summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/drivers/spi/spi.c
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/drivers/spi/spi.c')
-rw-r--r--ANDROID_3.4.5/drivers/spi/spi.c1480
1 files changed, 0 insertions, 1480 deletions
diff --git a/ANDROID_3.4.5/drivers/spi/spi.c b/ANDROID_3.4.5/drivers/spi/spi.c
deleted file mode 100644
index 3d8f662e..00000000
--- a/ANDROID_3.4.5/drivers/spi/spi.c
+++ /dev/null
@@ -1,1480 +0,0 @@
-/*
- * SPI init/core code
- *
- * Copyright (C) 2005 David Brownell
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-#include <linux/kernel.h>
-#include <linux/device.h>
-#include <linux/init.h>
-#include <linux/cache.h>
-#include <linux/mutex.h>
-#include <linux/of_device.h>
-#include <linux/slab.h>
-#include <linux/mod_devicetable.h>
-#include <linux/spi/spi.h>
-#include <linux/of_spi.h>
-#include <linux/pm_runtime.h>
-#include <linux/export.h>
-#include <linux/sched.h>
-#include <linux/delay.h>
-#include <linux/kthread.h>
-
-static void spidev_release(struct device *dev)
-{
- struct spi_device *spi = to_spi_device(dev);
-
- /* spi masters may cleanup for released devices */
- if (spi->master->cleanup)
- spi->master->cleanup(spi);
-
- spi_master_put(spi->master);
- kfree(spi);
-}
-
-static ssize_t
-modalias_show(struct device *dev, struct device_attribute *a, char *buf)
-{
- const struct spi_device *spi = to_spi_device(dev);
-
- return sprintf(buf, "%s\n", spi->modalias);
-}
-
-static struct device_attribute spi_dev_attrs[] = {
- __ATTR_RO(modalias),
- __ATTR_NULL,
-};
-
-/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
- * and the sysfs version makes coldplug work too.
- */
-
-static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
- const struct spi_device *sdev)
-{
- while (id->name[0]) {
- if (!strcmp(sdev->modalias, id->name))
- return id;
- id++;
- }
- return NULL;
-}
-
-const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
-{
- const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
-
- return spi_match_id(sdrv->id_table, sdev);
-}
-EXPORT_SYMBOL_GPL(spi_get_device_id);
-
-static int spi_match_device(struct device *dev, struct device_driver *drv)
-{
- const struct spi_device *spi = to_spi_device(dev);
- const struct spi_driver *sdrv = to_spi_driver(drv);
-
- /* Attempt an OF style match */
- if (of_driver_match_device(dev, drv))
- return 1;
-
- if (sdrv->id_table)
- return !!spi_match_id(sdrv->id_table, spi);
-
- return strcmp(spi->modalias, drv->name) == 0;
-}
-
-static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
-{
- const struct spi_device *spi = to_spi_device(dev);
-
- add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
- return 0;
-}
-
-#ifdef CONFIG_PM_SLEEP
-static int spi_legacy_suspend(struct device *dev, pm_message_t message)
-{
- int value = 0;
- struct spi_driver *drv = to_spi_driver(dev->driver);
-
- /* suspend will stop irqs and dma; no more i/o */
- if (drv) {
- if (drv->suspend)
- value = drv->suspend(to_spi_device(dev), message);
- else
- dev_dbg(dev, "... can't suspend\n");
- }
- return value;
-}
-
-static int spi_legacy_resume(struct device *dev)
-{
- int value = 0;
- struct spi_driver *drv = to_spi_driver(dev->driver);
-
- /* resume may restart the i/o queue */
- if (drv) {
- if (drv->resume)
- value = drv->resume(to_spi_device(dev));
- else
- dev_dbg(dev, "... can't resume\n");
- }
- return value;
-}
-
-static int spi_pm_suspend(struct device *dev)
-{
- const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
-
- if (pm)
- return pm_generic_suspend(dev);
- else
- return spi_legacy_suspend(dev, PMSG_SUSPEND);
-}
-
-static int spi_pm_resume(struct device *dev)
-{
- const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
-
- if (pm)
- return pm_generic_resume(dev);
- else
- return spi_legacy_resume(dev);
-}
-
-static int spi_pm_freeze(struct device *dev)
-{
- const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
-
- if (pm)
- return pm_generic_freeze(dev);
- else
- return spi_legacy_suspend(dev, PMSG_FREEZE);
-}
-
-static int spi_pm_thaw(struct device *dev)
-{
- const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
-
- if (pm)
- return pm_generic_thaw(dev);
- else
- return spi_legacy_resume(dev);
-}
-
-static int spi_pm_poweroff(struct device *dev)
-{
- const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
-
- if (pm)
- return pm_generic_poweroff(dev);
- else
- return spi_legacy_suspend(dev, PMSG_HIBERNATE);
-}
-
-static int spi_pm_restore(struct device *dev)
-{
- const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
-
- if (pm)
- return pm_generic_restore(dev);
- else
- return spi_legacy_resume(dev);
-}
-#else
-#define spi_pm_suspend NULL
-#define spi_pm_resume NULL
-#define spi_pm_freeze NULL
-#define spi_pm_thaw NULL
-#define spi_pm_poweroff NULL
-#define spi_pm_restore NULL
-#endif
-
-static const struct dev_pm_ops spi_pm = {
- .suspend = spi_pm_suspend,
- .resume = spi_pm_resume,
- .freeze = spi_pm_freeze,
- .thaw = spi_pm_thaw,
- .poweroff = spi_pm_poweroff,
- .restore = spi_pm_restore,
- SET_RUNTIME_PM_OPS(
- pm_generic_runtime_suspend,
- pm_generic_runtime_resume,
- pm_generic_runtime_idle
- )
-};
-
-struct bus_type spi_bus_type = {
- .name = "spi",
- .dev_attrs = spi_dev_attrs,
- .match = spi_match_device,
- .uevent = spi_uevent,
- .pm = &spi_pm,
-};
-EXPORT_SYMBOL_GPL(spi_bus_type);
-
-
-static int spi_drv_probe(struct device *dev)
-{
- const struct spi_driver *sdrv = to_spi_driver(dev->driver);
-
- return sdrv->probe(to_spi_device(dev));
-}
-
-static int spi_drv_remove(struct device *dev)
-{
- const struct spi_driver *sdrv = to_spi_driver(dev->driver);
-
- return sdrv->remove(to_spi_device(dev));
-}
-
-static void spi_drv_shutdown(struct device *dev)
-{
- const struct spi_driver *sdrv = to_spi_driver(dev->driver);
-
- sdrv->shutdown(to_spi_device(dev));
-}
-
-/**
- * spi_register_driver - register a SPI driver
- * @sdrv: the driver to register
- * Context: can sleep
- */
-int spi_register_driver(struct spi_driver *sdrv)
-{
- sdrv->driver.bus = &spi_bus_type;
- if (sdrv->probe)
- sdrv->driver.probe = spi_drv_probe;
- if (sdrv->remove)
- sdrv->driver.remove = spi_drv_remove;
- if (sdrv->shutdown)
- sdrv->driver.shutdown = spi_drv_shutdown;
- return driver_register(&sdrv->driver);
-}
-EXPORT_SYMBOL_GPL(spi_register_driver);
-
-/*-------------------------------------------------------------------------*/
-
-/* SPI devices should normally not be created by SPI device drivers; that
- * would make them board-specific. Similarly with SPI master drivers.
- * Device registration normally goes into like arch/.../mach.../board-YYY.c
- * with other readonly (flashable) information about mainboard devices.
- */
-
-struct boardinfo {
- struct list_head list;
- struct spi_board_info board_info;
-};
-
-static LIST_HEAD(board_list);
-static LIST_HEAD(spi_master_list);
-
-/*
- * Used to protect add/del opertion for board_info list and
- * spi_master list, and their matching process
- */
-static DEFINE_MUTEX(board_lock);
-
-/**
- * spi_alloc_device - Allocate a new SPI device
- * @master: Controller to which device is connected
- * Context: can sleep
- *
- * Allows a driver to allocate and initialize a spi_device without
- * registering it immediately. This allows a driver to directly
- * fill the spi_device with device parameters before calling
- * spi_add_device() on it.
- *
- * Caller is responsible to call spi_add_device() on the returned
- * spi_device structure to add it to the SPI master. If the caller
- * needs to discard the spi_device without adding it, then it should
- * call spi_dev_put() on it.
- *
- * Returns a pointer to the new device, or NULL.
- */
-struct spi_device *spi_alloc_device(struct spi_master *master)
-{
- struct spi_device *spi;
- struct device *dev = master->dev.parent;
-
- if (!spi_master_get(master))
- return NULL;
-
- spi = kzalloc(sizeof *spi, GFP_KERNEL);
- if (!spi) {
- dev_err(dev, "cannot alloc spi_device\n");
- spi_master_put(master);
- return NULL;
- }
-
- spi->master = master;
- spi->dev.parent = &master->dev;
- spi->dev.bus = &spi_bus_type;
- spi->dev.release = spidev_release;
- device_initialize(&spi->dev);
- return spi;
-}
-EXPORT_SYMBOL_GPL(spi_alloc_device);
-
-/**
- * spi_add_device - Add spi_device allocated with spi_alloc_device
- * @spi: spi_device to register
- *
- * Companion function to spi_alloc_device. Devices allocated with
- * spi_alloc_device can be added onto the spi bus with this function.
- *
- * Returns 0 on success; negative errno on failure
- */
-int spi_add_device(struct spi_device *spi)
-{
- static DEFINE_MUTEX(spi_add_lock);
- struct device *dev = spi->master->dev.parent;
- struct device *d;
- int status;
-
- /* Chipselects are numbered 0..max; validate. */
- if (spi->chip_select >= spi->master->num_chipselect) {
- dev_err(dev, "cs%d >= max %d\n",
- spi->chip_select,
- spi->master->num_chipselect);
- return -EINVAL;
- }
-
- /* Set the bus ID string */
- dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
- spi->chip_select);
-
-
- /* We need to make sure there's no other device with this
- * chipselect **BEFORE** we call setup(), else we'll trash
- * its configuration. Lock against concurrent add() calls.
- */
- mutex_lock(&spi_add_lock);
-
- d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
- if (d != NULL) {
- dev_err(dev, "chipselect %d already in use\n",
- spi->chip_select);
- put_device(d);
- status = -EBUSY;
- goto done;
- }
-
- /* Drivers may modify this initial i/o setup, but will
- * normally rely on the device being setup. Devices
- * using SPI_CS_HIGH can't coexist well otherwise...
- */
- status = spi_setup(spi);
- if (status < 0) {
- dev_err(dev, "can't setup %s, status %d\n",
- dev_name(&spi->dev), status);
- goto done;
- }
-
- /* Device may be bound to an active driver when this returns */
- status = device_add(&spi->dev);
- if (status < 0)
- dev_err(dev, "can't add %s, status %d\n",
- dev_name(&spi->dev), status);
- else
- dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
-
-done:
- mutex_unlock(&spi_add_lock);
- return status;
-}
-EXPORT_SYMBOL_GPL(spi_add_device);
-
-/**
- * spi_new_device - instantiate one new SPI device
- * @master: Controller to which device is connected
- * @chip: Describes the SPI device
- * Context: can sleep
- *
- * On typical mainboards, this is purely internal; and it's not needed
- * after board init creates the hard-wired devices. Some development
- * platforms may not be able to use spi_register_board_info though, and
- * this is exported so that for example a USB or parport based adapter
- * driver could add devices (which it would learn about out-of-band).
- *
- * Returns the new device, or NULL.
- */
-struct spi_device *spi_new_device(struct spi_master *master,
- struct spi_board_info *chip)
-{
- struct spi_device *proxy;
- int status;
-
- /* NOTE: caller did any chip->bus_num checks necessary.
- *
- * Also, unless we change the return value convention to use
- * error-or-pointer (not NULL-or-pointer), troubleshootability
- * suggests syslogged diagnostics are best here (ugh).
- */
-
- proxy = spi_alloc_device(master);
- if (!proxy)
- return NULL;
-
- WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
-
- proxy->chip_select = chip->chip_select;
- proxy->max_speed_hz = chip->max_speed_hz;
- proxy->mode = chip->mode;
- proxy->irq = chip->irq;
- strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
- proxy->dev.platform_data = (void *) chip->platform_data;
- proxy->controller_data = chip->controller_data;
- proxy->controller_state = NULL;
-
- status = spi_add_device(proxy);
- if (status < 0) {
- spi_dev_put(proxy);
- return NULL;
- }
-
- return proxy;
-}
-EXPORT_SYMBOL_GPL(spi_new_device);
-
-static void spi_match_master_to_boardinfo(struct spi_master *master,
- struct spi_board_info *bi)
-{
- struct spi_device *dev;
-
- if (master->bus_num != bi->bus_num)
- return;
-
- dev = spi_new_device(master, bi);
- if (!dev)
- dev_err(master->dev.parent, "can't create new device for %s\n",
- bi->modalias);
-}
-
-/**
- * spi_register_board_info - register SPI devices for a given board
- * @info: array of chip descriptors
- * @n: how many descriptors are provided
- * Context: can sleep
- *
- * Board-specific early init code calls this (probably during arch_initcall)
- * with segments of the SPI device table. Any device nodes are created later,
- * after the relevant parent SPI controller (bus_num) is defined. We keep
- * this table of devices forever, so that reloading a controller driver will
- * not make Linux forget about these hard-wired devices.
- *
- * Other code can also call this, e.g. a particular add-on board might provide
- * SPI devices through its expansion connector, so code initializing that board
- * would naturally declare its SPI devices.
- *
- * The board info passed can safely be __initdata ... but be careful of
- * any embedded pointers (platform_data, etc), they're copied as-is.
- */
-int __devinit
-spi_register_board_info(struct spi_board_info const *info, unsigned n)
-{
- struct boardinfo *bi;
- int i;
-
- bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
- if (!bi)
- return -ENOMEM;
-
- for (i = 0; i < n; i++, bi++, info++) {
- struct spi_master *master;
-
- memcpy(&bi->board_info, info, sizeof(*info));
- mutex_lock(&board_lock);
- list_add_tail(&bi->list, &board_list);
- list_for_each_entry(master, &spi_master_list, list)
- spi_match_master_to_boardinfo(master, &bi->board_info);
- mutex_unlock(&board_lock);
- }
-
- return 0;
-}
-
-/*-------------------------------------------------------------------------*/
-
-/**
- * spi_pump_messages - kthread work function which processes spi message queue
- * @work: pointer to kthread work struct contained in the master struct
- *
- * This function checks if there is any spi message in the queue that
- * needs processing and if so call out to the driver to initialize hardware
- * and transfer each message.
- *
- */
-static void spi_pump_messages(struct kthread_work *work)
-{
- struct spi_master *master =
- container_of(work, struct spi_master, pump_messages);
- unsigned long flags;
- bool was_busy = false;
- int ret;
-
- /* Lock queue and check for queue work */
- spin_lock_irqsave(&master->queue_lock, flags);
- if (list_empty(&master->queue) || !master->running) {
- if (master->busy) {
- ret = master->unprepare_transfer_hardware(master);
- if (ret) {
- spin_unlock_irqrestore(&master->queue_lock, flags);
- dev_err(&master->dev,
- "failed to unprepare transfer hardware\n");
- return;
- }
- }
- master->busy = false;
- spin_unlock_irqrestore(&master->queue_lock, flags);
- return;
- }
-
- /* Make sure we are not already running a message */
- if (master->cur_msg) {
- spin_unlock_irqrestore(&master->queue_lock, flags);
- return;
- }
- /* Extract head of queue */
- master->cur_msg =
- list_entry(master->queue.next, struct spi_message, queue);
-
- list_del_init(&master->cur_msg->queue);
- if (master->busy)
- was_busy = true;
- else
- master->busy = true;
- spin_unlock_irqrestore(&master->queue_lock, flags);
-
- if (!was_busy) {
- ret = master->prepare_transfer_hardware(master);
- if (ret) {
- dev_err(&master->dev,
- "failed to prepare transfer hardware\n");
- return;
- }
- }
-
- ret = master->transfer_one_message(master, master->cur_msg);
- if (ret) {
- dev_err(&master->dev,
- "failed to transfer one message from queue\n");
- return;
- }
-}
-
-static int spi_init_queue(struct spi_master *master)
-{
- struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
-
- INIT_LIST_HEAD(&master->queue);
- spin_lock_init(&master->queue_lock);
-
- master->running = false;
- master->busy = false;
-
- init_kthread_worker(&master->kworker);
- master->kworker_task = kthread_run(kthread_worker_fn,
- &master->kworker,
- dev_name(&master->dev));
- if (IS_ERR(master->kworker_task)) {
- dev_err(&master->dev, "failed to create message pump task\n");
- return -ENOMEM;
- }
- init_kthread_work(&master->pump_messages, spi_pump_messages);
-
- /*
- * Master config will indicate if this controller should run the
- * message pump with high (realtime) priority to reduce the transfer
- * latency on the bus by minimising the delay between a transfer
- * request and the scheduling of the message pump thread. Without this
- * setting the message pump thread will remain at default priority.
- */
- if (master->rt) {
- dev_info(&master->dev,
- "will run message pump with realtime priority\n");
- sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
- }
-
- return 0;
-}
-
-/**
- * spi_get_next_queued_message() - called by driver to check for queued
- * messages
- * @master: the master to check for queued messages
- *
- * If there are more messages in the queue, the next message is returned from
- * this call.
- */
-struct spi_message *spi_get_next_queued_message(struct spi_master *master)
-{
- struct spi_message *next;
- unsigned long flags;
-
- /* get a pointer to the next message, if any */
- spin_lock_irqsave(&master->queue_lock, flags);
- if (list_empty(&master->queue))
- next = NULL;
- else
- next = list_entry(master->queue.next,
- struct spi_message, queue);
- spin_unlock_irqrestore(&master->queue_lock, flags);
-
- return next;
-}
-EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
-
-/**
- * spi_finalize_current_message() - the current message is complete
- * @master: the master to return the message to
- *
- * Called by the driver to notify the core that the message in the front of the
- * queue is complete and can be removed from the queue.
- */
-void spi_finalize_current_message(struct spi_master *master)
-{
- struct spi_message *mesg;
- unsigned long flags;
-
- spin_lock_irqsave(&master->queue_lock, flags);
- mesg = master->cur_msg;
- master->cur_msg = NULL;
-
- queue_kthread_work(&master->kworker, &master->pump_messages);
- spin_unlock_irqrestore(&master->queue_lock, flags);
-
- mesg->state = NULL;
- if (mesg->complete)
- mesg->complete(mesg->context);
-}
-EXPORT_SYMBOL_GPL(spi_finalize_current_message);
-
-static int spi_start_queue(struct spi_master *master)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&master->queue_lock, flags);
-
- if (master->running || master->busy) {
- spin_unlock_irqrestore(&master->queue_lock, flags);
- return -EBUSY;
- }
-
- master->running = true;
- master->cur_msg = NULL;
- spin_unlock_irqrestore(&master->queue_lock, flags);
-
- queue_kthread_work(&master->kworker, &master->pump_messages);
-
- return 0;
-}
-
-static int spi_stop_queue(struct spi_master *master)
-{
- unsigned long flags;
- unsigned limit = 500;
- int ret = 0;
-
- spin_lock_irqsave(&master->queue_lock, flags);
-
- /*
- * This is a bit lame, but is optimized for the common execution path.
- * A wait_queue on the master->busy could be used, but then the common
- * execution path (pump_messages) would be required to call wake_up or
- * friends on every SPI message. Do this instead.
- */
- while ((!list_empty(&master->queue) || master->busy) && limit--) {
- spin_unlock_irqrestore(&master->queue_lock, flags);
- msleep(10);
- spin_lock_irqsave(&master->queue_lock, flags);
- }
-
- if (!list_empty(&master->queue) || master->busy)
- ret = -EBUSY;
- else
- master->running = false;
-
- spin_unlock_irqrestore(&master->queue_lock, flags);
-
- if (ret) {
- dev_warn(&master->dev,
- "could not stop message queue\n");
- return ret;
- }
- return ret;
-}
-
-static int spi_destroy_queue(struct spi_master *master)
-{
- int ret;
-
- ret = spi_stop_queue(master);
-
- /*
- * flush_kthread_worker will block until all work is done.
- * If the reason that stop_queue timed out is that the work will never
- * finish, then it does no good to call flush/stop thread, so
- * return anyway.
- */
- if (ret) {
- dev_err(&master->dev, "problem destroying queue\n");
- return ret;
- }
-
- flush_kthread_worker(&master->kworker);
- kthread_stop(master->kworker_task);
-
- return 0;
-}
-
-/**
- * spi_queued_transfer - transfer function for queued transfers
- * @spi: spi device which is requesting transfer
- * @msg: spi message which is to handled is queued to driver queue
- */
-static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
-{
- struct spi_master *master = spi->master;
- unsigned long flags;
-
- spin_lock_irqsave(&master->queue_lock, flags);
-
- if (!master->running) {
- spin_unlock_irqrestore(&master->queue_lock, flags);
- return -ESHUTDOWN;
- }
- msg->actual_length = 0;
- msg->status = -EINPROGRESS;
-
- list_add_tail(&msg->queue, &master->queue);
- if (master->running && !master->busy)
- queue_kthread_work(&master->kworker, &master->pump_messages);
-
- spin_unlock_irqrestore(&master->queue_lock, flags);
- return 0;
-}
-
-static int spi_master_initialize_queue(struct spi_master *master)
-{
- int ret;
-
- master->queued = true;
- master->transfer = spi_queued_transfer;
-
- /* Initialize and start queue */
- ret = spi_init_queue(master);
- if (ret) {
- dev_err(&master->dev, "problem initializing queue\n");
- goto err_init_queue;
- }
- ret = spi_start_queue(master);
- if (ret) {
- dev_err(&master->dev, "problem starting queue\n");
- goto err_start_queue;
- }
-
- return 0;
-
-err_start_queue:
-err_init_queue:
- spi_destroy_queue(master);
- return ret;
-}
-
-/*-------------------------------------------------------------------------*/
-
-static void spi_master_release(struct device *dev)
-{
- struct spi_master *master;
-
- master = container_of(dev, struct spi_master, dev);
- kfree(master);
-}
-
-static struct class spi_master_class = {
- .name = "spi_master",
- .owner = THIS_MODULE,
- .dev_release = spi_master_release,
-};
-
-
-
-/**
- * spi_alloc_master - allocate SPI master controller
- * @dev: the controller, possibly using the platform_bus
- * @size: how much zeroed driver-private data to allocate; the pointer to this
- * memory is in the driver_data field of the returned device,
- * accessible with spi_master_get_devdata().
- * Context: can sleep
- *
- * This call is used only by SPI master controller drivers, which are the
- * only ones directly touching chip registers. It's how they allocate
- * an spi_master structure, prior to calling spi_register_master().
- *
- * This must be called from context that can sleep. It returns the SPI
- * master structure on success, else NULL.
- *
- * The caller is responsible for assigning the bus number and initializing
- * the master's methods before calling spi_register_master(); and (after errors
- * adding the device) calling spi_master_put() and kfree() to prevent a memory
- * leak.
- */
-struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
-{
- struct spi_master *master;
-
- if (!dev)
- return NULL;
-
- master = kzalloc(size + sizeof *master, GFP_KERNEL);
- if (!master)
- return NULL;
-
- device_initialize(&master->dev);
- master->dev.class = &spi_master_class;
- master->dev.parent = get_device(dev);
- spi_master_set_devdata(master, &master[1]);
-
- return master;
-}
-EXPORT_SYMBOL_GPL(spi_alloc_master);
-
-/**
- * spi_register_master - register SPI master controller
- * @master: initialized master, originally from spi_alloc_master()
- * Context: can sleep
- *
- * SPI master controllers connect to their drivers using some non-SPI bus,
- * such as the platform bus. The final stage of probe() in that code
- * includes calling spi_register_master() to hook up to this SPI bus glue.
- *
- * SPI controllers use board specific (often SOC specific) bus numbers,
- * and board-specific addressing for SPI devices combines those numbers
- * with chip select numbers. Since SPI does not directly support dynamic
- * device identification, boards need configuration tables telling which
- * chip is at which address.
- *
- * This must be called from context that can sleep. It returns zero on
- * success, else a negative error code (dropping the master's refcount).
- * After a successful return, the caller is responsible for calling
- * spi_unregister_master().
- */
-int spi_register_master(struct spi_master *master)
-{
- static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
- struct device *dev = master->dev.parent;
- struct boardinfo *bi;
- int status = -ENODEV;
- int dynamic = 0;
-
- if (!dev)
- return -ENODEV;
-
- /* even if it's just one always-selected device, there must
- * be at least one chipselect
- */
- if (master->num_chipselect == 0)
- return -EINVAL;
-
- /* convention: dynamically assigned bus IDs count down from the max */
- if (master->bus_num < 0) {
- /* FIXME switch to an IDR based scheme, something like
- * I2C now uses, so we can't run out of "dynamic" IDs
- */
- master->bus_num = atomic_dec_return(&dyn_bus_id);
- dynamic = 1;
- }
-
- spin_lock_init(&master->bus_lock_spinlock);
- mutex_init(&master->bus_lock_mutex);
- master->bus_lock_flag = 0;
-
- /* register the device, then userspace will see it.
- * registration fails if the bus ID is in use.
- */
- dev_set_name(&master->dev, "spi%u", master->bus_num);
- status = device_add(&master->dev);
- if (status < 0)
- goto done;
- dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
- dynamic ? " (dynamic)" : "");
-
- /* If we're using a queued driver, start the queue */
- if (master->transfer)
- dev_info(dev, "master is unqueued, this is deprecated\n");
- else {
- status = spi_master_initialize_queue(master);
- if (status) {
- device_unregister(&master->dev);
- goto done;
- }
- }
-
- mutex_lock(&board_lock);
- list_add_tail(&master->list, &spi_master_list);
- list_for_each_entry(bi, &board_list, list)
- spi_match_master_to_boardinfo(master, &bi->board_info);
- mutex_unlock(&board_lock);
-
- /* Register devices from the device tree */
- of_register_spi_devices(master);
-done:
- return status;
-}
-EXPORT_SYMBOL_GPL(spi_register_master);
-
-static int __unregister(struct device *dev, void *null)
-{
- spi_unregister_device(to_spi_device(dev));
- return 0;
-}
-
-/**
- * spi_unregister_master - unregister SPI master controller
- * @master: the master being unregistered
- * Context: can sleep
- *
- * This call is used only by SPI master controller drivers, which are the
- * only ones directly touching chip registers.
- *
- * This must be called from context that can sleep.
- */
-void spi_unregister_master(struct spi_master *master)
-{
- int dummy;
-
- if (master->queued) {
- if (spi_destroy_queue(master))
- dev_err(&master->dev, "queue remove failed\n");
- }
-
- mutex_lock(&board_lock);
- list_del(&master->list);
- mutex_unlock(&board_lock);
-
- dummy = device_for_each_child(&master->dev, NULL, __unregister);
- device_unregister(&master->dev);
-}
-EXPORT_SYMBOL_GPL(spi_unregister_master);
-
-int spi_master_suspend(struct spi_master *master)
-{
- int ret;
-
- /* Basically no-ops for non-queued masters */
- if (!master->queued)
- return 0;
-
- ret = spi_stop_queue(master);
- if (ret)
- dev_err(&master->dev, "queue stop failed\n");
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(spi_master_suspend);
-
-int spi_master_resume(struct spi_master *master)
-{
- int ret;
-
- if (!master->queued)
- return 0;
-
- ret = spi_start_queue(master);
- if (ret)
- dev_err(&master->dev, "queue restart failed\n");
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(spi_master_resume);
-
-static int __spi_master_match(struct device *dev, void *data)
-{
- struct spi_master *m;
- u16 *bus_num = data;
-
- m = container_of(dev, struct spi_master, dev);
- return m->bus_num == *bus_num;
-}
-
-/**
- * spi_busnum_to_master - look up master associated with bus_num
- * @bus_num: the master's bus number
- * Context: can sleep
- *
- * This call may be used with devices that are registered after
- * arch init time. It returns a refcounted pointer to the relevant
- * spi_master (which the caller must release), or NULL if there is
- * no such master registered.
- */
-struct spi_master *spi_busnum_to_master(u16 bus_num)
-{
- struct device *dev;
- struct spi_master *master = NULL;
-
- dev = class_find_device(&spi_master_class, NULL, &bus_num,
- __spi_master_match);
- if (dev)
- master = container_of(dev, struct spi_master, dev);
- /* reference got in class_find_device */
- return master;
-}
-EXPORT_SYMBOL_GPL(spi_busnum_to_master);
-
-
-/*-------------------------------------------------------------------------*/
-
-/* Core methods for SPI master protocol drivers. Some of the
- * other core methods are currently defined as inline functions.
- */
-
-/**
- * spi_setup - setup SPI mode and clock rate
- * @spi: the device whose settings are being modified
- * Context: can sleep, and no requests are queued to the device
- *
- * SPI protocol drivers may need to update the transfer mode if the
- * device doesn't work with its default. They may likewise need
- * to update clock rates or word sizes from initial values. This function
- * changes those settings, and must be called from a context that can sleep.
- * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
- * effect the next time the device is selected and data is transferred to
- * or from it. When this function returns, the spi device is deselected.
- *
- * Note that this call will fail if the protocol driver specifies an option
- * that the underlying controller or its driver does not support. For
- * example, not all hardware supports wire transfers using nine bit words,
- * LSB-first wire encoding, or active-high chipselects.
- */
-int spi_setup(struct spi_device *spi)
-{
- unsigned bad_bits;
- int status;
-
- /* help drivers fail *cleanly* when they need options
- * that aren't supported with their current master
- */
- bad_bits = spi->mode & ~spi->master->mode_bits;
- if (bad_bits) {
- dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
- bad_bits);
- return -EINVAL;
- }
-
- if (!spi->bits_per_word)
- spi->bits_per_word = 8;
-
- status = spi->master->setup(spi);
-
- dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
- "%u bits/w, %u Hz max --> %d\n",
- (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
- (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
- (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
- (spi->mode & SPI_3WIRE) ? "3wire, " : "",
- (spi->mode & SPI_LOOP) ? "loopback, " : "",
- spi->bits_per_word, spi->max_speed_hz,
- status);
-
- return status;
-}
-EXPORT_SYMBOL_GPL(spi_setup);
-
-static int __spi_async(struct spi_device *spi, struct spi_message *message)
-{
- struct spi_master *master = spi->master;
-
- /* Half-duplex links include original MicroWire, and ones with
- * only one data pin like SPI_3WIRE (switches direction) or where
- * either MOSI or MISO is missing. They can also be caused by
- * software limitations.
- */
- if ((master->flags & SPI_MASTER_HALF_DUPLEX)
- || (spi->mode & SPI_3WIRE)) {
- struct spi_transfer *xfer;
- unsigned flags = master->flags;
-
- list_for_each_entry(xfer, &message->transfers, transfer_list) {
- if (xfer->rx_buf && xfer->tx_buf)
- return -EINVAL;
- if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
- return -EINVAL;
- if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
- return -EINVAL;
- }
- }
-
- message->spi = spi;
- message->status = -EINPROGRESS;
- return master->transfer(spi, message);
-}
-
-/**
- * spi_async - asynchronous SPI transfer
- * @spi: device with which data will be exchanged
- * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
- *
- * This call may be used in_irq and other contexts which can't sleep,
- * as well as from task contexts which can sleep.
- *
- * The completion callback is invoked in a context which can't sleep.
- * Before that invocation, the value of message->status is undefined.
- * When the callback is issued, message->status holds either zero (to
- * indicate complete success) or a negative error code. After that
- * callback returns, the driver which issued the transfer request may
- * deallocate the associated memory; it's no longer in use by any SPI
- * core or controller driver code.
- *
- * Note that although all messages to a spi_device are handled in
- * FIFO order, messages may go to different devices in other orders.
- * Some device might be higher priority, or have various "hard" access
- * time requirements, for example.
- *
- * On detection of any fault during the transfer, processing of
- * the entire message is aborted, and the device is deselected.
- * Until returning from the associated message completion callback,
- * no other spi_message queued to that device will be processed.
- * (This rule applies equally to all the synchronous transfer calls,
- * which are wrappers around this core asynchronous primitive.)
- */
-int spi_async(struct spi_device *spi, struct spi_message *message)
-{
- struct spi_master *master = spi->master;
- int ret;
- unsigned long flags;
-
- spin_lock_irqsave(&master->bus_lock_spinlock, flags);
-
- if (master->bus_lock_flag)
- ret = -EBUSY;
- else
- ret = __spi_async(spi, message);
-
- spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
-
- return ret;
-}
-EXPORT_SYMBOL_GPL(spi_async);
-
-/**
- * spi_async_locked - version of spi_async with exclusive bus usage
- * @spi: device with which data will be exchanged
- * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
- *
- * This call may be used in_irq and other contexts which can't sleep,
- * as well as from task contexts which can sleep.
- *
- * The completion callback is invoked in a context which can't sleep.
- * Before that invocation, the value of message->status is undefined.
- * When the callback is issued, message->status holds either zero (to
- * indicate complete success) or a negative error code. After that
- * callback returns, the driver which issued the transfer request may
- * deallocate the associated memory; it's no longer in use by any SPI
- * core or controller driver code.
- *
- * Note that although all messages to a spi_device are handled in
- * FIFO order, messages may go to different devices in other orders.
- * Some device might be higher priority, or have various "hard" access
- * time requirements, for example.
- *
- * On detection of any fault during the transfer, processing of
- * the entire message is aborted, and the device is deselected.
- * Until returning from the associated message completion callback,
- * no other spi_message queued to that device will be processed.
- * (This rule applies equally to all the synchronous transfer calls,
- * which are wrappers around this core asynchronous primitive.)
- */
-int spi_async_locked(struct spi_device *spi, struct spi_message *message)
-{
- struct spi_master *master = spi->master;
- int ret;
- unsigned long flags;
-
- spin_lock_irqsave(&master->bus_lock_spinlock, flags);
-
- ret = __spi_async(spi, message);
-
- spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
-
- return ret;
-
-}
-EXPORT_SYMBOL_GPL(spi_async_locked);
-
-
-/*-------------------------------------------------------------------------*/
-
-/* Utility methods for SPI master protocol drivers, layered on
- * top of the core. Some other utility methods are defined as
- * inline functions.
- */
-
-static void spi_complete(void *arg)
-{
- complete(arg);
-}
-
-static int __spi_sync(struct spi_device *spi, struct spi_message *message,
- int bus_locked)
-{
- DECLARE_COMPLETION_ONSTACK(done);
- int status;
- struct spi_master *master = spi->master;
-
- message->complete = spi_complete;
- message->context = &done;
-
- if (!bus_locked)
- mutex_lock(&master->bus_lock_mutex);
-
- status = spi_async_locked(spi, message);
-
- if (!bus_locked)
- mutex_unlock(&master->bus_lock_mutex);
-
- if (status == 0) {
- wait_for_completion(&done);
- status = message->status;
- }
- message->context = NULL;
- return status;
-}
-
-/**
- * spi_sync - blocking/synchronous SPI data transfers
- * @spi: device with which data will be exchanged
- * @message: describes the data transfers
- * Context: can sleep
- *
- * This call may only be used from a context that may sleep. The sleep
- * is non-interruptible, and has no timeout. Low-overhead controller
- * drivers may DMA directly into and out of the message buffers.
- *
- * Note that the SPI device's chip select is active during the message,
- * and then is normally disabled between messages. Drivers for some
- * frequently-used devices may want to minimize costs of selecting a chip,
- * by leaving it selected in anticipation that the next message will go
- * to the same chip. (That may increase power usage.)
- *
- * Also, the caller is guaranteeing that the memory associated with the
- * message will not be freed before this call returns.
- *
- * It returns zero on success, else a negative error code.
- */
-int spi_sync(struct spi_device *spi, struct spi_message *message)
-{
- return __spi_sync(spi, message, 0);
-}
-EXPORT_SYMBOL_GPL(spi_sync);
-
-/**
- * spi_sync_locked - version of spi_sync with exclusive bus usage
- * @spi: device with which data will be exchanged
- * @message: describes the data transfers
- * Context: can sleep
- *
- * This call may only be used from a context that may sleep. The sleep
- * is non-interruptible, and has no timeout. Low-overhead controller
- * drivers may DMA directly into and out of the message buffers.
- *
- * This call should be used by drivers that require exclusive access to the
- * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
- * be released by a spi_bus_unlock call when the exclusive access is over.
- *
- * It returns zero on success, else a negative error code.
- */
-int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
-{
- return __spi_sync(spi, message, 1);
-}
-EXPORT_SYMBOL_GPL(spi_sync_locked);
-
-/**
- * spi_bus_lock - obtain a lock for exclusive SPI bus usage
- * @master: SPI bus master that should be locked for exclusive bus access
- * Context: can sleep
- *
- * This call may only be used from a context that may sleep. The sleep
- * is non-interruptible, and has no timeout.
- *
- * This call should be used by drivers that require exclusive access to the
- * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
- * exclusive access is over. Data transfer must be done by spi_sync_locked
- * and spi_async_locked calls when the SPI bus lock is held.
- *
- * It returns zero on success, else a negative error code.
- */
-int spi_bus_lock(struct spi_master *master)
-{
- unsigned long flags;
-
- mutex_lock(&master->bus_lock_mutex);
-
- spin_lock_irqsave(&master->bus_lock_spinlock, flags);
- master->bus_lock_flag = 1;
- spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
-
- /* mutex remains locked until spi_bus_unlock is called */
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(spi_bus_lock);
-
-/**
- * spi_bus_unlock - release the lock for exclusive SPI bus usage
- * @master: SPI bus master that was locked for exclusive bus access
- * Context: can sleep
- *
- * This call may only be used from a context that may sleep. The sleep
- * is non-interruptible, and has no timeout.
- *
- * This call releases an SPI bus lock previously obtained by an spi_bus_lock
- * call.
- *
- * It returns zero on success, else a negative error code.
- */
-int spi_bus_unlock(struct spi_master *master)
-{
- master->bus_lock_flag = 0;
-
- mutex_unlock(&master->bus_lock_mutex);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(spi_bus_unlock);
-
-/* portable code must never pass more than 32 bytes */
-#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
-
-static u8 *buf;
-
-/**
- * spi_write_then_read - SPI synchronous write followed by read
- * @spi: device with which data will be exchanged
- * @txbuf: data to be written (need not be dma-safe)
- * @n_tx: size of txbuf, in bytes
- * @rxbuf: buffer into which data will be read (need not be dma-safe)
- * @n_rx: size of rxbuf, in bytes
- * Context: can sleep
- *
- * This performs a half duplex MicroWire style transaction with the
- * device, sending txbuf and then reading rxbuf. The return value
- * is zero for success, else a negative errno status code.
- * This call may only be used from a context that may sleep.
- *
- * Parameters to this routine are always copied using a small buffer;
- * portable code should never use this for more than 32 bytes.
- * Performance-sensitive or bulk transfer code should instead use
- * spi_{async,sync}() calls with dma-safe buffers.
- */
-int spi_write_then_read(struct spi_device *spi,
- const void *txbuf, unsigned n_tx,
- void *rxbuf, unsigned n_rx)
-{
- static DEFINE_MUTEX(lock);
-
- int status;
- struct spi_message message;
- struct spi_transfer x[2];
- u8 *local_buf;
-
- /* Use preallocated DMA-safe buffer. We can't avoid copying here,
- * (as a pure convenience thing), but we can keep heap costs
- * out of the hot path ...
- */
- if ((n_tx + n_rx) > SPI_BUFSIZ)
- return -EINVAL;
-
- spi_message_init(&message);
- memset(x, 0, sizeof x);
- if (n_tx) {
- x[0].len = n_tx;
- spi_message_add_tail(&x[0], &message);
- }
- if (n_rx) {
- x[1].len = n_rx;
- spi_message_add_tail(&x[1], &message);
- }
-
- /* ... unless someone else is using the pre-allocated buffer */
- if (!mutex_trylock(&lock)) {
- local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
- if (!local_buf)
- return -ENOMEM;
- } else
- local_buf = buf;
-
- memcpy(local_buf, txbuf, n_tx);
- x[0].tx_buf = local_buf;
- x[1].rx_buf = local_buf + n_tx;
-
- /* do the i/o */
- status = spi_sync(spi, &message);
- if (status == 0)
- memcpy(rxbuf, x[1].rx_buf, n_rx);
-
- if (x[0].tx_buf == buf)
- mutex_unlock(&lock);
- else
- kfree(local_buf);
-
- return status;
-}
-EXPORT_SYMBOL_GPL(spi_write_then_read);
-
-/*-------------------------------------------------------------------------*/
-
-static int __init spi_init(void)
-{
- int status;
-
- buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
- if (!buf) {
- status = -ENOMEM;
- goto err0;
- }
-
- status = bus_register(&spi_bus_type);
- if (status < 0)
- goto err1;
-
- status = class_register(&spi_master_class);
- if (status < 0)
- goto err2;
- return 0;
-
-err2:
- bus_unregister(&spi_bus_type);
-err1:
- kfree(buf);
- buf = NULL;
-err0:
- return status;
-}
-
-/* board_info is normally registered in arch_initcall(),
- * but even essential drivers wait till later
- *
- * REVISIT only boardinfo really needs static linking. the rest (device and
- * driver registration) _could_ be dynamically linked (modular) ... costs
- * include needing to have boardinfo data structures be much more public.
- */
-postcore_initcall(spi_init);
-