summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/fs/squashfs/cache.c
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/fs/squashfs/cache.c')
-rw-r--r--ANDROID_3.4.5/fs/squashfs/cache.c440
1 files changed, 0 insertions, 440 deletions
diff --git a/ANDROID_3.4.5/fs/squashfs/cache.c b/ANDROID_3.4.5/fs/squashfs/cache.c
deleted file mode 100644
index af0b7380..00000000
--- a/ANDROID_3.4.5/fs/squashfs/cache.c
+++ /dev/null
@@ -1,440 +0,0 @@
-/*
- * Squashfs - a compressed read only filesystem for Linux
- *
- * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
- * Phillip Lougher <phillip@squashfs.org.uk>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2,
- * or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * cache.c
- */
-
-/*
- * Blocks in Squashfs are compressed. To avoid repeatedly decompressing
- * recently accessed data Squashfs uses two small metadata and fragment caches.
- *
- * This file implements a generic cache implementation used for both caches,
- * plus functions layered ontop of the generic cache implementation to
- * access the metadata and fragment caches.
- *
- * To avoid out of memory and fragmentation issues with vmalloc the cache
- * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
- *
- * It should be noted that the cache is not used for file datablocks, these
- * are decompressed and cached in the page-cache in the normal way. The
- * cache is only used to temporarily cache fragment and metadata blocks
- * which have been read as as a result of a metadata (i.e. inode or
- * directory) or fragment access. Because metadata and fragments are packed
- * together into blocks (to gain greater compression) the read of a particular
- * piece of metadata or fragment will retrieve other metadata/fragments which
- * have been packed with it, these because of locality-of-reference may be read
- * in the near future. Temporarily caching them ensures they are available for
- * near future access without requiring an additional read and decompress.
- */
-
-#include <linux/fs.h>
-#include <linux/vfs.h>
-#include <linux/slab.h>
-#include <linux/vmalloc.h>
-#include <linux/sched.h>
-#include <linux/spinlock.h>
-#include <linux/wait.h>
-#include <linux/pagemap.h>
-
-#include "squashfs_fs.h"
-#include "squashfs_fs_sb.h"
-#include "squashfs.h"
-
-/*
- * Look-up block in cache, and increment usage count. If not in cache, read
- * and decompress it from disk.
- */
-struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
- struct squashfs_cache *cache, u64 block, int length)
-{
- int i, n;
- struct squashfs_cache_entry *entry;
-
- spin_lock(&cache->lock);
-
- while (1) {
- for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
- if (cache->entry[i].block == block) {
- cache->curr_blk = i;
- break;
- }
- i = (i + 1) % cache->entries;
- }
-
- if (n == cache->entries) {
- /*
- * Block not in cache, if all cache entries are used
- * go to sleep waiting for one to become available.
- */
- if (cache->unused == 0) {
- cache->num_waiters++;
- spin_unlock(&cache->lock);
- wait_event(cache->wait_queue, cache->unused);
- spin_lock(&cache->lock);
- cache->num_waiters--;
- continue;
- }
-
- /*
- * At least one unused cache entry. A simple
- * round-robin strategy is used to choose the entry to
- * be evicted from the cache.
- */
- i = cache->next_blk;
- for (n = 0; n < cache->entries; n++) {
- if (cache->entry[i].refcount == 0)
- break;
- i = (i + 1) % cache->entries;
- }
-
- cache->next_blk = (i + 1) % cache->entries;
- entry = &cache->entry[i];
-
- /*
- * Initialise chosen cache entry, and fill it in from
- * disk.
- */
- cache->unused--;
- entry->block = block;
- entry->refcount = 1;
- entry->pending = 1;
- entry->num_waiters = 0;
- entry->error = 0;
- spin_unlock(&cache->lock);
-
- entry->length = squashfs_read_data(sb, entry->data,
- block, length, &entry->next_index,
- cache->block_size, cache->pages);
-
- spin_lock(&cache->lock);
-
- if (entry->length < 0)
- entry->error = entry->length;
-
- entry->pending = 0;
-
- /*
- * While filling this entry one or more other processes
- * have looked it up in the cache, and have slept
- * waiting for it to become available.
- */
- if (entry->num_waiters) {
- spin_unlock(&cache->lock);
- wake_up_all(&entry->wait_queue);
- } else
- spin_unlock(&cache->lock);
-
- goto out;
- }
-
- /*
- * Block already in cache. Increment refcount so it doesn't
- * get reused until we're finished with it, if it was
- * previously unused there's one less cache entry available
- * for reuse.
- */
- entry = &cache->entry[i];
- if (entry->refcount == 0)
- cache->unused--;
- entry->refcount++;
-
- /*
- * If the entry is currently being filled in by another process
- * go to sleep waiting for it to become available.
- */
- if (entry->pending) {
- entry->num_waiters++;
- spin_unlock(&cache->lock);
- wait_event(entry->wait_queue, !entry->pending);
- } else
- spin_unlock(&cache->lock);
-
- goto out;
- }
-
-out:
- TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
- cache->name, i, entry->block, entry->refcount, entry->error);
-
- if (entry->error)
- ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
- block);
- return entry;
-}
-
-
-/*
- * Release cache entry, once usage count is zero it can be reused.
- */
-void squashfs_cache_put(struct squashfs_cache_entry *entry)
-{
- struct squashfs_cache *cache = entry->cache;
-
- spin_lock(&cache->lock);
- entry->refcount--;
- if (entry->refcount == 0) {
- cache->unused++;
- /*
- * If there's any processes waiting for a block to become
- * available, wake one up.
- */
- if (cache->num_waiters) {
- spin_unlock(&cache->lock);
- wake_up(&cache->wait_queue);
- return;
- }
- }
- spin_unlock(&cache->lock);
-}
-
-/*
- * Delete cache reclaiming all kmalloced buffers.
- */
-void squashfs_cache_delete(struct squashfs_cache *cache)
-{
- int i, j;
-
- if (cache == NULL)
- return;
-
- for (i = 0; i < cache->entries; i++) {
- if (cache->entry[i].data) {
- for (j = 0; j < cache->pages; j++)
- kfree(cache->entry[i].data[j]);
- kfree(cache->entry[i].data);
- }
- }
-
- kfree(cache->entry);
- kfree(cache);
-}
-
-
-/*
- * Initialise cache allocating the specified number of entries, each of
- * size block_size. To avoid vmalloc fragmentation issues each entry
- * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
- */
-struct squashfs_cache *squashfs_cache_init(char *name, int entries,
- int block_size)
-{
- int i, j;
- struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
-
- if (cache == NULL) {
- ERROR("Failed to allocate %s cache\n", name);
- return NULL;
- }
-
- cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
- if (cache->entry == NULL) {
- ERROR("Failed to allocate %s cache\n", name);
- goto cleanup;
- }
-
- cache->curr_blk = 0;
- cache->next_blk = 0;
- cache->unused = entries;
- cache->entries = entries;
- cache->block_size = block_size;
- cache->pages = block_size >> PAGE_CACHE_SHIFT;
- cache->pages = cache->pages ? cache->pages : 1;
- cache->name = name;
- cache->num_waiters = 0;
- spin_lock_init(&cache->lock);
- init_waitqueue_head(&cache->wait_queue);
-
- for (i = 0; i < entries; i++) {
- struct squashfs_cache_entry *entry = &cache->entry[i];
-
- init_waitqueue_head(&cache->entry[i].wait_queue);
- entry->cache = cache;
- entry->block = SQUASHFS_INVALID_BLK;
- entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
- if (entry->data == NULL) {
- ERROR("Failed to allocate %s cache entry\n", name);
- goto cleanup;
- }
-
- for (j = 0; j < cache->pages; j++) {
- entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
- if (entry->data[j] == NULL) {
- ERROR("Failed to allocate %s buffer\n", name);
- goto cleanup;
- }
- }
- }
-
- return cache;
-
-cleanup:
- squashfs_cache_delete(cache);
- return NULL;
-}
-
-
-/*
- * Copy up to length bytes from cache entry to buffer starting at offset bytes
- * into the cache entry. If there's not length bytes then copy the number of
- * bytes available. In all cases return the number of bytes copied.
- */
-int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
- int offset, int length)
-{
- int remaining = length;
-
- if (length == 0)
- return 0;
- else if (buffer == NULL)
- return min(length, entry->length - offset);
-
- while (offset < entry->length) {
- void *buff = entry->data[offset / PAGE_CACHE_SIZE]
- + (offset % PAGE_CACHE_SIZE);
- int bytes = min_t(int, entry->length - offset,
- PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
-
- if (bytes >= remaining) {
- memcpy(buffer, buff, remaining);
- remaining = 0;
- break;
- }
-
- memcpy(buffer, buff, bytes);
- buffer += bytes;
- remaining -= bytes;
- offset += bytes;
- }
-
- return length - remaining;
-}
-
-
-/*
- * Read length bytes from metadata position <block, offset> (block is the
- * start of the compressed block on disk, and offset is the offset into
- * the block once decompressed). Data is packed into consecutive blocks,
- * and length bytes may require reading more than one block.
- */
-int squashfs_read_metadata(struct super_block *sb, void *buffer,
- u64 *block, int *offset, int length)
-{
- struct squashfs_sb_info *msblk = sb->s_fs_info;
- int bytes, res = length;
- struct squashfs_cache_entry *entry;
-
- TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
-
- while (length) {
- entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
- if (entry->error) {
- res = entry->error;
- goto error;
- } else if (*offset >= entry->length) {
- res = -EIO;
- goto error;
- }
-
- bytes = squashfs_copy_data(buffer, entry, *offset, length);
- if (buffer)
- buffer += bytes;
- length -= bytes;
- *offset += bytes;
-
- if (*offset == entry->length) {
- *block = entry->next_index;
- *offset = 0;
- }
-
- squashfs_cache_put(entry);
- }
-
- return res;
-
-error:
- squashfs_cache_put(entry);
- return res;
-}
-
-
-/*
- * Look-up in the fragmment cache the fragment located at <start_block> in the
- * filesystem. If necessary read and decompress it from disk.
- */
-struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
- u64 start_block, int length)
-{
- struct squashfs_sb_info *msblk = sb->s_fs_info;
-
- return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
- length);
-}
-
-
-/*
- * Read and decompress the datablock located at <start_block> in the
- * filesystem. The cache is used here to avoid duplicating locking and
- * read/decompress code.
- */
-struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
- u64 start_block, int length)
-{
- struct squashfs_sb_info *msblk = sb->s_fs_info;
-
- return squashfs_cache_get(sb, msblk->read_page, start_block, length);
-}
-
-
-/*
- * Read a filesystem table (uncompressed sequence of bytes) from disk
- */
-void *squashfs_read_table(struct super_block *sb, u64 block, int length)
-{
- int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- int i, res;
- void *table, *buffer, **data;
-
- table = buffer = kmalloc(length, GFP_KERNEL);
- if (table == NULL)
- return ERR_PTR(-ENOMEM);
-
- data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
- if (data == NULL) {
- res = -ENOMEM;
- goto failed;
- }
-
- for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
- data[i] = buffer;
-
- res = squashfs_read_data(sb, data, block, length |
- SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages);
-
- kfree(data);
-
- if (res < 0)
- goto failed;
-
- return table;
-
-failed:
- kfree(table);
- return ERR_PTR(res);
-}