diff options
Diffstat (limited to 'ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c')
-rw-r--r-- | ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c | 2655 |
1 files changed, 0 insertions, 2655 deletions
diff --git a/ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c b/ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c deleted file mode 100644 index b067c45c..00000000 --- a/ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c +++ /dev/null @@ -1,2655 +0,0 @@ -/* - * Linux/PA-RISC Project (http://www.parisc-linux.org/) - * - * Floating-point emulation code - * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2, or (at your option) - * any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ -/* - * BEGIN_DESC - * - * File: - * @(#) pa/spmath/fmpyfadd.c $Revision: 1.1 $ - * - * Purpose: - * Double Floating-point Multiply Fused Add - * Double Floating-point Multiply Negate Fused Add - * Single Floating-point Multiply Fused Add - * Single Floating-point Multiply Negate Fused Add - * - * External Interfaces: - * dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) - * dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) - * sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) - * sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) - * - * Internal Interfaces: - * - * Theory: - * <<please update with a overview of the operation of this file>> - * - * END_DESC -*/ - - -#include "float.h" -#include "sgl_float.h" -#include "dbl_float.h" - - -/* - * Double Floating-point Multiply Fused Add - */ - -int -dbl_fmpyfadd( - dbl_floating_point *src1ptr, - dbl_floating_point *src2ptr, - dbl_floating_point *src3ptr, - unsigned int *status, - dbl_floating_point *dstptr) -{ - unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; - register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; - unsigned int rightp1, rightp2, rightp3, rightp4; - unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; - register int mpy_exponent, add_exponent, count; - boolean inexact = FALSE, is_tiny = FALSE; - - unsigned int signlessleft1, signlessright1, save; - register int result_exponent, diff_exponent; - int sign_save, jumpsize; - - Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); - Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); - Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); - - /* - * set sign bit of result of multiply - */ - if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) - Dbl_setnegativezerop1(resultp1); - else Dbl_setzerop1(resultp1); - - /* - * Generate multiply exponent - */ - mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; - - /* - * check first operand for NaN's or infinity - */ - if (Dbl_isinfinity_exponent(opnd1p1)) { - if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { - if (Dbl_isnotnan(opnd2p1,opnd2p2) && - Dbl_isnotnan(opnd3p1,opnd3p2)) { - if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { - /* - * invalid since operands are infinity - * and zero - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Dbl_isinfinity(opnd3p1,opnd3p2) && - (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Dbl_setinfinity_exponentmantissa(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Dbl_isone_signaling(opnd1p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd1p1); - } - /* - * is second operand a signaling NaN? - */ - else if (Dbl_is_signalingnan(opnd2p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd2p1); - Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); - return(NOEXCEPTION); - } - /* - * is third operand a signaling NaN? - */ - else if (Dbl_is_signalingnan(opnd3p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd3p1); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check second operand for NaN's or infinity - */ - if (Dbl_isinfinity_exponent(opnd2p1)) { - if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { - if (Dbl_isnotnan(opnd3p1,opnd3p2)) { - if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { - /* - * invalid since multiply operands are - * zero & infinity - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(opnd2p1,opnd2p2); - Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); - return(NOEXCEPTION); - } - - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Dbl_isinfinity(opnd3p1,opnd3p2) && - (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Dbl_setinfinity_exponentmantissa(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Dbl_isone_signaling(opnd2p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd2p1); - } - /* - * is third operand a signaling NaN? - */ - else if (Dbl_is_signalingnan(opnd3p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd3p1); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check third operand for NaN's or infinity - */ - if (Dbl_isinfinity_exponent(opnd3p1)) { - if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { - /* return infinity */ - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } else { - /* - * is NaN; signaling or quiet? - */ - if (Dbl_isone_signaling(opnd3p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd3p1); - } - /* - * return quiet NaN - */ - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * Generate multiply mantissa - */ - if (Dbl_isnotzero_exponent(opnd1p1)) { - /* set hidden bit */ - Dbl_clear_signexponent_set_hidden(opnd1p1); - } - else { - /* check for zero */ - if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Dbl_or_signs(opnd3p1,resultp1); - } else { - Dbl_and_signs(opnd3p1,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Dbl_iszero_exponent(opnd3p1) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Dbl_signextendedsign(opnd3p1); - result_exponent = 0; - Dbl_leftshiftby1(opnd3p1,opnd3p2); - Dbl_normalize(opnd3p1,opnd3p2,result_exponent); - Dbl_set_sign(opnd3p1,/*using*/sign_save); - Dbl_setwrapped_exponent(opnd3p1,result_exponent, - unfl); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* is denormalized, adjust exponent */ - Dbl_clear_signexponent(opnd1p1); - Dbl_leftshiftby1(opnd1p1,opnd1p2); - Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); - } - /* opnd2 needs to have hidden bit set with msb in hidden bit */ - if (Dbl_isnotzero_exponent(opnd2p1)) { - Dbl_clear_signexponent_set_hidden(opnd2p1); - } - else { - /* check for zero */ - if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Dbl_or_signs(opnd3p1,resultp1); - } else { - Dbl_and_signs(opnd3p1,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Dbl_iszero_exponent(opnd3p1) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Dbl_signextendedsign(opnd3p1); - result_exponent = 0; - Dbl_leftshiftby1(opnd3p1,opnd3p2); - Dbl_normalize(opnd3p1,opnd3p2,result_exponent); - Dbl_set_sign(opnd3p1,/*using*/sign_save); - Dbl_setwrapped_exponent(opnd3p1,result_exponent, - unfl); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* is denormalized; want to normalize */ - Dbl_clear_signexponent(opnd2p1); - Dbl_leftshiftby1(opnd2p1,opnd2p2); - Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); - } - - /* Multiply the first two source mantissas together */ - - /* - * The intermediate result will be kept in tmpres, - * which needs enough room for 106 bits of mantissa, - * so lets call it a Double extended. - */ - Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); - - /* - * Four bits at a time are inspected in each loop, and a - * simple shift and add multiply algorithm is used. - */ - for (count = DBL_P-1; count >= 0; count -= 4) { - Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); - if (Dbit28p2(opnd1p2)) { - /* Fourword_add should be an ADD followed by 3 ADDC's */ - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); - } - if (Dbit29p2(opnd1p2)) { - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); - } - if (Dbit30p2(opnd1p2)) { - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); - } - if (Dbit31p2(opnd1p2)) { - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1, opnd2p2, 0, 0); - } - Dbl_rightshiftby4(opnd1p1,opnd1p2); - } - if (Is_dexthiddenoverflow(tmpresp1)) { - /* result mantissa >= 2 (mantissa overflow) */ - mpy_exponent++; - Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); - } - - /* - * Restore the sign of the mpy result which was saved in resultp1. - * The exponent will continue to be kept in mpy_exponent. - */ - Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); - - /* - * No rounding is required, since the result of the multiply - * is exact in the extended format. - */ - - /* - * Now we are ready to perform the add portion of the operation. - * - * The exponents need to be kept as integers for now, since the - * multiply result might not fit into the exponent field. We - * can't overflow or underflow because of this yet, since the - * add could bring the final result back into range. - */ - add_exponent = Dbl_exponent(opnd3p1); - - /* - * Check for denormalized or zero add operand. - */ - if (add_exponent == 0) { - /* check for zero */ - if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { - /* right is zero */ - /* Left can't be zero and must be result. - * - * The final result is now in tmpres and mpy_exponent, - * and needs to be rounded and squeezed back into - * double precision format from double extended. - */ - result_exponent = mpy_exponent; - Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, - resultp1,resultp2,resultp3,resultp4); - sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ - goto round; - } - - /* - * Neither are zeroes. - * Adjust exponent and normalize add operand. - */ - sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ - Dbl_clear_signexponent(opnd3p1); - Dbl_leftshiftby1(opnd3p1,opnd3p2); - Dbl_normalize(opnd3p1,opnd3p2,add_exponent); - Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ - } else { - Dbl_clear_exponent_set_hidden(opnd3p1); - } - /* - * Copy opnd3 to the double extended variable called right. - */ - Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); - - /* - * A zero "save" helps discover equal operands (for later), - * and is used in swapping operands (if needed). - */ - Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); - - /* - * Compare magnitude of operands. - */ - Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); - Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); - if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && - Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ - /* - * Set the left operand to the larger one by XOR swap. - * First finish the first word "save". - */ - Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); - Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); - Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, - rightp2,rightp3,rightp4); - /* also setup exponents used in rest of routine */ - diff_exponent = add_exponent - mpy_exponent; - result_exponent = add_exponent; - } else { - /* also setup exponents used in rest of routine */ - diff_exponent = mpy_exponent - add_exponent; - result_exponent = mpy_exponent; - } - /* Invariant: left is not smaller than right. */ - - /* - * Special case alignment of operands that would force alignment - * beyond the extent of the extension. A further optimization - * could special case this but only reduces the path length for - * this infrequent case. - */ - if (diff_exponent > DBLEXT_THRESHOLD) { - diff_exponent = DBLEXT_THRESHOLD; - } - - /* Align right operand by shifting it to the right */ - Dblext_clear_sign(rightp1); - Dblext_right_align(rightp1,rightp2,rightp3,rightp4, - /*shifted by*/diff_exponent); - - /* Treat sum and difference of the operands separately. */ - if ((int)save < 0) { - /* - * Difference of the two operands. Overflow can occur if the - * multiply overflowed. A borrow can occur out of the hidden - * bit and force a post normalization phase. - */ - Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, - rightp1,rightp2,rightp3,rightp4, - resultp1,resultp2,resultp3,resultp4); - sign_save = Dbl_signextendedsign(resultp1); - if (Dbl_iszero_hidden(resultp1)) { - /* Handle normalization */ - /* A straightforward algorithm would now shift the - * result and extension left until the hidden bit - * becomes one. Not all of the extension bits need - * participate in the shift. Only the two most - * significant bits (round and guard) are needed. - * If only a single shift is needed then the guard - * bit becomes a significant low order bit and the - * extension must participate in the rounding. - * If more than a single shift is needed, then all - * bits to the right of the guard bit are zeros, - * and the guard bit may or may not be zero. */ - Dblext_leftshiftby1(resultp1,resultp2,resultp3, - resultp4); - - /* Need to check for a zero result. The sign and - * exponent fields have already been zeroed. The more - * efficient test of the full object can be used. - */ - if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ - /* Must have been "x-x" or "x+(-x)". */ - if (Is_rounding_mode(ROUNDMINUS)) - Dbl_setone_sign(resultp1); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - result_exponent--; - - /* Look to see if normalization is finished. */ - if (Dbl_isone_hidden(resultp1)) { - /* No further normalization is needed */ - goto round; - } - - /* Discover first one bit to determine shift amount. - * Use a modified binary search. We have already - * shifted the result one position right and still - * not found a one so the remainder of the extension - * must be zero and simplifies rounding. */ - /* Scan bytes */ - while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { - Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); - result_exponent -= 8; - } - /* Now narrow it down to the nibble */ - if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { - /* The lower nibble contains the - * normalizing one */ - Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); - result_exponent -= 4; - } - /* Select case where first bit is set (already - * normalized) otherwise select the proper shift. */ - jumpsize = Dbl_hiddenhigh3mantissa(resultp1); - if (jumpsize <= 7) switch(jumpsize) { - case 1: - Dblext_leftshiftby3(resultp1,resultp2,resultp3, - resultp4); - result_exponent -= 3; - break; - case 2: - case 3: - Dblext_leftshiftby2(resultp1,resultp2,resultp3, - resultp4); - result_exponent -= 2; - break; - case 4: - case 5: - case 6: - case 7: - Dblext_leftshiftby1(resultp1,resultp2,resultp3, - resultp4); - result_exponent -= 1; - break; - } - } /* end if (hidden...)... */ - /* Fall through and round */ - } /* end if (save < 0)... */ - else { - /* Add magnitudes */ - Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, - rightp1,rightp2,rightp3,rightp4, - /*to*/resultp1,resultp2,resultp3,resultp4); - sign_save = Dbl_signextendedsign(resultp1); - if (Dbl_isone_hiddenoverflow(resultp1)) { - /* Prenormalization required. */ - Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, - resultp4); - result_exponent++; - } /* end if hiddenoverflow... */ - } /* end else ...add magnitudes... */ - - /* Round the result. If the extension and lower two words are - * all zeros, then the result is exact. Otherwise round in the - * correct direction. Underflow is possible. If a postnormalization - * is necessary, then the mantissa is all zeros so no shift is needed. - */ - round: - if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { - Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, - result_exponent,is_tiny); - } - Dbl_set_sign(resultp1,/*using*/sign_save); - if (Dblext_isnotzero_mantissap3(resultp3) || - Dblext_isnotzero_mantissap4(resultp4)) { - inexact = TRUE; - switch(Rounding_mode()) { - case ROUNDNEAREST: /* The default. */ - if (Dblext_isone_highp3(resultp3)) { - /* at least 1/2 ulp */ - if (Dblext_isnotzero_low31p3(resultp3) || - Dblext_isnotzero_mantissap4(resultp4) || - Dblext_isone_lowp2(resultp2)) { - /* either exactly half way and odd or - * more than 1/2ulp */ - Dbl_increment(resultp1,resultp2); - } - } - break; - - case ROUNDPLUS: - if (Dbl_iszero_sign(resultp1)) { - /* Round up positive results */ - Dbl_increment(resultp1,resultp2); - } - break; - - case ROUNDMINUS: - if (Dbl_isone_sign(resultp1)) { - /* Round down negative results */ - Dbl_increment(resultp1,resultp2); - } - - case ROUNDZERO:; - /* truncate is simple */ - } /* end switch... */ - if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; - } - if (result_exponent >= DBL_INFINITY_EXPONENT) { - /* trap if OVERFLOWTRAP enabled */ - if (Is_overflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); - Dbl_copytoptr(resultp1,resultp2,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_OVERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return (OPC_2E_OVERFLOWEXCEPTION); - } - inexact = TRUE; - Set_overflowflag(); - /* set result to infinity or largest number */ - Dbl_setoverflow(resultp1,resultp2); - - } else if (result_exponent <= 0) { /* underflow case */ - if (Is_underflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); - Dbl_copytoptr(resultp1,resultp2,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_UNDERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(OPC_2E_UNDERFLOWEXCEPTION); - } - else if (inexact && is_tiny) Set_underflowflag(); - } - else Dbl_set_exponent(resultp1,result_exponent); - Dbl_copytoptr(resultp1,resultp2,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(NOEXCEPTION); -} - -/* - * Double Floating-point Multiply Negate Fused Add - */ - -dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) - -dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; -unsigned int *status; -{ - unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; - register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; - unsigned int rightp1, rightp2, rightp3, rightp4; - unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; - register int mpy_exponent, add_exponent, count; - boolean inexact = FALSE, is_tiny = FALSE; - - unsigned int signlessleft1, signlessright1, save; - register int result_exponent, diff_exponent; - int sign_save, jumpsize; - - Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); - Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); - Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); - - /* - * set sign bit of result of multiply - */ - if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) - Dbl_setzerop1(resultp1); - else - Dbl_setnegativezerop1(resultp1); - - /* - * Generate multiply exponent - */ - mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; - - /* - * check first operand for NaN's or infinity - */ - if (Dbl_isinfinity_exponent(opnd1p1)) { - if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { - if (Dbl_isnotnan(opnd2p1,opnd2p2) && - Dbl_isnotnan(opnd3p1,opnd3p2)) { - if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { - /* - * invalid since operands are infinity - * and zero - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Dbl_isinfinity(opnd3p1,opnd3p2) && - (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Dbl_setinfinity_exponentmantissa(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Dbl_isone_signaling(opnd1p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd1p1); - } - /* - * is second operand a signaling NaN? - */ - else if (Dbl_is_signalingnan(opnd2p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd2p1); - Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); - return(NOEXCEPTION); - } - /* - * is third operand a signaling NaN? - */ - else if (Dbl_is_signalingnan(opnd3p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd3p1); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check second operand for NaN's or infinity - */ - if (Dbl_isinfinity_exponent(opnd2p1)) { - if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { - if (Dbl_isnotnan(opnd3p1,opnd3p2)) { - if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { - /* - * invalid since multiply operands are - * zero & infinity - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(opnd2p1,opnd2p2); - Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); - return(NOEXCEPTION); - } - - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Dbl_isinfinity(opnd3p1,opnd3p2) && - (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Dbl_makequietnan(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Dbl_setinfinity_exponentmantissa(resultp1,resultp2); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Dbl_isone_signaling(opnd2p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd2p1); - } - /* - * is third operand a signaling NaN? - */ - else if (Dbl_is_signalingnan(opnd3p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd3p1); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check third operand for NaN's or infinity - */ - if (Dbl_isinfinity_exponent(opnd3p1)) { - if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { - /* return infinity */ - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } else { - /* - * is NaN; signaling or quiet? - */ - if (Dbl_isone_signaling(opnd3p1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Dbl_set_quiet(opnd3p1); - } - /* - * return quiet NaN - */ - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * Generate multiply mantissa - */ - if (Dbl_isnotzero_exponent(opnd1p1)) { - /* set hidden bit */ - Dbl_clear_signexponent_set_hidden(opnd1p1); - } - else { - /* check for zero */ - if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Dbl_or_signs(opnd3p1,resultp1); - } else { - Dbl_and_signs(opnd3p1,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Dbl_iszero_exponent(opnd3p1) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Dbl_signextendedsign(opnd3p1); - result_exponent = 0; - Dbl_leftshiftby1(opnd3p1,opnd3p2); - Dbl_normalize(opnd3p1,opnd3p2,result_exponent); - Dbl_set_sign(opnd3p1,/*using*/sign_save); - Dbl_setwrapped_exponent(opnd3p1,result_exponent, - unfl); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* is denormalized, adjust exponent */ - Dbl_clear_signexponent(opnd1p1); - Dbl_leftshiftby1(opnd1p1,opnd1p2); - Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); - } - /* opnd2 needs to have hidden bit set with msb in hidden bit */ - if (Dbl_isnotzero_exponent(opnd2p1)) { - Dbl_clear_signexponent_set_hidden(opnd2p1); - } - else { - /* check for zero */ - if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Dbl_or_signs(opnd3p1,resultp1); - } else { - Dbl_and_signs(opnd3p1,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Dbl_iszero_exponent(opnd3p1) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Dbl_signextendedsign(opnd3p1); - result_exponent = 0; - Dbl_leftshiftby1(opnd3p1,opnd3p2); - Dbl_normalize(opnd3p1,opnd3p2,result_exponent); - Dbl_set_sign(opnd3p1,/*using*/sign_save); - Dbl_setwrapped_exponent(opnd3p1,result_exponent, - unfl); - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); - return(NOEXCEPTION); - } - /* is denormalized; want to normalize */ - Dbl_clear_signexponent(opnd2p1); - Dbl_leftshiftby1(opnd2p1,opnd2p2); - Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); - } - - /* Multiply the first two source mantissas together */ - - /* - * The intermediate result will be kept in tmpres, - * which needs enough room for 106 bits of mantissa, - * so lets call it a Double extended. - */ - Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); - - /* - * Four bits at a time are inspected in each loop, and a - * simple shift and add multiply algorithm is used. - */ - for (count = DBL_P-1; count >= 0; count -= 4) { - Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); - if (Dbit28p2(opnd1p2)) { - /* Fourword_add should be an ADD followed by 3 ADDC's */ - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); - } - if (Dbit29p2(opnd1p2)) { - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); - } - if (Dbit30p2(opnd1p2)) { - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); - } - if (Dbit31p2(opnd1p2)) { - Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, - opnd2p1, opnd2p2, 0, 0); - } - Dbl_rightshiftby4(opnd1p1,opnd1p2); - } - if (Is_dexthiddenoverflow(tmpresp1)) { - /* result mantissa >= 2 (mantissa overflow) */ - mpy_exponent++; - Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); - } - - /* - * Restore the sign of the mpy result which was saved in resultp1. - * The exponent will continue to be kept in mpy_exponent. - */ - Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); - - /* - * No rounding is required, since the result of the multiply - * is exact in the extended format. - */ - - /* - * Now we are ready to perform the add portion of the operation. - * - * The exponents need to be kept as integers for now, since the - * multiply result might not fit into the exponent field. We - * can't overflow or underflow because of this yet, since the - * add could bring the final result back into range. - */ - add_exponent = Dbl_exponent(opnd3p1); - - /* - * Check for denormalized or zero add operand. - */ - if (add_exponent == 0) { - /* check for zero */ - if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { - /* right is zero */ - /* Left can't be zero and must be result. - * - * The final result is now in tmpres and mpy_exponent, - * and needs to be rounded and squeezed back into - * double precision format from double extended. - */ - result_exponent = mpy_exponent; - Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, - resultp1,resultp2,resultp3,resultp4); - sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ - goto round; - } - - /* - * Neither are zeroes. - * Adjust exponent and normalize add operand. - */ - sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ - Dbl_clear_signexponent(opnd3p1); - Dbl_leftshiftby1(opnd3p1,opnd3p2); - Dbl_normalize(opnd3p1,opnd3p2,add_exponent); - Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ - } else { - Dbl_clear_exponent_set_hidden(opnd3p1); - } - /* - * Copy opnd3 to the double extended variable called right. - */ - Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); - - /* - * A zero "save" helps discover equal operands (for later), - * and is used in swapping operands (if needed). - */ - Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); - - /* - * Compare magnitude of operands. - */ - Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); - Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); - if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && - Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ - /* - * Set the left operand to the larger one by XOR swap. - * First finish the first word "save". - */ - Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); - Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); - Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, - rightp2,rightp3,rightp4); - /* also setup exponents used in rest of routine */ - diff_exponent = add_exponent - mpy_exponent; - result_exponent = add_exponent; - } else { - /* also setup exponents used in rest of routine */ - diff_exponent = mpy_exponent - add_exponent; - result_exponent = mpy_exponent; - } - /* Invariant: left is not smaller than right. */ - - /* - * Special case alignment of operands that would force alignment - * beyond the extent of the extension. A further optimization - * could special case this but only reduces the path length for - * this infrequent case. - */ - if (diff_exponent > DBLEXT_THRESHOLD) { - diff_exponent = DBLEXT_THRESHOLD; - } - - /* Align right operand by shifting it to the right */ - Dblext_clear_sign(rightp1); - Dblext_right_align(rightp1,rightp2,rightp3,rightp4, - /*shifted by*/diff_exponent); - - /* Treat sum and difference of the operands separately. */ - if ((int)save < 0) { - /* - * Difference of the two operands. Overflow can occur if the - * multiply overflowed. A borrow can occur out of the hidden - * bit and force a post normalization phase. - */ - Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, - rightp1,rightp2,rightp3,rightp4, - resultp1,resultp2,resultp3,resultp4); - sign_save = Dbl_signextendedsign(resultp1); - if (Dbl_iszero_hidden(resultp1)) { - /* Handle normalization */ - /* A straightforward algorithm would now shift the - * result and extension left until the hidden bit - * becomes one. Not all of the extension bits need - * participate in the shift. Only the two most - * significant bits (round and guard) are needed. - * If only a single shift is needed then the guard - * bit becomes a significant low order bit and the - * extension must participate in the rounding. - * If more than a single shift is needed, then all - * bits to the right of the guard bit are zeros, - * and the guard bit may or may not be zero. */ - Dblext_leftshiftby1(resultp1,resultp2,resultp3, - resultp4); - - /* Need to check for a zero result. The sign and - * exponent fields have already been zeroed. The more - * efficient test of the full object can be used. - */ - if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) { - /* Must have been "x-x" or "x+(-x)". */ - if (Is_rounding_mode(ROUNDMINUS)) - Dbl_setone_sign(resultp1); - Dbl_copytoptr(resultp1,resultp2,dstptr); - return(NOEXCEPTION); - } - result_exponent--; - - /* Look to see if normalization is finished. */ - if (Dbl_isone_hidden(resultp1)) { - /* No further normalization is needed */ - goto round; - } - - /* Discover first one bit to determine shift amount. - * Use a modified binary search. We have already - * shifted the result one position right and still - * not found a one so the remainder of the extension - * must be zero and simplifies rounding. */ - /* Scan bytes */ - while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { - Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); - result_exponent -= 8; - } - /* Now narrow it down to the nibble */ - if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { - /* The lower nibble contains the - * normalizing one */ - Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); - result_exponent -= 4; - } - /* Select case where first bit is set (already - * normalized) otherwise select the proper shift. */ - jumpsize = Dbl_hiddenhigh3mantissa(resultp1); - if (jumpsize <= 7) switch(jumpsize) { - case 1: - Dblext_leftshiftby3(resultp1,resultp2,resultp3, - resultp4); - result_exponent -= 3; - break; - case 2: - case 3: - Dblext_leftshiftby2(resultp1,resultp2,resultp3, - resultp4); - result_exponent -= 2; - break; - case 4: - case 5: - case 6: - case 7: - Dblext_leftshiftby1(resultp1,resultp2,resultp3, - resultp4); - result_exponent -= 1; - break; - } - } /* end if (hidden...)... */ - /* Fall through and round */ - } /* end if (save < 0)... */ - else { - /* Add magnitudes */ - Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, - rightp1,rightp2,rightp3,rightp4, - /*to*/resultp1,resultp2,resultp3,resultp4); - sign_save = Dbl_signextendedsign(resultp1); - if (Dbl_isone_hiddenoverflow(resultp1)) { - /* Prenormalization required. */ - Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, - resultp4); - result_exponent++; - } /* end if hiddenoverflow... */ - } /* end else ...add magnitudes... */ - - /* Round the result. If the extension and lower two words are - * all zeros, then the result is exact. Otherwise round in the - * correct direction. Underflow is possible. If a postnormalization - * is necessary, then the mantissa is all zeros so no shift is needed. - */ - round: - if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { - Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, - result_exponent,is_tiny); - } - Dbl_set_sign(resultp1,/*using*/sign_save); - if (Dblext_isnotzero_mantissap3(resultp3) || - Dblext_isnotzero_mantissap4(resultp4)) { - inexact = TRUE; - switch(Rounding_mode()) { - case ROUNDNEAREST: /* The default. */ - if (Dblext_isone_highp3(resultp3)) { - /* at least 1/2 ulp */ - if (Dblext_isnotzero_low31p3(resultp3) || - Dblext_isnotzero_mantissap4(resultp4) || - Dblext_isone_lowp2(resultp2)) { - /* either exactly half way and odd or - * more than 1/2ulp */ - Dbl_increment(resultp1,resultp2); - } - } - break; - - case ROUNDPLUS: - if (Dbl_iszero_sign(resultp1)) { - /* Round up positive results */ - Dbl_increment(resultp1,resultp2); - } - break; - - case ROUNDMINUS: - if (Dbl_isone_sign(resultp1)) { - /* Round down negative results */ - Dbl_increment(resultp1,resultp2); - } - - case ROUNDZERO:; - /* truncate is simple */ - } /* end switch... */ - if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; - } - if (result_exponent >= DBL_INFINITY_EXPONENT) { - /* Overflow */ - if (Is_overflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); - Dbl_copytoptr(resultp1,resultp2,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_OVERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return (OPC_2E_OVERFLOWEXCEPTION); - } - inexact = TRUE; - Set_overflowflag(); - Dbl_setoverflow(resultp1,resultp2); - } else if (result_exponent <= 0) { /* underflow case */ - if (Is_underflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); - Dbl_copytoptr(resultp1,resultp2,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_UNDERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(OPC_2E_UNDERFLOWEXCEPTION); - } - else if (inexact && is_tiny) Set_underflowflag(); - } - else Dbl_set_exponent(resultp1,result_exponent); - Dbl_copytoptr(resultp1,resultp2,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(NOEXCEPTION); -} - -/* - * Single Floating-point Multiply Fused Add - */ - -sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) - -sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; -unsigned int *status; -{ - unsigned int opnd1, opnd2, opnd3; - register unsigned int tmpresp1, tmpresp2; - unsigned int rightp1, rightp2; - unsigned int resultp1, resultp2 = 0; - register int mpy_exponent, add_exponent, count; - boolean inexact = FALSE, is_tiny = FALSE; - - unsigned int signlessleft1, signlessright1, save; - register int result_exponent, diff_exponent; - int sign_save, jumpsize; - - Sgl_copyfromptr(src1ptr,opnd1); - Sgl_copyfromptr(src2ptr,opnd2); - Sgl_copyfromptr(src3ptr,opnd3); - - /* - * set sign bit of result of multiply - */ - if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) - Sgl_setnegativezero(resultp1); - else Sgl_setzero(resultp1); - - /* - * Generate multiply exponent - */ - mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; - - /* - * check first operand for NaN's or infinity - */ - if (Sgl_isinfinity_exponent(opnd1)) { - if (Sgl_iszero_mantissa(opnd1)) { - if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { - if (Sgl_iszero_exponentmantissa(opnd2)) { - /* - * invalid since operands are infinity - * and zero - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Sgl_isinfinity(opnd3) && - (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Sgl_setinfinity_exponentmantissa(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Sgl_isone_signaling(opnd1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd1); - } - /* - * is second operand a signaling NaN? - */ - else if (Sgl_is_signalingnan(opnd2)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd2); - Sgl_copytoptr(opnd2,dstptr); - return(NOEXCEPTION); - } - /* - * is third operand a signaling NaN? - */ - else if (Sgl_is_signalingnan(opnd3)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd3); - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Sgl_copytoptr(opnd1,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check second operand for NaN's or infinity - */ - if (Sgl_isinfinity_exponent(opnd2)) { - if (Sgl_iszero_mantissa(opnd2)) { - if (Sgl_isnotnan(opnd3)) { - if (Sgl_iszero_exponentmantissa(opnd1)) { - /* - * invalid since multiply operands are - * zero & infinity - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(opnd2); - Sgl_copytoptr(opnd2,dstptr); - return(NOEXCEPTION); - } - - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Sgl_isinfinity(opnd3) && - (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Sgl_setinfinity_exponentmantissa(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Sgl_isone_signaling(opnd2)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd2); - } - /* - * is third operand a signaling NaN? - */ - else if (Sgl_is_signalingnan(opnd3)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd3); - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Sgl_copytoptr(opnd2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check third operand for NaN's or infinity - */ - if (Sgl_isinfinity_exponent(opnd3)) { - if (Sgl_iszero_mantissa(opnd3)) { - /* return infinity */ - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } else { - /* - * is NaN; signaling or quiet? - */ - if (Sgl_isone_signaling(opnd3)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd3); - } - /* - * return quiet NaN - */ - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - } - - /* - * Generate multiply mantissa - */ - if (Sgl_isnotzero_exponent(opnd1)) { - /* set hidden bit */ - Sgl_clear_signexponent_set_hidden(opnd1); - } - else { - /* check for zero */ - if (Sgl_iszero_mantissa(opnd1)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Sgl_iszero_exponentmantissa(opnd3)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Sgl_or_signs(opnd3,resultp1); - } else { - Sgl_and_signs(opnd3,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Sgl_iszero_exponent(opnd3) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Sgl_signextendedsign(opnd3); - result_exponent = 0; - Sgl_leftshiftby1(opnd3); - Sgl_normalize(opnd3,result_exponent); - Sgl_set_sign(opnd3,/*using*/sign_save); - Sgl_setwrapped_exponent(opnd3,result_exponent, - unfl); - Sgl_copytoptr(opnd3,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* is denormalized, adjust exponent */ - Sgl_clear_signexponent(opnd1); - Sgl_leftshiftby1(opnd1); - Sgl_normalize(opnd1,mpy_exponent); - } - /* opnd2 needs to have hidden bit set with msb in hidden bit */ - if (Sgl_isnotzero_exponent(opnd2)) { - Sgl_clear_signexponent_set_hidden(opnd2); - } - else { - /* check for zero */ - if (Sgl_iszero_mantissa(opnd2)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Sgl_iszero_exponentmantissa(opnd3)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Sgl_or_signs(opnd3,resultp1); - } else { - Sgl_and_signs(opnd3,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Sgl_iszero_exponent(opnd3) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Sgl_signextendedsign(opnd3); - result_exponent = 0; - Sgl_leftshiftby1(opnd3); - Sgl_normalize(opnd3,result_exponent); - Sgl_set_sign(opnd3,/*using*/sign_save); - Sgl_setwrapped_exponent(opnd3,result_exponent, - unfl); - Sgl_copytoptr(opnd3,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* is denormalized; want to normalize */ - Sgl_clear_signexponent(opnd2); - Sgl_leftshiftby1(opnd2); - Sgl_normalize(opnd2,mpy_exponent); - } - - /* Multiply the first two source mantissas together */ - - /* - * The intermediate result will be kept in tmpres, - * which needs enough room for 106 bits of mantissa, - * so lets call it a Double extended. - */ - Sglext_setzero(tmpresp1,tmpresp2); - - /* - * Four bits at a time are inspected in each loop, and a - * simple shift and add multiply algorithm is used. - */ - for (count = SGL_P-1; count >= 0; count -= 4) { - Sglext_rightshiftby4(tmpresp1,tmpresp2); - if (Sbit28(opnd1)) { - /* Twoword_add should be an ADD followed by 2 ADDC's */ - Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); - } - if (Sbit29(opnd1)) { - Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); - } - if (Sbit30(opnd1)) { - Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); - } - if (Sbit31(opnd1)) { - Twoword_add(tmpresp1, tmpresp2, opnd2, 0); - } - Sgl_rightshiftby4(opnd1); - } - if (Is_sexthiddenoverflow(tmpresp1)) { - /* result mantissa >= 2 (mantissa overflow) */ - mpy_exponent++; - Sglext_rightshiftby4(tmpresp1,tmpresp2); - } else { - Sglext_rightshiftby3(tmpresp1,tmpresp2); - } - - /* - * Restore the sign of the mpy result which was saved in resultp1. - * The exponent will continue to be kept in mpy_exponent. - */ - Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); - - /* - * No rounding is required, since the result of the multiply - * is exact in the extended format. - */ - - /* - * Now we are ready to perform the add portion of the operation. - * - * The exponents need to be kept as integers for now, since the - * multiply result might not fit into the exponent field. We - * can't overflow or underflow because of this yet, since the - * add could bring the final result back into range. - */ - add_exponent = Sgl_exponent(opnd3); - - /* - * Check for denormalized or zero add operand. - */ - if (add_exponent == 0) { - /* check for zero */ - if (Sgl_iszero_mantissa(opnd3)) { - /* right is zero */ - /* Left can't be zero and must be result. - * - * The final result is now in tmpres and mpy_exponent, - * and needs to be rounded and squeezed back into - * double precision format from double extended. - */ - result_exponent = mpy_exponent; - Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); - sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ - goto round; - } - - /* - * Neither are zeroes. - * Adjust exponent and normalize add operand. - */ - sign_save = Sgl_signextendedsign(opnd3); /* save sign */ - Sgl_clear_signexponent(opnd3); - Sgl_leftshiftby1(opnd3); - Sgl_normalize(opnd3,add_exponent); - Sgl_set_sign(opnd3,sign_save); /* restore sign */ - } else { - Sgl_clear_exponent_set_hidden(opnd3); - } - /* - * Copy opnd3 to the double extended variable called right. - */ - Sgl_copyto_sglext(opnd3,rightp1,rightp2); - - /* - * A zero "save" helps discover equal operands (for later), - * and is used in swapping operands (if needed). - */ - Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); - - /* - * Compare magnitude of operands. - */ - Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); - Sglext_copytoint_exponentmantissa(rightp1,signlessright1); - if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && - Sglext_ismagnitudeless(signlessleft1,signlessright1)) { - /* - * Set the left operand to the larger one by XOR swap. - * First finish the first word "save". - */ - Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); - Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); - Sglext_swap_lower(tmpresp2,rightp2); - /* also setup exponents used in rest of routine */ - diff_exponent = add_exponent - mpy_exponent; - result_exponent = add_exponent; - } else { - /* also setup exponents used in rest of routine */ - diff_exponent = mpy_exponent - add_exponent; - result_exponent = mpy_exponent; - } - /* Invariant: left is not smaller than right. */ - - /* - * Special case alignment of operands that would force alignment - * beyond the extent of the extension. A further optimization - * could special case this but only reduces the path length for - * this infrequent case. - */ - if (diff_exponent > SGLEXT_THRESHOLD) { - diff_exponent = SGLEXT_THRESHOLD; - } - - /* Align right operand by shifting it to the right */ - Sglext_clear_sign(rightp1); - Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); - - /* Treat sum and difference of the operands separately. */ - if ((int)save < 0) { - /* - * Difference of the two operands. Overflow can occur if the - * multiply overflowed. A borrow can occur out of the hidden - * bit and force a post normalization phase. - */ - Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, - resultp1,resultp2); - sign_save = Sgl_signextendedsign(resultp1); - if (Sgl_iszero_hidden(resultp1)) { - /* Handle normalization */ - /* A straightforward algorithm would now shift the - * result and extension left until the hidden bit - * becomes one. Not all of the extension bits need - * participate in the shift. Only the two most - * significant bits (round and guard) are needed. - * If only a single shift is needed then the guard - * bit becomes a significant low order bit and the - * extension must participate in the rounding. - * If more than a single shift is needed, then all - * bits to the right of the guard bit are zeros, - * and the guard bit may or may not be zero. */ - Sglext_leftshiftby1(resultp1,resultp2); - - /* Need to check for a zero result. The sign and - * exponent fields have already been zeroed. The more - * efficient test of the full object can be used. - */ - if (Sglext_iszero(resultp1,resultp2)) { - /* Must have been "x-x" or "x+(-x)". */ - if (Is_rounding_mode(ROUNDMINUS)) - Sgl_setone_sign(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - result_exponent--; - - /* Look to see if normalization is finished. */ - if (Sgl_isone_hidden(resultp1)) { - /* No further normalization is needed */ - goto round; - } - - /* Discover first one bit to determine shift amount. - * Use a modified binary search. We have already - * shifted the result one position right and still - * not found a one so the remainder of the extension - * must be zero and simplifies rounding. */ - /* Scan bytes */ - while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { - Sglext_leftshiftby8(resultp1,resultp2); - result_exponent -= 8; - } - /* Now narrow it down to the nibble */ - if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { - /* The lower nibble contains the - * normalizing one */ - Sglext_leftshiftby4(resultp1,resultp2); - result_exponent -= 4; - } - /* Select case where first bit is set (already - * normalized) otherwise select the proper shift. */ - jumpsize = Sgl_hiddenhigh3mantissa(resultp1); - if (jumpsize <= 7) switch(jumpsize) { - case 1: - Sglext_leftshiftby3(resultp1,resultp2); - result_exponent -= 3; - break; - case 2: - case 3: - Sglext_leftshiftby2(resultp1,resultp2); - result_exponent -= 2; - break; - case 4: - case 5: - case 6: - case 7: - Sglext_leftshiftby1(resultp1,resultp2); - result_exponent -= 1; - break; - } - } /* end if (hidden...)... */ - /* Fall through and round */ - } /* end if (save < 0)... */ - else { - /* Add magnitudes */ - Sglext_addition(tmpresp1,tmpresp2, - rightp1,rightp2, /*to*/resultp1,resultp2); - sign_save = Sgl_signextendedsign(resultp1); - if (Sgl_isone_hiddenoverflow(resultp1)) { - /* Prenormalization required. */ - Sglext_arithrightshiftby1(resultp1,resultp2); - result_exponent++; - } /* end if hiddenoverflow... */ - } /* end else ...add magnitudes... */ - - /* Round the result. If the extension and lower two words are - * all zeros, then the result is exact. Otherwise round in the - * correct direction. Underflow is possible. If a postnormalization - * is necessary, then the mantissa is all zeros so no shift is needed. - */ - round: - if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { - Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); - } - Sgl_set_sign(resultp1,/*using*/sign_save); - if (Sglext_isnotzero_mantissap2(resultp2)) { - inexact = TRUE; - switch(Rounding_mode()) { - case ROUNDNEAREST: /* The default. */ - if (Sglext_isone_highp2(resultp2)) { - /* at least 1/2 ulp */ - if (Sglext_isnotzero_low31p2(resultp2) || - Sglext_isone_lowp1(resultp1)) { - /* either exactly half way and odd or - * more than 1/2ulp */ - Sgl_increment(resultp1); - } - } - break; - - case ROUNDPLUS: - if (Sgl_iszero_sign(resultp1)) { - /* Round up positive results */ - Sgl_increment(resultp1); - } - break; - - case ROUNDMINUS: - if (Sgl_isone_sign(resultp1)) { - /* Round down negative results */ - Sgl_increment(resultp1); - } - - case ROUNDZERO:; - /* truncate is simple */ - } /* end switch... */ - if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; - } - if (result_exponent >= SGL_INFINITY_EXPONENT) { - /* Overflow */ - if (Is_overflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); - Sgl_copytoptr(resultp1,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_OVERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return (OPC_2E_OVERFLOWEXCEPTION); - } - inexact = TRUE; - Set_overflowflag(); - Sgl_setoverflow(resultp1); - } else if (result_exponent <= 0) { /* underflow case */ - if (Is_underflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); - Sgl_copytoptr(resultp1,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_UNDERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(OPC_2E_UNDERFLOWEXCEPTION); - } - else if (inexact && is_tiny) Set_underflowflag(); - } - else Sgl_set_exponent(resultp1,result_exponent); - Sgl_copytoptr(resultp1,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(NOEXCEPTION); -} - -/* - * Single Floating-point Multiply Negate Fused Add - */ - -sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) - -sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; -unsigned int *status; -{ - unsigned int opnd1, opnd2, opnd3; - register unsigned int tmpresp1, tmpresp2; - unsigned int rightp1, rightp2; - unsigned int resultp1, resultp2 = 0; - register int mpy_exponent, add_exponent, count; - boolean inexact = FALSE, is_tiny = FALSE; - - unsigned int signlessleft1, signlessright1, save; - register int result_exponent, diff_exponent; - int sign_save, jumpsize; - - Sgl_copyfromptr(src1ptr,opnd1); - Sgl_copyfromptr(src2ptr,opnd2); - Sgl_copyfromptr(src3ptr,opnd3); - - /* - * set sign bit of result of multiply - */ - if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) - Sgl_setzero(resultp1); - else - Sgl_setnegativezero(resultp1); - - /* - * Generate multiply exponent - */ - mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; - - /* - * check first operand for NaN's or infinity - */ - if (Sgl_isinfinity_exponent(opnd1)) { - if (Sgl_iszero_mantissa(opnd1)) { - if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { - if (Sgl_iszero_exponentmantissa(opnd2)) { - /* - * invalid since operands are infinity - * and zero - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Sgl_isinfinity(opnd3) && - (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Sgl_setinfinity_exponentmantissa(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Sgl_isone_signaling(opnd1)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd1); - } - /* - * is second operand a signaling NaN? - */ - else if (Sgl_is_signalingnan(opnd2)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd2); - Sgl_copytoptr(opnd2,dstptr); - return(NOEXCEPTION); - } - /* - * is third operand a signaling NaN? - */ - else if (Sgl_is_signalingnan(opnd3)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd3); - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Sgl_copytoptr(opnd1,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check second operand for NaN's or infinity - */ - if (Sgl_isinfinity_exponent(opnd2)) { - if (Sgl_iszero_mantissa(opnd2)) { - if (Sgl_isnotnan(opnd3)) { - if (Sgl_iszero_exponentmantissa(opnd1)) { - /* - * invalid since multiply operands are - * zero & infinity - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(opnd2); - Sgl_copytoptr(opnd2,dstptr); - return(NOEXCEPTION); - } - - /* - * Check third operand for infinity with a - * sign opposite of the multiply result - */ - if (Sgl_isinfinity(opnd3) && - (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { - /* - * invalid since attempting a magnitude - * subtraction of infinities - */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - Set_invalidflag(); - Sgl_makequietnan(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - - /* - * return infinity - */ - Sgl_setinfinity_exponentmantissa(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - } - else { - /* - * is NaN; signaling or quiet? - */ - if (Sgl_isone_signaling(opnd2)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd2); - } - /* - * is third operand a signaling NaN? - */ - else if (Sgl_is_signalingnan(opnd3)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd3); - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* - * return quiet NaN - */ - Sgl_copytoptr(opnd2,dstptr); - return(NOEXCEPTION); - } - } - - /* - * check third operand for NaN's or infinity - */ - if (Sgl_isinfinity_exponent(opnd3)) { - if (Sgl_iszero_mantissa(opnd3)) { - /* return infinity */ - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } else { - /* - * is NaN; signaling or quiet? - */ - if (Sgl_isone_signaling(opnd3)) { - /* trap if INVALIDTRAP enabled */ - if (Is_invalidtrap_enabled()) - return(OPC_2E_INVALIDEXCEPTION); - /* make NaN quiet */ - Set_invalidflag(); - Sgl_set_quiet(opnd3); - } - /* - * return quiet NaN - */ - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - } - - /* - * Generate multiply mantissa - */ - if (Sgl_isnotzero_exponent(opnd1)) { - /* set hidden bit */ - Sgl_clear_signexponent_set_hidden(opnd1); - } - else { - /* check for zero */ - if (Sgl_iszero_mantissa(opnd1)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Sgl_iszero_exponentmantissa(opnd3)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Sgl_or_signs(opnd3,resultp1); - } else { - Sgl_and_signs(opnd3,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Sgl_iszero_exponent(opnd3) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Sgl_signextendedsign(opnd3); - result_exponent = 0; - Sgl_leftshiftby1(opnd3); - Sgl_normalize(opnd3,result_exponent); - Sgl_set_sign(opnd3,/*using*/sign_save); - Sgl_setwrapped_exponent(opnd3,result_exponent, - unfl); - Sgl_copytoptr(opnd3,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* is denormalized, adjust exponent */ - Sgl_clear_signexponent(opnd1); - Sgl_leftshiftby1(opnd1); - Sgl_normalize(opnd1,mpy_exponent); - } - /* opnd2 needs to have hidden bit set with msb in hidden bit */ - if (Sgl_isnotzero_exponent(opnd2)) { - Sgl_clear_signexponent_set_hidden(opnd2); - } - else { - /* check for zero */ - if (Sgl_iszero_mantissa(opnd2)) { - /* - * Perform the add opnd3 with zero here. - */ - if (Sgl_iszero_exponentmantissa(opnd3)) { - if (Is_rounding_mode(ROUNDMINUS)) { - Sgl_or_signs(opnd3,resultp1); - } else { - Sgl_and_signs(opnd3,resultp1); - } - } - /* - * Now let's check for trapped underflow case. - */ - else if (Sgl_iszero_exponent(opnd3) && - Is_underflowtrap_enabled()) { - /* need to normalize results mantissa */ - sign_save = Sgl_signextendedsign(opnd3); - result_exponent = 0; - Sgl_leftshiftby1(opnd3); - Sgl_normalize(opnd3,result_exponent); - Sgl_set_sign(opnd3,/*using*/sign_save); - Sgl_setwrapped_exponent(opnd3,result_exponent, - unfl); - Sgl_copytoptr(opnd3,dstptr); - /* inexact = FALSE */ - return(OPC_2E_UNDERFLOWEXCEPTION); - } - Sgl_copytoptr(opnd3,dstptr); - return(NOEXCEPTION); - } - /* is denormalized; want to normalize */ - Sgl_clear_signexponent(opnd2); - Sgl_leftshiftby1(opnd2); - Sgl_normalize(opnd2,mpy_exponent); - } - - /* Multiply the first two source mantissas together */ - - /* - * The intermediate result will be kept in tmpres, - * which needs enough room for 106 bits of mantissa, - * so lets call it a Double extended. - */ - Sglext_setzero(tmpresp1,tmpresp2); - - /* - * Four bits at a time are inspected in each loop, and a - * simple shift and add multiply algorithm is used. - */ - for (count = SGL_P-1; count >= 0; count -= 4) { - Sglext_rightshiftby4(tmpresp1,tmpresp2); - if (Sbit28(opnd1)) { - /* Twoword_add should be an ADD followed by 2 ADDC's */ - Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); - } - if (Sbit29(opnd1)) { - Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); - } - if (Sbit30(opnd1)) { - Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); - } - if (Sbit31(opnd1)) { - Twoword_add(tmpresp1, tmpresp2, opnd2, 0); - } - Sgl_rightshiftby4(opnd1); - } - if (Is_sexthiddenoverflow(tmpresp1)) { - /* result mantissa >= 2 (mantissa overflow) */ - mpy_exponent++; - Sglext_rightshiftby4(tmpresp1,tmpresp2); - } else { - Sglext_rightshiftby3(tmpresp1,tmpresp2); - } - - /* - * Restore the sign of the mpy result which was saved in resultp1. - * The exponent will continue to be kept in mpy_exponent. - */ - Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); - - /* - * No rounding is required, since the result of the multiply - * is exact in the extended format. - */ - - /* - * Now we are ready to perform the add portion of the operation. - * - * The exponents need to be kept as integers for now, since the - * multiply result might not fit into the exponent field. We - * can't overflow or underflow because of this yet, since the - * add could bring the final result back into range. - */ - add_exponent = Sgl_exponent(opnd3); - - /* - * Check for denormalized or zero add operand. - */ - if (add_exponent == 0) { - /* check for zero */ - if (Sgl_iszero_mantissa(opnd3)) { - /* right is zero */ - /* Left can't be zero and must be result. - * - * The final result is now in tmpres and mpy_exponent, - * and needs to be rounded and squeezed back into - * double precision format from double extended. - */ - result_exponent = mpy_exponent; - Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); - sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ - goto round; - } - - /* - * Neither are zeroes. - * Adjust exponent and normalize add operand. - */ - sign_save = Sgl_signextendedsign(opnd3); /* save sign */ - Sgl_clear_signexponent(opnd3); - Sgl_leftshiftby1(opnd3); - Sgl_normalize(opnd3,add_exponent); - Sgl_set_sign(opnd3,sign_save); /* restore sign */ - } else { - Sgl_clear_exponent_set_hidden(opnd3); - } - /* - * Copy opnd3 to the double extended variable called right. - */ - Sgl_copyto_sglext(opnd3,rightp1,rightp2); - - /* - * A zero "save" helps discover equal operands (for later), - * and is used in swapping operands (if needed). - */ - Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); - - /* - * Compare magnitude of operands. - */ - Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); - Sglext_copytoint_exponentmantissa(rightp1,signlessright1); - if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && - Sglext_ismagnitudeless(signlessleft1,signlessright1)) { - /* - * Set the left operand to the larger one by XOR swap. - * First finish the first word "save". - */ - Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); - Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); - Sglext_swap_lower(tmpresp2,rightp2); - /* also setup exponents used in rest of routine */ - diff_exponent = add_exponent - mpy_exponent; - result_exponent = add_exponent; - } else { - /* also setup exponents used in rest of routine */ - diff_exponent = mpy_exponent - add_exponent; - result_exponent = mpy_exponent; - } - /* Invariant: left is not smaller than right. */ - - /* - * Special case alignment of operands that would force alignment - * beyond the extent of the extension. A further optimization - * could special case this but only reduces the path length for - * this infrequent case. - */ - if (diff_exponent > SGLEXT_THRESHOLD) { - diff_exponent = SGLEXT_THRESHOLD; - } - - /* Align right operand by shifting it to the right */ - Sglext_clear_sign(rightp1); - Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); - - /* Treat sum and difference of the operands separately. */ - if ((int)save < 0) { - /* - * Difference of the two operands. Overflow can occur if the - * multiply overflowed. A borrow can occur out of the hidden - * bit and force a post normalization phase. - */ - Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, - resultp1,resultp2); - sign_save = Sgl_signextendedsign(resultp1); - if (Sgl_iszero_hidden(resultp1)) { - /* Handle normalization */ - /* A straightforward algorithm would now shift the - * result and extension left until the hidden bit - * becomes one. Not all of the extension bits need - * participate in the shift. Only the two most - * significant bits (round and guard) are needed. - * If only a single shift is needed then the guard - * bit becomes a significant low order bit and the - * extension must participate in the rounding. - * If more than a single shift is needed, then all - * bits to the right of the guard bit are zeros, - * and the guard bit may or may not be zero. */ - Sglext_leftshiftby1(resultp1,resultp2); - - /* Need to check for a zero result. The sign and - * exponent fields have already been zeroed. The more - * efficient test of the full object can be used. - */ - if (Sglext_iszero(resultp1,resultp2)) { - /* Must have been "x-x" or "x+(-x)". */ - if (Is_rounding_mode(ROUNDMINUS)) - Sgl_setone_sign(resultp1); - Sgl_copytoptr(resultp1,dstptr); - return(NOEXCEPTION); - } - result_exponent--; - - /* Look to see if normalization is finished. */ - if (Sgl_isone_hidden(resultp1)) { - /* No further normalization is needed */ - goto round; - } - - /* Discover first one bit to determine shift amount. - * Use a modified binary search. We have already - * shifted the result one position right and still - * not found a one so the remainder of the extension - * must be zero and simplifies rounding. */ - /* Scan bytes */ - while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { - Sglext_leftshiftby8(resultp1,resultp2); - result_exponent -= 8; - } - /* Now narrow it down to the nibble */ - if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { - /* The lower nibble contains the - * normalizing one */ - Sglext_leftshiftby4(resultp1,resultp2); - result_exponent -= 4; - } - /* Select case where first bit is set (already - * normalized) otherwise select the proper shift. */ - jumpsize = Sgl_hiddenhigh3mantissa(resultp1); - if (jumpsize <= 7) switch(jumpsize) { - case 1: - Sglext_leftshiftby3(resultp1,resultp2); - result_exponent -= 3; - break; - case 2: - case 3: - Sglext_leftshiftby2(resultp1,resultp2); - result_exponent -= 2; - break; - case 4: - case 5: - case 6: - case 7: - Sglext_leftshiftby1(resultp1,resultp2); - result_exponent -= 1; - break; - } - } /* end if (hidden...)... */ - /* Fall through and round */ - } /* end if (save < 0)... */ - else { - /* Add magnitudes */ - Sglext_addition(tmpresp1,tmpresp2, - rightp1,rightp2, /*to*/resultp1,resultp2); - sign_save = Sgl_signextendedsign(resultp1); - if (Sgl_isone_hiddenoverflow(resultp1)) { - /* Prenormalization required. */ - Sglext_arithrightshiftby1(resultp1,resultp2); - result_exponent++; - } /* end if hiddenoverflow... */ - } /* end else ...add magnitudes... */ - - /* Round the result. If the extension and lower two words are - * all zeros, then the result is exact. Otherwise round in the - * correct direction. Underflow is possible. If a postnormalization - * is necessary, then the mantissa is all zeros so no shift is needed. - */ - round: - if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { - Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); - } - Sgl_set_sign(resultp1,/*using*/sign_save); - if (Sglext_isnotzero_mantissap2(resultp2)) { - inexact = TRUE; - switch(Rounding_mode()) { - case ROUNDNEAREST: /* The default. */ - if (Sglext_isone_highp2(resultp2)) { - /* at least 1/2 ulp */ - if (Sglext_isnotzero_low31p2(resultp2) || - Sglext_isone_lowp1(resultp1)) { - /* either exactly half way and odd or - * more than 1/2ulp */ - Sgl_increment(resultp1); - } - } - break; - - case ROUNDPLUS: - if (Sgl_iszero_sign(resultp1)) { - /* Round up positive results */ - Sgl_increment(resultp1); - } - break; - - case ROUNDMINUS: - if (Sgl_isone_sign(resultp1)) { - /* Round down negative results */ - Sgl_increment(resultp1); - } - - case ROUNDZERO:; - /* truncate is simple */ - } /* end switch... */ - if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; - } - if (result_exponent >= SGL_INFINITY_EXPONENT) { - /* Overflow */ - if (Is_overflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); - Sgl_copytoptr(resultp1,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_OVERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return (OPC_2E_OVERFLOWEXCEPTION); - } - inexact = TRUE; - Set_overflowflag(); - Sgl_setoverflow(resultp1); - } else if (result_exponent <= 0) { /* underflow case */ - if (Is_underflowtrap_enabled()) { - /* - * Adjust bias of result - */ - Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); - Sgl_copytoptr(resultp1,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) - return (OPC_2E_UNDERFLOWEXCEPTION | - OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(OPC_2E_UNDERFLOWEXCEPTION); - } - else if (inexact && is_tiny) Set_underflowflag(); - } - else Sgl_set_exponent(resultp1,result_exponent); - Sgl_copytoptr(resultp1,dstptr); - if (inexact) - if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); - else Set_inexactflag(); - return(NOEXCEPTION); -} - |