-/* List of all UBIFS file-system instances */
-LIST_HEAD(ubifs_infos);
-
-/*
- * We number each shrinker run and record the number on the ubifs_info structure
- * so that we can easily work out which ubifs_info structures have already been
- * done by the current run.
- */
-static unsigned int shrinker_run_no;
-
-/* Protects 'ubifs_infos' list */
-DEFINE_SPINLOCK(ubifs_infos_lock);
-
-/* Global clean znode counter (for all mounted UBIFS instances) */
-atomic_long_t ubifs_clean_zn_cnt;
-
-/**
- * shrink_tnc - shrink TNC tree.
- * @c: UBIFS file-system description object
- * @nr: number of znodes to free
- * @age: the age of znodes to free
- * @contention: if any contention, this is set to %1
- *
- * This function traverses TNC tree and frees clean znodes. It does not free
- * clean znodes which younger then @age. Returns number of freed znodes.
- */
-static int shrink_tnc(struct ubifs_info *c, int nr, int age, int *contention)
-{
- int total_freed = 0;
- struct ubifs_znode *znode, *zprev;
- int time = get_seconds();
-
- ubifs_assert(mutex_is_locked(&c->umount_mutex));
- ubifs_assert(mutex_is_locked(&c->tnc_mutex));
-
- if (!c->zroot.znode || atomic_long_read(&c->clean_zn_cnt) == 0)
- return 0;
-
- /*
- * Traverse the TNC tree in levelorder manner, so that it is possible
- * to destroy large sub-trees. Indeed, if a znode is old, then all its
- * children are older or of the same age.
- *
- * Note, we are holding 'c->tnc_mutex', so we do not have to lock the
- * 'c->space_lock' when _reading_ 'c->clean_zn_cnt', because it is
- * changed only when the 'c->tnc_mutex' is held.
- */
- zprev = NULL;
- znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
- while (znode && total_freed < nr &&
- atomic_long_read(&c->clean_zn_cnt) > 0) {
- int freed;
-
- /*
- * If the znode is clean, but it is in the 'c->cnext' list, this
- * means that this znode has just been written to flash as a
- * part of commit and was marked clean. They will be removed
- * from the list at end commit. We cannot change the list,
- * because it is not protected by any mutex (design decision to
- * make commit really independent and parallel to main I/O). So
- * we just skip these znodes.
- *
- * Note, the 'clean_zn_cnt' counters are not updated until
- * after the commit, so the UBIFS shrinker does not report
- * the znodes which are in the 'c->cnext' list as freeable.
- *
- * Also note, if the root of a sub-tree is not in 'c->cnext',
- * then the whole sub-tree is not in 'c->cnext' as well, so it
- * is safe to dump whole sub-tree.
- */
-
- if (znode->cnext) {
- /*
- * Very soon these znodes will be removed from the list
- * and become freeable.
- */
- *contention = 1;
- } else if (!ubifs_zn_dirty(znode) &&
- abs(time - znode->time) >= age) {
- if (znode->parent)
- znode->parent->zbranch[znode->iip].znode = NULL;
- else
- c->zroot.znode = NULL;
-
- freed = ubifs_destroy_tnc_subtree(znode);
- atomic_long_sub(freed, &ubifs_clean_zn_cnt);
- atomic_long_sub(freed, &c->clean_zn_cnt);
- ubifs_assert(atomic_long_read(&c->clean_zn_cnt) >= 0);
- total_freed += freed;
- znode = zprev;
- }
-
- if (unlikely(!c->zroot.znode))
- break;
-
- zprev = znode;
- znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
- cond_resched();
- }
-
- return total_freed;
-}
-
-/**
- * shrink_tnc_trees - shrink UBIFS TNC trees.
- * @nr: number of znodes to free
- * @age: the age of znodes to free
- * @contention: if any contention, this is set to %1
- *
- * This function walks the list of mounted UBIFS file-systems and frees clean
- * znodes which are older than @age, until at least @nr znodes are freed.
- * Returns the number of freed znodes.
- */
-static int shrink_tnc_trees(int nr, int age, int *contention)
-{
- struct ubifs_info *c;
- struct list_head *p;
- unsigned int run_no;
- int freed = 0;
-
- spin_lock(&ubifs_infos_lock);
- do {
- run_no = ++shrinker_run_no;
- } while (run_no == 0);
- /* Iterate over all mounted UBIFS file-systems and try to shrink them */
- p = ubifs_infos.next;
- while (p != &ubifs_infos) {
- c = list_entry(p, struct ubifs_info, infos_list);
- /*
- * We move the ones we do to the end of the list, so we stop
- * when we see one we have already done.
- */
- if (c->shrinker_run_no == run_no)
- break;
- if (!mutex_trylock(&c->umount_mutex)) {
- /* Some un-mount is in progress, try next FS */
- *contention = 1;
- p = p->next;
- continue;
- }
- /*
- * We're holding 'c->umount_mutex', so the file-system won't go
- * away.
- */
- if (!mutex_trylock(&c->tnc_mutex)) {
- mutex_unlock(&c->umount_mutex);
- *contention = 1;
- p = p->next;
- continue;
- }
- spin_unlock(&ubifs_infos_lock);
- /*
- * OK, now we have TNC locked, the file-system cannot go away -
- * it is safe to reap the cache.
- */
- c->shrinker_run_no = run_no;
- freed += shrink_tnc(c, nr, age, contention);
- mutex_unlock(&c->tnc_mutex);
- spin_lock(&ubifs_infos_lock);
- /* Get the next list element before we move this one */
- p = p->next;
- /*
- * Move this one to the end of the list to provide some
- * fairness.
- */
- list_move_tail(&c->infos_list, &ubifs_infos);
- mutex_unlock(&c->umount_mutex);
- if (freed >= nr)
- break;
- }
- spin_unlock(&ubifs_infos_lock);
- return freed;
-}
-
-/**
- * kick_a_thread - kick a background thread to start commit.
- *
- * This function kicks a background thread to start background commit. Returns
- * %-1 if a thread was kicked or there is another reason to assume the memory
- * will soon be freed or become freeable. If there are no dirty znodes, returns
- * %0.
- */
-static int kick_a_thread(void)
-{
- int i;
- struct ubifs_info *c;
-
- /*
- * Iterate over all mounted UBIFS file-systems and find out if there is
- * already an ongoing commit operation there. If no, then iterate for
- * the second time and initiate background commit.
- */
- spin_lock(&ubifs_infos_lock);
- for (i = 0; i < 2; i++) {
- list_for_each_entry(c, &ubifs_infos, infos_list) {
- long dirty_zn_cnt;
-
- if (!mutex_trylock(&c->umount_mutex)) {
- /*
- * Some un-mount is in progress, it will
- * certainly free memory, so just return.
- */
- spin_unlock(&ubifs_infos_lock);
- return -1;
- }
-
- dirty_zn_cnt = atomic_long_read(&c->dirty_zn_cnt);
-
- if (!dirty_zn_cnt || c->cmt_state == COMMIT_BROKEN ||
- c->ro_mount || c->ro_error) {
- mutex_unlock(&c->umount_mutex);
- continue;
- }
-
- if (c->cmt_state != COMMIT_RESTING) {
- spin_unlock(&ubifs_infos_lock);
- mutex_unlock(&c->umount_mutex);
- return -1;
- }
-
- if (i == 1) {
- list_move_tail(&c->infos_list, &ubifs_infos);
- spin_unlock(&ubifs_infos_lock);
-
- ubifs_request_bg_commit(c);
- mutex_unlock(&c->umount_mutex);
- return -1;
- }
- mutex_unlock(&c->umount_mutex);
- }
- }
- spin_unlock(&ubifs_infos_lock);
-
- return 0;
-}
-
-int ubifs_shrinker(struct shrinker *shrink, struct shrink_control *sc)
-{
- int nr = sc->nr_to_scan;
- int freed, contention = 0;
- long clean_zn_cnt = atomic_long_read(&ubifs_clean_zn_cnt);
-
- if (nr == 0)
- /*
- * Due to the way UBIFS updates the clean znode counter it may
- * temporarily be negative.
- */
- return clean_zn_cnt >= 0 ? clean_zn_cnt : 1;
-
- if (!clean_zn_cnt) {
- /*
- * No clean znodes, nothing to reap. All we can do in this case
- * is to kick background threads to start commit, which will
- * probably make clean znodes which, in turn, will be freeable.
- * And we return -1 which means will make VM call us again
- * later.
- */
- dbg_tnc("no clean znodes, kick a thread");
- return kick_a_thread();
- }
-
- freed = shrink_tnc_trees(nr, OLD_ZNODE_AGE, &contention);
- if (freed >= nr)
- goto out;
-
- dbg_tnc("not enough old znodes, try to free young ones");
- freed += shrink_tnc_trees(nr - freed, YOUNG_ZNODE_AGE, &contention);
- if (freed >= nr)
- goto out;
-
- dbg_tnc("not enough young znodes, free all");
- freed += shrink_tnc_trees(nr - freed, 0, &contention);
-
- if (!freed && contention) {
- dbg_tnc("freed nothing, but contention");
- return -1;
- }
-
-out:
- dbg_tnc("%d znodes were freed, requested %d", freed, nr);
- return freed;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/super.c b/ANDROID_3.4.5/fs/ubifs/super.c
deleted file mode 100644
index 225f11e6..00000000
--- a/ANDROID_3.4.5/fs/ubifs/super.c
+++ /dev/null
@@ -1,2414 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file implements UBIFS initialization and VFS superblock operations. Some
- * initialization stuff which is rather large and complex is placed at
- * corresponding subsystems, but most of it is here.
- */
-
-#include <linux/init.h>
-#include <linux/slab.h>
-#include <linux/module.h>
-#include <linux/ctype.h>
-#include <linux/kthread.h>
-#include <linux/parser.h>
-#include <linux/seq_file.h>
-#include <linux/mount.h>
-#include <linux/math64.h>
-#include <linux/writeback.h>
-#include <linux/reboot.h>
-#include <linux/syscalls.h>
-#include "ubifs.h"
-
-/*
- * Maximum amount of memory we may 'kmalloc()' without worrying that we are
- * allocating too much.
- */
-#define UBIFS_KMALLOC_OK (128*1024)
-
-/* Slab cache for UBIFS inodes */
-struct kmem_cache *ubifs_inode_slab;
-
-/* UBIFS TNC shrinker description */
-
-static void kill_ubifs_super(struct super_block *s);
-
-extern int do_remount_sb(struct super_block *sb, int flags, void *data, int force);
-
-static struct shrinker ubifs_shrinker_info = {
- .shrink = ubifs_shrinker,
- .seeks = DEFAULT_SEEKS,
-};
-
-
-
-static int ubifs_reboot (struct notifier_block *nb, unsigned long code, void *_cmd)
-{
-
- struct ubifs_info *c;
- struct super_block *sb;
-
- c = container_of(nb, struct ubifs_info, reboot_notifier);
- sb = c->vfs_sb;
-
- down_write(&sb->s_umount);
- do_remount_sb(sb, MS_RDONLY, NULL, 1);
- up_write(&sb->s_umount);
- ubi_update_volume(c->ubi);
-#if 0
- mutex_lock(&c->umount_mutex);
- c->no_chk_data_crc = 0;
- c->vfs_sb->s_flags |= MS_RDONLY;
-
- if (c->bgt) {
- kthread_stop(c->bgt);
- c->bgt = NULL;
- }
- /* Synchronize write-buffers */
- for (i = 0; i < c->jhead_cnt; i++)
- ubifs_wbuf_sync(&c->jheads[i].wbuf);
-
-
- mutex_lock(&c->mst_mutex);
- c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
- c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
- err = ubifs_write_master(c);
- mutex_unlock(&c->mst_mutex);
- //err = ubifs_run_commit(c);
-
- for (i = 0; i < c->jhead_cnt; i++)
- /* Make sure write-buffer timers are canceled */
- hrtimer_cancel(&c->jheads[i].wbuf.timer);
- ubi_update_volume(c->ubi);
-#if 0
- if (ubi->bgt_thread) {
- kthread_stop(ubi->bgt_thread);
- ubi->bgt_thread = NULL;
- }
- //ubi_update_volume(c->ubi);
-#endif
- if (err)
- ubifs_ro_mode(c, err);
-// ubi->ro_mode = 1;
- ubifs_msg("switched to read-only mode");
- vfree(c->orph_buf);
- c->orph_buf = NULL;
- kfree(c->write_reserve_buf);
- c->write_reserve_buf = NULL;
- vfree(c->ileb_buf);
- c->ileb_buf = NULL;
- ubifs_lpt_free(c, 1);
- c->ro_mount = 1;
- err = dbg_check_space_info(c);
- if (err)
- ubifs_ro_mode(c, err);
- mutex_unlock(&c->umount_mutex);
-#endif
- return NOTIFY_DONE;
-}
-
-/**
- * validate_inode - validate inode.
- * @c: UBIFS file-system description object
- * @inode: the inode to validate
- *
- * This is a helper function for 'ubifs_iget()' which validates various fields
- * of a newly built inode to make sure they contain sane values and prevent
- * possible vulnerabilities. Returns zero if the inode is all right and
- * a non-zero error code if not.
- */
-static int validate_inode(struct ubifs_info *c, const struct inode *inode)
-{
- int err;
- const struct ubifs_inode *ui = ubifs_inode(inode);
-
- if (inode->i_size > c->max_inode_sz) {
- ubifs_err("inode is too large (%lld)",
- (long long)inode->i_size);
- return 1;
- }
-
- if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
- ubifs_err("unknown compression type %d", ui->compr_type);
- return 2;
- }
-
- if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
- return 3;
-
- if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
- return 4;
-
- if (ui->xattr && !S_ISREG(inode->i_mode))
- return 5;
-
- if (!ubifs_compr_present(ui->compr_type)) {
- ubifs_warn("inode %lu uses '%s' compression, but it was not "
- "compiled in", inode->i_ino,
- ubifs_compr_name(ui->compr_type));
- }
-
- err = dbg_check_dir(c, inode);
- return err;
-}
-
-struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
-{
- int err;
- union ubifs_key key;
- struct ubifs_ino_node *ino;
- struct ubifs_info *c = sb->s_fs_info;
- struct inode *inode;
- struct ubifs_inode *ui;
-
- dbg_gen("inode %lu", inum);
-
- inode = iget_locked(sb, inum);
- if (!inode)
- return ERR_PTR(-ENOMEM);
- if (!(inode->i_state & I_NEW))
- return inode;
- ui = ubifs_inode(inode);
-
- ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
- if (!ino) {
- err = -ENOMEM;
- goto out;
- }
-
- ino_key_init(c, &key, inode->i_ino);
-
- err = ubifs_tnc_lookup(c, &key, ino);
- if (err)
- goto out_ino;
-
- inode->i_flags |= (S_NOCMTIME | S_NOATIME);
- set_nlink(inode, le32_to_cpu(ino->nlink));
- inode->i_uid = le32_to_cpu(ino->uid);
- inode->i_gid = le32_to_cpu(ino->gid);
- inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
- inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
- inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
- inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
- inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
- inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
- inode->i_mode = le32_to_cpu(ino->mode);
- inode->i_size = le64_to_cpu(ino->size);
-
- ui->data_len = le32_to_cpu(ino->data_len);
- ui->flags = le32_to_cpu(ino->flags);
- ui->compr_type = le16_to_cpu(ino->compr_type);
- ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
- ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
- ui->xattr_size = le32_to_cpu(ino->xattr_size);
- ui->xattr_names = le32_to_cpu(ino->xattr_names);
- ui->synced_i_size = ui->ui_size = inode->i_size;
-
- ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
-
- err = validate_inode(c, inode);
-
- if (err)
- goto out_invalid;
-
- /* Disable read-ahead */
- inode->i_mapping->backing_dev_info = &c->bdi;
-
- switch (inode->i_mode & S_IFMT) {
- case S_IFREG:
- inode->i_mapping->a_ops = &ubifs_file_address_operations;
- inode->i_op = &ubifs_file_inode_operations;
- inode->i_fop = &ubifs_file_operations;
- if (ui->xattr) {
- ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
- if (!ui->data) {
- err = -ENOMEM;
- goto out_ino;
- }
- memcpy(ui->data, ino->data, ui->data_len);
- ((char *)ui->data)[ui->data_len] = '\0';
- } else if (ui->data_len != 0) {
- err = 10;
- goto out_invalid;
- }
- break;
- case S_IFDIR:
- inode->i_op = &ubifs_dir_inode_operations;
- inode->i_fop = &ubifs_dir_operations;
- if (ui->data_len != 0) {
- err = 11;
- goto out_invalid;
- }
- break;
- case S_IFLNK:
- inode->i_op = &ubifs_symlink_inode_operations;
- if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
- err = 12;
- goto out_invalid;
- }
- ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
- if (!ui->data) {
- err = -ENOMEM;
- goto out_ino;
- }
- memcpy(ui->data, ino->data, ui->data_len);
- ((char *)ui->data)[ui->data_len] = '\0';
- break;
- case S_IFBLK:
- case S_IFCHR:
- {
- dev_t rdev;
- union ubifs_dev_desc *dev;
-
- ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
- if (!ui->data) {
- err = -ENOMEM;
- goto out_ino;
- }
-
- dev = (union ubifs_dev_desc *)ino->data;
- if (ui->data_len == sizeof(dev->new))
- rdev = new_decode_dev(le32_to_cpu(dev->new));
- else if (ui->data_len == sizeof(dev->huge))
- rdev = huge_decode_dev(le64_to_cpu(dev->huge));
- else {
- err = 13;
- goto out_invalid;
- }
- memcpy(ui->data, ino->data, ui->data_len);
- inode->i_op = &ubifs_file_inode_operations;
- init_special_inode(inode, inode->i_mode, rdev);
- break;
- }
- case S_IFSOCK:
- case S_IFIFO:
- inode->i_op = &ubifs_file_inode_operations;
- init_special_inode(inode, inode->i_mode, 0);
- if (ui->data_len != 0) {
- err = 14;
- goto out_invalid;
- }
- break;
- default:
- err = 15;
- goto out_invalid;
- }
-
- kfree(ino);
- ubifs_set_inode_flags(inode);
- unlock_new_inode(inode);
- return inode;
-
-out_invalid:
- ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
- dbg_dump_node(c, ino);
- dbg_dump_inode(c, inode);
- err = -EINVAL;
-out_ino:
- kfree(ino);
-out:
- ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
- iget_failed(inode);
- return ERR_PTR(err);
-}
-
-static struct inode *ubifs_alloc_inode(struct super_block *sb)
-{
- struct ubifs_inode *ui;
-
- ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
- if (!ui)
- return NULL;
-
- memset((void *)ui + sizeof(struct inode), 0,
- sizeof(struct ubifs_inode) - sizeof(struct inode));
- mutex_init(&ui->ui_mutex);
- spin_lock_init(&ui->ui_lock);
- return &ui->vfs_inode;
-};
-
-static void ubifs_i_callback(struct rcu_head *head)
-{
- struct inode *inode = container_of(head, struct inode, i_rcu);
- struct ubifs_inode *ui = ubifs_inode(inode);
- kmem_cache_free(ubifs_inode_slab, ui);
-}
-
-static void ubifs_destroy_inode(struct inode *inode)
-{
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- kfree(ui->data);
- call_rcu(&inode->i_rcu, ubifs_i_callback);
-}
-
-/*
- * Note, Linux write-back code calls this without 'i_mutex'.
- */
-static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
-{
- int err = 0;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- ubifs_assert(!ui->xattr);
- if (is_bad_inode(inode))
- return 0;
-
- mutex_lock(&ui->ui_mutex);
- /*
- * Due to races between write-back forced by budgeting
- * (see 'sync_some_inodes()') and pdflush write-back, the inode may
- * have already been synchronized, do not do this again. This might
- * also happen if it was synchronized in an VFS operation, e.g.
- * 'ubifs_link()'.
- */
- if (!ui->dirty) {
- mutex_unlock(&ui->ui_mutex);
- return 0;
- }
-
- /*
- * As an optimization, do not write orphan inodes to the media just
- * because this is not needed.
- */
- dbg_gen("inode %lu, mode %#x, nlink %u",
- inode->i_ino, (int)inode->i_mode, inode->i_nlink);
- if (inode->i_nlink) {
- err = ubifs_jnl_write_inode(c, inode);
- if (err)
- ubifs_err("can't write inode %lu, error %d",
- inode->i_ino, err);
- else
- err = dbg_check_inode_size(c, inode, ui->ui_size);
- }
-
- ui->dirty = 0;
- mutex_unlock(&ui->ui_mutex);
- ubifs_release_dirty_inode_budget(c, ui);
- return err;
-}
-
-static void ubifs_evict_inode(struct inode *inode)
-{
- int err;
- struct ubifs_info *c = inode->i_sb->s_fs_info;
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- if (ui->xattr)
- /*
- * Extended attribute inode deletions are fully handled in
- * 'ubifs_removexattr()'. These inodes are special and have
- * limited usage, so there is nothing to do here.
- */
- goto out;
-
- dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
- ubifs_assert(!atomic_read(&inode->i_count));
-
- truncate_inode_pages(&inode->i_data, 0);
-
- if (inode->i_nlink)
- goto done;
-
- if (is_bad_inode(inode))
- goto out;
-
- ui->ui_size = inode->i_size = 0;
- err = ubifs_jnl_delete_inode(c, inode);
- if (err)
- /*
- * Worst case we have a lost orphan inode wasting space, so a
- * simple error message is OK here.
- */
- ubifs_err("can't delete inode %lu, error %d",
- inode->i_ino, err);
-
-out:
- if (ui->dirty)
- ubifs_release_dirty_inode_budget(c, ui);
- else {
- /* We've deleted something - clean the "no space" flags */
- c->bi.nospace = c->bi.nospace_rp = 0;
- smp_wmb();
- }
-done:
- end_writeback(inode);
-}
-
-static void ubifs_dirty_inode(struct inode *inode, int flags)
-{
- struct ubifs_inode *ui = ubifs_inode(inode);
-
- ubifs_assert(mutex_is_locked(&ui->ui_mutex));
- if (!ui->dirty) {
- ui->dirty = 1;
- dbg_gen("inode %lu", inode->i_ino);
- }
-}
-
-static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
-{
- struct ubifs_info *c = dentry->d_sb->s_fs_info;
- unsigned long long free;
- __le32 *uuid = (__le32 *)c->uuid;
-
- free = ubifs_get_free_space(c);
- dbg_gen("free space %lld bytes (%lld blocks)",
- free, free >> UBIFS_BLOCK_SHIFT);
-
- buf->f_type = UBIFS_SUPER_MAGIC;
- buf->f_bsize = UBIFS_BLOCK_SIZE;
- buf->f_blocks = c->block_cnt;
- buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
- if (free > c->report_rp_size)
- buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
- else
- buf->f_bavail = 0;
- buf->f_files = c->highest_inum;
- buf->f_ffree = INUM_WATERMARK - c->highest_inum;
- buf->f_namelen = UBIFS_MAX_NLEN;
- buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
- buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
- ubifs_assert(buf->f_bfree <= c->block_cnt);
- return 0;
-}
-
-static int ubifs_show_options(struct seq_file *s, struct dentry *root)
-{
- struct ubifs_info *c = root->d_sb->s_fs_info;
-
- if (c->mount_opts.unmount_mode == 2)
- seq_printf(s, ",fast_unmount");
- else if (c->mount_opts.unmount_mode == 1)
- seq_printf(s, ",norm_unmount");
-
- if (c->mount_opts.bulk_read == 2)
- seq_printf(s, ",bulk_read");
- else if (c->mount_opts.bulk_read == 1)
- seq_printf(s, ",no_bulk_read");
-
- if (c->mount_opts.chk_data_crc == 2)
- seq_printf(s, ",chk_data_crc");
- else if (c->mount_opts.chk_data_crc == 1)
- seq_printf(s, ",no_chk_data_crc");
-
- if (c->mount_opts.override_compr) {
- seq_printf(s, ",compr=%s",
- ubifs_compr_name(c->mount_opts.compr_type));
- }
-
- return 0;
-}
-
-static int ubifs_sync_fs(struct super_block *sb, int wait)
-{
- int i, err;
- struct ubifs_info *c = sb->s_fs_info;
-
- /*
- * Zero @wait is just an advisory thing to help the file system shove
- * lots of data into the queues, and there will be the second
- * '->sync_fs()' call, with non-zero @wait.
- */
- if (!wait)
- return 0;
-
- /*
- * Synchronize write buffers, because 'ubifs_run_commit()' does not
- * do this if it waits for an already running commit.
- */
- for (i = 0; i < c->jhead_cnt; i++) {
- err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
- if (err)
- return err;
- }
-
- /*
- * Strictly speaking, it is not necessary to commit the journal here,
- * synchronizing write-buffers would be enough. But committing makes
- * UBIFS free space predictions much more accurate, so we want to let
- * the user be able to get more accurate results of 'statfs()' after
- * they synchronize the file system.
- */
- err = ubifs_run_commit(c);
- if (err)
- return err;
-
- return ubi_sync(c->vi.ubi_num);
-}
-
-/**
- * init_constants_early - initialize UBIFS constants.
- * @c: UBIFS file-system description object
- *
- * This function initialize UBIFS constants which do not need the superblock to
- * be read. It also checks that the UBI volume satisfies basic UBIFS
- * requirements. Returns zero in case of success and a negative error code in
- * case of failure.
- */
-static int init_constants_early(struct ubifs_info *c)
-{
- if (c->vi.corrupted) {
- ubifs_warn("UBI volume is corrupted - read-only mode");
- c->ro_media = 1;
- }
-
- if (c->di.ro_mode) {
- ubifs_msg("read-only UBI device");
- c->ro_media = 1;
- }
-
- if (c->vi.vol_type == UBI_STATIC_VOLUME) {
- ubifs_msg("static UBI volume - read-only mode");
- c->ro_media = 1;
- }
-
- c->leb_cnt = c->vi.size;
- c->leb_size = c->vi.usable_leb_size;
- c->leb_start = c->di.leb_start;
- c->half_leb_size = c->leb_size / 2;
- c->min_io_size = c->di.min_io_size;
- c->min_io_shift = fls(c->min_io_size) - 1;
- c->max_write_size = c->di.max_write_size;
- c->max_write_shift = fls(c->max_write_size) - 1;
-
- if (c->leb_size < UBIFS_MIN_LEB_SZ) {
- ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
- c->leb_size, UBIFS_MIN_LEB_SZ);
- return -EINVAL;
- }
-
- if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
- ubifs_err("too few LEBs (%d), min. is %d",
- c->leb_cnt, UBIFS_MIN_LEB_CNT);
- return -EINVAL;
- }
-
- if (!is_power_of_2(c->min_io_size)) {
- ubifs_err("bad min. I/O size %d", c->min_io_size);
- return -EINVAL;
- }
-
- /*
- * Maximum write size has to be greater or equivalent to min. I/O
- * size, and be multiple of min. I/O size.
- */
- if (c->max_write_size < c->min_io_size ||
- c->max_write_size % c->min_io_size ||
- !is_power_of_2(c->max_write_size)) {
- ubifs_err("bad write buffer size %d for %d min. I/O unit",
- c->max_write_size, c->min_io_size);
- return -EINVAL;
- }
-
- /*
- * UBIFS aligns all node to 8-byte boundary, so to make function in
- * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
- * less than 8.
- */
- if (c->min_io_size < 8) {
- c->min_io_size = 8;
- c->min_io_shift = 3;
- if (c->max_write_size < c->min_io_size) {
- c->max_write_size = c->min_io_size;
- c->max_write_shift = c->min_io_shift;
- }
- }
-
- c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
- c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
-
- /*
- * Initialize node length ranges which are mostly needed for node
- * length validation.
- */
- c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
- c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
- c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
- c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
- c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
- c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
-
- c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
- c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
- c->ranges[UBIFS_ORPH_NODE].min_len =
- UBIFS_ORPH_NODE_SZ + sizeof(__le64);
- c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
- c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
- c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
- c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
- c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
- c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
- c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
- /*
- * Minimum indexing node size is amended later when superblock is
- * read and the key length is known.
- */
- c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
- /*
- * Maximum indexing node size is amended later when superblock is
- * read and the fanout is known.
- */
- c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
-
- /*
- * Initialize dead and dark LEB space watermarks. See gc.c for comments
- * about these values.
- */
- c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
- c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
-
- /*
- * Calculate how many bytes would be wasted at the end of LEB if it was
- * fully filled with data nodes of maximum size. This is used in
- * calculations when reporting free space.
- */
- c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
-
- /* Buffer size for bulk-reads */
- c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
- if (c->max_bu_buf_len > c->leb_size)
- c->max_bu_buf_len = c->leb_size;
- return 0;
-}
-
-/**
- * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
- * @c: UBIFS file-system description object
- * @lnum: LEB the write-buffer was synchronized to
- * @free: how many free bytes left in this LEB
- * @pad: how many bytes were padded
- *
- * This is a callback function which is called by the I/O unit when the
- * write-buffer is synchronized. We need this to correctly maintain space
- * accounting in bud logical eraseblocks. This function returns zero in case of
- * success and a negative error code in case of failure.
- *
- * This function actually belongs to the journal, but we keep it here because
- * we want to keep it static.
- */
-static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
-{
- return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
-}
-
-/*
- * init_constants_sb - initialize UBIFS constants.
- * @c: UBIFS file-system description object
- *
- * This is a helper function which initializes various UBIFS constants after
- * the superblock has been read. It also checks various UBIFS parameters and
- * makes sure they are all right. Returns zero in case of success and a
- * negative error code in case of failure.
- */
-static int init_constants_sb(struct ubifs_info *c)
-{
- int tmp, err;
- long long tmp64;
-
- c->main_bytes = (long long)c->main_lebs * c->leb_size;
- c->max_znode_sz = sizeof(struct ubifs_znode) +
- c->fanout * sizeof(struct ubifs_zbranch);
-
- tmp = ubifs_idx_node_sz(c, 1);
- c->ranges[UBIFS_IDX_NODE].min_len = tmp;
- c->min_idx_node_sz = ALIGN(tmp, 8);
-
- tmp = ubifs_idx_node_sz(c, c->fanout);
- c->ranges[UBIFS_IDX_NODE].max_len = tmp;
- c->max_idx_node_sz = ALIGN(tmp, 8);
-
- /* Make sure LEB size is large enough to fit full commit */
- tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
- tmp = ALIGN(tmp, c->min_io_size);
- if (tmp > c->leb_size) {
- dbg_err("too small LEB size %d, at least %d needed",
- c->leb_size, tmp);
- return -EINVAL;
- }
-
- /*
- * Make sure that the log is large enough to fit reference nodes for
- * all buds plus one reserved LEB.
- */
- tmp64 = c->max_bud_bytes + c->leb_size - 1;
- c->max_bud_cnt = div_u64(tmp64, c->leb_size);
- tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
- tmp /= c->leb_size;
- tmp += 1;
- if (c->log_lebs < tmp) {
- dbg_err("too small log %d LEBs, required min. %d LEBs",
- c->log_lebs, tmp);
- return -EINVAL;
- }
-
- /*
- * When budgeting we assume worst-case scenarios when the pages are not
- * be compressed and direntries are of the maximum size.
- *
- * Note, data, which may be stored in inodes is budgeted separately, so
- * it is not included into 'c->bi.inode_budget'.
- */
- c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
- c->bi.inode_budget = UBIFS_INO_NODE_SZ;
- c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
-
- /*
- * When the amount of flash space used by buds becomes
- * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
- * The writers are unblocked when the commit is finished. To avoid
- * writers to be blocked UBIFS initiates background commit in advance,
- * when number of bud bytes becomes above the limit defined below.
- */
- c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
-
- /*
- * Ensure minimum journal size. All the bytes in the journal heads are
- * considered to be used, when calculating the current journal usage.
- * Consequently, if the journal is too small, UBIFS will treat it as
- * always full.
- */
- tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
- if (c->bg_bud_bytes < tmp64)
- c->bg_bud_bytes = tmp64;
- if (c->max_bud_bytes < tmp64 + c->leb_size)
- c->max_bud_bytes = tmp64 + c->leb_size;
-
- err = ubifs_calc_lpt_geom(c);
- if (err)
- return err;
-
- /* Initialize effective LEB size used in budgeting calculations */
- c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
- return 0;
-}
-
-/*
- * init_constants_master - initialize UBIFS constants.
- * @c: UBIFS file-system description object
- *
- * This is a helper function which initializes various UBIFS constants after
- * the master node has been read. It also checks various UBIFS parameters and
- * makes sure they are all right.
- */
-static void init_constants_master(struct ubifs_info *c)
-{
- long long tmp64;
-
- c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
- c->report_rp_size = ubifs_reported_space(c, c->rp_size);
-
- /*
- * Calculate total amount of FS blocks. This number is not used
- * internally because it does not make much sense for UBIFS, but it is
- * necessary to report something for the 'statfs()' call.
- *
- * Subtract the LEB reserved for GC, the LEB which is reserved for
- * deletions, minimum LEBs for the index, and assume only one journal
- * head is available.
- */
- tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
- tmp64 *= (long long)c->leb_size - c->leb_overhead;
- tmp64 = ubifs_reported_space(c, tmp64);
- c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
-}
-
-/**
- * take_gc_lnum - reserve GC LEB.
- * @c: UBIFS file-system description object
- *
- * This function ensures that the LEB reserved for garbage collection is marked
- * as "taken" in lprops. We also have to set free space to LEB size and dirty
- * space to zero, because lprops may contain out-of-date information if the
- * file-system was un-mounted before it has been committed. This function
- * returns zero in case of success and a negative error code in case of
- * failure.
- */
-static int take_gc_lnum(struct ubifs_info *c)
-{
- int err;
-
- if (c->gc_lnum == -1) {
- ubifs_err("no LEB for GC");
- return -EINVAL;
- }
-
- /* And we have to tell lprops that this LEB is taken */
- err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
- LPROPS_TAKEN, 0, 0);
- return err;
-}
-
-/**
- * alloc_wbufs - allocate write-buffers.
- * @c: UBIFS file-system description object
- *
- * This helper function allocates and initializes UBIFS write-buffers. Returns
- * zero in case of success and %-ENOMEM in case of failure.
- */
-static int alloc_wbufs(struct ubifs_info *c)
-{
- int i, err;
-
- c->buf = kmalloc(c->max_idx_node_sz, GFP_KERNEL);
- err = ubifs_wbuf_init(c, &c->idx_buf);
- if(err)
- return err;
-
- c->idx_buf.dtype = UBI_LONGTERM;
- c->idx_buf.no_timer = 1;
-
- c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
- GFP_KERNEL);
- if (!c->jheads)
- return -ENOMEM;
-
- /* Initialize journal heads */
- for (i = 0; i < c->jhead_cnt; i++) {
- INIT_LIST_HEAD(&c->jheads[i].buds_list);
- err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
- if (err)
- return err;
-
- c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
- c->jheads[i].wbuf.jhead = i;
- c->jheads[i].grouped = 1;
- }
-
- c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
- /*
- * Garbage Collector head likely contains long-term data and
- * does not need to be synchronized by timer. Also GC head nodes are
- * not grouped.
- */
- c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
- c->jheads[GCHD].wbuf.no_timer = 1;
- c->jheads[GCHD].grouped = 0;
-
- return 0;
-}
-
-/**
- * free_wbufs - free write-buffers.
- * @c: UBIFS file-system description object
- */
-static void free_wbufs(struct ubifs_info *c)
-{
- int i;
-
- if (c->jheads) {
- for (i = 0; i < c->jhead_cnt; i++) {
- kfree(c->jheads[i].wbuf.buf);
- kfree(c->jheads[i].wbuf.inodes);
- }
- kfree(c->jheads);
- c->jheads = NULL;
- }
- kfree(c->idx_buf.buf);
- kfree(c->idx_buf.inodes);
- kfree(c->buf);
-}
-
-/**
- * free_orphans - free orphans.
- * @c: UBIFS file-system description object
- */
-static void free_orphans(struct ubifs_info *c)
-{
- struct ubifs_orphan *orph;
-
- while (c->orph_dnext) {
- orph = c->orph_dnext;
- c->orph_dnext = orph->dnext;
- list_del(&orph->list);
- kfree(orph);
- }
-
- while (!list_empty(&c->orph_list)) {
- orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
- list_del(&orph->list);
- kfree(orph);
- dbg_err("orphan list not empty at unmount");
- }
-
- vfree(c->orph_buf);
- c->orph_buf = NULL;
-}
-
-/**
- * free_buds - free per-bud objects.
- * @c: UBIFS file-system description object
- */
-static void free_buds(struct ubifs_info *c)
-{
- struct rb_node *this = c->buds.rb_node;
- struct ubifs_bud *bud;
-
- while (this) {
- if (this->rb_left)
- this = this->rb_left;
- else if (this->rb_right)
- this = this->rb_right;
- else {
- bud = rb_entry(this, struct ubifs_bud, rb);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &bud->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
- kfree(bud);
- }
- }
-}
-
-/**
- * check_volume_empty - check if the UBI volume is empty.
- * @c: UBIFS file-system description object
- *
- * This function checks if the UBIFS volume is empty by looking if its LEBs are
- * mapped or not. The result of checking is stored in the @c->empty variable.
- * Returns zero in case of success and a negative error code in case of
- * failure.
- */
-static int check_volume_empty(struct ubifs_info *c)
-{
- int lnum, err;
-
- c->empty = 1;
- for (lnum = 0; lnum < c->leb_cnt; lnum++) {
- err = ubifs_is_mapped(c, lnum);
- if (unlikely(err < 0))
- return err;
- if (err == 1) {
- c->empty = 0;
- break;
- }
-
- cond_resched();
- }
-
- return 0;
-}
-
-/*
- * UBIFS mount options.
- *
- * Opt_fast_unmount: do not run a journal commit before un-mounting
- * Opt_norm_unmount: run a journal commit before un-mounting
- * Opt_bulk_read: enable bulk-reads
- * Opt_no_bulk_read: disable bulk-reads
- * Opt_chk_data_crc: check CRCs when reading data nodes
- * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
- * Opt_override_compr: override default compressor
- * Opt_err: just end of array marker
- */
-enum {
- Opt_fast_unmount,
- Opt_norm_unmount,
- Opt_bulk_read,
- Opt_no_bulk_read,
- Opt_chk_data_crc,
- Opt_no_chk_data_crc,
- Opt_override_compr,
- Opt_err,
-};
-
-static const match_table_t tokens = {
- {Opt_fast_unmount, "fast_unmount"},
- {Opt_norm_unmount, "norm_unmount"},
- {Opt_bulk_read, "bulk_read"},
- {Opt_no_bulk_read, "no_bulk_read"},
- {Opt_chk_data_crc, "chk_data_crc"},
- {Opt_no_chk_data_crc, "no_chk_data_crc"},
- {Opt_override_compr, "compr=%s"},
- {Opt_err, NULL},
-};
-
-/**
- * parse_standard_option - parse a standard mount option.
- * @option: the option to parse
- *
- * Normally, standard mount options like "sync" are passed to file-systems as
- * flags. However, when a "rootflags=" kernel boot parameter is used, they may
- * be present in the options string. This function tries to deal with this
- * situation and parse standard options. Returns 0 if the option was not
- * recognized, and the corresponding integer flag if it was.
- *
- * UBIFS is only interested in the "sync" option, so do not check for anything
- * else.
- */
-static int parse_standard_option(const char *option)
-{
- ubifs_msg("parse %s", option);
- if (!strcmp(option, "sync"))
- return MS_SYNCHRONOUS;
- return 0;
-}
-
-/**
- * ubifs_parse_options - parse mount parameters.
- * @c: UBIFS file-system description object
- * @options: parameters to parse
- * @is_remount: non-zero if this is FS re-mount
- *
- * This function parses UBIFS mount options and returns zero in case success
- * and a negative error code in case of failure.
- */
-static int ubifs_parse_options(struct ubifs_info *c, char *options,
- int is_remount)
-{
- char *p;
- substring_t args[MAX_OPT_ARGS];
-
- if (!options)
- return 0;
-
- while ((p = strsep(&options, ","))) {
- int token;
-
- if (!*p)
- continue;
-
- token = match_token(p, tokens, args);
- switch (token) {
- /*
- * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
- * We accept them in order to be backward-compatible. But this
- * should be removed at some point.
- */
- case Opt_fast_unmount:
- c->mount_opts.unmount_mode = 2;
- break;
- case Opt_norm_unmount:
- c->mount_opts.unmount_mode = 1;
- break;
- case Opt_bulk_read:
- c->mount_opts.bulk_read = 2;
- c->bulk_read = 1;
- break;
- case Opt_no_bulk_read:
- c->mount_opts.bulk_read = 1;
- c->bulk_read = 0;
- break;
- case Opt_chk_data_crc:
- c->mount_opts.chk_data_crc = 2;
- c->no_chk_data_crc = 0;
- break;
- case Opt_no_chk_data_crc:
- c->mount_opts.chk_data_crc = 1;
- c->no_chk_data_crc = 1;
- break;
- case Opt_override_compr:
- {
- char *name = match_strdup(&args[0]);
-
- if (!name)
- return -ENOMEM;
- if (!strcmp(name, "none"))
- c->mount_opts.compr_type = UBIFS_COMPR_NONE;
- else if (!strcmp(name, "lzo"))
- c->mount_opts.compr_type = UBIFS_COMPR_LZO;
- else if (!strcmp(name, "zlib"))
- c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
- else {
- ubifs_err("unknown compressor \"%s\"", name);
- kfree(name);
- return -EINVAL;
- }
- kfree(name);
- c->mount_opts.override_compr = 1;
- c->default_compr = c->mount_opts.compr_type;
- break;
- }
- default:
- {
- unsigned long flag;
- struct super_block *sb = c->vfs_sb;
-
- flag = parse_standard_option(p);
- if (!flag) {
- ubifs_err("unrecognized mount option \"%s\" "
- "or missing value", p);
- return -EINVAL;
- }
- sb->s_flags |= flag;
- break;
- }
- }
- }
-
- return 0;
-}
-
-/**
- * destroy_journal - destroy journal data structures.
- * @c: UBIFS file-system description object
- *
- * This function destroys journal data structures including those that may have
- * been created by recovery functions.
- */
-static void destroy_journal(struct ubifs_info *c)
-{
- while (!list_empty(&c->unclean_leb_list)) {
- struct ubifs_unclean_leb *ucleb;
-
- ucleb = list_entry(c->unclean_leb_list.next,
- struct ubifs_unclean_leb, list);
- list_del(&ucleb->list);
- kfree(ucleb);
- }
- while (!list_empty(&c->old_buds)) {
- struct ubifs_bud *bud;
-
- bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
- list_del(&bud->list);
- kfree(bud);
- }
- ubifs_destroy_idx_gc(c);
- ubifs_destroy_size_tree(c);
- ubifs_tnc_close(c);
- free_buds(c);
-}
-
-/**
- * bu_init - initialize bulk-read information.
- * @c: UBIFS file-system description object
- */
-static void bu_init(struct ubifs_info *c)
-{
- ubifs_assert(c->bulk_read == 1);
-
- if (c->bu.buf)
- return; /* Already initialized */
-
-again:
- c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
- if (!c->bu.buf) {
- if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
- c->max_bu_buf_len = UBIFS_KMALLOC_OK;
- goto again;
- }
-
- /* Just disable bulk-read */
- ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
- "disabling it", c->max_bu_buf_len);
- c->mount_opts.bulk_read = 1;
- c->bulk_read = 0;
- return;
- }
-}
-
-/**
- * check_free_space - check if there is enough free space to mount.
- * @c: UBIFS file-system description object
- *
- * This function makes sure UBIFS has enough free space to be mounted in
- * read/write mode. UBIFS must always have some free space to allow deletions.
- */
-static int check_free_space(struct ubifs_info *c)
-{
- ubifs_assert(c->dark_wm > 0);
- if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
- ubifs_err("insufficient free space to mount in R/W mode");
- dbg_dump_budg(c, &c->bi);
- dbg_dump_lprops(c);
- return -ENOSPC;
- }
- return 0;
-}
-
-/**
- * mount_ubifs - mount UBIFS file-system.
- * @c: UBIFS file-system description object
- *
- * This function mounts UBIFS file system. Returns zero in case of success and
- * a negative error code in case of failure.
- *
- * Note, the function does not de-allocate resources it it fails half way
- * through, and the caller has to do this instead.
- */
-static int mount_ubifs(struct ubifs_info *c)
-{
- int err;
- long long x;
- size_t sz;
-
- c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
- err = init_constants_early(c);
- if (err)
- return err;
-
- err = ubifs_debugging_init(c);
- if (err)
- return err;
-
- err = check_volume_empty(c);
- if (err)
- goto out_free;
-
- if (c->empty && (c->ro_mount || c->ro_media)) {
- /*
- * This UBI volume is empty, and read-only, or the file system
- * is mounted read-only - we cannot format it.
- */
- ubifs_err("can't format empty UBI volume: read-only %s",
- c->ro_media ? "UBI volume" : "mount");
- err = -EROFS;
- goto out_free;
- }
-
- if (c->ro_media && !c->ro_mount) {
- ubifs_err("cannot mount read-write - read-only media");
- err = -EROFS;
- goto out_free;
- }
-
- /*
- * The requirement for the buffer is that it should fit indexing B-tree
- * height amount of integers. We assume the height if the TNC tree will
- * never exceed 64.
- */
- err = -ENOMEM;
- c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
- if (!c->bottom_up_buf)
- goto out_free;
-
- c->sbuf = vmalloc(c->leb_size);
- if (!c->sbuf)
- goto out_free;
-
- if (!c->ro_mount) {
- c->ileb_buf = vmalloc(c->leb_size);
- if (!c->ileb_buf)
- goto out_free;
- }
-
- if (c->bulk_read == 1)
- bu_init(c);
-
- if (!c->ro_mount) {
- c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
- GFP_KERNEL);
- if (!c->write_reserve_buf)
- goto out_free;
- }
-
- c->mounting = 1;
-
- err = ubifs_read_superblock(c);
- if (err)
- goto out_free;
-
- /*
- * Make sure the compressor which is set as default in the superblock
- * or overridden by mount options is actually compiled in.
- */
- if (!ubifs_compr_present(c->default_compr)) {
- ubifs_err("'compressor \"%s\" is not compiled in",
- ubifs_compr_name(c->default_compr));
- err = -ENOTSUPP;
- goto out_free;
- }
-
- err = init_constants_sb(c);
- if (err)
- goto out_free;
-
- sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
- sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
- c->cbuf = kmalloc(sz, GFP_NOFS);
- if (!c->cbuf) {
- err = -ENOMEM;
- goto out_free;
- }
-
- err = alloc_wbufs(c);
- if (err)
- goto out_cbuf;
-
- sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
- if (!c->ro_mount) {
- /* Create background thread */
- c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
- if (IS_ERR(c->bgt)) {
- err = PTR_ERR(c->bgt);
- c->bgt = NULL;
- ubifs_err("cannot spawn \"%s\", error %d",
- c->bgt_name, err);
- goto out_wbufs;
- }
- wake_up_process(c->bgt);
- }
-
- err = ubifs_read_master(c);
- if (err)
- goto out_master;
-
- init_constants_master(c);
-
- if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
- ubifs_msg("recovery needed");
- c->need_recovery = 1;
- }
-
- if (c->need_recovery && !c->ro_mount) {
- err = ubifs_recover_inl_heads(c, c->sbuf);
- if (err)
- goto out_master;
- }
-
- err = ubifs_lpt_init(c, 1, !c->ro_mount);
- if (err)
- goto out_master;
-
- if (!c->ro_mount && c->space_fixup) {
- err = ubifs_fixup_free_space(c);
- if (err)
- goto out_master;
- }
-
- if (!c->ro_mount) {
- /*
- * Set the "dirty" flag so that if we reboot uncleanly we
- * will notice this immediately on the next mount.
- */
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- err = ubifs_write_master(c);
- if (err)
- goto out_lpt;
- }
-
- err = dbg_check_idx_size(c, c->bi.old_idx_sz);
- if (err)
- goto out_lpt;
-
- err = ubifs_replay_journal(c);
- if (err)
- goto out_journal;
-
- /* Calculate 'min_idx_lebs' after journal replay */
- c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
-
- err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
- if (err)
- goto out_orphans;
-
- if (!c->ro_mount) {
- int lnum;
-
- err = check_free_space(c);
- if (err)
- goto out_orphans;
-
- /* Check for enough log space */
- lnum = c->lhead_lnum + 1;
- if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
- lnum = UBIFS_LOG_LNUM;
- if (lnum == c->ltail_lnum) {
- err = ubifs_consolidate_log(c);
- if (err)
- goto out_orphans;
- }
-
- if (c->need_recovery) {
- err = ubifs_recover_size(c);
- if (err)
- goto out_orphans;
- err = ubifs_rcvry_gc_commit(c);
- if (err)
- goto out_orphans;
- } else {
- err = take_gc_lnum(c);
- if (err)
- goto out_orphans;
-
- /*
- * GC LEB may contain garbage if there was an unclean
- * reboot, and it should be un-mapped.
- */
- err = ubifs_leb_unmap(c, c->gc_lnum);
- if (err)
- goto out_orphans;
- }
-
- err = dbg_check_lprops(c);
- if (err)
- goto out_orphans;
- } else if (c->need_recovery) {
- err = ubifs_recover_size(c);
- if (err)
- goto out_orphans;
- } else {
- /*
- * Even if we mount read-only, we have to set space in GC LEB
- * to proper value because this affects UBIFS free space
- * reporting. We do not want to have a situation when
- * re-mounting from R/O to R/W changes amount of free space.
- */
- err = take_gc_lnum(c);
- if (err)
- goto out_orphans;
- }
-
- spin_lock(&ubifs_infos_lock);
- list_add_tail(&c->infos_list, &ubifs_infos);
- spin_unlock(&ubifs_infos_lock);
-
- if (c->need_recovery) {
- if (c->ro_mount)
- ubifs_msg("recovery deferred");
- else {
- c->need_recovery = 0;
- ubifs_msg("recovery completed");
- /*
- * GC LEB has to be empty and taken at this point. But
- * the journal head LEBs may also be accounted as
- * "empty taken" if they are empty.
- */
- ubifs_assert(c->lst.taken_empty_lebs > 0);
- }
- } else
- ubifs_assert(c->lst.taken_empty_lebs > 0);
-
- err = dbg_check_filesystem(c);
- if (err)
- goto out_infos;
-
- err = dbg_debugfs_init_fs(c);
- if (err)
- goto out_infos;
-
- c->mounting = 0;
-
- ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
- c->vi.ubi_num, c->vi.vol_id, c->vi.name);
- if (c->ro_mount)
- ubifs_msg("mounted read-only");
- x = (long long)c->main_lebs * c->leb_size;
- ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
- "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
- x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
- ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
- "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
- ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)",
- c->fmt_version, c->ro_compat_version,
- UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
- ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
- ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
- c->report_rp_size, c->report_rp_size >> 10);
-
- dbg_msg("compiled on: " __DATE__ " at " __TIME__);
- dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
- dbg_msg("max. write size: %d bytes", c->max_write_size);
- dbg_msg("LEB size: %d bytes (%d KiB)",
- c->leb_size, c->leb_size >> 10);
- dbg_msg("data journal heads: %d",
- c->jhead_cnt - NONDATA_JHEADS_CNT);
- dbg_msg("UUID: %pUB", c->uuid);
- dbg_msg("big_lpt %d", c->big_lpt);
- dbg_msg("log LEBs: %d (%d - %d)",
- c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
- dbg_msg("LPT area LEBs: %d (%d - %d)",
- c->lpt_lebs, c->lpt_first, c->lpt_last);
- dbg_msg("orphan area LEBs: %d (%d - %d)",
- c->orph_lebs, c->orph_first, c->orph_last);
- dbg_msg("main area LEBs: %d (%d - %d)",
- c->main_lebs, c->main_first, c->leb_cnt - 1);
- dbg_msg("index LEBs: %d", c->lst.idx_lebs);
- dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
- c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
- c->bi.old_idx_sz >> 20);
- dbg_msg("key hash type: %d", c->key_hash_type);
- dbg_msg("tree fanout: %d", c->fanout);
- dbg_msg("reserved GC LEB: %d", c->gc_lnum);
- dbg_msg("first main LEB: %d", c->main_first);
- dbg_msg("max. znode size %d", c->max_znode_sz);
- dbg_msg("max. index node size %d", c->max_idx_node_sz);
- dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
- UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
- dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
- UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
- dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
- UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
- dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
- UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
- UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
- dbg_msg("dead watermark: %d", c->dead_wm);
- dbg_msg("dark watermark: %d", c->dark_wm);
- dbg_msg("LEB overhead: %d", c->leb_overhead);
- x = (long long)c->main_lebs * c->dark_wm;
- dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
- x, x >> 10, x >> 20);
- dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
- c->max_bud_bytes, c->max_bud_bytes >> 10,
- c->max_bud_bytes >> 20);
- dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
- c->bg_bud_bytes, c->bg_bud_bytes >> 10,
- c->bg_bud_bytes >> 20);
- dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
- c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
- dbg_msg("max. seq. number: %llu", c->max_sqnum);
- dbg_msg("commit number: %llu", c->cmt_no);
-
- return 0;
-
-out_infos:
- spin_lock(&ubifs_infos_lock);
- list_del(&c->infos_list);
- spin_unlock(&ubifs_infos_lock);
-out_orphans:
- free_orphans(c);
-out_journal:
- destroy_journal(c);
-out_lpt:
- ubifs_lpt_free(c, 0);
-out_master:
- kfree(c->mst_node);
- kfree(c->rcvrd_mst_node);
- if (c->bgt)
- kthread_stop(c->bgt);
-out_wbufs:
- free_wbufs(c);
-out_cbuf:
- kfree(c->cbuf);
-out_free:
- kfree(c->write_reserve_buf);
- kfree(c->bu.buf);
- vfree(c->ileb_buf);
- vfree(c->sbuf);
- kfree(c->bottom_up_buf);
- ubifs_debugging_exit(c);
- return err;
-}
-
-/**
- * ubifs_umount - un-mount UBIFS file-system.
- * @c: UBIFS file-system description object
- *
- * Note, this function is called to free allocated resourced when un-mounting,
- * as well as free resources when an error occurred while we were half way
- * through mounting (error path cleanup function). So it has to make sure the
- * resource was actually allocated before freeing it.
- */
-static void ubifs_umount(struct ubifs_info *c)
-{
- dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
- c->vi.vol_id);
- unregister_reboot_notifier(&c->reboot_notifier);
- dbg_debugfs_exit_fs(c);
- spin_lock(&ubifs_infos_lock);
- list_del(&c->infos_list);
- spin_unlock(&ubifs_infos_lock);
-
- if (c->bgt)
- kthread_stop(c->bgt);
-
- destroy_journal(c);
- free_wbufs(c);
- free_orphans(c);
- ubifs_lpt_free(c, 0);
-
- kfree(c->cbuf);
- kfree(c->rcvrd_mst_node);
- kfree(c->mst_node);
- kfree(c->write_reserve_buf);
- kfree(c->bu.buf);
- vfree(c->ileb_buf);
- vfree(c->sbuf);
- kfree(c->bottom_up_buf);
- ubifs_debugging_exit(c);
-}
-
-/**
- * ubifs_remount_rw - re-mount in read-write mode.
- * @c: UBIFS file-system description object
- *
- * UBIFS avoids allocating many unnecessary resources when mounted in read-only
- * mode. This function allocates the needed resources and re-mounts UBIFS in
- * read-write mode.
- */
-static int ubifs_remount_rw(struct ubifs_info *c)
-{
- int err, lnum;
-
- if (c->rw_incompat) {
- ubifs_err("the file-system is not R/W-compatible");
- ubifs_msg("on-flash format version is w%d/r%d, but software "
- "only supports up to version w%d/r%d", c->fmt_version,
- c->ro_compat_version, UBIFS_FORMAT_VERSION,
- UBIFS_RO_COMPAT_VERSION);
- return -EROFS;
- }
-
- mutex_lock(&c->umount_mutex);
- dbg_save_space_info(c);
- c->remounting_rw = 1;
- c->ro_mount = 0;
-
- err = check_free_space(c);
- if (err)
- goto out;
-
- if (c->old_leb_cnt != c->leb_cnt) {
- struct ubifs_sb_node *sup;
-
- sup = ubifs_read_sb_node(c);
- if (IS_ERR(sup)) {
- err = PTR_ERR(sup);
- goto out;
- }
- sup->leb_cnt = cpu_to_le32(c->leb_cnt);
- err = ubifs_write_sb_node(c, sup);
- kfree(sup);
- if (err)
- goto out;
- }
-
- if (c->need_recovery) {
- ubifs_msg("completing deferred recovery");
- err = ubifs_write_rcvrd_mst_node(c);
- if (err)
- goto out;
- err = ubifs_recover_size(c);
- if (err)
- goto out;
- err = ubifs_clean_lebs(c, c->sbuf);
- if (err)
- goto out;
- err = ubifs_recover_inl_heads(c, c->sbuf);
- if (err)
- goto out;
- } else {
- /* A readonly mount is not allowed to have orphans */
- ubifs_assert(c->tot_orphans == 0);
- err = ubifs_clear_orphans(c);
- if (err)
- goto out;
- }
-
- if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
- err = ubifs_write_master(c);
- if (err)
- goto out;
- }
-
- c->ileb_buf = vmalloc(c->leb_size);
- if (!c->ileb_buf) {
- err = -ENOMEM;
- goto out;
- }
-
- c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
- if (!c->write_reserve_buf)
- goto out;
-
- err = ubifs_lpt_init(c, 0, 1);
- if (err)
- goto out;
-
- /* Create background thread */
- c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
- if (IS_ERR(c->bgt)) {
- err = PTR_ERR(c->bgt);
- c->bgt = NULL;
- ubifs_err("cannot spawn \"%s\", error %d",
- c->bgt_name, err);
- goto out;
- }
- wake_up_process(c->bgt);
-
- c->orph_buf = vmalloc(c->leb_size);
- if (!c->orph_buf) {
- err = -ENOMEM;
- goto out;
- }
-
- /* Check for enough log space */
- lnum = c->lhead_lnum + 1;
- if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
- lnum = UBIFS_LOG_LNUM;
- if (lnum == c->ltail_lnum) {
- err = ubifs_consolidate_log(c);
- if (err)
- goto out;
- }
-
- if (c->need_recovery)
- err = ubifs_rcvry_gc_commit(c);
- else
- err = ubifs_leb_unmap(c, c->gc_lnum);
- if (err)
- goto out;
-
- dbg_gen("re-mounted read-write");
- c->remounting_rw = 0;
-
- if (c->need_recovery) {
- c->need_recovery = 0;
- ubifs_msg("deferred recovery completed");
- } else {
- /*
- * Do not run the debugging space check if the were doing
- * recovery, because when we saved the information we had the
- * file-system in a state where the TNC and lprops has been
- * modified in memory, but all the I/O operations (including a
- * commit) were deferred. So the file-system was in
- * "non-committed" state. Now the file-system is in committed
- * state, and of course the amount of free space will change
- * because, for example, the old index size was imprecise.
- */
- err = dbg_check_space_info(c);
- }
-
- if (c->space_fixup) {
- err = ubifs_fixup_free_space(c);
- if (err)
- goto out;
- }
-
- mutex_unlock(&c->umount_mutex);
- return err;
-
-out:
- c->ro_mount = 1;
- vfree(c->orph_buf);
- c->orph_buf = NULL;
- if (c->bgt) {
- kthread_stop(c->bgt);
- c->bgt = NULL;
- }
- free_wbufs(c);
- kfree(c->write_reserve_buf);
- c->write_reserve_buf = NULL;
- vfree(c->ileb_buf);
- c->ileb_buf = NULL;
- ubifs_lpt_free(c, 1);
- c->remounting_rw = 0;
- mutex_unlock(&c->umount_mutex);
- return err;
-}
-
-/**
- * ubifs_remount_ro - re-mount in read-only mode.
- * @c: UBIFS file-system description object
- *
- * We assume VFS has stopped writing. Possibly the background thread could be
- * running a commit, however kthread_stop will wait in that case.
- */
-static void ubifs_remount_ro(struct ubifs_info *c)
-{
- int i, err;
-
- ubifs_assert(!c->need_recovery);
- ubifs_assert(!c->ro_mount);
-
- mutex_lock(&c->umount_mutex);
- if (c->bgt) {
- kthread_stop(c->bgt);
- c->bgt = NULL;
- }
-
- dbg_save_space_info(c);
-
- for (i = 0; i < c->jhead_cnt; i++)
- ubifs_wbuf_sync(&c->jheads[i].wbuf);
-
- c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
- c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
- err = ubifs_write_master(c);
- if (err)
- ubifs_ro_mode(c, err);
-
- vfree(c->orph_buf);
- c->orph_buf = NULL;
- kfree(c->write_reserve_buf);
- c->write_reserve_buf = NULL;
- vfree(c->ileb_buf);
- c->ileb_buf = NULL;
- ubifs_lpt_free(c, 1);
- c->ro_mount = 1;
- err = dbg_check_space_info(c);
- if (err)
- ubifs_ro_mode(c, err);
- mutex_unlock(&c->umount_mutex);
-}
-
-static void ubifs_put_super(struct super_block *sb)
-{
- int i;
- struct ubifs_info *c = sb->s_fs_info;
-
- ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
- c->vi.vol_id);
-
- /*
- * The following asserts are only valid if there has not been a failure
- * of the media. For example, there will be dirty inodes if we failed
- * to write them back because of I/O errors.
- */
- if (!c->ro_error) {
- ubifs_assert(c->bi.idx_growth == 0);
- ubifs_assert(c->bi.dd_growth == 0);
- ubifs_assert(c->bi.data_growth == 0);
- }
-
- /*
- * The 'c->umount_lock' prevents races between UBIFS memory shrinker
- * and file system un-mount. Namely, it prevents the shrinker from
- * picking this superblock for shrinking - it will be just skipped if
- * the mutex is locked.
- */
- mutex_lock(&c->umount_mutex);
- if (!c->ro_mount) {
- /*
- * First of all kill the background thread to make sure it does
- * not interfere with un-mounting and freeing resources.
- */
- if (c->bgt) {
- kthread_stop(c->bgt);
- c->bgt = NULL;
- }
-
- /*
- * On fatal errors c->ro_error is set to 1, in which case we do
- * not write the master node.
- */
- if (!c->ro_error) {
- int err = 0;
-
- /* Synchronize write-buffers */
- for (i = 0; i < c->jhead_cnt; i++)
- ubifs_wbuf_sync(&c->jheads[i].wbuf);
-
- /*
- * We are being cleanly unmounted which means the
- * orphans were killed - indicate this in the master
- * node. Also save the reserved GC LEB number.
- */
- c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
- c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
- c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
- err = ubifs_write_master(c);
- if (err)
- /*
- * Recovery will attempt to fix the master area
- * next mount, so we just print a message and
- * continue to unmount normally.
- */
- ubifs_err("failed to write master node, "
- "error %d", err);
- } else {
- for (i = 0; i < c->jhead_cnt; i++)
- /* Make sure write-buffer timers are canceled */
- hrtimer_cancel(&c->jheads[i].wbuf.timer);
- }
- }
-
- ubifs_umount(c);
- bdi_destroy(&c->bdi);
- ubi_close_volume(c->ubi);
- mutex_unlock(&c->umount_mutex);
-}
-
-static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
-{
- int err;
- struct ubifs_info *c = sb->s_fs_info;
-
- dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
-
- err = ubifs_parse_options(c, data, 1);
- if (err) {
- ubifs_err("invalid or unknown remount parameter");
- return err;
- }
-
- if (c->ro_mount && !(*flags & MS_RDONLY)) {
- if (c->ro_error) {
- ubifs_msg("cannot re-mount R/W due to prior errors");
- return -EROFS;
- }
- if (c->ro_media) {
- ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
- return -EROFS;
- }
- err = ubifs_remount_rw(c);
- if (err)
- return err;
- } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
- if (c->ro_error) {
- ubifs_msg("cannot re-mount R/O due to prior errors");
- return -EROFS;
- }
- ubifs_remount_ro(c);
- }
-
- if (c->bulk_read == 1)
- bu_init(c);
- else {
- dbg_gen("disable bulk-read");
- kfree(c->bu.buf);
- c->bu.buf = NULL;
- }
-
- ubifs_assert(c->lst.taken_empty_lebs > 0);
- return 0;
-}
-
-const struct super_operations ubifs_super_operations = {
- .alloc_inode = ubifs_alloc_inode,
- .destroy_inode = ubifs_destroy_inode,
- .put_super = ubifs_put_super,
- .write_inode = ubifs_write_inode,
- .evict_inode = ubifs_evict_inode,
- .statfs = ubifs_statfs,
- .dirty_inode = ubifs_dirty_inode,
- .remount_fs = ubifs_remount_fs,
- .show_options = ubifs_show_options,
- .sync_fs = ubifs_sync_fs,
-};
-
-/**
- * open_ubi - parse UBI device name string and open the UBI device.
- * @name: UBI volume name
- * @mode: UBI volume open mode
- *
- * The primary method of mounting UBIFS is by specifying the UBI volume
- * character device node path. However, UBIFS may also be mounted withoug any
- * character device node using one of the following methods:
- *
- * o ubiX_Y - mount UBI device number X, volume Y;
- * o ubiY - mount UBI device number 0, volume Y;
- * o ubiX:NAME - mount UBI device X, volume with name NAME;
- * o ubi:NAME - mount UBI device 0, volume with name NAME.
- *
- * Alternative '!' separator may be used instead of ':' (because some shells
- * like busybox may interpret ':' as an NFS host name separator). This function
- * returns UBI volume description object in case of success and a negative
- * error code in case of failure.
- */
-static struct ubi_volume_desc *open_ubi(const char *name, int mode)
-{
- struct ubi_volume_desc *ubi;
- int dev, vol;
- char *endptr;
-
- /* First, try to open using the device node path method */
- ubi = ubi_open_volume_path(name, mode);
- if (!IS_ERR(ubi))
- return ubi;
-
- /* Try the "nodev" method */
- if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
- return ERR_PTR(-EINVAL);
-
- /* ubi:NAME method */
- if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
- return ubi_open_volume_nm(0, name + 4, mode);
-
- if (!isdigit(name[3]))
- return ERR_PTR(-EINVAL);
-
- dev = simple_strtoul(name + 3, &endptr, 0);
-
- /* ubiY method */
- if (*endptr == '\0')
- return ubi_open_volume(0, dev, mode);
-
- /* ubiX_Y method */
- if (*endptr == '_' && isdigit(endptr[1])) {
- vol = simple_strtoul(endptr + 1, &endptr, 0);
- if (*endptr != '\0')
- return ERR_PTR(-EINVAL);
- return ubi_open_volume(dev, vol, mode);
- }
-
- /* ubiX:NAME method */
- if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
- return ubi_open_volume_nm(dev, ++endptr, mode);
-
- return ERR_PTR(-EINVAL);
-}
-
-static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
-{
- struct ubifs_info *c;
-
- c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
- if (c) {
- spin_lock_init(&c->cnt_lock);
- spin_lock_init(&c->cs_lock);
- spin_lock_init(&c->buds_lock);
- spin_lock_init(&c->space_lock);
- spin_lock_init(&c->orphan_lock);
- init_rwsem(&c->commit_sem);
- mutex_init(&c->lp_mutex);
- mutex_init(&c->tnc_mutex);
- mutex_init(&c->log_mutex);
- mutex_init(&c->mst_mutex);
- mutex_init(&c->umount_mutex);
- mutex_init(&c->bu_mutex);
- mutex_init(&c->write_reserve_mutex);
- init_waitqueue_head(&c->cmt_wq);
- c->buds = RB_ROOT;
- c->old_idx = RB_ROOT;
- c->size_tree = RB_ROOT;
- c->orph_tree = RB_ROOT;
- INIT_LIST_HEAD(&c->infos_list);
- INIT_LIST_HEAD(&c->idx_gc);
- INIT_LIST_HEAD(&c->replay_list);
- INIT_LIST_HEAD(&c->replay_buds);
- INIT_LIST_HEAD(&c->uncat_list);
- INIT_LIST_HEAD(&c->empty_list);
- INIT_LIST_HEAD(&c->freeable_list);
- INIT_LIST_HEAD(&c->frdi_idx_list);
- INIT_LIST_HEAD(&c->unclean_leb_list);
- INIT_LIST_HEAD(&c->old_buds);
- INIT_LIST_HEAD(&c->orph_list);
- INIT_LIST_HEAD(&c->orph_new);
- c->no_chk_data_crc = 1;
-
- c->highest_inum = UBIFS_FIRST_INO;
- c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
-
- ubi_get_volume_info(ubi, &c->vi);
- ubi_get_device_info(c->vi.ubi_num, &c->di);
- }
- return c;
-}
-
-static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
-{
- struct ubifs_info *c = sb->s_fs_info;
- struct inode *root;
- int err;
-
- c->vfs_sb = sb;
- /* Re-open the UBI device in read-write mode */
- c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
- if (IS_ERR(c->ubi)) {
- err = PTR_ERR(c->ubi);
- goto out;
- }
-
- /*
- * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
- * UBIFS, I/O is not deferred, it is done immediately in readpage,
- * which means the user would have to wait not just for their own I/O
- * but the read-ahead I/O as well i.e. completely pointless.
- *
- * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
- */
- c->bdi.name = "ubifs",
- c->bdi.capabilities = BDI_CAP_MAP_COPY;
- err = bdi_init(&c->bdi);
- if (err)
- goto out_close;
- err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
- c->vi.ubi_num, c->vi.vol_id);
- if (err)
- goto out_bdi;
-
- err = ubifs_parse_options(c, data, 0);
- if (err)
- goto out_bdi;
-
- sb->s_bdi = &c->bdi;
- sb->s_fs_info = c;
- sb->s_magic = UBIFS_SUPER_MAGIC;
- sb->s_blocksize = UBIFS_BLOCK_SIZE;
- sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
- sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
- if (c->max_inode_sz > MAX_LFS_FILESIZE)
- sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
- sb->s_op = &ubifs_super_operations;
-
-
-
- mutex_lock(&c->umount_mutex);
- err = mount_ubifs(c);
- if (err) {
- ubifs_assert(err < 0);
- goto out_unlock;
- }
-
- /* Read the root inode */
- root = ubifs_iget(sb, UBIFS_ROOT_INO);
- if (IS_ERR(root)) {
- err = PTR_ERR(root);
- goto out_umount;
- }
-
- sb->s_root = d_make_root(root);
- if (!sb->s_root)
- goto out_umount;
-
- mutex_unlock(&c->umount_mutex);
- return 0;
-
-out_umount:
- ubifs_umount(c);
-out_unlock:
- mutex_unlock(&c->umount_mutex);
-out_bdi:
- bdi_destroy(&c->bdi);
-out_close:
- ubi_close_volume(c->ubi);
-out:
- return err;
-}
-
-static int sb_test(struct super_block *sb, void *data)
-{
- struct ubifs_info *c1 = data;
- struct ubifs_info *c = sb->s_fs_info;
-
- return c->vi.cdev == c1->vi.cdev;
-}
-
-static int sb_set(struct super_block *sb, void *data)
-{
- sb->s_fs_info = data;
- return set_anon_super(sb, NULL);
-}
-
-static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
- const char *name, void *data)
-{
- struct ubi_volume_desc *ubi;
- struct ubifs_info *c;
- struct super_block *sb;
- int err;
-
- dbg_gen("name %s, flags %#x", name, flags);
-
- /*
- * Get UBI device number and volume ID. Mount it read-only so far
- * because this might be a new mount point, and UBI allows only one
- * read-write user at a time.
- */
- ubi = open_ubi(name, UBI_READONLY);
- if (IS_ERR(ubi)) {
- dbg_err("cannot open \"%s\", error %d",
- name, (int)PTR_ERR(ubi));
- return ERR_CAST(ubi);
- }
-
- c = alloc_ubifs_info(ubi);
- if (!c) {
- err = -ENOMEM;
- goto out_close;
- }
-
- dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
-
- sb = sget(fs_type, sb_test, sb_set, c);
- if (IS_ERR(sb)) {
- err = PTR_ERR(sb);
- kfree(c);
- goto out_close;
- }
-
- if (sb->s_root) {
- struct ubifs_info *c1 = sb->s_fs_info;
- kfree(c);
- /* A new mount point for already mounted UBIFS */
- dbg_gen("this ubi volume is already mounted");
- if (!!(flags & MS_RDONLY) != c1->ro_mount) {
- err = -EBUSY;
- goto out_deact;
- }
- } else {
- sb->s_flags = flags;
- err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
- if (err)
- goto out_deact;
- /* We do not support atime */
- sb->s_flags |= MS_ACTIVE | MS_NOATIME;
- }
-
- /* 'fill_super()' opens ubi again so we must close it here */
- ubi_close_volume(ubi);
- c->reboot_notifier.notifier_call = ubifs_reboot;
- register_reboot_notifier(&c->reboot_notifier);//Johnny Liu
- return dget(sb->s_root);
-
-out_deact:
- deactivate_locked_super(sb);
-out_close:
- ubi_close_volume(ubi);
- return ERR_PTR(err);
-}
-
-static void kill_ubifs_super(struct super_block *s)
-{
- struct ubifs_info *c = s->s_fs_info;
- kill_anon_super(s);
- kfree(c);
-}
-#if 0
-static int ubifs_reboot (struct super_block *s)
-{
- kill_ubifs_super(s);
-}
-static struct notifier_block ubifs_reboot_notifier = {
- .notifier_call = ubifs_reboot
-};
-#endif
-static struct file_system_type ubifs_fs_type = {
- .name = "ubifs",
- .owner = THIS_MODULE,
- .mount = ubifs_mount,
- .kill_sb = kill_ubifs_super,
-};
-
-/*
- * Inode slab cache constructor.
- */
-static void inode_slab_ctor(void *obj)
-{
- struct ubifs_inode *ui = obj;
- inode_init_once(&ui->vfs_inode);
-}
-
-static int __init ubifs_init(void)
-{
- int err;
-
- BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
-
- /* Make sure node sizes are 8-byte aligned */
- BUILD_BUG_ON(UBIFS_CH_SZ & 7);
- BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
-
- BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
- BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
- BUILD_BUG_ON(MIN_WRITE_SZ & 7);
-
- /* Check min. node size */
- BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
- BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
- BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
- BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
-
- BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
- BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
- BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
- BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
-
- /* Defined node sizes */
- BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
- BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
- BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
- BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
-
- /*
- * We use 2 bit wide bit-fields to store compression type, which should
- * be amended if more compressors are added. The bit-fields are:
- * @compr_type in 'struct ubifs_inode', @default_compr in
- * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
- */
- BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
-
- /*
- * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
- * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
- */
- if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
- ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
- " at least 4096 bytes",
- (unsigned int)PAGE_CACHE_SIZE);
- return -EINVAL;
- }
-
- ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
- sizeof(struct ubifs_inode), 0,
- SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
- &inode_slab_ctor);
- if (!ubifs_inode_slab)
- return -ENOMEM;
-
- register_shrinker(&ubifs_shrinker_info);
-
- err = ubifs_compressors_init();
- if (err)
- goto out_shrinker;
-
- err = dbg_debugfs_init();
- if (err)
- goto out_compr;
-
- err = register_filesystem(&ubifs_fs_type);
- if (err) {
- ubifs_err("cannot register file system, error %d", err);
- goto out_dbg;
- }
- return 0;
-
-out_dbg:
- dbg_debugfs_exit();
-out_compr:
- ubifs_compressors_exit();
-out_shrinker:
- unregister_shrinker(&ubifs_shrinker_info);
- kmem_cache_destroy(ubifs_inode_slab);
- return err;
-}
-/* late_initcall to let compressors initialize first */
-late_initcall(ubifs_init);
-
-static void __exit ubifs_exit(void)
-{
- ubifs_assert(list_empty(&ubifs_infos));
- ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
-
- dbg_debugfs_exit();
- ubifs_compressors_exit();
- unregister_shrinker(&ubifs_shrinker_info);
- kmem_cache_destroy(ubifs_inode_slab);
- unregister_filesystem(&ubifs_fs_type);
-}
-module_exit(ubifs_exit);
-
-MODULE_LICENSE("GPL");
-MODULE_VERSION(__stringify(UBIFS_VERSION));
-MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
-MODULE_DESCRIPTION("UBIFS - UBI File System");
diff --git a/ANDROID_3.4.5/fs/ubifs/tnc.c b/ANDROID_3.4.5/fs/ubifs/tnc.c
deleted file mode 100644
index 16ad84d8..00000000
--- a/ANDROID_3.4.5/fs/ubifs/tnc.c
+++ /dev/null
@@ -1,3347 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file implements TNC (Tree Node Cache) which caches indexing nodes of
- * the UBIFS B-tree.
- *
- * At the moment the locking rules of the TNC tree are quite simple and
- * straightforward. We just have a mutex and lock it when we traverse the
- * tree. If a znode is not in memory, we read it from flash while still having
- * the mutex locked.
- */
-
-#include <linux/crc32.h>
-#include <linux/slab.h>
-#include "ubifs.h"
-
-/*
- * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
- * @NAME_LESS: name corresponding to the first argument is less than second
- * @NAME_MATCHES: names match
- * @NAME_GREATER: name corresponding to the second argument is greater than
- * first
- * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
- *
- * These constants were introduce to improve readability.
- */
-enum {
- NAME_LESS = 0,
- NAME_MATCHES = 1,
- NAME_GREATER = 2,
- NOT_ON_MEDIA = 3,
-};
-
-/**
- * insert_old_idx - record an index node obsoleted since the last commit start.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of obsoleted index node
- * @offs: offset of obsoleted index node
- *
- * Returns %0 on success, and a negative error code on failure.
- *
- * For recovery, there must always be a complete intact version of the index on
- * flash at all times. That is called the "old index". It is the index as at the
- * time of the last successful commit. Many of the index nodes in the old index
- * may be dirty, but they must not be erased until the next successful commit
- * (at which point that index becomes the old index).
- *
- * That means that the garbage collection and the in-the-gaps method of
- * committing must be able to determine if an index node is in the old index.
- * Most of the old index nodes can be found by looking up the TNC using the
- * 'lookup_znode()' function. However, some of the old index nodes may have
- * been deleted from the current index or may have been changed so much that
- * they cannot be easily found. In those cases, an entry is added to an RB-tree.
- * That is what this function does. The RB-tree is ordered by LEB number and
- * offset because they uniquely identify the old index node.
- */
-static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
-{
- struct ubifs_old_idx *old_idx, *o;
- struct rb_node **p, *parent = NULL;
-
- old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
- if (unlikely(!old_idx))
- return -ENOMEM;
- old_idx->lnum = lnum;
- old_idx->offs = offs;
-
- p = &c->old_idx.rb_node;
- while (*p) {
- parent = *p;
- o = rb_entry(parent, struct ubifs_old_idx, rb);
- if (lnum < o->lnum)
- p = &(*p)->rb_left;
- else if (lnum > o->lnum)
- p = &(*p)->rb_right;
- else if (offs < o->offs)
- p = &(*p)->rb_left;
- else if (offs > o->offs)
- p = &(*p)->rb_right;
- else {
- ubifs_err("old idx added twice!");
- kfree(old_idx);
- return 0;
- }
- }
- rb_link_node(&old_idx->rb, parent, p);
- rb_insert_color(&old_idx->rb, &c->old_idx);
- return 0;
-}
-
-/**
- * insert_old_idx_znode - record a znode obsoleted since last commit start.
- * @c: UBIFS file-system description object
- * @znode: znode of obsoleted index node
- *
- * Returns %0 on success, and a negative error code on failure.
- */
-int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
-{
- if (znode->parent) {
- struct ubifs_zbranch *zbr;
-
- zbr = &znode->parent->zbranch[znode->iip];
- if (zbr->len)
- return insert_old_idx(c, zbr->lnum, zbr->offs);
- } else
- if (c->zroot.len)
- return insert_old_idx(c, c->zroot.lnum,
- c->zroot.offs);
- return 0;
-}
-
-/**
- * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
- * @c: UBIFS file-system description object
- * @znode: znode of obsoleted index node
- *
- * Returns %0 on success, and a negative error code on failure.
- */
-static int ins_clr_old_idx_znode(struct ubifs_info *c,
- struct ubifs_znode *znode)
-{
- int err;
-
- if (znode->parent) {
- struct ubifs_zbranch *zbr;
-
- zbr = &znode->parent->zbranch[znode->iip];
- if (zbr->len) {
- err = insert_old_idx(c, zbr->lnum, zbr->offs);
- if (err)
- return err;
- zbr->lnum = 0;
- zbr->offs = 0;
- zbr->len = 0;
- }
- } else
- if (c->zroot.len) {
- err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
- if (err)
- return err;
- c->zroot.lnum = 0;
- c->zroot.offs = 0;
- c->zroot.len = 0;
- }
- return 0;
-}
-
-/**
- * destroy_old_idx - destroy the old_idx RB-tree.
- * @c: UBIFS file-system description object
- *
- * During start commit, the old_idx RB-tree is used to avoid overwriting index
- * nodes that were in the index last commit but have since been deleted. This
- * is necessary for recovery i.e. the old index must be kept intact until the
- * new index is successfully written. The old-idx RB-tree is used for the
- * in-the-gaps method of writing index nodes and is destroyed every commit.
- */
-void destroy_old_idx(struct ubifs_info *c)
-{
- struct rb_node *this = c->old_idx.rb_node;
- struct ubifs_old_idx *old_idx;
-
- while (this) {
- if (this->rb_left) {
- this = this->rb_left;
- continue;
- } else if (this->rb_right) {
- this = this->rb_right;
- continue;
- }
- old_idx = rb_entry(this, struct ubifs_old_idx, rb);
- this = rb_parent(this);
- if (this) {
- if (this->rb_left == &old_idx->rb)
- this->rb_left = NULL;
- else
- this->rb_right = NULL;
- }
- kfree(old_idx);
- }
- c->old_idx = RB_ROOT;
-}
-
-/**
- * copy_znode - copy a dirty znode.
- * @c: UBIFS file-system description object
- * @znode: znode to copy
- *
- * A dirty znode being committed may not be changed, so it is copied.
- */
-static struct ubifs_znode *copy_znode(struct ubifs_info *c,
- struct ubifs_znode *znode)
-{
- struct ubifs_znode *zn;
-
- zn = kmalloc(c->max_znode_sz, GFP_NOFS);
- if (unlikely(!zn))
- return ERR_PTR(-ENOMEM);
-
- memcpy(zn, znode, c->max_znode_sz);
- zn->cnext = NULL;
- __set_bit(DIRTY_ZNODE, &zn->flags);
- __clear_bit(COW_ZNODE, &zn->flags);
-
- ubifs_assert(!ubifs_zn_obsolete(znode));
- __set_bit(OBSOLETE_ZNODE, &znode->flags);
-
- if (znode->level != 0) {
- int i;
- const int n = zn->child_cnt;
-
- /* The children now have new parent */
- for (i = 0; i < n; i++) {
- struct ubifs_zbranch *zbr = &zn->zbranch[i];
-
- if (zbr->znode)
- zbr->znode->parent = zn;
- }
- }
-
- atomic_long_inc(&c->dirty_zn_cnt);
- return zn;
-}
-
-/**
- * add_idx_dirt - add dirt due to a dirty znode.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of index node
- * @dirt: size of index node
- *
- * This function updates lprops dirty space and the new size of the index.
- */
-static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
-{
- c->calc_idx_sz -= ALIGN(dirt, 8);
- return ubifs_add_dirt(c, lnum, dirt);
-}
-
-/**
- * dirty_cow_znode - ensure a znode is not being committed.
- * @c: UBIFS file-system description object
- * @zbr: branch of znode to check
- *
- * Returns dirtied znode on success or negative error code on failure.
- */
-static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
- struct ubifs_zbranch *zbr)
-{
- struct ubifs_znode *znode = zbr->znode;
- struct ubifs_znode *zn;
- int err;
-
- if (!ubifs_zn_cow(znode)) {
- /* znode is not being committed */
- if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
- atomic_long_inc(&c->dirty_zn_cnt);
- atomic_long_dec(&c->clean_zn_cnt);
- atomic_long_dec(&ubifs_clean_zn_cnt);
- err = add_idx_dirt(c, zbr->lnum, zbr->len);
- if (unlikely(err))
- return ERR_PTR(err);
- }
- return znode;
- }
-
- zn = copy_znode(c, znode);
- if (IS_ERR(zn))
- return zn;
-
- if (zbr->len) {
- err = insert_old_idx(c, zbr->lnum, zbr->offs);
- if (unlikely(err))
- return ERR_PTR(err);
- err = add_idx_dirt(c, zbr->lnum, zbr->len);
- } else
- err = 0;
-
- zbr->znode = zn;
- zbr->lnum = 0;
- zbr->offs = 0;
- zbr->len = 0;
-
- if (unlikely(err))
- return ERR_PTR(err);
- return zn;
-}
-
-/**
- * lnc_add - add a leaf node to the leaf node cache.
- * @c: UBIFS file-system description object
- * @zbr: zbranch of leaf node
- * @node: leaf node
- *
- * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
- * purpose of the leaf node cache is to save re-reading the same leaf node over
- * and over again. Most things are cached by VFS, however the file system must
- * cache directory entries for readdir and for resolving hash collisions. The
- * present implementation of the leaf node cache is extremely simple, and
- * allows for error returns that are not used but that may be needed if a more
- * complex implementation is created.
- *
- * Note, this function does not add the @node object to LNC directly, but
- * allocates a copy of the object and adds the copy to LNC. The reason for this
- * is that @node has been allocated outside of the TNC subsystem and will be
- * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
- * may be changed at any time, e.g. freed by the shrinker.
- */
-static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- const void *node)
-{
- int err;
- void *lnc_node;
- const struct ubifs_dent_node *dent = node;
-
- ubifs_assert(!zbr->leaf);
- ubifs_assert(zbr->len != 0);
- ubifs_assert(is_hash_key(c, &zbr->key));
-
- err = ubifs_validate_entry(c, dent);
- if (err) {
- dbg_dump_stack();
- dbg_dump_node(c, dent);
- return err;
- }
-
- lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
- if (!lnc_node)
- /* We don't have to have the cache, so no error */
- return 0;
-
- zbr->leaf = lnc_node;
- return 0;
-}
-
- /**
- * lnc_add_directly - add a leaf node to the leaf-node-cache.
- * @c: UBIFS file-system description object
- * @zbr: zbranch of leaf node
- * @node: leaf node
- *
- * This function is similar to 'lnc_add()', but it does not create a copy of
- * @node but inserts @node to TNC directly.
- */
-static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- void *node)
-{
- int err;
-
- ubifs_assert(!zbr->leaf);
- ubifs_assert(zbr->len != 0);
-
- err = ubifs_validate_entry(c, node);
- if (err) {
- dbg_dump_stack();
- dbg_dump_node(c, node);
- return err;
- }
-
- zbr->leaf = node;
- return 0;
-}
-
-/**
- * lnc_free - remove a leaf node from the leaf node cache.
- * @zbr: zbranch of leaf node
- * @node: leaf node
- */
-static void lnc_free(struct ubifs_zbranch *zbr)
-{
- if (!zbr->leaf)
- return;
- kfree(zbr->leaf);
- zbr->leaf = NULL;
-}
-
-/**
- * tnc_read_node_nm - read a "hashed" leaf node.
- * @c: UBIFS file-system description object
- * @zbr: key and position of the node
- * @node: node is returned here
- *
- * This function reads a "hashed" node defined by @zbr from the leaf node cache
- * (in it is there) or from the hash media, in which case the node is also
- * added to LNC. Returns zero in case of success or a negative negative error
- * code in case of failure.
- */
-static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- void *node)
-{
- int err;
-
- ubifs_assert(is_hash_key(c, &zbr->key));
-
- if (zbr->leaf) {
- /* Read from the leaf node cache */
- ubifs_assert(zbr->len != 0);
- memcpy(node, zbr->leaf, zbr->len);
- return 0;
- }
-
- err = ubifs_tnc_read_node(c, zbr, node);
- if (err)
- return err;
-
- /* Add the node to the leaf node cache */
- err = lnc_add(c, zbr, node);
- return err;
-}
-
-/**
- * try_read_node - read a node if it is a node.
- * @c: UBIFS file-system description object
- * @buf: buffer to read to
- * @type: node type
- * @len: node length (not aligned)
- * @lnum: LEB number of node to read
- * @offs: offset of node to read
- *
- * This function tries to read a node of known type and length, checks it and
- * stores it in @buf. This function returns %1 if a node is present and %0 if
- * a node is not present. A negative error code is returned for I/O errors.
- * This function performs that same function as ubifs_read_node except that
- * it does not require that there is actually a node present and instead
- * the return code indicates if a node was read.
- *
- * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
- * is true (it is controlled by corresponding mount option). However, if
- * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
- * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
- * because during mounting or re-mounting from R/O mode to R/W mode we may read
- * journal nodes (when replying the journal or doing the recovery) and the
- * journal nodes may potentially be corrupted, so checking is required.
- */
-static int try_read_node(const struct ubifs_info *c, void *buf, int type,
- int len, int lnum, int offs)
-{
- int err, node_len;
- struct ubifs_ch *ch = buf;
- uint32_t crc, node_crc;
-
- dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
-
- err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
- if (err) {
- ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
- type, lnum, offs, err);
- return err;
- }
-
- if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
- return 0;
-
- if (ch->node_type != type)
- return 0;
-
- node_len = le32_to_cpu(ch->len);
- if (node_len != len)
- return 0;
-
- if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
- !c->remounting_rw)
- return 1;
-
- crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
- node_crc = le32_to_cpu(ch->crc);
- if (crc != node_crc)
- return 0;
-
- return 1;
-}
-
-/**
- * fallible_read_node - try to read a leaf node.
- * @c: UBIFS file-system description object
- * @key: key of node to read
- * @zbr: position of node
- * @node: node returned
- *
- * This function tries to read a node and returns %1 if the node is read, %0
- * if the node is not present, and a negative error code in the case of error.
- */
-static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
- struct ubifs_zbranch *zbr, void *node)
-{
- int ret;
-
- dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
-
- ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
- zbr->offs);
- if (ret == 1) {
- union ubifs_key node_key;
- struct ubifs_dent_node *dent = node;
-
- /* All nodes have key in the same place */
- key_read(c, &dent->key, &node_key);
- if (keys_cmp(c, key, &node_key) != 0)
- ret = 0;
- }
- if (ret == 0 && c->replaying)
- dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
- zbr->lnum, zbr->offs, zbr->len);
- return ret;
-}
-
-/**
- * matches_name - determine if a direntry or xattr entry matches a given name.
- * @c: UBIFS file-system description object
- * @zbr: zbranch of dent
- * @nm: name to match
- *
- * This function checks if xentry/direntry referred by zbranch @zbr matches name
- * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
- * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
- * of failure, a negative error code is returned.
- */
-static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- const struct qstr *nm)
-{
- struct ubifs_dent_node *dent;
- int nlen, err;
-
- /* If possible, match against the dent in the leaf node cache */
- if (!zbr->leaf) {
- dent = kmalloc(zbr->len, GFP_NOFS);
- if (!dent)
- return -ENOMEM;
-
- err = ubifs_tnc_read_node(c, zbr, dent);
- if (err)
- goto out_free;
-
- /* Add the node to the leaf node cache */
- err = lnc_add_directly(c, zbr, dent);
- if (err)
- goto out_free;
- } else
- dent = zbr->leaf;
-
- nlen = le16_to_cpu(dent->nlen);
- err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
- if (err == 0) {
- if (nlen == nm->len)
- return NAME_MATCHES;
- else if (nlen < nm->len)
- return NAME_LESS;
- else
- return NAME_GREATER;
- } else if (err < 0)
- return NAME_LESS;
- else
- return NAME_GREATER;
-
-out_free:
- kfree(dent);
- return err;
-}
-
-/**
- * get_znode - get a TNC znode that may not be loaded yet.
- * @c: UBIFS file-system description object
- * @znode: parent znode
- * @n: znode branch slot number
- *
- * This function returns the znode or a negative error code.
- */
-static struct ubifs_znode *get_znode(struct ubifs_info *c,
- struct ubifs_znode *znode, int n)
-{
- struct ubifs_zbranch *zbr;
-
- zbr = &znode->zbranch[n];
- if (zbr->znode)
- znode = zbr->znode;
- else
- znode = ubifs_load_znode(c, zbr, znode, n);
- return znode;
-}
-
-/**
- * tnc_next - find next TNC entry.
- * @c: UBIFS file-system description object
- * @zn: znode is passed and returned here
- * @n: znode branch slot number is passed and returned here
- *
- * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
- * no next entry, or a negative error code otherwise.
- */
-static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
-{
- struct ubifs_znode *znode = *zn;
- int nn = *n;
-
- nn += 1;
- if (nn < znode->child_cnt) {
- *n = nn;
- return 0;
- }
- while (1) {
- struct ubifs_znode *zp;
-
- zp = znode->parent;
- if (!zp)
- return -ENOENT;
- nn = znode->iip + 1;
- znode = zp;
- if (nn < znode->child_cnt) {
- znode = get_znode(c, znode, nn);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- while (znode->level != 0) {
- znode = get_znode(c, znode, 0);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- }
- nn = 0;
- break;
- }
- }
- *zn = znode;
- *n = nn;
- return 0;
-}
-
-/**
- * tnc_prev - find previous TNC entry.
- * @c: UBIFS file-system description object
- * @zn: znode is returned here
- * @n: znode branch slot number is passed and returned here
- *
- * This function returns %0 if the previous TNC entry is found, %-ENOENT if
- * there is no next entry, or a negative error code otherwise.
- */
-static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
-{
- struct ubifs_znode *znode = *zn;
- int nn = *n;
-
- if (nn > 0) {
- *n = nn - 1;
- return 0;
- }
- while (1) {
- struct ubifs_znode *zp;
-
- zp = znode->parent;
- if (!zp)
- return -ENOENT;
- nn = znode->iip - 1;
- znode = zp;
- if (nn >= 0) {
- znode = get_znode(c, znode, nn);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- while (znode->level != 0) {
- nn = znode->child_cnt - 1;
- znode = get_znode(c, znode, nn);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- }
- nn = znode->child_cnt - 1;
- break;
- }
- }
- *zn = znode;
- *n = nn;
- return 0;
-}
-
-/**
- * resolve_collision - resolve a collision.
- * @c: UBIFS file-system description object
- * @key: key of a directory or extended attribute entry
- * @zn: znode is returned here
- * @n: zbranch number is passed and returned here
- * @nm: name of the entry
- *
- * This function is called for "hashed" keys to make sure that the found key
- * really corresponds to the looked up node (directory or extended attribute
- * entry). It returns %1 and sets @zn and @n if the collision is resolved.
- * %0 is returned if @nm is not found and @zn and @n are set to the previous
- * entry, i.e. to the entry after which @nm could follow if it were in TNC.
- * This means that @n may be set to %-1 if the leftmost key in @zn is the
- * previous one. A negative error code is returned on failures.
- */
-static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
- struct ubifs_znode **zn, int *n,
- const struct qstr *nm)
-{
- int err;
-
- err = matches_name(c, &(*zn)->zbranch[*n], nm);
- if (unlikely(err < 0))
- return err;
- if (err == NAME_MATCHES)
- return 1;
-
- if (err == NAME_GREATER) {
- /* Look left */
- while (1) {
- err = tnc_prev(c, zn, n);
- if (err == -ENOENT) {
- ubifs_assert(*n == 0);
- *n = -1;
- return 0;
- }
- if (err < 0)
- return err;
- if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
- /*
- * We have found the branch after which we would
- * like to insert, but inserting in this znode
- * may still be wrong. Consider the following 3
- * znodes, in the case where we are resolving a
- * collision with Key2.
- *
- * znode zp
- * ----------------------
- * level 1 | Key0 | Key1 |
- * -----------------------
- * | |
- * znode za | | znode zb
- * ------------ ------------
- * level 0 | Key0 | | Key2 |
- * ------------ ------------
- *
- * The lookup finds Key2 in znode zb. Lets say
- * there is no match and the name is greater so
- * we look left. When we find Key0, we end up
- * here. If we return now, we will insert into
- * znode za at slot n = 1. But that is invalid
- * according to the parent's keys. Key2 must
- * be inserted into znode zb.
- *
- * Note, this problem is not relevant for the
- * case when we go right, because
- * 'tnc_insert()' would correct the parent key.
- */
- if (*n == (*zn)->child_cnt - 1) {
- err = tnc_next(c, zn, n);
- if (err) {
- /* Should be impossible */
- ubifs_assert(0);
- if (err == -ENOENT)
- err = -EINVAL;
- return err;
- }
- ubifs_assert(*n == 0);
- *n = -1;
- }
- return 0;
- }
- err = matches_name(c, &(*zn)->zbranch[*n], nm);
- if (err < 0)
- return err;
- if (err == NAME_LESS)
- return 0;
- if (err == NAME_MATCHES)
- return 1;
- ubifs_assert(err == NAME_GREATER);
- }
- } else {
- int nn = *n;
- struct ubifs_znode *znode = *zn;
-
- /* Look right */
- while (1) {
- err = tnc_next(c, &znode, &nn);
- if (err == -ENOENT)
- return 0;
- if (err < 0)
- return err;
- if (keys_cmp(c, &znode->zbranch[nn].key, key))
- return 0;
- err = matches_name(c, &znode->zbranch[nn], nm);
- if (err < 0)
- return err;
- if (err == NAME_GREATER)
- return 0;
- *zn = znode;
- *n = nn;
- if (err == NAME_MATCHES)
- return 1;
- ubifs_assert(err == NAME_LESS);
- }
- }
-}
-
-/**
- * fallible_matches_name - determine if a dent matches a given name.
- * @c: UBIFS file-system description object
- * @zbr: zbranch of dent
- * @nm: name to match
- *
- * This is a "fallible" version of 'matches_name()' function which does not
- * panic if the direntry/xentry referred by @zbr does not exist on the media.
- *
- * This function checks if xentry/direntry referred by zbranch @zbr matches name
- * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
- * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
- * if xentry/direntry referred by @zbr does not exist on the media. A negative
- * error code is returned in case of failure.
- */
-static int fallible_matches_name(struct ubifs_info *c,
- struct ubifs_zbranch *zbr,
- const struct qstr *nm)
-{
- struct ubifs_dent_node *dent;
- int nlen, err;
-
- /* If possible, match against the dent in the leaf node cache */
- if (!zbr->leaf) {
- dent = kmalloc(zbr->len, GFP_NOFS);
- if (!dent)
- return -ENOMEM;
-
- err = fallible_read_node(c, &zbr->key, zbr, dent);
- if (err < 0)
- goto out_free;
- if (err == 0) {
- /* The node was not present */
- err = NOT_ON_MEDIA;
- goto out_free;
- }
- ubifs_assert(err == 1);
-
- err = lnc_add_directly(c, zbr, dent);
- if (err)
- goto out_free;
- } else
- dent = zbr->leaf;
-
- nlen = le16_to_cpu(dent->nlen);
- err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
- if (err == 0) {
- if (nlen == nm->len)
- return NAME_MATCHES;
- else if (nlen < nm->len)
- return NAME_LESS;
- else
- return NAME_GREATER;
- } else if (err < 0)
- return NAME_LESS;
- else
- return NAME_GREATER;
-
-out_free:
- kfree(dent);
- return err;
-}
-
-/**
- * fallible_resolve_collision - resolve a collision even if nodes are missing.
- * @c: UBIFS file-system description object
- * @key: key
- * @zn: znode is returned here
- * @n: branch number is passed and returned here
- * @nm: name of directory entry
- * @adding: indicates caller is adding a key to the TNC
- *
- * This is a "fallible" version of the 'resolve_collision()' function which
- * does not panic if one of the nodes referred to by TNC does not exist on the
- * media. This may happen when replaying the journal if a deleted node was
- * Garbage-collected and the commit was not done. A branch that refers to a node
- * that is not present is called a dangling branch. The following are the return
- * codes for this function:
- * o if @nm was found, %1 is returned and @zn and @n are set to the found
- * branch;
- * o if we are @adding and @nm was not found, %0 is returned;
- * o if we are not @adding and @nm was not found, but a dangling branch was
- * found, then %1 is returned and @zn and @n are set to the dangling branch;
- * o a negative error code is returned in case of failure.
- */
-static int fallible_resolve_collision(struct ubifs_info *c,
- const union ubifs_key *key,
- struct ubifs_znode **zn, int *n,
- const struct qstr *nm, int adding)
-{
- struct ubifs_znode *o_znode = NULL, *znode = *zn;
- int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
-
- cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
- if (unlikely(cmp < 0))
- return cmp;
- if (cmp == NAME_MATCHES)
- return 1;
- if (cmp == NOT_ON_MEDIA) {
- o_znode = znode;
- o_n = nn;
- /*
- * We are unlucky and hit a dangling branch straight away.
- * Now we do not really know where to go to find the needed
- * branch - to the left or to the right. Well, let's try left.
- */
- unsure = 1;
- } else if (!adding)
- unsure = 1; /* Remove a dangling branch wherever it is */
-
- if (cmp == NAME_GREATER || unsure) {
- /* Look left */
- while (1) {
- err = tnc_prev(c, zn, n);
- if (err == -ENOENT) {
- ubifs_assert(*n == 0);
- *n = -1;
- break;
- }
- if (err < 0)
- return err;
- if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
- /* See comments in 'resolve_collision()' */
- if (*n == (*zn)->child_cnt - 1) {
- err = tnc_next(c, zn, n);
- if (err) {
- /* Should be impossible */
- ubifs_assert(0);
- if (err == -ENOENT)
- err = -EINVAL;
- return err;
- }
- ubifs_assert(*n == 0);
- *n = -1;
- }
- break;
- }
- err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
- if (err < 0)
- return err;
- if (err == NAME_MATCHES)
- return 1;
- if (err == NOT_ON_MEDIA) {
- o_znode = *zn;
- o_n = *n;
- continue;
- }
- if (!adding)
- continue;
- if (err == NAME_LESS)
- break;
- else
- unsure = 0;
- }
- }
-
- if (cmp == NAME_LESS || unsure) {
- /* Look right */
- *zn = znode;
- *n = nn;
- while (1) {
- err = tnc_next(c, &znode, &nn);
- if (err == -ENOENT)
- break;
- if (err < 0)
- return err;
- if (keys_cmp(c, &znode->zbranch[nn].key, key))
- break;
- err = fallible_matches_name(c, &znode->zbranch[nn], nm);
- if (err < 0)
- return err;
- if (err == NAME_GREATER)
- break;
- *zn = znode;
- *n = nn;
- if (err == NAME_MATCHES)
- return 1;
- if (err == NOT_ON_MEDIA) {
- o_znode = znode;
- o_n = nn;
- }
- }
- }
-
- /* Never match a dangling branch when adding */
- if (adding || !o_znode)
- return 0;
-
- dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
- o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
- o_znode->zbranch[o_n].len);
- *zn = o_znode;
- *n = o_n;
- return 1;
-}
-
-/**
- * matches_position - determine if a zbranch matches a given position.
- * @zbr: zbranch of dent
- * @lnum: LEB number of dent to match
- * @offs: offset of dent to match
- *
- * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
- */
-static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
-{
- if (zbr->lnum == lnum && zbr->offs == offs)
- return 1;
- else
- return 0;
-}
-
-/**
- * resolve_collision_directly - resolve a collision directly.
- * @c: UBIFS file-system description object
- * @key: key of directory entry
- * @zn: znode is passed and returned here
- * @n: zbranch number is passed and returned here
- * @lnum: LEB number of dent node to match
- * @offs: offset of dent node to match
- *
- * This function is used for "hashed" keys to make sure the found directory or
- * extended attribute entry node is what was looked for. It is used when the
- * flash address of the right node is known (@lnum:@offs) which makes it much
- * easier to resolve collisions (no need to read entries and match full
- * names). This function returns %1 and sets @zn and @n if the collision is
- * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
- * previous directory entry. Otherwise a negative error code is returned.
- */
-static int resolve_collision_directly(struct ubifs_info *c,
- const union ubifs_key *key,
- struct ubifs_znode **zn, int *n,
- int lnum, int offs)
-{
- struct ubifs_znode *znode;
- int nn, err;
-
- znode = *zn;
- nn = *n;
- if (matches_position(&znode->zbranch[nn], lnum, offs))
- return 1;
-
- /* Look left */
- while (1) {
- err = tnc_prev(c, &znode, &nn);
- if (err == -ENOENT)
- break;
- if (err < 0)
- return err;
- if (keys_cmp(c, &znode->zbranch[nn].key, key))
- break;
- if (matches_position(&znode->zbranch[nn], lnum, offs)) {
- *zn = znode;
- *n = nn;
- return 1;
- }
- }
-
- /* Look right */
- znode = *zn;
- nn = *n;
- while (1) {
- err = tnc_next(c, &znode, &nn);
- if (err == -ENOENT)
- return 0;
- if (err < 0)
- return err;
- if (keys_cmp(c, &znode->zbranch[nn].key, key))
- return 0;
- *zn = znode;
- *n = nn;
- if (matches_position(&znode->zbranch[nn], lnum, offs))
- return 1;
- }
-}
-
-/**
- * dirty_cow_bottom_up - dirty a znode and its ancestors.
- * @c: UBIFS file-system description object
- * @znode: znode to dirty
- *
- * If we do not have a unique key that resides in a znode, then we cannot
- * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
- * This function records the path back to the last dirty ancestor, and then
- * dirties the znodes on that path.
- */
-static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
- struct ubifs_znode *znode)
-{
- struct ubifs_znode *zp;
- int *path = c->bottom_up_buf, p = 0;
-
- ubifs_assert(c->zroot.znode);
- ubifs_assert(znode);
- if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
- kfree(c->bottom_up_buf);
- c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
- GFP_NOFS);
- if (!c->bottom_up_buf)
- return ERR_PTR(-ENOMEM);
- path = c->bottom_up_buf;
- }
- if (c->zroot.znode->level) {
- /* Go up until parent is dirty */
- while (1) {
- int n;
-
- zp = znode->parent;
- if (!zp)
- break;
- n = znode->iip;
- ubifs_assert(p < c->zroot.znode->level);
- path[p++] = n;
- if (!zp->cnext && ubifs_zn_dirty(znode))
- break;
- znode = zp;
- }
- }
-
- /* Come back down, dirtying as we go */
- while (1) {
- struct ubifs_zbranch *zbr;
-
- zp = znode->parent;
- if (zp) {
- ubifs_assert(path[p - 1] >= 0);
- ubifs_assert(path[p - 1] < zp->child_cnt);
- zbr = &zp->zbranch[path[--p]];
- znode = dirty_cow_znode(c, zbr);
- } else {
- ubifs_assert(znode == c->zroot.znode);
- znode = dirty_cow_znode(c, &c->zroot);
- }
- if (IS_ERR(znode) || !p)
- break;
- ubifs_assert(path[p - 1] >= 0);
- ubifs_assert(path[p - 1] < znode->child_cnt);
- znode = znode->zbranch[path[p - 1]].znode;
- }
-
- return znode;
-}
-
-/**
- * ubifs_lookup_level0 - search for zero-level znode.
- * @c: UBIFS file-system description object
- * @key: key to lookup
- * @zn: znode is returned here
- * @n: znode branch slot number is returned here
- *
- * This function looks up the TNC tree and search for zero-level znode which
- * refers key @key. The found zero-level znode is returned in @zn. There are 3
- * cases:
- * o exact match, i.e. the found zero-level znode contains key @key, then %1
- * is returned and slot number of the matched branch is stored in @n;
- * o not exact match, which means that zero-level znode does not contain
- * @key, then %0 is returned and slot number of the closest branch is stored
- * in @n;
- * o @key is so small that it is even less than the lowest key of the
- * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
- *
- * Note, when the TNC tree is traversed, some znodes may be absent, then this
- * function reads corresponding indexing nodes and inserts them to TNC. In
- * case of failure, a negative error code is returned.
- */
-int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
- struct ubifs_znode **zn, int *n)
-{
- int err, exact;
- struct ubifs_znode *znode;
- unsigned long time = get_seconds();
-
- dbg_tnck(key, "search key ");
- ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
-
- znode = c->zroot.znode;
- if (unlikely(!znode)) {
- znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- }
-
- znode->time = time;
-
- while (1) {
- struct ubifs_zbranch *zbr;
-
- exact = ubifs_search_zbranch(c, znode, key, n);
-
- if (znode->level == 0)
- break;
-
- if (*n < 0)
- *n = 0;
- zbr = &znode->zbranch[*n];
-
- if (zbr->znode) {
- znode->time = time;
- znode = zbr->znode;
- continue;
- }
-
- /* znode is not in TNC cache, load it from the media */
- znode = ubifs_load_znode(c, zbr, znode, *n);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- }
-
- *zn = znode;
- if (exact || !is_hash_key(c, key) || *n != -1) {
- dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
- return exact;
- }
-
- /*
- * Here is a tricky place. We have not found the key and this is a
- * "hashed" key, which may collide. The rest of the code deals with
- * situations like this:
- *
- * | 3 | 5 |
- * / \
- * | 3 | 5 | | 6 | 7 | (x)
- *
- * Or more a complex example:
- *
- * | 1 | 5 |
- * / \
- * | 1 | 3 | | 5 | 8 |
- * \ /
- * | 5 | 5 | | 6 | 7 | (x)
- *
- * In the examples, if we are looking for key "5", we may reach nodes
- * marked with "(x)". In this case what we have do is to look at the
- * left and see if there is "5" key there. If there is, we have to
- * return it.
- *
- * Note, this whole situation is possible because we allow to have
- * elements which are equivalent to the next key in the parent in the
- * children of current znode. For example, this happens if we split a
- * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
- * like this:
- * | 3 | 5 |
- * / \
- * | 3 | 5 | | 5 | 6 | 7 |
- * ^
- * And this becomes what is at the first "picture" after key "5" marked
- * with "^" is removed. What could be done is we could prohibit
- * splitting in the middle of the colliding sequence. Also, when
- * removing the leftmost key, we would have to correct the key of the
- * parent node, which would introduce additional complications. Namely,
- * if we changed the leftmost key of the parent znode, the garbage
- * collector would be unable to find it (GC is doing this when GC'ing
- * indexing LEBs). Although we already have an additional RB-tree where
- * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
- * after the commit. But anyway, this does not look easy to implement
- * so we did not try this.
- */
- err = tnc_prev(c, &znode, n);
- if (err == -ENOENT) {
- dbg_tnc("found 0, lvl %d, n -1", znode->level);
- *n = -1;
- return 0;
- }
- if (unlikely(err < 0))
- return err;
- if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
- dbg_tnc("found 0, lvl %d, n -1", znode->level);
- *n = -1;
- return 0;
- }
-
- dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
- *zn = znode;
- return 1;
-}
-
-/**
- * lookup_level0_dirty - search for zero-level znode dirtying.
- * @c: UBIFS file-system description object
- * @key: key to lookup
- * @zn: znode is returned here
- * @n: znode branch slot number is returned here
- *
- * This function looks up the TNC tree and search for zero-level znode which
- * refers key @key. The found zero-level znode is returned in @zn. There are 3
- * cases:
- * o exact match, i.e. the found zero-level znode contains key @key, then %1
- * is returned and slot number of the matched branch is stored in @n;
- * o not exact match, which means that zero-level znode does not contain @key
- * then %0 is returned and slot number of the closed branch is stored in
- * @n;
- * o @key is so small that it is even less than the lowest key of the
- * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
- *
- * Additionally all znodes in the path from the root to the located zero-level
- * znode are marked as dirty.
- *
- * Note, when the TNC tree is traversed, some znodes may be absent, then this
- * function reads corresponding indexing nodes and inserts them to TNC. In
- * case of failure, a negative error code is returned.
- */
-static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
- struct ubifs_znode **zn, int *n)
-{
- int err, exact;
- struct ubifs_znode *znode;
- unsigned long time = get_seconds();
-
- dbg_tnck(key, "search and dirty key ");
-
- znode = c->zroot.znode;
- if (unlikely(!znode)) {
- znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- }
-
- znode = dirty_cow_znode(c, &c->zroot);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
-
- znode->time = time;
-
- while (1) {
- struct ubifs_zbranch *zbr;
-
- exact = ubifs_search_zbranch(c, znode, key, n);
-
- if (znode->level == 0)
- break;
-
- if (*n < 0)
- *n = 0;
- zbr = &znode->zbranch[*n];
-
- if (zbr->znode) {
- znode->time = time;
- znode = dirty_cow_znode(c, zbr);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- continue;
- }
-
- /* znode is not in TNC cache, load it from the media */
- znode = ubifs_load_znode(c, zbr, znode, *n);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- znode = dirty_cow_znode(c, zbr);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- }
-
- *zn = znode;
- if (exact || !is_hash_key(c, key) || *n != -1) {
- dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
- return exact;
- }
-
- /*
- * See huge comment at 'lookup_level0_dirty()' what is the rest of the
- * code.
- */
- err = tnc_prev(c, &znode, n);
- if (err == -ENOENT) {
- *n = -1;
- dbg_tnc("found 0, lvl %d, n -1", znode->level);
- return 0;
- }
- if (unlikely(err < 0))
- return err;
- if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
- *n = -1;
- dbg_tnc("found 0, lvl %d, n -1", znode->level);
- return 0;
- }
-
- if (znode->cnext || !ubifs_zn_dirty(znode)) {
- znode = dirty_cow_bottom_up(c, znode);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- }
-
- dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
- *zn = znode;
- return 1;
-}
-
-/**
- * maybe_leb_gced - determine if a LEB may have been garbage collected.
- * @c: UBIFS file-system description object
- * @lnum: LEB number
- * @gc_seq1: garbage collection sequence number
- *
- * This function determines if @lnum may have been garbage collected since
- * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
- * %0 is returned.
- */
-static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
-{
- int gc_seq2, gced_lnum;
-
- gced_lnum = c->gced_lnum;
- smp_rmb();
- gc_seq2 = c->gc_seq;
- /* Same seq means no GC */
- if (gc_seq1 == gc_seq2)
- return 0;
- /* Different by more than 1 means we don't know */
- if (gc_seq1 + 1 != gc_seq2)
- return 1;
- /*
- * We have seen the sequence number has increased by 1. Now we need to
- * be sure we read the right LEB number, so read it again.
- */
- smp_rmb();
- if (gced_lnum != c->gced_lnum)
- return 1;
- /* Finally we can check lnum */
- if (gced_lnum == lnum)
- return 1;
- return 0;
-}
-
-/**
- * ubifs_tnc_locate - look up a file-system node and return it and its location.
- * @c: UBIFS file-system description object
- * @key: node key to lookup
- * @node: the node is returned here
- * @lnum: LEB number is returned here
- * @offs: offset is returned here
- *
- * This function looks up and reads node with key @key. The caller has to make
- * sure the @node buffer is large enough to fit the node. Returns zero in case
- * of success, %-ENOENT if the node was not found, and a negative error code in
- * case of failure. The node location can be returned in @lnum and @offs.
- */
-int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
- void *node, int *lnum, int *offs)
-{
- int found, n, err, safely = 0, gc_seq1;
- struct ubifs_znode *znode;
- struct ubifs_zbranch zbr, *zt;
-
-again:
- mutex_lock(&c->tnc_mutex);
- found = ubifs_lookup_level0(c, key, &znode, &n);
- if (!found) {
- err = -ENOENT;
- goto out;
- } else if (found < 0) {
- err = found;
- goto out;
- }
- zt = &znode->zbranch[n];
- if (lnum) {
- *lnum = zt->lnum;
- *offs = zt->offs;
- }
- if (is_hash_key(c, key)) {
- /*
- * In this case the leaf node cache gets used, so we pass the
- * address of the zbranch and keep the mutex locked
- */
- err = tnc_read_node_nm(c, zt, node);
- goto out;
- }
- if (safely) {
- err = ubifs_tnc_read_node(c, zt, node);
- goto out;
- }
- /* Drop the TNC mutex prematurely and race with garbage collection */
- zbr = znode->zbranch[n];
- gc_seq1 = c->gc_seq;
- mutex_unlock(&c->tnc_mutex);
-
- if (ubifs_get_wbuf(c, zbr.lnum)) {
- /* We do not GC journal heads */
- err = ubifs_tnc_read_node(c, &zbr, node);
- return err;
- }
-
- err = fallible_read_node(c, key, &zbr, node);
- if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
- /*
- * The node may have been GC'ed out from under us so try again
- * while keeping the TNC mutex locked.
- */
- safely = 1;
- goto again;
- }
- return 0;
-
-out:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
- * @c: UBIFS file-system description object
- * @bu: bulk-read parameters and results
- *
- * Lookup consecutive data node keys for the same inode that reside
- * consecutively in the same LEB. This function returns zero in case of success
- * and a negative error code in case of failure.
- *
- * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
- * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
- * maximum possible amount of nodes for bulk-read.
- */
-int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
-{
- int n, err = 0, lnum = -1, uninitialized_var(offs);
- int uninitialized_var(len);
- unsigned int block = key_block(c, &bu->key);
- struct ubifs_znode *znode;
-
- bu->cnt = 0;
- bu->blk_cnt = 0;
- bu->eof = 0;
-
- mutex_lock(&c->tnc_mutex);
- /* Find first key */
- err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
- if (err < 0)
- goto out;
- if (err) {
- /* Key found */
- len = znode->zbranch[n].len;
- /* The buffer must be big enough for at least 1 node */
- if (len > bu->buf_len) {
- err = -EINVAL;
- goto out;
- }
- /* Add this key */
- bu->zbranch[bu->cnt++] = znode->zbranch[n];
- bu->blk_cnt += 1;
- lnum = znode->zbranch[n].lnum;
- offs = ALIGN(znode->zbranch[n].offs + len, 8);
- }
- while (1) {
- struct ubifs_zbranch *zbr;
- union ubifs_key *key;
- unsigned int next_block;
-
- /* Find next key */
- err = tnc_next(c, &znode, &n);
- if (err)
- goto out;
- zbr = &znode->zbranch[n];
- key = &zbr->key;
- /* See if there is another data key for this file */
- if (key_inum(c, key) != key_inum(c, &bu->key) ||
- key_type(c, key) != UBIFS_DATA_KEY) {
- err = -ENOENT;
- goto out;
- }
- if (lnum < 0) {
- /* First key found */
- lnum = zbr->lnum;
- offs = ALIGN(zbr->offs + zbr->len, 8);
- len = zbr->len;
- if (len > bu->buf_len) {
- err = -EINVAL;
- goto out;
- }
- } else {
- /*
- * The data nodes must be in consecutive positions in
- * the same LEB.
- */
- if (zbr->lnum != lnum || zbr->offs != offs)
- goto out;
- offs += ALIGN(zbr->len, 8);
- len = ALIGN(len, 8) + zbr->len;
- /* Must not exceed buffer length */
- if (len > bu->buf_len)
- goto out;
- }
- /* Allow for holes */
- next_block = key_block(c, key);
- bu->blk_cnt += (next_block - block - 1);
- if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
- goto out;
- block = next_block;
- /* Add this key */
- bu->zbranch[bu->cnt++] = *zbr;
- bu->blk_cnt += 1;
- /* See if we have room for more */
- if (bu->cnt >= UBIFS_MAX_BULK_READ)
- goto out;
- if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
- goto out;
- }
-out:
- if (err == -ENOENT) {
- bu->eof = 1;
- err = 0;
- }
- bu->gc_seq = c->gc_seq;
- mutex_unlock(&c->tnc_mutex);
- if (err)
- return err;
- /*
- * An enormous hole could cause bulk-read to encompass too many
- * page cache pages, so limit the number here.
- */
- if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
- bu->blk_cnt = UBIFS_MAX_BULK_READ;
- /*
- * Ensure that bulk-read covers a whole number of page cache
- * pages.
- */
- if (UBIFS_BLOCKS_PER_PAGE == 1 ||
- !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
- return 0;
- if (bu->eof) {
- /* At the end of file we can round up */
- bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
- return 0;
- }
- /* Exclude data nodes that do not make up a whole page cache page */
- block = key_block(c, &bu->key) + bu->blk_cnt;
- block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
- while (bu->cnt) {
- if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
- break;
- bu->cnt -= 1;
- }
- return 0;
-}
-
-/**
- * read_wbuf - bulk-read from a LEB with a wbuf.
- * @wbuf: wbuf that may overlap the read
- * @buf: buffer into which to read
- * @len: read length
- * @lnum: LEB number from which to read
- * @offs: offset from which to read
- *
- * This functions returns %0 on success or a negative error code on failure.
- */
-static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
- int offs)
-{
- const struct ubifs_info *c = wbuf->c;
- int rlen, overlap;
-
- dbg_io("LEB %d:%d, length %d", lnum, offs, len);
- ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
- ubifs_assert(!(offs & 7) && offs < c->leb_size);
- ubifs_assert(offs + len <= c->leb_size);
-
- spin_lock(&wbuf->lock);
- overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
- if (!overlap) {
- /* We may safely unlock the write-buffer and read the data */
- spin_unlock(&wbuf->lock);
- return ubifs_leb_read(c, lnum, buf, offs, len, 0);
- }
-
- /* Don't read under wbuf */
- rlen = wbuf->offs - offs;
- if (rlen < 0)
- rlen = 0;
-
- /* Copy the rest from the write-buffer */
- memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
- spin_unlock(&wbuf->lock);
-
- if (rlen > 0)
- /* Read everything that goes before write-buffer */
- return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
-
- return 0;
-}
-
-/**
- * validate_data_node - validate data nodes for bulk-read.
- * @c: UBIFS file-system description object
- * @buf: buffer containing data node to validate
- * @zbr: zbranch of data node to validate
- *
- * This functions returns %0 on success or a negative error code on failure.
- */
-static int validate_data_node(struct ubifs_info *c, void *buf,
- struct ubifs_zbranch *zbr)
-{
- union ubifs_key key1;
- struct ubifs_ch *ch = buf;
- int err, len;
-
- if (ch->node_type != UBIFS_DATA_NODE) {
- ubifs_err("bad node type (%d but expected %d)",
- ch->node_type, UBIFS_DATA_NODE);
- goto out_err;
- }
-
- err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
- if (err) {
- ubifs_err("expected node type %d", UBIFS_DATA_NODE);
- goto out;
- }
-
- len = le32_to_cpu(ch->len);
- if (len != zbr->len) {
- ubifs_err("bad node length %d, expected %d", len, zbr->len);
- goto out_err;
- }
-
- /* Make sure the key of the read node is correct */
- key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
- if (!keys_eq(c, &zbr->key, &key1)) {
- ubifs_err("bad key in node at LEB %d:%d",
- zbr->lnum, zbr->offs);
- dbg_tnck(&zbr->key, "looked for key ");
- dbg_tnck(&key1, "found node's key ");
- goto out_err;
- }
-
- return 0;
-
-out_err:
- err = -EINVAL;
-out:
- ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- return err;
-}
-
-/**
- * ubifs_tnc_bulk_read - read a number of data nodes in one go.
- * @c: UBIFS file-system description object
- * @bu: bulk-read parameters and results
- *
- * This functions reads and validates the data nodes that were identified by the
- * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
- * -EAGAIN to indicate a race with GC, or another negative error code on
- * failure.
- */
-int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
-{
- int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
- struct ubifs_wbuf *wbuf;
- void *buf;
-
- len = bu->zbranch[bu->cnt - 1].offs;
- len += bu->zbranch[bu->cnt - 1].len - offs;
- if (len > bu->buf_len) {
- ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
- return -EINVAL;
- }
-
- /* Do the read */
- wbuf = ubifs_get_wbuf(c, lnum);
- if (wbuf)
- err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
- else
- err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
-
- /* Check for a race with GC */
- if (maybe_leb_gced(c, lnum, bu->gc_seq))
- return -EAGAIN;
-
- if (err && err != -EBADMSG) {
- ubifs_err("failed to read from LEB %d:%d, error %d",
- lnum, offs, err);
- dbg_dump_stack();
- dbg_tnck(&bu->key, "key ");
- return err;
- }
-
- /* Validate the nodes read */
- buf = bu->buf;
- for (i = 0; i < bu->cnt; i++) {
- err = validate_data_node(c, buf, &bu->zbranch[i]);
- if (err)
- return err;
- buf = buf + ALIGN(bu->zbranch[i].len, 8);
- }
-
- return 0;
-}
-
-/**
- * do_lookup_nm- look up a "hashed" node.
- * @c: UBIFS file-system description object
- * @key: node key to lookup
- * @node: the node is returned here
- * @nm: node name
- *
- * This function look up and reads a node which contains name hash in the key.
- * Since the hash may have collisions, there may be many nodes with the same
- * key, so we have to sequentially look to all of them until the needed one is
- * found. This function returns zero in case of success, %-ENOENT if the node
- * was not found, and a negative error code in case of failure.
- */
-static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
- void *node, const struct qstr *nm)
-{
- int found, n, err;
- struct ubifs_znode *znode;
-
- dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
- mutex_lock(&c->tnc_mutex);
- found = ubifs_lookup_level0(c, key, &znode, &n);
- if (!found) {
- err = -ENOENT;
- goto out_unlock;
- } else if (found < 0) {
- err = found;
- goto out_unlock;
- }
-
- ubifs_assert(n >= 0);
-
- err = resolve_collision(c, key, &znode, &n, nm);
- dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
- if (unlikely(err < 0))
- goto out_unlock;
- if (err == 0) {
- err = -ENOENT;
- goto out_unlock;
- }
-
- err = tnc_read_node_nm(c, &znode->zbranch[n], node);
-
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * ubifs_tnc_lookup_nm - look up a "hashed" node.
- * @c: UBIFS file-system description object
- * @key: node key to lookup
- * @node: the node is returned here
- * @nm: node name
- *
- * This function look up and reads a node which contains name hash in the key.
- * Since the hash may have collisions, there may be many nodes with the same
- * key, so we have to sequentially look to all of them until the needed one is
- * found. This function returns zero in case of success, %-ENOENT if the node
- * was not found, and a negative error code in case of failure.
- */
-int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
- void *node, const struct qstr *nm)
-{
- int err, len;
- const struct ubifs_dent_node *dent = node;
-
- /*
- * We assume that in most of the cases there are no name collisions and
- * 'ubifs_tnc_lookup()' returns us the right direntry.
- */
- err = ubifs_tnc_lookup(c, key, node);
- if (err)
- return err;
-
- len = le16_to_cpu(dent->nlen);
- if (nm->len == len && !memcmp(dent->name, nm->name, len))
- return 0;
-
- /*
- * Unluckily, there are hash collisions and we have to iterate over
- * them look at each direntry with colliding name hash sequentially.
- */
- return do_lookup_nm(c, key, node, nm);
-}
-
-/**
- * correct_parent_keys - correct parent znodes' keys.
- * @c: UBIFS file-system description object
- * @znode: znode to correct parent znodes for
- *
- * This is a helper function for 'tnc_insert()'. When the key of the leftmost
- * zbranch changes, keys of parent znodes have to be corrected. This helper
- * function is called in such situations and corrects the keys if needed.
- */
-static void correct_parent_keys(const struct ubifs_info *c,
- struct ubifs_znode *znode)
-{
- union ubifs_key *key, *key1;
-
- ubifs_assert(znode->parent);
- ubifs_assert(znode->iip == 0);
-
- key = &znode->zbranch[0].key;
- key1 = &znode->parent->zbranch[0].key;
-
- while (keys_cmp(c, key, key1) < 0) {
- key_copy(c, key, key1);
- znode = znode->parent;
- znode->alt = 1;
- if (!znode->parent || znode->iip)
- break;
- key1 = &znode->parent->zbranch[0].key;
- }
-}
-
-/**
- * insert_zbranch - insert a zbranch into a znode.
- * @znode: znode into which to insert
- * @zbr: zbranch to insert
- * @n: slot number to insert to
- *
- * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
- * znode's array of zbranches and keeps zbranches consolidated, so when a new
- * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
- * slot, zbranches starting from @n have to be moved right.
- */
-static void insert_zbranch(struct ubifs_znode *znode,
- const struct ubifs_zbranch *zbr, int n)
-{
- int i;
-
- ubifs_assert(ubifs_zn_dirty(znode));
-
- if (znode->level) {
- for (i = znode->child_cnt; i > n; i--) {
- znode->zbranch[i] = znode->zbranch[i - 1];
- if (znode->zbranch[i].znode)
- znode->zbranch[i].znode->iip = i;
- }
- if (zbr->znode)
- zbr->znode->iip = n;
- } else
- for (i = znode->child_cnt; i > n; i--)
- znode->zbranch[i] = znode->zbranch[i - 1];
-
- znode->zbranch[n] = *zbr;
- znode->child_cnt += 1;
-
- /*
- * After inserting at slot zero, the lower bound of the key range of
- * this znode may have changed. If this znode is subsequently split
- * then the upper bound of the key range may change, and furthermore
- * it could change to be lower than the original lower bound. If that
- * happens, then it will no longer be possible to find this znode in the
- * TNC using the key from the index node on flash. That is bad because
- * if it is not found, we will assume it is obsolete and may overwrite
- * it. Then if there is an unclean unmount, we will start using the
- * old index which will be broken.
- *
- * So we first mark znodes that have insertions at slot zero, and then
- * if they are split we add their lnum/offs to the old_idx tree.
- */
- if (n == 0)
- znode->alt = 1;
-}
-
-/**
- * tnc_insert - insert a node into TNC.
- * @c: UBIFS file-system description object
- * @znode: znode to insert into
- * @zbr: branch to insert
- * @n: slot number to insert new zbranch to
- *
- * This function inserts a new node described by @zbr into znode @znode. If
- * znode does not have a free slot for new zbranch, it is split. Parent znodes
- * are splat as well if needed. Returns zero in case of success or a negative
- * error code in case of failure.
- */
-static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
- struct ubifs_zbranch *zbr, int n)
-{
- struct ubifs_znode *zn, *zi, *zp;
- int i, keep, move, appending = 0;
- union ubifs_key *key = &zbr->key, *key1;
-
- ubifs_assert(n >= 0 && n <= c->fanout);
-
- /* Implement naive insert for now */
-again:
- zp = znode->parent;
- if (znode->child_cnt < c->fanout) {
- ubifs_assert(n != c->fanout);
- dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
-
- insert_zbranch(znode, zbr, n);
-
- /* Ensure parent's key is correct */
- if (n == 0 && zp && znode->iip == 0)
- correct_parent_keys(c, znode);
-
- return 0;
- }
-
- /*
- * Unfortunately, @znode does not have more empty slots and we have to
- * split it.
- */
- dbg_tnck(key, "splitting level %d, key ", znode->level);
-
- if (znode->alt)
- /*
- * We can no longer be sure of finding this znode by key, so we
- * record it in the old_idx tree.
- */
- ins_clr_old_idx_znode(c, znode);
-
- zn = kzalloc(c->max_znode_sz, GFP_NOFS);
- if (!zn)
- return -ENOMEM;
- zn->parent = zp;
- zn->level = znode->level;
-
- /* Decide where to split */
- if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
- /* Try not to split consecutive data keys */
- if (n == c->fanout) {
- key1 = &znode->zbranch[n - 1].key;
- if (key_inum(c, key1) == key_inum(c, key) &&
- key_type(c, key1) == UBIFS_DATA_KEY)
- appending = 1;
- } else
- goto check_split;
- } else if (appending && n != c->fanout) {
- /* Try not to split consecutive data keys */
- appending = 0;
-check_split:
- if (n >= (c->fanout + 1) / 2) {
- key1 = &znode->zbranch[0].key;
- if (key_inum(c, key1) == key_inum(c, key) &&
- key_type(c, key1) == UBIFS_DATA_KEY) {
- key1 = &znode->zbranch[n].key;
- if (key_inum(c, key1) != key_inum(c, key) ||
- key_type(c, key1) != UBIFS_DATA_KEY) {
- keep = n;
- move = c->fanout - keep;
- zi = znode;
- goto do_split;
- }
- }
- }
- }
-
- if (appending) {
- keep = c->fanout;
- move = 0;
- } else {
- keep = (c->fanout + 1) / 2;
- move = c->fanout - keep;
- }
-
- /*
- * Although we don't at present, we could look at the neighbors and see
- * if we can move some zbranches there.
- */
-
- if (n < keep) {
- /* Insert into existing znode */
- zi = znode;
- move += 1;
- keep -= 1;
- } else {
- /* Insert into new znode */
- zi = zn;
- n -= keep;
- /* Re-parent */
- if (zn->level != 0)
- zbr->znode->parent = zn;
- }
-
-do_split:
-
- __set_bit(DIRTY_ZNODE, &zn->flags);
- atomic_long_inc(&c->dirty_zn_cnt);
-
- zn->child_cnt = move;
- znode->child_cnt = keep;
-
- dbg_tnc("moving %d, keeping %d", move, keep);
-
- /* Move zbranch */
- for (i = 0; i < move; i++) {
- zn->zbranch[i] = znode->zbranch[keep + i];
- /* Re-parent */
- if (zn->level != 0)
- if (zn->zbranch[i].znode) {
- zn->zbranch[i].znode->parent = zn;
- zn->zbranch[i].znode->iip = i;
- }
- }
-
- /* Insert new key and branch */
- dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
-
- insert_zbranch(zi, zbr, n);
-
- /* Insert new znode (produced by spitting) into the parent */
- if (zp) {
- if (n == 0 && zi == znode && znode->iip == 0)
- correct_parent_keys(c, znode);
-
- /* Locate insertion point */
- n = znode->iip + 1;
-
- /* Tail recursion */
- zbr->key = zn->zbranch[0].key;
- zbr->znode = zn;
- zbr->lnum = 0;
- zbr->offs = 0;
- zbr->len = 0;
- znode = zp;
-
- goto again;
- }
-
- /* We have to split root znode */
- dbg_tnc("creating new zroot at level %d", znode->level + 1);
-
- zi = kzalloc(c->max_znode_sz, GFP_NOFS);
- if (!zi)
- return -ENOMEM;
-
- zi->child_cnt = 2;
- zi->level = znode->level + 1;
-
- __set_bit(DIRTY_ZNODE, &zi->flags);
- atomic_long_inc(&c->dirty_zn_cnt);
-
- zi->zbranch[0].key = znode->zbranch[0].key;
- zi->zbranch[0].znode = znode;
- zi->zbranch[0].lnum = c->zroot.lnum;
- zi->zbranch[0].offs = c->zroot.offs;
- zi->zbranch[0].len = c->zroot.len;
- zi->zbranch[1].key = zn->zbranch[0].key;
- zi->zbranch[1].znode = zn;
-
- c->zroot.lnum = 0;
- c->zroot.offs = 0;
- c->zroot.len = 0;
- c->zroot.znode = zi;
-
- zn->parent = zi;
- zn->iip = 1;
- znode->parent = zi;
- znode->iip = 0;
-
- return 0;
-}
-
-/**
- * ubifs_tnc_add - add a node to TNC.
- * @c: UBIFS file-system description object
- * @key: key to add
- * @lnum: LEB number of node
- * @offs: node offset
- * @len: node length
- *
- * This function adds a node with key @key to TNC. The node may be new or it may
- * obsolete some existing one. Returns %0 on success or negative error code on
- * failure.
- */
-int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
- int offs, int len)
-{
- int found, n, err = 0;
- struct ubifs_znode *znode;
-
- mutex_lock(&c->tnc_mutex);
- dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
- found = lookup_level0_dirty(c, key, &znode, &n);
- if (!found) {
- struct ubifs_zbranch zbr;
-
- zbr.znode = NULL;
- zbr.lnum = lnum;
- zbr.offs = offs;
- zbr.len = len;
- key_copy(c, key, &zbr.key);
- err = tnc_insert(c, znode, &zbr, n + 1);
- } else if (found == 1) {
- struct ubifs_zbranch *zbr = &znode->zbranch[n];
-
- lnc_free(zbr);
- err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
- zbr->lnum = lnum;
- zbr->offs = offs;
- zbr->len = len;
- } else
- err = found;
- if (!err)
- err = dbg_check_tnc(c, 0);
- mutex_unlock(&c->tnc_mutex);
-
- return err;
-}
-
-/**
- * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
- * @c: UBIFS file-system description object
- * @key: key to add
- * @old_lnum: LEB number of old node
- * @old_offs: old node offset
- * @lnum: LEB number of node
- * @offs: node offset
- * @len: node length
- *
- * This function replaces a node with key @key in the TNC only if the old node
- * is found. This function is called by garbage collection when node are moved.
- * Returns %0 on success or negative error code on failure.
- */
-int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
- int old_lnum, int old_offs, int lnum, int offs, int len)
-{
- int found, n, err = 0;
- struct ubifs_znode *znode;
-
- mutex_lock(&c->tnc_mutex);
- dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
- old_offs, lnum, offs, len);
- found = lookup_level0_dirty(c, key, &znode, &n);
- if (found < 0) {
- err = found;
- goto out_unlock;
- }
-
- if (found == 1) {
- struct ubifs_zbranch *zbr = &znode->zbranch[n];
-
- found = 0;
- if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
- lnc_free(zbr);
- err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
- if (err)
- goto out_unlock;
- zbr->lnum = lnum;
- zbr->offs = offs;
- zbr->len = len;
- found = 1;
- } else if (is_hash_key(c, key)) {
- found = resolve_collision_directly(c, key, &znode, &n,
- old_lnum, old_offs);
- dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
- found, znode, n, old_lnum, old_offs);
- if (found < 0) {
- err = found;
- goto out_unlock;
- }
-
- if (found) {
- /* Ensure the znode is dirtied */
- if (znode->cnext || !ubifs_zn_dirty(znode)) {
- znode = dirty_cow_bottom_up(c, znode);
- if (IS_ERR(znode)) {
- err = PTR_ERR(znode);
- goto out_unlock;
- }
- }
- zbr = &znode->zbranch[n];
- lnc_free(zbr);
- err = ubifs_add_dirt(c, zbr->lnum,
- zbr->len);
- if (err)
- goto out_unlock;
- zbr->lnum = lnum;
- zbr->offs = offs;
- zbr->len = len;
- }
- }
- }
-
- if (!found)
- err = ubifs_add_dirt(c, lnum, len);
-
- if (!err)
- err = dbg_check_tnc(c, 0);
-
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * ubifs_tnc_add_nm - add a "hashed" node to TNC.
- * @c: UBIFS file-system description object
- * @key: key to add
- * @lnum: LEB number of node
- * @offs: node offset
- * @len: node length
- * @nm: node name
- *
- * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
- * may have collisions, like directory entry keys.
- */
-int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
- int lnum, int offs, int len, const struct qstr *nm)
-{
- int found, n, err = 0;
- struct ubifs_znode *znode;
-
- mutex_lock(&c->tnc_mutex);
- dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
- lnum, offs, nm->len, nm->name);
- found = lookup_level0_dirty(c, key, &znode, &n);
- if (found < 0) {
- err = found;
- goto out_unlock;
- }
-
- if (found == 1) {
- if (c->replaying)
- found = fallible_resolve_collision(c, key, &znode, &n,
- nm, 1);
- else
- found = resolve_collision(c, key, &znode, &n, nm);
- dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
- if (found < 0) {
- err = found;
- goto out_unlock;
- }
-
- /* Ensure the znode is dirtied */
- if (znode->cnext || !ubifs_zn_dirty(znode)) {
- znode = dirty_cow_bottom_up(c, znode);
- if (IS_ERR(znode)) {
- err = PTR_ERR(znode);
- goto out_unlock;
- }
- }
-
- if (found == 1) {
- struct ubifs_zbranch *zbr = &znode->zbranch[n];
-
- lnc_free(zbr);
- err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
- zbr->lnum = lnum;
- zbr->offs = offs;
- zbr->len = len;
- goto out_unlock;
- }
- }
-
- if (!found) {
- struct ubifs_zbranch zbr;
-
- zbr.znode = NULL;
- zbr.lnum = lnum;
- zbr.offs = offs;
- zbr.len = len;
- key_copy(c, key, &zbr.key);
- err = tnc_insert(c, znode, &zbr, n + 1);
- if (err)
- goto out_unlock;
- if (c->replaying) {
- /*
- * We did not find it in the index so there may be a
- * dangling branch still in the index. So we remove it
- * by passing 'ubifs_tnc_remove_nm()' the same key but
- * an unmatchable name.
- */
- struct qstr noname = { .len = 0, .name = "" };
-
- err = dbg_check_tnc(c, 0);
- mutex_unlock(&c->tnc_mutex);
- if (err)
- return err;
- return ubifs_tnc_remove_nm(c, key, &noname);
- }
- }
-
-out_unlock:
- if (!err)
- err = dbg_check_tnc(c, 0);
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * tnc_delete - delete a znode form TNC.
- * @c: UBIFS file-system description object
- * @znode: znode to delete from
- * @n: zbranch slot number to delete
- *
- * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
- * case of success and a negative error code in case of failure.
- */
-static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
-{
- struct ubifs_zbranch *zbr;
- struct ubifs_znode *zp;
- int i, err;
-
- /* Delete without merge for now */
- ubifs_assert(znode->level == 0);
- ubifs_assert(n >= 0 && n < c->fanout);
- dbg_tnck(&znode->zbranch[n].key, "deleting key ");
-
- zbr = &znode->zbranch[n];
- lnc_free(zbr);
-
- err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
- if (err) {
- dbg_dump_znode(c, znode);
- return err;
- }
-
- /* We do not "gap" zbranch slots */
- for (i = n; i < znode->child_cnt - 1; i++)
- znode->zbranch[i] = znode->zbranch[i + 1];
- znode->child_cnt -= 1;
-
- if (znode->child_cnt > 0)
- return 0;
-
- /*
- * This was the last zbranch, we have to delete this znode from the
- * parent.
- */
-
- do {
- ubifs_assert(!ubifs_zn_obsolete(znode));
- ubifs_assert(ubifs_zn_dirty(znode));
-
- zp = znode->parent;
- n = znode->iip;
-
- atomic_long_dec(&c->dirty_zn_cnt);
-
- err = insert_old_idx_znode(c, znode);
- if (err)
- return err;
-
- if (znode->cnext) {
- __set_bit(OBSOLETE_ZNODE, &znode->flags);
- atomic_long_inc(&c->clean_zn_cnt);
- atomic_long_inc(&ubifs_clean_zn_cnt);
- } else
- kfree(znode);
- znode = zp;
- } while (znode->child_cnt == 1); /* while removing last child */
-
- /* Remove from znode, entry n - 1 */
- znode->child_cnt -= 1;
- ubifs_assert(znode->level != 0);
- for (i = n; i < znode->child_cnt; i++) {
- znode->zbranch[i] = znode->zbranch[i + 1];
- if (znode->zbranch[i].znode)
- znode->zbranch[i].znode->iip = i;
- }
-
- /*
- * If this is the root and it has only 1 child then
- * collapse the tree.
- */
- if (!znode->parent) {
- while (znode->child_cnt == 1 && znode->level != 0) {
- zp = znode;
- zbr = &znode->zbranch[0];
- znode = get_znode(c, znode, 0);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- znode = dirty_cow_znode(c, zbr);
- if (IS_ERR(znode))
- return PTR_ERR(znode);
- znode->parent = NULL;
- znode->iip = 0;
- if (c->zroot.len) {
- err = insert_old_idx(c, c->zroot.lnum,
- c->zroot.offs);
- if (err)
- return err;
- }
- c->zroot.lnum = zbr->lnum;
- c->zroot.offs = zbr->offs;
- c->zroot.len = zbr->len;
- c->zroot.znode = znode;
- ubifs_assert(!ubifs_zn_obsolete(zp));
- ubifs_assert(ubifs_zn_dirty(zp));
- atomic_long_dec(&c->dirty_zn_cnt);
-
- if (zp->cnext) {
- __set_bit(OBSOLETE_ZNODE, &zp->flags);
- atomic_long_inc(&c->clean_zn_cnt);
- atomic_long_inc(&ubifs_clean_zn_cnt);
- } else
- kfree(zp);
- }
- }
-
- return 0;
-}
-
-/**
- * ubifs_tnc_remove - remove an index entry of a node.
- * @c: UBIFS file-system description object
- * @key: key of node
- *
- * Returns %0 on success or negative error code on failure.
- */
-int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
-{
- int found, n, err = 0;
- struct ubifs_znode *znode;
-
- mutex_lock(&c->tnc_mutex);
- dbg_tnck(key, "key ");
- found = lookup_level0_dirty(c, key, &znode, &n);
- if (found < 0) {
- err = found;
- goto out_unlock;
- }
- if (found == 1)
- err = tnc_delete(c, znode, n);
- if (!err)
- err = dbg_check_tnc(c, 0);
-
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
- * @c: UBIFS file-system description object
- * @key: key of node
- * @nm: directory entry name
- *
- * Returns %0 on success or negative error code on failure.
- */
-int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
- const struct qstr *nm)
-{
- int n, err;
- struct ubifs_znode *znode;
-
- mutex_lock(&c->tnc_mutex);
- dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
- err = lookup_level0_dirty(c, key, &znode, &n);
- if (err < 0)
- goto out_unlock;
-
- if (err) {
- if (c->replaying)
- err = fallible_resolve_collision(c, key, &znode, &n,
- nm, 0);
- else
- err = resolve_collision(c, key, &znode, &n, nm);
- dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
- if (err < 0)
- goto out_unlock;
- if (err) {
- /* Ensure the znode is dirtied */
- if (znode->cnext || !ubifs_zn_dirty(znode)) {
- znode = dirty_cow_bottom_up(c, znode);
- if (IS_ERR(znode)) {
- err = PTR_ERR(znode);
- goto out_unlock;
- }
- }
- err = tnc_delete(c, znode, n);
- }
- }
-
-out_unlock:
- if (!err)
- err = dbg_check_tnc(c, 0);
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * key_in_range - determine if a key falls within a range of keys.
- * @c: UBIFS file-system description object
- * @key: key to check
- * @from_key: lowest key in range
- * @to_key: highest key in range
- *
- * This function returns %1 if the key is in range and %0 otherwise.
- */
-static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
- union ubifs_key *from_key, union ubifs_key *to_key)
-{
- if (keys_cmp(c, key, from_key) < 0)
- return 0;
- if (keys_cmp(c, key, to_key) > 0)
- return 0;
- return 1;
-}
-
-/**
- * ubifs_tnc_remove_range - remove index entries in range.
- * @c: UBIFS file-system description object
- * @from_key: lowest key to remove
- * @to_key: highest key to remove
- *
- * This function removes index entries starting at @from_key and ending at
- * @to_key. This function returns zero in case of success and a negative error
- * code in case of failure.
- */
-int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
- union ubifs_key *to_key)
-{
- int i, n, k, err = 0;
- struct ubifs_znode *znode;
- union ubifs_key *key;
-
- mutex_lock(&c->tnc_mutex);
- while (1) {
- /* Find first level 0 znode that contains keys to remove */
- err = ubifs_lookup_level0(c, from_key, &znode, &n);
- if (err < 0)
- goto out_unlock;
-
- if (err)
- key = from_key;
- else {
- err = tnc_next(c, &znode, &n);
- if (err == -ENOENT) {
- err = 0;
- goto out_unlock;
- }
- if (err < 0)
- goto out_unlock;
- key = &znode->zbranch[n].key;
- if (!key_in_range(c, key, from_key, to_key)) {
- err = 0;
- goto out_unlock;
- }
- }
-
- /* Ensure the znode is dirtied */
- if (znode->cnext || !ubifs_zn_dirty(znode)) {
- znode = dirty_cow_bottom_up(c, znode);
- if (IS_ERR(znode)) {
- err = PTR_ERR(znode);
- goto out_unlock;
- }
- }
-
- /* Remove all keys in range except the first */
- for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
- key = &znode->zbranch[i].key;
- if (!key_in_range(c, key, from_key, to_key))
- break;
- lnc_free(&znode->zbranch[i]);
- err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
- znode->zbranch[i].len);
- if (err) {
- dbg_dump_znode(c, znode);
- goto out_unlock;
- }
- dbg_tnck(key, "removing key ");
- }
- if (k) {
- for (i = n + 1 + k; i < znode->child_cnt; i++)
- znode->zbranch[i - k] = znode->zbranch[i];
- znode->child_cnt -= k;
- }
-
- /* Now delete the first */
- err = tnc_delete(c, znode, n);
- if (err)
- goto out_unlock;
- }
-
-out_unlock:
- if (!err)
- err = dbg_check_tnc(c, 0);
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * ubifs_tnc_remove_ino - remove an inode from TNC.
- * @c: UBIFS file-system description object
- * @inum: inode number to remove
- *
- * This function remove inode @inum and all the extended attributes associated
- * with the anode from TNC and returns zero in case of success or a negative
- * error code in case of failure.
- */
-int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
-{
- union ubifs_key key1, key2;
- struct ubifs_dent_node *xent, *pxent = NULL;
- struct qstr nm = { .name = NULL };
-
- dbg_tnc("ino %lu", (unsigned long)inum);
-
- /*
- * Walk all extended attribute entries and remove them together with
- * corresponding extended attribute inodes.
- */
- lowest_xent_key(c, &key1, inum);
- while (1) {
- ino_t xattr_inum;
- int err;
-
- xent = ubifs_tnc_next_ent(c, &key1, &nm);
- if (IS_ERR(xent)) {
- err = PTR_ERR(xent);
- if (err == -ENOENT)
- break;
- return err;
- }
-
- xattr_inum = le64_to_cpu(xent->inum);
- dbg_tnc("xent '%s', ino %lu", xent->name,
- (unsigned long)xattr_inum);
-
- nm.name = xent->name;
- nm.len = le16_to_cpu(xent->nlen);
- err = ubifs_tnc_remove_nm(c, &key1, &nm);
- if (err) {
- kfree(xent);
- return err;
- }
-
- lowest_ino_key(c, &key1, xattr_inum);
- highest_ino_key(c, &key2, xattr_inum);
- err = ubifs_tnc_remove_range(c, &key1, &key2);
- if (err) {
- kfree(xent);
- return err;
- }
-
- kfree(pxent);
- pxent = xent;
- key_read(c, &xent->key, &key1);
- }
-
- kfree(pxent);
- lowest_ino_key(c, &key1, inum);
- highest_ino_key(c, &key2, inum);
-
- return ubifs_tnc_remove_range(c, &key1, &key2);
-}
-
-/**
- * ubifs_tnc_next_ent - walk directory or extended attribute entries.
- * @c: UBIFS file-system description object
- * @key: key of last entry
- * @nm: name of last entry found or %NULL
- *
- * This function finds and reads the next directory or extended attribute entry
- * after the given key (@key) if there is one. @nm is used to resolve
- * collisions.
- *
- * If the name of the current entry is not known and only the key is known,
- * @nm->name has to be %NULL. In this case the semantics of this function is a
- * little bit different and it returns the entry corresponding to this key, not
- * the next one. If the key was not found, the closest "right" entry is
- * returned.
- *
- * If the fist entry has to be found, @key has to contain the lowest possible
- * key value for this inode and @name has to be %NULL.
- *
- * This function returns the found directory or extended attribute entry node
- * in case of success, %-ENOENT is returned if no entry was found, and a
- * negative error code is returned in case of failure.
- */
-struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
- union ubifs_key *key,
- const struct qstr *nm)
-{
- int n, err, type = key_type(c, key);
- struct ubifs_znode *znode;
- struct ubifs_dent_node *dent;
- struct ubifs_zbranch *zbr;
- union ubifs_key *dkey;
-
- dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
- ubifs_assert(is_hash_key(c, key));
-
- mutex_lock(&c->tnc_mutex);
- err = ubifs_lookup_level0(c, key, &znode, &n);
- if (unlikely(err < 0))
- goto out_unlock;
-
- if (nm->name) {
- if (err) {
- /* Handle collisions */
- err = resolve_collision(c, key, &znode, &n, nm);
- dbg_tnc("rc returned %d, znode %p, n %d",
- err, znode, n);
- if (unlikely(err < 0))
- goto out_unlock;
- }
-
- /* Now find next entry */
- err = tnc_next(c, &znode, &n);
- if (unlikely(err))
- goto out_unlock;
- } else {
- /*
- * The full name of the entry was not given, in which case the
- * behavior of this function is a little different and it
- * returns current entry, not the next one.
- */
- if (!err) {
- /*
- * However, the given key does not exist in the TNC
- * tree and @znode/@n variables contain the closest
- * "preceding" element. Switch to the next one.
- */
- err = tnc_next(c, &znode, &n);
- if (err)
- goto out_unlock;
- }
- }
-
- zbr = &znode->zbranch[n];
- dent = kmalloc(zbr->len, GFP_NOFS);
- if (unlikely(!dent)) {
- err = -ENOMEM;
- goto out_unlock;
- }
-
- /*
- * The above 'tnc_next()' call could lead us to the next inode, check
- * this.
- */
- dkey = &zbr->key;
- if (key_inum(c, dkey) != key_inum(c, key) ||
- key_type(c, dkey) != type) {
- err = -ENOENT;
- goto out_free;
- }
-
- err = tnc_read_node_nm(c, zbr, dent);
- if (unlikely(err))
- goto out_free;
-
- mutex_unlock(&c->tnc_mutex);
- return dent;
-
-out_free:
- kfree(dent);
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return ERR_PTR(err);
-}
-
-/**
- * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
- * @c: UBIFS file-system description object
- *
- * Destroy left-over obsolete znodes from a failed commit.
- */
-static void tnc_destroy_cnext(struct ubifs_info *c)
-{
- struct ubifs_znode *cnext;
-
- if (!c->cnext)
- return;
- ubifs_assert(c->cmt_state == COMMIT_BROKEN);
- cnext = c->cnext;
- do {
- struct ubifs_znode *znode = cnext;
-
- cnext = cnext->cnext;
- if (ubifs_zn_obsolete(znode))
- kfree(znode);
- } while (cnext && cnext != c->cnext);
-}
-
-/**
- * ubifs_tnc_close - close TNC subsystem and free all related resources.
- * @c: UBIFS file-system description object
- */
-void ubifs_tnc_close(struct ubifs_info *c)
-{
- tnc_destroy_cnext(c);
- if (c->zroot.znode) {
- long n;
-
- ubifs_destroy_tnc_subtree(c->zroot.znode);
- n = atomic_long_read(&c->clean_zn_cnt);
- atomic_long_sub(n, &ubifs_clean_zn_cnt);
- }
- kfree(c->gap_lebs);
- kfree(c->ilebs);
- destroy_old_idx(c);
-}
-
-/**
- * left_znode - get the znode to the left.
- * @c: UBIFS file-system description object
- * @znode: znode
- *
- * This function returns a pointer to the znode to the left of @znode or NULL if
- * there is not one. A negative error code is returned on failure.
- */
-static struct ubifs_znode *left_znode(struct ubifs_info *c,
- struct ubifs_znode *znode)
-{
- int level = znode->level;
-
- while (1) {
- int n = znode->iip - 1;
-
- /* Go up until we can go left */
- znode = znode->parent;
- if (!znode)
- return NULL;
- if (n >= 0) {
- /* Now go down the rightmost branch to 'level' */
- znode = get_znode(c, znode, n);
- if (IS_ERR(znode))
- return znode;
- while (znode->level != level) {
- n = znode->child_cnt - 1;
- znode = get_znode(c, znode, n);
- if (IS_ERR(znode))
- return znode;
- }
- break;
- }
- }
- return znode;
-}
-
-/**
- * right_znode - get the znode to the right.
- * @c: UBIFS file-system description object
- * @znode: znode
- *
- * This function returns a pointer to the znode to the right of @znode or NULL
- * if there is not one. A negative error code is returned on failure.
- */
-static struct ubifs_znode *right_znode(struct ubifs_info *c,
- struct ubifs_znode *znode)
-{
- int level = znode->level;
-
- while (1) {
- int n = znode->iip + 1;
-
- /* Go up until we can go right */
- znode = znode->parent;
- if (!znode)
- return NULL;
- if (n < znode->child_cnt) {
- /* Now go down the leftmost branch to 'level' */
- znode = get_znode(c, znode, n);
- if (IS_ERR(znode))
- return znode;
- while (znode->level != level) {
- znode = get_znode(c, znode, 0);
- if (IS_ERR(znode))
- return znode;
- }
- break;
- }
- }
- return znode;
-}
-
-/**
- * lookup_znode - find a particular indexing node from TNC.
- * @c: UBIFS file-system description object
- * @key: index node key to lookup
- * @level: index node level
- * @lnum: index node LEB number
- * @offs: index node offset
- *
- * This function searches an indexing node by its first key @key and its
- * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
- * nodes it traverses to TNC. This function is called for indexing nodes which
- * were found on the media by scanning, for example when garbage-collecting or
- * when doing in-the-gaps commit. This means that the indexing node which is
- * looked for does not have to have exactly the same leftmost key @key, because
- * the leftmost key may have been changed, in which case TNC will contain a
- * dirty znode which still refers the same @lnum:@offs. This function is clever
- * enough to recognize such indexing nodes.
- *
- * Note, if a znode was deleted or changed too much, then this function will
- * not find it. For situations like this UBIFS has the old index RB-tree
- * (indexed by @lnum:@offs).
- *
- * This function returns a pointer to the znode found or %NULL if it is not
- * found. A negative error code is returned on failure.
- */
-static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
- union ubifs_key *key, int level,
- int lnum, int offs)
-{
- struct ubifs_znode *znode, *zn;
- int n, nn;
-
- ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
-
- /*
- * The arguments have probably been read off flash, so don't assume
- * they are valid.
- */
- if (level < 0)
- return ERR_PTR(-EINVAL);
-
- /* Get the root znode */
- znode = c->zroot.znode;
- if (!znode) {
- znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
- if (IS_ERR(znode))
- return znode;
- }
- /* Check if it is the one we are looking for */
- if (c->zroot.lnum == lnum && c->zroot.offs == offs)
- return znode;
- /* Descend to the parent level i.e. (level + 1) */
- if (level >= znode->level)
- return NULL;
- while (1) {
- ubifs_search_zbranch(c, znode, key, &n);
- if (n < 0) {
- /*
- * We reached a znode where the leftmost key is greater
- * than the key we are searching for. This is the same
- * situation as the one described in a huge comment at
- * the end of the 'ubifs_lookup_level0()' function. And
- * for exactly the same reasons we have to try to look
- * left before giving up.
- */
- znode = left_znode(c, znode);
- if (!znode)
- return NULL;
- if (IS_ERR(znode))
- return znode;
- ubifs_search_zbranch(c, znode, key, &n);
- ubifs_assert(n >= 0);
- }
- if (znode->level == level + 1)
- break;
- znode = get_znode(c, znode, n);
- if (IS_ERR(znode))
- return znode;
- }
- /* Check if the child is the one we are looking for */
- if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
- return get_znode(c, znode, n);
- /* If the key is unique, there is nowhere else to look */
- if (!is_hash_key(c, key))
- return NULL;
- /*
- * The key is not unique and so may be also in the znodes to either
- * side.
- */
- zn = znode;
- nn = n;
- /* Look left */
- while (1) {
- /* Move one branch to the left */
- if (n)
- n -= 1;
- else {
- znode = left_znode(c, znode);
- if (!znode)
- break;
- if (IS_ERR(znode))
- return znode;
- n = znode->child_cnt - 1;
- }
- /* Check it */
- if (znode->zbranch[n].lnum == lnum &&
- znode->zbranch[n].offs == offs)
- return get_znode(c, znode, n);
- /* Stop if the key is less than the one we are looking for */
- if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
- break;
- }
- /* Back to the middle */
- znode = zn;
- n = nn;
- /* Look right */
- while (1) {
- /* Move one branch to the right */
- if (++n >= znode->child_cnt) {
- znode = right_znode(c, znode);
- if (!znode)
- break;
- if (IS_ERR(znode))
- return znode;
- n = 0;
- }
- /* Check it */
- if (znode->zbranch[n].lnum == lnum &&
- znode->zbranch[n].offs == offs)
- return get_znode(c, znode, n);
- /* Stop if the key is greater than the one we are looking for */
- if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
- break;
- }
- return NULL;
-}
-
-/**
- * is_idx_node_in_tnc - determine if an index node is in the TNC.
- * @c: UBIFS file-system description object
- * @key: key of index node
- * @level: index node level
- * @lnum: LEB number of index node
- * @offs: offset of index node
- *
- * This function returns %0 if the index node is not referred to in the TNC, %1
- * if the index node is referred to in the TNC and the corresponding znode is
- * dirty, %2 if an index node is referred to in the TNC and the corresponding
- * znode is clean, and a negative error code in case of failure.
- *
- * Note, the @key argument has to be the key of the first child. Also note,
- * this function relies on the fact that 0:0 is never a valid LEB number and
- * offset for a main-area node.
- */
-int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
- int lnum, int offs)
-{
- struct ubifs_znode *znode;
-
- znode = lookup_znode(c, key, level, lnum, offs);
- if (!znode)
- return 0;
- if (IS_ERR(znode))
- return PTR_ERR(znode);
-
- return ubifs_zn_dirty(znode) ? 1 : 2;
-}
-
-/**
- * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
- * @c: UBIFS file-system description object
- * @key: node key
- * @lnum: node LEB number
- * @offs: node offset
- *
- * This function returns %1 if the node is referred to in the TNC, %0 if it is
- * not, and a negative error code in case of failure.
- *
- * Note, this function relies on the fact that 0:0 is never a valid LEB number
- * and offset for a main-area node.
- */
-static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
- int lnum, int offs)
-{
- struct ubifs_zbranch *zbr;
- struct ubifs_znode *znode, *zn;
- int n, found, err, nn;
- const int unique = !is_hash_key(c, key);
-
- found = ubifs_lookup_level0(c, key, &znode, &n);
- if (found < 0)
- return found; /* Error code */
- if (!found)
- return 0;
- zbr = &znode->zbranch[n];
- if (lnum == zbr->lnum && offs == zbr->offs)
- return 1; /* Found it */
- if (unique)
- return 0;
- /*
- * Because the key is not unique, we have to look left
- * and right as well
- */
- zn = znode;
- nn = n;
- /* Look left */
- while (1) {
- err = tnc_prev(c, &znode, &n);
- if (err == -ENOENT)
- break;
- if (err)
- return err;
- if (keys_cmp(c, key, &znode->zbranch[n].key))
- break;
- zbr = &znode->zbranch[n];
- if (lnum == zbr->lnum && offs == zbr->offs)
- return 1; /* Found it */
- }
- /* Look right */
- znode = zn;
- n = nn;
- while (1) {
- err = tnc_next(c, &znode, &n);
- if (err) {
- if (err == -ENOENT)
- return 0;
- return err;
- }
- if (keys_cmp(c, key, &znode->zbranch[n].key))
- break;
- zbr = &znode->zbranch[n];
- if (lnum == zbr->lnum && offs == zbr->offs)
- return 1; /* Found it */
- }
- return 0;
-}
-
-/**
- * ubifs_tnc_has_node - determine whether a node is in the TNC.
- * @c: UBIFS file-system description object
- * @key: node key
- * @level: index node level (if it is an index node)
- * @lnum: node LEB number
- * @offs: node offset
- * @is_idx: non-zero if the node is an index node
- *
- * This function returns %1 if the node is in the TNC, %0 if it is not, and a
- * negative error code in case of failure. For index nodes, @key has to be the
- * key of the first child. An index node is considered to be in the TNC only if
- * the corresponding znode is clean or has not been loaded.
- */
-int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
- int lnum, int offs, int is_idx)
-{
- int err;
-
- mutex_lock(&c->tnc_mutex);
- if (is_idx) {
- err = is_idx_node_in_tnc(c, key, level, lnum, offs);
- if (err < 0)
- goto out_unlock;
- if (err == 1)
- /* The index node was found but it was dirty */
- err = 0;
- else if (err == 2)
- /* The index node was found and it was clean */
- err = 1;
- else
- BUG_ON(err != 0);
- } else
- err = is_leaf_node_in_tnc(c, key, lnum, offs);
-
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * ubifs_dirty_idx_node - dirty an index node.
- * @c: UBIFS file-system description object
- * @key: index node key
- * @level: index node level
- * @lnum: index node LEB number
- * @offs: index node offset
- *
- * This function loads and dirties an index node so that it can be garbage
- * collected. The @key argument has to be the key of the first child. This
- * function relies on the fact that 0:0 is never a valid LEB number and offset
- * for a main-area node. Returns %0 on success and a negative error code on
- * failure.
- */
-int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
- int lnum, int offs)
-{
- struct ubifs_znode *znode;
- int err = 0;
-
- mutex_lock(&c->tnc_mutex);
- znode = lookup_znode(c, key, level, lnum, offs);
- if (!znode)
- goto out_unlock;
- if (IS_ERR(znode)) {
- err = PTR_ERR(znode);
- goto out_unlock;
- }
- znode = dirty_cow_bottom_up(c, znode);
- if (IS_ERR(znode)) {
- err = PTR_ERR(znode);
- goto out_unlock;
- }
-
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
-
-/**
- * dbg_check_inode_size - check if inode size is correct.
- * @c: UBIFS file-system description object
- * @inum: inode number
- * @size: inode size
- *
- * This function makes sure that the inode size (@size) is correct and it does
- * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
- * if it has a data page beyond @size, and other negative error code in case of
- * other errors.
- */
-int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
- loff_t size)
-{
- int err, n;
- union ubifs_key from_key, to_key, *key;
- struct ubifs_znode *znode;
- unsigned int block;
-
- if (!S_ISREG(inode->i_mode))
- return 0;
- if (!dbg_is_chk_gen(c))
- return 0;
-
- block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
- data_key_init(c, &from_key, inode->i_ino, block);
- highest_data_key(c, &to_key, inode->i_ino);
-
- mutex_lock(&c->tnc_mutex);
- err = ubifs_lookup_level0(c, &from_key, &znode, &n);
- if (err < 0)
- goto out_unlock;
-
- if (err) {
- err = -EINVAL;
- key = &from_key;
- goto out_dump;
- }
-
- err = tnc_next(c, &znode, &n);
- if (err == -ENOENT) {
- err = 0;
- goto out_unlock;
- }
- if (err < 0)
- goto out_unlock;
-
- ubifs_assert(err == 0);
- key = &znode->zbranch[n].key;
- if (!key_in_range(c, key, &from_key, &to_key))
- goto out_unlock;
-
-out_dump:
- block = key_block(c, key);
- ubifs_err("inode %lu has size %lld, but there are data at offset %lld",
- (unsigned long)inode->i_ino, size,
- ((loff_t)block) << UBIFS_BLOCK_SHIFT);
- mutex_unlock(&c->tnc_mutex);
- dbg_dump_inode(c, inode);
- dbg_dump_stack();
- return -EINVAL;
-
-out_unlock:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-#endif /* CONFIG_UBIFS_FS_DEBUG */
diff --git a/ANDROID_3.4.5/fs/ubifs/tnc_commit.c b/ANDROID_3.4.5/fs/ubifs/tnc_commit.c
deleted file mode 100644
index 10ac81dd..00000000
--- a/ANDROID_3.4.5/fs/ubifs/tnc_commit.c
+++ /dev/null
@@ -1,1089 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/* This file implements TNC functions for committing */
-
-#include <linux/random.h>
-#include "ubifs.h"
-
-/**
- * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
- * @c: UBIFS file-system description object
- * @idx: buffer in which to place new index node
- * @znode: znode from which to make new index node
- * @lnum: LEB number where new index node will be written
- * @offs: offset where new index node will be written
- * @len: length of new index node
- */
-static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
- struct ubifs_znode *znode, int lnum, int offs, int len)
-{
- struct ubifs_znode *zp;
- int i, err;
-
- /* Make index node */
- idx->ch.node_type = UBIFS_IDX_NODE;
- idx->child_cnt = cpu_to_le16(znode->child_cnt);
- idx->level = cpu_to_le16(znode->level);
- for (i = 0; i < znode->child_cnt; i++) {
- struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
- struct ubifs_zbranch *zbr = &znode->zbranch[i];
-
- key_write_idx(c, &zbr->key, &br->key);
- br->lnum = cpu_to_le32(zbr->lnum);
- br->offs = cpu_to_le32(zbr->offs);
- br->len = cpu_to_le32(zbr->len);
- if (!zbr->lnum || !zbr->len) {
- ubifs_err("bad ref in znode");
- dbg_dump_znode(c, znode);
- if (zbr->znode)
- dbg_dump_znode(c, zbr->znode);
- }
- }
- ubifs_prepare_node(c, idx, len, 0);
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
- znode->lnum = lnum;
- znode->offs = offs;
- znode->len = len;
-#endif
-
- err = insert_old_idx_znode(c, znode);
-
- /* Update the parent */
- zp = znode->parent;
- if (zp) {
- struct ubifs_zbranch *zbr;
-
- zbr = &zp->zbranch[znode->iip];
- zbr->lnum = lnum;
- zbr->offs = offs;
- zbr->len = len;
- } else {
- c->zroot.lnum = lnum;
- c->zroot.offs = offs;
- c->zroot.len = len;
- }
- c->calc_idx_sz += ALIGN(len, 8);
-
- atomic_long_dec(&c->dirty_zn_cnt);
-
- ubifs_assert(ubifs_zn_dirty(znode));
- ubifs_assert(ubifs_zn_cow(znode));
-
- /*
- * Note, unlike 'write_index()' we do not add memory barriers here
- * because this function is called with @c->tnc_mutex locked.
- */
- __clear_bit(DIRTY_ZNODE, &znode->flags);
- __clear_bit(COW_ZNODE, &znode->flags);
-
- return err;
-}
-
-/**
- * fill_gap - make index nodes in gaps in dirty index LEBs.
- * @c: UBIFS file-system description object
- * @lnum: LEB number that gap appears in
- * @gap_start: offset of start of gap
- * @gap_end: offset of end of gap
- * @dirt: adds dirty space to this
- *
- * This function returns the number of index nodes written into the gap.
- */
-static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
- int *dirt)
-{
- int len, gap_remains, gap_pos, written, pad_len;
-
- ubifs_assert((gap_start & 7) == 0);
- ubifs_assert((gap_end & 7) == 0);
- ubifs_assert(gap_end >= gap_start);
-
- gap_remains = gap_end - gap_start;
- if (!gap_remains)
- return 0;
- gap_pos = gap_start;
- written = 0;
- while (c->enext) {
- len = ubifs_idx_node_sz(c, c->enext->child_cnt);
- if (len < gap_remains) {
- struct ubifs_znode *znode = c->enext;
- const int alen = ALIGN(len, 8);
- int err;
-
- ubifs_assert(alen <= gap_remains);
- err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
- lnum, gap_pos, len);
- if (err)
- return err;
- gap_remains -= alen;
- gap_pos += alen;
- c->enext = znode->cnext;
- if (c->enext == c->cnext)
- c->enext = NULL;
- written += 1;
- } else
- break;
- }
- if (gap_end == c->leb_size) {
- c->ileb_len = ALIGN(gap_pos, c->min_io_size);
- /* Pad to end of min_io_size */
- pad_len = c->ileb_len - gap_pos;
- } else
- /* Pad to end of gap */
- pad_len = gap_remains;
- dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
- lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
- ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
- *dirt += pad_len;
- return written;
-}
-
-/**
- * find_old_idx - find an index node obsoleted since the last commit start.
- * @c: UBIFS file-system description object
- * @lnum: LEB number of obsoleted index node
- * @offs: offset of obsoleted index node
- *
- * Returns %1 if found and %0 otherwise.
- */
-static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
-{
- struct ubifs_old_idx *o;
- struct rb_node *p;
-
- p = c->old_idx.rb_node;
- while (p) {
- o = rb_entry(p, struct ubifs_old_idx, rb);
- if (lnum < o->lnum)
- p = p->rb_left;
- else if (lnum > o->lnum)
- p = p->rb_right;
- else if (offs < o->offs)
- p = p->rb_left;
- else if (offs > o->offs)
- p = p->rb_right;
- else
- return 1;
- }
- return 0;
-}
-
-/**
- * is_idx_node_in_use - determine if an index node can be overwritten.
- * @c: UBIFS file-system description object
- * @key: key of index node
- * @level: index node level
- * @lnum: LEB number of index node
- * @offs: offset of index node
- *
- * If @key / @lnum / @offs identify an index node that was not part of the old
- * index, then this function returns %0 (obsolete). Else if the index node was
- * part of the old index but is now dirty %1 is returned, else if it is clean %2
- * is returned. A negative error code is returned on failure.
- */
-static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
- int level, int lnum, int offs)
-{
- int ret;
-
- ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
- if (ret < 0)
- return ret; /* Error code */
- if (ret == 0)
- if (find_old_idx(c, lnum, offs))
- return 1;
- return ret;
-}
-
-/**
- * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
- * @c: UBIFS file-system description object
- * @p: return LEB number here
- *
- * This function lays out new index nodes for dirty znodes using in-the-gaps
- * method of TNC commit.
- * This function merely puts the next znode into the next gap, making no attempt
- * to try to maximise the number of znodes that fit.
- * This function returns the number of index nodes written into the gaps, or a
- * negative error code on failure.
- */
-static int layout_leb_in_gaps(struct ubifs_info *c, int *p)
-{
- struct ubifs_scan_leb *sleb;
- struct ubifs_scan_node *snod;
- int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
-
- tot_written = 0;
- /* Get an index LEB with lots of obsolete index nodes */
- lnum = ubifs_find_dirty_idx_leb(c);
- if (lnum < 0)
- /*
- * There also may be dirt in the index head that could be
- * filled, however we do not check there at present.
- */
- return lnum; /* Error code */
- *p = lnum;
- dbg_gc("LEB %d", lnum);
- /*
- * Scan the index LEB. We use the generic scan for this even though
- * it is more comprehensive and less efficient than is needed for this
- * purpose.
- */
- sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
- c->ileb_len = 0;
- if (IS_ERR(sleb))
- return PTR_ERR(sleb);
- gap_start = 0;
- list_for_each_entry(snod, &sleb->nodes, list) {
- struct ubifs_idx_node *idx;
- int in_use, level;
-
- ubifs_assert(snod->type == UBIFS_IDX_NODE);
- idx = snod->node;
- key_read(c, ubifs_idx_key(c, idx), &snod->key);
- level = le16_to_cpu(idx->level);
- /* Determine if the index node is in use (not obsolete) */
- in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
- snod->offs);
- if (in_use < 0) {
- ubifs_scan_destroy(sleb);
- return in_use; /* Error code */
- }
- if (in_use) {
- if (in_use == 1)
- dirt += ALIGN(snod->len, 8);
- /*
- * The obsolete index nodes form gaps that can be
- * overwritten. This gap has ended because we have
- * found an index node that is still in use
- * i.e. not obsolete
- */
- gap_end = snod->offs;
- /* Try to fill gap */
- written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
- if (written < 0) {
- ubifs_scan_destroy(sleb);
- return written; /* Error code */
- }
- tot_written += written;
- gap_start = ALIGN(snod->offs + snod->len, 8);
- }
- }
- ubifs_scan_destroy(sleb);
- c->ileb_len = c->leb_size;
- gap_end = c->leb_size;
- /* Try to fill gap */
- written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
- if (written < 0)
- return written; /* Error code */
- tot_written += written;
- if (tot_written == 0) {
- struct ubifs_lprops lp;
-
- dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
- err = ubifs_read_one_lp(c, lnum, &lp);
- if (err)
- return err;
- if (lp.free == c->leb_size) {
- /*
- * We must have snatched this LEB from the idx_gc list
- * so we need to correct the free and dirty space.
- */
- err = ubifs_change_one_lp(c, lnum,
- c->leb_size - c->ileb_len,
- dirt, 0, 0, 0);
- if (err)
- return err;
- }
- return 0;
- }
- err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
- 0, 0, 0);
- if (err)
- return err;
- err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len,
- UBI_SHORTTERM);
- if (err)
- return err;
- dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
- return tot_written;
-}
-
-/**
- * get_leb_cnt - calculate the number of empty LEBs needed to commit.
- * @c: UBIFS file-system description object
- * @cnt: number of znodes to commit
- *
- * This function returns the number of empty LEBs needed to commit @cnt znodes
- * to the current index head. The number is not exact and may be more than
- * needed.
- */
-static int get_leb_cnt(struct ubifs_info *c, int cnt)
-{
- int d;
-
- /* Assume maximum index node size (i.e. overestimate space needed) */
- cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
- if (cnt < 0)
- cnt = 0;
- d = c->leb_size / c->max_idx_node_sz;
- return DIV_ROUND_UP(cnt, d);
-}
-
-/**
- * layout_in_gaps - in-the-gaps method of committing TNC.
- * @c: UBIFS file-system description object
- * @cnt: number of dirty znodes to commit.
- *
- * This function lays out new index nodes for dirty znodes using in-the-gaps
- * method of TNC commit.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int layout_in_gaps(struct ubifs_info *c, int cnt)
-{
- int err, leb_needed_cnt, written, *p;
-
- dbg_gc("%d znodes to write", cnt);
-
- c->gap_lebs = kmalloc(sizeof(int) * (c->lst.idx_lebs + 1), GFP_NOFS);
- if (!c->gap_lebs)
- return -ENOMEM;
-
- p = c->gap_lebs;
- do {
- ubifs_assert(p < c->gap_lebs + sizeof(int) * c->lst.idx_lebs);
- written = layout_leb_in_gaps(c, p);
- if (written < 0) {
- err = written;
- if (err != -ENOSPC) {
- kfree(c->gap_lebs);
- c->gap_lebs = NULL;
- return err;
- }
- if (!dbg_is_chk_index(c)) {
- /*
- * Do not print scary warnings if the debugging
- * option which forces in-the-gaps is enabled.
- */
- ubifs_warn("out of space");
- dbg_dump_budg(c, &c->bi);
- dbg_dump_lprops(c);
- }
- /* Try to commit anyway */
- err = 0;
- break;
- }
- p++;
- cnt -= written;
- leb_needed_cnt = get_leb_cnt(c, cnt);
- dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
- leb_needed_cnt, c->ileb_cnt);
- } while (leb_needed_cnt > c->ileb_cnt);
-
- *p = -1;
- return 0;
-}
-
-/**
- * layout_in_empty_space - layout index nodes in empty space.
- * @c: UBIFS file-system description object
- *
- * This function lays out new index nodes for dirty znodes using empty LEBs.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int layout_in_empty_space(struct ubifs_info *c)
-{
- struct ubifs_znode *znode, *cnext, *zp;
- int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
- int wlen, blen, err;
-
- cnext = c->enext;
- if (!cnext)
- return 0;
-
- lnum = c->ihead_lnum;
- buf_offs = c->ihead_offs;
-
- buf_len = ubifs_idx_node_sz(c, c->fanout);
- buf_len = ALIGN(buf_len, c->min_io_size);
- used = 0;
- avail = buf_len;
-
- /* Ensure there is enough room for first write */
- next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
- if (buf_offs + next_len > c->leb_size)
- lnum = -1;
-
- while (1) {
- znode = cnext;
-
- len = ubifs_idx_node_sz(c, znode->child_cnt);
-
- /* Determine the index node position */
- if (lnum == -1) {
- if (c->ileb_nxt >= c->ileb_cnt) {
- ubifs_err("out of space");
- return -ENOSPC;
- }
- lnum = c->ilebs[c->ileb_nxt++];
- buf_offs = 0;
- used = 0;
- avail = buf_len;
- }
-
- offs = buf_offs + used;
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
- znode->lnum = lnum;
- znode->offs = offs;
- znode->len = len;
-#endif
-
- /* Update the parent */
- zp = znode->parent;
- if (zp) {
- struct ubifs_zbranch *zbr;
- int i;
-
- i = znode->iip;
- zbr = &zp->zbranch[i];
- zbr->lnum = lnum;
- zbr->offs = offs;
- zbr->len = len;
- } else {
- c->zroot.lnum = lnum;
- c->zroot.offs = offs;
- c->zroot.len = len;
- }
- c->calc_idx_sz += ALIGN(len, 8);
-
- /*
- * Once lprops is updated, we can decrease the dirty znode count
- * but it is easier to just do it here.
- */
- atomic_long_dec(&c->dirty_zn_cnt);
-
- /*
- * Calculate the next index node length to see if there is
- * enough room for it
- */
- cnext = znode->cnext;
- if (cnext == c->cnext)
- next_len = 0;
- else
- next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
-
- /* Update buffer positions */
- wlen = used + len;
- used += ALIGN(len, 8);
- avail -= ALIGN(len, 8);
-
- if (next_len != 0 &&
- buf_offs + used + next_len <= c->leb_size &&
- avail > 0)
- continue;
-
- if (avail <= 0 && next_len &&
- buf_offs + used + next_len <= c->leb_size)
- blen = buf_len;
- else
- blen = ALIGN(wlen, c->min_io_size);
-
- /* The buffer is full or there are no more znodes to do */
- buf_offs += blen;
- if (next_len) {
- if (buf_offs + next_len > c->leb_size) {
- err = ubifs_update_one_lp(c, lnum,
- c->leb_size - buf_offs, blen - used,
- 0, 0);
- if (err)
- return err;
- lnum = -1;
- }
- used -= blen;
- if (used < 0)
- used = 0;
- avail = buf_len - used;
- continue;
- }
- err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
- blen - used, 0, 0);
- if (err)
- return err;
- break;
- }
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
- c->dbg->new_ihead_lnum = lnum;
- c->dbg->new_ihead_offs = buf_offs;
-#endif
-
- return 0;
-}
-
-/**
- * layout_commit - determine positions of index nodes to commit.
- * @c: UBIFS file-system description object
- * @no_space: indicates that insufficient empty LEBs were allocated
- * @cnt: number of znodes to commit
- *
- * Calculate and update the positions of index nodes to commit. If there were
- * an insufficient number of empty LEBs allocated, then index nodes are placed
- * into the gaps created by obsolete index nodes in non-empty index LEBs. For
- * this purpose, an obsolete index node is one that was not in the index as at
- * the end of the last commit. To write "in-the-gaps" requires that those index
- * LEBs are updated atomically in-place.
- */
-static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
-{
- int err;
-
- if (no_space) {
- err = layout_in_gaps(c, cnt);
- if (err)
- return err;
- }
- err = layout_in_empty_space(c);
- return err;
-}
-
-/**
- * find_first_dirty - find first dirty znode.
- * @znode: znode to begin searching from
- */
-static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
-{
- int i, cont;
-
- if (!znode)
- return NULL;
-
- while (1) {
- if (znode->level == 0) {
- if (ubifs_zn_dirty(znode))
- return znode;
- return NULL;
- }
- cont = 0;
- for (i = 0; i < znode->child_cnt; i++) {
- struct ubifs_zbranch *zbr = &znode->zbranch[i];
-
- if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
- znode = zbr->znode;
- cont = 1;
- break;
- }
- }
- if (!cont) {
- if (ubifs_zn_dirty(znode))
- return znode;
- return NULL;
- }
- }
-}
-
-/**
- * find_next_dirty - find next dirty znode.
- * @znode: znode to begin searching from
- */
-static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
-{
- int n = znode->iip + 1;
-
- znode = znode->parent;
- if (!znode)
- return NULL;
- for (; n < znode->child_cnt; n++) {
- struct ubifs_zbranch *zbr = &znode->zbranch[n];
-
- if (zbr->znode && ubifs_zn_dirty(zbr->znode))
- return find_first_dirty(zbr->znode);
- }
- return znode;
-}
-
-/**
- * get_znodes_to_commit - create list of dirty znodes to commit.
- * @c: UBIFS file-system description object
- *
- * This function returns the number of znodes to commit.
- */
-static int get_znodes_to_commit(struct ubifs_info *c)
-{
- struct ubifs_znode *znode, *cnext;
- int cnt = 0;
-
- c->cnext = find_first_dirty(c->zroot.znode);
- znode = c->enext = c->cnext;
- if (!znode) {
- dbg_cmt("no znodes to commit");
- return 0;
- }
- cnt += 1;
- while (1) {
- ubifs_assert(!ubifs_zn_cow(znode));
- __set_bit(COW_ZNODE, &znode->flags);
- znode->alt = 0;
- cnext = find_next_dirty(znode);
- if (!cnext) {
- znode->cnext = c->cnext;
- break;
- }
- znode->cnext = cnext;
- znode = cnext;
- cnt += 1;
- }
- dbg_cmt("committing %d znodes", cnt);
- ubifs_assert(cnt == atomic_long_read(&c->dirty_zn_cnt));
- return cnt;
-}
-
-/**
- * alloc_idx_lebs - allocate empty LEBs to be used to commit.
- * @c: UBIFS file-system description object
- * @cnt: number of znodes to commit
- *
- * This function returns %-ENOSPC if it cannot allocate a sufficient number of
- * empty LEBs. %0 is returned on success, otherwise a negative error code
- * is returned.
- */
-static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
-{
- int i, leb_cnt, lnum;
-
- c->ileb_cnt = 0;
- c->ileb_nxt = 0;
- leb_cnt = get_leb_cnt(c, cnt);
- dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
- if (!leb_cnt)
- return 0;
- c->ilebs = kmalloc(leb_cnt * sizeof(int), GFP_NOFS);
- if (!c->ilebs)
- return -ENOMEM;
- for (i = 0; i < leb_cnt; i++) {
- lnum = ubifs_find_free_leb_for_idx(c);
- if (lnum < 0)
- return lnum;
- c->ilebs[c->ileb_cnt++] = lnum;
- dbg_cmt("LEB %d", lnum);
- }
- if (dbg_is_chk_index(c) && !(random32() & 7))
- return -ENOSPC;
- return 0;
-}
-
-/**
- * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
- * @c: UBIFS file-system description object
- *
- * It is possible that we allocate more empty LEBs for the commit than we need.
- * This functions frees the surplus.
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int free_unused_idx_lebs(struct ubifs_info *c)
-{
- int i, err = 0, lnum, er;
-
- for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
- lnum = c->ilebs[i];
- dbg_cmt("LEB %d", lnum);
- er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
- LPROPS_INDEX | LPROPS_TAKEN, 0);
- if (!err)
- err = er;
- }
- return err;
-}
-
-/**
- * free_idx_lebs - free unused LEBs after commit end.
- * @c: UBIFS file-system description object
- *
- * This function returns %0 on success and a negative error code on failure.
- */
-static int free_idx_lebs(struct ubifs_info *c)
-{
- int err;
-
- err = free_unused_idx_lebs(c);
- kfree(c->ilebs);
- c->ilebs = NULL;
- return err;
-}
-
-/**
- * ubifs_tnc_start_commit - start TNC commit.
- * @c: UBIFS file-system description object
- * @zroot: new index root position is returned here
- *
- * This function prepares the list of indexing nodes to commit and lays out
- * their positions on flash. If there is not enough free space it uses the
- * in-gap commit method. Returns zero in case of success and a negative error
- * code in case of failure.
- */
-int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
-{
- int err = 0, cnt;
-
- mutex_lock(&c->tnc_mutex);
- err = dbg_check_tnc(c, 1);
- if (err)
- goto out;
- cnt = get_znodes_to_commit(c);
- if (cnt != 0) {
- int no_space = 0;
-
- /* disable read buffer if something is written */
- struct ubifs_wbuf *wbuf;
- wbuf = &c->idx_buf;
- wbuf->lnum = -1;
-
- err = alloc_idx_lebs(c, cnt);
- if (err == -ENOSPC)
- no_space = 1;
- else if (err)
- goto out_free;
- err = layout_commit(c, no_space, cnt);
- if (err)
- goto out_free;
- ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
- err = free_unused_idx_lebs(c);
- if (err)
- goto out;
- }
- destroy_old_idx(c);
- memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
-
- err = ubifs_save_dirty_idx_lnums(c);
- if (err)
- goto out;
-
- spin_lock(&c->space_lock);
- /*
- * Although we have not finished committing yet, update size of the
- * committed index ('c->bi.old_idx_sz') and zero out the index growth
- * budget. It is OK to do this now, because we've reserved all the
- * space which is needed to commit the index, and it is save for the
- * budgeting subsystem to assume the index is already committed,
- * even though it is not.
- */
- ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
- c->bi.old_idx_sz = c->calc_idx_sz;
- c->bi.uncommitted_idx = 0;
- c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
- spin_unlock(&c->space_lock);
- mutex_unlock(&c->tnc_mutex);
-
- dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
- dbg_cmt("size of index %llu", c->calc_idx_sz);
- return err;
-
-out_free:
- free_idx_lebs(c);
-out:
- mutex_unlock(&c->tnc_mutex);
- return err;
-}
-
-/**
- * write_index - write index nodes.
- * @c: UBIFS file-system description object
- *
- * This function writes the index nodes whose positions were laid out in the
- * layout_in_empty_space function.
- */
-static int write_index(struct ubifs_info *c)
-{
- struct ubifs_idx_node *idx;
- struct ubifs_znode *znode, *cnext;
- int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
- int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
-
- cnext = c->enext;
- if (!cnext)
- return 0;
-
- /*
- * Always write index nodes to the index head so that index nodes and
- * other types of nodes are never mixed in the same erase block.
- */
- lnum = c->ihead_lnum;
- buf_offs = c->ihead_offs;
-
- /* Allocate commit buffer */
- buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
- used = 0;
- avail = buf_len;
-
- /* Ensure there is enough room for first write */
- next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
- if (buf_offs + next_len > c->leb_size) {
- err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
- LPROPS_TAKEN);
- if (err)
- return err;
- lnum = -1;
- }
-
- while (1) {
- cond_resched();
-
- znode = cnext;
- idx = c->cbuf + used;
-
- /* Make index node */
- idx->ch.node_type = UBIFS_IDX_NODE;
- idx->child_cnt = cpu_to_le16(znode->child_cnt);
- idx->level = cpu_to_le16(znode->level);
- for (i = 0; i < znode->child_cnt; i++) {
- struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
- struct ubifs_zbranch *zbr = &znode->zbranch[i];
-
- key_write_idx(c, &zbr->key, &br->key);
- br->lnum = cpu_to_le32(zbr->lnum);
- br->offs = cpu_to_le32(zbr->offs);
- br->len = cpu_to_le32(zbr->len);
- if (!zbr->lnum || !zbr->len) {
- ubifs_err("bad ref in znode");
- dbg_dump_znode(c, znode);
- if (zbr->znode)
- dbg_dump_znode(c, zbr->znode);
- }
- }
- len = ubifs_idx_node_sz(c, znode->child_cnt);
- ubifs_prepare_node(c, idx, len, 0);
-
- /* Determine the index node position */
- if (lnum == -1) {
- lnum = c->ilebs[lnum_pos++];
- buf_offs = 0;
- used = 0;
- avail = buf_len;
- }
- offs = buf_offs + used;
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
- if (lnum != znode->lnum || offs != znode->offs ||
- len != znode->len) {
- ubifs_err("inconsistent znode posn");
- return -EINVAL;
- }
-#endif
-
- /* Grab some stuff from znode while we still can */
- cnext = znode->cnext;
-
- ubifs_assert(ubifs_zn_dirty(znode));
- ubifs_assert(ubifs_zn_cow(znode));
-
- /*
- * It is important that other threads should see %DIRTY_ZNODE
- * flag cleared before %COW_ZNODE. Specifically, it matters in
- * the 'dirty_cow_znode()' function. This is the reason for the
- * first barrier. Also, we want the bit changes to be seen to
- * other threads ASAP, to avoid unnecesarry copying, which is
- * the reason for the second barrier.
- */
- clear_bit(DIRTY_ZNODE, &znode->flags);
- smp_mb__before_clear_bit();
- clear_bit(COW_ZNODE, &znode->flags);
- smp_mb__after_clear_bit();
-
- /*
- * We have marked the znode as clean but have not updated the
- * @c->clean_zn_cnt counter. If this znode becomes dirty again
- * before 'free_obsolete_znodes()' is called, then
- * @c->clean_zn_cnt will be decremented before it gets
- * incremented (resulting in 2 decrements for the same znode).
- * This means that @c->clean_zn_cnt may become negative for a
- * while.
- *
- * Q: why we cannot increment @c->clean_zn_cnt?
- * A: because we do not have the @c->tnc_mutex locked, and the
- * following code would be racy and buggy:
- *
- * if (!ubifs_zn_obsolete(znode)) {
- * atomic_long_inc(&c->clean_zn_cnt);
- * atomic_long_inc(&ubifs_clean_zn_cnt);
- * }
- *
- * Thus, we just delay the @c->clean_zn_cnt update until we
- * have the mutex locked.
- */
-
- /* Do not access znode from this point on */
-
- /* Update buffer positions */
- wlen = used + len;
- used += ALIGN(len, 8);
- avail -= ALIGN(len, 8);
-
- /*
- * Calculate the next index node length to see if there is
- * enough room for it
- */
- if (cnext == c->cnext)
- next_len = 0;
- else
- next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
-
- nxt_offs = buf_offs + used + next_len;
- if (next_len && nxt_offs <= c->leb_size) {
- if (avail > 0)
- continue;
- else
- blen = buf_len;
- } else {
- wlen = ALIGN(wlen, 8);
- blen = ALIGN(wlen, c->min_io_size);
- ubifs_pad(c, c->cbuf + wlen, blen - wlen);
- }
-
- /* The buffer is full or there are no more znodes to do */
- err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen,
- UBI_SHORTTERM);
- if (err)
- return err;
- buf_offs += blen;
- if (next_len) {
- if (nxt_offs > c->leb_size) {
- err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
- 0, LPROPS_TAKEN);
- if (err)
- return err;
- lnum = -1;
- }
- used -= blen;
- if (used < 0)
- used = 0;
- avail = buf_len - used;
- memmove(c->cbuf, c->cbuf + blen, used);
- continue;
- }
- break;
- }
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
- if (lnum != c->dbg->new_ihead_lnum ||
- buf_offs != c->dbg->new_ihead_offs) {
- ubifs_err("inconsistent ihead");
- return -EINVAL;
- }
-#endif
-
- c->ihead_lnum = lnum;
- c->ihead_offs = buf_offs;
-
- return 0;
-}
-
-/**
- * free_obsolete_znodes - free obsolete znodes.
- * @c: UBIFS file-system description object
- *
- * At the end of commit end, obsolete znodes are freed.
- */
-static void free_obsolete_znodes(struct ubifs_info *c)
-{
- struct ubifs_znode *znode, *cnext;
-
- cnext = c->cnext;
- do {
- znode = cnext;
- cnext = znode->cnext;
- if (ubifs_zn_obsolete(znode))
- kfree(znode);
- else {
- znode->cnext = NULL;
- atomic_long_inc(&c->clean_zn_cnt);
- atomic_long_inc(&ubifs_clean_zn_cnt);
- }
- } while (cnext != c->cnext);
-}
-
-/**
- * return_gap_lebs - return LEBs used by the in-gap commit method.
- * @c: UBIFS file-system description object
- *
- * This function clears the "taken" flag for the LEBs which were used by the
- * "commit in-the-gaps" method.
- */
-static int return_gap_lebs(struct ubifs_info *c)
-{
- int *p, err;
-
- if (!c->gap_lebs)
- return 0;
-
- dbg_cmt("");
- for (p = c->gap_lebs; *p != -1; p++) {
- err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
- LPROPS_TAKEN, 0);
- if (err)
- return err;
- }
-
- kfree(c->gap_lebs);
- c->gap_lebs = NULL;
- return 0;
-}
-
-/**
- * ubifs_tnc_end_commit - update the TNC for commit end.
- * @c: UBIFS file-system description object
- *
- * Write the dirty znodes.
- */
-int ubifs_tnc_end_commit(struct ubifs_info *c)
-{
- int err;
-
- if (!c->cnext)
- return 0;
-
- err = return_gap_lebs(c);
- if (err)
- return err;
-
- err = write_index(c);
- if (err)
- return err;
-
- mutex_lock(&c->tnc_mutex);
-
- dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
-
- free_obsolete_znodes(c);
-
- c->cnext = NULL;
- kfree(c->ilebs);
- c->ilebs = NULL;
-
- mutex_unlock(&c->tnc_mutex);
-
- return 0;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/tnc_misc.c b/ANDROID_3.4.5/fs/ubifs/tnc_misc.c
deleted file mode 100644
index c201e055..00000000
--- a/ANDROID_3.4.5/fs/ubifs/tnc_misc.c
+++ /dev/null
@@ -1,552 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Adrian Hunter
- * Artem Bityutskiy (Битюцкий Артём)
- */
-
-/*
- * This file contains miscelanious TNC-related functions shared betweend
- * different files. This file does not form any logically separate TNC
- * sub-system. The file was created because there is a lot of TNC code and
- * putting it all in one file would make that file too big and unreadable.
- */
-
-#include "ubifs.h"
-
-/**
- * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
- * @zr: root of the subtree to traverse
- * @znode: previous znode
- *
- * This function implements levelorder TNC traversal. The LNC is ignored.
- * Returns the next element or %NULL if @znode is already the last one.
- */
-struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
- struct ubifs_znode *znode)
-{
- int level, iip, level_search = 0;
- struct ubifs_znode *zn;
-
- ubifs_assert(zr);
-
- if (unlikely(!znode))
- return zr;
-
- if (unlikely(znode == zr)) {
- if (znode->level == 0)
- return NULL;
- return ubifs_tnc_find_child(zr, 0);
- }
-
- level = znode->level;
-
- iip = znode->iip;
- while (1) {
- ubifs_assert(znode->level <= zr->level);
-
- /*
- * First walk up until there is a znode with next branch to
- * look at.
- */
- while (znode->parent != zr && iip >= znode->parent->child_cnt) {
- znode = znode->parent;
- iip = znode->iip;
- }
-
- if (unlikely(znode->parent == zr &&
- iip >= znode->parent->child_cnt)) {
- /* This level is done, switch to the lower one */
- level -= 1;
- if (level_search || level < 0)
- /*
- * We were already looking for znode at lower
- * level ('level_search'). As we are here
- * again, it just does not exist. Or all levels
- * were finished ('level < 0').
- */
- return NULL;
-
- level_search = 1;
- iip = -1;
- znode = ubifs_tnc_find_child(zr, 0);
- ubifs_assert(znode);
- }
-
- /* Switch to the next index */
- zn = ubifs_tnc_find_child(znode->parent, iip + 1);
- if (!zn) {
- /* No more children to look at, we have walk up */
- iip = znode->parent->child_cnt;
- continue;
- }
-
- /* Walk back down to the level we came from ('level') */
- while (zn->level != level) {
- znode = zn;
- zn = ubifs_tnc_find_child(zn, 0);
- if (!zn) {
- /*
- * This path is not too deep so it does not
- * reach 'level'. Try next path.
- */
- iip = znode->iip;
- break;
- }
- }
-
- if (zn) {
- ubifs_assert(zn->level >= 0);
- return zn;
- }
- }
-}
-
-/**
- * ubifs_search_zbranch - search znode branch.
- * @c: UBIFS file-system description object
- * @znode: znode to search in
- * @key: key to search for
- * @n: znode branch slot number is returned here
- *
- * This is a helper function which search branch with key @key in @znode using
- * binary search. The result of the search may be:
- * o exact match, then %1 is returned, and the slot number of the branch is
- * stored in @n;
- * o no exact match, then %0 is returned and the slot number of the left
- * closest branch is returned in @n; the slot if all keys in this znode are
- * greater than @key, then %-1 is returned in @n.
- */
-int ubifs_search_zbranch(const struct ubifs_info *c,
- const struct ubifs_znode *znode,
- const union ubifs_key *key, int *n)
-{
- int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
- int uninitialized_var(cmp);
- const struct ubifs_zbranch *zbr = &znode->zbranch[0];
-
- ubifs_assert(end > beg);
-
- while (end > beg) {
- mid = (beg + end) >> 1;
- cmp = keys_cmp(c, key, &zbr[mid].key);
- if (cmp > 0)
- beg = mid + 1;
- else if (cmp < 0)
- end = mid;
- else {
- *n = mid;
- return 1;
- }
- }
-
- *n = end - 1;
-
- /* The insert point is after *n */
- ubifs_assert(*n >= -1 && *n < znode->child_cnt);
- if (*n == -1)
- ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
- else
- ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
- if (*n + 1 < znode->child_cnt)
- ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
-
- return 0;
-}
-
-/**
- * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
- * @znode: znode to start at (root of the sub-tree to traverse)
- *
- * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
- * ignored.
- */
-struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
-{
- if (unlikely(!znode))
- return NULL;
-
- while (znode->level > 0) {
- struct ubifs_znode *child;
-
- child = ubifs_tnc_find_child(znode, 0);
- if (!child)
- return znode;
- znode = child;
- }
-
- return znode;
-}
-
-/**
- * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
- * @znode: previous znode
- *
- * This function implements postorder TNC traversal. The LNC is ignored.
- * Returns the next element or %NULL if @znode is already the last one.
- */
-struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
-{
- struct ubifs_znode *zn;
-
- ubifs_assert(znode);
- if (unlikely(!znode->parent))
- return NULL;
-
- /* Switch to the next index in the parent */
- zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
- if (!zn)
- /* This is in fact the last child, return parent */
- return znode->parent;
-
- /* Go to the first znode in this new subtree */
- return ubifs_tnc_postorder_first(zn);
-}
-
-/**
- * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
- * @znode: znode defining subtree to destroy
- *
- * This function destroys subtree of the TNC tree. Returns number of clean
- * znodes in the subtree.
- */
-long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
-{
- struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
- long clean_freed = 0;
- int n;
-
- ubifs_assert(zn);
- while (1) {
- for (n = 0; n < zn->child_cnt; n++) {
- if (!zn->zbranch[n].znode)
- continue;
-
- if (zn->level > 0 &&
- !ubifs_zn_dirty(zn->zbranch[n].znode))
- clean_freed += 1;
-
- cond_resched();
- kfree(zn->zbranch[n].znode);
- }
-
- if (zn == znode) {
- if (!ubifs_zn_dirty(zn))
- clean_freed += 1;
- kfree(zn);
- return clean_freed;
- }
-
- zn = ubifs_tnc_postorder_next(zn);
- }
-}
-//add by Johnny Liu 2013.3.6
-int ubifs_read_buf_node(struct ubifs_info *c, void *buf, int type,
- int len, int lnum, int offs, struct ubifs_wbuf *wbuf)
-{
- int err, record, overlap, temp_len = 0;
-
-read_again:
- err = 0;
- record = wbuf->offs + c->min_io_size;
- overlap = (lnum == wbuf->lnum && (offs >= wbuf->offs) && (c->min_io_size > offs - wbuf->offs));
-
- if(overlap) {
- if(offs + len <= record) {
- memcpy(buf, wbuf->buf + offs - wbuf->offs, len);
- goto check;
- }
- else {
- temp_len = record - offs;
- memcpy(buf, wbuf->buf + offs - wbuf->offs, temp_len);
- offs += c->min_io_size;
- }
- }
- wbuf->offs = (offs >> c->min_io_shift) << c->min_io_shift;
- wbuf->lnum = lnum;
- err = ubifs_leb_read(c, lnum, wbuf->buf, wbuf->offs, c->min_io_size, 0);
-
- if(err)
- goto out_dump;
-
- if(overlap) {
- memcpy(buf + temp_len, wbuf->buf, len - temp_len);
- offs -= c->min_io_size;
- } else
- goto read_again;
-check:
-
- err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
- if (err) {
- ubifs_err("expected node");
- return err;
- }
-
- return 0;
-
-out_dump:
- ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
- ubi_is_mapped(c->ubi, lnum));
- ubifs_err("recordi is %d, len is %d", record, len);
- dbg_dump_node(c, buf);
- dbg_dump_stack();
- return -EINVAL;
-}
-/**
- * read_znode - read an indexing node from flash and fill znode.
- * @c: UBIFS file-system description object
- * @lnum: LEB of the indexing node to read
- * @offs: node offset
- * @len: node length
- * @znode: znode to read to
- *
- * This function reads an indexing node from the flash media and fills znode
- * with the read data. Returns zero in case of success and a negative error
- * code in case of failure. The read indexing node is validated and if anything
- * is wrong with it, this function prints complaint messages and returns
- * %-EINVAL.
- */
-static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
- struct ubifs_znode *znode)
-{
- int i, err, type, cmp;
- struct ubifs_idx_node *idx;
- struct ubifs_wbuf *wbuf;
- //struct ubifs_ch *ch;
- //idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
- idx = (struct ubifs_idx_node *)c->buf;
- if (!idx)
- return -ENOMEM;
-
- //Johnny Liu 2013.3.6
- //err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
-
- wbuf = &c->idx_buf;
-
- err = ubifs_read_buf_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs, wbuf);
-
- if(err < 0) {
- // kfree(idx);
- return err;
- }
- znode->child_cnt = le16_to_cpu(idx->child_cnt);
- znode->level = le16_to_cpu(idx->level);
-
- dbg_tnc("LEB %d:%d, level %d, %d branch",
- lnum, offs, znode->level, znode->child_cnt);
-
- if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
- dbg_err("current fanout %d, branch count %d",
- c->fanout, znode->child_cnt);
- dbg_err("max levels %d, znode level %d",
- UBIFS_MAX_LEVELS, znode->level);
- err = 1;
- goto out_dump;
- }
-
- for (i = 0; i < znode->child_cnt; i++) {
- const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
- struct ubifs_zbranch *zbr = &znode->zbranch[i];
-
- key_read(c, &br->key, &zbr->key);
- zbr->lnum = le32_to_cpu(br->lnum);
- zbr->offs = le32_to_cpu(br->offs);
- zbr->len = le32_to_cpu(br->len);
- zbr->znode = NULL;
-
- /* Validate branch */
-
- if (zbr->lnum < c->main_first ||
- zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
- zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
- dbg_err("bad branch %d", i);
- err = 2;
- goto out_dump;
- }
-
- switch (key_type(c, &zbr->key)) {
- case UBIFS_INO_KEY:
- case UBIFS_DATA_KEY:
- case UBIFS_DENT_KEY:
- case UBIFS_XENT_KEY:
- break;
- default:
- dbg_msg("bad key type at slot %d: %d",
- i, key_type(c, &zbr->key));
- err = 3;
- goto out_dump;
- }
-
- if (znode->level)
- continue;
-
- type = key_type(c, &zbr->key);
- if (c->ranges[type].max_len == 0) {
- if (zbr->len != c->ranges[type].len) {
- dbg_err("bad target node (type %d) length (%d)",
- type, zbr->len);
- dbg_err("have to be %d", c->ranges[type].len);
- err = 4;
- goto out_dump;
- }
- } else if (zbr->len < c->ranges[type].min_len ||
- zbr->len > c->ranges[type].max_len) {
- dbg_err("bad target node (type %d) length (%d)",
- type, zbr->len);
- dbg_err("have to be in range of %d-%d",
- c->ranges[type].min_len,
- c->ranges[type].max_len);
- err = 5;
- goto out_dump;
- }
- }
-
- /*
- * Ensure that the next key is greater or equivalent to the
- * previous one.
- */
- for (i = 0; i < znode->child_cnt - 1; i++) {
- const union ubifs_key *key1, *key2;
-
- key1 = &znode->zbranch[i].key;
- key2 = &znode->zbranch[i + 1].key;
-
- cmp = keys_cmp(c, key1, key2);
- if (cmp > 0) {
- dbg_err("bad key order (keys %d and %d)", i, i + 1);
- err = 6;
- goto out_dump;
- } else if (cmp == 0 && !is_hash_key(c, key1)) {
- /* These can only be keys with colliding hash */
- dbg_err("keys %d and %d are not hashed but equivalent",
- i, i + 1);
- err = 7;
- goto out_dump;
- }
- }
-
-// kfree(idx);
- return 0;
-
-out_dump:
- ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
- dbg_dump_node(c, idx);
- kfree(idx);
- return -EINVAL;
-}
-
-/**
- * ubifs_load_znode - load znode to TNC cache.
- * @c: UBIFS file-system description object
- * @zbr: znode branch
- * @parent: znode's parent
- * @iip: index in parent
- *
- * This function loads znode pointed to by @zbr into the TNC cache and
- * returns pointer to it in case of success and a negative error code in case
- * of failure.
- */
-struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
- struct ubifs_zbranch *zbr,
- struct ubifs_znode *parent, int iip)
-{
- int err;
- struct ubifs_znode *znode;
-
- ubifs_assert(!zbr->znode);
- /*
- * A slab cache is not presently used for znodes because the znode size
- * depends on the fanout which is stored in the superblock.
- */
- znode = kzalloc(c->max_znode_sz, GFP_NOFS);
- if (!znode)
- return ERR_PTR(-ENOMEM);
-
- err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
- if (err)
- goto out;
-
- atomic_long_inc(&c->clean_zn_cnt);
-
- /*
- * Increment the global clean znode counter as well. It is OK that
- * global and per-FS clean znode counters may be inconsistent for some
- * short time (because we might be preempted at this point), the global
- * one is only used in shrinker.
- */
- atomic_long_inc(&ubifs_clean_zn_cnt);
-
- zbr->znode = znode;
- znode->parent = parent;
- znode->time = get_seconds();
- znode->iip = iip;
-
- return znode;
-
-out:
- kfree(znode);
- return ERR_PTR(err);
-}
-
-/**
- * ubifs_tnc_read_node - read a leaf node from the flash media.
- * @c: UBIFS file-system description object
- * @zbr: key and position of the node
- * @node: node is returned here
- *
- * This function reads a node defined by @zbr from the flash media. Returns
- * zero in case of success or a negative negative error code in case of
- * failure.
- */
-int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- void *node)
-{
- union ubifs_key key1, *key = &zbr->key;
- int err, type = key_type(c, key);
- struct ubifs_wbuf *wbuf;
-
- /*
- * 'zbr' has to point to on-flash node. The node may sit in a bud and
- * may even be in a write buffer, so we have to take care about this.
- */
- wbuf = ubifs_get_wbuf(c, zbr->lnum);
- if (wbuf)
- err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
- zbr->lnum, zbr->offs);
- else
- err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
- zbr->offs);
-
- if (err) {
- dbg_tnck(key, "key ");
- return err;
- }
-
- /* Make sure the key of the read node is correct */
- key_read(c, node + UBIFS_KEY_OFFSET, &key1);
- if (!keys_eq(c, key, &key1)) {
- ubifs_err("bad key in node at LEB %d:%d",
- zbr->lnum, zbr->offs);
- dbg_tnck(key, "looked for key ");
- dbg_tnck(&key1, "but found node's key ");
- dbg_dump_node(c, node);
- return -EINVAL;
- }
-
- return 0;
-}
diff --git a/ANDROID_3.4.5/fs/ubifs/ubifs-media.h b/ANDROID_3.4.5/fs/ubifs/ubifs-media.h
deleted file mode 100644
index e24380cf..00000000
--- a/ANDROID_3.4.5/fs/ubifs/ubifs-media.h
+++ /dev/null
@@ -1,784 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file describes UBIFS on-flash format and contains definitions of all the
- * relevant data structures and constants.
- *
- * All UBIFS on-flash objects are stored in the form of nodes. All nodes start
- * with the UBIFS node magic number and have the same common header. Nodes
- * always sit at 8-byte aligned positions on the media and node header sizes are
- * also 8-byte aligned (except for the indexing node and the padding node).
- */
-
-#ifndef __UBIFS_MEDIA_H__
-#define __UBIFS_MEDIA_H__
-
-/* UBIFS node magic number (must not have the padding byte first or last) */
-#define UBIFS_NODE_MAGIC 0x06101831
-
-/*
- * UBIFS on-flash format version. This version is increased when the on-flash
- * format is changing. If this happens, UBIFS is will support older versions as
- * well. But older UBIFS code will not support newer formats. Format changes
- * will be rare and only when absolutely necessary, e.g. to fix a bug or to add
- * a new feature.
- *
- * UBIFS went into mainline kernel with format version 4. The older formats
- * were development formats.
- */
-#define UBIFS_FORMAT_VERSION 4
-
-/*
- * Read-only compatibility version. If the UBIFS format is changed, older UBIFS
- * implementations will not be able to mount newer formats in read-write mode.
- * However, depending on the change, it may be possible to mount newer formats
- * in R/O mode. This is indicated by the R/O compatibility version which is
- * stored in the super-block.
- *
- * This is needed to support boot-loaders which only need R/O mounting. With
- * this flag it is possible to do UBIFS format changes without a need to update
- * boot-loaders.
- */
-#define UBIFS_RO_COMPAT_VERSION 0
-
-/* Minimum logical eraseblock size in bytes */
-#define UBIFS_MIN_LEB_SZ (15*1024)
-
-/* Initial CRC32 value used when calculating CRC checksums */
-#define UBIFS_CRC32_INIT 0xFFFFFFFFU
-
-/*
- * UBIFS does not try to compress data if its length is less than the below
- * constant.
- */
-#define UBIFS_MIN_COMPR_LEN 128
-
-/*
- * If compressed data length is less than %UBIFS_MIN_COMPRESS_DIFF bytes
- * shorter than uncompressed data length, UBIFS prefers to leave this data
- * node uncompress, because it'll be read faster.
- */
-#define UBIFS_MIN_COMPRESS_DIFF 64
-
-/* Root inode number */
-#define UBIFS_ROOT_INO 1
-
-/* Lowest inode number used for regular inodes (not UBIFS-only internal ones) */
-#define UBIFS_FIRST_INO 64
-
-/*
- * Maximum file name and extended attribute length (must be a multiple of 8,
- * minus 1).
- */
-#define UBIFS_MAX_NLEN 255
-
-/* Maximum number of data journal heads */
-#define UBIFS_MAX_JHEADS 1
-
-/*
- * Size of UBIFS data block. Note, UBIFS is not a block oriented file-system,
- * which means that it does not treat the underlying media as consisting of
- * blocks like in case of hard drives. Do not be confused. UBIFS block is just
- * the maximum amount of data which one data node can have or which can be
- * attached to an inode node.
- */
-#define UBIFS_BLOCK_SIZE 4096
-#define UBIFS_BLOCK_SHIFT 12
-
-/* UBIFS padding byte pattern (must not be first or last byte of node magic) */
-#define UBIFS_PADDING_BYTE 0xCE
-
-/* Maximum possible key length */
-#define UBIFS_MAX_KEY_LEN 16
-
-/* Key length ("simple" format) */
-#define UBIFS_SK_LEN 8
-
-/* Minimum index tree fanout */
-#define UBIFS_MIN_FANOUT 3
-
-/* Maximum number of levels in UBIFS indexing B-tree */
-#define UBIFS_MAX_LEVELS 512
-
-/* Maximum amount of data attached to an inode in bytes */
-#define UBIFS_MAX_INO_DATA UBIFS_BLOCK_SIZE
-
-/* LEB Properties Tree fanout (must be power of 2) and fanout shift */
-#define UBIFS_LPT_FANOUT 4
-#define UBIFS_LPT_FANOUT_SHIFT 2
-
-/* LEB Properties Tree bit field sizes */
-#define UBIFS_LPT_CRC_BITS 16
-#define UBIFS_LPT_CRC_BYTES 2
-#define UBIFS_LPT_TYPE_BITS 4
-
-/* The key is always at the same position in all keyed nodes */
-#define UBIFS_KEY_OFFSET offsetof(struct ubifs_ino_node, key)
-
-/* Garbage collector journal head number */
-#define UBIFS_GC_HEAD 0
-/* Base journal head number */
-#define UBIFS_BASE_HEAD 1
-/* Data journal head number */
-#define UBIFS_DATA_HEAD 2
-
-/*
- * LEB Properties Tree node types.
- *
- * UBIFS_LPT_PNODE: LPT leaf node (contains LEB properties)
- * UBIFS_LPT_NNODE: LPT internal node
- * UBIFS_LPT_LTAB: LPT's own lprops table
- * UBIFS_LPT_LSAVE: LPT's save table (big model only)
- * UBIFS_LPT_NODE_CNT: count of LPT node types
- * UBIFS_LPT_NOT_A_NODE: all ones (15 for 4 bits) is never a valid node type
- */
-enum {
- UBIFS_LPT_PNODE,
- UBIFS_LPT_NNODE,
- UBIFS_LPT_LTAB,
- UBIFS_LPT_LSAVE,
- UBIFS_LPT_NODE_CNT,
- UBIFS_LPT_NOT_A_NODE = (1 << UBIFS_LPT_TYPE_BITS) - 1,
-};
-
-/*
- * UBIFS inode types.
- *
- * UBIFS_ITYPE_REG: regular file
- * UBIFS_ITYPE_DIR: directory
- * UBIFS_ITYPE_LNK: soft link
- * UBIFS_ITYPE_BLK: block device node
- * UBIFS_ITYPE_CHR: character device node
- * UBIFS_ITYPE_FIFO: fifo
- * UBIFS_ITYPE_SOCK: socket
- * UBIFS_ITYPES_CNT: count of supported file types
- */
-enum {
- UBIFS_ITYPE_REG,
- UBIFS_ITYPE_DIR,
- UBIFS_ITYPE_LNK,
- UBIFS_ITYPE_BLK,
- UBIFS_ITYPE_CHR,
- UBIFS_ITYPE_FIFO,
- UBIFS_ITYPE_SOCK,
- UBIFS_ITYPES_CNT,
-};
-
-/*
- * Supported key hash functions.
- *
- * UBIFS_KEY_HASH_R5: R5 hash
- * UBIFS_KEY_HASH_TEST: test hash which just returns first 4 bytes of the name
- */
-enum {
- UBIFS_KEY_HASH_R5,
- UBIFS_KEY_HASH_TEST,
-};
-
-/*
- * Supported key formats.
- *
- * UBIFS_SIMPLE_KEY_FMT: simple key format
- */
-enum {
- UBIFS_SIMPLE_KEY_FMT,
-};
-
-/*
- * The simple key format uses 29 bits for storing UBIFS block number and hash
- * value.
- */
-#define UBIFS_S_KEY_BLOCK_BITS 29
-#define UBIFS_S_KEY_BLOCK_MASK 0x1FFFFFFF
-#define UBIFS_S_KEY_HASH_BITS UBIFS_S_KEY_BLOCK_BITS
-#define UBIFS_S_KEY_HASH_MASK UBIFS_S_KEY_BLOCK_MASK
-
-/*
- * Key types.
- *
- * UBIFS_INO_KEY: inode node key
- * UBIFS_DATA_KEY: data node key
- * UBIFS_DENT_KEY: directory entry node key
- * UBIFS_XENT_KEY: extended attribute entry key
- * UBIFS_KEY_TYPES_CNT: number of supported key types
- */
-enum {
- UBIFS_INO_KEY,
- UBIFS_DATA_KEY,
- UBIFS_DENT_KEY,
- UBIFS_XENT_KEY,
- UBIFS_KEY_TYPES_CNT,
-};
-
-/* Count of LEBs reserved for the superblock area */
-#define UBIFS_SB_LEBS 1
-/* Count of LEBs reserved for the master area */
-#define UBIFS_MST_LEBS 2
-
-/* First LEB of the superblock area */
-#define UBIFS_SB_LNUM 0
-/* First LEB of the master area */
-#define UBIFS_MST_LNUM (UBIFS_SB_LNUM + UBIFS_SB_LEBS)
-/* First LEB of the log area */
-#define UBIFS_LOG_LNUM (UBIFS_MST_LNUM + UBIFS_MST_LEBS)
-
-/*
- * The below constants define the absolute minimum values for various UBIFS
- * media areas. Many of them actually depend of flash geometry and the FS
- * configuration (number of journal heads, orphan LEBs, etc). This means that
- * the smallest volume size which can be used for UBIFS cannot be pre-defined
- * by these constants. The file-system that meets the below limitation will not
- * necessarily mount. UBIFS does run-time calculations and validates the FS
- * size.
- */
-
-/* Minimum number of logical eraseblocks in the log */
-#define UBIFS_MIN_LOG_LEBS 2
-/* Minimum number of bud logical eraseblocks (one for each head) */
-#define UBIFS_MIN_BUD_LEBS 3
-/* Minimum number of journal logical eraseblocks */
-#define UBIFS_MIN_JNL_LEBS (UBIFS_MIN_LOG_LEBS + UBIFS_MIN_BUD_LEBS)
-/* Minimum number of LPT area logical eraseblocks */
-#define UBIFS_MIN_LPT_LEBS 2
-/* Minimum number of orphan area logical eraseblocks */
-#define UBIFS_MIN_ORPH_LEBS 1
-/*
- * Minimum number of main area logical eraseblocks (buds, 3 for the index, 1
- * for GC, 1 for deletions, and at least 1 for committed data).
- */
-#define UBIFS_MIN_MAIN_LEBS (UBIFS_MIN_BUD_LEBS + 6)
-
-/* Minimum number of logical eraseblocks */
-#define UBIFS_MIN_LEB_CNT (UBIFS_SB_LEBS + UBIFS_MST_LEBS + \
- UBIFS_MIN_LOG_LEBS + UBIFS_MIN_LPT_LEBS + \
- UBIFS_MIN_ORPH_LEBS + UBIFS_MIN_MAIN_LEBS)
-
-/* Node sizes (N.B. these are guaranteed to be multiples of 8) */
-#define UBIFS_CH_SZ sizeof(struct ubifs_ch)
-#define UBIFS_INO_NODE_SZ sizeof(struct ubifs_ino_node)
-#define UBIFS_DATA_NODE_SZ sizeof(struct ubifs_data_node)
-#define UBIFS_DENT_NODE_SZ sizeof(struct ubifs_dent_node)
-#define UBIFS_TRUN_NODE_SZ sizeof(struct ubifs_trun_node)
-#define UBIFS_PAD_NODE_SZ sizeof(struct ubifs_pad_node)
-#define UBIFS_SB_NODE_SZ sizeof(struct ubifs_sb_node)
-#define UBIFS_MST_NODE_SZ sizeof(struct ubifs_mst_node)
-#define UBIFS_REF_NODE_SZ sizeof(struct ubifs_ref_node)
-#define UBIFS_IDX_NODE_SZ sizeof(struct ubifs_idx_node)
-#define UBIFS_CS_NODE_SZ sizeof(struct ubifs_cs_node)
-#define UBIFS_ORPH_NODE_SZ sizeof(struct ubifs_orph_node)
-/* Extended attribute entry nodes are identical to directory entry nodes */
-#define UBIFS_XENT_NODE_SZ UBIFS_DENT_NODE_SZ
-/* Only this does not have to be multiple of 8 bytes */
-#define UBIFS_BRANCH_SZ sizeof(struct ubifs_branch)
-
-/* Maximum node sizes (N.B. these are guaranteed to be multiples of 8) */
-#define UBIFS_MAX_DATA_NODE_SZ (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE)
-#define UBIFS_MAX_INO_NODE_SZ (UBIFS_INO_NODE_SZ + UBIFS_MAX_INO_DATA)
-#define UBIFS_MAX_DENT_NODE_SZ (UBIFS_DENT_NODE_SZ + UBIFS_MAX_NLEN + 1)
-#define UBIFS_MAX_XENT_NODE_SZ UBIFS_MAX_DENT_NODE_SZ
-
-/* The largest UBIFS node */
-#define UBIFS_MAX_NODE_SZ UBIFS_MAX_INO_NODE_SZ
-
-/*
- * On-flash inode flags.
- *
- * UBIFS_COMPR_FL: use compression for this inode
- * UBIFS_SYNC_FL: I/O on this inode has to be synchronous
- * UBIFS_IMMUTABLE_FL: inode is immutable
- * UBIFS_APPEND_FL: writes to the inode may only append data
- * UBIFS_DIRSYNC_FL: I/O on this directory inode has to be synchronous
- * UBIFS_XATTR_FL: this inode is the inode for an extended attribute value
- *
- * Note, these are on-flash flags which correspond to ioctl flags
- * (@FS_COMPR_FL, etc). They have the same values now, but generally, do not
- * have to be the same.
- */
-enum {
- UBIFS_COMPR_FL = 0x01,
- UBIFS_SYNC_FL = 0x02,
- UBIFS_IMMUTABLE_FL = 0x04,
- UBIFS_APPEND_FL = 0x08,
- UBIFS_DIRSYNC_FL = 0x10,
- UBIFS_XATTR_FL = 0x20,
-};
-
-/* Inode flag bits used by UBIFS */
-#define UBIFS_FL_MASK 0x0000001F
-
-/*
- * UBIFS compression algorithms.
- *
- * UBIFS_COMPR_NONE: no compression
- * UBIFS_COMPR_LZO: LZO compression
- * UBIFS_COMPR_ZLIB: ZLIB compression
- * UBIFS_COMPR_TYPES_CNT: count of supported compression types
- */
-enum {
- UBIFS_COMPR_NONE,
- UBIFS_COMPR_LZO,
- UBIFS_COMPR_ZLIB,
- UBIFS_COMPR_TYPES_CNT,
-};
-
-/*
- * UBIFS node types.
- *
- * UBIFS_INO_NODE: inode node
- * UBIFS_DATA_NODE: data node
- * UBIFS_DENT_NODE: directory entry node
- * UBIFS_XENT_NODE: extended attribute node
- * UBIFS_TRUN_NODE: truncation node
- * UBIFS_PAD_NODE: padding node
- * UBIFS_SB_NODE: superblock node
- * UBIFS_MST_NODE: master node
- * UBIFS_REF_NODE: LEB reference node
- * UBIFS_IDX_NODE: index node
- * UBIFS_CS_NODE: commit start node
- * UBIFS_ORPH_NODE: orphan node
- * UBIFS_NODE_TYPES_CNT: count of supported node types
- *
- * Note, we index arrays by these numbers, so keep them low and contiguous.
- * Node type constants for inodes, direntries and so on have to be the same as
- * corresponding key type constants.
- */
-enum {
- UBIFS_INO_NODE,
- UBIFS_DATA_NODE,
- UBIFS_DENT_NODE,
- UBIFS_XENT_NODE,
- UBIFS_TRUN_NODE,
- UBIFS_PAD_NODE,
- UBIFS_SB_NODE,
- UBIFS_MST_NODE,
- UBIFS_REF_NODE,
- UBIFS_IDX_NODE,
- UBIFS_CS_NODE,
- UBIFS_ORPH_NODE,
- UBIFS_NODE_TYPES_CNT,
-};
-
-/*
- * Master node flags.
- *
- * UBIFS_MST_DIRTY: rebooted uncleanly - master node is dirty
- * UBIFS_MST_NO_ORPHS: no orphan inodes present
- * UBIFS_MST_RCVRY: written by recovery
- */
-enum {
- UBIFS_MST_DIRTY = 1,
- UBIFS_MST_NO_ORPHS = 2,
- UBIFS_MST_RCVRY = 4,
-};
-
-/*
- * Node group type (used by recovery to recover whole group or none).
- *
- * UBIFS_NO_NODE_GROUP: this node is not part of a group
- * UBIFS_IN_NODE_GROUP: this node is a part of a group
- * UBIFS_LAST_OF_NODE_GROUP: this node is the last in a group
- */
-enum {
- UBIFS_NO_NODE_GROUP = 0,
- UBIFS_IN_NODE_GROUP,
- UBIFS_LAST_OF_NODE_GROUP,
-};
-
-/*
- * Superblock flags.
- *
- * UBIFS_FLG_BIGLPT: if "big" LPT model is used if set
- * UBIFS_FLG_SPACE_FIXUP: first-mount "fixup" of free space within LEBs needed
- */
-enum {
- UBIFS_FLG_BIGLPT = 0x02,
- UBIFS_FLG_SPACE_FIXUP = 0x04,
-};
-
-/**
- * struct ubifs_ch - common header node.
- * @magic: UBIFS node magic number (%UBIFS_NODE_MAGIC)
- * @crc: CRC-32 checksum of the node header
- * @sqnum: sequence number
- * @len: full node length
- * @node_type: node type
- * @group_type: node group type
- * @padding: reserved for future, zeroes
- *
- * Every UBIFS node starts with this common part. If the node has a key, the
- * key always goes next.
- */
-struct ubifs_ch {
- __le32 magic;
- __le32 crc;
- __le64 sqnum;
- __le32 len;
- __u8 node_type;
- __u8 group_type;
- __u8 padding[2];
-} __packed;
-
-/**
- * union ubifs_dev_desc - device node descriptor.
- * @new: new type device descriptor
- * @huge: huge type device descriptor
- *
- * This data structure describes major/minor numbers of a device node. In an
- * inode is a device node then its data contains an object of this type. UBIFS
- * uses standard Linux "new" and "huge" device node encodings.
- */
-union ubifs_dev_desc {
- __le32 new;
- __le64 huge;
-} __packed;
-
-/**
- * struct ubifs_ino_node - inode node.
- * @ch: common header
- * @key: node key
- * @creat_sqnum: sequence number at time of creation
- * @size: inode size in bytes (amount of uncompressed data)
- * @atime_sec: access time seconds
- * @ctime_sec: creation time seconds
- * @mtime_sec: modification time seconds
- * @atime_nsec: access time nanoseconds
- * @ctime_nsec: creation time nanoseconds
- * @mtime_nsec: modification time nanoseconds
- * @nlink: number of hard links
- * @uid: owner ID
- * @gid: group ID
- * @mode: access flags
- * @flags: per-inode flags (%UBIFS_COMPR_FL, %UBIFS_SYNC_FL, etc)
- * @data_len: inode data length
- * @xattr_cnt: count of extended attributes this inode has
- * @xattr_size: summarized size of all extended attributes in bytes
- * @padding1: reserved for future, zeroes
- * @xattr_names: sum of lengths of all extended attribute names belonging to
- * this inode
- * @compr_type: compression type used for this inode
- * @padding2: reserved for future, zeroes
- * @data: data attached to the inode
- *
- * Note, even though inode compression type is defined by @compr_type, some
- * nodes of this inode may be compressed with different compressor - this
- * happens if compression type is changed while the inode already has data
- * nodes. But @compr_type will be use for further writes to the inode.
- *
- * Note, do not forget to amend 'zero_ino_node_unused()' function when changing
- * the padding fields.
- */
-struct ubifs_ino_node {
- struct ubifs_ch ch;
- __u8 key[UBIFS_MAX_KEY_LEN];
- __le64 creat_sqnum;
- __le64 size;
- __le64 atime_sec;
- __le64 ctime_sec;
- __le64 mtime_sec;
- __le32 atime_nsec;
- __le32 ctime_nsec;
- __le32 mtime_nsec;
- __le32 nlink;
- __le32 uid;
- __le32 gid;
- __le32 mode;
- __le32 flags;
- __le32 data_len;
- __le32 xattr_cnt;
- __le32 xattr_size;
- __u8 padding1[4]; /* Watch 'zero_ino_node_unused()' if changing! */
- __le32 xattr_names;
- __le16 compr_type;
- __u8 padding2[26]; /* Watch 'zero_ino_node_unused()' if changing! */
- __u8 data[];
-} __packed;
-
-/**
- * struct ubifs_dent_node - directory entry node.
- * @ch: common header
- * @key: node key
- * @inum: target inode number
- * @padding1: reserved for future, zeroes
- * @type: type of the target inode (%UBIFS_ITYPE_REG, %UBIFS_ITYPE_DIR, etc)
- * @nlen: name length
- * @padding2: reserved for future, zeroes
- * @name: zero-terminated name
- *
- * Note, do not forget to amend 'zero_dent_node_unused()' function when
- * changing the padding fields.
- */
-struct ubifs_dent_node {
- struct ubifs_ch ch;
- __u8 key[UBIFS_MAX_KEY_LEN];
- __le64 inum;
- __u8 padding1;
- __u8 type;
- __le16 nlen;
- __u8 padding2[4]; /* Watch 'zero_dent_node_unused()' if changing! */
- __u8 name[];
-} __packed;
-
-/**
- * struct ubifs_data_node - data node.
- * @ch: common header
- * @key: node key
- * @size: uncompressed data size in bytes
- * @compr_type: compression type (%UBIFS_COMPR_NONE, %UBIFS_COMPR_LZO, etc)
- * @padding: reserved for future, zeroes
- * @data: data
- *
- * Note, do not forget to amend 'zero_data_node_unused()' function when
- * changing the padding fields.
- */
-struct ubifs_data_node {
- struct ubifs_ch ch;
- __u8 key[UBIFS_MAX_KEY_LEN];
- __le32 size;
- __le16 compr_type;
- __u8 padding[2]; /* Watch 'zero_data_node_unused()' if changing! */
- __u8 data[];
-} __packed;
-
-/**
- * struct ubifs_trun_node - truncation node.
- * @ch: common header
- * @inum: truncated inode number
- * @padding: reserved for future, zeroes
- * @old_size: size before truncation
- * @new_size: size after truncation
- *
- * This node exists only in the journal and never goes to the main area. Note,
- * do not forget to amend 'zero_trun_node_unused()' function when changing the
- * padding fields.
- */
-struct ubifs_trun_node {
- struct ubifs_ch ch;
- __le32 inum;
- __u8 padding[12]; /* Watch 'zero_trun_node_unused()' if changing! */
- __le64 old_size;
- __le64 new_size;
-} __packed;
-
-/**
- * struct ubifs_pad_node - padding node.
- * @ch: common header
- * @pad_len: how many bytes after this node are unused (because padded)
- * @padding: reserved for future, zeroes
- */
-struct ubifs_pad_node {
- struct ubifs_ch ch;
- __le32 pad_len;
-} __packed;
-
-/**
- * struct ubifs_sb_node - superblock node.
- * @ch: common header
- * @padding: reserved for future, zeroes
- * @key_hash: type of hash function used in keys
- * @key_fmt: format of the key
- * @flags: file-system flags (%UBIFS_FLG_BIGLPT, etc)
- * @min_io_size: minimal input/output unit size
- * @leb_size: logical eraseblock size in bytes
- * @leb_cnt: count of LEBs used by file-system
- * @max_leb_cnt: maximum count of LEBs used by file-system
- * @max_bud_bytes: maximum amount of data stored in buds
- * @log_lebs: log size in logical eraseblocks
- * @lpt_lebs: number of LEBs used for lprops table
- * @orph_lebs: number of LEBs used for recording orphans
- * @jhead_cnt: count of journal heads
- * @fanout: tree fanout (max. number of links per indexing node)
- * @lsave_cnt: number of LEB numbers in LPT's save table
- * @fmt_version: UBIFS on-flash format version
- * @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc)
- * @padding1: reserved for future, zeroes
- * @rp_uid: reserve pool UID
- * @rp_gid: reserve pool GID
- * @rp_size: size of the reserved pool in bytes
- * @padding2: reserved for future, zeroes
- * @time_gran: time granularity in nanoseconds
- * @uuid: UUID generated when the file system image was created
- * @ro_compat_version: UBIFS R/O compatibility version
- */
-struct ubifs_sb_node {
- struct ubifs_ch ch;
- __u8 padding[2];
- __u8 key_hash;
- __u8 key_fmt;
- __le32 flags;
- __le32 min_io_size;
- __le32 leb_size;
- __le32 leb_cnt;
- __le32 max_leb_cnt;
- __le64 max_bud_bytes;
- __le32 log_lebs;
- __le32 lpt_lebs;
- __le32 orph_lebs;
- __le32 jhead_cnt;
- __le32 fanout;
- __le32 lsave_cnt;
- __le32 fmt_version;
- __le16 default_compr;
- __u8 padding1[2];
- __le32 rp_uid;
- __le32 rp_gid;
- __le64 rp_size;
- __le32 time_gran;
- __u8 uuid[16];
- __le32 ro_compat_version;
- __u8 padding2[3968];
-} __packed;
-
-/**
- * struct ubifs_mst_node - master node.
- * @ch: common header
- * @highest_inum: highest inode number in the committed index
- * @cmt_no: commit number
- * @flags: various flags (%UBIFS_MST_DIRTY, etc)
- * @log_lnum: start of the log
- * @root_lnum: LEB number of the root indexing node
- * @root_offs: offset within @root_lnum
- * @root_len: root indexing node length
- * @gc_lnum: LEB reserved for garbage collection (%-1 value means the LEB was
- * not reserved and should be reserved on mount)
- * @ihead_lnum: LEB number of index head
- * @ihead_offs: offset of index head
- * @index_size: size of index on flash
- * @total_free: total free space in bytes
- * @total_dirty: total dirty space in bytes
- * @total_used: total used space in bytes (includes only data LEBs)
- * @total_dead: total dead space in bytes (includes only data LEBs)
- * @total_dark: total dark space in bytes (includes only data LEBs)
- * @lpt_lnum: LEB number of LPT root nnode
- * @lpt_offs: offset of LPT root nnode
- * @nhead_lnum: LEB number of LPT head
- * @nhead_offs: offset of LPT head
- * @ltab_lnum: LEB number of LPT's own lprops table
- * @ltab_offs: offset of LPT's own lprops table
- * @lsave_lnum: LEB number of LPT's save table (big model only)
- * @lsave_offs: offset of LPT's save table (big model only)
- * @lscan_lnum: LEB number of last LPT scan
- * @empty_lebs: number of empty logical eraseblocks
- * @idx_lebs: number of indexing logical eraseblocks
- * @leb_cnt: count of LEBs used by file-system
- * @padding: reserved for future, zeroes
- */
-struct ubifs_mst_node {
- struct ubifs_ch ch;
- __le64 highest_inum;
- __le64 cmt_no;
- __le32 flags;
- __le32 log_lnum;
- __le32 root_lnum;
- __le32 root_offs;
- __le32 root_len;
- __le32 gc_lnum;
- __le32 ihead_lnum;
- __le32 ihead_offs;
- __le64 index_size;
- __le64 total_free;
- __le64 total_dirty;
- __le64 total_used;
- __le64 total_dead;
- __le64 total_dark;
- __le32 lpt_lnum;
- __le32 lpt_offs;
- __le32 nhead_lnum;
- __le32 nhead_offs;
- __le32 ltab_lnum;
- __le32 ltab_offs;
- __le32 lsave_lnum;
- __le32 lsave_offs;
- __le32 lscan_lnum;
- __le32 empty_lebs;
- __le32 idx_lebs;
- __le32 leb_cnt;
- __u8 padding[344];
-} __packed;
-
-/**
- * struct ubifs_ref_node - logical eraseblock reference node.
- * @ch: common header
- * @lnum: the referred logical eraseblock number
- * @offs: start offset in the referred LEB
- * @jhead: journal head number
- * @padding: reserved for future, zeroes
- */
-struct ubifs_ref_node {
- struct ubifs_ch ch;
- __le32 lnum;
- __le32 offs;
- __le32 jhead;
- __u8 padding[28];
-} __packed;
-
-/**
- * struct ubifs_branch - key/reference/length branch
- * @lnum: LEB number of the target node
- * @offs: offset within @lnum
- * @len: target node length
- * @key: key
- */
-struct ubifs_branch {
- __le32 lnum;
- __le32 offs;
- __le32 len;
- __u8 key[];
-} __packed;
-
-/**
- * struct ubifs_idx_node - indexing node.
- * @ch: common header
- * @child_cnt: number of child index nodes
- * @level: tree level
- * @branches: LEB number / offset / length / key branches
- */
-struct ubifs_idx_node {
- struct ubifs_ch ch;
- __le16 child_cnt;
- __le16 level;
- __u8 branches[];
-} __packed;
-
-/**
- * struct ubifs_cs_node - commit start node.
- * @ch: common header
- * @cmt_no: commit number
- */
-struct ubifs_cs_node {
- struct ubifs_ch ch;
- __le64 cmt_no;
-} __packed;
-
-/**
- * struct ubifs_orph_node - orphan node.
- * @ch: common header
- * @cmt_no: commit number (also top bit is set on the last node of the commit)
- * @inos: inode numbers of orphans
- */
-struct ubifs_orph_node {
- struct ubifs_ch ch;
- __le64 cmt_no;
- __le64 inos[];
-} __packed;
-
-#endif /* __UBIFS_MEDIA_H__ */
diff --git a/ANDROID_3.4.5/fs/ubifs/ubifs.h b/ANDROID_3.4.5/fs/ubifs/ubifs.h
deleted file mode 100644
index 9b3de5e7..00000000
--- a/ANDROID_3.4.5/fs/ubifs/ubifs.h
+++ /dev/null
@@ -1,1790 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-#ifndef __UBIFS_H__
-#define __UBIFS_H__
-
-#include <asm/div64.h>
-#include <linux/statfs.h>
-#include <linux/fs.h>
-#include <linux/err.h>
-#include <linux/sched.h>
-#include <linux/slab.h>
-#include <linux/vmalloc.h>
-#include <linux/spinlock.h>
-#include <linux/mutex.h>
-#include <linux/rwsem.h>
-#include <linux/mtd/ubi.h>
-#include <linux/pagemap.h>
-#include <linux/backing-dev.h>
-#include <linux/notifier.h>
-#include "ubifs-media.h"
-
-/* Version of this UBIFS implementation */
-#define UBIFS_VERSION 1
-
-/* Normal UBIFS messages */
-#define ubifs_msg(fmt, ...) \
- printk(KERN_NOTICE "UBIFS: " fmt "\n", ##__VA_ARGS__)
-/* UBIFS error messages */
-#define ubifs_err(fmt, ...) \
- printk(KERN_ERR "UBIFS error (pid %d): %s: " fmt "\n", current->pid, \
- __func__, ##__VA_ARGS__)
-/* UBIFS warning messages */
-#define ubifs_warn(fmt, ...) \
- printk(KERN_WARNING "UBIFS warning (pid %d): %s: " fmt "\n", \
- current->pid, __func__, ##__VA_ARGS__)
-
-/* UBIFS file system VFS magic number */
-#define UBIFS_SUPER_MAGIC 0x24051905
-
-/* Number of UBIFS blocks per VFS page */
-#define UBIFS_BLOCKS_PER_PAGE (PAGE_CACHE_SIZE / UBIFS_BLOCK_SIZE)
-#define UBIFS_BLOCKS_PER_PAGE_SHIFT (PAGE_CACHE_SHIFT - UBIFS_BLOCK_SHIFT)
-
-/* "File system end of life" sequence number watermark */
-#define SQNUM_WARN_WATERMARK 0xFFFFFFFF00000000ULL
-#define SQNUM_WATERMARK 0xFFFFFFFFFF000000ULL
-
-/*
- * Minimum amount of LEBs reserved for the index. At present the index needs at
- * least 2 LEBs: one for the index head and one for in-the-gaps method (which
- * currently does not cater for the index head and so excludes it from
- * consideration).
- */
-#define MIN_INDEX_LEBS 2
-
-/* Minimum amount of data UBIFS writes to the flash */
-#define MIN_WRITE_SZ (UBIFS_DATA_NODE_SZ + 8)
-
-/*
- * Currently we do not support inode number overlapping and re-using, so this
- * watermark defines dangerous inode number level. This should be fixed later,
- * although it is difficult to exceed current limit. Another option is to use
- * 64-bit inode numbers, but this means more overhead.
- */
-#define INUM_WARN_WATERMARK 0xFFF00000
-#define INUM_WATERMARK 0xFFFFFF00
-
-/* Maximum number of entries in each LPT (LEB category) heap */
-#define LPT_HEAP_SZ 256
-
-/*
- * Background thread name pattern. The numbers are UBI device and volume
- * numbers.
- */
-#define BGT_NAME_PATTERN "ubifs_bgt%d_%d"
-
-/* Write-buffer synchronization timeout interval in seconds */
-#define WBUF_TIMEOUT_SOFTLIMIT 3
-#define WBUF_TIMEOUT_HARDLIMIT 5
-
-/* Maximum possible inode number (only 32-bit inodes are supported now) */
-#define MAX_INUM 0xFFFFFFFF
-
-/* Number of non-data journal heads */
-#define NONDATA_JHEADS_CNT 2
-
-/* Shorter names for journal head numbers for internal usage */
-#define GCHD UBIFS_GC_HEAD
-#define BASEHD UBIFS_BASE_HEAD
-#define DATAHD UBIFS_DATA_HEAD
-
-/* 'No change' value for 'ubifs_change_lp()' */
-#define LPROPS_NC 0x80000001
-
-/*
- * There is no notion of truncation key because truncation nodes do not exist
- * in TNC. However, when replaying, it is handy to introduce fake "truncation"
- * keys for truncation nodes because the code becomes simpler. So we define
- * %UBIFS_TRUN_KEY type.
- *
- * But otherwise, out of the journal reply scope, the truncation keys are
- * invalid.
- */
-#define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT
-#define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT
-
-/*
- * How much a directory entry/extended attribute entry adds to the parent/host
- * inode.
- */
-#define CALC_DENT_SIZE(name_len) ALIGN(UBIFS_DENT_NODE_SZ + (name_len) + 1, 8)
-
-/* How much an extended attribute adds to the host inode */
-#define CALC_XATTR_BYTES(data_len) ALIGN(UBIFS_INO_NODE_SZ + (data_len) + 1, 8)
-
-/*
- * Znodes which were not touched for 'OLD_ZNODE_AGE' seconds are considered
- * "old", and znode which were touched last 'YOUNG_ZNODE_AGE' seconds ago are
- * considered "young". This is used by shrinker when selecting znode to trim
- * off.
- */
-#define OLD_ZNODE_AGE 20
-#define YOUNG_ZNODE_AGE 5
-
-/*
- * Some compressors, like LZO, may end up with more data then the input buffer.
- * So UBIFS always allocates larger output buffer, to be sure the compressor
- * will not corrupt memory in case of worst case compression.
- */
-#define WORST_COMPR_FACTOR 2
-
-/*
- * How much memory is needed for a buffer where we comress a data node.
- */
-#define COMPRESSED_DATA_NODE_BUF_SZ \
- (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR)
-
-/* Maximum expected tree height for use by bottom_up_buf */
-#define BOTTOM_UP_HEIGHT 64
-
-/* Maximum number of data nodes to bulk-read */
-#define UBIFS_MAX_BULK_READ 32
-
-/*
- * Lockdep classes for UBIFS inode @ui_mutex.
- */
-enum {
- WB_MUTEX_1 = 0,
- WB_MUTEX_2 = 1,
- WB_MUTEX_3 = 2,
-};
-
-/*
- * Znode flags (actually, bit numbers which store the flags).
- *
- * DIRTY_ZNODE: znode is dirty
- * COW_ZNODE: znode is being committed and a new instance of this znode has to
- * be created before changing this znode
- * OBSOLETE_ZNODE: znode is obsolete, which means it was deleted, but it is
- * still in the commit list and the ongoing commit operation
- * will commit it, and delete this znode after it is done
- */
-enum {
- DIRTY_ZNODE = 0,
- COW_ZNODE = 1,
- OBSOLETE_ZNODE = 2,
-};
-
-/*
- * Commit states.
- *
- * COMMIT_RESTING: commit is not wanted
- * COMMIT_BACKGROUND: background commit has been requested
- * COMMIT_REQUIRED: commit is required
- * COMMIT_RUNNING_BACKGROUND: background commit is running
- * COMMIT_RUNNING_REQUIRED: commit is running and it is required
- * COMMIT_BROKEN: commit failed
- */
-enum {
- COMMIT_RESTING = 0,
- COMMIT_BACKGROUND,
- COMMIT_REQUIRED,
- COMMIT_RUNNING_BACKGROUND,
- COMMIT_RUNNING_REQUIRED,
- COMMIT_BROKEN,
-};
-
-/*
- * 'ubifs_scan_a_node()' return values.
- *
- * SCANNED_GARBAGE: scanned garbage
- * SCANNED_EMPTY_SPACE: scanned empty space
- * SCANNED_A_NODE: scanned a valid node
- * SCANNED_A_CORRUPT_NODE: scanned a corrupted node
- * SCANNED_A_BAD_PAD_NODE: scanned a padding node with invalid pad length
- *
- * Greater than zero means: 'scanned that number of padding bytes'
- */
-enum {
- SCANNED_GARBAGE = 0,
- SCANNED_EMPTY_SPACE = -1,
- SCANNED_A_NODE = -2,
- SCANNED_A_CORRUPT_NODE = -3,
- SCANNED_A_BAD_PAD_NODE = -4,
-};
-
-/*
- * LPT cnode flag bits.
- *
- * DIRTY_CNODE: cnode is dirty
- * OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted),
- * so it can (and must) be freed when the commit is finished
- * COW_CNODE: cnode is being committed and must be copied before writing
- */
-enum {
- DIRTY_CNODE = 0,
- OBSOLETE_CNODE = 1,
- COW_CNODE = 2,
-};
-
-/*
- * Dirty flag bits (lpt_drty_flgs) for LPT special nodes.
- *
- * LTAB_DIRTY: ltab node is dirty
- * LSAVE_DIRTY: lsave node is dirty
- */
-enum {
- LTAB_DIRTY = 1,
- LSAVE_DIRTY = 2,
-};
-
-/*
- * Return codes used by the garbage collector.
- * @LEB_FREED: the logical eraseblock was freed and is ready to use
- * @LEB_FREED_IDX: indexing LEB was freed and can be used only after the commit
- * @LEB_RETAINED: the logical eraseblock was freed and retained for GC purposes
- */
-enum {
- LEB_FREED,
- LEB_FREED_IDX,
- LEB_RETAINED,
-};
-
-/**
- * struct ubifs_old_idx - index node obsoleted since last commit start.
- * @rb: rb-tree node
- * @lnum: LEB number of obsoleted index node
- * @offs: offset of obsoleted index node
- */
-struct ubifs_old_idx {
- struct rb_node rb;
- int lnum;
- int offs;
-};
-
-/* The below union makes it easier to deal with keys */
-union ubifs_key {
- uint8_t u8[UBIFS_SK_LEN];
- uint32_t u32[UBIFS_SK_LEN/4];
- uint64_t u64[UBIFS_SK_LEN/8];
- __le32 j32[UBIFS_SK_LEN/4];
-};
-
-/**
- * struct ubifs_scan_node - UBIFS scanned node information.
- * @list: list of scanned nodes
- * @key: key of node scanned (if it has one)
- * @sqnum: sequence number
- * @type: type of node scanned
- * @offs: offset with LEB of node scanned
- * @len: length of node scanned
- * @node: raw node
- */
-struct ubifs_scan_node {
- struct list_head list;
- union ubifs_key key;
- unsigned long long sqnum;
- int type;
- int offs;
- int len;
- void *node;
-};
-
-/**
- * struct ubifs_scan_leb - UBIFS scanned LEB information.
- * @lnum: logical eraseblock number
- * @nodes_cnt: number of nodes scanned
- * @nodes: list of struct ubifs_scan_node
- * @endpt: end point (and therefore the start of empty space)
- * @ecc: read returned -EBADMSG
- * @buf: buffer containing entire LEB scanned
- */
-struct ubifs_scan_leb {
- int lnum;
- int nodes_cnt;
- struct list_head nodes;
- int endpt;
- int ecc;
- void *buf;
-};
-
-/**
- * struct ubifs_gced_idx_leb - garbage-collected indexing LEB.
- * @list: list
- * @lnum: LEB number
- * @unmap: OK to unmap this LEB
- *
- * This data structure is used to temporary store garbage-collected indexing
- * LEBs - they are not released immediately, but only after the next commit.
- * This is needed to guarantee recoverability.
- */
-struct ubifs_gced_idx_leb {
- struct list_head list;
- int lnum;
- int unmap;
-};
-
-/**
- * struct ubifs_inode - UBIFS in-memory inode description.
- * @vfs_inode: VFS inode description object
- * @creat_sqnum: sequence number at time of creation
- * @del_cmtno: commit number corresponding to the time the inode was deleted,
- * protected by @c->commit_sem;
- * @xattr_size: summarized size of all extended attributes in bytes
- * @xattr_cnt: count of extended attributes this inode has
- * @xattr_names: sum of lengths of all extended attribute names belonging to
- * this inode
- * @dirty: non-zero if the inode is dirty
- * @xattr: non-zero if this is an extended attribute inode
- * @bulk_read: non-zero if bulk-read should be used
- * @ui_mutex: serializes inode write-back with the rest of VFS operations,
- * serializes "clean <-> dirty" state changes, serializes bulk-read,
- * protects @dirty, @bulk_read, @ui_size, and @xattr_size
- * @ui_lock: protects @synced_i_size
- * @synced_i_size: synchronized size of inode, i.e. the value of inode size
- * currently stored on the flash; used only for regular file
- * inodes
- * @ui_size: inode size used by UBIFS when writing to flash
- * @flags: inode flags (@UBIFS_COMPR_FL, etc)
- * @compr_type: default compression type used for this inode
- * @last_page_read: page number of last page read (for bulk read)
- * @read_in_a_row: number of consecutive pages read in a row (for bulk read)
- * @data_len: length of the data attached to the inode
- * @data: inode's data
- *
- * @ui_mutex exists for two main reasons. At first it prevents inodes from
- * being written back while UBIFS changing them, being in the middle of an VFS
- * operation. This way UBIFS makes sure the inode fields are consistent. For
- * example, in 'ubifs_rename()' we change 3 inodes simultaneously, and
- * write-back must not write any of them before we have finished.
- *
- * The second reason is budgeting - UBIFS has to budget all operations. If an
- * operation is going to mark an inode dirty, it has to allocate budget for
- * this. It cannot just mark it dirty because there is no guarantee there will
- * be enough flash space to write the inode back later. This means UBIFS has
- * to have full control over inode "clean <-> dirty" transitions (and pages
- * actually). But unfortunately, VFS marks inodes dirty in many places, and it
- * does not ask the file-system if it is allowed to do so (there is a notifier,
- * but it is not enough), i.e., there is no mechanism to synchronize with this.
- * So UBIFS has its own inode dirty flag and its own mutex to serialize
- * "clean <-> dirty" transitions.
- *
- * The @synced_i_size field is used to make sure we never write pages which are
- * beyond last synchronized inode size. See 'ubifs_writepage()' for more
- * information.
- *
- * The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses
- * @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot
- * make sure @inode->i_size is always changed under @ui_mutex, because it
- * cannot call 'truncate_setsize()' with @ui_mutex locked, because it would
- * deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields
- * are changed under @ui_mutex, so they do not need "shadow" fields. Note, one
- * could consider to rework locking and base it on "shadow" fields.
- */
-struct ubifs_inode {
- struct inode vfs_inode;
- unsigned long long creat_sqnum;
- unsigned long long del_cmtno;
- unsigned int xattr_size;
- unsigned int xattr_cnt;
- unsigned int xattr_names;
- unsigned int dirty:1;
- unsigned int xattr:1;
- unsigned int bulk_read:1;
- unsigned int compr_type:2;
- struct mutex ui_mutex;
- spinlock_t ui_lock;
- loff_t synced_i_size;
- loff_t ui_size;
- int flags;
- pgoff_t last_page_read;
- pgoff_t read_in_a_row;
- int data_len;
- void *data;
-};
-
-/**
- * struct ubifs_unclean_leb - records a LEB recovered under read-only mode.
- * @list: list
- * @lnum: LEB number of recovered LEB
- * @endpt: offset where recovery ended
- *
- * This structure records a LEB identified during recovery that needs to be
- * cleaned but was not because UBIFS was mounted read-only. The information
- * is used to clean the LEB when remounting to read-write mode.
- */
-struct ubifs_unclean_leb {
- struct list_head list;
- int lnum;
- int endpt;
-};
-
-/*
- * LEB properties flags.
- *
- * LPROPS_UNCAT: not categorized
- * LPROPS_DIRTY: dirty > free, dirty >= @c->dead_wm, not index
- * LPROPS_DIRTY_IDX: dirty + free > @c->min_idx_node_sze and index
- * LPROPS_FREE: free > 0, dirty < @c->dead_wm, not empty, not index
- * LPROPS_HEAP_CNT: number of heaps used for storing categorized LEBs
- * LPROPS_EMPTY: LEB is empty, not taken
- * LPROPS_FREEABLE: free + dirty == leb_size, not index, not taken
- * LPROPS_FRDI_IDX: free + dirty == leb_size and index, may be taken
- * LPROPS_CAT_MASK: mask for the LEB categories above
- * LPROPS_TAKEN: LEB was taken (this flag is not saved on the media)
- * LPROPS_INDEX: LEB contains indexing nodes (this flag also exists on flash)
- */
-enum {
- LPROPS_UNCAT = 0,
- LPROPS_DIRTY = 1,
- LPROPS_DIRTY_IDX = 2,
- LPROPS_FREE = 3,
- LPROPS_HEAP_CNT = 3,
- LPROPS_EMPTY = 4,
- LPROPS_FREEABLE = 5,
- LPROPS_FRDI_IDX = 6,
- LPROPS_CAT_MASK = 15,
- LPROPS_TAKEN = 16,
- LPROPS_INDEX = 32,
-};
-
-/**
- * struct ubifs_lprops - logical eraseblock properties.
- * @free: amount of free space in bytes
- * @dirty: amount of dirty space in bytes
- * @flags: LEB properties flags (see above)
- * @lnum: LEB number
- * @list: list of same-category lprops (for LPROPS_EMPTY and LPROPS_FREEABLE)
- * @hpos: heap position in heap of same-category lprops (other categories)
- */
-struct ubifs_lprops {
- int free;
- int dirty;
- int flags;
- int lnum;
- union {
- struct list_head list;
- int hpos;
- };
-};
-
-/**
- * struct ubifs_lpt_lprops - LPT logical eraseblock properties.
- * @free: amount of free space in bytes
- * @dirty: amount of dirty space in bytes
- * @tgc: trivial GC flag (1 => unmap after commit end)
- * @cmt: commit flag (1 => reserved for commit)
- */
-struct ubifs_lpt_lprops {
- int free;
- int dirty;
- unsigned tgc:1;
- unsigned cmt:1;
-};
-
-/**
- * struct ubifs_lp_stats - statistics of eraseblocks in the main area.
- * @empty_lebs: number of empty LEBs
- * @taken_empty_lebs: number of taken LEBs
- * @idx_lebs: number of indexing LEBs
- * @total_free: total free space in bytes (includes all LEBs)
- * @total_dirty: total dirty space in bytes (includes all LEBs)
- * @total_used: total used space in bytes (does not include index LEBs)
- * @total_dead: total dead space in bytes (does not include index LEBs)
- * @total_dark: total dark space in bytes (does not include index LEBs)
- *
- * The @taken_empty_lebs field counts the LEBs that are in the transient state
- * of having been "taken" for use but not yet written to. @taken_empty_lebs is
- * needed to account correctly for @gc_lnum, otherwise @empty_lebs could be
- * used by itself (in which case 'unused_lebs' would be a better name). In the
- * case of @gc_lnum, it is "taken" at mount time or whenever a LEB is retained
- * by GC, but unlike other empty LEBs that are "taken", it may not be written
- * straight away (i.e. before the next commit start or unmount), so either
- * @gc_lnum must be specially accounted for, or the current approach followed
- * i.e. count it under @taken_empty_lebs.
- *
- * @empty_lebs includes @taken_empty_lebs.
- *
- * @total_used, @total_dead and @total_dark fields do not account indexing
- * LEBs.
- */
-struct ubifs_lp_stats {
- int empty_lebs;
- int taken_empty_lebs;
- int idx_lebs;
- long long total_free;
- long long total_dirty;
- long long total_used;
- long long total_dead;
- long long total_dark;
-};
-
-struct ubifs_nnode;
-
-/**
- * struct ubifs_cnode - LEB Properties Tree common node.
- * @parent: parent nnode
- * @cnext: next cnode to commit
- * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
- * @iip: index in parent
- * @level: level in the tree (zero for pnodes, greater than zero for nnodes)
- * @num: node number
- */
-struct ubifs_cnode {
- struct ubifs_nnode *parent;
- struct ubifs_cnode *cnext;
- unsigned long flags;
- int iip;
- int level;
- int num;
-};
-
-/**
- * struct ubifs_pnode - LEB Properties Tree leaf node.
- * @parent: parent nnode
- * @cnext: next cnode to commit
- * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
- * @iip: index in parent
- * @level: level in the tree (always zero for pnodes)
- * @num: node number
- * @lprops: LEB properties array
- */
-struct ubifs_pnode {
- struct ubifs_nnode *parent;
- struct ubifs_cnode *cnext;
- unsigned long flags;
- int iip;
- int level;
- int num;
- struct ubifs_lprops lprops[UBIFS_LPT_FANOUT];
-};
-
-/**
- * struct ubifs_nbranch - LEB Properties Tree internal node branch.
- * @lnum: LEB number of child
- * @offs: offset of child
- * @nnode: nnode child
- * @pnode: pnode child
- * @cnode: cnode child
- */
-struct ubifs_nbranch {
- int lnum;
- int offs;
- union {
- struct ubifs_nnode *nnode;
- struct ubifs_pnode *pnode;
- struct ubifs_cnode *cnode;
- };
-};
-
-/**
- * struct ubifs_nnode - LEB Properties Tree internal node.
- * @parent: parent nnode
- * @cnext: next cnode to commit
- * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
- * @iip: index in parent
- * @level: level in the tree (always greater than zero for nnodes)
- * @num: node number
- * @nbranch: branches to child nodes
- */
-struct ubifs_nnode {
- struct ubifs_nnode *parent;
- struct ubifs_cnode *cnext;
- unsigned long flags;
- int iip;
- int level;
- int num;
- struct ubifs_nbranch nbranch[UBIFS_LPT_FANOUT];
-};
-
-/**
- * struct ubifs_lpt_heap - heap of categorized lprops.
- * @arr: heap array
- * @cnt: number in heap
- * @max_cnt: maximum number allowed in heap
- *
- * There are %LPROPS_HEAP_CNT heaps.
- */
-struct ubifs_lpt_heap {
- struct ubifs_lprops **arr;
- int cnt;
- int max_cnt;
-};
-
-/*
- * Return codes for LPT scan callback function.
- *
- * LPT_SCAN_CONTINUE: continue scanning
- * LPT_SCAN_ADD: add the LEB properties scanned to the tree in memory
- * LPT_SCAN_STOP: stop scanning
- */
-enum {
- LPT_SCAN_CONTINUE = 0,
- LPT_SCAN_ADD = 1,
- LPT_SCAN_STOP = 2,
-};
-
-struct ubifs_info;
-
-/* Callback used by the 'ubifs_lpt_scan_nolock()' function */
-typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c,
- const struct ubifs_lprops *lprops,
- int in_tree, void *data);
-
-/**
- * struct ubifs_wbuf - UBIFS write-buffer.
- * @c: UBIFS file-system description object
- * @buf: write-buffer (of min. flash I/O unit size)
- * @lnum: logical eraseblock number the write-buffer points to
- * @offs: write-buffer offset in this logical eraseblock
- * @avail: number of bytes available in the write-buffer
- * @used: number of used bytes in the write-buffer
- * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range)
- * @dtype: type of data stored in this LEB (%UBI_LONGTERM, %UBI_SHORTTERM,
- * %UBI_UNKNOWN)
- * @jhead: journal head the mutex belongs to (note, needed only to shut lockdep
- * up by 'mutex_lock_nested()).
- * @sync_callback: write-buffer synchronization callback
- * @io_mutex: serializes write-buffer I/O
- * @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes
- * fields
- * @softlimit: soft write-buffer timeout interval
- * @delta: hard and soft timeouts delta (the timer expire inteval is @softlimit
- * and @softlimit + @delta)
- * @timer: write-buffer timer
- * @no_timer: non-zero if this write-buffer does not have a timer
- * @need_sync: non-zero if the timer expired and the wbuf needs sync'ing
- * @next_ino: points to the next position of the following inode number
- * @inodes: stores the inode numbers of the nodes which are in wbuf
- *
- * The write-buffer synchronization callback is called when the write-buffer is
- * synchronized in order to notify how much space was wasted due to
- * write-buffer padding and how much free space is left in the LEB.
- *
- * Note: the fields @buf, @lnum, @offs, @avail and @used can be read under
- * spin-lock or mutex because they are written under both mutex and spin-lock.
- * @buf is appended to under mutex but overwritten under both mutex and
- * spin-lock. Thus the data between @buf and @buf + @used can be read under
- * spinlock.
- */
-struct ubifs_wbuf {
- struct ubifs_info *c;
- void *buf;
- int lnum;
- int offs;
- int avail;
- int used;
- int size;
- int dtype;
- int jhead;
- int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad);
- struct mutex io_mutex;
- spinlock_t lock;
- ktime_t softlimit;
- unsigned long long delta;
- struct hrtimer timer;
- unsigned int no_timer:1;
- unsigned int need_sync:1;
- int next_ino;
- ino_t *inodes;
-};
-
-/**
- * struct ubifs_bud - bud logical eraseblock.
- * @lnum: logical eraseblock number
- * @start: where the (uncommitted) bud data starts
- * @jhead: journal head number this bud belongs to
- * @list: link in the list buds belonging to the same journal head
- * @rb: link in the tree of all buds
- */
-struct ubifs_bud {
- int lnum;
- int start;
- int jhead;
- struct list_head list;
- struct rb_node rb;
-};
-
-/**
- * struct ubifs_jhead - journal head.
- * @wbuf: head's write-buffer
- * @buds_list: list of bud LEBs belonging to this journal head
- * @grouped: non-zero if UBIFS groups nodes when writing to this journal head
- *
- * Note, the @buds list is protected by the @c->buds_lock.
- */
-struct ubifs_jhead {
- struct ubifs_wbuf wbuf;
- struct list_head buds_list;
- unsigned int grouped:1;
-};
-
-/**
- * struct ubifs_zbranch - key/coordinate/length branch stored in znodes.
- * @key: key
- * @znode: znode address in memory
- * @lnum: LEB number of the target node (indexing node or data node)
- * @offs: target node offset within @lnum
- * @len: target node length
- */
-struct ubifs_zbranch {
- union ubifs_key key;
- union {
- struct ubifs_znode *znode;
- void *leaf;
- };
- int lnum;
- int offs;
- int len;
-};
-
-/**
- * struct ubifs_znode - in-memory representation of an indexing node.
- * @parent: parent znode or NULL if it is the root
- * @cnext: next znode to commit
- * @flags: znode flags (%DIRTY_ZNODE, %COW_ZNODE or %OBSOLETE_ZNODE)
- * @time: last access time (seconds)
- * @level: level of the entry in the TNC tree
- * @child_cnt: count of child znodes
- * @iip: index in parent's zbranch array
- * @alt: lower bound of key range has altered i.e. child inserted at slot 0
- * @lnum: LEB number of the corresponding indexing node
- * @offs: offset of the corresponding indexing node
- * @len: length of the corresponding indexing node
- * @zbranch: array of znode branches (@c->fanout elements)
- */
-struct ubifs_znode {
- struct ubifs_znode *parent;
- struct ubifs_znode *cnext;
- unsigned long flags;
- unsigned long time;
- int level;
- int child_cnt;
- int iip;
- int alt;
-#ifdef CONFIG_UBIFS_FS_DEBUG
- int lnum, offs, len;
-#endif
- struct ubifs_zbranch zbranch[];
-};
-
-/**
- * struct bu_info - bulk-read information.
- * @key: first data node key
- * @zbranch: zbranches of data nodes to bulk read
- * @buf: buffer to read into
- * @buf_len: buffer length
- * @gc_seq: GC sequence number to detect races with GC
- * @cnt: number of data nodes for bulk read
- * @blk_cnt: number of data blocks including holes
- * @oef: end of file reached
- */
-struct bu_info {
- union ubifs_key key;
- struct ubifs_zbranch zbranch[UBIFS_MAX_BULK_READ];
- void *buf;
- int buf_len;
- int gc_seq;
- int cnt;
- int blk_cnt;
- int eof;
-};
-
-/**
- * struct ubifs_node_range - node length range description data structure.
- * @len: fixed node length
- * @min_len: minimum possible node length
- * @max_len: maximum possible node length
- *
- * If @max_len is %0, the node has fixed length @len.
- */
-struct ubifs_node_range {
- union {
- int len;
- int min_len;
- };
- int max_len;
-};
-
-/**
- * struct ubifs_compressor - UBIFS compressor description structure.
- * @compr_type: compressor type (%UBIFS_COMPR_LZO, etc)
- * @cc: cryptoapi compressor handle
- * @comp_mutex: mutex used during compression
- * @decomp_mutex: mutex used during decompression
- * @name: compressor name
- * @capi_name: cryptoapi compressor name
- */
-struct ubifs_compressor {
- int compr_type;
- struct crypto_comp *cc;
- struct mutex *comp_mutex;
- struct mutex *decomp_mutex;
- const char *name;
- const char *capi_name;
-};
-
-/**
- * struct ubifs_budget_req - budget requirements of an operation.
- *
- * @fast: non-zero if the budgeting should try to acquire budget quickly and
- * should not try to call write-back
- * @recalculate: non-zero if @idx_growth, @data_growth, and @dd_growth fields
- * have to be re-calculated
- * @new_page: non-zero if the operation adds a new page
- * @dirtied_page: non-zero if the operation makes a page dirty
- * @new_dent: non-zero if the operation adds a new directory entry
- * @mod_dent: non-zero if the operation removes or modifies an existing
- * directory entry
- * @new_ino: non-zero if the operation adds a new inode
- * @new_ino_d: now much data newly created inode contains
- * @dirtied_ino: how many inodes the operation makes dirty
- * @dirtied_ino_d: now much data dirtied inode contains
- * @idx_growth: how much the index will supposedly grow
- * @data_growth: how much new data the operation will supposedly add
- * @dd_growth: how much data that makes other data dirty the operation will
- * supposedly add
- *
- * @idx_growth, @data_growth and @dd_growth are not used in budget request. The
- * budgeting subsystem caches index and data growth values there to avoid
- * re-calculating them when the budget is released. However, if @idx_growth is
- * %-1, it is calculated by the release function using other fields.
- *
- * An inode may contain 4KiB of data at max., thus the widths of @new_ino_d
- * is 13 bits, and @dirtied_ino_d - 15, because up to 4 inodes may be made
- * dirty by the re-name operation.
- *
- * Note, UBIFS aligns node lengths to 8-bytes boundary, so the requester has to
- * make sure the amount of inode data which contribute to @new_ino_d and
- * @dirtied_ino_d fields are aligned.
- */
-struct ubifs_budget_req {
- unsigned int fast:1;
- unsigned int recalculate:1;
-#ifndef UBIFS_DEBUG
- unsigned int new_page:1;
- unsigned int dirtied_page:1;
- unsigned int new_dent:1;
- unsigned int mod_dent:1;
- unsigned int new_ino:1;
- unsigned int new_ino_d:13;
- unsigned int dirtied_ino:4;
- unsigned int dirtied_ino_d:15;
-#else
- /* Not bit-fields to check for overflows */
- unsigned int new_page;
- unsigned int dirtied_page;
- unsigned int new_dent;
- unsigned int mod_dent;
- unsigned int new_ino;
- unsigned int new_ino_d;
- unsigned int dirtied_ino;
- unsigned int dirtied_ino_d;
-#endif
- int idx_growth;
- int data_growth;
- int dd_growth;
-};
-
-/**
- * struct ubifs_orphan - stores the inode number of an orphan.
- * @rb: rb-tree node of rb-tree of orphans sorted by inode number
- * @list: list head of list of orphans in order added
- * @new_list: list head of list of orphans added since the last commit
- * @cnext: next orphan to commit
- * @dnext: next orphan to delete
- * @inum: inode number
- * @new: %1 => added since the last commit, otherwise %0
- */
-struct ubifs_orphan {
- struct rb_node rb;
- struct list_head list;
- struct list_head new_list;
- struct ubifs_orphan *cnext;
- struct ubifs_orphan *dnext;
- ino_t inum;
- int new;
-};
-
-/**
- * struct ubifs_mount_opts - UBIFS-specific mount options information.
- * @unmount_mode: selected unmount mode (%0 default, %1 normal, %2 fast)
- * @bulk_read: enable/disable bulk-reads (%0 default, %1 disabe, %2 enable)
- * @chk_data_crc: enable/disable CRC data checking when reading data nodes
- * (%0 default, %1 disabe, %2 enable)
- * @override_compr: override default compressor (%0 - do not override and use
- * superblock compressor, %1 - override and use compressor
- * specified in @compr_type)
- * @compr_type: compressor type to override the superblock compressor with
- * (%UBIFS_COMPR_NONE, etc)
- */
-struct ubifs_mount_opts {
- unsigned int unmount_mode:2;
- unsigned int bulk_read:2;
- unsigned int chk_data_crc:2;
- unsigned int override_compr:1;
- unsigned int compr_type:2;
-};
-
-/**
- * struct ubifs_budg_info - UBIFS budgeting information.
- * @idx_growth: amount of bytes budgeted for index growth
- * @data_growth: amount of bytes budgeted for cached data
- * @dd_growth: amount of bytes budgeted for cached data that will make
- * other data dirty
- * @uncommitted_idx: amount of bytes were budgeted for growth of the index, but
- * which still have to be taken into account because the index
- * has not been committed so far
- * @old_idx_sz: size of index on flash
- * @min_idx_lebs: minimum number of LEBs required for the index
- * @nospace: non-zero if the file-system does not have flash space (used as
- * optimization)
- * @nospace_rp: the same as @nospace, but additionally means that even reserved
- * pool is full
- * @page_budget: budget for a page (constant, nenver changed after mount)
- * @inode_budget: budget for an inode (constant, nenver changed after mount)
- * @dent_budget: budget for a directory entry (constant, nenver changed after
- * mount)
- */
-struct ubifs_budg_info {
- long long idx_growth;
- long long data_growth;
- long long dd_growth;
- long long uncommitted_idx;
- unsigned long long old_idx_sz;
- int min_idx_lebs;
- unsigned int nospace:1;
- unsigned int nospace_rp:1;
- int page_budget;
- int inode_budget;
- int dent_budget;
-};
-
-struct ubifs_debug_info;
-
-/**
- * struct ubifs_info - UBIFS file-system description data structure
- * (per-superblock).
- * @vfs_sb: VFS @struct super_block object
- * @bdi: backing device info object to make VFS happy and disable read-ahead
- *
- * @highest_inum: highest used inode number
- * @max_sqnum: current global sequence number
- * @cmt_no: commit number of the last successfully completed commit, protected
- * by @commit_sem
- * @cnt_lock: protects @highest_inum and @max_sqnum counters
- * @fmt_version: UBIFS on-flash format version
- * @ro_compat_version: R/O compatibility version
- * @uuid: UUID from super block
- *
- * @lhead_lnum: log head logical eraseblock number
- * @lhead_offs: log head offset
- * @ltail_lnum: log tail logical eraseblock number (offset is always 0)
- * @log_mutex: protects the log, @lhead_lnum, @lhead_offs, @ltail_lnum, and
- * @bud_bytes
- * @min_log_bytes: minimum required number of bytes in the log
- * @cmt_bud_bytes: used during commit to temporarily amount of bytes in
- * committed buds
- *
- * @buds: tree of all buds indexed by bud LEB number
- * @bud_bytes: how many bytes of flash is used by buds
- * @buds_lock: protects the @buds tree, @bud_bytes, and per-journal head bud
- * lists
- * @jhead_cnt: count of journal heads
- * @jheads: journal heads (head zero is base head)
- * @max_bud_bytes: maximum number of bytes allowed in buds
- * @bg_bud_bytes: number of bud bytes when background commit is initiated
- * @old_buds: buds to be released after commit ends
- * @max_bud_cnt: maximum number of buds
- *
- * @commit_sem: synchronizes committer with other processes
- * @cmt_state: commit state
- * @cs_lock: commit state lock
- * @cmt_wq: wait queue to sleep on if the log is full and a commit is running
- *
- * @big_lpt: flag that LPT is too big to write whole during commit
- * @space_fixup: flag indicating that free space in LEBs needs to be cleaned up
- * @no_chk_data_crc: do not check CRCs when reading data nodes (except during
- * recovery)
- * @bulk_read: enable bulk-reads
- * @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc)
- * @rw_incompat: the media is not R/W compatible
- *
- * @tnc_mutex: protects the Tree Node Cache (TNC), @zroot, @cnext, @enext, and
- * @calc_idx_sz
- * @zroot: zbranch which points to the root index node and znode
- * @cnext: next znode to commit
- * @enext: next znode to commit to empty space
- * @gap_lebs: array of LEBs used by the in-gaps commit method
- * @cbuf: commit buffer
- * @ileb_buf: buffer for commit in-the-gaps method
- * @ileb_len: length of data in ileb_buf
- * @ihead_lnum: LEB number of index head
- * @ihead_offs: offset of index head
- * @ilebs: pre-allocated index LEBs
- * @ileb_cnt: number of pre-allocated index LEBs
- * @ileb_nxt: next pre-allocated index LEBs
- * @old_idx: tree of index nodes obsoleted since the last commit start
- * @bottom_up_buf: a buffer which is used by 'dirty_cow_bottom_up()' in tnc.c
- *
- * @mst_node: master node
- * @mst_offs: offset of valid master node
- * @mst_mutex: protects the master node area, @mst_node, and @mst_offs
- *
- * @max_bu_buf_len: maximum bulk-read buffer length
- * @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu
- * @bu: pre-allocated bulk-read information
- *
- * @write_reserve_mutex: protects @write_reserve_buf
- * @write_reserve_buf: on the write path we allocate memory, which might
- * sometimes be unavailable, in which case we use this
- * write reserve buffer
- *
- * @log_lebs: number of logical eraseblocks in the log
- * @log_bytes: log size in bytes
- * @log_last: last LEB of the log
- * @lpt_lebs: number of LEBs used for lprops table
- * @lpt_first: first LEB of the lprops table area
- * @lpt_last: last LEB of the lprops table area
- * @orph_lebs: number of LEBs used for the orphan area
- * @orph_first: first LEB of the orphan area
- * @orph_last: last LEB of the orphan area
- * @main_lebs: count of LEBs in the main area
- * @main_first: first LEB of the main area
- * @main_bytes: main area size in bytes
- *
- * @key_hash_type: type of the key hash
- * @key_hash: direntry key hash function
- * @key_fmt: key format
- * @key_len: key length
- * @fanout: fanout of the index tree (number of links per indexing node)
- *
- * @min_io_size: minimal input/output unit size
- * @min_io_shift: number of bits in @min_io_size minus one
- * @max_write_size: maximum amount of bytes the underlying flash can write at a
- * time (MTD write buffer size)
- * @max_write_shift: number of bits in @max_write_size minus one
- * @leb_size: logical eraseblock size in bytes
- * @leb_start: starting offset of logical eraseblocks within physical
- * eraseblocks
- * @half_leb_size: half LEB size
- * @idx_leb_size: how many bytes of an LEB are effectively available when it is
- * used to store indexing nodes (@leb_size - @max_idx_node_sz)
- * @leb_cnt: count of logical eraseblocks
- * @max_leb_cnt: maximum count of logical eraseblocks
- * @old_leb_cnt: count of logical eraseblocks before re-size
- * @ro_media: the underlying UBI volume is read-only
- * @ro_mount: the file-system was mounted as read-only
- * @ro_error: UBIFS switched to R/O mode because an error happened
- *
- * @dirty_pg_cnt: number of dirty pages (not used)
- * @dirty_zn_cnt: number of dirty znodes
- * @clean_zn_cnt: number of clean znodes
- *
- * @space_lock: protects @bi and @lst
- * @lst: lprops statistics
- * @bi: budgeting information
- * @calc_idx_sz: temporary variable which is used to calculate new index size
- * (contains accurate new index size at end of TNC commit start)
- *
- * @ref_node_alsz: size of the LEB reference node aligned to the min. flash
- * I/O unit
- * @mst_node_alsz: master node aligned size
- * @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary
- * @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary
- * @max_inode_sz: maximum possible inode size in bytes
- * @max_znode_sz: size of znode in bytes
- *
- * @leb_overhead: how many bytes are wasted in an LEB when it is filled with
- * data nodes of maximum size - used in free space reporting
- * @dead_wm: LEB dead space watermark
- * @dark_wm: LEB dark space watermark
- * @block_cnt: count of 4KiB blocks on the FS
- *
- * @ranges: UBIFS node length ranges
- * @ubi: UBI volume descriptor
- * @di: UBI device information
- * @vi: UBI volume information
- *
- * @orph_tree: rb-tree of orphan inode numbers
- * @orph_list: list of orphan inode numbers in order added
- * @orph_new: list of orphan inode numbers added since last commit
- * @orph_cnext: next orphan to commit
- * @orph_dnext: next orphan to delete
- * @orphan_lock: lock for orph_tree and orph_new
- * @orph_buf: buffer for orphan nodes
- * @new_orphans: number of orphans since last commit
- * @cmt_orphans: number of orphans being committed
- * @tot_orphans: number of orphans in the rb_tree
- * @max_orphans: maximum number of orphans allowed
- * @ohead_lnum: orphan head LEB number
- * @ohead_offs: orphan head offset
- * @no_orphs: non-zero if there are no orphans
- *
- * @bgt: UBIFS background thread
- * @bgt_name: background thread name
- * @need_bgt: if background thread should run
- * @need_wbuf_sync: if write-buffers have to be synchronized
- *
- * @gc_lnum: LEB number used for garbage collection
- * @sbuf: a buffer of LEB size used by GC and replay for scanning
- * @idx_gc: list of index LEBs that have been garbage collected
- * @idx_gc_cnt: number of elements on the idx_gc list
- * @gc_seq: incremented for every non-index LEB garbage collected
- * @gced_lnum: last non-index LEB that was garbage collected
- *
- * @infos_list: links all 'ubifs_info' objects
- * @umount_mutex: serializes shrinker and un-mount
- * @shrinker_run_no: shrinker run number
- *
- * @space_bits: number of bits needed to record free or dirty space
- * @lpt_lnum_bits: number of bits needed to record a LEB number in the LPT
- * @lpt_offs_bits: number of bits needed to record an offset in the LPT
- * @lpt_spc_bits: number of bits needed to space in the LPT
- * @pcnt_bits: number of bits needed to record pnode or nnode number
- * @lnum_bits: number of bits needed to record LEB number
- * @nnode_sz: size of on-flash nnode
- * @pnode_sz: size of on-flash pnode
- * @ltab_sz: size of on-flash LPT lprops table
- * @lsave_sz: size of on-flash LPT save table
- * @pnode_cnt: number of pnodes
- * @nnode_cnt: number of nnodes
- * @lpt_hght: height of the LPT
- * @pnodes_have: number of pnodes in memory
- *
- * @lp_mutex: protects lprops table and all the other lprops-related fields
- * @lpt_lnum: LEB number of the root nnode of the LPT
- * @lpt_offs: offset of the root nnode of the LPT
- * @nhead_lnum: LEB number of LPT head
- * @nhead_offs: offset of LPT head
- * @lpt_drty_flgs: dirty flags for LPT special nodes e.g. ltab
- * @dirty_nn_cnt: number of dirty nnodes
- * @dirty_pn_cnt: number of dirty pnodes
- * @check_lpt_free: flag that indicates LPT GC may be needed
- * @lpt_sz: LPT size
- * @lpt_nod_buf: buffer for an on-flash nnode or pnode
- * @lpt_buf: buffer of LEB size used by LPT
- * @nroot: address in memory of the root nnode of the LPT
- * @lpt_cnext: next LPT node to commit
- * @lpt_heap: array of heaps of categorized lprops
- * @dirty_idx: a (reverse sorted) copy of the LPROPS_DIRTY_IDX heap as at
- * previous commit start
- * @uncat_list: list of un-categorized LEBs
- * @empty_list: list of empty LEBs
- * @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size)
- * @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size)
- * @freeable_cnt: number of freeable LEBs in @freeable_list
- *
- * @ltab_lnum: LEB number of LPT's own lprops table
- * @ltab_offs: offset of LPT's own lprops table
- * @ltab: LPT's own lprops table
- * @ltab_cmt: LPT's own lprops table (commit copy)
- * @lsave_cnt: number of LEB numbers in LPT's save table
- * @lsave_lnum: LEB number of LPT's save table
- * @lsave_offs: offset of LPT's save table
- * @lsave: LPT's save table
- * @lscan_lnum: LEB number of last LPT scan
- *
- * @rp_size: size of the reserved pool in bytes
- * @report_rp_size: size of the reserved pool reported to user-space
- * @rp_uid: reserved pool user ID
- * @rp_gid: reserved pool group ID
- *
- * @empty: %1 if the UBI device is empty
- * @need_recovery: %1 if the file-system needs recovery
- * @replaying: %1 during journal replay
- * @mounting: %1 while mounting
- * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode
- * @replay_list: temporary list used during journal replay
- * @replay_buds: list of buds to replay
- * @cs_sqnum: sequence number of first node in the log (commit start node)
- * @replay_sqnum: sequence number of node currently being replayed
- * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W
- * mode
- * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted
- * FS to R/W mode
- * @size_tree: inode size information for recovery
- * @mount_opts: UBIFS-specific mount options
- *
- * @dbg: debugging-related information
- */
-struct ubifs_info {
- struct super_block *vfs_sb;
- struct backing_dev_info bdi;
- struct notifier_block reboot_notifier;
-
- ino_t highest_inum;
- unsigned long long max_sqnum;
- unsigned long long cmt_no;
- spinlock_t cnt_lock;
- int fmt_version;
- int ro_compat_version;
- unsigned char uuid[16];
-
- struct ubifs_wbuf idx_buf;
- void *buf;
-
- int count;
-
- int lhead_lnum;
- int lhead_offs;
- int ltail_lnum;
- struct mutex log_mutex;
- int min_log_bytes;
- long long cmt_bud_bytes;
-
- struct rb_root buds;
- long long bud_bytes;
- spinlock_t buds_lock;
- int jhead_cnt;
- struct ubifs_jhead *jheads;
- long long max_bud_bytes;
- long long bg_bud_bytes;
- struct list_head old_buds;
- int max_bud_cnt;
-
- struct rw_semaphore commit_sem;
- int cmt_state;
- spinlock_t cs_lock;
- wait_queue_head_t cmt_wq;
-
- unsigned int big_lpt:1;
- unsigned int space_fixup:1;
- unsigned int no_chk_data_crc:1;
- unsigned int bulk_read:1;
- unsigned int default_compr:2;
- unsigned int rw_incompat:1;
-
- struct mutex tnc_mutex;
- struct ubifs_zbranch zroot;
- struct ubifs_znode *cnext;
- struct ubifs_znode *enext;
- int *gap_lebs;
- void *cbuf;
- void *ileb_buf;
- int ileb_len;
- int ihead_lnum;
- int ihead_offs;
- int *ilebs;
- int ileb_cnt;
- int ileb_nxt;
- struct rb_root old_idx;
- int *bottom_up_buf;
-
- struct ubifs_mst_node *mst_node;
- int mst_offs;
- struct mutex mst_mutex;
-
- int max_bu_buf_len;
- struct mutex bu_mutex;
- struct bu_info bu;
-
- struct mutex write_reserve_mutex;
- void *write_reserve_buf;
-
- int log_lebs;
- long long log_bytes;
- int log_last;
- int lpt_lebs;
- int lpt_first;
- int lpt_last;
- int orph_lebs;
- int orph_first;
- int orph_last;
- int main_lebs;
- int main_first;
- long long main_bytes;
-
- uint8_t key_hash_type;
- uint32_t (*key_hash)(const char *str, int len);
- int key_fmt;
- int key_len;
- int fanout;
-
- int min_io_size;
- int min_io_shift;
- int max_write_size;
- int max_write_shift;
- int leb_size;
- int leb_start;
- int half_leb_size;
- int idx_leb_size;
- int leb_cnt;
- int max_leb_cnt;
- int old_leb_cnt;
- unsigned int ro_media:1;
- unsigned int ro_mount:1;
- unsigned int ro_error:1;
-
- atomic_long_t dirty_pg_cnt;
- atomic_long_t dirty_zn_cnt;
- atomic_long_t clean_zn_cnt;
-
- spinlock_t space_lock;
- struct ubifs_lp_stats lst;
- struct ubifs_budg_info bi;
- unsigned long long calc_idx_sz;
-
- int ref_node_alsz;
- int mst_node_alsz;
- int min_idx_node_sz;
- int max_idx_node_sz;
- long long max_inode_sz;
- int max_znode_sz;
-
- int leb_overhead;
- int dead_wm;
- int dark_wm;
- int block_cnt;
-
- struct ubifs_node_range ranges[UBIFS_NODE_TYPES_CNT];
- struct ubi_volume_desc *ubi;
- struct ubi_device_info di;
- struct ubi_volume_info vi;
-
- struct rb_root orph_tree;
- struct list_head orph_list;
- struct list_head orph_new;
- struct ubifs_orphan *orph_cnext;
- struct ubifs_orphan *orph_dnext;
- spinlock_t orphan_lock;
- void *orph_buf;
- int new_orphans;
- int cmt_orphans;
- int tot_orphans;
- int max_orphans;
- int ohead_lnum;
- int ohead_offs;
- int no_orphs;
-
- struct task_struct *bgt;
- char bgt_name[sizeof(BGT_NAME_PATTERN) + 9];
- int need_bgt;
- int need_wbuf_sync;
-
- int gc_lnum;
- void *sbuf;
- struct list_head idx_gc;
- int idx_gc_cnt;
- int gc_seq;
- int gced_lnum;
-
- struct list_head infos_list;
- struct mutex umount_mutex;
- unsigned int shrinker_run_no;
-
- int space_bits;
- int lpt_lnum_bits;
- int lpt_offs_bits;
- int lpt_spc_bits;
- int pcnt_bits;
- int lnum_bits;
- int nnode_sz;
- int pnode_sz;
- int ltab_sz;
- int lsave_sz;
- int pnode_cnt;
- int nnode_cnt;
- int lpt_hght;
- int pnodes_have;
-
- struct mutex lp_mutex;
- int lpt_lnum;
- int lpt_offs;
- int nhead_lnum;
- int nhead_offs;
- int lpt_drty_flgs;
- int dirty_nn_cnt;
- int dirty_pn_cnt;
- int check_lpt_free;
- long long lpt_sz;
- void *lpt_nod_buf;
- void *lpt_buf;
- struct ubifs_nnode *nroot;
- struct ubifs_cnode *lpt_cnext;
- struct ubifs_lpt_heap lpt_heap[LPROPS_HEAP_CNT];
- struct ubifs_lpt_heap dirty_idx;
- struct list_head uncat_list;
- struct list_head empty_list;
- struct list_head freeable_list;
- struct list_head frdi_idx_list;
- int freeable_cnt;
-
- int ltab_lnum;
- int ltab_offs;
- struct ubifs_lpt_lprops *ltab;
- struct ubifs_lpt_lprops *ltab_cmt;
- int lsave_cnt;
- int lsave_lnum;
- int lsave_offs;
- int *lsave;
- int lscan_lnum;
-
- long long rp_size;
- long long report_rp_size;
- uid_t rp_uid;
- gid_t rp_gid;
-
- /* The below fields are used only during mounting and re-mounting */
- unsigned int empty:1;
- unsigned int need_recovery:1;
- unsigned int replaying:1;
- unsigned int mounting:1;
- unsigned int remounting_rw:1;
- struct list_head replay_list;
- struct list_head replay_buds;
- unsigned long long cs_sqnum;
- unsigned long long replay_sqnum;
- struct list_head unclean_leb_list;
- struct ubifs_mst_node *rcvrd_mst_node;
- struct rb_root size_tree;
- struct ubifs_mount_opts mount_opts;
-
-#ifdef CONFIG_UBIFS_FS_DEBUG
- struct ubifs_debug_info *dbg;
-#endif
-};
-
-extern struct list_head ubifs_infos;
-extern spinlock_t ubifs_infos_lock;
-extern atomic_long_t ubifs_clean_zn_cnt;
-extern struct kmem_cache *ubifs_inode_slab;
-extern const struct super_operations ubifs_super_operations;
-extern const struct address_space_operations ubifs_file_address_operations;
-extern const struct file_operations ubifs_file_operations;
-extern const struct inode_operations ubifs_file_inode_operations;
-extern const struct file_operations ubifs_dir_operations;
-extern const struct inode_operations ubifs_dir_inode_operations;
-extern const struct inode_operations ubifs_symlink_inode_operations;
-extern struct backing_dev_info ubifs_backing_dev_info;
-extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
-
-/* io.c */
-void ubifs_ro_mode(struct ubifs_info *c, int err);
-int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
- int len, int even_ebadmsg);
-int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
- int len, int dtype);
-int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len,
- int dtype);
-int ubifs_leb_unmap(struct ubifs_info *c, int lnum);
-int ubifs_leb_map(struct ubifs_info *c, int lnum, int dtype);
-int ubifs_is_mapped(const struct ubifs_info *c, int lnum);
-int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len);
-int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
- int dtype);
-int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf);
-int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
- int lnum, int offs);
-int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
- int lnum, int offs);
-int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum,
- int offs, int dtype);
-int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
- int offs, int quiet, int must_chk_crc);
-void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad);
-void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last);
-int ubifs_io_init(struct ubifs_info *c);
-void ubifs_pad(const struct ubifs_info *c, void *buf, int pad);
-int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf);
-int ubifs_bg_wbufs_sync(struct ubifs_info *c);
-void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum);
-int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode);
-
-/* scan.c */
-struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
- int offs, void *sbuf, int quiet);
-void ubifs_scan_destroy(struct ubifs_scan_leb *sleb);
-int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
- int offs, int quiet);
-struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum,
- int offs, void *sbuf);
-void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- int lnum, int offs);
-int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
- void *buf, int offs);
-void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
- void *buf);
-
-/* log.c */
-void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud);
-void ubifs_create_buds_lists(struct ubifs_info *c);
-int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs);
-struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum);
-struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum);
-int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum);
-int ubifs_log_end_commit(struct ubifs_info *c, int new_ltail_lnum);
-int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum);
-int ubifs_consolidate_log(struct ubifs_info *c);
-
-/* journal.c */
-int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
- const struct qstr *nm, const struct inode *inode,
- int deletion, int xent);
-int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
- const union ubifs_key *key, const void *buf, int len);
-int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode);
-int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode);
-int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
- const struct dentry *old_dentry,
- const struct inode *new_dir,
- const struct dentry *new_dentry, int sync);
-int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
- loff_t old_size, loff_t new_size);
-int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
- const struct inode *inode, const struct qstr *nm);
-int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode1,
- const struct inode *inode2);
-
-/* budget.c */
-int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req);
-void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req);
-void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
- struct ubifs_inode *ui);
-int ubifs_budget_inode_op(struct ubifs_info *c, struct inode *inode,
- struct ubifs_budget_req *req);
-void ubifs_release_ino_dirty(struct ubifs_info *c, struct inode *inode,
- struct ubifs_budget_req *req);
-void ubifs_cancel_ino_op(struct ubifs_info *c, struct inode *inode,
- struct ubifs_budget_req *req);
-long long ubifs_get_free_space(struct ubifs_info *c);
-long long ubifs_get_free_space_nolock(struct ubifs_info *c);
-int ubifs_calc_min_idx_lebs(struct ubifs_info *c);
-void ubifs_convert_page_budget(struct ubifs_info *c);
-long long ubifs_reported_space(const struct ubifs_info *c, long long free);
-long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs);
-
-/* find.c */
-int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
- int squeeze);
-int ubifs_find_free_leb_for_idx(struct ubifs_info *c);
-int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
- int min_space, int pick_free);
-int ubifs_find_dirty_idx_leb(struct ubifs_info *c);
-int ubifs_save_dirty_idx_lnums(struct ubifs_info *c);
-
-/* tnc.c */
-int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
- struct ubifs_znode **zn, int *n);
-int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
- void *node, const struct qstr *nm);
-int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
- void *node, int *lnum, int *offs);
-int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
- int offs, int len);
-int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
- int old_lnum, int old_offs, int lnum, int offs, int len);
-int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
- int lnum, int offs, int len, const struct qstr *nm);
-int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key);
-int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
- const struct qstr *nm);
-int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
- union ubifs_key *to_key);
-int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum);
-struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
- union ubifs_key *key,
- const struct qstr *nm);
-void ubifs_tnc_close(struct ubifs_info *c);
-int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
- int lnum, int offs, int is_idx);
-int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
- int lnum, int offs);
-/* Shared by tnc.c for tnc_commit.c */
-void destroy_old_idx(struct ubifs_info *c);
-int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
- int lnum, int offs);
-int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode);
-int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu);
-int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu);
-
-/* tnc_misc.c */
-struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
- struct ubifs_znode *znode);
-int ubifs_search_zbranch(const struct ubifs_info *c,
- const struct ubifs_znode *znode,
- const union ubifs_key *key, int *n);
-struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode);
-struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode);
-long ubifs_destroy_tnc_subtree(struct ubifs_znode *zr);
-struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
- struct ubifs_zbranch *zbr,
- struct ubifs_znode *parent, int iip);
-int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
- void *node);
-
-/* tnc_commit.c */
-int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot);
-int ubifs_tnc_end_commit(struct ubifs_info *c);
-
-/* shrinker.c */
-int ubifs_shrinker(struct shrinker *shrink, struct shrink_control *sc);
-
-/* commit.c */
-int ubifs_bg_thread(void *info);
-void ubifs_commit_required(struct ubifs_info *c);
-void ubifs_request_bg_commit(struct ubifs_info *c);
-int ubifs_run_commit(struct ubifs_info *c);
-void ubifs_recovery_commit(struct ubifs_info *c);
-int ubifs_gc_should_commit(struct ubifs_info *c);
-void ubifs_wait_for_commit(struct ubifs_info *c);
-
-/* master.c */
-int ubifs_read_master(struct ubifs_info *c);
-int ubifs_write_master(struct ubifs_info *c);
-
-/* sb.c */
-int ubifs_read_superblock(struct ubifs_info *c);
-struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c);
-int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup);
-int ubifs_fixup_free_space(struct ubifs_info *c);
-
-/* replay.c */
-int ubifs_validate_entry(struct ubifs_info *c,
- const struct ubifs_dent_node *dent);
-int ubifs_replay_journal(struct ubifs_info *c);
-
-/* gc.c */
-int ubifs_garbage_collect(struct ubifs_info *c, int anyway);
-int ubifs_gc_start_commit(struct ubifs_info *c);
-int ubifs_gc_end_commit(struct ubifs_info *c);
-void ubifs_destroy_idx_gc(struct ubifs_info *c);
-int ubifs_get_idx_gc_leb(struct ubifs_info *c);
-int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp);
-
-/* orphan.c */
-int ubifs_add_orphan(struct ubifs_info *c, ino_t inum);
-void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum);
-int ubifs_orphan_start_commit(struct ubifs_info *c);
-int ubifs_orphan_end_commit(struct ubifs_info *c);
-int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only);
-int ubifs_clear_orphans(struct ubifs_info *c);
-
-/* lpt.c */
-int ubifs_calc_lpt_geom(struct ubifs_info *c);
-int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
- int *lpt_lebs, int *big_lpt);
-int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr);
-struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum);
-struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum);
-int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
- ubifs_lpt_scan_callback scan_cb, void *data);
-
-/* Shared by lpt.c for lpt_commit.c */
-void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave);
-void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
- struct ubifs_lpt_lprops *ltab);
-void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
- struct ubifs_pnode *pnode);
-void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
- struct ubifs_nnode *nnode);
-struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
- struct ubifs_nnode *parent, int iip);
-struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
- struct ubifs_nnode *parent, int iip);
-int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip);
-void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty);
-void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode);
-uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits);
-struct ubifs_nnode *ubifs_first_nnode(struct ubifs_info *c, int *hght);
-/* Needed only in debugging code in lpt_commit.c */
-int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
- struct ubifs_nnode *nnode);
-
-/* lpt_commit.c */
-int ubifs_lpt_start_commit(struct ubifs_info *c);
-int ubifs_lpt_end_commit(struct ubifs_info *c);
-int ubifs_lpt_post_commit(struct ubifs_info *c);
-void ubifs_lpt_free(struct ubifs_info *c, int wr_only);
-
-/* lprops.c */
-const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
- const struct ubifs_lprops *lp,
- int free, int dirty, int flags,
- int idx_gc_cnt);
-void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst);
-void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
- int cat);
-void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
- struct ubifs_lprops *new_lprops);
-void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops);
-int ubifs_categorize_lprops(const struct ubifs_info *c,
- const struct ubifs_lprops *lprops);
-int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
- int flags_set, int flags_clean, int idx_gc_cnt);
-int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
- int flags_set, int flags_clean);
-int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp);
-const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c);
-const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c);
-const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c);
-const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c);
-int ubifs_calc_dark(const struct ubifs_info *c, int spc);
-
-/* file.c */
-int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync);
-int ubifs_setattr(struct dentry *dentry, struct iattr *attr);
-
-/* dir.c */
-struct inode *ubifs_new_inode(struct ubifs_info *c, const struct inode *dir,
- umode_t mode);
-int ubifs_getattr(struct vfsmount *mnt, struct dentry *dentry,
- struct kstat *stat);
-
-/* xattr.c */
-int ubifs_setxattr(struct dentry *dentry, const char *name,
- const void *value, size_t size, int flags);
-ssize_t ubifs_getxattr(struct dentry *dentry, const char *name, void *buf,
- size_t size);
-ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size);
-int ubifs_removexattr(struct dentry *dentry, const char *name);
-
-/* super.c */
-struct inode *ubifs_iget(struct super_block *sb, unsigned long inum);
-
-/* recovery.c */
-int ubifs_recover_master_node(struct ubifs_info *c);
-int ubifs_write_rcvrd_mst_node(struct ubifs_info *c);
-struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf, int jhead);
-struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
- int offs, void *sbuf);
-int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf);
-int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf);
-int ubifs_rcvry_gc_commit(struct ubifs_info *c);
-int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
- int deletion, loff_t new_size);
-int ubifs_recover_size(struct ubifs_info *c);
-void ubifs_destroy_size_tree(struct ubifs_info *c);
-
-/* ioctl.c */
-long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
-void ubifs_set_inode_flags(struct inode *inode);
-#ifdef CONFIG_COMPAT
-long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
-#endif
-
-/* compressor.c */
-int __init ubifs_compressors_init(void);
-void ubifs_compressors_exit(void);
-void ubifs_compress(const void *in_buf, int in_len, void *out_buf, int *out_len,
- int *compr_type);
-int ubifs_decompress(const void *buf, int len, void *out, int *out_len,
- int compr_type);
-
-#include "debug.h"
-#include "misc.h"
-#include "key.h"
-
-#endif /* !__UBIFS_H__ */
diff --git a/ANDROID_3.4.5/fs/ubifs/xattr.c b/ANDROID_3.4.5/fs/ubifs/xattr.c
deleted file mode 100644
index 85b27226..00000000
--- a/ANDROID_3.4.5/fs/ubifs/xattr.c
+++ /dev/null
@@ -1,570 +0,0 @@
-/*
- * This file is part of UBIFS.
- *
- * Copyright (C) 2006-2008 Nokia Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Authors: Artem Bityutskiy (Битюцкий Артём)
- * Adrian Hunter
- */
-
-/*
- * This file implements UBIFS extended attributes support.
- *
- * Extended attributes are implemented as regular inodes with attached data,
- * which limits extended attribute size to UBIFS block size (4KiB). Names of
- * extended attributes are described by extended attribute entries (xentries),
- * which are almost identical to directory entries, but have different key type.
- *
- * In other words, the situation with extended attributes is very similar to
- * directories. Indeed, any inode (but of course not xattr inodes) may have a
- * number of associated xentries, just like directory inodes have associated
- * directory entries. Extended attribute entries store the name of the extended
- * attribute, the host inode number, and the extended attribute inode number.
- * Similarly, direntries store the name, the parent and the target inode
- * numbers. Thus, most of the common UBIFS mechanisms may be re-used for
- * extended attributes.
- *
- * The number of extended attributes is not limited, but there is Linux
- * limitation on the maximum possible size of the list of all extended
- * attributes associated with an inode (%XATTR_LIST_MAX), so UBIFS makes sure
- * the sum of all extended attribute names of the inode does not exceed that
- * limit.
- *
- * Extended attributes are synchronous, which means they are written to the
- * flash media synchronously and there is no write-back for extended attribute
- * inodes. The extended attribute values are not stored in compressed form on
- * the media.
- *
- * Since extended attributes are represented by regular inodes, they are cached
- * in the VFS inode cache. The xentries are cached in the LNC cache (see
- * tnc.c).
- *
- * ACL support is not implemented.
- */
-
-#include "ubifs.h"
-#include <linux/fs.h>
-#include <linux/slab.h>
-#include <linux/xattr.h>
-#include <linux/posix_acl_xattr.h>
-
-/*
- * Limit the number of extended attributes per inode so that the total size
- * (@xattr_size) is guaranteeded to fit in an 'unsigned int'.
- */
-#define MAX_XATTRS_PER_INODE 65535
-
-/*
- * Extended attribute type constants.
- *
- * USER_XATTR: user extended attribute ("user.*")
- * TRUSTED_XATTR: trusted extended attribute ("trusted.*)
- * SECURITY_XATTR: security extended attribute ("security.*")
- */
-enum {
- USER_XATTR,
- TRUSTED_XATTR,
- SECURITY_XATTR,
-};
-
-static const struct inode_operations empty_iops;
-static const struct file_operations empty_fops;
-
-/**
- * create_xattr - create an extended attribute.
- * @c: UBIFS file-system description object
- * @host: host inode
- * @nm: extended attribute name
- * @value: extended attribute value
- * @size: size of extended attribute value
- *
- * This is a helper function which creates an extended attribute of name @nm
- * and value @value for inode @host. The host inode is also updated on flash
- * because the ctime and extended attribute accounting data changes. This
- * function returns zero in case of success and a negative error code in case
- * of failure.
- */
-static int create_xattr(struct ubifs_info *c, struct inode *host,
- const struct qstr *nm, const void *value, int size)
-{
- int err;
- struct inode *inode;
- struct ubifs_inode *ui, *host_ui = ubifs_inode(host);
- struct ubifs_budget_req req = { .new_ino = 1, .new_dent = 1,
- .new_ino_d = ALIGN(size, 8), .dirtied_ino = 1,
- .dirtied_ino_d = ALIGN(host_ui->data_len, 8) };
-
- if (host_ui->xattr_cnt >= MAX_XATTRS_PER_INODE)
- return -ENOSPC;
- /*
- * Linux limits the maximum size of the extended attribute names list
- * to %XATTR_LIST_MAX. This means we should not allow creating more
- * extended attributes if the name list becomes larger. This limitation
- * is artificial for UBIFS, though.
- */
- if (host_ui->xattr_names + host_ui->xattr_cnt +
- nm->len + 1 > XATTR_LIST_MAX)
- return -ENOSPC;
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- inode = ubifs_new_inode(c, host, S_IFREG | S_IRWXUGO);
- if (IS_ERR(inode)) {
- err = PTR_ERR(inode);
- goto out_budg;
- }
-
- /* Re-define all operations to be "nothing" */
- inode->i_mapping->a_ops = &empty_aops;
- inode->i_op = &empty_iops;
- inode->i_fop = &empty_fops;
-
- inode->i_flags |= S_SYNC | S_NOATIME | S_NOCMTIME | S_NOQUOTA;
- ui = ubifs_inode(inode);
- ui->xattr = 1;
- ui->flags |= UBIFS_XATTR_FL;
- ui->data = kmemdup(value, size, GFP_NOFS);
- if (!ui->data) {
- err = -ENOMEM;
- goto out_free;
- }
- inode->i_size = ui->ui_size = size;
- ui->data_len = size;
-
- mutex_lock(&host_ui->ui_mutex);
- host->i_ctime = ubifs_current_time(host);
- host_ui->xattr_cnt += 1;
- host_ui->xattr_size += CALC_DENT_SIZE(nm->len);
- host_ui->xattr_size += CALC_XATTR_BYTES(size);
- host_ui->xattr_names += nm->len;
-
- err = ubifs_jnl_update(c, host, nm, inode, 0, 1);
- if (err)
- goto out_cancel;
- mutex_unlock(&host_ui->ui_mutex);
-
- ubifs_release_budget(c, &req);
- insert_inode_hash(inode);
- iput(inode);
- return 0;
-
-out_cancel:
- host_ui->xattr_cnt -= 1;
- host_ui->xattr_size -= CALC_DENT_SIZE(nm->len);
- host_ui->xattr_size -= CALC_XATTR_BYTES(size);
- mutex_unlock(&host_ui->ui_mutex);
-out_free:
- make_bad_inode(inode);
- iput(inode);
-out_budg:
- ubifs_release_budget(c, &req);
- return err;
-}
-
-/**
- * change_xattr - change an extended attribute.
- * @c: UBIFS file-system description object
- * @host: host inode
- * @inode: extended attribute inode
- * @value: extended attribute value
- * @size: size of extended attribute value
- *
- * This helper function changes the value of extended attribute @inode with new
- * data from @value. Returns zero in case of success and a negative error code
- * in case of failure.
- */
-static int change_xattr(struct ubifs_info *c, struct inode *host,
- struct inode *inode, const void *value, int size)
-{
- int err;
- struct ubifs_inode *host_ui = ubifs_inode(host);
- struct ubifs_inode *ui = ubifs_inode(inode);
- struct ubifs_budget_req req = { .dirtied_ino = 2,
- .dirtied_ino_d = ALIGN(size, 8) + ALIGN(host_ui->data_len, 8) };
-
- ubifs_assert(ui->data_len == inode->i_size);
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- kfree(ui->data);
- ui->data = kmemdup(value, size, GFP_NOFS);
- if (!ui->data) {
- err = -ENOMEM;
- goto out_free;
- }
- inode->i_size = ui->ui_size = size;
- ui->data_len = size;
-
- mutex_lock(&host_ui->ui_mutex);
- host->i_ctime = ubifs_current_time(host);
- host_ui->xattr_size -= CALC_XATTR_BYTES(ui->data_len);
- host_ui->xattr_size += CALC_XATTR_BYTES(size);
-
- /*
- * It is important to write the host inode after the xattr inode
- * because if the host inode gets synchronized (via 'fsync()'), then
- * the extended attribute inode gets synchronized, because it goes
- * before the host inode in the write-buffer.
- */
- err = ubifs_jnl_change_xattr(c, inode, host);
- if (err)
- goto out_cancel;
- mutex_unlock(&host_ui->ui_mutex);
-
- ubifs_release_budget(c, &req);
- return 0;
-
-out_cancel:
- host_ui->xattr_size -= CALC_XATTR_BYTES(size);
- host_ui->xattr_size += CALC_XATTR_BYTES(ui->data_len);
- mutex_unlock(&host_ui->ui_mutex);
- make_bad_inode(inode);
-out_free:
- ubifs_release_budget(c, &req);
- return err;
-}
-
-/**
- * check_namespace - check extended attribute name-space.
- * @nm: extended attribute name
- *
- * This function makes sure the extended attribute name belongs to one of the
- * supported extended attribute name-spaces. Returns name-space index in case
- * of success and a negative error code in case of failure.
- */
-static int check_namespace(const struct qstr *nm)
-{
- int type;
-
- if (nm->len > UBIFS_MAX_NLEN)
- return -ENAMETOOLONG;
-
- if (!strncmp(nm->name, XATTR_TRUSTED_PREFIX,
- XATTR_TRUSTED_PREFIX_LEN)) {
- if (nm->name[sizeof(XATTR_TRUSTED_PREFIX) - 1] == '\0')
- return -EINVAL;
- type = TRUSTED_XATTR;
- } else if (!strncmp(nm->name, XATTR_USER_PREFIX,
- XATTR_USER_PREFIX_LEN)) {
- if (nm->name[XATTR_USER_PREFIX_LEN] == '\0')
- return -EINVAL;
- type = USER_XATTR;
- } else if (!strncmp(nm->name, XATTR_SECURITY_PREFIX,
- XATTR_SECURITY_PREFIX_LEN)) {
- if (nm->name[sizeof(XATTR_SECURITY_PREFIX) - 1] == '\0')
- return -EINVAL;
- type = SECURITY_XATTR;
- } else
- return -EOPNOTSUPP;
-
- return type;
-}
-
-static struct inode *iget_xattr(struct ubifs_info *c, ino_t inum)
-{
- struct inode *inode;
-
- inode = ubifs_iget(c->vfs_sb, inum);
- if (IS_ERR(inode)) {
- ubifs_err("dead extended attribute entry, error %d",
- (int)PTR_ERR(inode));
- return inode;
- }
- if (ubifs_inode(inode)->xattr)
- return inode;
- ubifs_err("corrupt extended attribute entry");
- iput(inode);
- return ERR_PTR(-EINVAL);
-}
-
-int ubifs_setxattr(struct dentry *dentry, const char *name,
- const void *value, size_t size, int flags)
-{
- struct inode *inode, *host = dentry->d_inode;
- struct ubifs_info *c = host->i_sb->s_fs_info;
- struct qstr nm = { .name = name, .len = strlen(name) };
- struct ubifs_dent_node *xent;
- union ubifs_key key;
- int err, type;
-
- dbg_gen("xattr '%s', host ino %lu ('%.*s'), size %zd", name,
- host->i_ino, dentry->d_name.len, dentry->d_name.name, size);
- ubifs_assert(mutex_is_locked(&host->i_mutex));
-
- if (size > UBIFS_MAX_INO_DATA)
- return -ERANGE;
-
- type = check_namespace(&nm);
- if (type < 0)
- return type;
-
- xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS);
- if (!xent)
- return -ENOMEM;
-
- /*
- * The extended attribute entries are stored in LNC, so multiple
- * look-ups do not involve reading the flash.
- */
- xent_key_init(c, &key, host->i_ino, &nm);
- err = ubifs_tnc_lookup_nm(c, &key, xent, &nm);
- if (err) {
- if (err != -ENOENT)
- goto out_free;
-
- if (flags & XATTR_REPLACE)
- /* We are asked not to create the xattr */
- err = -ENODATA;
- else
- err = create_xattr(c, host, &nm, value, size);
- goto out_free;
- }
-
- if (flags & XATTR_CREATE) {
- /* We are asked not to replace the xattr */
- err = -EEXIST;
- goto out_free;
- }
-
- inode = iget_xattr(c, le64_to_cpu(xent->inum));
- if (IS_ERR(inode)) {
- err = PTR_ERR(inode);
- goto out_free;
- }
-
- err = change_xattr(c, host, inode, value, size);
- iput(inode);
-
-out_free:
- kfree(xent);
- return err;
-}
-
-ssize_t ubifs_getxattr(struct dentry *dentry, const char *name, void *buf,
- size_t size)
-{
- struct inode *inode, *host = dentry->d_inode;
- struct ubifs_info *c = host->i_sb->s_fs_info;
- struct qstr nm = { .name = name, .len = strlen(name) };
- struct ubifs_inode *ui;
- struct ubifs_dent_node *xent;
- union ubifs_key key;
- int err;
-
- dbg_gen("xattr '%s', ino %lu ('%.*s'), buf size %zd", name,
- host->i_ino, dentry->d_name.len, dentry->d_name.name, size);
-
- err = check_namespace(&nm);
- if (err < 0)
- return err;
-
- xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS);
- if (!xent)
- return -ENOMEM;
-
- xent_key_init(c, &key, host->i_ino, &nm);
- err = ubifs_tnc_lookup_nm(c, &key, xent, &nm);
- if (err) {
- if (err == -ENOENT)
- err = -ENODATA;
- goto out_unlock;
- }
-
- inode = iget_xattr(c, le64_to_cpu(xent->inum));
- if (IS_ERR(inode)) {
- err = PTR_ERR(inode);
- goto out_unlock;
- }
-
- ui = ubifs_inode(inode);
- ubifs_assert(inode->i_size == ui->data_len);
- ubifs_assert(ubifs_inode(host)->xattr_size > ui->data_len);
-
- if (buf) {
- /* If @buf is %NULL we are supposed to return the length */
- if (ui->data_len > size) {
- dbg_err("buffer size %zd, xattr len %d",
- size, ui->data_len);
- err = -ERANGE;
- goto out_iput;
- }
-
- memcpy(buf, ui->data, ui->data_len);
- }
- err = ui->data_len;
-
-out_iput:
- iput(inode);
-out_unlock:
- kfree(xent);
- return err;
-}
-
-ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size)
-{
- union ubifs_key key;
- struct inode *host = dentry->d_inode;
- struct ubifs_info *c = host->i_sb->s_fs_info;
- struct ubifs_inode *host_ui = ubifs_inode(host);
- struct ubifs_dent_node *xent, *pxent = NULL;
- int err, len, written = 0;
- struct qstr nm = { .name = NULL };
-
- dbg_gen("ino %lu ('%.*s'), buffer size %zd", host->i_ino,
- dentry->d_name.len, dentry->d_name.name, size);
-
- len = host_ui->xattr_names + host_ui->xattr_cnt;
- if (!buffer)
- /*
- * We should return the minimum buffer size which will fit a
- * null-terminated list of all the extended attribute names.
- */
- return len;
-
- if (len > size)
- return -ERANGE;
-
- lowest_xent_key(c, &key, host->i_ino);
- while (1) {
- int type;
-
- xent = ubifs_tnc_next_ent(c, &key, &nm);
- if (IS_ERR(xent)) {
- err = PTR_ERR(xent);
- break;
- }
-
- nm.name = xent->name;
- nm.len = le16_to_cpu(xent->nlen);
-
- type = check_namespace(&nm);
- if (unlikely(type < 0)) {
- err = type;
- break;
- }
-
- /* Show trusted namespace only for "power" users */
- if (type != TRUSTED_XATTR || capable(CAP_SYS_ADMIN)) {
- memcpy(buffer + written, nm.name, nm.len + 1);
- written += nm.len + 1;
- }
-
- kfree(pxent);
- pxent = xent;
- key_read(c, &xent->key, &key);
- }
-
- kfree(pxent);
- if (err != -ENOENT) {
- ubifs_err("cannot find next direntry, error %d", err);
- return err;
- }
-
- ubifs_assert(written <= size);
- return written;
-}
-
-static int remove_xattr(struct ubifs_info *c, struct inode *host,
- struct inode *inode, const struct qstr *nm)
-{
- int err;
- struct ubifs_inode *host_ui = ubifs_inode(host);
- struct ubifs_inode *ui = ubifs_inode(inode);
- struct ubifs_budget_req req = { .dirtied_ino = 2, .mod_dent = 1,
- .dirtied_ino_d = ALIGN(host_ui->data_len, 8) };
-
- ubifs_assert(ui->data_len == inode->i_size);
-
- err = ubifs_budget_space(c, &req);
- if (err)
- return err;
-
- mutex_lock(&host_ui->ui_mutex);
- host->i_ctime = ubifs_current_time(host);
- host_ui->xattr_cnt -= 1;
- host_ui->xattr_size -= CALC_DENT_SIZE(nm->len);
- host_ui->xattr_size -= CALC_XATTR_BYTES(ui->data_len);
- host_ui->xattr_names -= nm->len;
-
- err = ubifs_jnl_delete_xattr(c, host, inode, nm);
- if (err)
- goto out_cancel;
- mutex_unlock(&host_ui->ui_mutex);
-
- ubifs_release_budget(c, &req);
- return 0;
-
-out_cancel:
- host_ui->xattr_cnt += 1;
- host_ui->xattr_size += CALC_DENT_SIZE(nm->len);
- host_ui->xattr_size += CALC_XATTR_BYTES(ui->data_len);
- mutex_unlock(&host_ui->ui_mutex);
- ubifs_release_budget(c, &req);
- make_bad_inode(inode);
- return err;
-}
-
-int ubifs_removexattr(struct dentry *dentry, const char *name)
-{
- struct inode *inode, *host = dentry->d_inode;
- struct ubifs_info *c = host->i_sb->s_fs_info;
- struct qstr nm = { .name = name, .len = strlen(name) };
- struct ubifs_dent_node *xent;
- union ubifs_key key;
- int err;
-
- dbg_gen("xattr '%s', ino %lu ('%.*s')", name,
- host->i_ino, dentry->d_name.len, dentry->d_name.name);
- ubifs_assert(mutex_is_locked(&host->i_mutex));
-
- err = check_namespace(&nm);
- if (err < 0)
- return err;
-
- xent = kmalloc(UBIFS_MAX_XENT_NODE_SZ, GFP_NOFS);
- if (!xent)
- return -ENOMEM;
-
- xent_key_init(c, &key, host->i_ino, &nm);
- err = ubifs_tnc_lookup_nm(c, &key, xent, &nm);
- if (err) {
- if (err == -ENOENT)
- err = -ENODATA;
- goto out_free;
- }
-
- inode = iget_xattr(c, le64_to_cpu(xent->inum));
- if (IS_ERR(inode)) {
- err = PTR_ERR(inode);
- goto out_free;
- }
-
- ubifs_assert(inode->i_nlink == 1);
- clear_nlink(inode);
- err = remove_xattr(c, host, inode, &nm);
- if (err)
- set_nlink(inode, 1);
-
- /* If @i_nlink is 0, 'iput()' will delete the inode */
- iput(inode);
-
-out_free:
- kfree(xent);
- return err;
-}