summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c')
-rw-r--r--ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c2655
1 files changed, 0 insertions, 2655 deletions
diff --git a/ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c b/ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c
deleted file mode 100644
index b067c45c..00000000
--- a/ANDROID_3.4.5/arch/parisc/math-emu/fmpyfadd.c
+++ /dev/null
@@ -1,2655 +0,0 @@
-/*
- * Linux/PA-RISC Project (http://www.parisc-linux.org/)
- *
- * Floating-point emulation code
- * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2, or (at your option)
- * any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
-/*
- * BEGIN_DESC
- *
- * File:
- * @(#) pa/spmath/fmpyfadd.c $Revision: 1.1 $
- *
- * Purpose:
- * Double Floating-point Multiply Fused Add
- * Double Floating-point Multiply Negate Fused Add
- * Single Floating-point Multiply Fused Add
- * Single Floating-point Multiply Negate Fused Add
- *
- * External Interfaces:
- * dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
- * dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
- * sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
- * sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
- *
- * Internal Interfaces:
- *
- * Theory:
- * <<please update with a overview of the operation of this file>>
- *
- * END_DESC
-*/
-
-
-#include "float.h"
-#include "sgl_float.h"
-#include "dbl_float.h"
-
-
-/*
- * Double Floating-point Multiply Fused Add
- */
-
-int
-dbl_fmpyfadd(
- dbl_floating_point *src1ptr,
- dbl_floating_point *src2ptr,
- dbl_floating_point *src3ptr,
- unsigned int *status,
- dbl_floating_point *dstptr)
-{
- unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2;
- register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4;
- unsigned int rightp1, rightp2, rightp3, rightp4;
- unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0;
- register int mpy_exponent, add_exponent, count;
- boolean inexact = FALSE, is_tiny = FALSE;
-
- unsigned int signlessleft1, signlessright1, save;
- register int result_exponent, diff_exponent;
- int sign_save, jumpsize;
-
- Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2);
- Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2);
- Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2);
-
- /*
- * set sign bit of result of multiply
- */
- if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1))
- Dbl_setnegativezerop1(resultp1);
- else Dbl_setzerop1(resultp1);
-
- /*
- * Generate multiply exponent
- */
- mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS;
-
- /*
- * check first operand for NaN's or infinity
- */
- if (Dbl_isinfinity_exponent(opnd1p1)) {
- if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
- if (Dbl_isnotnan(opnd2p1,opnd2p2) &&
- Dbl_isnotnan(opnd3p1,opnd3p2)) {
- if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) {
- /*
- * invalid since operands are infinity
- * and zero
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
- (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Dbl_isone_signaling(opnd1p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd1p1);
- }
- /*
- * is second operand a signaling NaN?
- */
- else if (Dbl_is_signalingnan(opnd2p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd2p1);
- Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Dbl_is_signalingnan(opnd3p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd3p1);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Dbl_copytoptr(opnd1p1,opnd1p2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check second operand for NaN's or infinity
- */
- if (Dbl_isinfinity_exponent(opnd2p1)) {
- if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
- if (Dbl_isnotnan(opnd3p1,opnd3p2)) {
- if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) {
- /*
- * invalid since multiply operands are
- * zero & infinity
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(opnd2p1,opnd2p2);
- Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
- (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Dbl_isone_signaling(opnd2p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd2p1);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Dbl_is_signalingnan(opnd3p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd3p1);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check third operand for NaN's or infinity
- */
- if (Dbl_isinfinity_exponent(opnd3p1)) {
- if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
- /* return infinity */
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- } else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Dbl_isone_signaling(opnd3p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd3p1);
- }
- /*
- * return quiet NaN
- */
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * Generate multiply mantissa
- */
- if (Dbl_isnotzero_exponent(opnd1p1)) {
- /* set hidden bit */
- Dbl_clear_signexponent_set_hidden(opnd1p1);
- }
- else {
- /* check for zero */
- if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Dbl_or_signs(opnd3p1,resultp1);
- } else {
- Dbl_and_signs(opnd3p1,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Dbl_iszero_exponent(opnd3p1) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Dbl_signextendedsign(opnd3p1);
- result_exponent = 0;
- Dbl_leftshiftby1(opnd3p1,opnd3p2);
- Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
- Dbl_set_sign(opnd3p1,/*using*/sign_save);
- Dbl_setwrapped_exponent(opnd3p1,result_exponent,
- unfl);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized, adjust exponent */
- Dbl_clear_signexponent(opnd1p1);
- Dbl_leftshiftby1(opnd1p1,opnd1p2);
- Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent);
- }
- /* opnd2 needs to have hidden bit set with msb in hidden bit */
- if (Dbl_isnotzero_exponent(opnd2p1)) {
- Dbl_clear_signexponent_set_hidden(opnd2p1);
- }
- else {
- /* check for zero */
- if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Dbl_or_signs(opnd3p1,resultp1);
- } else {
- Dbl_and_signs(opnd3p1,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Dbl_iszero_exponent(opnd3p1) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Dbl_signextendedsign(opnd3p1);
- result_exponent = 0;
- Dbl_leftshiftby1(opnd3p1,opnd3p2);
- Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
- Dbl_set_sign(opnd3p1,/*using*/sign_save);
- Dbl_setwrapped_exponent(opnd3p1,result_exponent,
- unfl);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized; want to normalize */
- Dbl_clear_signexponent(opnd2p1);
- Dbl_leftshiftby1(opnd2p1,opnd2p2);
- Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent);
- }
-
- /* Multiply the first two source mantissas together */
-
- /*
- * The intermediate result will be kept in tmpres,
- * which needs enough room for 106 bits of mantissa,
- * so lets call it a Double extended.
- */
- Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
-
- /*
- * Four bits at a time are inspected in each loop, and a
- * simple shift and add multiply algorithm is used.
- */
- for (count = DBL_P-1; count >= 0; count -= 4) {
- Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
- if (Dbit28p2(opnd1p2)) {
- /* Fourword_add should be an ADD followed by 3 ADDC's */
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0);
- }
- if (Dbit29p2(opnd1p2)) {
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0);
- }
- if (Dbit30p2(opnd1p2)) {
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0);
- }
- if (Dbit31p2(opnd1p2)) {
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1, opnd2p2, 0, 0);
- }
- Dbl_rightshiftby4(opnd1p1,opnd1p2);
- }
- if (Is_dexthiddenoverflow(tmpresp1)) {
- /* result mantissa >= 2 (mantissa overflow) */
- mpy_exponent++;
- Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
- }
-
- /*
- * Restore the sign of the mpy result which was saved in resultp1.
- * The exponent will continue to be kept in mpy_exponent.
- */
- Dblext_set_sign(tmpresp1,Dbl_sign(resultp1));
-
- /*
- * No rounding is required, since the result of the multiply
- * is exact in the extended format.
- */
-
- /*
- * Now we are ready to perform the add portion of the operation.
- *
- * The exponents need to be kept as integers for now, since the
- * multiply result might not fit into the exponent field. We
- * can't overflow or underflow because of this yet, since the
- * add could bring the final result back into range.
- */
- add_exponent = Dbl_exponent(opnd3p1);
-
- /*
- * Check for denormalized or zero add operand.
- */
- if (add_exponent == 0) {
- /* check for zero */
- if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
- /* right is zero */
- /* Left can't be zero and must be result.
- *
- * The final result is now in tmpres and mpy_exponent,
- * and needs to be rounded and squeezed back into
- * double precision format from double extended.
- */
- result_exponent = mpy_exponent;
- Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
- resultp1,resultp2,resultp3,resultp4);
- sign_save = Dbl_signextendedsign(resultp1);/*save sign*/
- goto round;
- }
-
- /*
- * Neither are zeroes.
- * Adjust exponent and normalize add operand.
- */
- sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */
- Dbl_clear_signexponent(opnd3p1);
- Dbl_leftshiftby1(opnd3p1,opnd3p2);
- Dbl_normalize(opnd3p1,opnd3p2,add_exponent);
- Dbl_set_sign(opnd3p1,sign_save); /* restore sign */
- } else {
- Dbl_clear_exponent_set_hidden(opnd3p1);
- }
- /*
- * Copy opnd3 to the double extended variable called right.
- */
- Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4);
-
- /*
- * A zero "save" helps discover equal operands (for later),
- * and is used in swapping operands (if needed).
- */
- Dblext_xortointp1(tmpresp1,rightp1,/*to*/save);
-
- /*
- * Compare magnitude of operands.
- */
- Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1);
- Dblext_copytoint_exponentmantissap1(rightp1,signlessright1);
- if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
- Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){
- /*
- * Set the left operand to the larger one by XOR swap.
- * First finish the first word "save".
- */
- Dblext_xorfromintp1(save,rightp1,/*to*/rightp1);
- Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
- Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4,
- rightp2,rightp3,rightp4);
- /* also setup exponents used in rest of routine */
- diff_exponent = add_exponent - mpy_exponent;
- result_exponent = add_exponent;
- } else {
- /* also setup exponents used in rest of routine */
- diff_exponent = mpy_exponent - add_exponent;
- result_exponent = mpy_exponent;
- }
- /* Invariant: left is not smaller than right. */
-
- /*
- * Special case alignment of operands that would force alignment
- * beyond the extent of the extension. A further optimization
- * could special case this but only reduces the path length for
- * this infrequent case.
- */
- if (diff_exponent > DBLEXT_THRESHOLD) {
- diff_exponent = DBLEXT_THRESHOLD;
- }
-
- /* Align right operand by shifting it to the right */
- Dblext_clear_sign(rightp1);
- Dblext_right_align(rightp1,rightp2,rightp3,rightp4,
- /*shifted by*/diff_exponent);
-
- /* Treat sum and difference of the operands separately. */
- if ((int)save < 0) {
- /*
- * Difference of the two operands. Overflow can occur if the
- * multiply overflowed. A borrow can occur out of the hidden
- * bit and force a post normalization phase.
- */
- Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
- rightp1,rightp2,rightp3,rightp4,
- resultp1,resultp2,resultp3,resultp4);
- sign_save = Dbl_signextendedsign(resultp1);
- if (Dbl_iszero_hidden(resultp1)) {
- /* Handle normalization */
- /* A straightforward algorithm would now shift the
- * result and extension left until the hidden bit
- * becomes one. Not all of the extension bits need
- * participate in the shift. Only the two most
- * significant bits (round and guard) are needed.
- * If only a single shift is needed then the guard
- * bit becomes a significant low order bit and the
- * extension must participate in the rounding.
- * If more than a single shift is needed, then all
- * bits to the right of the guard bit are zeros,
- * and the guard bit may or may not be zero. */
- Dblext_leftshiftby1(resultp1,resultp2,resultp3,
- resultp4);
-
- /* Need to check for a zero result. The sign and
- * exponent fields have already been zeroed. The more
- * efficient test of the full object can be used.
- */
- if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){
- /* Must have been "x-x" or "x+(-x)". */
- if (Is_rounding_mode(ROUNDMINUS))
- Dbl_setone_sign(resultp1);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- result_exponent--;
-
- /* Look to see if normalization is finished. */
- if (Dbl_isone_hidden(resultp1)) {
- /* No further normalization is needed */
- goto round;
- }
-
- /* Discover first one bit to determine shift amount.
- * Use a modified binary search. We have already
- * shifted the result one position right and still
- * not found a one so the remainder of the extension
- * must be zero and simplifies rounding. */
- /* Scan bytes */
- while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) {
- Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4);
- result_exponent -= 8;
- }
- /* Now narrow it down to the nibble */
- if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) {
- /* The lower nibble contains the
- * normalizing one */
- Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4);
- result_exponent -= 4;
- }
- /* Select case where first bit is set (already
- * normalized) otherwise select the proper shift. */
- jumpsize = Dbl_hiddenhigh3mantissa(resultp1);
- if (jumpsize <= 7) switch(jumpsize) {
- case 1:
- Dblext_leftshiftby3(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent -= 3;
- break;
- case 2:
- case 3:
- Dblext_leftshiftby2(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent -= 2;
- break;
- case 4:
- case 5:
- case 6:
- case 7:
- Dblext_leftshiftby1(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent -= 1;
- break;
- }
- } /* end if (hidden...)... */
- /* Fall through and round */
- } /* end if (save < 0)... */
- else {
- /* Add magnitudes */
- Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
- rightp1,rightp2,rightp3,rightp4,
- /*to*/resultp1,resultp2,resultp3,resultp4);
- sign_save = Dbl_signextendedsign(resultp1);
- if (Dbl_isone_hiddenoverflow(resultp1)) {
- /* Prenormalization required. */
- Dblext_arithrightshiftby1(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent++;
- } /* end if hiddenoverflow... */
- } /* end else ...add magnitudes... */
-
- /* Round the result. If the extension and lower two words are
- * all zeros, then the result is exact. Otherwise round in the
- * correct direction. Underflow is possible. If a postnormalization
- * is necessary, then the mantissa is all zeros so no shift is needed.
- */
- round:
- if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
- Dblext_denormalize(resultp1,resultp2,resultp3,resultp4,
- result_exponent,is_tiny);
- }
- Dbl_set_sign(resultp1,/*using*/sign_save);
- if (Dblext_isnotzero_mantissap3(resultp3) ||
- Dblext_isnotzero_mantissap4(resultp4)) {
- inexact = TRUE;
- switch(Rounding_mode()) {
- case ROUNDNEAREST: /* The default. */
- if (Dblext_isone_highp3(resultp3)) {
- /* at least 1/2 ulp */
- if (Dblext_isnotzero_low31p3(resultp3) ||
- Dblext_isnotzero_mantissap4(resultp4) ||
- Dblext_isone_lowp2(resultp2)) {
- /* either exactly half way and odd or
- * more than 1/2ulp */
- Dbl_increment(resultp1,resultp2);
- }
- }
- break;
-
- case ROUNDPLUS:
- if (Dbl_iszero_sign(resultp1)) {
- /* Round up positive results */
- Dbl_increment(resultp1,resultp2);
- }
- break;
-
- case ROUNDMINUS:
- if (Dbl_isone_sign(resultp1)) {
- /* Round down negative results */
- Dbl_increment(resultp1,resultp2);
- }
-
- case ROUNDZERO:;
- /* truncate is simple */
- } /* end switch... */
- if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++;
- }
- if (result_exponent >= DBL_INFINITY_EXPONENT) {
- /* trap if OVERFLOWTRAP enabled */
- if (Is_overflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_OVERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return (OPC_2E_OVERFLOWEXCEPTION);
- }
- inexact = TRUE;
- Set_overflowflag();
- /* set result to infinity or largest number */
- Dbl_setoverflow(resultp1,resultp2);
-
- } else if (result_exponent <= 0) { /* underflow case */
- if (Is_underflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_UNDERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- else if (inexact && is_tiny) Set_underflowflag();
- }
- else Dbl_set_exponent(resultp1,result_exponent);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(NOEXCEPTION);
-}
-
-/*
- * Double Floating-point Multiply Negate Fused Add
- */
-
-dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
-
-dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
-unsigned int *status;
-{
- unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2;
- register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4;
- unsigned int rightp1, rightp2, rightp3, rightp4;
- unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0;
- register int mpy_exponent, add_exponent, count;
- boolean inexact = FALSE, is_tiny = FALSE;
-
- unsigned int signlessleft1, signlessright1, save;
- register int result_exponent, diff_exponent;
- int sign_save, jumpsize;
-
- Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2);
- Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2);
- Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2);
-
- /*
- * set sign bit of result of multiply
- */
- if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1))
- Dbl_setzerop1(resultp1);
- else
- Dbl_setnegativezerop1(resultp1);
-
- /*
- * Generate multiply exponent
- */
- mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS;
-
- /*
- * check first operand for NaN's or infinity
- */
- if (Dbl_isinfinity_exponent(opnd1p1)) {
- if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
- if (Dbl_isnotnan(opnd2p1,opnd2p2) &&
- Dbl_isnotnan(opnd3p1,opnd3p2)) {
- if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) {
- /*
- * invalid since operands are infinity
- * and zero
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
- (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Dbl_isone_signaling(opnd1p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd1p1);
- }
- /*
- * is second operand a signaling NaN?
- */
- else if (Dbl_is_signalingnan(opnd2p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd2p1);
- Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Dbl_is_signalingnan(opnd3p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd3p1);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Dbl_copytoptr(opnd1p1,opnd1p2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check second operand for NaN's or infinity
- */
- if (Dbl_isinfinity_exponent(opnd2p1)) {
- if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
- if (Dbl_isnotnan(opnd3p1,opnd3p2)) {
- if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) {
- /*
- * invalid since multiply operands are
- * zero & infinity
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(opnd2p1,opnd2p2);
- Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
- (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Dbl_makequietnan(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Dbl_isone_signaling(opnd2p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd2p1);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Dbl_is_signalingnan(opnd3p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd3p1);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check third operand for NaN's or infinity
- */
- if (Dbl_isinfinity_exponent(opnd3p1)) {
- if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
- /* return infinity */
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- } else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Dbl_isone_signaling(opnd3p1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Dbl_set_quiet(opnd3p1);
- }
- /*
- * return quiet NaN
- */
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * Generate multiply mantissa
- */
- if (Dbl_isnotzero_exponent(opnd1p1)) {
- /* set hidden bit */
- Dbl_clear_signexponent_set_hidden(opnd1p1);
- }
- else {
- /* check for zero */
- if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Dbl_or_signs(opnd3p1,resultp1);
- } else {
- Dbl_and_signs(opnd3p1,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Dbl_iszero_exponent(opnd3p1) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Dbl_signextendedsign(opnd3p1);
- result_exponent = 0;
- Dbl_leftshiftby1(opnd3p1,opnd3p2);
- Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
- Dbl_set_sign(opnd3p1,/*using*/sign_save);
- Dbl_setwrapped_exponent(opnd3p1,result_exponent,
- unfl);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized, adjust exponent */
- Dbl_clear_signexponent(opnd1p1);
- Dbl_leftshiftby1(opnd1p1,opnd1p2);
- Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent);
- }
- /* opnd2 needs to have hidden bit set with msb in hidden bit */
- if (Dbl_isnotzero_exponent(opnd2p1)) {
- Dbl_clear_signexponent_set_hidden(opnd2p1);
- }
- else {
- /* check for zero */
- if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Dbl_or_signs(opnd3p1,resultp1);
- } else {
- Dbl_and_signs(opnd3p1,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Dbl_iszero_exponent(opnd3p1) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Dbl_signextendedsign(opnd3p1);
- result_exponent = 0;
- Dbl_leftshiftby1(opnd3p1,opnd3p2);
- Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
- Dbl_set_sign(opnd3p1,/*using*/sign_save);
- Dbl_setwrapped_exponent(opnd3p1,result_exponent,
- unfl);
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized; want to normalize */
- Dbl_clear_signexponent(opnd2p1);
- Dbl_leftshiftby1(opnd2p1,opnd2p2);
- Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent);
- }
-
- /* Multiply the first two source mantissas together */
-
- /*
- * The intermediate result will be kept in tmpres,
- * which needs enough room for 106 bits of mantissa,
- * so lets call it a Double extended.
- */
- Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
-
- /*
- * Four bits at a time are inspected in each loop, and a
- * simple shift and add multiply algorithm is used.
- */
- for (count = DBL_P-1; count >= 0; count -= 4) {
- Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
- if (Dbit28p2(opnd1p2)) {
- /* Fourword_add should be an ADD followed by 3 ADDC's */
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0);
- }
- if (Dbit29p2(opnd1p2)) {
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0);
- }
- if (Dbit30p2(opnd1p2)) {
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0);
- }
- if (Dbit31p2(opnd1p2)) {
- Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
- opnd2p1, opnd2p2, 0, 0);
- }
- Dbl_rightshiftby4(opnd1p1,opnd1p2);
- }
- if (Is_dexthiddenoverflow(tmpresp1)) {
- /* result mantissa >= 2 (mantissa overflow) */
- mpy_exponent++;
- Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
- }
-
- /*
- * Restore the sign of the mpy result which was saved in resultp1.
- * The exponent will continue to be kept in mpy_exponent.
- */
- Dblext_set_sign(tmpresp1,Dbl_sign(resultp1));
-
- /*
- * No rounding is required, since the result of the multiply
- * is exact in the extended format.
- */
-
- /*
- * Now we are ready to perform the add portion of the operation.
- *
- * The exponents need to be kept as integers for now, since the
- * multiply result might not fit into the exponent field. We
- * can't overflow or underflow because of this yet, since the
- * add could bring the final result back into range.
- */
- add_exponent = Dbl_exponent(opnd3p1);
-
- /*
- * Check for denormalized or zero add operand.
- */
- if (add_exponent == 0) {
- /* check for zero */
- if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
- /* right is zero */
- /* Left can't be zero and must be result.
- *
- * The final result is now in tmpres and mpy_exponent,
- * and needs to be rounded and squeezed back into
- * double precision format from double extended.
- */
- result_exponent = mpy_exponent;
- Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
- resultp1,resultp2,resultp3,resultp4);
- sign_save = Dbl_signextendedsign(resultp1);/*save sign*/
- goto round;
- }
-
- /*
- * Neither are zeroes.
- * Adjust exponent and normalize add operand.
- */
- sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */
- Dbl_clear_signexponent(opnd3p1);
- Dbl_leftshiftby1(opnd3p1,opnd3p2);
- Dbl_normalize(opnd3p1,opnd3p2,add_exponent);
- Dbl_set_sign(opnd3p1,sign_save); /* restore sign */
- } else {
- Dbl_clear_exponent_set_hidden(opnd3p1);
- }
- /*
- * Copy opnd3 to the double extended variable called right.
- */
- Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4);
-
- /*
- * A zero "save" helps discover equal operands (for later),
- * and is used in swapping operands (if needed).
- */
- Dblext_xortointp1(tmpresp1,rightp1,/*to*/save);
-
- /*
- * Compare magnitude of operands.
- */
- Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1);
- Dblext_copytoint_exponentmantissap1(rightp1,signlessright1);
- if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
- Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){
- /*
- * Set the left operand to the larger one by XOR swap.
- * First finish the first word "save".
- */
- Dblext_xorfromintp1(save,rightp1,/*to*/rightp1);
- Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
- Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4,
- rightp2,rightp3,rightp4);
- /* also setup exponents used in rest of routine */
- diff_exponent = add_exponent - mpy_exponent;
- result_exponent = add_exponent;
- } else {
- /* also setup exponents used in rest of routine */
- diff_exponent = mpy_exponent - add_exponent;
- result_exponent = mpy_exponent;
- }
- /* Invariant: left is not smaller than right. */
-
- /*
- * Special case alignment of operands that would force alignment
- * beyond the extent of the extension. A further optimization
- * could special case this but only reduces the path length for
- * this infrequent case.
- */
- if (diff_exponent > DBLEXT_THRESHOLD) {
- diff_exponent = DBLEXT_THRESHOLD;
- }
-
- /* Align right operand by shifting it to the right */
- Dblext_clear_sign(rightp1);
- Dblext_right_align(rightp1,rightp2,rightp3,rightp4,
- /*shifted by*/diff_exponent);
-
- /* Treat sum and difference of the operands separately. */
- if ((int)save < 0) {
- /*
- * Difference of the two operands. Overflow can occur if the
- * multiply overflowed. A borrow can occur out of the hidden
- * bit and force a post normalization phase.
- */
- Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
- rightp1,rightp2,rightp3,rightp4,
- resultp1,resultp2,resultp3,resultp4);
- sign_save = Dbl_signextendedsign(resultp1);
- if (Dbl_iszero_hidden(resultp1)) {
- /* Handle normalization */
- /* A straightforward algorithm would now shift the
- * result and extension left until the hidden bit
- * becomes one. Not all of the extension bits need
- * participate in the shift. Only the two most
- * significant bits (round and guard) are needed.
- * If only a single shift is needed then the guard
- * bit becomes a significant low order bit and the
- * extension must participate in the rounding.
- * If more than a single shift is needed, then all
- * bits to the right of the guard bit are zeros,
- * and the guard bit may or may not be zero. */
- Dblext_leftshiftby1(resultp1,resultp2,resultp3,
- resultp4);
-
- /* Need to check for a zero result. The sign and
- * exponent fields have already been zeroed. The more
- * efficient test of the full object can be used.
- */
- if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) {
- /* Must have been "x-x" or "x+(-x)". */
- if (Is_rounding_mode(ROUNDMINUS))
- Dbl_setone_sign(resultp1);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- return(NOEXCEPTION);
- }
- result_exponent--;
-
- /* Look to see if normalization is finished. */
- if (Dbl_isone_hidden(resultp1)) {
- /* No further normalization is needed */
- goto round;
- }
-
- /* Discover first one bit to determine shift amount.
- * Use a modified binary search. We have already
- * shifted the result one position right and still
- * not found a one so the remainder of the extension
- * must be zero and simplifies rounding. */
- /* Scan bytes */
- while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) {
- Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4);
- result_exponent -= 8;
- }
- /* Now narrow it down to the nibble */
- if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) {
- /* The lower nibble contains the
- * normalizing one */
- Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4);
- result_exponent -= 4;
- }
- /* Select case where first bit is set (already
- * normalized) otherwise select the proper shift. */
- jumpsize = Dbl_hiddenhigh3mantissa(resultp1);
- if (jumpsize <= 7) switch(jumpsize) {
- case 1:
- Dblext_leftshiftby3(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent -= 3;
- break;
- case 2:
- case 3:
- Dblext_leftshiftby2(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent -= 2;
- break;
- case 4:
- case 5:
- case 6:
- case 7:
- Dblext_leftshiftby1(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent -= 1;
- break;
- }
- } /* end if (hidden...)... */
- /* Fall through and round */
- } /* end if (save < 0)... */
- else {
- /* Add magnitudes */
- Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
- rightp1,rightp2,rightp3,rightp4,
- /*to*/resultp1,resultp2,resultp3,resultp4);
- sign_save = Dbl_signextendedsign(resultp1);
- if (Dbl_isone_hiddenoverflow(resultp1)) {
- /* Prenormalization required. */
- Dblext_arithrightshiftby1(resultp1,resultp2,resultp3,
- resultp4);
- result_exponent++;
- } /* end if hiddenoverflow... */
- } /* end else ...add magnitudes... */
-
- /* Round the result. If the extension and lower two words are
- * all zeros, then the result is exact. Otherwise round in the
- * correct direction. Underflow is possible. If a postnormalization
- * is necessary, then the mantissa is all zeros so no shift is needed.
- */
- round:
- if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
- Dblext_denormalize(resultp1,resultp2,resultp3,resultp4,
- result_exponent,is_tiny);
- }
- Dbl_set_sign(resultp1,/*using*/sign_save);
- if (Dblext_isnotzero_mantissap3(resultp3) ||
- Dblext_isnotzero_mantissap4(resultp4)) {
- inexact = TRUE;
- switch(Rounding_mode()) {
- case ROUNDNEAREST: /* The default. */
- if (Dblext_isone_highp3(resultp3)) {
- /* at least 1/2 ulp */
- if (Dblext_isnotzero_low31p3(resultp3) ||
- Dblext_isnotzero_mantissap4(resultp4) ||
- Dblext_isone_lowp2(resultp2)) {
- /* either exactly half way and odd or
- * more than 1/2ulp */
- Dbl_increment(resultp1,resultp2);
- }
- }
- break;
-
- case ROUNDPLUS:
- if (Dbl_iszero_sign(resultp1)) {
- /* Round up positive results */
- Dbl_increment(resultp1,resultp2);
- }
- break;
-
- case ROUNDMINUS:
- if (Dbl_isone_sign(resultp1)) {
- /* Round down negative results */
- Dbl_increment(resultp1,resultp2);
- }
-
- case ROUNDZERO:;
- /* truncate is simple */
- } /* end switch... */
- if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++;
- }
- if (result_exponent >= DBL_INFINITY_EXPONENT) {
- /* Overflow */
- if (Is_overflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_OVERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return (OPC_2E_OVERFLOWEXCEPTION);
- }
- inexact = TRUE;
- Set_overflowflag();
- Dbl_setoverflow(resultp1,resultp2);
- } else if (result_exponent <= 0) { /* underflow case */
- if (Is_underflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_UNDERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- else if (inexact && is_tiny) Set_underflowflag();
- }
- else Dbl_set_exponent(resultp1,result_exponent);
- Dbl_copytoptr(resultp1,resultp2,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(NOEXCEPTION);
-}
-
-/*
- * Single Floating-point Multiply Fused Add
- */
-
-sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
-
-sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
-unsigned int *status;
-{
- unsigned int opnd1, opnd2, opnd3;
- register unsigned int tmpresp1, tmpresp2;
- unsigned int rightp1, rightp2;
- unsigned int resultp1, resultp2 = 0;
- register int mpy_exponent, add_exponent, count;
- boolean inexact = FALSE, is_tiny = FALSE;
-
- unsigned int signlessleft1, signlessright1, save;
- register int result_exponent, diff_exponent;
- int sign_save, jumpsize;
-
- Sgl_copyfromptr(src1ptr,opnd1);
- Sgl_copyfromptr(src2ptr,opnd2);
- Sgl_copyfromptr(src3ptr,opnd3);
-
- /*
- * set sign bit of result of multiply
- */
- if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2))
- Sgl_setnegativezero(resultp1);
- else Sgl_setzero(resultp1);
-
- /*
- * Generate multiply exponent
- */
- mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS;
-
- /*
- * check first operand for NaN's or infinity
- */
- if (Sgl_isinfinity_exponent(opnd1)) {
- if (Sgl_iszero_mantissa(opnd1)) {
- if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) {
- if (Sgl_iszero_exponentmantissa(opnd2)) {
- /*
- * invalid since operands are infinity
- * and zero
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Sgl_isinfinity(opnd3) &&
- (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Sgl_setinfinity_exponentmantissa(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Sgl_isone_signaling(opnd1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd1);
- }
- /*
- * is second operand a signaling NaN?
- */
- else if (Sgl_is_signalingnan(opnd2)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd2);
- Sgl_copytoptr(opnd2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Sgl_is_signalingnan(opnd3)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd3);
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Sgl_copytoptr(opnd1,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check second operand for NaN's or infinity
- */
- if (Sgl_isinfinity_exponent(opnd2)) {
- if (Sgl_iszero_mantissa(opnd2)) {
- if (Sgl_isnotnan(opnd3)) {
- if (Sgl_iszero_exponentmantissa(opnd1)) {
- /*
- * invalid since multiply operands are
- * zero & infinity
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(opnd2);
- Sgl_copytoptr(opnd2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Sgl_isinfinity(opnd3) &&
- (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Sgl_setinfinity_exponentmantissa(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Sgl_isone_signaling(opnd2)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd2);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Sgl_is_signalingnan(opnd3)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd3);
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Sgl_copytoptr(opnd2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check third operand for NaN's or infinity
- */
- if (Sgl_isinfinity_exponent(opnd3)) {
- if (Sgl_iszero_mantissa(opnd3)) {
- /* return infinity */
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- } else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Sgl_isone_signaling(opnd3)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd3);
- }
- /*
- * return quiet NaN
- */
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * Generate multiply mantissa
- */
- if (Sgl_isnotzero_exponent(opnd1)) {
- /* set hidden bit */
- Sgl_clear_signexponent_set_hidden(opnd1);
- }
- else {
- /* check for zero */
- if (Sgl_iszero_mantissa(opnd1)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Sgl_iszero_exponentmantissa(opnd3)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Sgl_or_signs(opnd3,resultp1);
- } else {
- Sgl_and_signs(opnd3,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Sgl_iszero_exponent(opnd3) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Sgl_signextendedsign(opnd3);
- result_exponent = 0;
- Sgl_leftshiftby1(opnd3);
- Sgl_normalize(opnd3,result_exponent);
- Sgl_set_sign(opnd3,/*using*/sign_save);
- Sgl_setwrapped_exponent(opnd3,result_exponent,
- unfl);
- Sgl_copytoptr(opnd3,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized, adjust exponent */
- Sgl_clear_signexponent(opnd1);
- Sgl_leftshiftby1(opnd1);
- Sgl_normalize(opnd1,mpy_exponent);
- }
- /* opnd2 needs to have hidden bit set with msb in hidden bit */
- if (Sgl_isnotzero_exponent(opnd2)) {
- Sgl_clear_signexponent_set_hidden(opnd2);
- }
- else {
- /* check for zero */
- if (Sgl_iszero_mantissa(opnd2)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Sgl_iszero_exponentmantissa(opnd3)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Sgl_or_signs(opnd3,resultp1);
- } else {
- Sgl_and_signs(opnd3,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Sgl_iszero_exponent(opnd3) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Sgl_signextendedsign(opnd3);
- result_exponent = 0;
- Sgl_leftshiftby1(opnd3);
- Sgl_normalize(opnd3,result_exponent);
- Sgl_set_sign(opnd3,/*using*/sign_save);
- Sgl_setwrapped_exponent(opnd3,result_exponent,
- unfl);
- Sgl_copytoptr(opnd3,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized; want to normalize */
- Sgl_clear_signexponent(opnd2);
- Sgl_leftshiftby1(opnd2);
- Sgl_normalize(opnd2,mpy_exponent);
- }
-
- /* Multiply the first two source mantissas together */
-
- /*
- * The intermediate result will be kept in tmpres,
- * which needs enough room for 106 bits of mantissa,
- * so lets call it a Double extended.
- */
- Sglext_setzero(tmpresp1,tmpresp2);
-
- /*
- * Four bits at a time are inspected in each loop, and a
- * simple shift and add multiply algorithm is used.
- */
- for (count = SGL_P-1; count >= 0; count -= 4) {
- Sglext_rightshiftby4(tmpresp1,tmpresp2);
- if (Sbit28(opnd1)) {
- /* Twoword_add should be an ADD followed by 2 ADDC's */
- Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0);
- }
- if (Sbit29(opnd1)) {
- Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0);
- }
- if (Sbit30(opnd1)) {
- Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0);
- }
- if (Sbit31(opnd1)) {
- Twoword_add(tmpresp1, tmpresp2, opnd2, 0);
- }
- Sgl_rightshiftby4(opnd1);
- }
- if (Is_sexthiddenoverflow(tmpresp1)) {
- /* result mantissa >= 2 (mantissa overflow) */
- mpy_exponent++;
- Sglext_rightshiftby4(tmpresp1,tmpresp2);
- } else {
- Sglext_rightshiftby3(tmpresp1,tmpresp2);
- }
-
- /*
- * Restore the sign of the mpy result which was saved in resultp1.
- * The exponent will continue to be kept in mpy_exponent.
- */
- Sglext_set_sign(tmpresp1,Sgl_sign(resultp1));
-
- /*
- * No rounding is required, since the result of the multiply
- * is exact in the extended format.
- */
-
- /*
- * Now we are ready to perform the add portion of the operation.
- *
- * The exponents need to be kept as integers for now, since the
- * multiply result might not fit into the exponent field. We
- * can't overflow or underflow because of this yet, since the
- * add could bring the final result back into range.
- */
- add_exponent = Sgl_exponent(opnd3);
-
- /*
- * Check for denormalized or zero add operand.
- */
- if (add_exponent == 0) {
- /* check for zero */
- if (Sgl_iszero_mantissa(opnd3)) {
- /* right is zero */
- /* Left can't be zero and must be result.
- *
- * The final result is now in tmpres and mpy_exponent,
- * and needs to be rounded and squeezed back into
- * double precision format from double extended.
- */
- result_exponent = mpy_exponent;
- Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2);
- sign_save = Sgl_signextendedsign(resultp1);/*save sign*/
- goto round;
- }
-
- /*
- * Neither are zeroes.
- * Adjust exponent and normalize add operand.
- */
- sign_save = Sgl_signextendedsign(opnd3); /* save sign */
- Sgl_clear_signexponent(opnd3);
- Sgl_leftshiftby1(opnd3);
- Sgl_normalize(opnd3,add_exponent);
- Sgl_set_sign(opnd3,sign_save); /* restore sign */
- } else {
- Sgl_clear_exponent_set_hidden(opnd3);
- }
- /*
- * Copy opnd3 to the double extended variable called right.
- */
- Sgl_copyto_sglext(opnd3,rightp1,rightp2);
-
- /*
- * A zero "save" helps discover equal operands (for later),
- * and is used in swapping operands (if needed).
- */
- Sglext_xortointp1(tmpresp1,rightp1,/*to*/save);
-
- /*
- * Compare magnitude of operands.
- */
- Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1);
- Sglext_copytoint_exponentmantissa(rightp1,signlessright1);
- if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
- Sglext_ismagnitudeless(signlessleft1,signlessright1)) {
- /*
- * Set the left operand to the larger one by XOR swap.
- * First finish the first word "save".
- */
- Sglext_xorfromintp1(save,rightp1,/*to*/rightp1);
- Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
- Sglext_swap_lower(tmpresp2,rightp2);
- /* also setup exponents used in rest of routine */
- diff_exponent = add_exponent - mpy_exponent;
- result_exponent = add_exponent;
- } else {
- /* also setup exponents used in rest of routine */
- diff_exponent = mpy_exponent - add_exponent;
- result_exponent = mpy_exponent;
- }
- /* Invariant: left is not smaller than right. */
-
- /*
- * Special case alignment of operands that would force alignment
- * beyond the extent of the extension. A further optimization
- * could special case this but only reduces the path length for
- * this infrequent case.
- */
- if (diff_exponent > SGLEXT_THRESHOLD) {
- diff_exponent = SGLEXT_THRESHOLD;
- }
-
- /* Align right operand by shifting it to the right */
- Sglext_clear_sign(rightp1);
- Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent);
-
- /* Treat sum and difference of the operands separately. */
- if ((int)save < 0) {
- /*
- * Difference of the two operands. Overflow can occur if the
- * multiply overflowed. A borrow can occur out of the hidden
- * bit and force a post normalization phase.
- */
- Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2,
- resultp1,resultp2);
- sign_save = Sgl_signextendedsign(resultp1);
- if (Sgl_iszero_hidden(resultp1)) {
- /* Handle normalization */
- /* A straightforward algorithm would now shift the
- * result and extension left until the hidden bit
- * becomes one. Not all of the extension bits need
- * participate in the shift. Only the two most
- * significant bits (round and guard) are needed.
- * If only a single shift is needed then the guard
- * bit becomes a significant low order bit and the
- * extension must participate in the rounding.
- * If more than a single shift is needed, then all
- * bits to the right of the guard bit are zeros,
- * and the guard bit may or may not be zero. */
- Sglext_leftshiftby1(resultp1,resultp2);
-
- /* Need to check for a zero result. The sign and
- * exponent fields have already been zeroed. The more
- * efficient test of the full object can be used.
- */
- if (Sglext_iszero(resultp1,resultp2)) {
- /* Must have been "x-x" or "x+(-x)". */
- if (Is_rounding_mode(ROUNDMINUS))
- Sgl_setone_sign(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- result_exponent--;
-
- /* Look to see if normalization is finished. */
- if (Sgl_isone_hidden(resultp1)) {
- /* No further normalization is needed */
- goto round;
- }
-
- /* Discover first one bit to determine shift amount.
- * Use a modified binary search. We have already
- * shifted the result one position right and still
- * not found a one so the remainder of the extension
- * must be zero and simplifies rounding. */
- /* Scan bytes */
- while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) {
- Sglext_leftshiftby8(resultp1,resultp2);
- result_exponent -= 8;
- }
- /* Now narrow it down to the nibble */
- if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) {
- /* The lower nibble contains the
- * normalizing one */
- Sglext_leftshiftby4(resultp1,resultp2);
- result_exponent -= 4;
- }
- /* Select case where first bit is set (already
- * normalized) otherwise select the proper shift. */
- jumpsize = Sgl_hiddenhigh3mantissa(resultp1);
- if (jumpsize <= 7) switch(jumpsize) {
- case 1:
- Sglext_leftshiftby3(resultp1,resultp2);
- result_exponent -= 3;
- break;
- case 2:
- case 3:
- Sglext_leftshiftby2(resultp1,resultp2);
- result_exponent -= 2;
- break;
- case 4:
- case 5:
- case 6:
- case 7:
- Sglext_leftshiftby1(resultp1,resultp2);
- result_exponent -= 1;
- break;
- }
- } /* end if (hidden...)... */
- /* Fall through and round */
- } /* end if (save < 0)... */
- else {
- /* Add magnitudes */
- Sglext_addition(tmpresp1,tmpresp2,
- rightp1,rightp2, /*to*/resultp1,resultp2);
- sign_save = Sgl_signextendedsign(resultp1);
- if (Sgl_isone_hiddenoverflow(resultp1)) {
- /* Prenormalization required. */
- Sglext_arithrightshiftby1(resultp1,resultp2);
- result_exponent++;
- } /* end if hiddenoverflow... */
- } /* end else ...add magnitudes... */
-
- /* Round the result. If the extension and lower two words are
- * all zeros, then the result is exact. Otherwise round in the
- * correct direction. Underflow is possible. If a postnormalization
- * is necessary, then the mantissa is all zeros so no shift is needed.
- */
- round:
- if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
- Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny);
- }
- Sgl_set_sign(resultp1,/*using*/sign_save);
- if (Sglext_isnotzero_mantissap2(resultp2)) {
- inexact = TRUE;
- switch(Rounding_mode()) {
- case ROUNDNEAREST: /* The default. */
- if (Sglext_isone_highp2(resultp2)) {
- /* at least 1/2 ulp */
- if (Sglext_isnotzero_low31p2(resultp2) ||
- Sglext_isone_lowp1(resultp1)) {
- /* either exactly half way and odd or
- * more than 1/2ulp */
- Sgl_increment(resultp1);
- }
- }
- break;
-
- case ROUNDPLUS:
- if (Sgl_iszero_sign(resultp1)) {
- /* Round up positive results */
- Sgl_increment(resultp1);
- }
- break;
-
- case ROUNDMINUS:
- if (Sgl_isone_sign(resultp1)) {
- /* Round down negative results */
- Sgl_increment(resultp1);
- }
-
- case ROUNDZERO:;
- /* truncate is simple */
- } /* end switch... */
- if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++;
- }
- if (result_exponent >= SGL_INFINITY_EXPONENT) {
- /* Overflow */
- if (Is_overflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl);
- Sgl_copytoptr(resultp1,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_OVERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return (OPC_2E_OVERFLOWEXCEPTION);
- }
- inexact = TRUE;
- Set_overflowflag();
- Sgl_setoverflow(resultp1);
- } else if (result_exponent <= 0) { /* underflow case */
- if (Is_underflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Sgl_setwrapped_exponent(resultp1,result_exponent,unfl);
- Sgl_copytoptr(resultp1,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_UNDERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- else if (inexact && is_tiny) Set_underflowflag();
- }
- else Sgl_set_exponent(resultp1,result_exponent);
- Sgl_copytoptr(resultp1,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(NOEXCEPTION);
-}
-
-/*
- * Single Floating-point Multiply Negate Fused Add
- */
-
-sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
-
-sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
-unsigned int *status;
-{
- unsigned int opnd1, opnd2, opnd3;
- register unsigned int tmpresp1, tmpresp2;
- unsigned int rightp1, rightp2;
- unsigned int resultp1, resultp2 = 0;
- register int mpy_exponent, add_exponent, count;
- boolean inexact = FALSE, is_tiny = FALSE;
-
- unsigned int signlessleft1, signlessright1, save;
- register int result_exponent, diff_exponent;
- int sign_save, jumpsize;
-
- Sgl_copyfromptr(src1ptr,opnd1);
- Sgl_copyfromptr(src2ptr,opnd2);
- Sgl_copyfromptr(src3ptr,opnd3);
-
- /*
- * set sign bit of result of multiply
- */
- if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2))
- Sgl_setzero(resultp1);
- else
- Sgl_setnegativezero(resultp1);
-
- /*
- * Generate multiply exponent
- */
- mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS;
-
- /*
- * check first operand for NaN's or infinity
- */
- if (Sgl_isinfinity_exponent(opnd1)) {
- if (Sgl_iszero_mantissa(opnd1)) {
- if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) {
- if (Sgl_iszero_exponentmantissa(opnd2)) {
- /*
- * invalid since operands are infinity
- * and zero
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Sgl_isinfinity(opnd3) &&
- (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Sgl_setinfinity_exponentmantissa(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Sgl_isone_signaling(opnd1)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd1);
- }
- /*
- * is second operand a signaling NaN?
- */
- else if (Sgl_is_signalingnan(opnd2)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd2);
- Sgl_copytoptr(opnd2,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Sgl_is_signalingnan(opnd3)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd3);
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Sgl_copytoptr(opnd1,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check second operand for NaN's or infinity
- */
- if (Sgl_isinfinity_exponent(opnd2)) {
- if (Sgl_iszero_mantissa(opnd2)) {
- if (Sgl_isnotnan(opnd3)) {
- if (Sgl_iszero_exponentmantissa(opnd1)) {
- /*
- * invalid since multiply operands are
- * zero & infinity
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(opnd2);
- Sgl_copytoptr(opnd2,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * Check third operand for infinity with a
- * sign opposite of the multiply result
- */
- if (Sgl_isinfinity(opnd3) &&
- (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
- /*
- * invalid since attempting a magnitude
- * subtraction of infinities
- */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- Set_invalidflag();
- Sgl_makequietnan(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
-
- /*
- * return infinity
- */
- Sgl_setinfinity_exponentmantissa(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- }
- else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Sgl_isone_signaling(opnd2)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd2);
- }
- /*
- * is third operand a signaling NaN?
- */
- else if (Sgl_is_signalingnan(opnd3)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd3);
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /*
- * return quiet NaN
- */
- Sgl_copytoptr(opnd2,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * check third operand for NaN's or infinity
- */
- if (Sgl_isinfinity_exponent(opnd3)) {
- if (Sgl_iszero_mantissa(opnd3)) {
- /* return infinity */
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- } else {
- /*
- * is NaN; signaling or quiet?
- */
- if (Sgl_isone_signaling(opnd3)) {
- /* trap if INVALIDTRAP enabled */
- if (Is_invalidtrap_enabled())
- return(OPC_2E_INVALIDEXCEPTION);
- /* make NaN quiet */
- Set_invalidflag();
- Sgl_set_quiet(opnd3);
- }
- /*
- * return quiet NaN
- */
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- }
-
- /*
- * Generate multiply mantissa
- */
- if (Sgl_isnotzero_exponent(opnd1)) {
- /* set hidden bit */
- Sgl_clear_signexponent_set_hidden(opnd1);
- }
- else {
- /* check for zero */
- if (Sgl_iszero_mantissa(opnd1)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Sgl_iszero_exponentmantissa(opnd3)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Sgl_or_signs(opnd3,resultp1);
- } else {
- Sgl_and_signs(opnd3,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Sgl_iszero_exponent(opnd3) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Sgl_signextendedsign(opnd3);
- result_exponent = 0;
- Sgl_leftshiftby1(opnd3);
- Sgl_normalize(opnd3,result_exponent);
- Sgl_set_sign(opnd3,/*using*/sign_save);
- Sgl_setwrapped_exponent(opnd3,result_exponent,
- unfl);
- Sgl_copytoptr(opnd3,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized, adjust exponent */
- Sgl_clear_signexponent(opnd1);
- Sgl_leftshiftby1(opnd1);
- Sgl_normalize(opnd1,mpy_exponent);
- }
- /* opnd2 needs to have hidden bit set with msb in hidden bit */
- if (Sgl_isnotzero_exponent(opnd2)) {
- Sgl_clear_signexponent_set_hidden(opnd2);
- }
- else {
- /* check for zero */
- if (Sgl_iszero_mantissa(opnd2)) {
- /*
- * Perform the add opnd3 with zero here.
- */
- if (Sgl_iszero_exponentmantissa(opnd3)) {
- if (Is_rounding_mode(ROUNDMINUS)) {
- Sgl_or_signs(opnd3,resultp1);
- } else {
- Sgl_and_signs(opnd3,resultp1);
- }
- }
- /*
- * Now let's check for trapped underflow case.
- */
- else if (Sgl_iszero_exponent(opnd3) &&
- Is_underflowtrap_enabled()) {
- /* need to normalize results mantissa */
- sign_save = Sgl_signextendedsign(opnd3);
- result_exponent = 0;
- Sgl_leftshiftby1(opnd3);
- Sgl_normalize(opnd3,result_exponent);
- Sgl_set_sign(opnd3,/*using*/sign_save);
- Sgl_setwrapped_exponent(opnd3,result_exponent,
- unfl);
- Sgl_copytoptr(opnd3,dstptr);
- /* inexact = FALSE */
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- Sgl_copytoptr(opnd3,dstptr);
- return(NOEXCEPTION);
- }
- /* is denormalized; want to normalize */
- Sgl_clear_signexponent(opnd2);
- Sgl_leftshiftby1(opnd2);
- Sgl_normalize(opnd2,mpy_exponent);
- }
-
- /* Multiply the first two source mantissas together */
-
- /*
- * The intermediate result will be kept in tmpres,
- * which needs enough room for 106 bits of mantissa,
- * so lets call it a Double extended.
- */
- Sglext_setzero(tmpresp1,tmpresp2);
-
- /*
- * Four bits at a time are inspected in each loop, and a
- * simple shift and add multiply algorithm is used.
- */
- for (count = SGL_P-1; count >= 0; count -= 4) {
- Sglext_rightshiftby4(tmpresp1,tmpresp2);
- if (Sbit28(opnd1)) {
- /* Twoword_add should be an ADD followed by 2 ADDC's */
- Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0);
- }
- if (Sbit29(opnd1)) {
- Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0);
- }
- if (Sbit30(opnd1)) {
- Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0);
- }
- if (Sbit31(opnd1)) {
- Twoword_add(tmpresp1, tmpresp2, opnd2, 0);
- }
- Sgl_rightshiftby4(opnd1);
- }
- if (Is_sexthiddenoverflow(tmpresp1)) {
- /* result mantissa >= 2 (mantissa overflow) */
- mpy_exponent++;
- Sglext_rightshiftby4(tmpresp1,tmpresp2);
- } else {
- Sglext_rightshiftby3(tmpresp1,tmpresp2);
- }
-
- /*
- * Restore the sign of the mpy result which was saved in resultp1.
- * The exponent will continue to be kept in mpy_exponent.
- */
- Sglext_set_sign(tmpresp1,Sgl_sign(resultp1));
-
- /*
- * No rounding is required, since the result of the multiply
- * is exact in the extended format.
- */
-
- /*
- * Now we are ready to perform the add portion of the operation.
- *
- * The exponents need to be kept as integers for now, since the
- * multiply result might not fit into the exponent field. We
- * can't overflow or underflow because of this yet, since the
- * add could bring the final result back into range.
- */
- add_exponent = Sgl_exponent(opnd3);
-
- /*
- * Check for denormalized or zero add operand.
- */
- if (add_exponent == 0) {
- /* check for zero */
- if (Sgl_iszero_mantissa(opnd3)) {
- /* right is zero */
- /* Left can't be zero and must be result.
- *
- * The final result is now in tmpres and mpy_exponent,
- * and needs to be rounded and squeezed back into
- * double precision format from double extended.
- */
- result_exponent = mpy_exponent;
- Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2);
- sign_save = Sgl_signextendedsign(resultp1);/*save sign*/
- goto round;
- }
-
- /*
- * Neither are zeroes.
- * Adjust exponent and normalize add operand.
- */
- sign_save = Sgl_signextendedsign(opnd3); /* save sign */
- Sgl_clear_signexponent(opnd3);
- Sgl_leftshiftby1(opnd3);
- Sgl_normalize(opnd3,add_exponent);
- Sgl_set_sign(opnd3,sign_save); /* restore sign */
- } else {
- Sgl_clear_exponent_set_hidden(opnd3);
- }
- /*
- * Copy opnd3 to the double extended variable called right.
- */
- Sgl_copyto_sglext(opnd3,rightp1,rightp2);
-
- /*
- * A zero "save" helps discover equal operands (for later),
- * and is used in swapping operands (if needed).
- */
- Sglext_xortointp1(tmpresp1,rightp1,/*to*/save);
-
- /*
- * Compare magnitude of operands.
- */
- Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1);
- Sglext_copytoint_exponentmantissa(rightp1,signlessright1);
- if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
- Sglext_ismagnitudeless(signlessleft1,signlessright1)) {
- /*
- * Set the left operand to the larger one by XOR swap.
- * First finish the first word "save".
- */
- Sglext_xorfromintp1(save,rightp1,/*to*/rightp1);
- Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
- Sglext_swap_lower(tmpresp2,rightp2);
- /* also setup exponents used in rest of routine */
- diff_exponent = add_exponent - mpy_exponent;
- result_exponent = add_exponent;
- } else {
- /* also setup exponents used in rest of routine */
- diff_exponent = mpy_exponent - add_exponent;
- result_exponent = mpy_exponent;
- }
- /* Invariant: left is not smaller than right. */
-
- /*
- * Special case alignment of operands that would force alignment
- * beyond the extent of the extension. A further optimization
- * could special case this but only reduces the path length for
- * this infrequent case.
- */
- if (diff_exponent > SGLEXT_THRESHOLD) {
- diff_exponent = SGLEXT_THRESHOLD;
- }
-
- /* Align right operand by shifting it to the right */
- Sglext_clear_sign(rightp1);
- Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent);
-
- /* Treat sum and difference of the operands separately. */
- if ((int)save < 0) {
- /*
- * Difference of the two operands. Overflow can occur if the
- * multiply overflowed. A borrow can occur out of the hidden
- * bit and force a post normalization phase.
- */
- Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2,
- resultp1,resultp2);
- sign_save = Sgl_signextendedsign(resultp1);
- if (Sgl_iszero_hidden(resultp1)) {
- /* Handle normalization */
- /* A straightforward algorithm would now shift the
- * result and extension left until the hidden bit
- * becomes one. Not all of the extension bits need
- * participate in the shift. Only the two most
- * significant bits (round and guard) are needed.
- * If only a single shift is needed then the guard
- * bit becomes a significant low order bit and the
- * extension must participate in the rounding.
- * If more than a single shift is needed, then all
- * bits to the right of the guard bit are zeros,
- * and the guard bit may or may not be zero. */
- Sglext_leftshiftby1(resultp1,resultp2);
-
- /* Need to check for a zero result. The sign and
- * exponent fields have already been zeroed. The more
- * efficient test of the full object can be used.
- */
- if (Sglext_iszero(resultp1,resultp2)) {
- /* Must have been "x-x" or "x+(-x)". */
- if (Is_rounding_mode(ROUNDMINUS))
- Sgl_setone_sign(resultp1);
- Sgl_copytoptr(resultp1,dstptr);
- return(NOEXCEPTION);
- }
- result_exponent--;
-
- /* Look to see if normalization is finished. */
- if (Sgl_isone_hidden(resultp1)) {
- /* No further normalization is needed */
- goto round;
- }
-
- /* Discover first one bit to determine shift amount.
- * Use a modified binary search. We have already
- * shifted the result one position right and still
- * not found a one so the remainder of the extension
- * must be zero and simplifies rounding. */
- /* Scan bytes */
- while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) {
- Sglext_leftshiftby8(resultp1,resultp2);
- result_exponent -= 8;
- }
- /* Now narrow it down to the nibble */
- if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) {
- /* The lower nibble contains the
- * normalizing one */
- Sglext_leftshiftby4(resultp1,resultp2);
- result_exponent -= 4;
- }
- /* Select case where first bit is set (already
- * normalized) otherwise select the proper shift. */
- jumpsize = Sgl_hiddenhigh3mantissa(resultp1);
- if (jumpsize <= 7) switch(jumpsize) {
- case 1:
- Sglext_leftshiftby3(resultp1,resultp2);
- result_exponent -= 3;
- break;
- case 2:
- case 3:
- Sglext_leftshiftby2(resultp1,resultp2);
- result_exponent -= 2;
- break;
- case 4:
- case 5:
- case 6:
- case 7:
- Sglext_leftshiftby1(resultp1,resultp2);
- result_exponent -= 1;
- break;
- }
- } /* end if (hidden...)... */
- /* Fall through and round */
- } /* end if (save < 0)... */
- else {
- /* Add magnitudes */
- Sglext_addition(tmpresp1,tmpresp2,
- rightp1,rightp2, /*to*/resultp1,resultp2);
- sign_save = Sgl_signextendedsign(resultp1);
- if (Sgl_isone_hiddenoverflow(resultp1)) {
- /* Prenormalization required. */
- Sglext_arithrightshiftby1(resultp1,resultp2);
- result_exponent++;
- } /* end if hiddenoverflow... */
- } /* end else ...add magnitudes... */
-
- /* Round the result. If the extension and lower two words are
- * all zeros, then the result is exact. Otherwise round in the
- * correct direction. Underflow is possible. If a postnormalization
- * is necessary, then the mantissa is all zeros so no shift is needed.
- */
- round:
- if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
- Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny);
- }
- Sgl_set_sign(resultp1,/*using*/sign_save);
- if (Sglext_isnotzero_mantissap2(resultp2)) {
- inexact = TRUE;
- switch(Rounding_mode()) {
- case ROUNDNEAREST: /* The default. */
- if (Sglext_isone_highp2(resultp2)) {
- /* at least 1/2 ulp */
- if (Sglext_isnotzero_low31p2(resultp2) ||
- Sglext_isone_lowp1(resultp1)) {
- /* either exactly half way and odd or
- * more than 1/2ulp */
- Sgl_increment(resultp1);
- }
- }
- break;
-
- case ROUNDPLUS:
- if (Sgl_iszero_sign(resultp1)) {
- /* Round up positive results */
- Sgl_increment(resultp1);
- }
- break;
-
- case ROUNDMINUS:
- if (Sgl_isone_sign(resultp1)) {
- /* Round down negative results */
- Sgl_increment(resultp1);
- }
-
- case ROUNDZERO:;
- /* truncate is simple */
- } /* end switch... */
- if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++;
- }
- if (result_exponent >= SGL_INFINITY_EXPONENT) {
- /* Overflow */
- if (Is_overflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl);
- Sgl_copytoptr(resultp1,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_OVERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return (OPC_2E_OVERFLOWEXCEPTION);
- }
- inexact = TRUE;
- Set_overflowflag();
- Sgl_setoverflow(resultp1);
- } else if (result_exponent <= 0) { /* underflow case */
- if (Is_underflowtrap_enabled()) {
- /*
- * Adjust bias of result
- */
- Sgl_setwrapped_exponent(resultp1,result_exponent,unfl);
- Sgl_copytoptr(resultp1,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled())
- return (OPC_2E_UNDERFLOWEXCEPTION |
- OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(OPC_2E_UNDERFLOWEXCEPTION);
- }
- else if (inexact && is_tiny) Set_underflowflag();
- }
- else Sgl_set_exponent(resultp1,result_exponent);
- Sgl_copytoptr(resultp1,dstptr);
- if (inexact)
- if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
- else Set_inexactflag();
- return(NOEXCEPTION);
-}
-