diff options
Diffstat (limited to 'ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S')
-rw-r--r-- | ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S | 14745 |
1 files changed, 0 insertions, 14745 deletions
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S deleted file mode 100644 index 4aedef97..00000000 --- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/pfpsp.S +++ /dev/null @@ -1,14745 +0,0 @@ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP -M68000 Hi-Performance Microprocessor Division -M68060 Software Package -Production Release P1.00 -- October 10, 1994 - -M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved. - -THE SOFTWARE is provided on an "AS IS" basis and without warranty. -To the maximum extent permitted by applicable law, -MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, -INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE -and any warranty against infringement with regard to the SOFTWARE -(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. - -To the maximum extent permitted by applicable law, -IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER -(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, -BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) -ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. -Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. - -You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE -so long as this entire notice is retained without alteration in any modified and/or -redistributed versions, and that such modified versions are clearly identified as such. -No licenses are granted by implication, estoppel or otherwise under any patents -or trademarks of Motorola, Inc. -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -# freal.s: -# This file is appended to the top of the 060FPSP package -# and contains the entry points into the package. The user, in -# effect, branches to one of the branch table entries located -# after _060FPSP_TABLE. -# Also, subroutine stubs exist in this file (_fpsp_done for -# example) that are referenced by the FPSP package itself in order -# to call a given routine. The stub routine actually performs the -# callout. The FPSP code does a "bsr" to the stub routine. This -# extra layer of hierarchy adds a slight performance penalty but -# it makes the FPSP code easier to read and more mainatinable. -# - -set _off_bsun, 0x00 -set _off_snan, 0x04 -set _off_operr, 0x08 -set _off_ovfl, 0x0c -set _off_unfl, 0x10 -set _off_dz, 0x14 -set _off_inex, 0x18 -set _off_fline, 0x1c -set _off_fpu_dis, 0x20 -set _off_trap, 0x24 -set _off_trace, 0x28 -set _off_access, 0x2c -set _off_done, 0x30 - -set _off_imr, 0x40 -set _off_dmr, 0x44 -set _off_dmw, 0x48 -set _off_irw, 0x4c -set _off_irl, 0x50 -set _off_drb, 0x54 -set _off_drw, 0x58 -set _off_drl, 0x5c -set _off_dwb, 0x60 -set _off_dww, 0x64 -set _off_dwl, 0x68 - -_060FPSP_TABLE: - -############################################################### - -# Here's the table of ENTRY POINTS for those linking the package. - bra.l _fpsp_snan - short 0x0000 - bra.l _fpsp_operr - short 0x0000 - bra.l _fpsp_ovfl - short 0x0000 - bra.l _fpsp_unfl - short 0x0000 - bra.l _fpsp_dz - short 0x0000 - bra.l _fpsp_inex - short 0x0000 - bra.l _fpsp_fline - short 0x0000 - bra.l _fpsp_unsupp - short 0x0000 - bra.l _fpsp_effadd - short 0x0000 - - space 56 - -############################################################### - global _fpsp_done -_fpsp_done: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_ovfl -_real_ovfl: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_unfl -_real_unfl: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_inex -_real_inex: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_bsun -_real_bsun: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_operr -_real_operr: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_snan -_real_snan: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_dz -_real_dz: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_fline -_real_fline: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_fpu_disabled -_real_fpu_disabled: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_trap -_real_trap: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_trace -_real_trace: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _real_access -_real_access: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -####################################### - - global _imem_read -_imem_read: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read -_dmem_read: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write -_dmem_write: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_word -_imem_read_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _imem_read_long -_imem_read_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_byte -_dmem_read_byte: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_word -_dmem_read_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_read_long -_dmem_read_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_byte -_dmem_write_byte: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_word -_dmem_write_word: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - - global _dmem_write_long -_dmem_write_long: - mov.l %d0,-(%sp) - mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 - pea.l (_060FPSP_TABLE-0x80,%pc,%d0) - mov.l 0x4(%sp),%d0 - rtd &0x4 - -# -# This file contains a set of define statements for constants -# in order to promote readability within the corecode itself. -# - -set LOCAL_SIZE, 192 # stack frame size(bytes) -set LV, -LOCAL_SIZE # stack offset - -set EXC_SR, 0x4 # stack status register -set EXC_PC, 0x6 # stack pc -set EXC_VOFF, 0xa # stacked vector offset -set EXC_EA, 0xc # stacked <ea> - -set EXC_FP, 0x0 # frame pointer - -set EXC_AREGS, -68 # offset of all address regs -set EXC_DREGS, -100 # offset of all data regs -set EXC_FPREGS, -36 # offset of all fp regs - -set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7 -set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7 -set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6 -set EXC_A5, EXC_AREGS+(5*4) -set EXC_A4, EXC_AREGS+(4*4) -set EXC_A3, EXC_AREGS+(3*4) -set EXC_A2, EXC_AREGS+(2*4) -set EXC_A1, EXC_AREGS+(1*4) -set EXC_A0, EXC_AREGS+(0*4) -set EXC_D7, EXC_DREGS+(7*4) -set EXC_D6, EXC_DREGS+(6*4) -set EXC_D5, EXC_DREGS+(5*4) -set EXC_D4, EXC_DREGS+(4*4) -set EXC_D3, EXC_DREGS+(3*4) -set EXC_D2, EXC_DREGS+(2*4) -set EXC_D1, EXC_DREGS+(1*4) -set EXC_D0, EXC_DREGS+(0*4) - -set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0 -set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1 -set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used) - -set FP_SCR1, LV+80 # fp scratch 1 -set FP_SCR1_EX, FP_SCR1+0 -set FP_SCR1_SGN, FP_SCR1+2 -set FP_SCR1_HI, FP_SCR1+4 -set FP_SCR1_LO, FP_SCR1+8 - -set FP_SCR0, LV+68 # fp scratch 0 -set FP_SCR0_EX, FP_SCR0+0 -set FP_SCR0_SGN, FP_SCR0+2 -set FP_SCR0_HI, FP_SCR0+4 -set FP_SCR0_LO, FP_SCR0+8 - -set FP_DST, LV+56 # fp destination operand -set FP_DST_EX, FP_DST+0 -set FP_DST_SGN, FP_DST+2 -set FP_DST_HI, FP_DST+4 -set FP_DST_LO, FP_DST+8 - -set FP_SRC, LV+44 # fp source operand -set FP_SRC_EX, FP_SRC+0 -set FP_SRC_SGN, FP_SRC+2 -set FP_SRC_HI, FP_SRC+4 -set FP_SRC_LO, FP_SRC+8 - -set USER_FPIAR, LV+40 # FP instr address register - -set USER_FPSR, LV+36 # FP status register -set FPSR_CC, USER_FPSR+0 # FPSR condition codes -set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte -set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte -set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte - -set USER_FPCR, LV+32 # FP control register -set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable -set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control - -set L_SCR3, LV+28 # integer scratch 3 -set L_SCR2, LV+24 # integer scratch 2 -set L_SCR1, LV+20 # integer scratch 1 - -set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst) - -set EXC_TEMP2, LV+24 # temporary space -set EXC_TEMP, LV+16 # temporary space - -set DTAG, LV+15 # destination operand type -set STAG, LV+14 # source operand type - -set SPCOND_FLG, LV+10 # flag: special case (see below) - -set EXC_CC, LV+8 # saved condition codes -set EXC_EXTWPTR, LV+4 # saved current PC (active) -set EXC_EXTWORD, LV+2 # saved extension word -set EXC_CMDREG, LV+2 # saved extension word -set EXC_OPWORD, LV+0 # saved operation word - -################################ - -# Helpful macros - -set FTEMP, 0 # offsets within an -set FTEMP_EX, 0 # extended precision -set FTEMP_SGN, 2 # value saved in memory. -set FTEMP_HI, 4 -set FTEMP_LO, 8 -set FTEMP_GRS, 12 - -set LOCAL, 0 # offsets within an -set LOCAL_EX, 0 # extended precision -set LOCAL_SGN, 2 # value saved in memory. -set LOCAL_HI, 4 -set LOCAL_LO, 8 -set LOCAL_GRS, 12 - -set DST, 0 # offsets within an -set DST_EX, 0 # extended precision -set DST_HI, 4 # value saved in memory. -set DST_LO, 8 - -set SRC, 0 # offsets within an -set SRC_EX, 0 # extended precision -set SRC_HI, 4 # value saved in memory. -set SRC_LO, 8 - -set SGL_LO, 0x3f81 # min sgl prec exponent -set SGL_HI, 0x407e # max sgl prec exponent -set DBL_LO, 0x3c01 # min dbl prec exponent -set DBL_HI, 0x43fe # max dbl prec exponent -set EXT_LO, 0x0 # min ext prec exponent -set EXT_HI, 0x7ffe # max ext prec exponent - -set EXT_BIAS, 0x3fff # extended precision bias -set SGL_BIAS, 0x007f # single precision bias -set DBL_BIAS, 0x03ff # double precision bias - -set NORM, 0x00 # operand type for STAG/DTAG -set ZERO, 0x01 # operand type for STAG/DTAG -set INF, 0x02 # operand type for STAG/DTAG -set QNAN, 0x03 # operand type for STAG/DTAG -set DENORM, 0x04 # operand type for STAG/DTAG -set SNAN, 0x05 # operand type for STAG/DTAG -set UNNORM, 0x06 # operand type for STAG/DTAG - -################## -# FPSR/FPCR bits # -################## -set neg_bit, 0x3 # negative result -set z_bit, 0x2 # zero result -set inf_bit, 0x1 # infinite result -set nan_bit, 0x0 # NAN result - -set q_sn_bit, 0x7 # sign bit of quotient byte - -set bsun_bit, 7 # branch on unordered -set snan_bit, 6 # signalling NAN -set operr_bit, 5 # operand error -set ovfl_bit, 4 # overflow -set unfl_bit, 3 # underflow -set dz_bit, 2 # divide by zero -set inex2_bit, 1 # inexact result 2 -set inex1_bit, 0 # inexact result 1 - -set aiop_bit, 7 # accrued inexact operation bit -set aovfl_bit, 6 # accrued overflow bit -set aunfl_bit, 5 # accrued underflow bit -set adz_bit, 4 # accrued dz bit -set ainex_bit, 3 # accrued inexact bit - -############################# -# FPSR individual bit masks # -############################# -set neg_mask, 0x08000000 # negative bit mask (lw) -set inf_mask, 0x02000000 # infinity bit mask (lw) -set z_mask, 0x04000000 # zero bit mask (lw) -set nan_mask, 0x01000000 # nan bit mask (lw) - -set neg_bmask, 0x08 # negative bit mask (byte) -set inf_bmask, 0x02 # infinity bit mask (byte) -set z_bmask, 0x04 # zero bit mask (byte) -set nan_bmask, 0x01 # nan bit mask (byte) - -set bsun_mask, 0x00008000 # bsun exception mask -set snan_mask, 0x00004000 # snan exception mask -set operr_mask, 0x00002000 # operr exception mask -set ovfl_mask, 0x00001000 # overflow exception mask -set unfl_mask, 0x00000800 # underflow exception mask -set dz_mask, 0x00000400 # dz exception mask -set inex2_mask, 0x00000200 # inex2 exception mask -set inex1_mask, 0x00000100 # inex1 exception mask - -set aiop_mask, 0x00000080 # accrued illegal operation -set aovfl_mask, 0x00000040 # accrued overflow -set aunfl_mask, 0x00000020 # accrued underflow -set adz_mask, 0x00000010 # accrued divide by zero -set ainex_mask, 0x00000008 # accrued inexact - -###################################### -# FPSR combinations used in the FPSP # -###################################### -set dzinf_mask, inf_mask+dz_mask+adz_mask -set opnan_mask, nan_mask+operr_mask+aiop_mask -set nzi_mask, 0x01ffffff #clears N, Z, and I -set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask -set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask -set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask -set inx1a_mask, inex1_mask+ainex_mask -set inx2a_mask, inex2_mask+ainex_mask -set snaniop_mask, nan_mask+snan_mask+aiop_mask -set snaniop2_mask, snan_mask+aiop_mask -set naniop_mask, nan_mask+aiop_mask -set neginf_mask, neg_mask+inf_mask -set infaiop_mask, inf_mask+aiop_mask -set negz_mask, neg_mask+z_mask -set opaop_mask, operr_mask+aiop_mask -set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask -set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask - -######### -# misc. # -######### -set rnd_stky_bit, 29 # stky bit pos in longword - -set sign_bit, 0x7 # sign bit -set signan_bit, 0x6 # signalling nan bit - -set sgl_thresh, 0x3f81 # minimum sgl exponent -set dbl_thresh, 0x3c01 # minimum dbl exponent - -set x_mode, 0x0 # extended precision -set s_mode, 0x4 # single precision -set d_mode, 0x8 # double precision - -set rn_mode, 0x0 # round-to-nearest -set rz_mode, 0x1 # round-to-zero -set rm_mode, 0x2 # round-tp-minus-infinity -set rp_mode, 0x3 # round-to-plus-infinity - -set mantissalen, 64 # length of mantissa in bits - -set BYTE, 1 # len(byte) == 1 byte -set WORD, 2 # len(word) == 2 bytes -set LONG, 4 # len(longword) == 2 bytes - -set BSUN_VEC, 0xc0 # bsun vector offset -set INEX_VEC, 0xc4 # inexact vector offset -set DZ_VEC, 0xc8 # dz vector offset -set UNFL_VEC, 0xcc # unfl vector offset -set OPERR_VEC, 0xd0 # operr vector offset -set OVFL_VEC, 0xd4 # ovfl vector offset -set SNAN_VEC, 0xd8 # snan vector offset - -########################### -# SPecial CONDition FLaGs # -########################### -set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception -set fbsun_flg, 0x02 # flag bit: bsun exception -set mia7_flg, 0x04 # flag bit: (a7)+ <ea> -set mda7_flg, 0x08 # flag bit: -(a7) <ea> -set fmovm_flg, 0x40 # flag bit: fmovm instruction -set immed_flg, 0x80 # flag bit: &<data> <ea> - -set ftrapcc_bit, 0x0 -set fbsun_bit, 0x1 -set mia7_bit, 0x2 -set mda7_bit, 0x3 -set immed_bit, 0x7 - -################################## -# TRANSCENDENTAL "LAST-OP" FLAGS # -################################## -set FMUL_OP, 0x0 # fmul instr performed last -set FDIV_OP, 0x1 # fdiv performed last -set FADD_OP, 0x2 # fadd performed last -set FMOV_OP, 0x3 # fmov performed last - -############# -# CONSTANTS # -############# -T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD -T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL - -PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000 -PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 - -TWOBYPI: - long 0x3FE45F30,0x6DC9C883 - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Overflow exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # -# _real_ovfl() - "callout" for Overflow exception enabled code # -# _real_inex() - "callout" for Inexact exception enabled code # -# _real_trace() - "callout" for Trace exception code # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Ovfl exception stack frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# Overflow Exception enabled: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# Overflow Exception disabled: # -# - The system stack is unchanged # -# - The "exception present" flag in the fsave frame is cleared # -# # -# ALGORITHM *********************************************************** # -# On the 060, if an FP overflow is present as the result of any # -# instruction, the 060 will take an overflow exception whether the # -# exception is enabled or disabled in the FPCR. For the disabled case, # -# This handler emulates the instruction to determine what the correct # -# default result should be for the operation. This default result is # -# then stored in either the FP regfile, data regfile, or memory. # -# Finally, the handler exits through the "callout" _fpsp_done() # -# denoting that no exceptional conditions exist within the machine. # -# If the exception is enabled, then this handler must create the # -# exceptional operand and plave it in the fsave state frame, and store # -# the default result (only if the instruction is opclass 3). For # -# exceptions enabled, this handler must exit through the "callout" # -# _real_ovfl() so that the operating system enabled overflow handler # -# can handle this case. # -# Two other conditions exist. First, if overflow was disabled # -# but the inexact exception was enabled, this handler must exit # -# through the "callout" _real_inex() regardless of whether the result # -# was inexact. # -# Also, in the case of an opclass three instruction where # -# overflow was disabled and the trace exception was enabled, this # -# handler must exit through the "callout" _real_trace(). # -# # -######################################################################### - - global _fpsp_ovfl -_fpsp_ovfl: - -#$# sub.l &24,%sp # make room for src/dst - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? - bne.w fovfl_out - - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -# since, I believe, only NORMs and DENORMs can come through here, -# maybe we can avoid the subroutine call. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bit five of the fp extension word separates the monadic and dyadic operations -# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos -# will never take this exception. - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fovfl_extract # monadic - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fovfl_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fovfl_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fovfl_extract: - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) -#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) -#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) -#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - -# maybe we can make these entry points ONLY the OVFL entry points of each routine. - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# the operation has been emulated. the result is in fp0. -# the EXOP, if an exception occurred, is in fp1. -# we must save the default result regardless of whether -# traps are enabled or disabled. - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -# the exceptional possibilities we have left ourselves with are ONLY overflow -# and inexact. and, the inexact is such that overflow occurred and was disabled -# but inexact was enabled. - btst &ovfl_bit,FPCR_ENABLE(%a6) - bne.b fovfl_ovfl_on - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.b fovfl_inex_on - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - bra.l _fpsp_done - -# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP -# in fp1. now, simply jump to _real_ovfl()! -fovfl_ovfl_on: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.w &0xe005,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_ovfl - -# overflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, -# we must jump to real_inex(). -fovfl_inex_on: - - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_inex - -######################################################################## -fovfl_out: - - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) - -# the src operand is definitely a NORM(!), so tag it as such - mov.b &NORM,STAG(%a6) # set src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout - - btst &ovfl_bit,FPCR_ENABLE(%a6) - bne.w fovfl_ovfl_on - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.w fovfl_inex_on - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - - btst &0x7,(%sp) # is trace on? - beq.l _fpsp_done # no - - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - bra.l _real_trace - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Underflow exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _fpsp_done() - "callout" for 060FPSP exit (all work done!) # -# _real_ovfl() - "callout" for Overflow exception enabled code # -# _real_inex() - "callout" for Inexact exception enabled code # -# _real_trace() - "callout" for Trace exception code # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Unfl exception stack frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# Underflow Exception enabled: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# Underflow Exception disabled: # -# - The system stack is unchanged # -# - The "exception present" flag in the fsave frame is cleared # -# # -# ALGORITHM *********************************************************** # -# On the 060, if an FP underflow is present as the result of any # -# instruction, the 060 will take an underflow exception whether the # -# exception is enabled or disabled in the FPCR. For the disabled case, # -# This handler emulates the instruction to determine what the correct # -# default result should be for the operation. This default result is # -# then stored in either the FP regfile, data regfile, or memory. # -# Finally, the handler exits through the "callout" _fpsp_done() # -# denoting that no exceptional conditions exist within the machine. # -# If the exception is enabled, then this handler must create the # -# exceptional operand and plave it in the fsave state frame, and store # -# the default result (only if the instruction is opclass 3). For # -# exceptions enabled, this handler must exit through the "callout" # -# _real_unfl() so that the operating system enabled overflow handler # -# can handle this case. # -# Two other conditions exist. First, if underflow was disabled # -# but the inexact exception was enabled and the result was inexact, # -# this handler must exit through the "callout" _real_inex(). # -# was inexact. # -# Also, in the case of an opclass three instruction where # -# underflow was disabled and the trace exception was enabled, this # -# handler must exit through the "callout" _real_trace(). # -# # -######################################################################### - - global _fpsp_unfl -_fpsp_unfl: - -#$# sub.l &24,%sp # make room for src/dst - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out? - bne.w funfl_out - - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bit five of the fp ext word separates the monadic and dyadic operations -# that can pass through fpsp_unfl(). remember that fcmp, and ftst -# will never take this exception. - btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic? - beq.b funfl_extract # monadic - -# now, what's left that's not dyadic is fsincos. we can distinguish it -# from all dyadics by the '0110xxx pattern - btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos? - bne.b funfl_extract # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b funfl_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -funfl_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -funfl_extract: - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) -#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) -#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) -#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - andi.l &0x00ff01ff,USER_FPSR(%a6) - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - -# maybe we can make these entry points ONLY the OVFL entry points of each routine. - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. Since this is incorrect, we need to check -# if our emulation, after re-doing the operation, decided that -# no underflow was called for. We do these checks only in -# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this -# special case will simply exit gracefully with the correct result. - -# the exceptional possibilities we have left ourselves with are ONLY overflow -# and inexact. and, the inexact is such that overflow occurred and was disabled -# but inexact was enabled. - btst &unfl_bit,FPCR_ENABLE(%a6) - bne.b funfl_unfl_on - -funfl_chkinex: - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.b funfl_inex_on - -funfl_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - bra.l _fpsp_done - -# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP -# in fp1 (don't forget to save fp0). what to do now? -# well, we simply have to get to go to _real_unfl()! -funfl_unfl_on: - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. Since this is incorrect, we check here to see -# if our emulation, after re-doing the operation, decided that -# no underflow was called for. - btst &unfl_bit,FPSR_EXCEPT(%a6) - beq.w funfl_chkinex - -funfl_unfl_on2: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack - - mov.w &0xe003,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_unfl - -# underflow occurred but is disabled. meanwhile, inexact is enabled. Therefore, -# we must jump to real_inex(). -funfl_inex_on: - -# The `060 FPU multiplier hardware is such that if the result of a -# multiply operation is the smallest possible normalized number -# (0x00000000_80000000_00000000), then the machine will take an -# underflow exception. -# But, whether bogus or not, if inexact is enabled AND it occurred, -# then we have to branch to real_inex. - - btst &inex2_bit,FPSR_EXCEPT(%a6) - beq.w funfl_exit - -funfl_inex_on2: - - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack - - mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # save exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # do this after fmovm,other f<op>s! - - unlk %a6 - - bra.l _real_inex - -####################################################################### -funfl_out: - - -#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) -#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) -#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) - -# the src operand is definitely a NORM(!), so tag it as such - mov.b &NORM,STAG(%a6) # set src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout - - btst &unfl_bit,FPCR_ENABLE(%a6) - bne.w funfl_unfl_on2 - - btst &inex2_bit,FPCR_ENABLE(%a6) - bne.w funfl_inex_on2 - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 -#$# add.l &24,%sp - - btst &0x7,(%sp) # is trace on? - beq.l _fpsp_done # no - - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - bra.l _real_trace - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented # -# Data Type" exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Unimplemented Data Type exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_{word,long}() - read instruction word/longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# load_fpn1() - load src operand from FP regfile # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _real_inex() - "callout" to operating system inexact handler # -# _fpsp_done() - "callout" for exit; work all done # -# _real_trace() - "callout" for Trace enabled exception # -# funimp_skew() - adjust fsave src ops to "incorrect" value # -# _real_snan() - "callout" for SNAN exception # -# _real_operr() - "callout" for OPERR exception # -# _real_ovfl() - "callout" for OVFL exception # -# _real_unfl() - "callout" for UNFL exception # -# get_packed() - fetch packed operand from memory # -# # -# INPUT *************************************************************** # -# - The system stack contains the "Unimp Data Type" stk frame # -# - The fsave frame contains the ssrc op (for UNNORM/DENORM) # -# # -# OUTPUT ************************************************************** # -# If Inexact exception (opclass 3): # -# - The system stack is changed to an Inexact exception stk frame # -# If SNAN exception (opclass 3): # -# - The system stack is changed to an SNAN exception stk frame # -# If OPERR exception (opclass 3): # -# - The system stack is changed to an OPERR exception stk frame # -# If OVFL exception (opclass 3): # -# - The system stack is changed to an OVFL exception stk frame # -# If UNFL exception (opclass 3): # -# - The system stack is changed to an UNFL exception stack frame # -# If Trace exception enabled: # -# - The system stack is changed to a Trace exception stack frame # -# Else: (normal case) # -# - Correct result has been stored as appropriate # -# # -# ALGORITHM *********************************************************** # -# Two main instruction types can enter here: (1) DENORM or UNNORM # -# unimplemented data types. These can be either opclass 0,2 or 3 # -# instructions, and (2) PACKED unimplemented data format instructions # -# also of opclasses 0,2, or 3. # -# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src # -# operand from the fsave state frame and the dst operand (if dyadic) # -# from the FP register file. The instruction is then emulated by # -# choosing an emulation routine from a table of routines indexed by # -# instruction type. Once the instruction has been emulated and result # -# saved, then we check to see if any enabled exceptions resulted from # -# instruction emulation. If none, then we exit through the "callout" # -# _fpsp_done(). If there is an enabled FP exception, then we insert # -# this exception into the FPU in the fsave state frame and then exit # -# through _fpsp_done(). # -# PACKED opclass 0 and 2 is similar in how the instruction is # -# emulated and exceptions handled. The differences occur in how the # -# handler loads the packed op (by calling get_packed() routine) and # -# by the fact that a Trace exception could be pending for PACKED ops. # -# If a Trace exception is pending, then the current exception stack # -# frame is changed to a Trace exception stack frame and an exit is # -# made through _real_trace(). # -# For UNNORM/DENORM opclass 3, the actual move out to memory is # -# performed by calling the routine fout(). If no exception should occur # -# as the result of emulation, then an exit either occurs through # -# _fpsp_done() or through _real_trace() if a Trace exception is pending # -# (a Trace stack frame must be created here, too). If an FP exception # -# should occur, then we must create an exception stack frame of that # -# type and jump to either _real_snan(), _real_operr(), _real_inex(), # -# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 # -# emulation is performed in a similar manner. # -# # -######################################################################### - -# -# (1) DENORM and UNNORM (unimplemented) data types: -# -# post-instruction -# ***************** -# * EA * -# pre-instruction * * -# ***************** ***************** -# * 0x0 * 0x0dc * * 0x3 * 0x0dc * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# -# (2) PACKED format (unsupported) opclasses two and three: -# ***************** -# * EA * -# * * -# ***************** -# * 0x2 * 0x0dc * -# ***************** -# * Next * -# * PC * -# ***************** -# * SR * -# ***************** -# - global _fpsp_unsupp -_fpsp_unsupp: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # save fp state - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - - btst &0x5,EXC_SR(%a6) # user or supervisor mode? - bne.b fu_s -fu_u: - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # save on stack - bra.b fu_cont -# if the exception is an opclass zero or two unimplemented data type -# exception, then the a7' calculated here is wrong since it doesn't -# stack an ea. however, we don't need an a7' for this case anyways. -fu_s: - lea 0x4+EXC_EA(%a6),%a0 # load old a7' - mov.l %a0,EXC_A7(%a6) # save on stack - -fu_cont: - -# the FPIAR holds the "current PC" of the faulting instruction -# the FPIAR should be set correctly for ALL exceptions passing through -# this point. - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - -############################ - - clr.b SPCOND_FLG(%a6) # clear special condition flag - -# Separate opclass three (fpn-to-mem) ops since they have a different -# stack frame and protocol. - btst &0x5,EXC_CMDREG(%a6) # is it an fmove out? - bne.w fu_out # yes - -# Separate packed opclass two instructions. - bfextu EXC_CMDREG(%a6){&0:&6},%d0 - cmpi.b %d0,&0x13 - beq.w fu_in_pack - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field - andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - -# Opclass two w/ memory-to-fpn operation will have an incorrect extended -# precision format if the src format was single or double and the -# source data type was an INF, NAN, DENORM, or UNNORM - lea FP_SRC(%a6),%a0 # pass ptr to input - bsr.l fix_skewed_ops - -# we don't know whether the src operand or the dst operand (or both) is the -# UNNORM or DENORM. call the function that tags the operand type. if the -# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2 # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO - -fu_op2: - mov.b %d0,STAG(%a6) # save src optype tag - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - -# bit five of the fp extension word separates the monadic and dyadic operations -# at this point - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fu_extract # monadic - cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? - beq.b fu_extract # yes, so it's monadic, too - - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fu_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fu_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all dyadic ops -# OPERR : fsqrt(-NORM) -# OVFL : all except ftst,fcmp -# UNFL : all except ftst,fcmp -# DZ : fdiv -# INEX2 : all except ftst,fcmp -# INEX1 : none (packed doesn't go through here) -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set - bne.b fu_in_ena # some are enabled - -fu_in_cont: -# fcmp and ftst do not store any result. - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension - andi.b &0x38,%d0 # extract bits 3-5 - cmpi.b %d0,&0x38 # is instr fcmp or ftst? - beq.b fu_in_exit # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l store_fpreg # store the result - -fu_in_exit: - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - bra.l _fpsp_done - -fu_in_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_in_exc # there is at least one set - -# -# No exceptions occurred that were also enabled. Now: -# -# if (OVFL && ovfl_disabled && inexact_enabled) { -# branch to _real_inex() (even if the result was exact!); -# } else { -# save the result in the proper fp reg (unless the op is fcmp or ftst); -# return; -# } -# - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.b fu_in_cont # no - -fu_in_ovflchk: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.b fu_in_cont # no - bra.w fu_in_exc_ovfl # go insert overflow frame - -# -# An exception occurred and that exception was enabled: -# -# shift enabled exception field into lo byte of d0; -# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || -# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { -# /* -# * this is the case where we must call _real_inex() now or else -# * there will be no other way to pass it the exceptional operand -# */ -# call _real_inex(); -# } else { -# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; -# } -# -fu_in_exc: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? (6) - bne.b fu_in_exc_exit # no - -# the enabled exception was inexact - btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? - bne.w fu_in_exc_unfl # yes - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? - bne.w fu_in_exc_ovfl # yes - -# here, we insert the correct fsave status value into the fsave frame for the -# corresponding exception. the operand in the fsave frame should be the original -# src operand. -fu_in_exc_exit: - mov.l %d0,-(%sp) # save d0 - bsr.l funimp_skew # skew sgl or dbl inputs - mov.l (%sp)+,%d0 # restore d0 - - mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 - - bra.l _fpsp_done - -tbl_except: - short 0xe000,0xe006,0xe004,0xe005 - short 0xe003,0xe002,0xe001,0xe001 - -fu_in_exc_unfl: - mov.w &0x4,%d0 - bra.b fu_in_exc_exit -fu_in_exc_ovfl: - mov.w &0x03,%d0 - bra.b fu_in_exc_exit - -# If the input operand to this operation was opclass two and a single -# or double precision denorm, inf, or nan, the operand needs to be -# "corrected" in order to have the proper equivalent extended precision -# number. - global fix_skewed_ops -fix_skewed_ops: - bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt - cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl? - beq.b fso_sgl # yes - cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl? - beq.b fso_dbl # yes - rts # no - -fso_sgl: - mov.w LOCAL_EX(%a0),%d0 # fetch src exponent - andi.w &0x7fff,%d0 # strip sign - cmpi.w %d0,&0x3f80 # is |exp| == $3f80? - beq.b fso_sgl_dnrm_zero # yes - cmpi.w %d0,&0x407f # no; is |exp| == $407f? - beq.b fso_infnan # yes - rts # no - -fso_sgl_dnrm_zero: - andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit - beq.b fso_zero # it's a skewed zero -fso_sgl_dnrm: -# here, we count on norm not to alter a0... - bsr.l norm # normalize mantissa - neg.w %d0 # -shft amt - addi.w &0x3f81,%d0 # adjust new exponent - andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent - or.w %d0,LOCAL_EX(%a0) # insert new exponent - rts - -fso_zero: - andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent - rts - -fso_infnan: - andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit - ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff - rts - -fso_dbl: - mov.w LOCAL_EX(%a0),%d0 # fetch src exponent - andi.w &0x7fff,%d0 # strip sign - cmpi.w %d0,&0x3c00 # is |exp| == $3c00? - beq.b fso_dbl_dnrm_zero # yes - cmpi.w %d0,&0x43ff # no; is |exp| == $43ff? - beq.b fso_infnan # yes - rts # no - -fso_dbl_dnrm_zero: - andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit - bne.b fso_dbl_dnrm # it's a skewed denorm - tst.l LOCAL_LO(%a0) # is it a zero? - beq.b fso_zero # yes -fso_dbl_dnrm: -# here, we count on norm not to alter a0... - bsr.l norm # normalize mantissa - neg.w %d0 # -shft amt - addi.w &0x3c01,%d0 # adjust new exponent - andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent - or.w %d0,LOCAL_EX(%a0) # insert new exponent - rts - -################################################################# - -# fmove out took an unimplemented data type exception. -# the src operand is in FP_SRC. Call _fout() to write out the result and -# to determine which exceptions, if any, to take. -fu_out: - -# Separate packed move outs from the UNNORM and DENORM move outs. - bfextu EXC_CMDREG(%a6){&3:&3},%d0 - cmpi.b %d0,&0x3 - beq.w fu_out_pack - cmpi.b %d0,&0x7 - beq.w fu_out_pack - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field. -# fmove out doesn't affect ccodes. - and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - -# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine -# call here. just figure out what it is... - mov.w FP_SRC_EX(%a6),%d0 # get exponent - andi.w &0x7fff,%d0 # strip sign - beq.b fu_out_denorm # it's a DENORM - - lea FP_SRC(%a6),%a0 - bsr.l unnorm_fix # yes; fix it - - mov.b %d0,STAG(%a6) - - bra.b fu_out_cont -fu_out_denorm: - mov.b &DENORM,STAG(%a6) -fu_out_cont: - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - mov.l (%a6),EXC_A6(%a6) # in case a6 changes - bsr.l fout # call fmove out routine - -# Exceptions in order of precedence: -# BSUN : none -# SNAN : none -# OPERR : fmove.{b,w,l} out of large UNNORM -# OVFL : fmove.{s,d} -# UNFL : fmove.{s,d,x} -# DZ : none -# INEX2 : all -# INEX1 : none (packed doesn't travel through here) - -# determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_out_ena # some are enabled - -fu_out_done: - - mov.l EXC_A6(%a6),(%a6) # in case a6 changed - -# on extended precision opclass three instructions using pre-decrement or -# post-increment addressing mode, the address register is not updated. is the -# address register was the stack pointer used from user mode, then let's update -# it here. if it was used from supervisor mode, then we have to handle this -# as a special case. - btst &0x5,EXC_SR(%a6) - bne.b fu_out_done_s - - mov.l EXC_A7(%a6),%a0 # restore a7 - mov.l %a0,%usp - -fu_out_done_cont: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - btst &0x7,(%sp) # is trace on? - bne.b fu_out_trace # yes - - bra.l _fpsp_done - -# is the ea mode pre-decrement of the stack pointer from supervisor mode? -# ("fmov.x fpm,-(a7)") if so, -fu_out_done_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.b fu_out_done_cont - -# the extended precision result is still in fp0. but, we need to save it -# somewhere on the stack until we can copy it to its final resting place. -# here, we're counting on the top of the stack to be the old place-holders -# for fp0/fp1 which have already been restored. that way, we can write -# over those destinations with the shifted stack frame. - fmovm.x &0x80,FP_SRC(%a6) # put answer on stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - btst &0x7,(%sp) - bne.b fu_out_trace - - bra.l _fpsp_done - -fu_out_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_out_exc # there is at least one set - -# no exceptions were set. -# if a disabled overflow occurred and inexact was enabled but the result -# was exact, then a branch to _real_inex() is made. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.w fu_out_done # no - -fu_out_ovflchk: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.w fu_out_done # no - bra.w fu_inex # yes - -# -# The fp move out that took the "Unimplemented Data Type" exception was -# being traced. Since the stack frames are similar, get the "current" PC -# from FPIAR and put it in the trace stack frame then jump to _real_trace(). -# -# UNSUPP FRAME TRACE FRAME -# ***************** ***************** -# * EA * * Current * -# * * * PC * -# ***************** ***************** -# * 0x3 * 0x0dc * * 0x2 * 0x024 * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -# -fu_out_trace: - mov.w &0x2024,0x6(%sp) - fmov.l %fpiar,0x8(%sp) - bra.l _real_trace - -# an exception occurred and that exception was enabled. -fu_out_exc: - subi.l &24,%d0 # fix offset to be 0-8 - -# we don't mess with the existing fsave frame. just re-insert it and -# jump to the "_real_{}()" handler... - mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0 - jmp (tbl_fu_out.b,%pc,%d0.w*1) - - swbeg &0x8 -tbl_fu_out: - short tbl_fu_out - tbl_fu_out # BSUN can't happen - short tbl_fu_out - tbl_fu_out # SNAN can't happen - short fu_operr - tbl_fu_out # OPERR - short fu_ovfl - tbl_fu_out # OVFL - short fu_unfl - tbl_fu_out # UNFL - short tbl_fu_out - tbl_fu_out # DZ can't happen - short fu_inex - tbl_fu_out # INEX2 - short tbl_fu_out - tbl_fu_out # INEX1 won't make it here - -# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just -# frestore it. -fu_snan: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8 - mov.w &0xe006,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) - - unlk %a6 - - - bra.l _real_snan - -fu_operr: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe004,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) - - unlk %a6 - - - bra.l _real_operr - -fu_ovfl: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4 - mov.w &0xe005,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - bra.l _real_ovfl - -# underflow can happen for extended precision. extended precision opclass -# three instruction exceptions don't update the stack pointer. so, if the -# exception occurred from user mode, then simply update a7 and exit normally. -# if the exception occurred from supervisor mode, check if -fu_unfl: - mov.l EXC_A6(%a6),(%a6) # restore a6 - - btst &0x5,EXC_SR(%a6) - bne.w fu_unfl_s - - mov.l EXC_A7(%a6),%a0 # restore a7 whether we need - mov.l %a0,%usp # to or not... - -fu_unfl_cont: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc - mov.w &0xe003,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - bra.l _real_unfl - -fu_unfl_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? - bne.b fu_unfl_cont - -# the extended precision result is still in fp0. but, we need to save it -# somewhere on the stack until we can copy it to its final resting place -# (where the exc frame is currently). make sure it's not at the top of the -# frame or it will get overwritten when the exc stack frame is shifted "down". - fmovm.x &0x80,FP_SRC(%a6) # put answer on stack - fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc - mov.w &0xe003,2+FP_DST(%a6) - - frestore FP_DST(%a6) # restore EXOP - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - bra.l _real_unfl - -# fmove in and out enter here. -fu_inex: - fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) - - frestore FP_SRC(%a6) # restore EXOP - - unlk %a6 - - - bra.l _real_inex - -######################################################################### -######################################################################### -fu_in_pack: - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field - andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bsr.l get_packed # fetch packed src operand - - lea FP_SRC(%a6),%a0 # pass ptr to src - bsr.l set_tag_x # set src optype tag - - mov.b %d0,STAG(%a6) # save src optype tag - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - -# bit five of the fp extension word separates the monadic and dyadic operations -# at this point - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b fu_extract_p # monadic - cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst? - beq.b fu_extract_p # yes, so it's monadic, too - - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_done_p # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -fu_op2_done_p: - mov.b %d0,DTAG(%a6) # save dst optype tag - -fu_extract_p: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all dyadic ops -# OPERR : fsqrt(-NORM) -# OVFL : all except ftst,fcmp -# UNFL : all except ftst,fcmp -# DZ : fdiv -# INEX2 : all except ftst,fcmp -# INEX1 : all -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_in_ena_p # some are enabled - -fu_in_cont_p: -# fcmp and ftst do not store any result. - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension - andi.b &0x38,%d0 # extract bits 3-5 - cmpi.b %d0,&0x38 # is instr fcmp or ftst? - beq.b fu_in_exit_p # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l store_fpreg # store the result - -fu_in_exit_p: - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.w fu_in_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_in_exit_cont_p: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# the exception occurred in supervisor mode. check to see if the -# addressing mode was (a7)+. if so, we'll need to shift the -# stack frame "up". -fu_in_exit_s_p: - btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ - beq.b fu_in_exit_cont_p # no - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - -# shift the stack frame "up". we don't really care about the <ea> field. - mov.l 0x4(%sp),0x10(%sp) - mov.l 0x0(%sp),0xc(%sp) - add.l &0xc,%sp - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -fu_in_ena_p: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b fu_in_exc_p # at least one was set - -# -# No exceptions occurred that were also enabled. Now: -# -# if (OVFL && ovfl_disabled && inexact_enabled) { -# branch to _real_inex() (even if the result was exact!); -# } else { -# save the result in the proper fp reg (unless the op is fcmp or ftst); -# return; -# } -# - btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? - beq.w fu_in_cont_p # no - -fu_in_ovflchk_p: - btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? - beq.w fu_in_cont_p # no - bra.w fu_in_exc_ovfl_p # do _real_inex() now - -# -# An exception occurred and that exception was enabled: -# -# shift enabled exception field into lo byte of d0; -# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || -# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { -# /* -# * this is the case where we must call _real_inex() now or else -# * there will be no other way to pass it the exceptional operand -# */ -# call _real_inex(); -# } else { -# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; -# } -# -fu_in_exc_p: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? (6 or 7) - blt.b fu_in_exc_exit_p # no - -# the enabled exception was inexact - btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? - bne.w fu_in_exc_unfl_p # yes - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? - bne.w fu_in_exc_ovfl_p # yes - -# here, we insert the correct fsave status value into the fsave frame for the -# corresponding exception. the operand in the fsave frame should be the original -# src operand. -# as a reminder for future predicted pain and agony, we are passing in fsave the -# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. -# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! -fu_in_exc_exit_p: - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.w fu_in_exc_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_in_exc_exit_cont_p: - mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 - - btst &0x7,(%sp) # is trace enabled? - bne.w fu_trace_p # yes - - bra.l _fpsp_done - -tbl_except_p: - short 0xe000,0xe006,0xe004,0xe005 - short 0xe003,0xe002,0xe001,0xe001 - -fu_in_exc_ovfl_p: - mov.w &0x3,%d0 - bra.w fu_in_exc_exit_p - -fu_in_exc_unfl_p: - mov.w &0x4,%d0 - bra.w fu_in_exc_exit_p - -fu_in_exc_exit_s_p: - btst &mia7_bit,SPCOND_FLG(%a6) - beq.b fu_in_exc_exit_cont_p - - mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore src op - - unlk %a6 # unravel stack frame - -# shift stack frame "up". who cares about <ea> field. - mov.l 0x4(%sp),0x10(%sp) - mov.l 0x0(%sp),0xc(%sp) - add.l &0xc,%sp - - btst &0x7,(%sp) # is trace on? - bne.b fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# -# The opclass two PACKED instruction that took an "Unimplemented Data Type" -# exception was being traced. Make the "current" PC the FPIAR and put it in the -# trace stack frame then jump to _real_trace(). -# -# UNSUPP FRAME TRACE FRAME -# ***************** ***************** -# * EA * * Current * -# * * * PC * -# ***************** ***************** -# * 0x2 * 0x0dc * * 0x2 * 0x024 * -# ***************** ***************** -# * Next * * Next * -# * PC * * PC * -# ***************** ***************** -# * SR * * SR * -# ***************** ***************** -fu_trace_p: - mov.w &0x2024,0x6(%sp) - fmov.l %fpiar,0x8(%sp) - - bra.l _real_trace - -######################################################### -######################################################### -fu_out_pack: - - -# I'm not sure at this point what FPSR bits are valid for this instruction. -# so, since the emulation routines re-create them anyways, zero exception field. -# fmove out doesn't affect ccodes. - and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l load_fpn1 - -# unlike other opclass 3, unimplemented data type exceptions, packed must be -# able to detect all operand types. - lea FP_SRC(%a6),%a0 - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b fu_op2_p # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO - -fu_op2_p: - mov.b %d0,STAG(%a6) # save src optype tag - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - mov.l (%a6),EXC_A6(%a6) # in case a6 changes - bsr.l fout # call fmove out routine - -# Exceptions in order of precedence: -# BSUN : no -# SNAN : yes -# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits)) -# OVFL : no -# UNFL : no -# DZ : no -# INEX2 : yes -# INEX1 : no - -# determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.w fu_out_ena_p # some are enabled - -fu_out_exit_p: - mov.l EXC_A6(%a6),(%a6) # restore a6 - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.b fu_out_exit_s_p # supervisor - - mov.l EXC_A7(%a6),%a0 # update user a7 - mov.l %a0,%usp - -fu_out_exit_cont_p: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel stack frame - - btst &0x7,(%sp) # is trace on? - bne.w fu_trace_p # yes - - bra.l _fpsp_done # exit to os - -# the exception occurred in supervisor mode. check to see if the -# addressing mode was -(a7). if so, we'll need to shift the -# stack frame "down". -fu_out_exit_s_p: - btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) - beq.b fu_out_exit_cont_p # no - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - -# now, copy the result to the proper place on the stack - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - btst &0x7,(%sp) - bne.w fu_trace_p - - bra.l _fpsp_done - -fu_out_ena_p: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled - bfffo %d0{&24:&8},%d0 # find highest priority exception - beq.w fu_out_exit_p - - mov.l EXC_A6(%a6),(%a6) # restore a6 - -# an exception occurred and that exception was enabled. -# the only exception possible on packed move out are INEX, OPERR, and SNAN. -fu_out_exc_p: - cmpi.b %d0,&0x1a - bgt.w fu_inex_p2 - beq.w fu_operr_p - -fu_snan_p: - btst &0x5,EXC_SR(%a6) - bne.b fu_snan_s_p - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_snan - -fu_snan_s_p: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_snan - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe006,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_snan - -fu_operr_p: - btst &0x5,EXC_SR(%a6) - bne.w fu_operr_p_s - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_operr - -fu_operr_p_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_operr - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0 - mov.w &0xe004,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_operr - -fu_inex_p2: - btst &0x5,EXC_SR(%a6) - bne.w fu_inex_s_p2 - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp - bra.w fu_inex - -fu_inex_s_p2: - cmpi.b SPCOND_FLG(%a6),&mda7_flg - bne.w fu_inex - -# the instruction was "fmove.p fpn,-(a7)" from supervisor mode. -# the strategy is to move the exception frame "down" 12 bytes. then, we -# can store the default result where the exception frame was. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4 - mov.w &0xe001,2+FP_SRC(%a6) # set fsave status - - frestore FP_SRC(%a6) # restore src operand - - mov.l (%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - -# now, we copy the default result to its proper location - mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) - mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) - mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - - bra.l _real_inex - -######################################################################### - -# -# if we're stuffing a source operand back into an fsave frame then we -# have to make sure that for single or double source operands that the -# format stuffed is as weird as the hardware usually makes it. -# - global funimp_skew -funimp_skew: - bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier - cmpi.b %d0,&0x1 # was src sgl? - beq.b funimp_skew_sgl # yes - cmpi.b %d0,&0x5 # was src dbl? - beq.b funimp_skew_dbl # yes - rts - -funimp_skew_sgl: - mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent - andi.w &0x7fff,%d0 # strip sign - beq.b funimp_skew_sgl_not - cmpi.w %d0,&0x3f80 - bgt.b funimp_skew_sgl_not - neg.w %d0 # make exponent negative - addi.w &0x3f81,%d0 # find amt to shift - mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man) - lsr.l %d0,%d1 # shift it - bset &31,%d1 # set j-bit - mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man) - andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent - ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent -funimp_skew_sgl_not: - rts - -funimp_skew_dbl: - mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent - andi.w &0x7fff,%d0 # strip sign - beq.b funimp_skew_dbl_not - cmpi.w %d0,&0x3c00 - bgt.b funimp_skew_dbl_not - - tst.b FP_SRC_EX(%a6) # make "internal format" - smi.b 0x2+FP_SRC(%a6) - mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign - clr.l %d0 # clear g,r,s - lea FP_SRC(%a6),%a0 # pass ptr to src op - mov.w &0x3c01,%d1 # pass denorm threshold - bsr.l dnrm_lp # denorm it - mov.w &0x3c00,%d0 # new exponent - tst.b 0x2+FP_SRC(%a6) # is sign set? - beq.b fss_dbl_denorm_done # no - bset &15,%d0 # set sign -fss_dbl_denorm_done: - bset &0x7,FP_SRC_HI(%a6) # set j-bit - mov.w %d0,FP_SRC_EX(%a6) # insert new exponent -funimp_skew_dbl_not: - rts - -######################################################################### - global _mem_write2 -_mem_write2: - btst &0x5,EXC_SR(%a6) - beq.l _dmem_write - mov.l 0x0(%a0),FP_DST_EX(%a6) - mov.l 0x4(%a0),FP_DST_HI(%a6) - mov.l 0x8(%a0),FP_DST_LO(%a6) - clr.l %d1 - rts - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented # -# effective address" exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Unimplemented Effective Address exception in an operating # -# system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# decbin() - convert packed data to FP binary data # -# _real_fpu_disabled() - "callout" for "FPU disabled" exception # -# _real_access() - "callout" for access error exception # -# _mem_read() - read extended immediate operand from memory # -# _fpsp_done() - "callout" for exit; work all done # -# _real_trace() - "callout" for Trace enabled exception # -# fmovm_dynamic() - emulate dynamic fmovm instruction # -# fmovm_ctrl() - emulate fmovm control instruction # -# # -# INPUT *************************************************************** # -# - The system stack contains the "Unimplemented <ea>" stk frame # -# # -# OUTPUT ************************************************************** # -# If access error: # -# - The system stack is changed to an access error stack frame # -# If FPU disabled: # -# - The system stack is changed to an FPU disabled stack frame # -# If Trace exception enabled: # -# - The system stack is changed to a Trace exception stack frame # -# Else: (normal case) # -# - None (correct result has been stored as appropriate) # -# # -# ALGORITHM *********************************************************** # -# This exception handles 3 types of operations: # -# (1) FP Instructions using extended precision or packed immediate # -# addressing mode. # -# (2) The "fmovm.x" instruction w/ dynamic register specification. # -# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. # -# # -# For immediate data operations, the data is read in w/ a # -# _mem_read() "callout", converted to FP binary (if packed), and used # -# as the source operand to the instruction specified by the instruction # -# word. If no FP exception should be reported ads a result of the # -# emulation, then the result is stored to the destination register and # -# the handler exits through _fpsp_done(). If an enabled exc has been # -# signalled as a result of emulation, then an fsave state frame # -# corresponding to the FP exception type must be entered into the 060 # -# FPU before exiting. In either the enabled or disabled cases, we # -# must also check if a Trace exception is pending, in which case, we # -# must create a Trace exception stack frame from the current exception # -# stack frame. If no Trace is pending, we simply exit through # -# _fpsp_done(). # -# For "fmovm.x", call the routine fmovm_dynamic() which will # -# decode and emulate the instruction. No FP exceptions can be pending # -# as a result of this operation emulation. A Trace exception can be # -# pending, though, which means the current stack frame must be changed # -# to a Trace stack frame and an exit made through _real_trace(). # -# For the case of "fmovm.x Dn,-(a7)", where the offending instruction # -# was executed from supervisor mode, this handler must store the FP # -# register file values to the system stack by itself since # -# fmovm_dynamic() can't handle this. A normal exit is made through # -# fpsp_done(). # -# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. # -# Again, a Trace exception may be pending and an exit made through # -# _real_trace(). Else, a normal exit is made through _fpsp_done(). # -# # -# Before any of the above is attempted, it must be checked to # -# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken # -# before the "FPU disabled" exception, but the "FPU disabled" exception # -# has higher priority, we check the disabled bit in the PCR. If set, # -# then we must create an 8 word "FPU disabled" exception stack frame # -# from the current 4 word exception stack frame. This includes # -# reproducing the effective address of the instruction to put on the # -# new stack frame. # -# # -# In the process of all emulation work, if a _mem_read() # -# "callout" returns a failing result indicating an access error, then # -# we must create an access error stack frame from the current stack # -# frame. This information includes a faulting address and a fault- # -# status-longword. These are created within this handler. # -# # -######################################################################### - - global _fpsp_effadd -_fpsp_effadd: - -# This exception type takes priority over the "Line F Emulator" -# exception. Therefore, the FPU could be disabled when entering here. -# So, we must check to see if it's disabled and handle that case separately. - mov.l %d0,-(%sp) # save d0 - movc %pcr,%d0 # load proc cr - btst &0x1,%d0 # is FPU disabled? - bne.w iea_disabled # yes - mov.l (%sp)+,%d0 # restore d0 - - link %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# PC of instruction that took the exception is the PC in the frame - mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - -######################################################################### - - tst.w %d0 # is operation fmovem? - bmi.w iea_fmovm # yes - -# -# here, we will have: -# fabs fdabs fsabs facos fmod -# fadd fdadd fsadd fasin frem -# fcmp fatan fscale -# fdiv fddiv fsdiv fatanh fsin -# fint fcos fsincos -# fintrz fcosh fsinh -# fmove fdmove fsmove fetox ftan -# fmul fdmul fsmul fetoxm1 ftanh -# fneg fdneg fsneg fgetexp ftentox -# fsgldiv fgetman ftwotox -# fsglmul flog10 -# fsqrt flog2 -# fsub fdsub fssub flogn -# ftst flognp1 -# which can all use f<op>.{x,p} -# so, now it's immediate data extended precision AND PACKED FORMAT! -# -iea_op: - andi.l &0x00ff00ff,USER_FPSR(%a6) - - btst &0xa,%d0 # is src fmt x or p? - bne.b iea_op_pack # packed - - - mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> - lea FP_SRC(%a6),%a1 # pass: ptr to super addr - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _imem_read # read extended immediate - - tst.l %d1 # did ifetch fail? - bne.w iea_iacc # yes - - bra.b iea_op_setsrc - -iea_op_pack: - - mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data> - lea FP_SRC(%a6),%a1 # pass: ptr to super dst - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _imem_read # read packed operand - - tst.l %d1 # did ifetch fail? - bne.w iea_iacc # yes - -# The packed operand is an INF or a NAN if the exponent field is all ones. - bfextu FP_SRC(%a6){&1:&15},%d0 # get exp - cmpi.w %d0,&0x7fff # INF or NAN? - beq.b iea_op_setsrc # operand is an INF or NAN - -# The packed operand is a zero if the mantissa is all zero, else it's -# a normal packed op. - mov.b 3+FP_SRC(%a6),%d0 # get byte 4 - andi.b &0x0f,%d0 # clear all but last nybble - bne.b iea_op_gp_not_spec # not a zero - tst.l FP_SRC_HI(%a6) # is lw 2 zero? - bne.b iea_op_gp_not_spec # not a zero - tst.l FP_SRC_LO(%a6) # is lw 3 zero? - beq.b iea_op_setsrc # operand is a ZERO -iea_op_gp_not_spec: - lea FP_SRC(%a6),%a0 # pass: ptr to packed op - bsr.l decbin # convert to extended - fmovm.x &0x80,FP_SRC(%a6) # make this the srcop - -iea_op_setsrc: - addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer - -# FP_SRC now holds the src operand. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # could be ANYTHING!!! - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b iea_op_getdst # no - bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO - mov.b %d0,STAG(%a6) # set new optype tag -iea_op_getdst: - clr.b STORE_FLG(%a6) # clear "store result" boolean - - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b iea_op_extract # monadic - btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp? - bne.b iea_op_spec # yes - -iea_op_loaddst: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno - bsr.l load_fpn2 # load dst operand - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - mov.b %d0,DTAG(%a6) # could be ANYTHING!!! - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b iea_op_extract # no - bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO - mov.b %d0,DTAG(%a6) # set new optype tag - bra.b iea_op_extract - -# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic -iea_op_spec: - btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos? - beq.b iea_op_extract # yes -# now, we're left with ftst and fcmp. so, first let's tag them so that they don't -# store a result. then, only fcmp will branch back and pick up a dst operand. - st STORE_FLG(%a6) # don't store a final result - btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp? - beq.b iea_op_loaddst # yes - -iea_op_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - fmov.l &0x0,%fpcr - fmov.l &0x0,%fpsr - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# -# Exceptions in order of precedence: -# BSUN : none -# SNAN : all operations -# OPERR : all reg-reg or mem-reg operations that can normally operr -# OVFL : same as OPERR -# UNFL : same as OPERR -# DZ : same as OPERR -# INEX2 : same as OPERR -# INEX1 : all packed immediate operations -# - -# we determine the highest priority exception(if any) set by the -# emulation routine that has also been enabled by the user. - mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled - bne.b iea_op_ena # some are enabled - -# now, we save the result, unless, of course, the operation was ftst or fcmp. -# these don't save results. -iea_op_save: - tst.b STORE_FLG(%a6) # does this op store a result? - bne.b iea_op_exit1 # exit with no frestore - -iea_op_store: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno - bsr.l store_fpreg # store the result - -iea_op_exit1: - mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 # unravel the frame - - btst &0x7,(%sp) # is trace on? - bne.w iea_op_trace # yes - - bra.l _fpsp_done # exit to os - -iea_op_ena: - and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set - bfffo %d0{&24:&8},%d0 # find highest priority exception - bne.b iea_op_exc # at least one was set - -# no exception occurred. now, did a disabled, exact overflow occur with inexact -# enabled? if so, then we have to stuff an overflow frame into the FPU. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - beq.b iea_op_save - -iea_op_ovfl: - btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? - beq.b iea_op_store # no - bra.b iea_op_exc_ovfl # yes - -# an enabled exception occurred. we have to insert the exception type back into -# the machine. -iea_op_exc: - subi.l &24,%d0 # fix offset to be 0-8 - cmpi.b %d0,&0x6 # is exception INEX? - bne.b iea_op_exc_force # no - -# the enabled exception was inexact. so, if it occurs with an overflow -# or underflow that was disabled, then we have to force an overflow or -# underflow frame. - btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? - bne.b iea_op_exc_ovfl # yes - btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? - bne.b iea_op_exc_unfl # yes - -iea_op_exc_force: - mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) - bra.b iea_op_exit2 # exit with frestore - -tbl_iea_except: - short 0xe002, 0xe006, 0xe004, 0xe005 - short 0xe003, 0xe002, 0xe001, 0xe001 - -iea_op_exc_ovfl: - mov.w &0xe005,2+FP_SRC(%a6) - bra.b iea_op_exit2 - -iea_op_exc_unfl: - mov.w &0xe003,2+FP_SRC(%a6) - -iea_op_exit2: - mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) # restore exceptional state - - unlk %a6 # unravel the frame - - btst &0x7,(%sp) # is trace on? - bne.b iea_op_trace # yes - - bra.l _fpsp_done # exit to os - -# -# The opclass two instruction that took an "Unimplemented Effective Address" -# exception was being traced. Make the "current" PC the FPIAR and put it in -# the trace stack frame then jump to _real_trace(). -# -# UNIMP EA FRAME TRACE FRAME -# ***************** ***************** -# * 0x0 * 0x0f0 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x024 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# ***************** -# * SR * -# ***************** -iea_op_trace: - mov.l (%sp),-(%sp) # shift stack frame "down" - mov.w 0x8(%sp),0x4(%sp) - mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024 - fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR - - bra.l _real_trace - -######################################################################### -iea_fmovm: - btst &14,%d0 # ctrl or data reg - beq.w iea_fmovm_ctrl - -iea_fmovm_data: - - btst &0x5,EXC_SR(%a6) # user or supervisor mode - bne.b iea_fmovm_data_s - -iea_fmovm_data_u: - mov.l %usp,%a0 - mov.l %a0,EXC_A7(%a6) # store current a7 - bsr.l fmovm_dynamic # do dynamic fmovm - mov.l EXC_A7(%a6),%a0 # load possibly new a7 - mov.l %a0,%usp # update usp - bra.w iea_fmovm_exit - -iea_fmovm_data_s: - clr.b SPCOND_FLG(%a6) - lea 0x2+EXC_VOFF(%a6),%a0 - mov.l %a0,EXC_A7(%a6) - bsr.l fmovm_dynamic # do dynamic fmovm - - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.w iea_fmovm_data_predec - cmpi.b SPCOND_FLG(%a6),&mia7_flg - bne.w iea_fmovm_exit - -# right now, d0 = the size. -# the data has been fetched from the supervisor stack, but we have not -# incremented the stack pointer by the appropriate number of bytes. -# do it here. -iea_fmovm_data_postinc: - btst &0x7,EXC_SR(%a6) - bne.b iea_fmovm_data_pi_trace - - mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) - mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) - mov.w &0x00f0,(EXC_VOFF,%a6,%d0) - - lea (EXC_SR,%a6,%d0),%a0 - mov.l %a0,EXC_SR(%a6) - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - mov.l (%sp)+,%sp - bra.l _fpsp_done - -iea_fmovm_data_pi_trace: - mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) - mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) - mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) - mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) - - lea (EXC_SR-0x4,%a6,%d0),%a0 - mov.l %a0,EXC_SR(%a6) - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - mov.l (%sp)+,%sp - bra.l _real_trace - -# right now, d1 = size and d0 = the strg. -iea_fmovm_data_predec: - mov.b %d1,EXC_VOFF(%a6) # store strg - mov.b %d0,0x1+EXC_VOFF(%a6) # store size - - fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - mov.l (%a6),-(%sp) # make a copy of a6 - mov.l %d0,-(%sp) # save d0 - mov.l %d1,-(%sp) # save d1 - mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC - - clr.l %d0 - mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size - neg.l %d0 # get negative of size - - btst &0x7,EXC_SR(%a6) # is trace enabled? - beq.b iea_fmovm_data_p2 - - mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) - mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) - mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0) - mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0) - - pea (%a6,%d0) # create final sp - bra.b iea_fmovm_data_p3 - -iea_fmovm_data_p2: - mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0) - mov.l (%sp)+,(EXC_PC,%a6,%d0) - mov.w &0x00f0,(EXC_VOFF,%a6,%d0) - - pea (0x4,%a6,%d0) # create final sp - -iea_fmovm_data_p3: - clr.l %d1 - mov.b EXC_VOFF(%a6),%d1 # fetch strg - - tst.b %d1 - bpl.b fm_1 - fmovm.x &0x80,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_1: - lsl.b &0x1,%d1 - bpl.b fm_2 - fmovm.x &0x40,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_2: - lsl.b &0x1,%d1 - bpl.b fm_3 - fmovm.x &0x20,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_3: - lsl.b &0x1,%d1 - bpl.b fm_4 - fmovm.x &0x10,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_4: - lsl.b &0x1,%d1 - bpl.b fm_5 - fmovm.x &0x08,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_5: - lsl.b &0x1,%d1 - bpl.b fm_6 - fmovm.x &0x04,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_6: - lsl.b &0x1,%d1 - bpl.b fm_7 - fmovm.x &0x02,(0x4+0x8,%a6,%d0) - addi.l &0xc,%d0 -fm_7: - lsl.b &0x1,%d1 - bpl.b fm_end - fmovm.x &0x01,(0x4+0x8,%a6,%d0) -fm_end: - mov.l 0x4(%sp),%d1 - mov.l 0x8(%sp),%d0 - mov.l 0xc(%sp),%a6 - mov.l (%sp)+,%sp - - btst &0x7,(%sp) # is trace enabled? - beq.l _fpsp_done - bra.l _real_trace - -######################################################################### -iea_fmovm_ctrl: - - bsr.l fmovm_ctrl # load ctrl regs - -iea_fmovm_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - btst &0x7,EXC_SR(%a6) # is trace on? - bne.b iea_fmovm_trace # yes - - mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC - - unlk %a6 # unravel the frame - - bra.l _fpsp_done # exit to os - -# -# The control reg instruction that took an "Unimplemented Effective Address" -# exception was being traced. The "Current PC" for the trace frame is the -# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. -# After fixing the stack frame, jump to _real_trace(). -# -# UNIMP EA FRAME TRACE FRAME -# ***************** ***************** -# * 0x0 * 0x0f0 * * Current * -# ***************** * PC * -# * Current * ***************** -# * PC * * 0x2 * 0x024 * -# ***************** ***************** -# * SR * * Next * -# ***************** * PC * -# ***************** -# * SR * -# ***************** -# this ain't a pretty solution, but it works: -# -restore a6 (not with unlk) -# -shift stack frame down over where old a6 used to be -# -add LOCAL_SIZE to stack pointer -iea_fmovm_trace: - mov.l (%a6),%a6 # restore frame pointer - mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) - mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) - mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) - mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 - add.l &LOCAL_SIZE,%sp # clear stack frame - - bra.l _real_trace - -######################################################################### -# The FPU is disabled and so we should really have taken the "Line -# F Emulator" exception. So, here we create an 8-word stack frame -# from our 4-word stack frame. This means we must calculate the length -# the faulting instruction to get the "next PC". This is trivial for -# immediate operands but requires some extra work for fmovm dynamic -# which can use most addressing modes. -iea_disabled: - mov.l (%sp)+,%d0 # restore d0 - - link %a6,&-LOCAL_SIZE # init stack frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - -# PC of instruction that took the exception is the PC in the frame - mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6) - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD - - tst.w %d0 # is instr fmovm? - bmi.b iea_dis_fmovm # yes -# instruction is using an extended precision immediate operand. Therefore, -# the total instruction length is 16 bytes. -iea_dis_immed: - mov.l &0x10,%d0 # 16 bytes of instruction - bra.b iea_dis_cont -iea_dis_fmovm: - btst &0xe,%d0 # is instr fmovm ctrl - bne.b iea_dis_fmovm_data # no -# the instruction is a fmovm.l with 2 or 3 registers. - bfextu %d0{&19:&3},%d1 - mov.l &0xc,%d0 - cmpi.b %d1,&0x7 # move all regs? - bne.b iea_dis_cont - addq.l &0x4,%d0 - bra.b iea_dis_cont -# the instruction is an fmovm.x dynamic which can use many addressing -# modes and thus can have several different total instruction lengths. -# call fmovm_calc_ea which will go through the ea calc process and, -# as a by-product, will tell us how long the instruction is. -iea_dis_fmovm_data: - clr.l %d0 - bsr.l fmovm_calc_ea - mov.l EXC_EXTWPTR(%a6),%d0 - sub.l EXC_PC(%a6),%d0 -iea_dis_cont: - mov.w %d0,EXC_VOFF(%a6) # store stack shift value - - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - -# here, we actually create the 8-word frame from the 4-word frame, -# with the "next PC" as additional info. -# the <ea> field is let as undefined. - subq.l &0x8,%sp # make room for new stack - mov.l %d0,-(%sp) # save d0 - mov.w 0xc(%sp),0x4(%sp) # move SR - mov.l 0xe(%sp),0x6(%sp) # move Current PC - clr.l %d0 - mov.w 0x12(%sp),%d0 - mov.l 0x6(%sp),0x10(%sp) # move Current PC - add.l %d0,0x6(%sp) # make Next PC - mov.w &0x402c,0xa(%sp) # insert offset,frame format - mov.l (%sp)+,%d0 # restore d0 - - bra.l _real_fpu_disabled - -########## - -iea_iacc: - movc %pcr,%d0 - btst &0x1,%d0 - bne.b iea_iacc_cont - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack -iea_iacc_cont: - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - subq.w &0x8,%sp # make stack frame bigger - mov.l 0x8(%sp),(%sp) # store SR,hi(PC) - mov.w 0xc(%sp),0x4(%sp) # store lo(PC) - mov.w &0x4008,0x6(%sp) # store voff - mov.l 0x2(%sp),0x8(%sp) # store ea - mov.l &0x09428001,0xc(%sp) # store fslw - -iea_acc_done: - btst &0x5,(%sp) # user or supervisor mode? - beq.b iea_acc_done2 # user - bset &0x2,0xd(%sp) # set supervisor TM bit - -iea_acc_done2: - bra.l _real_access - -iea_dacc: - lea -LOCAL_SIZE(%a6),%sp - - movc %pcr,%d1 - btst &0x1,%d1 - bne.b iea_dacc_cont - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack - fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs -iea_dacc_cont: - mov.l (%a6),%a6 - - mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) - mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) - mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp) - mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp) - mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp) - mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp) - - movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 - add.w &LOCAL_SIZE-0x4,%sp - - bra.b iea_acc_done - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_operr(): 060FPSP entry point for FP Operr exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Operand Error exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# _real_operr() - "callout" to operating system operr handler # -# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # -# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # -# facc_out_{b,w,l}() - store to memory took access error (opcl 3) # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Operr exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# No access error: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP Operr exception is enabled, the goal # -# is to get to the handler specified at _real_operr(). But, on the 060, # -# for opclass zero and two instruction taking this exception, the # -# input operand in the fsave frame may be incorrect for some cases # -# and needs to be corrected. This handler calls fix_skewed_ops() to # -# do just this and then exits through _real_operr(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# operr result out to memory or data register file as it should. # -# This code must emulate the move out before finally exiting through # -# _real_inex(). The move out, if to memory, is performed using # -# _mem_write() "callout" routines that may return a failing result. # -# In this special case, the handler must exit through facc_out() # -# which creates an access error stack frame from the current operr # -# stack frame. # -# # -######################################################################### - - global _fpsp_operr -_fpsp_operr: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.b foperr_out # fmove out - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source infinity or -# denorm operand in the sgl or dbl format. NANs also become skewed, but can't -# cause an operr so we don't need to check for them here. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -foperr_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_operr - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# operand error exceptions. we do this here before passing control to -# the user operand error handler. -# -# byte, word, and long destination format operations can pass -# through here. we simply need to test the sign of the src -# operand and save the appropriate minimum or maximum integer value -# to the effective address as pointed to by the stacked effective address. -# -# although packed opclass three operations can take operand error -# exceptions, they won't pass through here since they are caught -# first by the unsupported data format exception handler. that handler -# sends them directly to _real_operr() if necessary. -# -foperr_out: - - mov.w FP_SRC_EX(%a6),%d1 # fetch exponent - andi.w &0x7fff,%d1 - cmpi.w %d1,&0x7fff - bne.b foperr_out_not_qnan -# the operand is either an infinity or a QNAN. - tst.l FP_SRC_LO(%a6) - bne.b foperr_out_qnan - mov.l FP_SRC_HI(%a6),%d1 - andi.l &0x7fffffff,%d1 - beq.b foperr_out_not_qnan -foperr_out_qnan: - mov.l FP_SRC_HI(%a6),L_SCR1(%a6) - bra.b foperr_out_jmp - -foperr_out_not_qnan: - mov.l &0x7fffffff,%d1 - tst.b FP_SRC_EX(%a6) - bpl.b foperr_out_not_qnan2 - addq.l &0x1,%d1 -foperr_out_not_qnan2: - mov.l %d1,L_SCR1(%a6) - -foperr_out_jmp: - bfextu %d0{&19:&3},%d0 # extract dst format field - mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg - mov.w (tbl_operr.b,%pc,%d0.w*2),%a0 - jmp (tbl_operr.b,%pc,%a0) - -tbl_operr: - short foperr_out_l - tbl_operr # long word integer - short tbl_operr - tbl_operr # sgl prec shouldn't happen - short tbl_operr - tbl_operr # ext prec shouldn't happen - short foperr_exit - tbl_operr # packed won't enter here - short foperr_out_w - tbl_operr # word integer - short tbl_operr - tbl_operr # dbl prec shouldn't happen - short foperr_out_b - tbl_operr # byte integer - short tbl_operr - tbl_operr # packed won't enter here - -foperr_out_b: - mov.b L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_b_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_byte # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - bra.w foperr_exit -foperr_out_b_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_b # store result to regfile - bra.w foperr_exit - -foperr_out_w: - mov.w L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_w_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_word # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - bra.w foperr_exit -foperr_out_w_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_w # store result to regfile - bra.w foperr_exit - -foperr_out_l: - mov.l L_SCR1(%a6),%d0 # load positive default result - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b foperr_out_l_save_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w foperr_exit -foperr_out_l_save_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w foperr_exit - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Signalling NAN exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# _real_snan() - "callout" to operating system SNAN handler # -# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) # -# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) # -# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) # -# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP SNAN exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# No access error: # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP SNAN exception is enabled, the goal # -# is to get to the handler specified at _real_snan(). But, on the 060, # -# for opclass zero and two instructions taking this exception, the # -# input operand in the fsave frame may be incorrect for some cases # -# and needs to be corrected. This handler calls fix_skewed_ops() to # -# do just this and then exits through _real_snan(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# SNAN result out to memory or data register file as it should. # -# This code must emulate the move out before finally exiting through # -# _real_snan(). The move out, if to memory, is performed using # -# _mem_write() "callout" routines that may return a failing result. # -# In this special case, the handler must exit through facc_out() # -# which creates an access error stack frame from the current SNAN # -# stack frame. # -# For the case of an extended precision opclass 3 instruction, # -# if the effective addressing mode was -() or ()+, then the address # -# register must get updated by calling _calc_ea_fout(). If the <ea> # -# was -(a7) from supervisor mode, then the exception frame currently # -# on the system stack must be carefully moved "down" to make room # -# for the operand being moved. # -# # -######################################################################### - - global _fpsp_snan -_fpsp_snan: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.w fsnan_out # fmove out - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source infinity or -# denorm operand in the sgl or dbl format. NANs also become skewed and must be -# fixed here. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -fsnan_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_snan - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# snan exceptions. we do this here before passing control to -# the user snan handler. -# -# byte, word, long, and packed destination format operations can pass -# through here. since packed format operations already were handled by -# fpsp_unsupp(), then we need to do nothing else for them here. -# for byte, word, and long, we simply need to test the sign of the src -# operand and save the appropriate minimum or maximum integer value -# to the effective address as pointed to by the stacked effective address. -# -fsnan_out: - - bfextu %d0{&19:&3},%d0 # extract dst format field - mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg - mov.w (tbl_snan.b,%pc,%d0.w*2),%a0 - jmp (tbl_snan.b,%pc,%a0) - -tbl_snan: - short fsnan_out_l - tbl_snan # long word integer - short fsnan_out_s - tbl_snan # sgl prec shouldn't happen - short fsnan_out_x - tbl_snan # ext prec shouldn't happen - short tbl_snan - tbl_snan # packed needs no help - short fsnan_out_w - tbl_snan # word integer - short fsnan_out_d - tbl_snan # dbl prec shouldn't happen - short fsnan_out_b - tbl_snan # byte integer - short tbl_snan - tbl_snan # packed needs no help - -fsnan_out_b: - mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN - bset &6,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_b_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_byte # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - bra.w fsnan_exit -fsnan_out_b_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_b # store result to regfile - bra.w fsnan_exit - -fsnan_out_w: - mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN - bset &14,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_w_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_word # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - bra.w fsnan_exit -fsnan_out_w_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_w # store result to regfile - bra.w fsnan_exit - -fsnan_out_l: - mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN - bset &30,%d0 # set SNAN bit - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_l_dn # yes - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w fsnan_exit -fsnan_out_l_dn: - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w fsnan_exit - -fsnan_out_s: - cmpi.b %d1,&0x7 # is <ea> mode a data reg? - ble.b fsnan_out_d_dn # yes - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit - mov.l FP_SRC_HI(%a6),%d1 # load mantissa - lsr.l &0x8,%d1 # shift mantissa for sgl - or.l %d1,%d0 # create sgl SNAN - mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result - bsr.l _dmem_write_long # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.w fsnan_exit -fsnan_out_d_dn: - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit - mov.l %d1,-(%sp) - mov.l FP_SRC_HI(%a6),%d1 # load mantissa - lsr.l &0x8,%d1 # shift mantissa for sgl - or.l %d1,%d0 # create sgl SNAN - mov.l (%sp)+,%d1 - andi.w &0x0007,%d1 - bsr.l store_dreg_l # store result to regfile - bra.w fsnan_exit - -fsnan_out_d: - mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign - andi.l &0x80000000,%d0 # keep sign - ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit - mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa - mov.l %d0,FP_SCR0_EX(%a6) # store to temp space - mov.l &11,%d0 # load shift amt - lsr.l %d0,%d1 - or.l %d1,FP_SCR0_EX(%a6) # create dbl hi - mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa - andi.l &0x000007ff,%d1 - ror.l %d0,%d1 - mov.l %d1,FP_SCR0_HI(%a6) # store to temp space - mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa - lsr.l %d0,%d1 - or.l %d1,FP_SCR0_HI(%a6) # create dbl lo - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l EXC_EA(%a6),%a1 # pass: dst addr - movq.l &0x8,%d0 # pass: size of 8 bytes - bsr.l _dmem_write # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - bra.w fsnan_exit - -# for extended precision, if the addressing mode is pre-decrement or -# post-increment, then the address register did not get updated. -# in addition, for pre-decrement, the stacked <ea> is incorrect. -fsnan_out_x: - clr.b SPCOND_FLG(%a6) # clear special case flag - - mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6) - clr.w 2+FP_SCR0(%a6) - mov.l FP_SRC_HI(%a6),%d0 - bset &30,%d0 - mov.l %d0,FP_SCR0_HI(%a6) - mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6) - - btst &0x5,EXC_SR(%a6) # supervisor mode exception? - bne.b fsnan_out_x_s # yes - - mov.l %usp,%a0 # fetch user stack pointer - mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea() - mov.l (%a6),EXC_A6(%a6) - - bsr.l _calc_ea_fout # find the correct ea,update An - mov.l %a0,%a1 - mov.l %a0,EXC_EA(%a6) # stack correct <ea> - - mov.l EXC_A7(%a6),%a0 - mov.l %a0,%usp # restore user stack pointer - mov.l EXC_A6(%a6),(%a6) - -fsnan_out_x_save: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - movq.l &0xc,%d0 # pass: size of extended - bsr.l _dmem_write # write the default result - - tst.l %d1 # did dstore fail? - bne.l facc_out_x # yes - - bra.w fsnan_exit - -fsnan_out_x_s: - mov.l (%a6),EXC_A6(%a6) - - bsr.l _calc_ea_fout # find the correct ea,update An - mov.l %a0,%a1 - mov.l %a0,EXC_EA(%a6) # stack correct <ea> - - mov.l EXC_A6(%a6),(%a6) - - cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? - bne.b fsnan_out_x_save # no - -# the operation was "fmove.x SNAN,-(a7)" from supervisor mode. - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - mov.l EXC_A6(%a6),%a6 # restore frame pointer - - mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) - mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) - mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) - - mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) - mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) - mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) - - add.l &LOCAL_SIZE-0x8,%sp - - bra.l _real_snan - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. # -# # -# This handler should be the first code executed upon taking the # -# FP Inexact exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword # -# fix_skewed_ops() - adjust src operand in fsave frame # -# set_tag_x() - determine optype of src/dst operands # -# store_fpreg() - store opclass 0 or 2 result to FP regfile # -# unnorm_fix() - change UNNORM operands to NORM or ZERO # -# load_fpn2() - load dst operand from FP regfile # -# smovcr() - emulate an "fmovcr" instruction # -# fout() - emulate an opclass 3 instruction # -# tbl_unsupp - add of table of emulation routines for opclass 0,2 # -# _real_inex() - "callout" to operating system inexact handler # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP Inexact exception frame # -# - The fsave frame contains the source operand # -# # -# OUTPUT ************************************************************** # -# - The system stack is unchanged # -# - The fsave frame contains the adjusted src op for opclass 0,2 # -# # -# ALGORITHM *********************************************************** # -# In a system where the FP Inexact exception is enabled, the goal # -# is to get to the handler specified at _real_inex(). But, on the 060, # -# for opclass zero and two instruction taking this exception, the # -# hardware doesn't store the correct result to the destination FP # -# register as did the '040 and '881/2. This handler must emulate the # -# instruction in order to get this value and then store it to the # -# correct register before calling _real_inex(). # -# For opclass 3 instructions, the 060 doesn't store the default # -# inexact result out to memory or data register file as it should. # -# This code must emulate the move out by calling fout() before finally # -# exiting through _real_inex(). # -# # -######################################################################### - - global _fpsp_inex -_fpsp_inex: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - btst &13,%d0 # is instr an fmove out? - bne.w finex_out # fmove out - - -# the hardware, for "fabs" and "fneg" w/ a long source format, puts the -# longword integer directly into the upper longword of the mantissa along -# w/ an exponent value of 0x401e. we convert this to extended precision here. - bfextu %d0{&19:&3},%d0 # fetch instr size - bne.b finex_cont # instr size is not long - cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e? - bne.b finex_cont # no - fmov.l &0x0,%fpcr - fmov.l FP_SRC_HI(%a6),%fp0 # load integer src - fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision - mov.w &0xe001,0x2+FP_SRC(%a6) - -finex_cont: - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -# Here, we zero the ccode and exception byte field since we're going to -# emulate the whole instruction. Notice, though, that we don't kill the -# INEX1 bit. This is because a packed op has long since been converted -# to extended before arriving here. Therefore, we need to retain the -# INEX1 bit from when the operand was first converted. - andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field - - fmov.l &0x0,%fpcr # zero current control regs - fmov.l &0x0,%fpsr - - bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg - cmpi.b %d1,&0x17 # is op an fmovecr? - beq.w finex_fmovcr # yes - - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l set_tag_x # tag the operand type - mov.b %d0,STAG(%a6) # maybe NORM,DENORM - -# bits four and five of the fp extension word separate the monadic and dyadic -# operations that can pass through fpsp_inex(). remember that fcmp and ftst -# will never take this exception, but fsincos will. - btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic? - beq.b finex_extract # monadic - - btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos? - bne.b finex_extract # yes - - bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg - bsr.l load_fpn2 # load dst into FP_DST - - lea FP_DST(%a6),%a0 # pass: ptr to dst op - bsr.l set_tag_x # tag the operand type - cmpi.b %d0,&UNNORM # is operand an UNNORM? - bne.b finex_op2_done # no - bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO -finex_op2_done: - mov.b %d0,DTAG(%a6) # save dst optype tag - -finex_extract: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode - - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.w &0x007f,%d1 # extract extension - - lea FP_SRC(%a6),%a0 - lea FP_DST(%a6),%a1 - - mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr - jsr (tbl_unsupp.l,%pc,%d1.l*1) - -# the operation has been emulated. the result is in fp0. -finex_save: - bfextu EXC_CMDREG(%a6){&6:&3},%d0 - bsr.l store_fpreg - -finex_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_inex - -finex_fmovcr: - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode - mov.b 1+EXC_CMDREG(%a6),%d1 - andi.l &0x0000007f,%d1 # pass rom offset - bsr.l smovcr - bra.b finex_save - -######################################################################## - -# -# the hardware does not save the default result to memory on enabled -# inexact exceptions. we do this here before passing control to -# the user inexact handler. -# -# byte, word, and long destination format operations can pass -# through here. so can double and single precision. -# although packed opclass three operations can take inexact -# exceptions, they won't pass through here since they are caught -# first by the unsupported data format exception handler. that handler -# sends them directly to _real_inex() if necessary. -# -finex_out: - - mov.b &NORM,STAG(%a6) # src is a NORM - - clr.l %d0 - mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode - - andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field - - lea FP_SRC(%a6),%a0 # pass ptr to src operand - - bsr.l fout # store the default result - - bra.b finex_exit - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_dz(): 060FPSP entry point for FP DZ exception. # -# # -# This handler should be the first code executed upon taking # -# the FP DZ exception in an operating system. # -# # -# XREF **************************************************************** # -# _imem_read_long() - read instruction longword from memory # -# fix_skewed_ops() - adjust fsave operand # -# _real_dz() - "callout" exit point from FP DZ handler # -# # -# INPUT *************************************************************** # -# - The system stack contains the FP DZ exception stack. # -# - The fsave frame contains the source operand. # -# # -# OUTPUT ************************************************************** # -# - The system stack contains the FP DZ exception stack. # -# - The fsave frame contains the adjusted source operand. # -# # -# ALGORITHM *********************************************************** # -# In a system where the DZ exception is enabled, the goal is to # -# get to the handler specified at _real_dz(). But, on the 060, when the # -# exception is taken, the input operand in the fsave state frame may # -# be incorrect for some cases and need to be adjusted. So, this package # -# adjusts the operand using fix_skewed_ops() and then branches to # -# _real_dz(). # -# # -######################################################################### - - global _fpsp_dz -_fpsp_dz: - - link.w %a6,&-LOCAL_SIZE # init stack frame - - fsave FP_SRC(%a6) # grab the "busy" frame - - movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1 - fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs - fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack - -# the FPIAR holds the "current PC" of the faulting instruction - mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch the instruction words - mov.l %d0,EXC_OPWORD(%a6) - -############################################################################## - - -# here, we simply see if the operand in the fsave frame needs to be "unskewed". -# this would be the case for opclass two operations with a source zero -# in the sgl or dbl format. - lea FP_SRC(%a6),%a0 # pass: ptr to src op - bsr.l fix_skewed_ops # fix src op - -fdz_exit: - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - frestore FP_SRC(%a6) - - unlk %a6 - bra.l _real_dz - -######################################################################### -# XDEF **************************************************************** # -# _fpsp_fline(): 060FPSP entry point for "Line F emulator" # -# exception when the "reduced" version of the # -# FPSP is implemented that does not emulate # -# FP unimplemented instructions. # -# # -# This handler should be the first code executed upon taking a # -# "Line F Emulator" exception in an operating system integrating # -# the reduced version of 060FPSP. # -# # -# XREF **************************************************************** # -# _real_fpu_disabled() - Handle "FPU disabled" exceptions # -# _real_fline() - Handle all other cases (treated equally) # -# # -# INPUT *************************************************************** # -# - The system stack contains a "Line F Emulator" exception # -# stack frame. # -# # -# OUTPUT ************************************************************** # -# - The system stack is unchanged. # -# # -# ALGORITHM *********************************************************** # -# When a "Line F Emulator" exception occurs in a system where # -# "FPU Unimplemented" instructions will not be emulated, the exception # -# can occur because then FPU is disabled or the instruction is to be # -# classifed as "Line F". This module determines which case exists and # -# calls the appropriate "callout". # -# # -######################################################################### - - global _fpsp_fline -_fpsp_fline: - -# check to see if the FPU is disabled. if so, jump to the OS entry -# point for that condition. - cmpi.w 0x6(%sp),&0x402c - beq.l _real_fpu_disabled - - bra.l _real_fline - -######################################################################### -# XDEF **************************************************************** # -# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception # -# # -# XREF **************************************************************** # -# inc_areg() - increment an address register # -# dec_areg() - decrement an address register # -# # -# INPUT *************************************************************** # -# d0 = number of bytes to adjust <ea> by # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# "Dummy" CALCulate Effective Address: # -# The stacked <ea> for FP unimplemented instructions and opclass # -# two packed instructions is correct with the exception of... # -# # -# 1) -(An) : The register is not updated regardless of size. # -# Also, for extended precision and packed, the # -# stacked <ea> value is 8 bytes too big # -# 2) (An)+ : The register is not updated. # -# 3) #<data> : The upper longword of the immediate operand is # -# stacked b,w,l and s sizes are completely stacked. # -# d,x, and p are not. # -# # -######################################################################### - - global _dcalc_ea -_dcalc_ea: - mov.l %d0, %a0 # move # bytes to %a0 - - mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word - mov.l %d0, %d1 # make a copy - - andi.w &0x38, %d0 # extract mode field - andi.l &0x7, %d1 # extract reg field - - cmpi.b %d0,&0x18 # is mode (An)+ ? - beq.b dcea_pi # yes - - cmpi.b %d0,&0x20 # is mode -(An) ? - beq.b dcea_pd # yes - - or.w %d1,%d0 # concat mode,reg - cmpi.b %d0,&0x3c # is mode #<data>? - - beq.b dcea_imm # yes - - mov.l EXC_EA(%a6),%a0 # return <ea> - rts - -# need to set immediate data flag here since we'll need to do -# an imem_read to fetch this later. -dcea_imm: - mov.b &immed_flg,SPCOND_FLG(%a6) - lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> - rts - -# here, the <ea> is stacked correctly. however, we must update the -# address register... -dcea_pi: - mov.l %a0,%d0 # pass amt to inc by - bsr.l inc_areg # inc addr register - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - rts - -# the <ea> is stacked correctly for all but extended and packed which -# the <ea>s are 8 bytes too large. -# it would make no sense to have a pre-decrement to a7 in supervisor -# mode so we don't even worry about this tricky case here : ) -dcea_pd: - mov.l %a0,%d0 # pass amt to dec by - bsr.l dec_areg # dec addr register - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - - cmpi.b %d0,&0xc # is opsize ext or packed? - beq.b dcea_pd2 # yes - rts -dcea_pd2: - sub.l &0x8,%a0 # correct <ea> - mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack - rts - -######################################################################### -# XDEF **************************************************************** # -# _calc_ea_fout(): calculate correct stacked <ea> for extended # -# and packed data opclass 3 operations. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# a0 = return correct effective address # -# # -# ALGORITHM *********************************************************** # -# For opclass 3 extended and packed data operations, the <ea> # -# stacked for the exception is incorrect for -(an) and (an)+ addressing # -# modes. Also, while we're at it, the index register itself must get # -# updated. # -# So, for -(an), we must subtract 8 off of the stacked <ea> value # -# and return that value as the correct <ea> and store that value in An. # -# For (an)+, the stacked <ea> is correct but we must adjust An by +12. # -# # -######################################################################### - -# This calc_ea is currently used to retrieve the correct <ea> -# for fmove outs of type extended and packed. - global _calc_ea_fout -_calc_ea_fout: - mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word - mov.l %d0,%d1 # make a copy - - andi.w &0x38,%d0 # extract mode field - andi.l &0x7,%d1 # extract reg field - - cmpi.b %d0,&0x18 # is mode (An)+ ? - beq.b ceaf_pi # yes - - cmpi.b %d0,&0x20 # is mode -(An) ? - beq.w ceaf_pd # yes - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - rts - -# (An)+ : extended and packed fmove out -# : stacked <ea> is correct -# : "An" not updated -ceaf_pi: - mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 - mov.l EXC_EA(%a6),%a0 - jmp (tbl_ceaf_pi.b,%pc,%d1.w*1) - - swbeg &0x8 -tbl_ceaf_pi: - short ceaf_pi0 - tbl_ceaf_pi - short ceaf_pi1 - tbl_ceaf_pi - short ceaf_pi2 - tbl_ceaf_pi - short ceaf_pi3 - tbl_ceaf_pi - short ceaf_pi4 - tbl_ceaf_pi - short ceaf_pi5 - tbl_ceaf_pi - short ceaf_pi6 - tbl_ceaf_pi - short ceaf_pi7 - tbl_ceaf_pi - -ceaf_pi0: - addi.l &0xc,EXC_DREGS+0x8(%a6) - rts -ceaf_pi1: - addi.l &0xc,EXC_DREGS+0xc(%a6) - rts -ceaf_pi2: - add.l &0xc,%a2 - rts -ceaf_pi3: - add.l &0xc,%a3 - rts -ceaf_pi4: - add.l &0xc,%a4 - rts -ceaf_pi5: - add.l &0xc,%a5 - rts -ceaf_pi6: - addi.l &0xc,EXC_A6(%a6) - rts -ceaf_pi7: - mov.b &mia7_flg,SPCOND_FLG(%a6) - addi.l &0xc,EXC_A7(%a6) - rts - -# -(An) : extended and packed fmove out -# : stacked <ea> = actual <ea> + 8 -# : "An" not updated -ceaf_pd: - mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 - mov.l EXC_EA(%a6),%a0 - sub.l &0x8,%a0 - sub.l &0x8,EXC_EA(%a6) - jmp (tbl_ceaf_pd.b,%pc,%d1.w*1) - - swbeg &0x8 -tbl_ceaf_pd: - short ceaf_pd0 - tbl_ceaf_pd - short ceaf_pd1 - tbl_ceaf_pd - short ceaf_pd2 - tbl_ceaf_pd - short ceaf_pd3 - tbl_ceaf_pd - short ceaf_pd4 - tbl_ceaf_pd - short ceaf_pd5 - tbl_ceaf_pd - short ceaf_pd6 - tbl_ceaf_pd - short ceaf_pd7 - tbl_ceaf_pd - -ceaf_pd0: - mov.l %a0,EXC_DREGS+0x8(%a6) - rts -ceaf_pd1: - mov.l %a0,EXC_DREGS+0xc(%a6) - rts -ceaf_pd2: - mov.l %a0,%a2 - rts -ceaf_pd3: - mov.l %a0,%a3 - rts -ceaf_pd4: - mov.l %a0,%a4 - rts -ceaf_pd5: - mov.l %a0,%a5 - rts -ceaf_pd6: - mov.l %a0,EXC_A6(%a6) - rts -ceaf_pd7: - mov.l %a0,EXC_A7(%a6) - mov.b &mda7_flg,SPCOND_FLG(%a6) - rts - -# -# This table holds the offsets of the emulation routines for each individual -# math operation relative to the address of this table. Included are -# routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because -# this table is for the version if the 060FPSP without transcendentals. -# The location within the table is determined by the extension bits of the -# operation longword. -# - - swbeg &109 -tbl_unsupp: - long fin - tbl_unsupp # 00: fmove - long fint - tbl_unsupp # 01: fint - long tbl_unsupp - tbl_unsupp # 02: fsinh - long fintrz - tbl_unsupp # 03: fintrz - long fsqrt - tbl_unsupp # 04: fsqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 06: flognp1 - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 08: fetoxm1 - long tbl_unsupp - tbl_unsupp # 09: ftanh - long tbl_unsupp - tbl_unsupp # 0a: fatan - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 0c: fasin - long tbl_unsupp - tbl_unsupp # 0d: fatanh - long tbl_unsupp - tbl_unsupp # 0e: fsin - long tbl_unsupp - tbl_unsupp # 0f: ftan - long tbl_unsupp - tbl_unsupp # 10: fetox - long tbl_unsupp - tbl_unsupp # 11: ftwotox - long tbl_unsupp - tbl_unsupp # 12: ftentox - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 14: flogn - long tbl_unsupp - tbl_unsupp # 15: flog10 - long tbl_unsupp - tbl_unsupp # 16: flog2 - long tbl_unsupp - tbl_unsupp - long fabs - tbl_unsupp # 18: fabs - long tbl_unsupp - tbl_unsupp # 19: fcosh - long fneg - tbl_unsupp # 1a: fneg - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 1c: facos - long tbl_unsupp - tbl_unsupp # 1d: fcos - long tbl_unsupp - tbl_unsupp # 1e: fgetexp - long tbl_unsupp - tbl_unsupp # 1f: fgetman - long fdiv - tbl_unsupp # 20: fdiv - long tbl_unsupp - tbl_unsupp # 21: fmod - long fadd - tbl_unsupp # 22: fadd - long fmul - tbl_unsupp # 23: fmul - long fsgldiv - tbl_unsupp # 24: fsgldiv - long tbl_unsupp - tbl_unsupp # 25: frem - long tbl_unsupp - tbl_unsupp # 26: fscale - long fsglmul - tbl_unsupp # 27: fsglmul - long fsub - tbl_unsupp # 28: fsub - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp # 30: fsincos - long tbl_unsupp - tbl_unsupp # 31: fsincos - long tbl_unsupp - tbl_unsupp # 32: fsincos - long tbl_unsupp - tbl_unsupp # 33: fsincos - long tbl_unsupp - tbl_unsupp # 34: fsincos - long tbl_unsupp - tbl_unsupp # 35: fsincos - long tbl_unsupp - tbl_unsupp # 36: fsincos - long tbl_unsupp - tbl_unsupp # 37: fsincos - long fcmp - tbl_unsupp # 38: fcmp - long tbl_unsupp - tbl_unsupp - long ftst - tbl_unsupp # 3a: ftst - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fsin - tbl_unsupp # 40: fsmove - long fssqrt - tbl_unsupp # 41: fssqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fdin - tbl_unsupp # 44: fdmove - long fdsqrt - tbl_unsupp # 45: fdsqrt - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fsabs - tbl_unsupp # 58: fsabs - long tbl_unsupp - tbl_unsupp - long fsneg - tbl_unsupp # 5a: fsneg - long tbl_unsupp - tbl_unsupp - long fdabs - tbl_unsupp # 5c: fdabs - long tbl_unsupp - tbl_unsupp - long fdneg - tbl_unsupp # 5e: fdneg - long tbl_unsupp - tbl_unsupp - long fsdiv - tbl_unsupp # 60: fsdiv - long tbl_unsupp - tbl_unsupp - long fsadd - tbl_unsupp # 62: fsadd - long fsmul - tbl_unsupp # 63: fsmul - long fddiv - tbl_unsupp # 64: fddiv - long tbl_unsupp - tbl_unsupp - long fdadd - tbl_unsupp # 66: fdadd - long fdmul - tbl_unsupp # 67: fdmul - long fssub - tbl_unsupp # 68: fssub - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long tbl_unsupp - tbl_unsupp - long fdsub - tbl_unsupp # 6c: fdsub - -################################################# -# Add this here so non-fp modules can compile. -# (smovcr is called from fpsp_inex.) - global smovcr -smovcr: - bra.b smovcr - -######################################################################### -# XDEF **************************************************************** # -# fmovm_dynamic(): emulate "fmovm" dynamic instruction # -# # -# XREF **************************************************************** # -# fetch_dreg() - fetch data register # -# {i,d,}mem_read() - fetch data from memory # -# _mem_write() - write data to memory # -# iea_iacc() - instruction memory access error occurred # -# iea_dacc() - data memory access error occurred # -# restore() - restore An index regs if access error occurred # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If instr is "fmovm Dn,-(A7)" from supervisor mode, # -# d0 = size of dump # -# d1 = Dn # -# Else if instruction access error, # -# d0 = FSLW # -# Else if data access error, # -# d0 = FSLW # -# a0 = address of fault # -# Else # -# none. # -# # -# ALGORITHM *********************************************************** # -# The effective address must be calculated since this is entered # -# from an "Unimplemented Effective Address" exception handler. So, we # -# have our own fcalc_ea() routine here. If an access error is flagged # -# by a _{i,d,}mem_read() call, we must exit through the special # -# handler. # -# The data register is determined and its value loaded to get the # -# string of FP registers affected. This value is used as an index into # -# a lookup table such that we can determine the number of bytes # -# involved. # -# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used # -# to read in all FP values. Again, _mem_read() may fail and require a # -# special exit. # -# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used # -# to write all FP values. _mem_write() may also fail. # -# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, # -# then we return the size of the dump and the string to the caller # -# so that the move can occur outside of this routine. This special # -# case is required so that moves to the system stack are handled # -# correctly. # -# # -# DYNAMIC: # -# fmovm.x dn, <ea> # -# fmovm.x <ea>, dn # -# # -# <WORD 1> <WORD2> # -# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 # -# # -# & = (0): predecrement addressing mode # -# (1): postincrement or control addressing mode # -# @ = (0): move listed regs from memory to the FPU # -# (1): move listed regs from the FPU to memory # -# $$$ : index of data register holding reg select mask # -# # -# NOTES: # -# If the data register holds a zero, then the # -# instruction is a nop. # -# # -######################################################################### - - global fmovm_dynamic -fmovm_dynamic: - -# extract the data register in which the bit string resides... - mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword - andi.w &0x70,%d1 # extract reg bits - lsr.b &0x4,%d1 # shift into lo bits - -# fetch the bit string into d0... - bsr.l fetch_dreg # fetch reg string - - andi.l &0x000000ff,%d0 # keep only lo byte - - mov.l %d0,-(%sp) # save strg - mov.b (tbl_fmovm_size.w,%pc,%d0),%d0 - mov.l %d0,-(%sp) # save size - bsr.l fmovm_calc_ea # calculate <ea> - mov.l (%sp)+,%d0 # restore size - mov.l (%sp)+,%d1 # restore strg - -# if the bit string is a zero, then the operation is a no-op -# but, make sure that we've calculated ea and advanced the opword pointer - beq.w fmovm_data_done - -# separate move ins from move outs... - btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out? - beq.w fmovm_data_in # it's a move out - -############# -# MOVE OUT: # -############# -fmovm_data_out: - btst &0x4,EXC_EXTWORD(%a6) # control or predecrement? - bne.w fmovm_out_ctrl # control - -############################ -fmovm_out_predec: -# for predecrement mode, the bit string is the opposite of both control -# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) -# here, we convert it to be just like the others... - mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 - - btst &0x5,EXC_SR(%a6) # user or supervisor mode? - beq.b fmovm_out_ctrl # user - -fmovm_out_predec_s: - cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? - bne.b fmovm_out_ctrl - -# the operation was unfortunately an: fmovm.x dn,-(sp) -# called from supervisor mode. -# we're also passing "size" and "strg" back to the calling routine - rts - -############################ -fmovm_out_ctrl: - mov.l %a0,%a1 # move <ea> to a1 - - sub.l %d0,%sp # subtract size of dump - lea (%sp),%a0 - - tst.b %d1 # should FP0 be moved? - bpl.b fmovm_out_ctrl_fp1 # no - - mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes - mov.l 0x4+EXC_FP0(%a6),(%a0)+ - mov.l 0x8+EXC_FP0(%a6),(%a0)+ - -fmovm_out_ctrl_fp1: - lsl.b &0x1,%d1 # should FP1 be moved? - bpl.b fmovm_out_ctrl_fp2 # no - - mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes - mov.l 0x4+EXC_FP1(%a6),(%a0)+ - mov.l 0x8+EXC_FP1(%a6),(%a0)+ - -fmovm_out_ctrl_fp2: - lsl.b &0x1,%d1 # should FP2 be moved? - bpl.b fmovm_out_ctrl_fp3 # no - - fmovm.x &0x20,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp3: - lsl.b &0x1,%d1 # should FP3 be moved? - bpl.b fmovm_out_ctrl_fp4 # no - - fmovm.x &0x10,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp4: - lsl.b &0x1,%d1 # should FP4 be moved? - bpl.b fmovm_out_ctrl_fp5 # no - - fmovm.x &0x08,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp5: - lsl.b &0x1,%d1 # should FP5 be moved? - bpl.b fmovm_out_ctrl_fp6 # no - - fmovm.x &0x04,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp6: - lsl.b &0x1,%d1 # should FP6 be moved? - bpl.b fmovm_out_ctrl_fp7 # no - - fmovm.x &0x02,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_fp7: - lsl.b &0x1,%d1 # should FP7 be moved? - bpl.b fmovm_out_ctrl_done # no - - fmovm.x &0x01,(%a0) # yes - add.l &0xc,%a0 - -fmovm_out_ctrl_done: - mov.l %a1,L_SCR1(%a6) - - lea (%sp),%a0 # pass: supervisor src - mov.l %d0,-(%sp) # save size - bsr.l _dmem_write # copy data to user mem - - mov.l (%sp)+,%d0 - add.l %d0,%sp # clear fpreg data from stack - - tst.l %d1 # did dstore err? - bne.w fmovm_out_err # yes - - rts - -############ -# MOVE IN: # -############ -fmovm_data_in: - mov.l %a0,L_SCR1(%a6) - - sub.l %d0,%sp # make room for fpregs - lea (%sp),%a1 - - mov.l %d1,-(%sp) # save bit string for later - mov.l %d0,-(%sp) # save # of bytes - - bsr.l _dmem_read # copy data from user mem - - mov.l (%sp)+,%d0 # retrieve # of bytes - - tst.l %d1 # did dfetch fail? - bne.w fmovm_in_err # yes - - mov.l (%sp)+,%d1 # load bit string - - lea (%sp),%a0 # addr of stack - - tst.b %d1 # should FP0 be moved? - bpl.b fmovm_data_in_fp1 # no - - mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes - mov.l (%a0)+,0x4+EXC_FP0(%a6) - mov.l (%a0)+,0x8+EXC_FP0(%a6) - -fmovm_data_in_fp1: - lsl.b &0x1,%d1 # should FP1 be moved? - bpl.b fmovm_data_in_fp2 # no - - mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes - mov.l (%a0)+,0x4+EXC_FP1(%a6) - mov.l (%a0)+,0x8+EXC_FP1(%a6) - -fmovm_data_in_fp2: - lsl.b &0x1,%d1 # should FP2 be moved? - bpl.b fmovm_data_in_fp3 # no - - fmovm.x (%a0)+,&0x20 # yes - -fmovm_data_in_fp3: - lsl.b &0x1,%d1 # should FP3 be moved? - bpl.b fmovm_data_in_fp4 # no - - fmovm.x (%a0)+,&0x10 # yes - -fmovm_data_in_fp4: - lsl.b &0x1,%d1 # should FP4 be moved? - bpl.b fmovm_data_in_fp5 # no - - fmovm.x (%a0)+,&0x08 # yes - -fmovm_data_in_fp5: - lsl.b &0x1,%d1 # should FP5 be moved? - bpl.b fmovm_data_in_fp6 # no - - fmovm.x (%a0)+,&0x04 # yes - -fmovm_data_in_fp6: - lsl.b &0x1,%d1 # should FP6 be moved? - bpl.b fmovm_data_in_fp7 # no - - fmovm.x (%a0)+,&0x02 # yes - -fmovm_data_in_fp7: - lsl.b &0x1,%d1 # should FP7 be moved? - bpl.b fmovm_data_in_done # no - - fmovm.x (%a0)+,&0x01 # yes - -fmovm_data_in_done: - add.l %d0,%sp # remove fpregs from stack - rts - -##################################### - -fmovm_data_done: - rts - -############################################################################## - -# -# table indexed by the operation's bit string that gives the number -# of bytes that will be moved. -# -# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) -# -tbl_fmovm_size: - byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 - byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 - -# -# table to convert a pre-decrement bit string into a post-increment -# or control bit string. -# ex: 0x00 ==> 0x00 -# 0x01 ==> 0x80 -# 0x02 ==> 0x40 -# . -# . -# 0xfd ==> 0xbf -# 0xfe ==> 0x7f -# 0xff ==> 0xff -# -tbl_fmovm_convert: - byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 - byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 - byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 - byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 - byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 - byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 - byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec - byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc - byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 - byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 - byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea - byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa - byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 - byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 - byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee - byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe - byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 - byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 - byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 - byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 - byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 - byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 - byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed - byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd - byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 - byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 - byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb - byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb - byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 - byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 - byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef - byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff - - global fmovm_calc_ea -############################################### -# _fmovm_calc_ea: calculate effective address # -############################################### -fmovm_calc_ea: - mov.l %d0,%a0 # move # bytes to a0 - -# currently, MODE and REG are taken from the EXC_OPWORD. this could be -# easily changed if they were inputs passed in registers. - mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word - mov.w %d0,%d1 # make a copy - - andi.w &0x3f,%d0 # extract mode field - andi.l &0x7,%d1 # extract reg field - -# jump to the corresponding function for each {MODE,REG} pair. - mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance - jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode - - swbeg &64 -tbl_fea_mode: - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - - short faddr_ind_a0 - tbl_fea_mode - short faddr_ind_a1 - tbl_fea_mode - short faddr_ind_a2 - tbl_fea_mode - short faddr_ind_a3 - tbl_fea_mode - short faddr_ind_a4 - tbl_fea_mode - short faddr_ind_a5 - tbl_fea_mode - short faddr_ind_a6 - tbl_fea_mode - short faddr_ind_a7 - tbl_fea_mode - - short faddr_ind_p_a0 - tbl_fea_mode - short faddr_ind_p_a1 - tbl_fea_mode - short faddr_ind_p_a2 - tbl_fea_mode - short faddr_ind_p_a3 - tbl_fea_mode - short faddr_ind_p_a4 - tbl_fea_mode - short faddr_ind_p_a5 - tbl_fea_mode - short faddr_ind_p_a6 - tbl_fea_mode - short faddr_ind_p_a7 - tbl_fea_mode - - short faddr_ind_m_a0 - tbl_fea_mode - short faddr_ind_m_a1 - tbl_fea_mode - short faddr_ind_m_a2 - tbl_fea_mode - short faddr_ind_m_a3 - tbl_fea_mode - short faddr_ind_m_a4 - tbl_fea_mode - short faddr_ind_m_a5 - tbl_fea_mode - short faddr_ind_m_a6 - tbl_fea_mode - short faddr_ind_m_a7 - tbl_fea_mode - - short faddr_ind_disp_a0 - tbl_fea_mode - short faddr_ind_disp_a1 - tbl_fea_mode - short faddr_ind_disp_a2 - tbl_fea_mode - short faddr_ind_disp_a3 - tbl_fea_mode - short faddr_ind_disp_a4 - tbl_fea_mode - short faddr_ind_disp_a5 - tbl_fea_mode - short faddr_ind_disp_a6 - tbl_fea_mode - short faddr_ind_disp_a7 - tbl_fea_mode - - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - short faddr_ind_ext - tbl_fea_mode - - short fabs_short - tbl_fea_mode - short fabs_long - tbl_fea_mode - short fpc_ind - tbl_fea_mode - short fpc_ind_ext - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - short tbl_fea_mode - tbl_fea_mode - -################################### -# Address register indirect: (An) # -################################### -faddr_ind_a0: - mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0 - rts - -faddr_ind_a1: - mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1 - rts - -faddr_ind_a2: - mov.l %a2,%a0 # Get current a2 - rts - -faddr_ind_a3: - mov.l %a3,%a0 # Get current a3 - rts - -faddr_ind_a4: - mov.l %a4,%a0 # Get current a4 - rts - -faddr_ind_a5: - mov.l %a5,%a0 # Get current a5 - rts - -faddr_ind_a6: - mov.l (%a6),%a0 # Get current a6 - rts - -faddr_ind_a7: - mov.l EXC_A7(%a6),%a0 # Get current a7 - rts - -##################################################### -# Address register indirect w/ postincrement: (An)+ # -##################################################### -faddr_ind_p_a0: - mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a1: - mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a2: - mov.l %a2,%d0 # Get current a2 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a2 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a3: - mov.l %a3,%d0 # Get current a3 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a3 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a4: - mov.l %a4,%d0 # Get current a4 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a4 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a5: - mov.l %a5,%d0 # Get current a5 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,%a5 # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a6: - mov.l (%a6),%d0 # Get current a6 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,(%a6) # Save incr value - mov.l %d0,%a0 - rts - -faddr_ind_p_a7: - mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l EXC_A7(%a6),%d0 # Get current a7 - mov.l %d0,%d1 - add.l %a0,%d1 # Increment - mov.l %d1,EXC_A7(%a6) # Save incr value - mov.l %d0,%a0 - rts - -#################################################### -# Address register indirect w/ predecrement: -(An) # -#################################################### -faddr_ind_m_a0: - mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a1: - mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a2: - mov.l %a2,%d0 # Get current a2 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a2 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a3: - mov.l %a3,%d0 # Get current a3 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a3 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a4: - mov.l %a4,%d0 # Get current a4 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a4 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a5: - mov.l %a5,%d0 # Get current a5 - sub.l %a0,%d0 # Decrement - mov.l %d0,%a5 # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a6: - mov.l (%a6),%d0 # Get current a6 - sub.l %a0,%d0 # Decrement - mov.l %d0,(%a6) # Save decr value - mov.l %d0,%a0 - rts - -faddr_ind_m_a7: - mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag - - mov.l EXC_A7(%a6),%d0 # Get current a7 - sub.l %a0,%d0 # Decrement - mov.l %d0,EXC_A7(%a6) # Save decr value - mov.l %d0,%a0 - rts - -######################################################## -# Address register indirect w/ displacement: (d16, An) # -######################################################## -faddr_ind_disp_a0: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16 - rts - -faddr_ind_disp_a1: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16 - rts - -faddr_ind_disp_a2: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a2,%a0 # a2 + d16 - rts - -faddr_ind_disp_a3: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a3,%a0 # a3 + d16 - rts - -faddr_ind_disp_a4: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a4,%a0 # a4 + d16 - rts - -faddr_ind_disp_a5: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l %a5,%a0 # a5 + d16 - rts - -faddr_ind_disp_a6: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l (%a6),%a0 # a6 + d16 - rts - -faddr_ind_disp_a7: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_A7(%a6),%a0 # a7 + d16 - rts - -######################################################################## -# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # -# " " " w/ " (base displacement): (bd, An, Xn) # -# Memory indirect postindexed: ([bd, An], Xn, od) # -# Memory indirect preindexed: ([bd, An, Xn], od) # -######################################################################## -faddr_ind_ext: - addq.l &0x8,%d1 - bsr.l fetch_dreg # fetch base areg - mov.l %d0,-(%sp) - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch extword in d0 - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l (%sp)+,%a0 - - btst &0x8,%d0 - bne.w fcalc_mem_ind - - mov.l %d0,L_SCR1(%a6) # hold opword - - mov.l %d0,%d1 - rol.w &0x4,%d1 - andi.w &0xf,%d1 # extract index regno - -# count on fetch_dreg() not to alter a0... - bsr.l fetch_dreg # fetch index - - mov.l %d2,-(%sp) # save d2 - mov.l L_SCR1(%a6),%d2 # fetch opword - - btst &0xb,%d2 # is it word or long? - bne.b faii8_long - ext.l %d0 # sign extend word index -faii8_long: - mov.l %d2,%d1 - rol.w &0x7,%d1 - andi.l &0x3,%d1 # extract scale value - - lsl.l %d1,%d0 # shift index by scale - - extb.l %d2 # sign extend displacement - add.l %d2,%d0 # index + disp - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore old d2 - rts - -########################### -# Absolute short: (XXX).W # -########################### -fabs_short: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch short address - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # return <ea> in a0 - rts - -########################## -# Absolute long: (XXX).L # -########################## -fabs_long: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch long address - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,%a0 # return <ea> in a0 - rts - -####################################################### -# Program counter indirect w/ displacement: (d16, PC) # -####################################################### -fpc_ind: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch word displacement - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.w %d0,%a0 # sign extend displacement - - add.l EXC_EXTWPTR(%a6),%a0 # pc + d16 - -# _imem_read_word() increased the extwptr by 2. need to adjust here. - subq.l &0x2,%a0 # adjust <ea> - rts - -########################################################## -# PC indirect w/ index(8-bit displacement): (d8, PC, An) # -# " " w/ " (base displacement): (bd, PC, An) # -# PC memory indirect postindexed: ([bd, PC], Xn, od) # -# PC memory indirect preindexed: ([bd, PC, Xn], od) # -########################################################## -fpc_ind_ext: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word # fetch ext word - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0 - subq.l &0x2,%a0 # adjust base - - btst &0x8,%d0 # is disp only 8 bits? - bne.w fcalc_mem_ind # calc memory indirect - - mov.l %d0,L_SCR1(%a6) # store opword - - mov.l %d0,%d1 # make extword copy - rol.w &0x4,%d1 # rotate reg num into place - andi.w &0xf,%d1 # extract register number - -# count on fetch_dreg() not to alter a0... - bsr.l fetch_dreg # fetch index - - mov.l %d2,-(%sp) # save d2 - mov.l L_SCR1(%a6),%d2 # fetch opword - - btst &0xb,%d2 # is index word or long? - bne.b fpii8_long # long - ext.l %d0 # sign extend word index -fpii8_long: - mov.l %d2,%d1 - rol.w &0x7,%d1 # rotate scale value into place - andi.l &0x3,%d1 # extract scale value - - lsl.l %d1,%d0 # shift index by scale - - extb.l %d2 # sign extend displacement - add.l %d2,%d0 # disp + index - add.l %d0,%a0 # An + (index + disp) - - mov.l (%sp)+,%d2 # restore temp register - rts - -# d2 = index -# d3 = base -# d4 = od -# d5 = extword -fcalc_mem_ind: - btst &0x6,%d0 # is the index suppressed? - beq.b fcalc_index - - movm.l &0x3c00,-(%sp) # save d2-d5 - - mov.l %d0,%d5 # put extword in d5 - mov.l %a0,%d3 # put base in d3 - - clr.l %d2 # yes, so index = 0 - bra.b fbase_supp_ck - -# index: -fcalc_index: - mov.l %d0,L_SCR1(%a6) # save d0 (opword) - bfextu %d0{&16:&4},%d1 # fetch dreg index - bsr.l fetch_dreg - - movm.l &0x3c00,-(%sp) # save d2-d5 - mov.l %d0,%d2 # put index in d2 - mov.l L_SCR1(%a6),%d5 - mov.l %a0,%d3 - - btst &0xb,%d5 # is index word or long? - bne.b fno_ext - ext.l %d2 - -fno_ext: - bfextu %d5{&21:&2},%d0 - lsl.l %d0,%d2 - -# base address (passed as parameter in d3): -# we clear the value here if it should actually be suppressed. -fbase_supp_ck: - btst &0x7,%d5 # is the bd suppressed? - beq.b fno_base_sup - clr.l %d3 - -# base displacement: -fno_base_sup: - bfextu %d5{&26:&2},%d0 # get bd size -# beq.l fmovm_error # if (size == 0) it's reserved - - cmpi.b %d0,&0x2 - blt.b fno_bd - beq.b fget_word_bd - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - bra.b fchk_ind - -fget_word_bd: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - ext.l %d0 # sign extend bd - -fchk_ind: - add.l %d0,%d3 # base += bd - -# outer displacement: -fno_bd: - bfextu %d5{&30:&2},%d0 # is od suppressed? - beq.w faii_bd - - cmpi.b %d0,&0x2 - blt.b fnull_od - beq.b fword_od - - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - bra.b fadd_them - -fword_od: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_word - - tst.l %d1 # did ifetch fail? - bne.l fcea_iacc # yes - - ext.l %d0 # sign extend od - bra.b fadd_them - -fnull_od: - clr.l %d0 - -fadd_them: - mov.l %d0,%d4 - - btst &0x2,%d5 # pre or post indexing? - beq.b fpre_indexed - - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # did dfetch fail? - bne.w fcea_err # yes - - add.l %d2,%d0 # <ea> += index - add.l %d4,%d0 # <ea> += od - bra.b fdone_ea - -fpre_indexed: - add.l %d2,%d3 # preindexing - mov.l %d3,%a0 - bsr.l _dmem_read_long - - tst.l %d1 # did dfetch fail? - bne.w fcea_err # yes - - add.l %d4,%d0 # ea += od - bra.b fdone_ea - -faii_bd: - add.l %d2,%d3 # ea = (base + bd) + index - mov.l %d3,%d0 -fdone_ea: - mov.l %d0,%a0 - - movm.l (%sp)+,&0x003c # restore d2-d5 - rts - -######################################################### -fcea_err: - mov.l %d3,%a0 - - movm.l (%sp)+,&0x003c # restore d2-d5 - mov.w &0x0101,%d0 - bra.l iea_dacc - -fcea_iacc: - movm.l (%sp)+,&0x003c # restore d2-d5 - bra.l iea_iacc - -fmovm_out_err: - bsr.l restore - mov.w &0x00e1,%d0 - bra.b fmovm_err - -fmovm_in_err: - bsr.l restore - mov.w &0x0161,%d0 - -fmovm_err: - mov.l L_SCR1(%a6),%a0 - bra.l iea_dacc - -######################################################################### -# XDEF **************************************************************** # -# fmovm_ctrl(): emulate fmovm.l of control registers instr # -# # -# XREF **************************************************************** # -# _imem_read_long() - read longword from memory # -# iea_iacc() - _imem_read_long() failed; error recovery # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If _imem_read_long() doesn't fail: # -# USER_FPCR(a6) = new FPCR value # -# USER_FPSR(a6) = new FPSR value # -# USER_FPIAR(a6) = new FPIAR value # -# # -# ALGORITHM *********************************************************** # -# Decode the instruction type by looking at the extension word # -# in order to see how many control registers to fetch from memory. # -# Fetch them using _imem_read_long(). If this fetch fails, exit through # -# the special access error exit handler iea_iacc(). # -# # -# Instruction word decoding: # -# # -# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} # -# # -# WORD1 WORD2 # -# 1111 0010 00 111100 100$ $$00 0000 0000 # -# # -# $$$ (100): FPCR # -# (010): FPSR # -# (001): FPIAR # -# (000): FPIAR # -# # -######################################################################### - - global fmovm_ctrl -fmovm_ctrl: - mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits - cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ? - beq.w fctrl_in_7 # yes - cmpi.b %d0,&0x98 # fpcr & fpsr ? - beq.w fctrl_in_6 # yes - cmpi.b %d0,&0x94 # fpcr & fpiar ? - beq.b fctrl_in_5 # yes - -# fmovem.l #<data>, fpsr/fpiar -fctrl_in_3: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack - rts - -# fmovem.l #<data>, fpcr/fpiar -fctrl_in_5: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack - rts - -# fmovem.l #<data>, fpcr/fpsr -fctrl_in_6: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem - rts - -# fmovem.l #<data>, fpcr/fpsr/fpiar -fctrl_in_7: - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPCR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPSR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem - mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr - addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr - bsr.l _imem_read_long # fetch FPIAR from mem - - tst.l %d1 # did ifetch fail? - bne.l iea_iacc # yes - - mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem - rts - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# addsub_scaler2(): scale inputs to fadd/fsub such that no # -# OVFL/UNFL exceptions will result # -# # -# XREF **************************************************************** # -# norm() - normalize mantissa after adjusting exponent # -# # -# INPUT *************************************************************** # -# FP_SRC(a6) = fp op1(src) # -# FP_DST(a6) = fp op2(dst) # -# # -# OUTPUT ************************************************************** # -# FP_SRC(a6) = fp op1 scaled(src) # -# FP_DST(a6) = fp op2 scaled(dst) # -# d0 = scale amount # -# # -# ALGORITHM *********************************************************** # -# If the DST exponent is > the SRC exponent, set the DST exponent # -# equal to 0x3fff and scale the SRC exponent by the value that the # -# DST exponent was scaled by. If the SRC exponent is greater or equal, # -# do the opposite. Return this scale factor in d0. # -# If the two exponents differ by > the number of mantissa bits # -# plus two, then set the smallest exponent to a very small value as a # -# quick shortcut. # -# # -######################################################################### - - global addsub_scaler2 -addsub_scaler2: - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - mov.w SRC_EX(%a0),%d0 - mov.w DST_EX(%a1),%d1 - mov.w %d0,FP_SCR0_EX(%a6) - mov.w %d1,FP_SCR1_EX(%a6) - - andi.w &0x7fff,%d0 - andi.w &0x7fff,%d1 - mov.w %d0,L_SCR1(%a6) # store src exponent - mov.w %d1,2+L_SCR1(%a6) # store dst exponent - - cmp.w %d0, %d1 # is src exp >= dst exp? - bge.l src_exp_ge2 - -# dst exp is > src exp; scale dst to exp = 0x3fff -dst_exp_gt2: - bsr.l scale_to_zero_dst - mov.l %d0,-(%sp) # save scale factor - - cmpi.b STAG(%a6),&DENORM # is dst denormalized? - bne.b cmpexp12 - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the denorm; result is new exp - neg.w %d0 # new exp = -(shft val) - mov.w %d0,L_SCR1(%a6) # inset new exp - -cmpexp12: - mov.w 2+L_SCR1(%a6),%d0 - subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp - - cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2? - bge.b quick_scale12 - - mov.w L_SCR1(%a6),%d0 - add.w 0x2(%sp),%d0 # scale src exponent by scale factor - mov.w FP_SCR0_EX(%a6),%d1 - and.w &0x8000,%d1 - or.w %d1,%d0 # concat {sgn,new exp} - mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -quick_scale12: - andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent - bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1 - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -# src exp is >= dst exp; scale src to exp = 0x3fff -src_exp_ge2: - bsr.l scale_to_zero_src - mov.l %d0,-(%sp) # save scale factor - - cmpi.b DTAG(%a6),&DENORM # is dst denormalized? - bne.b cmpexp22 - lea FP_SCR1(%a6),%a0 - bsr.l norm # normalize the denorm; result is new exp - neg.w %d0 # new exp = -(shft val) - mov.w %d0,2+L_SCR1(%a6) # inset new exp - -cmpexp22: - mov.w L_SCR1(%a6),%d0 - subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp - - cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2? - bge.b quick_scale22 - - mov.w 2+L_SCR1(%a6),%d0 - add.w 0x2(%sp),%d0 # scale dst exponent by scale factor - mov.w FP_SCR1_EX(%a6),%d1 - andi.w &0x8000,%d1 - or.w %d1,%d0 # concat {sgn,new exp} - mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -quick_scale22: - andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent - bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1 - - mov.l (%sp)+,%d0 # return SCALE factor - rts - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# scale_to_zero_src(): scale the exponent of extended precision # -# value at FP_SCR0(a6). # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR0(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# Set the exponent of the input operand to 0x3fff. Save the value # -# of the difference between the original and new exponent. Then, # -# normalize the operand if it was a DENORM. Add this normalization # -# value to the previous value. Return the result. # -# # -######################################################################### - - global scale_to_zero_src -scale_to_zero_src: - mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} - mov.w %d1,%d0 # make a copy - - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,%d0 # extract operand's sgn - or.w &0x3fff,%d0 # insert new operand's exponent(=0) - - mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent - - cmpi.b STAG(%a6),&DENORM # is operand normalized? - beq.b stzs_denorm # normalize the DENORM - -stzs_norm: - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - - rts - -stzs_denorm: - lea FP_SCR0(%a6),%a0 # pass ptr to src op - bsr.l norm # normalize denorm - neg.l %d0 # new exponent = -(shft val) - mov.l %d0,%d1 # prepare for op_norm call - bra.b stzs_norm # finish scaling - -### - -######################################################################### -# XDEF **************************************************************** # -# scale_sqrt(): scale the input operand exponent so a subsequent # -# fsqrt operation won't take an exception. # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR0(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# If the input operand is a DENORM, normalize it. # -# If the exponent of the input operand is even, set the exponent # -# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the # -# exponent of the input operand is off, set the exponent to ox3fff and # -# return a scale factor of "(exp-0x3fff)/2". # -# # -######################################################################### - - global scale_sqrt -scale_sqrt: - cmpi.b STAG(%a6),&DENORM # is operand normalized? - beq.b ss_denorm # normalize the DENORM - - mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp} - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn - - btst &0x0,%d1 # is exp even or odd? - beq.b ss_norm_even - - ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_norm_even: - ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - mov.l &0x3ffe,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_denorm: - lea FP_SCR0(%a6),%a0 # pass ptr to src op - bsr.l norm # normalize denorm - - btst &0x0,%d0 # is exp even or odd? - beq.b ss_denorm_even - - ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - add.l &0x3fff,%d0 - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -ss_denorm_even: - ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0) - - add.l &0x3ffe,%d0 - asr.l &0x1,%d0 # divide scale factor by 2 - rts - -### - -######################################################################### -# XDEF **************************************************************** # -# scale_to_zero_dst(): scale the exponent of extended precision # -# value at FP_SCR1(a6). # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa if the operand was a DENORM # -# # -# INPUT *************************************************************** # -# FP_SCR1(a6) = extended precision operand to be scaled # -# # -# OUTPUT ************************************************************** # -# FP_SCR1(a6) = scaled extended precision operand # -# d0 = scale value # -# # -# ALGORITHM *********************************************************** # -# Set the exponent of the input operand to 0x3fff. Save the value # -# of the difference between the original and new exponent. Then, # -# normalize the operand if it was a DENORM. Add this normalization # -# value to the previous value. Return the result. # -# # -######################################################################### - - global scale_to_zero_dst -scale_to_zero_dst: - mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp} - mov.w %d1,%d0 # make a copy - - andi.l &0x7fff,%d1 # extract operand's exponent - - andi.w &0x8000,%d0 # extract operand's sgn - or.w &0x3fff,%d0 # insert new operand's exponent(=0) - - mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent - - cmpi.b DTAG(%a6),&DENORM # is operand normalized? - beq.b stzd_denorm # normalize the DENORM - -stzd_norm: - mov.l &0x3fff,%d0 - sub.l %d1,%d0 # scale = BIAS + (-exp) - rts - -stzd_denorm: - lea FP_SCR1(%a6),%a0 # pass ptr to dst op - bsr.l norm # normalize denorm - neg.l %d0 # new exponent = -(shft val) - mov.l %d0,%d1 # prepare for op_norm call - bra.b stzd_norm # finish scaling - -########################################################################## - -######################################################################### -# XDEF **************************************************************** # -# res_qnan(): return default result w/ QNAN operand for dyadic # -# res_snan(): return default result w/ SNAN operand for dyadic # -# res_qnan_1op(): return dflt result w/ QNAN operand for monadic # -# res_snan_1op(): return dflt result w/ SNAN operand for monadic # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# FP_SRC(a6) = pointer to extended precision src operand # -# FP_DST(a6) = pointer to extended precision dst operand # -# # -# OUTPUT ************************************************************** # -# fp0 = default result # -# # -# ALGORITHM *********************************************************** # -# If either operand (but not both operands) of an operation is a # -# nonsignalling NAN, then that NAN is returned as the result. If both # -# operands are nonsignalling NANs, then the destination operand # -# nonsignalling NAN is returned as the result. # -# If either operand to an operation is a signalling NAN (SNAN), # -# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap # -# enable bit is set in the FPCR, then the trap is taken and the # -# destination is not modified. If the SNAN trap enable bit is not set, # -# then the SNAN is converted to a nonsignalling NAN (by setting the # -# SNAN bit in the operand to one), and the operation continues as # -# described in the preceding paragraph, for nonsignalling NANs. # -# Make sure the appropriate FPSR bits are set before exiting. # -# # -######################################################################### - - global res_qnan - global res_snan -res_qnan: -res_snan: - cmp.b DTAG(%a6), &SNAN # is the dst an SNAN? - beq.b dst_snan2 - cmp.b DTAG(%a6), &QNAN # is the dst a QNAN? - beq.b dst_qnan2 -src_nan: - cmp.b STAG(%a6), &QNAN - beq.b src_qnan2 - global res_snan_1op -res_snan_1op: -src_snan2: - bset &0x6, FP_SRC_HI(%a6) # set SNAN bit - or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) - lea FP_SRC(%a6), %a0 - bra.b nan_comp - global res_qnan_1op -res_qnan_1op: -src_qnan2: - or.l &nan_mask, USER_FPSR(%a6) - lea FP_SRC(%a6), %a0 - bra.b nan_comp -dst_snan2: - or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) - bset &0x6, FP_DST_HI(%a6) # set SNAN bit - lea FP_DST(%a6), %a0 - bra.b nan_comp -dst_qnan2: - lea FP_DST(%a6), %a0 - cmp.b STAG(%a6), &SNAN - bne nan_done - or.l &aiop_mask+snan_mask, USER_FPSR(%a6) -nan_done: - or.l &nan_mask, USER_FPSR(%a6) -nan_comp: - btst &0x7, FTEMP_EX(%a0) # is NAN neg? - beq.b nan_not_neg - or.l &neg_mask, USER_FPSR(%a6) -nan_not_neg: - fmovm.x (%a0), &0x80 - rts - -######################################################################### -# XDEF **************************************************************** # -# res_operr(): return default result during operand error # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# fp0 = default operand error result # -# # -# ALGORITHM *********************************************************** # -# An nonsignalling NAN is returned as the default result when # -# an operand error occurs for the following cases: # -# # -# Multiply: (Infinity x Zero) # -# Divide : (Zero / Zero) || (Infinity / Infinity) # -# # -######################################################################### - - global res_operr -res_operr: - or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) - fmovm.x nan_return(%pc), &0x80 - rts - -nan_return: - long 0x7fff0000, 0xffffffff, 0xffffffff - -######################################################################### -# XDEF **************************************************************** # -# _denorm(): denormalize an intermediate result # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = points to the operand to be denormalized # -# (in the internal extended format) # -# # -# d0 = rounding precision # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to the denormalized result # -# (in the internal extended format) # -# # -# d0 = guard,round,sticky # -# # -# ALGORITHM *********************************************************** # -# According to the exponent underflow threshold for the given # -# precision, shift the mantissa bits to the right in order raise the # -# exponent of the operand to the threshold value. While shifting the # -# mantissa bits right, maintain the value of the guard, round, and # -# sticky bits. # -# other notes: # -# (1) _denorm() is called by the underflow routines # -# (2) _denorm() does NOT affect the status register # -# # -######################################################################### - -# -# table of exponent threshold values for each precision -# -tbl_thresh: - short 0x0 - short sgl_thresh - short dbl_thresh - - global _denorm -_denorm: -# -# Load the exponent threshold for the precision selected and check -# to see if (threshold - exponent) is > 65 in which case we can -# simply calculate the sticky bit and zero the mantissa. otherwise -# we have to call the denormalization routine. -# - lsr.b &0x2, %d0 # shift prec to lo bits - mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold - mov.w %d1, %d0 # copy d1 into d0 - sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp - cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits) - bpl.b denorm_set_stky # yes; just calc sticky - - clr.l %d0 # clear g,r,s - btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? - beq.b denorm_call # no; don't change anything - bset &29, %d0 # yes; set sticky bit - -denorm_call: - bsr.l dnrm_lp # denormalize the number - rts - -# -# all bit would have been shifted off during the denorm so simply -# calculate if the sticky should be set and clear the entire mantissa. -# -denorm_set_stky: - mov.l &0x20000000, %d0 # set sticky bit in return value - mov.w %d1, FTEMP_EX(%a0) # load exp with threshold - clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa) - clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa) - rts - -# # -# dnrm_lp(): normalize exponent/mantissa to specified threshold # -# # -# INPUT: # -# %a0 : points to the operand to be denormalized # -# %d0{31:29} : initial guard,round,sticky # -# %d1{15:0} : denormalization threshold # -# OUTPUT: # -# %a0 : points to the denormalized operand # -# %d0{31:29} : final guard,round,sticky # -# # - -# *** Local Equates *** # -set GRS, L_SCR2 # g,r,s temp storage -set FTEMP_LO2, L_SCR1 # FTEMP_LO copy - - global dnrm_lp -dnrm_lp: - -# -# make a copy of FTEMP_LO and place the g,r,s bits directly after it -# in memory so as to make the bitfield extraction for denormalization easier. -# - mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy - mov.l %d0, GRS(%a6) # place g,r,s after it - -# -# check to see how much less than the underflow threshold the operand -# exponent is. -# - mov.l %d1, %d0 # copy the denorm threshold - sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent - ble.b dnrm_no_lp # d1 <= 0 - cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ? - blt.b case_1 # yes - cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ? - blt.b case_2 # yes - bra.w case_3 # (d1 >= 64) - -# -# No normalization necessary -# -dnrm_no_lp: - mov.l GRS(%a6), %d0 # restore original g,r,s - rts - -# -# case (0<d1<32) -# -# %d0 = denorm threshold -# %d1 = "n" = amt to shift -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# \ \ \ \ -# <-(n)-><-(32 - n)-><------(32)-------><------(32)-------> -# --------------------------------------------------------- -# |0.....0| NEW_HI | NEW_FTEMP_LO |grs | -# --------------------------------------------------------- -# -case_1: - mov.l %d2, -(%sp) # create temp storage - - mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold - mov.l &32, %d0 - sub.w %d1, %d0 # %d0 = 32 - %d1 - - cmpi.w %d1, &29 # is shft amt >= 29 - blt.b case1_extract # no; no fix needed - mov.b GRS(%a6), %d2 - or.b %d2, 3+FTEMP_LO2(%a6) - -case1_extract: - bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI - bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO - bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S - - mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI - mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO - - bftst %d0{&2:&30} # were bits shifted off? - beq.b case1_sticky_clear # no; go finish - bset &rnd_stky_bit, %d0 # yes; set sticky bit - -case1_sticky_clear: - and.l &0xe0000000, %d0 # clear all but G,R,S - mov.l (%sp)+, %d2 # restore temp register - rts - -# -# case (32<=d1<64) -# -# %d0 = denorm threshold -# %d1 = "n" = amt to shift -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> -# \ \ \ -# \ \ \ -# \ \ ------------------- -# \ -------------------- \ -# ------------------- \ \ -# \ \ \ -# \ \ \ -# \ \ \ -# <-------(32)------><-(n)-><-(32 - n)-><------(32)-------> -# --------------------------------------------------------- -# |0...............0|0....0| NEW_LO |grs | -# --------------------------------------------------------- -# -case_2: - mov.l %d2, -(%sp) # create temp storage - - mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold - subi.w &0x20, %d1 # %d1 now between 0 and 32 - mov.l &0x20, %d0 - sub.w %d1, %d0 # %d0 = 32 - %d1 - -# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize -# the number of bits to check for the sticky detect. -# it only plays a role in shift amounts of 61-63. - mov.b GRS(%a6), %d2 - or.b %d2, 3+FTEMP_LO2(%a6) - - bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO - bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S - - bftst %d1{&2:&30} # were any bits shifted off? - bne.b case2_set_sticky # yes; set sticky bit - bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off? - bne.b case2_set_sticky # yes; set sticky bit - - mov.l %d1, %d0 # move new G,R,S to %d0 - bra.b case2_end - -case2_set_sticky: - mov.l %d1, %d0 # move new G,R,S to %d0 - bset &rnd_stky_bit, %d0 # set sticky bit - -case2_end: - clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0 - mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO - and.l &0xe0000000, %d0 # clear all but G,R,S - - mov.l (%sp)+,%d2 # restore temp register - rts - -# -# case (d1>=64) -# -# %d0 = denorm threshold -# %d1 = amt to shift -# -case_3: - mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold - - cmpi.w %d1, &65 # is shift amt > 65? - blt.b case3_64 # no; it's == 64 - beq.b case3_65 # no; it's == 65 - -# -# case (d1>65) -# -# Shift value is > 65 and out of range. All bits are shifted off. -# Return a zero mantissa with the sticky bit set -# - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - mov.l &0x20000000, %d0 # set sticky bit - rts - -# -# case (d1 == 64) -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-------(32)------> -# \ \ -# \ \ -# \ \ -# \ ------------------------------ -# ------------------------------- \ -# \ \ -# \ \ -# \ \ -# <-------(32)------> -# --------------------------------------------------------- -# |0...............0|0................0|grs | -# --------------------------------------------------------- -# -case3_64: - mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) - mov.l %d0, %d1 # make a copy - and.l &0xc0000000, %d0 # extract G,R - and.l &0x3fffffff, %d1 # extract other bits - - bra.b case3_complete - -# -# case (d1 == 65) -# -# --------------------------------------------------------- -# | FTEMP_HI | FTEMP_LO |grs000.........000| -# --------------------------------------------------------- -# <-------(32)------> -# \ \ -# \ \ -# \ \ -# \ ------------------------------ -# -------------------------------- \ -# \ \ -# \ \ -# \ \ -# <-------(31)-----> -# --------------------------------------------------------- -# |0...............0|0................0|0rs | -# --------------------------------------------------------- -# -case3_65: - mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa) - and.l &0x80000000, %d0 # extract R bit - lsr.l &0x1, %d0 # shift high bit into R bit - and.l &0x7fffffff, %d1 # extract other bits - -case3_complete: -# last operation done was an "and" of the bits shifted off so the condition -# codes are already set so branch accordingly. - bne.b case3_set_sticky # yes; go set new sticky - tst.l FTEMP_LO(%a0) # were any bits shifted off? - bne.b case3_set_sticky # yes; go set new sticky - tst.b GRS(%a6) # were any bits shifted off? - bne.b case3_set_sticky # yes; go set new sticky - -# -# no bits were shifted off so don't set the sticky bit. -# the guard and -# the entire mantissa is zero. -# - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - rts - -# -# some bits were shifted off so set the sticky bit. -# the entire mantissa is zero. -# -case3_set_sticky: - bset &rnd_stky_bit,%d0 # set new sticky bit - clr.l FTEMP_HI(%a0) # clear hi(mantissa) - clr.l FTEMP_LO(%a0) # clear lo(mantissa) - rts - -######################################################################### -# XDEF **************************************************************** # -# _round(): round result according to precision/mode # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = ptr to input operand in internal extended format # -# d1(hi) = contains rounding precision: # -# ext = $0000xxxx # -# sgl = $0004xxxx # -# dbl = $0008xxxx # -# d1(lo) = contains rounding mode: # -# RN = $xxxx0000 # -# RZ = $xxxx0001 # -# RM = $xxxx0002 # -# RP = $xxxx0003 # -# d0{31:29} = contains the g,r,s bits (extended) # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to rounded result # -# # -# ALGORITHM *********************************************************** # -# On return the value pointed to by a0 is correctly rounded, # -# a0 is preserved and the g-r-s bits in d0 are cleared. # -# The result is not typed - the tag field is invalid. The # -# result is still in the internal extended format. # -# # -# The INEX bit of USER_FPSR will be set if the rounded result was # -# inexact (i.e. if any of the g-r-s bits were set). # -# # -######################################################################### - - global _round -_round: -# -# ext_grs() looks at the rounding precision and sets the appropriate -# G,R,S bits. -# If (G,R,S == 0) then result is exact and round is done, else set -# the inex flag in status reg and continue. -# - bsr.l ext_grs # extract G,R,S - - tst.l %d0 # are G,R,S zero? - beq.w truncate # yes; round is complete - - or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex - -# -# Use rounding mode as an index into a jump table for these modes. -# All of the following assumes grs != 0. -# - mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset - jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler - -tbl_mode: - short rnd_near - tbl_mode - short truncate - tbl_mode # RZ always truncates - short rnd_mnus - tbl_mode - short rnd_plus - tbl_mode - -################################################################# -# ROUND PLUS INFINITY # -# # -# If sign of fp number = 0 (positive), then add 1 to l. # -################################################################# -rnd_plus: - tst.b FTEMP_SGN(%a0) # check for sign - bmi.w truncate # if positive then truncate - - mov.l &0xffffffff, %d0 # force g,r,s to be all f's - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -################################################################# -# ROUND MINUS INFINITY # -# # -# If sign of fp number = 1 (negative), then add 1 to l. # -################################################################# -rnd_mnus: - tst.b FTEMP_SGN(%a0) # check for sign - bpl.w truncate # if negative then truncate - - mov.l &0xffffffff, %d0 # force g,r,s to be all f's - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -################################################################# -# ROUND NEAREST # -# # -# If (g=1), then add 1 to l and if (r=s=0), then clear l # -# Note that this will round to even in case of a tie. # -################################################################# -rnd_near: - asl.l &0x1, %d0 # shift g-bit to c-bit - bcc.w truncate # if (g=1) then - - swap %d1 # set up d1 for round prec. - - cmpi.b %d1, &s_mode # is prec = sgl? - beq.w add_sgl # yes - bgt.w add_dbl # no; it's dbl - bra.w add_ext # no; it's ext - -# *** LOCAL EQUATES *** -set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec -set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec - -######################### -# ADD SINGLE # -######################### -add_sgl: - add.l &ad_1_sgl, FTEMP_HI(%a0) - bcc.b scc_clr # no mantissa overflow - roxr.w FTEMP_HI(%a0) # shift v-bit back in - roxr.w FTEMP_HI+2(%a0) # shift v-bit back in - add.w &0x1, FTEMP_EX(%a0) # and incr exponent -scc_clr: - tst.l %d0 # test for rs = 0 - bne.b sgl_done - and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit -sgl_done: - and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit - clr.l FTEMP_LO(%a0) # clear d2 - rts - -######################### -# ADD EXTENDED # -######################### -add_ext: - addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit - bcc.b xcc_clr # test for carry out - addq.l &1,FTEMP_HI(%a0) # propagate carry - bcc.b xcc_clr - roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_LO(%a0) - roxr.w FTEMP_LO+2(%a0) - add.w &0x1,FTEMP_EX(%a0) # and inc exp -xcc_clr: - tst.l %d0 # test rs = 0 - bne.b add_ext_done - and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit -add_ext_done: - rts - -######################### -# ADD DOUBLE # -######################### -add_dbl: - add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb - bcc.b dcc_clr # no carry - addq.l &0x1, FTEMP_HI(%a0) # propagate carry - bcc.b dcc_clr # no carry - - roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit - roxr.w FTEMP_LO(%a0) - roxr.w FTEMP_LO+2(%a0) - addq.w &0x1, FTEMP_EX(%a0) # incr exponent -dcc_clr: - tst.l %d0 # test for rs = 0 - bne.b dbl_done - and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit - -dbl_done: - and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit - rts - -########################### -# Truncate all other bits # -########################### -truncate: - swap %d1 # select rnd prec - - cmpi.b %d1, &s_mode # is prec sgl? - beq.w sgl_done # yes - bgt.b dbl_done # no; it's dbl - rts # no; it's ext - - -# -# ext_grs(): extract guard, round and sticky bits according to -# rounding precision. -# -# INPUT -# d0 = extended precision g,r,s (in d0{31:29}) -# d1 = {PREC,ROUND} -# OUTPUT -# d0{31:29} = guard, round, sticky -# -# The ext_grs extract the guard/round/sticky bits according to the -# selected rounding precision. It is called by the round subroutine -# only. All registers except d0 are kept intact. d0 becomes an -# updated guard,round,sticky in d0{31:29} -# -# Notes: the ext_grs uses the round PREC, and therefore has to swap d1 -# prior to usage, and needs to restore d1 to original. this -# routine is tightly tied to the round routine and not meant to -# uphold standard subroutine calling practices. -# - -ext_grs: - swap %d1 # have d1.w point to round precision - tst.b %d1 # is rnd prec = extended? - bne.b ext_grs_not_ext # no; go handle sgl or dbl - -# -# %d0 actually already hold g,r,s since _round() had it before calling -# this function. so, as long as we don't disturb it, we are "returning" it. -# -ext_grs_ext: - swap %d1 # yes; return to correct positions - rts - -ext_grs_not_ext: - movm.l &0x3000, -(%sp) # make some temp registers {d2/d3} - - cmpi.b %d1, &s_mode # is rnd prec = sgl? - bne.b ext_grs_dbl # no; go handle dbl - -# -# sgl: -# 96 64 40 32 0 -# ----------------------------------------------------- -# | EXP |XXXXXXX| |xx | |grs| -# ----------------------------------------------------- -# <--(24)--->nn\ / -# ee --------------------- -# ww | -# v -# gr new sticky -# -ext_grs_sgl: - bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right - mov.l &30, %d2 # of the sgl prec. limits - lsl.l %d2, %d3 # shift g-r bits to MSB of d3 - mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test - and.l &0x0000003f, %d2 # s bit is the or of all other - bne.b ext_grs_st_stky # bits to the right of g-r - tst.l FTEMP_LO(%a0) # test lower mantissa - bne.b ext_grs_st_stky # if any are set, set sticky - tst.l %d0 # test original g,r,s - bne.b ext_grs_st_stky # if any are set, set sticky - bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit - -# -# dbl: -# 96 64 32 11 0 -# ----------------------------------------------------- -# | EXP |XXXXXXX| | |xx |grs| -# ----------------------------------------------------- -# nn\ / -# ee ------- -# ww | -# v -# gr new sticky -# -ext_grs_dbl: - bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right - mov.l &30, %d2 # of the dbl prec. limits - lsl.l %d2, %d3 # shift g-r bits to the MSB of d3 - mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test - and.l &0x000001ff, %d2 # s bit is the or-ing of all - bne.b ext_grs_st_stky # other bits to the right of g-r - tst.l %d0 # test word original g,r,s - bne.b ext_grs_st_stky # if any are set, set sticky - bra.b ext_grs_end_sd # if clear, exit - -ext_grs_st_stky: - bset &rnd_stky_bit, %d3 # set sticky bit -ext_grs_end_sd: - mov.l %d3, %d0 # return grs to d0 - - movm.l (%sp)+, &0xc # restore scratch registers {d2/d3} - - swap %d1 # restore d1 to original - rts - -######################################################################### -# norm(): normalize the mantissa of an extended precision input. the # -# input operand should not be normalized already. # -# # -# XDEF **************************************************************** # -# norm() # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# a0 = pointer fp extended precision operand to normalize # -# # -# OUTPUT ************************************************************** # -# d0 = number of bit positions the mantissa was shifted # -# a0 = the input operand's mantissa is normalized; the exponent # -# is unchanged. # -# # -######################################################################### - global norm -norm: - mov.l %d2, -(%sp) # create some temp regs - mov.l %d3, -(%sp) - - mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa) - mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa) - - bfffo %d0{&0:&32}, %d2 # how many places to shift? - beq.b norm_lo # hi(man) is all zeroes! - -norm_hi: - lsl.l %d2, %d0 # left shift hi(man) - bfextu %d1{&0:%d2}, %d3 # extract lo bits - - or.l %d3, %d0 # create hi(man) - lsl.l %d2, %d1 # create lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - mov.l %d1, FTEMP_LO(%a0) # store new lo(man) - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -norm_lo: - bfffo %d1{&0:&32}, %d2 # how many places to shift? - lsl.l %d2, %d1 # shift lo(man) - add.l &32, %d2 # add 32 to shft amount - - mov.l %d1, FTEMP_HI(%a0) # store hi(man) - clr.l FTEMP_LO(%a0) # lo(man) is now zero - - mov.l %d2, %d0 # return shift amount - - mov.l (%sp)+, %d3 # restore temp regs - mov.l (%sp)+, %d2 - - rts - -######################################################################### -# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO # -# - returns corresponding optype tag # -# # -# XDEF **************************************************************** # -# unnorm_fix() # -# # -# XREF **************************************************************** # -# norm() - normalize the mantissa # -# # -# INPUT *************************************************************** # -# a0 = pointer to unnormalized extended precision number # -# # -# OUTPUT ************************************************************** # -# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO # -# a0 = input operand has been converted to a norm, denorm, or # -# zero; both the exponent and mantissa are changed. # -# # -######################################################################### - - global unnorm_fix -unnorm_fix: - bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? - bne.b unnorm_shift # hi(man) is not all zeroes - -# -# hi(man) is all zeroes so see if any bits in lo(man) are set -# -unnorm_chk_lo: - bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? - beq.w unnorm_zero # yes - - add.w &32, %d0 # no; fix shift distance - -# -# d0 = # shifts needed for complete normalization -# -unnorm_shift: - clr.l %d1 # clear top word - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 # strip off sgn - - cmp.w %d0, %d1 # will denorm push exp < 0? - bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0 - -# -# exponent would not go < 0. Therefore, number stays normalized -# - sub.w %d0, %d1 # shift exponent value - mov.w FTEMP_EX(%a0), %d0 # load old exponent - and.w &0x8000, %d0 # save old sign - or.w %d0, %d1 # {sgn,new exp} - mov.w %d1, FTEMP_EX(%a0) # insert new exponent - - bsr.l norm # normalize UNNORM - - mov.b &NORM, %d0 # return new optype tag - rts - -# -# exponent would go < 0, so only denormalize until exp = 0 -# -unnorm_nrm_zero: - cmp.b %d1, &32 # is exp <= 32? - bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent - - bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) - mov.l %d0, FTEMP_HI(%a0) # save new hi(man) - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # extract new lo(man) - mov.l %d0, FTEMP_LO(%a0) # save new lo(man) - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# only mantissa bits set are in lo(man) -# -unnorm_nrm_zero_lrg: - sub.w &32, %d1 # adjust shft amt by 32 - - mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man) - lsl.l %d1, %d0 # left shift lo(man) - - mov.l %d0, FTEMP_HI(%a0) # store new hi(man) - clr.l FTEMP_LO(%a0) # lo(man) = 0 - - and.w &0x8000, FTEMP_EX(%a0) # set exp = 0 - - mov.b &DENORM, %d0 # return new optype tag - rts - -# -# whole mantissa is zero so this UNNORM is actually a zero -# -unnorm_zero: - and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero - - mov.b &ZERO, %d0 # fix optype tag - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_x(): return the optype of the input ext fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# If it's an unnormalized zero, alter the operand and force it # -# to be a normal zero. # -# # -######################################################################### - - global set_tag_x -set_tag_x: - mov.w FTEMP_EX(%a0), %d0 # extract exponent - andi.w &0x7fff, %d0 # strip off sign - cmpi.w %d0, &0x7fff # is (EXP == MAX)? - beq.b inf_or_nan_x -not_inf_or_nan_x: - btst &0x7,FTEMP_HI(%a0) - beq.b not_norm_x -is_norm_x: - mov.b &NORM, %d0 - rts -not_norm_x: - tst.w %d0 # is exponent = 0? - bne.b is_unnorm_x -not_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_denorm_x - tst.l FTEMP_LO(%a0) - bne.b is_denorm_x -is_zero_x: - mov.b &ZERO, %d0 - rts -is_denorm_x: - mov.b &DENORM, %d0 - rts -# must distinguish now "Unnormalized zeroes" which we -# must convert to zero. -is_unnorm_x: - tst.l FTEMP_HI(%a0) - bne.b is_unnorm_reg_x - tst.l FTEMP_LO(%a0) - bne.b is_unnorm_reg_x -# it's an "unnormalized zero". let's convert it to an actual zero... - andi.w &0x8000,FTEMP_EX(%a0) # clear exponent - mov.b &ZERO, %d0 - rts -is_unnorm_reg_x: - mov.b &UNNORM, %d0 - rts -inf_or_nan_x: - tst.l FTEMP_LO(%a0) - bne.b is_nan_x - mov.l FTEMP_HI(%a0), %d0 - and.l &0x7fffffff, %d0 # msb is a don't care! - bne.b is_nan_x -is_inf_x: - mov.b &INF, %d0 - rts -is_nan_x: - btst &0x6, FTEMP_HI(%a0) - beq.b is_snan_x - mov.b &QNAN, %d0 - rts -is_snan_x: - mov.b &SNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_d(): return the optype of the input dbl fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = points to double precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# # -######################################################################### - - global set_tag_d -set_tag_d: - mov.l FTEMP(%a0), %d0 - mov.l %d0, %d1 - - andi.l &0x7ff00000, %d0 - beq.b zero_or_denorm_d - - cmpi.l %d0, &0x7ff00000 - beq.b inf_or_nan_d - -is_norm_d: - mov.b &NORM, %d0 - rts -zero_or_denorm_d: - and.l &0x000fffff, %d1 - bne is_denorm_d - tst.l 4+FTEMP(%a0) - bne is_denorm_d -is_zero_d: - mov.b &ZERO, %d0 - rts -is_denorm_d: - mov.b &DENORM, %d0 - rts -inf_or_nan_d: - and.l &0x000fffff, %d1 - bne is_nan_d - tst.l 4+FTEMP(%a0) - bne is_nan_d -is_inf_d: - mov.b &INF, %d0 - rts -is_nan_d: - btst &19, %d1 - bne is_qnan_d -is_snan_d: - mov.b &SNAN, %d0 - rts -is_qnan_d: - mov.b &QNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# set_tag_s(): return the optype of the input sgl fp number # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to single precision operand # -# # -# OUTPUT ************************************************************** # -# d0 = value of type tag # -# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO # -# # -# ALGORITHM *********************************************************** # -# Simply test the exponent, j-bit, and mantissa values to # -# determine the type of operand. # -# # -######################################################################### - - global set_tag_s -set_tag_s: - mov.l FTEMP(%a0), %d0 - mov.l %d0, %d1 - - andi.l &0x7f800000, %d0 - beq.b zero_or_denorm_s - - cmpi.l %d0, &0x7f800000 - beq.b inf_or_nan_s - -is_norm_s: - mov.b &NORM, %d0 - rts -zero_or_denorm_s: - and.l &0x007fffff, %d1 - bne is_denorm_s -is_zero_s: - mov.b &ZERO, %d0 - rts -is_denorm_s: - mov.b &DENORM, %d0 - rts -inf_or_nan_s: - and.l &0x007fffff, %d1 - bne is_nan_s -is_inf_s: - mov.b &INF, %d0 - rts -is_nan_s: - btst &22, %d1 - bne is_qnan_s -is_snan_s: - mov.b &SNAN, %d0 - rts -is_qnan_s: - mov.b &QNAN, %d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# unf_res(): routine to produce default underflow result of a # -# scaled extended precision number; this is used by # -# fadd/fdiv/fmul/etc. emulation routines. # -# unf_res4(): same as above but for fsglmul/fsgldiv which use # -# single round prec and extended prec mode. # -# # -# XREF **************************************************************** # -# _denorm() - denormalize according to scale factor # -# _round() - round denormalized number according to rnd prec # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precison operand # -# d0 = scale factor # -# d1 = rounding precision/mode # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to default underflow result in extended precision # -# d0.b = result FPSR_cc which caller may or may not want to save # -# # -# ALGORITHM *********************************************************** # -# Convert the input operand to "internal format" which means the # -# exponent is extended to 16 bits and the sign is stored in the unused # -# portion of the extended precison operand. Denormalize the number # -# according to the scale factor passed in d0. Then, round the # -# denormalized result. # -# Set the FPSR_exc bits as appropriate but return the cc bits in # -# d0 in case the caller doesn't want to save them (as is the case for # -# fmove out). # -# unf_res4() for fsglmul/fsgldiv forces the denorm to extended # -# precision and the rounding mode to single. # -# # -######################################################################### - global unf_res -unf_res: - mov.l %d1, -(%sp) # save rnd prec,mode on stack - - btst &0x7, FTEMP_EX(%a0) # make "internal" format - sne FTEMP_SGN(%a0) - - mov.w FTEMP_EX(%a0), %d1 # extract exponent - and.w &0x7fff, %d1 - sub.w %d0, %d1 - mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent - - mov.l %a0, -(%sp) # save operand ptr during calls - - mov.l 0x4(%sp),%d0 # pass rnd prec. - andi.w &0x00c0,%d0 - lsr.w &0x4,%d0 - bsr.l _denorm # denorm result - - mov.l (%sp),%a0 - mov.w 0x6(%sp),%d1 # load prec:mode into %d1 - andi.w &0xc0,%d1 # extract rnd prec - lsr.w &0x4,%d1 - swap %d1 - mov.w 0x6(%sp),%d1 - andi.w &0x30,%d1 - lsr.w &0x4,%d1 - bsr.l _round # round the denorm - - mov.l (%sp)+, %a0 - -# result is now rounded properly. convert back to normal format - bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue - tst.b FTEMP_SGN(%a0) # is "internal result" sign set? - beq.b unf_res_chkifzero # no; result is positive - bset &0x7, FTEMP_EX(%a0) # set result sgn - clr.b FTEMP_SGN(%a0) # clear temp sign - -# the number may have become zero after rounding. set ccodes accordingly. -unf_res_chkifzero: - clr.l %d0 - tst.l FTEMP_HI(%a0) # is value now a zero? - bne.b unf_res_cont # no - tst.l FTEMP_LO(%a0) - bne.b unf_res_cont # no -# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit - bset &z_bit, %d0 # yes; set zero ccode bit - -unf_res_cont: - -# -# can inex1 also be set along with unfl and inex2??? -# -# we know that underflow has occurred. aunfl should be set if INEX2 is also set. -# - btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? - beq.b unf_res_end # no - bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl - -unf_res_end: - add.l &0x4, %sp # clear stack - rts - -# unf_res() for fsglmul() and fsgldiv(). - global unf_res4 -unf_res4: - mov.l %d1,-(%sp) # save rnd prec,mode on stack - - btst &0x7,FTEMP_EX(%a0) # make "internal" format - sne FTEMP_SGN(%a0) - - mov.w FTEMP_EX(%a0),%d1 # extract exponent - and.w &0x7fff,%d1 - sub.w %d0,%d1 - mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent - - mov.l %a0,-(%sp) # save operand ptr during calls - - clr.l %d0 # force rnd prec = ext - bsr.l _denorm # denorm result - - mov.l (%sp),%a0 - mov.w &s_mode,%d1 # force rnd prec = sgl - swap %d1 - mov.w 0x6(%sp),%d1 # load rnd mode - andi.w &0x30,%d1 # extract rnd prec - lsr.w &0x4,%d1 - bsr.l _round # round the denorm - - mov.l (%sp)+,%a0 - -# result is now rounded properly. convert back to normal format - bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue - tst.b FTEMP_SGN(%a0) # is "internal result" sign set? - beq.b unf_res4_chkifzero # no; result is positive - bset &0x7,FTEMP_EX(%a0) # set result sgn - clr.b FTEMP_SGN(%a0) # clear temp sign - -# the number may have become zero after rounding. set ccodes accordingly. -unf_res4_chkifzero: - clr.l %d0 - tst.l FTEMP_HI(%a0) # is value now a zero? - bne.b unf_res4_cont # no - tst.l FTEMP_LO(%a0) - bne.b unf_res4_cont # no -# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit - bset &z_bit,%d0 # yes; set zero ccode bit - -unf_res4_cont: - -# -# can inex1 also be set along with unfl and inex2??? -# -# we know that underflow has occurred. aunfl should be set if INEX2 is also set. -# - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.b unf_res4_end # no - bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl - -unf_res4_end: - add.l &0x4,%sp # clear stack - rts - -######################################################################### -# XDEF **************************************************************** # -# ovf_res(): routine to produce the default overflow result of # -# an overflowing number. # -# ovf_res2(): same as above but the rnd mode/prec are passed # -# differently. # -# # -# XREF **************************************************************** # -# none # -# # -# INPUT *************************************************************** # -# d1.b = '-1' => (-); '0' => (+) # -# ovf_res(): # -# d0 = rnd mode/prec # -# ovf_res2(): # -# hi(d0) = rnd prec # -# lo(d0) = rnd mode # -# # -# OUTPUT ************************************************************** # -# a0 = points to extended precision result # -# d0.b = condition code bits # -# # -# ALGORITHM *********************************************************** # -# The default overflow result can be determined by the sign of # -# the result and the rounding mode/prec in effect. These bits are # -# concatenated together to create an index into the default result # -# table. A pointer to the correct result is returned in a0. The # -# resulting condition codes are returned in d0 in case the caller # -# doesn't want FPSR_cc altered (as is the case for fmove out). # -# # -######################################################################### - - global ovf_res -ovf_res: - andi.w &0x10,%d1 # keep result sign - lsr.b &0x4,%d0 # shift prec/mode - or.b %d0,%d1 # concat the two - mov.w %d1,%d0 # make a copy - lsl.b &0x1,%d1 # multiply d1 by 2 - bra.b ovf_res_load - - global ovf_res2 -ovf_res2: - and.w &0x10, %d1 # keep result sign - or.b %d0, %d1 # insert rnd mode - swap %d0 - or.b %d0, %d1 # insert rnd prec - mov.w %d1, %d0 # make a copy - lsl.b &0x1, %d1 # shift left by 1 - -# -# use the rounding mode, precision, and result sign as in index into the -# two tables below to fetch the default result and the result ccodes. -# -ovf_res_load: - mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes - lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr - - rts - -tbl_ovfl_cc: - byte 0x2, 0x0, 0x0, 0x2 - byte 0x2, 0x0, 0x0, 0x2 - byte 0x2, 0x0, 0x0, 0x2 - byte 0x0, 0x0, 0x0, 0x0 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - byte 0x2+0x8, 0x8, 0x2+0x8, 0x8 - -tbl_ovfl_result: - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ - long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ - long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN - long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ - long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM - long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP - - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - long 0x00000000,0x00000000,0x00000000,0x00000000 - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP - - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN - long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ - long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM - long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP - -######################################################################### -# XDEF **************************************************************** # -# fout(): move from fp register to memory or data register # -# # -# XREF **************************************************************** # -# _round() - needed to create EXOP for sgl/dbl precision # -# norm() - needed to create EXOP for extended precision # -# ovf_res() - create default overflow result for sgl/dbl precision# -# unf_res() - create default underflow result for sgl/dbl prec. # -# dst_dbl() - create rounded dbl precision result. # -# dst_sgl() - create rounded sgl precision result. # -# fetch_dreg() - fetch dynamic k-factor reg for packed. # -# bindec() - convert FP binary number to packed number. # -# _mem_write() - write data to memory. # -# _mem_write2() - write data to memory unless supv mode -(a7) exc.# -# _dmem_write_{byte,word,long}() - write data to memory. # -# store_dreg_{b,w,l}() - store data to data register file. # -# facc_out_{b,w,l,d,x}() - data access error occurred. # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 : intermediate underflow or overflow result if # -# OVFL/UNFL occurred for a sgl or dbl operand # -# # -# ALGORITHM *********************************************************** # -# This routine is accessed by many handlers that need to do an # -# opclass three move of an operand out to memory. # -# Decode an fmove out (opclass 3) instruction to determine if # -# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data # -# register or memory. The algorithm uses a standard "fmove" to create # -# the rounded result. Also, since exceptions are disabled, this also # -# create the correct OPERR default result if appropriate. # -# For sgl or dbl precision, overflow or underflow can occur. If # -# either occurs and is enabled, the EXOP. # -# For extended precision, the stacked <ea> must be fixed along # -# w/ the address index register as appropriate w/ _calc_ea_fout(). If # -# the source is a denorm and if underflow is enabled, an EXOP must be # -# created. # -# For packed, the k-factor must be fetched from the instruction # -# word or a data register. The <ea> must be fixed as w/ extended # -# precision. Then, bindec() is called to create the appropriate # -# packed result. # -# If at any time an access error is flagged by one of the move- # -# to-memory routines, then a special exit must be made so that the # -# access error can be handled properly. # -# # -######################################################################### - - global fout -fout: - bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt - mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index - jmp (tbl_fout.b,%pc,%a1) # jump to routine - - swbeg &0x8 -tbl_fout: - short fout_long - tbl_fout - short fout_sgl - tbl_fout - short fout_ext - tbl_fout - short fout_pack - tbl_fout - short fout_word - tbl_fout - short fout_dbl - tbl_fout - short fout_byte - tbl_fout - short fout_pack - tbl_fout - -################################################################# -# fmove.b out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_byte: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_byte_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_byte_norm: - fmov.l %d0,%fpcr # insert rnd prec,mode - - fmov.b %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_byte_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_byte # write byte - - tst.l %d1 # did dstore fail? - bne.l facc_out_b # yes - - rts - -fout_byte_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_b - rts - -fout_byte_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_byte_norm - -################################################################# -# fmove.w out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_word: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_word_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_word_norm: - fmov.l %d0,%fpcr # insert rnd prec:mode - - fmov.w %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_word_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_word # write word - - tst.l %d1 # did dstore fail? - bne.l facc_out_w # yes - - rts - -fout_word_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_w - rts - -fout_word_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_word_norm - -################################################################# -# fmove.l out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -fout_long: - tst.b STAG(%a6) # is operand normalized? - bne.b fout_long_denorm # no - - fmovm.x SRC(%a0),&0x80 # load value - -fout_long_norm: - fmov.l %d0,%fpcr # insert rnd prec:mode - - fmov.l %fp0,%d0 # exec move out w/ correct rnd mode - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch FPSR - or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits - -fout_long_write: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_long_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - rts - -fout_long_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - rts - -fout_long_denorm: - mov.l SRC_EX(%a0),%d1 - andi.l &0x80000000,%d1 # keep DENORM sign - ori.l &0x00800000,%d1 # make smallest sgl - fmov.s %d1,%fp0 - bra.b fout_long_norm - -################################################################# -# fmove.x out ################################################### -################################################################# - -# Only "Unimplemented Data Type" exceptions enter here. The operand -# is either a DENORM or a NORM. -# The DENORM causes an Underflow exception. -fout_ext: - -# we copy the extended precision result to FP_SCR0 so that the reserved -# 16-bit field gets zeroed. we do this since we promise not to disturb -# what's at SRC(a0). - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - clr.w 2+FP_SCR0_EX(%a6) # clear reserved field - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - fmovm.x SRC(%a0),&0x80 # return result - - bsr.l _calc_ea_fout # fix stacked <ea> - - mov.l %a0,%a1 # pass: dst addr - lea FP_SCR0(%a6),%a0 # pass: src addr - mov.l &0xc,%d0 # pass: opsize is 12 bytes - -# we must not yet write the extended precision data to the stack -# in the pre-decrement case from supervisor mode or else we'll corrupt -# the stack frame. so, leave it in FP_SRC for now and deal with it later... - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.b fout_ext_a7 - - bsr.l _dmem_write # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - tst.b STAG(%a6) # is operand normalized? - bne.b fout_ext_denorm # no - rts - -# the number is a DENORM. must set the underflow exception bit -fout_ext_denorm: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit - - mov.b FPCR_ENABLE(%a6),%d0 - andi.b &0x0a,%d0 # is UNFL or INEX enabled? - bne.b fout_ext_exc # yes - rts - -# we don't want to do the write if the exception occurred in supervisor mode -# so _mem_write2() handles this for us. -fout_ext_a7: - bsr.l _mem_write2 # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - tst.b STAG(%a6) # is operand normalized? - bne.b fout_ext_denorm # no - rts - -fout_ext_exc: - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the mantissa - neg.w %d0 # new exp = -(shft amt) - andi.w &0x7fff,%d0 - andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign - or.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -fout_ext_err: - mov.l EXC_A6(%a6),(%a6) # fix stacked a6 - bra.l facc_out_x - -######################################################################### -# fmove.s out ########################################################### -######################################################################### -fout_sgl: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack - -# -# operand is a normalized number. first, we check to see if the move out -# would cause either an underflow or overflow. these cases are handled -# separately. otherwise, set the FPCR to the proper rounding mode and -# execute the move. -# - mov.w SRC_EX(%a0),%d0 # extract exponent - andi.w &0x7fff,%d0 # strip sign - - cmpi.w %d0,&SGL_HI # will operand overflow? - bgt.w fout_sgl_ovfl # yes; go handle OVFL - beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL - cmpi.w %d0,&SGL_LO # will operand underflow? - blt.w fout_sgl_unfl # yes; go handle underflow - -# -# NORMs(in range) can be stored out by a simple "fmov.s" -# Unnormalized inputs can come through this point. -# -fout_sgl_exg: - fmovm.x SRC(%a0),&0x80 # fetch fop from stack - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmov.s %fp0,%d0 # store does convert and round - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex - -fout_sgl_exg_write: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_exg_write_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - rts - -fout_sgl_exg_write_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - rts - -# -# here, we know that the operand would UNFL if moved out to single prec, -# so, denorm and round and then use generic store single routine to -# write the value to memory. -# -fout_sgl_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l %a0,-(%sp) - - clr.l %d0 # pass: S.F. = 0 - - cmpi.b STAG(%a6),&DENORM # fetch src optype tag - bne.b fout_sgl_unfl_cont # let DENORMs fall through - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the DENORM - -fout_sgl_unfl_cont: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calc default underflow result - - lea FP_SCR0(%a6),%a0 # pass: ptr to fop - bsr.l dst_sgl # convert to single prec - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_unfl_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.b fout_sgl_unfl_chkexc - -fout_sgl_unfl_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - -fout_sgl_unfl_chkexc: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_unfl # yes - addq.l &0x4,%sp - rts - -# -# it's definitely an overflow so call ovf_res to get the correct answer -# -fout_sgl_ovfl: - tst.b 3+SRC_HI(%a0) # is result inexact? - bne.b fout_sgl_ovfl_inex2 - tst.l SRC_LO(%a0) # is result inexact? - bne.b fout_sgl_ovfl_inex2 - ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - bra.b fout_sgl_ovfl_cont -fout_sgl_ovfl_inex2: - ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 - -fout_sgl_ovfl_cont: - mov.l %a0,-(%sp) - -# call ovf_res() w/ sgl prec and the correct rnd mode to create the default -# overflow result. DON'T save the returned ccodes from ovf_res() since -# fmove out doesn't alter them. - tst.b SRC_EX(%a0) # is operand negative? - smi %d1 # set if so - mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode - bsr.l ovf_res # calc OVFL result - fmovm.x (%a0),&0x80 # load default overflow result - fmov.s %fp0,%d0 # store to single - - mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode - andi.b &0x38,%d1 # is mode == 0? (Dreg dst) - beq.b fout_sgl_ovfl_dn # must save to integer regfile - - mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct - bsr.l _dmem_write_long # write long - - tst.l %d1 # did dstore fail? - bne.l facc_out_l # yes - - bra.b fout_sgl_ovfl_chkexc - -fout_sgl_ovfl_dn: - mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn - andi.w &0x7,%d1 - bsr.l store_dreg_l - -fout_sgl_ovfl_chkexc: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_ovfl # yes - addq.l &0x4,%sp - rts - -# -# move out MAY overflow: -# (1) force the exp to 0x3fff -# (2) do a move w/ appropriate rnd mode -# (3) if exp still equals zero, then insert original exponent -# for the correct result. -# if exp now equals one, then it overflowed so call ovf_res. -# -fout_sgl_may_ovfl: - mov.w SRC_EX(%a0),%d1 # fetch current sign - andi.w &0x8000,%d1 # keep it,clear exp - ori.w &0x3fff,%d1 # insert exp = 0 - mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # need absolute value - fcmp.b %fp0,&0x2 # did exponent increase? - fblt.w fout_sgl_exg # no; go finish NORM - bra.w fout_sgl_ovfl # yes; go handle overflow - -################ - -fout_sd_exc_unfl: - mov.l (%sp)+,%a0 - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - cmpi.b STAG(%a6),&DENORM # was src a DENORM? - bne.b fout_sd_exc_cont # no - - lea FP_SCR0(%a6),%a0 - bsr.l norm - neg.l %d0 - andi.w &0x7fff,%d0 - bfins %d0,FP_SCR0_EX(%a6){&1:&15} - bra.b fout_sd_exc_cont - -fout_sd_exc: -fout_sd_exc_ovfl: - mov.l (%sp)+,%a0 # restore a0 - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - -fout_sd_exc_cont: - bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit - sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit - lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM - - mov.b 3+L_SCR3(%a6),%d1 - lsr.b &0x4,%d1 - andi.w &0x0c,%d1 - swap %d1 - mov.b 3+L_SCR3(%a6),%d1 - lsr.b &0x4,%d1 - andi.w &0x03,%d1 - clr.l %d0 # pass: zero g,r,s - bsr.l _round # round the DENORM - - tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative? - beq.b fout_sd_exc_done # no - bset &0x7,FP_SCR0_EX(%a6) # yes - -fout_sd_exc_done: - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -################################################################# -# fmove.d out ################################################### -################################################################# -fout_dbl: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack - -# -# operand is a normalized number. first, we check to see if the move out -# would cause either an underflow or overflow. these cases are handled -# separately. otherwise, set the FPCR to the proper rounding mode and -# execute the move. -# - mov.w SRC_EX(%a0),%d0 # extract exponent - andi.w &0x7fff,%d0 # strip sign - - cmpi.w %d0,&DBL_HI # will operand overflow? - bgt.w fout_dbl_ovfl # yes; go handle OVFL - beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL - cmpi.w %d0,&DBL_LO # will operand underflow? - blt.w fout_dbl_unfl # yes; go handle underflow - -# -# NORMs(in range) can be stored out by a simple "fmov.d" -# Unnormalized inputs can come through this point. -# -fout_dbl_exg: - fmovm.x SRC(%a0),&0x80 # fetch fop from stack - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmov.d %fp0,L_SCR1(%a6) # store does convert and round - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d0 # save FPSR - - or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - rts # no; so we're finished - -# -# here, we know that the operand would UNFL if moved out to double prec, -# so, denorm and round and then use generic store double routine to -# write the value to memory. -# -fout_dbl_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.l %a0,-(%sp) - - clr.l %d0 # pass: S.F. = 0 - - cmpi.b STAG(%a6),&DENORM # fetch src optype tag - bne.b fout_dbl_unfl_cont # let DENORMs fall through - - lea FP_SCR0(%a6),%a0 - bsr.l norm # normalize the DENORM - -fout_dbl_unfl_cont: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calc default underflow result - - lea FP_SCR0(%a6),%a0 # pass: ptr to fop - bsr.l dst_dbl # convert to single prec - mov.l %d0,L_SCR1(%a6) - mov.l %d1,L_SCR2(%a6) - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_unfl # yes - addq.l &0x4,%sp - rts - -# -# it's definitely an overflow so call ovf_res to get the correct answer -# -fout_dbl_ovfl: - mov.w 2+SRC_LO(%a0),%d0 - andi.w &0x7ff,%d0 - bne.b fout_dbl_ovfl_inex2 - - ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - bra.b fout_dbl_ovfl_cont -fout_dbl_ovfl_inex2: - ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 - -fout_dbl_ovfl_cont: - mov.l %a0,-(%sp) - -# call ovf_res() w/ dbl prec and the correct rnd mode to create the default -# overflow result. DON'T save the returned ccodes from ovf_res() since -# fmove out doesn't alter them. - tst.b SRC_EX(%a0) # is operand negative? - smi %d1 # set if so - mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode - bsr.l ovf_res # calc OVFL result - fmovm.x (%a0),&0x80 # load default overflow result - fmov.d %fp0,L_SCR1(%a6) # store to double - - mov.l EXC_EA(%a6),%a1 # pass: dst addr - lea L_SCR1(%a6),%a0 # pass: src addr - movq.l &0x8,%d0 # pass: opsize is 8 bytes - bsr.l _dmem_write # store dbl fop to memory - - tst.l %d1 # did dstore fail? - bne.l facc_out_d # yes - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0a,%d1 # is UNFL or INEX enabled? - bne.w fout_sd_exc_ovfl # yes - addq.l &0x4,%sp - rts - -# -# move out MAY overflow: -# (1) force the exp to 0x3fff -# (2) do a move w/ appropriate rnd mode -# (3) if exp still equals zero, then insert original exponent -# for the correct result. -# if exp now equals one, then it overflowed so call ovf_res. -# -fout_dbl_may_ovfl: - mov.w SRC_EX(%a0),%d1 # fetch current sign - andi.w &0x8000,%d1 # keep it,clear exp - ori.w &0x3fff,%d1 # insert exp = 0 - mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # need absolute value - fcmp.b %fp0,&0x2 # did exponent increase? - fblt.w fout_dbl_exg # no; go finish NORM - bra.w fout_dbl_ovfl # yes; go handle overflow - -######################################################################### -# XDEF **************************************************************** # -# dst_dbl(): create double precision value from extended prec. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# a0 = pointer to source operand in extended precision # -# # -# OUTPUT ************************************************************** # -# d0 = hi(double precision result) # -# d1 = lo(double precision result) # -# # -# ALGORITHM *********************************************************** # -# # -# Changes extended precision to double precision. # -# Note: no attempt is made to round the extended value to double. # -# dbl_sign = ext_sign # -# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) # -# get rid of ext integer bit # -# dbl_mant = ext_mant{62:12} # -# # -# --------------- --------------- --------------- # -# extended -> |s| exp | |1| ms mant | | ls mant | # -# --------------- --------------- --------------- # -# 95 64 63 62 32 31 11 0 # -# | | # -# | | # -# | | # -# v v # -# --------------- --------------- # -# double -> |s|exp| mant | | mant | # -# --------------- --------------- # -# 63 51 32 31 0 # -# # -######################################################################### - -dst_dbl: - clr.l %d0 # clear d0 - mov.w FTEMP_EX(%a0),%d0 # get exponent - subi.w &EXT_BIAS,%d0 # subtract extended precision bias - addi.w &DBL_BIAS,%d0 # add double precision bias - tst.b FTEMP_HI(%a0) # is number a denorm? - bmi.b dst_get_dupper # no - subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1 -dst_get_dupper: - swap %d0 # d0 now in upper word - lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp - tst.b FTEMP_EX(%a0) # test sign - bpl.b dst_get_dman # if positive, go process mantissa - bset &0x1f,%d0 # if negative, set sign -dst_get_dman: - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms - or.l %d1,%d0 # put these bits in ms word of double - mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - mov.l &21,%d0 # load shift count - lsl.l %d0,%d1 # put lower 11 bits in upper bits - mov.l %d1,L_SCR2(%a6) # build lower lword in memory - mov.l FTEMP_LO(%a0),%d1 # get ls mantissa - bfextu %d1{&0:&21},%d0 # get ls 21 bits of double - mov.l L_SCR2(%a6),%d1 - or.l %d0,%d1 # put them in double result - mov.l L_SCR1(%a6),%d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# dst_sgl(): create single precision value from extended prec # -# # -# XREF **************************************************************** # -# # -# INPUT *************************************************************** # -# a0 = pointer to source operand in extended precision # -# # -# OUTPUT ************************************************************** # -# d0 = single precision result # -# # -# ALGORITHM *********************************************************** # -# # -# Changes extended precision to single precision. # -# sgl_sign = ext_sign # -# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) # -# get rid of ext integer bit # -# sgl_mant = ext_mant{62:12} # -# # -# --------------- --------------- --------------- # -# extended -> |s| exp | |1| ms mant | | ls mant | # -# --------------- --------------- --------------- # -# 95 64 63 62 40 32 31 12 0 # -# | | # -# | | # -# | | # -# v v # -# --------------- # -# single -> |s|exp| mant | # -# --------------- # -# 31 22 0 # -# # -######################################################################### - -dst_sgl: - clr.l %d0 - mov.w FTEMP_EX(%a0),%d0 # get exponent - subi.w &EXT_BIAS,%d0 # subtract extended precision bias - addi.w &SGL_BIAS,%d0 # add single precision bias - tst.b FTEMP_HI(%a0) # is number a denorm? - bmi.b dst_get_supper # no - subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1 -dst_get_supper: - swap %d0 # put exp in upper word of d0 - lsl.l &0x7,%d0 # shift it into single exp bits - tst.b FTEMP_EX(%a0) # test sign - bpl.b dst_get_sman # if positive, continue - bset &0x1f,%d0 # if negative, put in sign first -dst_get_sman: - mov.l FTEMP_HI(%a0),%d1 # get ms mantissa - andi.l &0x7fffff00,%d1 # get upper 23 bits of ms - lsr.l &0x8,%d1 # and put them flush right - or.l %d1,%d0 # put these bits in ms word of single - rts - -############################################################################## -fout_pack: - bsr.l _calc_ea_fout # fetch the <ea> - mov.l %a0,-(%sp) - - mov.b STAG(%a6),%d0 # fetch input type - bne.w fout_pack_not_norm # input is not NORM - -fout_pack_norm: - btst &0x4,EXC_CMDREG(%a6) # static or dynamic? - beq.b fout_pack_s # static - -fout_pack_d: - mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg - lsr.b &0x4,%d1 - andi.w &0x7,%d1 - - bsr.l fetch_dreg # fetch Dn w/ k-factor - - bra.b fout_pack_type -fout_pack_s: - mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field - -fout_pack_type: - bfexts %d0{&25:&7},%d0 # extract k-factor - mov.l %d0,-(%sp) - - lea FP_SRC(%a6),%a0 # pass: ptr to input - -# bindec is currently scrambling FP_SRC for denorm inputs. -# we'll have to change this, but for now, tough luck!!! - bsr.l bindec # convert xprec to packed - -# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields - andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields - - mov.l (%sp)+,%d0 - - tst.b 3+FP_SCR0_EX(%a6) - bne.b fout_pack_set - tst.l FP_SCR0_HI(%a6) - bne.b fout_pack_set - tst.l FP_SCR0_LO(%a6) - bne.b fout_pack_set - -# add the extra condition that only if the k-factor was zero, too, should -# we zero the exponent - tst.l %d0 - bne.b fout_pack_set -# "mantissa" is all zero which means that the answer is zero. but, the '040 -# algorithm allows the exponent to be non-zero. the 881/2 do not. Therefore, -# if the mantissa is zero, I will zero the exponent, too. -# the question now is whether the exponents sign bit is allowed to be non-zero -# for a zero, also... - andi.w &0xf000,FP_SCR0(%a6) - -fout_pack_set: - - lea FP_SCR0(%a6),%a0 # pass: src addr - -fout_pack_write: - mov.l (%sp)+,%a1 # pass: dst addr - mov.l &0xc,%d0 # pass: opsize is 12 bytes - - cmpi.b SPCOND_FLG(%a6),&mda7_flg - beq.b fout_pack_a7 - - bsr.l _dmem_write # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - rts - -# we don't want to do the write if the exception occurred in supervisor mode -# so _mem_write2() handles this for us. -fout_pack_a7: - bsr.l _mem_write2 # write ext prec number to memory - - tst.l %d1 # did dstore fail? - bne.w fout_ext_err # yes - - rts - -fout_pack_not_norm: - cmpi.b %d0,&DENORM # is it a DENORM? - beq.w fout_pack_norm # yes - lea FP_SRC(%a6),%a0 - clr.w 2+FP_SRC_EX(%a6) - cmpi.b %d0,&SNAN # is it an SNAN? - beq.b fout_pack_snan # yes - bra.b fout_pack_write # no - -fout_pack_snan: - ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP - bset &0x6,FP_SRC_HI(%a6) # set snan bit - bra.b fout_pack_write - -######################################################################### -# XDEF **************************************************************** # -# fmul(): emulates the fmul instruction # -# fsmul(): emulates the fsmul instruction # -# fdmul(): emulates the fdmul instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a multiply # -# instruction won't cause an exception. Use the regular fmul to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - align 0x10 -tbl_fmul_ovfl: - long 0x3fff - 0x7ffe # ext_max - long 0x3fff - 0x407e # sgl_max - long 0x3fff - 0x43fe # dbl_max -tbl_fmul_unfl: - long 0x3fff + 0x0001 # ext_unfl - long 0x3fff - 0x3f80 # sgl_unfl - long 0x3fff - 0x3c00 # dbl_unfl - - global fsmul -fsmul: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fmul - - global fdmul -fdmul: - andi.b &0x30,%d0 - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fmul -fmul: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - bne.w fmul_not_norm # optimize on non-norm input - -fmul_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale src exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2 - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision - lsr.b &0x6,%d1 # shift to lo bits - mov.l (%sp)+,%d0 # load S.F. - cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? - beq.w fmul_may_ovfl # result may rnd to overflow - blt.w fmul_ovfl # result will overflow - - cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? - beq.w fmul_may_unfl # result may rnd to no unfl - bgt.w fmul_unfl # result will underflow - -# -# NORMAL: -# - the result of the multiply operation will neither overflow nor underflow. -# - do the multiply to the proper precision and rounding mode. -# - scale the result exponent using the scale factor. if both operands were -# normalized then we really don't need to go through this scaling. but for now, -# this will do. -# -fmul_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fmul_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# OVERFLOW: -# - the result of the multiply operation is an overflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# - if overflow or inexact is enabled, we need a multiply result rounded to -# extended precision. if the original operation was extended, then we have this -# result. if the original operation was single or double, we have to do another -# multiply using extended precision and the correct rounding mode. the result -# of this operation then has its exponent scaled by -0x6000 to create the -# exceptional operand. -# -fmul_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -# save setting this until now because this is where fmul_may_ovfl may jump in -fmul_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fmul_ovfl_ena # yes - -# calculate the default result -fmul_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled; Create EXOP: -# - if precision is extended, then we have the EXOP. simply bias the exponent -# with an extra -0x6000. if the precision is single or double, we need to -# calculate a result rounded to extended precision. -# -fmul_ovfl_ena: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # test the rnd prec - bne.b fmul_ovfl_ena_sd # it's sgl or dbl - -fmul_ovfl_ena_cont: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 # clear sign bit - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fmul_ovfl_dis - -fmul_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode only - fmov.l %d1,%fpcr # set FPCR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - bra.b fmul_ovfl_ena_cont - -# -# may OVERFLOW: -# - the result of the multiply operation MAY overflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# -fmul_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fmul_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fmul_normal_exit - -# -# UNDERFLOW: -# - the result of the multiply operation is an underflow. -# - do the multiply to the proper precision and rounding mode in order to -# set the inexact bits. -# - calculate the default result and return it in fp0. -# - if overflow or inexact is enabled, we need a multiply result rounded to -# extended precision. if the original operation was extended, then we have this -# result. if the original operation was single or double, we have to do another -# multiply using extended precision and the correct rounding mode. the result -# of this operation then has its exponent scaled by -0x6000 to create the -# exceptional operand. -# -fmul_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - -# for fun, let's use only extended precision, round to zero. then, let -# the unf_res() routine figure out all the rest. -# will we get the correct answer. - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fmul_unfl_ena # yes - -fmul_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fmul_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fmul_unfl_ena_sd # no, sgl or dbl - -# if the rnd mode is anything but RZ, then we have to re-do the above -# multiplication because we used RZ for all. - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fmul_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fmul_unfl_dis - -fmul_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fmul_unfl_ena_cont - -# MAY UNDERFLOW: -# -use the correct rounding mode and precision. this code favors operations -# that do not underflow. -fmul_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp0 # execute multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| > 2.b? - fbgt.w fmul_normal_exit # no; no underflow occurred - fblt.w fmul_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 2. but, -# we don't know if the result was an underflow that rounded up to a 2 or -# a normalized number that rounded down to a 2. so, redo the entire operation -# using RZ as the rounding mode to see what the pre-rounded result is. -# this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fmul.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x2 # is |result| < 2.b? - fbge.w fmul_normal_exit # no; no underflow occurred - bra.w fmul_unfl # yes, underflow occurred - -################################################################################ - -# -# Multiply: inputs are not both normalized; what are they? -# -fmul_not_norm: - mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fmul_op.b,%pc,%d1.w) - - swbeg &48 -tbl_fmul_op: - short fmul_norm - tbl_fmul_op # NORM x NORM - short fmul_zero - tbl_fmul_op # NORM x ZERO - short fmul_inf_src - tbl_fmul_op # NORM x INF - short fmul_res_qnan - tbl_fmul_op # NORM x QNAN - short fmul_norm - tbl_fmul_op # NORM x DENORM - short fmul_res_snan - tbl_fmul_op # NORM x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_zero - tbl_fmul_op # ZERO x NORM - short fmul_zero - tbl_fmul_op # ZERO x ZERO - short fmul_res_operr - tbl_fmul_op # ZERO x INF - short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN - short fmul_zero - tbl_fmul_op # ZERO x DENORM - short fmul_res_snan - tbl_fmul_op # ZERO x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_inf_dst - tbl_fmul_op # INF x NORM - short fmul_res_operr - tbl_fmul_op # INF x ZERO - short fmul_inf_dst - tbl_fmul_op # INF x INF - short fmul_res_qnan - tbl_fmul_op # INF x QNAN - short fmul_inf_dst - tbl_fmul_op # INF x DENORM - short fmul_res_snan - tbl_fmul_op # INF x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_res_qnan - tbl_fmul_op # QNAN x NORM - short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO - short fmul_res_qnan - tbl_fmul_op # QNAN x INF - short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN - short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM - short fmul_res_snan - tbl_fmul_op # QNAN x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_norm - tbl_fmul_op # NORM x NORM - short fmul_zero - tbl_fmul_op # NORM x ZERO - short fmul_inf_src - tbl_fmul_op # NORM x INF - short fmul_res_qnan - tbl_fmul_op # NORM x QNAN - short fmul_norm - tbl_fmul_op # NORM x DENORM - short fmul_res_snan - tbl_fmul_op # NORM x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - - short fmul_res_snan - tbl_fmul_op # SNAN x NORM - short fmul_res_snan - tbl_fmul_op # SNAN x ZERO - short fmul_res_snan - tbl_fmul_op # SNAN x INF - short fmul_res_snan - tbl_fmul_op # SNAN x QNAN - short fmul_res_snan - tbl_fmul_op # SNAN x DENORM - short fmul_res_snan - tbl_fmul_op # SNAN x SNAN - short tbl_fmul_op - tbl_fmul_op # - short tbl_fmul_op - tbl_fmul_op # - -fmul_res_operr: - bra.l res_operr -fmul_res_snan: - bra.l res_snan -fmul_res_qnan: - bra.l res_qnan - -# -# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) -# - global fmul_zero # global for fsglmul -fmul_zero: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_zero_p # result ZERO is pos. -fmul_zero_n: - fmov.s &0x80000000,%fp0 # load -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N - rts -fmul_zero_p: - fmov.s &0x00000000,%fp0 # load +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# Multiply: (inf x inf) || (inf x norm) || (inf x denorm) -# -# Note: The j-bit for an infinity is a don't-care. However, to be -# strictly compatible w/ the 68881/882, we make sure to return an -# INF w/ the j-bit set if the input INF j-bit was set. Destination -# INFs take priority. -# - global fmul_inf_dst # global for fsglmul -fmul_inf_dst: - fmovm.x DST(%a1),&0x80 # return INF result in fp0 - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_inf_dst_p # result INF is pos. -fmul_inf_dst_n: - fabs.x %fp0 # clear result sign - fneg.x %fp0 # set result sign - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N - rts -fmul_inf_dst_p: - fabs.x %fp0 # clear result sign - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - - global fmul_inf_src # global for fsglmul -fmul_inf_src: - fmovm.x SRC(%a0),&0x80 # return INF result in fp0 - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fmul_inf_dst_p # result INF is pos. - bra.b fmul_inf_dst_n - -######################################################################### -# XDEF **************************************************************** # -# fin(): emulates the fmove instruction # -# fsin(): emulates the fsmove instruction # -# fdin(): emulates the fdmove instruction # -# # -# XREF **************************************************************** # -# norm() - normalize mantissa for EXOP on denorm # -# scale_to_zero_src() - scale src exponent to zero # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round prec/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Norms can be emulated w/ a regular fmove instruction. For # -# sgl/dbl, must scale exponent and perform an "fmove". Check to see # -# if the result would have overflowed/underflowed. If so, use unf_res() # -# or ovf_res() to return the default result. Also return EXOP if # -# exception is enabled. If no exception, return the default result. # -# Unnorms don't pass through here. # -# # -######################################################################### - - global fsin -fsin: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fin - - global fdin -fdin: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fin -fin: - mov.l %d0,L_SCR3(%a6) # store rnd info - - mov.b STAG(%a6),%d1 # fetch src optype tag - bne.w fin_not_norm # optimize on non-norm input - -# -# FP MOVE IN: NORMs and DENORMs ONLY! -# -fin_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fin_not_ext # no, so go handle dbl or sgl - -# -# precision selected is extended. so...we cannot get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - tst.b SRC_EX(%a0) # is the operand negative? - bpl.b fin_norm_done # no - bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit -fin_norm_done: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fin_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fin_not_ext # no, so go handle dbl or sgl - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - tst.b SRC_EX(%a0) # is the operand negative? - bpl.b fin_denorm_done # no - bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit -fin_denorm_done: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fin_denorm_unfl_ena # yes - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fin_denorm_unfl_ena: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat new exo,old sign - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is to be rounded to single or double precision -# -fin_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fin_dbl - -# -# operand is to be rounded to single precision -# -fin_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fin_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fin_sd_may_ovfl # maybe; go check - blt.w fin_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved into the fp reg file -# -fin_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform move - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fin_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exponent - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fin_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.w fin_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fin_sd_may_ovfl # maybe; go check - blt.w fin_sd_ovfl # yes; go handle overflow - bra.w fin_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fin_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - tst.b FP_SCR0_EX(%a6) # is operand negative? - bpl.b fin_sd_unfl_tst - bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit - -# if underflow or inexact is enabled, then go calculate the EXOP first. -fin_sd_unfl_tst: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fin_sd_unfl_ena # yes - -fin_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow or inexact is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fin_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # subtract scale factor - andi.w &0x8000,%d2 # extract old sign - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fin_sd_unfl_dis - -# -# operand WILL overflow. -# -fin_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform move - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fin_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fin_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fin_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fin_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - sub.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fin_sd_ovfl_dis - -# -# the move in MAY overflow. so... -# -fin_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fmov.x FP_SCR0(%a6),%fp0 # perform the move - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fin_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fin_sd_normal_exit - -########################################################################## - -# -# operand is not a NORM: check its optype and branch accordingly -# -fin_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fin_denorm - cmpi.b %d1,&SNAN # weed out SNANs - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNANs - beq.l res_qnan_1op - -# -# do the fmove in; at this point, only possible ops are ZERO and INF. -# use fmov to determine ccodes. -# prec:mode should be zero at this point but it won't affect answer anyways. -# - fmov.x SRC(%a0),%fp0 # do fmove in - fmov.l %fpsr,%d0 # no exceptions possible - rol.l &0x8,%d0 # put ccodes in lo byte - mov.b %d0,FPSR_CC(%a6) # insert correct ccodes - rts - -######################################################################### -# XDEF **************************************************************** # -# fdiv(): emulates the fdiv instruction # -# fsdiv(): emulates the fsdiv instruction # -# fddiv(): emulates the fddiv instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a divide # -# instruction won't cause an exception. Use the regular fdiv to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - align 0x10 -tbl_fdiv_unfl: - long 0x3fff - 0x0000 # ext_unfl - long 0x3fff - 0x3f81 # sgl_unfl - long 0x3fff - 0x3c01 # dbl_unfl - -tbl_fdiv_ovfl: - long 0x3fff - 0x7ffe # ext overflow exponent - long 0x3fff - 0x407e # sgl overflow exponent - long 0x3fff - 0x43fe # dbl overflow exponent - - global fsdiv -fsdiv: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fdiv - - global fddiv -fddiv: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fdiv -fdiv: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fdiv_not_norm # optimize on non-norm input - -# -# DIVIDE: NORMs and DENORMs ONLY! -# -fdiv_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale src exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - neg.l (%sp) # SCALE FACTOR = scale1 - scale2 - add.l %d0,(%sp) - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision - lsr.b &0x6,%d1 # shift to lo bits - mov.l (%sp)+,%d0 # load S.F. - cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? - ble.w fdiv_may_ovfl # result will overflow - - cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? - beq.w fdiv_may_unfl # maybe - bgt.w fdiv_unfl # yes; go handle underflow - -fdiv_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # save FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # perform divide - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fdiv_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store result on stack - mov.l %d2,-(%sp) # store d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -tbl_fdiv_ovfl2: - long 0x7fff - long 0x407f - long 0x43ff - -fdiv_no_ovfl: - mov.l (%sp)+,%d0 # restore scale factor - bra.b fdiv_normal_exit - -fdiv_may_ovfl: - mov.l %d0,-(%sp) # save scale factor - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # set FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d0 - fmov.l &0x0,%fpcr - - or.l %d0,USER_FPSR(%a6) # save INEX,N - - fmovm.x &0x01,-(%sp) # save result to stack - mov.w (%sp),%d0 # fetch new exponent - add.l &0xc,%sp # clear result from stack - andi.l &0x7fff,%d0 # strip sign - sub.l (%sp),%d0 # add scale factor - cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) - blt.b fdiv_no_ovfl - mov.l (%sp)+,%d0 - -fdiv_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fdiv_ovfl_ena # yes - -fdiv_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fdiv_ovfl_ena: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl - -fdiv_ovfl_ena_cont: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 # clear sign bit - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fdiv_ovfl_dis - -fdiv_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst operand - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode - fmov.l %d1,%fpcr # set FPCR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - bra.b fdiv_ovfl_ena_cont - -fdiv_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fdiv_unfl_ena # yes - -fdiv_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fdiv_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fdiv_unfl_ena_sd # no, sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fdiv_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp1 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factoer - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exp - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fdiv_unfl_dis - -fdiv_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fdiv_unfl_ena_cont - -# -# the divide operation MAY underflow: -# -fdiv_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| > 1.b? - fbgt.w fdiv_normal_exit # no; no underflow occurred - fblt.w fdiv_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 1. but, -# we don't know if the result was an underflow that rounded up to a 1 -# or a normalized number that rounded down to a 1. so, redo the entire -# operation using RZ as the rounding mode to see what the pre-rounded -# result is. this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fdiv.x FP_SCR0(%a6),%fp1 # execute divide - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x1 # is |result| < 1.b? - fbge.w fdiv_normal_exit # no; no underflow occurred - bra.w fdiv_unfl # yes; underflow occurred - -############################################################################ - -# -# Divide: inputs are not both normalized; what are they? -# -fdiv_not_norm: - mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fdiv_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fdiv_op: - short fdiv_norm - tbl_fdiv_op # NORM / NORM - short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO - short fdiv_zero_load - tbl_fdiv_op # NORM / INF - short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN - short fdiv_norm - tbl_fdiv_op # NORM / DENORM - short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM - short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO - short fdiv_zero_load - tbl_fdiv_op # ZERO / INF - short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN - short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM - short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_inf_dst - tbl_fdiv_op # INF / NORM - short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO - short fdiv_res_operr - tbl_fdiv_op # INF / INF - short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN - short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM - short fdiv_res_snan - tbl_fdiv_op # INF / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM - short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO - short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF - short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN - short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM - short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_norm - tbl_fdiv_op # DENORM / NORM - short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO - short fdiv_zero_load - tbl_fdiv_op # DENORM / INF - short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN - short fdiv_norm - tbl_fdiv_op # DENORM / DENORM - short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - - short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM - short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO - short fdiv_res_snan - tbl_fdiv_op # SNAN / INF - short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN - short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM - short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN - short tbl_fdiv_op - tbl_fdiv_op # - short tbl_fdiv_op - tbl_fdiv_op # - -fdiv_res_qnan: - bra.l res_qnan -fdiv_res_snan: - bra.l res_snan -fdiv_res_operr: - bra.l res_operr - - global fdiv_zero_load # global for fsgldiv -fdiv_zero_load: - mov.b SRC_EX(%a0),%d0 # result sign is exclusive - mov.b DST_EX(%a1),%d1 # or of input signs. - eor.b %d0,%d1 - bpl.b fdiv_zero_load_p # result is positive - fmov.s &0x80000000,%fp0 # load a -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N - rts -fdiv_zero_load_p: - fmov.s &0x00000000,%fp0 # load a +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# The destination was In Range and the source was a ZERO. The result, -# Therefore, is an INF w/ the proper sign. -# So, determine the sign and return a new INF (w/ the j-bit cleared). -# - global fdiv_inf_load # global for fsgldiv -fdiv_inf_load: - ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ - mov.b SRC_EX(%a0),%d0 # load both signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bpl.b fdiv_inf_load_p # result is positive - fmov.s &0xff800000,%fp0 # make result -INF - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N - rts -fdiv_inf_load_p: - fmov.s &0x7f800000,%fp0 # make result +INF - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -# -# The destination was an INF w/ an In Range or ZERO source, the result is -# an INF w/ the proper sign. -# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the -# dst INF is set, then then j-bit of the result INF is also set). -# - global fdiv_inf_dst # global for fsgldiv -fdiv_inf_dst: - mov.b DST_EX(%a1),%d0 # load both signs - mov.b SRC_EX(%a0),%d1 - eor.b %d0,%d1 - bpl.b fdiv_inf_dst_p # result is positive - - fmovm.x DST(%a1),&0x80 # return result in fp0 - fabs.x %fp0 # clear sign bit - fneg.x %fp0 # set sign bit - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fdiv_inf_dst_p: - fmovm.x DST(%a1),&0x80 # return result in fp0 - fabs.x %fp0 # return positive INF - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fneg(): emulates the fneg instruction # -# fsneg(): emulates the fsneg instruction # -# fdneg(): emulates the fdneg instruction # -# # -# XREF **************************************************************** # -# norm() - normalize a denorm to provide EXOP # -# scale_to_zero_src() - scale sgl/dbl source exponent # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, zeroes, and infinities as special cases. Separate # -# norms/denorms into ext/sgl/dbl precisions. Extended precision can be # -# emulated by simply setting sign bit. Sgl/dbl operands must be scaled # -# and an actual fneg performed to see if overflow/underflow would have # -# occurred. If so, return default underflow/overflow result. Else, # -# scale the result exponent and return result. FPSR gets set based on # -# the result value. # -# # -######################################################################### - - global fsneg -fsneg: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fneg - - global fdneg -fdneg: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fneg -fneg: - mov.l %d0,L_SCR3(%a6) # store rnd info - mov.b STAG(%a6),%d1 - bne.w fneg_not_norm # optimize on non-norm input - -# -# NEGATE SIGN : norms and denorms ONLY! -# -fneg_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.w fneg_not_ext # no; go handle sgl or dbl - -# -# precision selected is extended. so...we can not get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - eori.w &0x8000,%d0 # negate sign - bpl.b fneg_norm_load # sign is positive - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit -fneg_norm_load: - mov.w %d0,FP_SCR0_EX(%a6) - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fneg_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fneg_not_ext # no; go handle sgl or dbl - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - eori.w &0x8000,%d0 # negate sign - bpl.b fneg_denorm_done # no - mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit -fneg_denorm_done: - mov.w %d0,FP_SCR0_EX(%a6) - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fneg_ext_unfl_ena # yes - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fneg_ext_unfl_ena: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat old sign, new exponent - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is either single or double -# -fneg_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fneg_dbl - -# -# operand is to be rounded to single precision -# -fneg_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fneg_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fneg_sd_may_ovfl # maybe; go check - blt.w fneg_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fneg_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fneg_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.w %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fneg_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.b fneg_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fneg_sd_may_ovfl # maybe; go check - blt.w fneg_sd_ovfl # yes; go handle overflow - bra.w fneg_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fneg_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - eori.b &0x80,FP_SCR0_EX(%a6) # negate sign - bpl.b fneg_sd_unfl_tst - bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit - -# if underflow or inexact is enabled, go calculate EXOP first. -fneg_sd_unfl_tst: - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fneg_sd_unfl_ena # yes - -fneg_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z' - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fneg_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fneg_sd_unfl_dis - -# -# operand WILL overflow. -# -fneg_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fneg_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fneg_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fneg_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fneg_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fneg_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fneg_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fneg.x FP_SCR0(%a6),%fp0 # perform negation - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fneg_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fneg_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fneg_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - -# -# do the fneg; at this point, only possible ops are ZERO and INF. -# use fneg to determine ccodes. -# prec:mode should be zero at this point but it won't affect answer anyways. -# - fneg.x SRC_EX(%a0),%fp0 # do fneg - fmov.l %fpsr,%d0 - rol.l &0x8,%d0 # put ccodes in lo byte - mov.b %d0,FPSR_CC(%a6) # insert correct ccodes - rts - -######################################################################### -# XDEF **************************************************************** # -# ftst(): emulates the ftest instruction # -# # -# XREF **************************************************************** # -# res{s,q}nan_1op() - set NAN result for monadic instruction # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# # -# OUTPUT ************************************************************** # -# none # -# # -# ALGORITHM *********************************************************** # -# Check the source operand tag (STAG) and set the FPCR according # -# to the operand type and sign. # -# # -######################################################################### - - global ftst -ftst: - mov.b STAG(%a6),%d1 - bne.b ftst_not_norm # optimize on non-norm input - -# -# Norm: -# -ftst_norm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_norm_m # yes - rts -ftst_norm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# input is not normalized; what is it? -# -ftst_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b ftst_zero - cmpi.b %d1,&INF # weed out INF - beq.b ftst_inf - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - -# -# Denorm: -# -ftst_denorm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_denorm_m # yes - rts -ftst_denorm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts - -# -# Infinity: -# -ftst_inf: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_inf_m # yes -ftst_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -ftst_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits - rts - -# -# Zero: -# -ftst_zero: - tst.b SRC_EX(%a0) # is operand negative? - bmi.b ftst_zero_m # yes -ftst_zero_p: - mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit - rts -ftst_zero_m: - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fint(): emulates the fint instruction # -# # -# XREF **************************************************************** # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# # -# ALGORITHM *********************************************************** # -# Separate according to operand type. Unnorms don't pass through # -# here. For norms, load the rounding mode/prec, execute a "fint", then # -# store the resulting FPSR bits. # -# For denorms, force the j-bit to a one and do the same as for # -# norms. Denorms are so low that the answer will either be a zero or a # -# one. # -# For zeroes/infs/NANs, return the same while setting the FPSR # -# as appropriate. # -# # -######################################################################### - - global fint -fint: - mov.b STAG(%a6),%d1 - bne.b fint_not_norm # optimize on non-norm input - -# -# Norm: -# -fint_norm: - andi.b &0x30,%d0 # set prec = ext - - fmov.l %d0,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fint.x SRC(%a0),%fp0 # execute fint - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d0 # save FPSR - or.l %d0,USER_FPSR(%a6) # set exception bits - - rts - -# -# input is not normalized; what is it? -# -fint_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fint_zero - cmpi.b %d1,&INF # weed out INF - beq.b fint_inf - cmpi.b %d1,&DENORM # weed out DENORM - beq.b fint_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op # weed out QNAN - -# -# Denorm: -# -# for DENORMs, the result will be either (+/-)ZERO or (+/-)1. -# also, the INEX2 and AINEX exception bits will be set. -# so, we could either set these manually or force the DENORM -# to a very small NORM and ship it to the NORM routine. -# I do the latter. -# -fint_denorm: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp - mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM - lea FP_SCR0(%a6),%a0 - bra.b fint_norm - -# -# Zero: -# -fint_zero: - tst.b SRC_EX(%a0) # is ZERO negative? - bmi.b fint_zero_m # yes -fint_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO in fp0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fint_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -# -# Infinity: -# -fint_inf: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - tst.b SRC_EX(%a0) # is INF negative? - bmi.b fint_inf_m # yes -fint_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -fint_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fintrz(): emulates the fintrz instruction # -# # -# XREF **************************************************************** # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = round precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# # -# ALGORITHM *********************************************************** # -# Separate according to operand type. Unnorms don't pass through # -# here. For norms, load the rounding mode/prec, execute a "fintrz", # -# then store the resulting FPSR bits. # -# For denorms, force the j-bit to a one and do the same as for # -# norms. Denorms are so low that the answer will either be a zero or a # -# one. # -# For zeroes/infs/NANs, return the same while setting the FPSR # -# as appropriate. # -# # -######################################################################### - - global fintrz -fintrz: - mov.b STAG(%a6),%d1 - bne.b fintrz_not_norm # optimize on non-norm input - -# -# Norm: -# -fintrz_norm: - fmov.l &0x0,%fpsr # clear FPSR - - fintrz.x SRC(%a0),%fp0 # execute fintrz - - fmov.l %fpsr,%d0 # save FPSR - or.l %d0,USER_FPSR(%a6) # set exception bits - - rts - -# -# input is not normalized; what is it? -# -fintrz_not_norm: - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fintrz_zero - cmpi.b %d1,&INF # weed out INF - beq.b fintrz_inf - cmpi.b %d1,&DENORM # weed out DENORM - beq.b fintrz_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op # weed out QNAN - -# -# Denorm: -# -# for DENORMs, the result will be (+/-)ZERO. -# also, the INEX2 and AINEX exception bits will be set. -# so, we could either set these manually or force the DENORM -# to a very small NORM and ship it to the NORM routine. -# I do the latter. -# -fintrz_denorm: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp - mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM - lea FP_SCR0(%a6),%a0 - bra.b fintrz_norm - -# -# Zero: -# -fintrz_zero: - tst.b SRC_EX(%a0) # is ZERO negative? - bmi.b fintrz_zero_m # yes -fintrz_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO in fp0 - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fintrz_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO in fp0 - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -# -# Infinity: -# -fintrz_inf: - fmovm.x SRC(%a0),&0x80 # return result in fp0 - tst.b SRC_EX(%a0) # is INF negative? - bmi.b fintrz_inf_m # yes -fintrz_inf_p: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts -fintrz_inf_m: - mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits - rts - -######################################################################### -# XDEF **************************************************************** # -# fabs(): emulates the fabs instruction # -# fsabs(): emulates the fsabs instruction # -# fdabs(): emulates the fdabs instruction # -# # -# XREF **************************************************************** # -# norm() - normalize denorm mantissa to provide EXOP # -# scale_to_zero_src() - make exponent. = 0; get scale factor # -# unf_res() - calculate underflow result # -# ovf_res() - calculate overflow result # -# res_{s,q}nan_1op() - set NAN result for monadic operation # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 = rnd precision/mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Simply clear sign for extended precision norm. Ext prec denorm # -# gets an EXOP created for it since it's an underflow. # -# Double and single precision can overflow and underflow. First, # -# scale the operand such that the exponent is zero. Perform an "fabs" # -# using the correct rnd mode/prec. Check to see if the original # -# exponent would take an exception. If so, use unf_res() or ovf_res() # -# to calculate the default result. Also, create the EXOP for the # -# exceptional case. If no exception should occur, insert the correct # -# result exponent and return. # -# Unnorms don't pass through here. # -# # -######################################################################### - - global fsabs -fsabs: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fabs - - global fdabs -fdabs: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fabs -fabs: - mov.l %d0,L_SCR3(%a6) # store rnd info - mov.b STAG(%a6),%d1 - bne.w fabs_not_norm # optimize on non-norm input - -# -# ABSOLUTE VALUE: norms and denorms ONLY! -# -fabs_norm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fabs_not_ext # no; go handle sgl or dbl - -# -# precision selected is extended. so...we can not get an underflow -# or overflow because of rounding to the correct precision. so... -# skip the scaling and unscaling... -# - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d1 - bclr &15,%d1 # force absolute value - mov.w %d1,FP_SCR0_EX(%a6) # insert exponent - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# for an extended precision DENORM, the UNFL exception bit is set -# the accrued bit is NOT set in this instance(no inexactness!) -# -fabs_denorm: - andi.b &0xc0,%d0 # is precision extended? - bne.b fabs_not_ext # no - - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - mov.w SRC_EX(%a0),%d0 - bclr &15,%d0 # clear sign - mov.w %d0,FP_SCR0_EX(%a6) # insert exponent - - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - - btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? - bne.b fabs_ext_unfl_ena - rts - -# -# the input is an extended DENORM and underflow is enabled in the FPCR. -# normalize the mantissa and add the bias of 0x6000 to the resulting negative -# exponent and insert back into the operand. -# -fabs_ext_unfl_ena: - lea FP_SCR0(%a6),%a0 # pass: ptr to operand - bsr.l norm # normalize result - neg.w %d0 # new exponent = -(shft val) - addi.w &0x6000,%d0 # add new bias to exponent - mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp - andi.w &0x8000,%d1 # keep old sign - andi.w &0x7fff,%d0 # clear sign position - or.w %d1,%d0 # concat old sign, new exponent - mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - rts - -# -# operand is either single or double -# -fabs_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.b fabs_dbl - -# -# operand is to be rounded to single precision -# -fabs_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow? - bge.w fabs_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407e # will move in overflow? - beq.w fabs_sd_may_ovfl # maybe; go check - blt.w fabs_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fabs_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fabs_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fabs_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow? - bge.b fabs_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43fe # will move in overflow? - beq.w fabs_sd_may_ovfl # maybe; go check - blt.w fabs_sd_ovfl # yes; go handle overflow - bra.w fabs_sd_normal # no; ho handle normalized op - -# -# operand WILL underflow when moved in to the fp register file -# -fabs_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - bclr &0x7,FP_SCR0_EX(%a6) # force absolute value - -# if underflow or inexact is enabled, go calculate EXOP first. - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fabs_sd_unfl_ena # yes - -fabs_sd_unfl_dis: - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fabs_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fabs_sd_unfl_dis - -# -# operand WILL overflow. -# -fabs_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fabs_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fabs_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fabs_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fabs_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fabs_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fabs_sd_may_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fabs.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fabs_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fabs_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fabs_denorm - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - cmpi.b %d1,&QNAN # weed out QNAN - beq.l res_qnan_1op - - fabs.x SRC(%a0),%fp0 # force absolute value - - cmpi.b %d1,&INF # weed out INF - beq.b fabs_inf -fabs_zero: - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fabs_inf: - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fcmp(): fp compare op routine # -# # -# XREF **************************************************************** # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 = round prec/mode # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Handle NANs and denorms as special cases. For everything else, # -# just use the actual fcmp instruction to produce the correct condition # -# codes. # -# # -######################################################################### - - global fcmp -fcmp: - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 - bne.b fcmp_not_norm # optimize on non-norm input - -# -# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs -# -fcmp_norm: - fmovm.x DST(%a1),&0x80 # load dst op - - fcmp.x %fp0,SRC(%a0) # do compare - - fmov.l %fpsr,%d0 # save FPSR - rol.l &0x8,%d0 # extract ccode bits - mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set) - - rts - -# -# fcmp: inputs are not both normalized; what are they? -# -fcmp_not_norm: - mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fcmp_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fcmp_op: - short fcmp_norm - tbl_fcmp_op # NORM - NORM - short fcmp_norm - tbl_fcmp_op # NORM - ZERO - short fcmp_norm - tbl_fcmp_op # NORM - INF - short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN - short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM - short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_norm - tbl_fcmp_op # ZERO - NORM - short fcmp_norm - tbl_fcmp_op # ZERO - ZERO - short fcmp_norm - tbl_fcmp_op # ZERO - INF - short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN - short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM - short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_norm - tbl_fcmp_op # INF - NORM - short fcmp_norm - tbl_fcmp_op # INF - ZERO - short fcmp_norm - tbl_fcmp_op # INF - INF - short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN - short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM - short fcmp_res_snan - tbl_fcmp_op # INF - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM - short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO - short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF - short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN - short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM - short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM - short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO - short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF - short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN - short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM - short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - - short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM - short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO - short fcmp_res_snan - tbl_fcmp_op # SNAN - INF - short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN - short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM - short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN - short tbl_fcmp_op - tbl_fcmp_op # - short tbl_fcmp_op - tbl_fcmp_op # - -# unlike all other functions for QNAN and SNAN, fcmp does NOT set the -# 'N' bit for a negative QNAN or SNAN input so we must squelch it here. -fcmp_res_qnan: - bsr.l res_qnan - andi.b &0xf7,FPSR_CC(%a6) - rts -fcmp_res_snan: - bsr.l res_snan - andi.b &0xf7,FPSR_CC(%a6) - rts - -# -# DENORMs are a little more difficult. -# If you have a 2 DENORMs, then you can just force the j-bit to a one -# and use the fcmp_norm routine. -# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one -# and use the fcmp_norm routine. -# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. -# But with a DENORM and a NORM of the same sign, the neg bit is set if the -# (1) signs are (+) and the DENORM is the dst or -# (2) signs are (-) and the DENORM is the src -# - -fcmp_dnrm_s: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),%d0 - bset &31,%d0 # DENORM src; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a0 - bra.w fcmp_norm - -fcmp_dnrm_d: - mov.l DST_EX(%a1),FP_SCR0_EX(%a6) - mov.l DST_HI(%a1),%d0 - bset &31,%d0 # DENORM src; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR0_LO(%a6) - lea FP_SCR0(%a6),%a1 - bra.w fcmp_norm - -fcmp_dnrm_sd: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l DST_HI(%a1),%d0 - bset &31,%d0 # DENORM dst; make into small norm - mov.l %d0,FP_SCR1_HI(%a6) - mov.l SRC_HI(%a0),%d0 - bset &31,%d0 # DENORM dst; make into small norm - mov.l %d0,FP_SCR0_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - lea FP_SCR1(%a6),%a1 - lea FP_SCR0(%a6),%a0 - bra.w fcmp_norm - -fcmp_nrm_dnrm: - mov.b SRC_EX(%a0),%d0 # determine if like signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fcmp_dnrm_s - -# signs are the same, so must determine the answer ourselves. - tst.b %d0 # is src op negative? - bmi.b fcmp_nrm_dnrm_m # yes - rts -fcmp_nrm_dnrm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -fcmp_dnrm_nrm: - mov.b SRC_EX(%a0),%d0 # determine if like signs - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fcmp_dnrm_d - -# signs are the same, so must determine the answer ourselves. - tst.b %d0 # is src op negative? - bpl.b fcmp_dnrm_nrm_m # no - rts -fcmp_dnrm_nrm_m: - mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fsglmul(): emulates the fsglmul instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res4() - return default underflow result for sglop # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a multiply # -# instruction won't cause an exception. Use the regular fsglmul to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fsglmul -fsglmul: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 - - bne.w fsglmul_not_norm # optimize on non-norm input - -fsglmul_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # scale exponent - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # scale dst exponent - - add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2 - - cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl? - beq.w fsglmul_may_ovfl # result may rnd to overflow - blt.w fsglmul_ovfl # result will overflow - - cmpi.l %d0,&0x3fff+0x0001 # would result unfl? - beq.w fsglmul_may_unfl # result may rnd to no unfl - bgt.w fsglmul_unfl # result will underflow - -fsglmul_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsglmul_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -fsglmul_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsglmul_ovfl_tst: - -# save setting this until now because this is where fsglmul_may_ovfl may jump in - or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsglmul_ovfl_ena # yes - -fsglmul_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - andi.b &0x30,%d0 # force prec = ext - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fsglmul_ovfl_ena: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - andi.w &0x8000,%d2 # keep old sign - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsglmul_ovfl_dis - -fsglmul_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| >= 2.b? - fbge.w fsglmul_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fsglmul_normal_exit - -fsglmul_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsglmul_unfl_ena # yes - -fsglmul_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res4 # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fsglmul_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fsglmul_unfl_dis - -fsglmul_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x2 # is |result| > 2.b? - fbgt.w fsglmul_normal_exit # no; no underflow occurred - fblt.w fsglmul_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 2. but, -# we don't know if the result was an underflow that rounded up to a 2 or -# a normalized number that rounded down to a 2. so, redo the entire operation -# using RZ as the rounding mode to see what the pre-rounded result is. -# this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert RZ - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x2 # is |result| < 2.b? - fbge.w fsglmul_normal_exit # no; no underflow occurred - bra.w fsglmul_unfl # yes, underflow occurred - -############################################################################## - -# -# Single Precision Multiply: inputs are not both normalized; what are they? -# -fsglmul_not_norm: - mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsglmul_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsglmul_op: - short fsglmul_norm - tbl_fsglmul_op # NORM x NORM - short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO - short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF - short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN - short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM - short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO - short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF - short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN - short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM - short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO - short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF - short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN - short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN - short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_norm - tbl_fsglmul_op # NORM x NORM - short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO - short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF - short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN - short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM - short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN - short tbl_fsglmul_op - tbl_fsglmul_op # - short tbl_fsglmul_op - tbl_fsglmul_op # - -fsglmul_res_operr: - bra.l res_operr -fsglmul_res_snan: - bra.l res_snan -fsglmul_res_qnan: - bra.l res_qnan -fsglmul_zero: - bra.l fmul_zero -fsglmul_inf_src: - bra.l fmul_inf_src -fsglmul_inf_dst: - bra.l fmul_inf_dst - -######################################################################### -# XDEF **************************************************************** # -# fsgldiv(): emulates the fsgldiv instruction # -# # -# XREF **************************************************************** # -# scale_to_zero_src() - scale src exponent to zero # -# scale_to_zero_dst() - scale dst exponent to zero # -# unf_res4() - return default underflow result for sglop # -# ovf_res() - return default overflow result # -# res_qnan() - return QNAN result # -# res_snan() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a divide # -# instruction won't cause an exception. Use the regular fsgldiv to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fsgldiv -fsgldiv: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fsgldiv_not_norm # optimize on non-norm input - -# -# DIVIDE: NORMs and DENORMs ONLY! -# -fsgldiv_norm: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_to_zero_src # calculate scale factor 1 - mov.l %d0,-(%sp) # save scale factor 1 - - bsr.l scale_to_zero_dst # calculate scale factor 2 - - neg.l (%sp) # S.F. = scale1 - scale2 - add.l %d0,(%sp) - - mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode - lsr.b &0x6,%d1 - mov.l (%sp)+,%d0 - cmpi.l %d0,&0x3fff-0x7ffe - ble.w fsgldiv_may_ovfl - - cmpi.l %d0,&0x3fff-0x0000 # will result underflow? - beq.w fsgldiv_may_unfl # maybe - bgt.w fsgldiv_unfl # yes; go handle underflow - -fsgldiv_normal: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # save FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsgldiv_normal_exit: - fmovm.x &0x80,FP_SCR0(%a6) # store result on stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -fsgldiv_may_ovfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # set FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide - - fmov.l %fpsr,%d1 - fmov.l &0x0,%fpcr - - or.l %d1,USER_FPSR(%a6) # save INEX,N - - fmovm.x &0x01,-(%sp) # save result to stack - mov.w (%sp),%d1 # fetch new exponent - add.l &0xc,%sp # clear result - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - cmp.l %d1,&0x7fff # did divide overflow? - blt.b fsgldiv_normal_exit - -fsgldiv_ovfl_tst: - or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsgldiv_ovfl_ena # yes - -fsgldiv_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - andi.b &0x30,%d0 # kill precision - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -fsgldiv_ovfl_ena: - fmovm.x &0x80,FP_SCR0(%a6) # move result to stack - - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract new bias - andi.w &0x7fff,%d1 # clear ms bit - or.w %d2,%d1 # concat old sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsgldiv_ovfl_dis - -fsgldiv_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsgldiv_unfl_ena # yes - -fsgldiv_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res4 # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# UNFL is enabled. -# -fsgldiv_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat old sign, new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.b fsgldiv_unfl_dis - -# -# the divide operation MAY underflow: -# -fsgldiv_may_unfl: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fabs.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| > 1.b? - fbgt.w fsgldiv_normal_exit # no; no underflow occurred - fblt.w fsgldiv_unfl # yes; underflow occurred - -# -# we still don't know if underflow occurred. result is ~ equal to 1. but, -# we don't know if the result was an underflow that rounded up to a 1 -# or a normalized number that rounded down to a 1. so, redo the entire -# operation using RZ as the rounding mode to see what the pre-rounded -# result is. this case should be relatively rare. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1 - - clr.l %d1 # clear scratch register - ori.b &rz_mode*0x10,%d1 # force RZ rnd mode - - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide - - fmov.l &0x0,%fpcr # clear FPCR - fabs.x %fp1 # make absolute value - fcmp.b %fp1,&0x1 # is |result| < 1.b? - fbge.w fsgldiv_normal_exit # no; no underflow occurred - bra.w fsgldiv_unfl # yes; underflow occurred - -############################################################################ - -# -# Divide: inputs are not both normalized; what are they? -# -fsgldiv_not_norm: - mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsgldiv_op: - short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM - short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN - short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM - short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN - short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO - short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN - short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN - short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM - short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO - short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF - short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN - short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM - short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN - short tbl_fsgldiv_op - tbl_fsgldiv_op # - short tbl_fsgldiv_op - tbl_fsgldiv_op # - -fsgldiv_res_qnan: - bra.l res_qnan -fsgldiv_res_snan: - bra.l res_snan -fsgldiv_res_operr: - bra.l res_operr -fsgldiv_inf_load: - bra.l fdiv_inf_load -fsgldiv_zero_load: - bra.l fdiv_zero_load -fsgldiv_inf_dst: - bra.l fdiv_inf_dst - -######################################################################### -# XDEF **************************************************************** # -# fadd(): emulates the fadd instruction # -# fsadd(): emulates the fadd instruction # -# fdadd(): emulates the fdadd instruction # -# # -# XREF **************************************************************** # -# addsub_scaler2() - scale the operands so they won't take exc # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan() - set QNAN result # -# res_snan() - set SNAN result # -# res_operr() - set OPERR result # -# scale_to_zero_src() - set src operand exponent equal to zero # -# scale_to_zero_dst() - set dst operand exponent equal to zero # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Do addition after scaling exponents such that exception won't # -# occur. Then, check result exponent to see if exception would have # -# occurred. If so, return default result and maybe EXOP. Else, insert # -# the correct result exponent and return. Set FPSR bits as appropriate. # -# # -######################################################################### - - global fsadd -fsadd: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fadd - - global fdadd -fdadd: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fadd -fadd: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fadd_not_norm # optimize on non-norm input - -# -# ADD: norms and denorms -# -fadd_norm: - bsr.l addsub_scaler2 # scale exponents - -fadd_zero_entry: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch INEX2,N,Z - - or.l %d1,USER_FPSR(%a6) # save exc and ccode bits - - fbeq.w fadd_zero_exit # if result is zero, end now - - mov.l %d2,-(%sp) # save d2 - - fmovm.x &0x01,-(%sp) # save result to stack - - mov.w 2+L_SCR3(%a6),%d1 - lsr.b &0x6,%d1 - - mov.w (%sp),%d2 # fetch new sign, exp - andi.l &0x7fff,%d2 # strip sign - sub.l %d0,%d2 # add scale factor - - cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? - bge.b fadd_ovfl # yes - - cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? - blt.w fadd_unfl # yes - beq.w fadd_may_unfl # maybe; go find out - -fadd_normal: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x80 # return result in fp0 - - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_zero_exit: -# fmov.s &0x00000000,%fp0 # return zero in fp0 - rts - -tbl_fadd_ovfl: - long 0x7fff # ext ovfl - long 0x407f # sgl ovfl - long 0x43ff # dbl ovfl - -tbl_fadd_unfl: - long 0x0000 # ext unfl - long 0x3f81 # sgl unfl - long 0x3c01 # dbl unfl - -fadd_ovfl: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fadd_ovfl_ena # yes - - add.l &0xc,%sp -fadd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_ovfl_ena: - mov.b L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl - -fadd_ovfl_ena_cont: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - subi.l &0x6000,%d2 # add extra bias - andi.w &0x7fff,%d2 - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x40 # return EXOP in fp1 - bra.b fadd_ovfl_dis - -fadd_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # keep rnd mode - fmov.l %d1,%fpcr # set FPCR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - - add.l &0xc,%sp - fmovm.x &0x01,-(%sp) - bra.b fadd_ovfl_ena_cont - -fadd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - add.l &0xc,%sp - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp0 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save status - - or.l %d1,USER_FPSR(%a6) # save INEX,N - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fadd_unfl_ena # yes - -fadd_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fadd_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fadd_unfl_ena_sd # no; sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fadd_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp1 # execute multiply - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # save result to stack - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat sign,new exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fadd_unfl_dis - -fadd_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # use only rnd mode - fmov.l %d1,%fpcr # set FPCR - - bra.b fadd_unfl_ena_cont - -# -# result is equal to the smallest normalized number in the selected precision -# if the precision is extended, this result could not have come from an -# underflow that rounded up. -# -fadd_may_unfl: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 - beq.w fadd_normal # yes; no underflow occurred - - mov.l 0x4(%sp),%d1 # extract hi(man) - cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? - bne.w fadd_normal # no; no underflow occurred - - tst.l 0x8(%sp) # is lo(man) = 0x0? - bne.w fadd_normal # no; no underflow occurred - - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.w fadd_normal # no; no underflow occurred - -# -# ok, so now the result has a exponent equal to the smallest normalized -# exponent for the selected precision. also, the mantissa is equal to -# 0x8000000000000000 and this mantissa is the result of rounding non-zero -# g,r,s. -# now, we must determine whether the pre-rounded result was an underflow -# rounded "up" or a normalized number rounded "down". -# so, we do this be re-executing the add using RZ as the rounding mode and -# seeing if the new result is smaller or equal to the current result. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert rnd mode - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fadd.x FP_SCR0(%a6),%fp1 # execute add - - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # compare absolute values - fabs.x %fp1 - fcmp.x %fp0,%fp1 # is first result > second? - - fbgt.w fadd_unfl # yes; it's an underflow - bra.w fadd_normal # no; it's not an underflow - -########################################################################## - -# -# Add: inputs are not both normalized; what are they? -# -fadd_not_norm: - mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fadd_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fadd_op: - short fadd_norm - tbl_fadd_op # NORM + NORM - short fadd_zero_src - tbl_fadd_op # NORM + ZERO - short fadd_inf_src - tbl_fadd_op # NORM + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_norm - tbl_fadd_op # NORM + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_zero_dst - tbl_fadd_op # ZERO + NORM - short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO - short fadd_inf_src - tbl_fadd_op # ZERO + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_inf_dst - tbl_fadd_op # INF + NORM - short fadd_inf_dst - tbl_fadd_op # INF + ZERO - short fadd_inf_2 - tbl_fadd_op # INF + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_inf_dst - tbl_fadd_op # INF + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_res_qnan - tbl_fadd_op # QNAN + NORM - short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO - short fadd_res_qnan - tbl_fadd_op # QNAN + INF - short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN - short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM - short fadd_res_snan - tbl_fadd_op # QNAN + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_norm - tbl_fadd_op # DENORM + NORM - short fadd_zero_src - tbl_fadd_op # DENORM + ZERO - short fadd_inf_src - tbl_fadd_op # DENORM + INF - short fadd_res_qnan - tbl_fadd_op # NORM + QNAN - short fadd_norm - tbl_fadd_op # DENORM + DENORM - short fadd_res_snan - tbl_fadd_op # NORM + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - - short fadd_res_snan - tbl_fadd_op # SNAN + NORM - short fadd_res_snan - tbl_fadd_op # SNAN + ZERO - short fadd_res_snan - tbl_fadd_op # SNAN + INF - short fadd_res_snan - tbl_fadd_op # SNAN + QNAN - short fadd_res_snan - tbl_fadd_op # SNAN + DENORM - short fadd_res_snan - tbl_fadd_op # SNAN + SNAN - short tbl_fadd_op - tbl_fadd_op # - short tbl_fadd_op - tbl_fadd_op # - -fadd_res_qnan: - bra.l res_qnan -fadd_res_snan: - bra.l res_snan - -# -# both operands are ZEROes -# -fadd_zero_2: - mov.b SRC_EX(%a0),%d0 # are the signs opposite - mov.b DST_EX(%a1),%d1 - eor.b %d0,%d1 - bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO) - -# the signs are the same. so determine whether they are positive or negative -# and return the appropriately signed zero. - tst.b %d0 # are ZEROes positive or negative? - bmi.b fadd_zero_rm # negative - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# the ZEROes have opposite signs: -# - Therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. -# - -ZERO is returned in the case of RM. -# -fadd_zero_2_chk_rm: - mov.b 3+L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # extract rnd mode - cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM? - beq.b fadd_zero_rm # yes - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -fadd_zero_rm: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z - rts - -# -# one operand is a ZERO and the other is a DENORM or NORM. scale -# the DENORM or NORM and jump to the regular fadd routine. -# -fadd_zero_dst: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # scale the operand - clr.w FP_SCR1_EX(%a6) - clr.l FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - bra.w fadd_zero_entry # go execute fadd - -fadd_zero_src: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - bsr.l scale_to_zero_dst # scale the operand - clr.w FP_SCR0_EX(%a6) - clr.l FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - bra.w fadd_zero_entry # go execute fadd - -# -# both operands are INFs. an OPERR will result if the INFs have -# different signs. else, an INF of the same sign is returned -# -fadd_inf_2: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bmi.l res_operr # weed out (-INF)+(+INF) - -# ok, so it's not an OPERR. but, we do have to remember to return the -# src INF since that's where the 881/882 gets the j-bit from... - -# -# operands are INF and one of {ZERO, INF, DENORM, NORM} -# -fadd_inf_src: - fmovm.x SRC(%a0),&0x80 # return src INF - tst.b SRC_EX(%a0) # is INF positive? - bpl.b fadd_inf_done # yes; we're done - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -# -# operands are INF and one of {ZERO, INF, DENORM, NORM} -# -fadd_inf_dst: - fmovm.x DST(%a1),&0x80 # return dst INF - tst.b DST_EX(%a1) # is INF positive? - bpl.b fadd_inf_done # yes; we're done - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fadd_inf_done: - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fsub(): emulates the fsub instruction # -# fssub(): emulates the fssub instruction # -# fdsub(): emulates the fdsub instruction # -# # -# XREF **************************************************************** # -# addsub_scaler2() - scale the operands so they won't take exc # -# ovf_res() - return default overflow result # -# unf_res() - return default underflow result # -# res_qnan() - set QNAN result # -# res_snan() - set SNAN result # -# res_operr() - set OPERR result # -# scale_to_zero_src() - set src operand exponent equal to zero # -# scale_to_zero_dst() - set dst operand exponent equal to zero # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# a1 = pointer to extended precision destination operand # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms into extended, single, and double precision. # -# Do subtraction after scaling exponents such that exception won't# -# occur. Then, check result exponent to see if exception would have # -# occurred. If so, return default result and maybe EXOP. Else, insert # -# the correct result exponent and return. Set FPSR bits as appropriate. # -# # -######################################################################### - - global fssub -fssub: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl prec - bra.b fsub - - global fdsub -fdsub: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl prec - - global fsub -fsub: - mov.l %d0,L_SCR3(%a6) # store rnd info - - clr.w %d1 - mov.b DTAG(%a6),%d1 - lsl.b &0x3,%d1 - or.b STAG(%a6),%d1 # combine src tags - - bne.w fsub_not_norm # optimize on non-norm input - -# -# SUB: norms and denorms -# -fsub_norm: - bsr.l addsub_scaler2 # scale exponents - -fsub_zero_entry: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # fetch INEX2, N, Z - - or.l %d1,USER_FPSR(%a6) # save exc and ccode bits - - fbeq.w fsub_zero_exit # if result zero, end now - - mov.l %d2,-(%sp) # save d2 - - fmovm.x &0x01,-(%sp) # save result to stack - - mov.w 2+L_SCR3(%a6),%d1 - lsr.b &0x6,%d1 - - mov.w (%sp),%d2 # fetch new exponent - andi.l &0x7fff,%d2 # strip sign - sub.l %d0,%d2 # add scale factor - - cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? - bge.b fsub_ovfl # yes - - cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? - blt.w fsub_unfl # yes - beq.w fsub_may_unfl # maybe; go find out - -fsub_normal: - mov.w (%sp),%d1 - andi.w &0x8000,%d1 # keep sign - or.w %d2,%d1 # insert new exponent - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x80 # return result in fp0 - - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_zero_exit: -# fmov.s &0x00000000,%fp0 # return zero in fp0 - rts - -tbl_fsub_ovfl: - long 0x7fff # ext ovfl - long 0x407f # sgl ovfl - long 0x43ff # dbl ovfl - -tbl_fsub_unfl: - long 0x0000 # ext unfl - long 0x3f81 # sgl unfl - long 0x3c01 # dbl unfl - -fsub_ovfl: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsub_ovfl_ena # yes - - add.l &0xc,%sp -fsub_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass prec:rnd - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_ovfl_ena: - mov.b L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fsub_ovfl_ena_sd # no - -fsub_ovfl_ena_cont: - mov.w (%sp),%d1 # fetch {sgn,exp} - andi.w &0x8000,%d1 # keep sign - subi.l &0x6000,%d2 # subtract new bias - andi.w &0x7fff,%d2 # clear top bit - or.w %d2,%d1 # concat sign,exp - mov.w %d1,(%sp) # insert new exponent - - fmovm.x (%sp)+,&0x40 # return EXOP in fp1 - bra.b fsub_ovfl_dis - -fsub_ovfl_ena_sd: - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # clear rnd prec - fmov.l %d1,%fpcr # set FPCR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - add.l &0xc,%sp - fmovm.x &0x01,-(%sp) - bra.b fsub_ovfl_ena_cont - -fsub_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - add.l &0xc,%sp - - fmovm.x FP_SCR1(%a6),&0x80 # load dst op - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp0 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save status - - or.l %d1,USER_FPSR(%a6) - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsub_unfl_ena # yes - -fsub_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # 'Z' may have been set - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - mov.l (%sp)+,%d2 # restore d2 - rts - -fsub_unfl_ena: - fmovm.x FP_SCR1(%a6),&0x40 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # is precision extended? - bne.b fsub_unfl_ena_sd # no - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - -fsub_unfl_ena_cont: - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp1 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - fmovm.x &0x40,FP_SCR0(%a6) # store result to stack - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - addi.l &0x6000,%d1 # subtract new bias - andi.w &0x7fff,%d1 # clear top bit - or.w %d2,%d1 # concat sgn,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - bra.w fsub_unfl_dis - -fsub_unfl_ena_sd: - mov.l L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # clear rnd prec - fmov.l %d1,%fpcr # set FPCR - - bra.b fsub_unfl_ena_cont - -# -# result is equal to the smallest normalized number in the selected precision -# if the precision is extended, this result could not have come from an -# underflow that rounded up. -# -fsub_may_unfl: - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # fetch rnd prec - beq.w fsub_normal # yes; no underflow occurred - - mov.l 0x4(%sp),%d1 - cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000? - bne.w fsub_normal # no; no underflow occurred - - tst.l 0x8(%sp) # is lo(man) = 0x0? - bne.w fsub_normal # no; no underflow occurred - - btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? - beq.w fsub_normal # no; no underflow occurred - -# -# ok, so now the result has a exponent equal to the smallest normalized -# exponent for the selected precision. also, the mantissa is equal to -# 0x8000000000000000 and this mantissa is the result of rounding non-zero -# g,r,s. -# now, we must determine whether the pre-rounded result was an underflow -# rounded "up" or a normalized number rounded "down". -# so, we do this be re-executing the add using RZ as the rounding mode and -# seeing if the new result is smaller or equal to the current result. -# - fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1 - - mov.l L_SCR3(%a6),%d1 - andi.b &0xc0,%d1 # keep rnd prec - ori.b &rz_mode*0x10,%d1 # insert rnd mode - fmov.l %d1,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsub.x FP_SCR0(%a6),%fp1 # execute subtract - - fmov.l &0x0,%fpcr # clear FPCR - - fabs.x %fp0 # compare absolute values - fabs.x %fp1 - fcmp.x %fp0,%fp1 # is first result > second? - - fbgt.w fsub_unfl # yes; it's an underflow - bra.w fsub_normal # no; it's not an underflow - -########################################################################## - -# -# Sub: inputs are not both normalized; what are they? -# -fsub_not_norm: - mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1 - jmp (tbl_fsub_op.b,%pc,%d1.w*1) - - swbeg &48 -tbl_fsub_op: - short fsub_norm - tbl_fsub_op # NORM - NORM - short fsub_zero_src - tbl_fsub_op # NORM - ZERO - short fsub_inf_src - tbl_fsub_op # NORM - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_norm - tbl_fsub_op # NORM - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_zero_dst - tbl_fsub_op # ZERO - NORM - short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO - short fsub_inf_src - tbl_fsub_op # ZERO - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_inf_dst - tbl_fsub_op # INF - NORM - short fsub_inf_dst - tbl_fsub_op # INF - ZERO - short fsub_inf_2 - tbl_fsub_op # INF - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_inf_dst - tbl_fsub_op # INF - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_res_qnan - tbl_fsub_op # QNAN - NORM - short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO - short fsub_res_qnan - tbl_fsub_op # QNAN - INF - short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN - short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM - short fsub_res_snan - tbl_fsub_op # QNAN - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_norm - tbl_fsub_op # DENORM - NORM - short fsub_zero_src - tbl_fsub_op # DENORM - ZERO - short fsub_inf_src - tbl_fsub_op # DENORM - INF - short fsub_res_qnan - tbl_fsub_op # NORM - QNAN - short fsub_norm - tbl_fsub_op # DENORM - DENORM - short fsub_res_snan - tbl_fsub_op # NORM - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - - short fsub_res_snan - tbl_fsub_op # SNAN - NORM - short fsub_res_snan - tbl_fsub_op # SNAN - ZERO - short fsub_res_snan - tbl_fsub_op # SNAN - INF - short fsub_res_snan - tbl_fsub_op # SNAN - QNAN - short fsub_res_snan - tbl_fsub_op # SNAN - DENORM - short fsub_res_snan - tbl_fsub_op # SNAN - SNAN - short tbl_fsub_op - tbl_fsub_op # - short tbl_fsub_op - tbl_fsub_op # - -fsub_res_qnan: - bra.l res_qnan -fsub_res_snan: - bra.l res_snan - -# -# both operands are ZEROes -# -fsub_zero_2: - mov.b SRC_EX(%a0),%d0 - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bpl.b fsub_zero_2_chk_rm - -# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO - tst.b %d0 # is dst negative? - bmi.b fsub_zero_2_rm # yes - fmov.s &0x00000000,%fp0 # no; return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -# -# the ZEROes have the same signs: -# - Therefore, we return +ZERO if the rounding mode is RN,RZ, or RP -# - -ZERO is returned in the case of RM. -# -fsub_zero_2_chk_rm: - mov.b 3+L_SCR3(%a6),%d1 - andi.b &0x30,%d1 # extract rnd mode - cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM? - beq.b fsub_zero_2_rm # yes - fmov.s &0x00000000,%fp0 # no; return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set Z - rts - -fsub_zero_2_rm: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG - rts - -# -# one operand is a ZERO and the other is a DENORM or a NORM. -# scale the DENORM or NORM and jump to the regular fsub routine. -# -fsub_zero_dst: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - bsr.l scale_to_zero_src # scale the operand - clr.w FP_SCR1_EX(%a6) - clr.l FP_SCR1_HI(%a6) - clr.l FP_SCR1_LO(%a6) - bra.w fsub_zero_entry # go execute fsub - -fsub_zero_src: - mov.w DST_EX(%a1),FP_SCR1_EX(%a6) - mov.l DST_HI(%a1),FP_SCR1_HI(%a6) - mov.l DST_LO(%a1),FP_SCR1_LO(%a6) - bsr.l scale_to_zero_dst # scale the operand - clr.w FP_SCR0_EX(%a6) - clr.l FP_SCR0_HI(%a6) - clr.l FP_SCR0_LO(%a6) - bra.w fsub_zero_entry # go execute fsub - -# -# both operands are INFs. an OPERR will result if the INFs have the -# same signs. else, -# -fsub_inf_2: - mov.b SRC_EX(%a0),%d0 # exclusive or the signs - mov.b DST_EX(%a1),%d1 - eor.b %d1,%d0 - bpl.l res_operr # weed out (-INF)+(+INF) - -# ok, so it's not an OPERR. but we do have to remember to return -# the src INF since that's where the 881/882 gets the j-bit. - -fsub_inf_src: - fmovm.x SRC(%a0),&0x80 # return src INF - fneg.x %fp0 # invert sign - fbge.w fsub_inf_done # sign is now positive - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fsub_inf_dst: - fmovm.x DST(%a1),&0x80 # return dst INF - tst.b DST_EX(%a1) # is INF negative? - bpl.b fsub_inf_done # no - mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG - rts - -fsub_inf_done: - mov.b &inf_bmask,FPSR_CC(%a6) # set INF - rts - -######################################################################### -# XDEF **************************************************************** # -# fsqrt(): emulates the fsqrt instruction # -# fssqrt(): emulates the fssqrt instruction # -# fdsqrt(): emulates the fdsqrt instruction # -# # -# XREF **************************************************************** # -# scale_sqrt() - scale the source operand # -# unf_res() - return default underflow result # -# ovf_res() - return default overflow result # -# res_qnan_1op() - return QNAN result # -# res_snan_1op() - return SNAN result # -# # -# INPUT *************************************************************** # -# a0 = pointer to extended precision source operand # -# d0 rnd prec,mode # -# # -# OUTPUT ************************************************************** # -# fp0 = result # -# fp1 = EXOP (if exception occurred) # -# # -# ALGORITHM *********************************************************** # -# Handle NANs, infinities, and zeroes as special cases. Divide # -# norms/denorms into ext/sgl/dbl precision. # -# For norms/denorms, scale the exponents such that a sqrt # -# instruction won't cause an exception. Use the regular fsqrt to # -# compute a result. Check if the regular operands would have taken # -# an exception. If so, return the default overflow/underflow result # -# and return the EXOP if exceptions are enabled. Else, scale the # -# result operand to the proper exponent. # -# # -######################################################################### - - global fssqrt -fssqrt: - andi.b &0x30,%d0 # clear rnd prec - ori.b &s_mode*0x10,%d0 # insert sgl precision - bra.b fsqrt - - global fdsqrt -fdsqrt: - andi.b &0x30,%d0 # clear rnd prec - ori.b &d_mode*0x10,%d0 # insert dbl precision - - global fsqrt -fsqrt: - mov.l %d0,L_SCR3(%a6) # store rnd info - clr.w %d1 - mov.b STAG(%a6),%d1 - bne.w fsqrt_not_norm # optimize on non-norm input - -# -# SQUARE ROOT: norms and denorms ONLY! -# -fsqrt_norm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.l res_operr # yes - - andi.b &0xc0,%d0 # is precision extended? - bne.b fsqrt_not_ext # no; go handle sgl or dbl - - fmov.l L_SCR3(%a6),%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsqrt.x (%a0),%fp0 # execute square root - - fmov.l %fpsr,%d1 - or.l %d1,USER_FPSR(%a6) # set N,INEX - - rts - -fsqrt_denorm: - tst.b SRC_EX(%a0) # is operand negative? - bmi.l res_operr # yes - - andi.b &0xc0,%d0 # is precision extended? - bne.b fsqrt_not_ext # no; go handle sgl or dbl - - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - bra.w fsqrt_sd_normal - -# -# operand is either single or double -# -fsqrt_not_ext: - cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec - bne.w fsqrt_dbl - -# -# operand is to be rounded to single precision -# -fsqrt_sgl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow? - beq.w fsqrt_sd_may_unfl - bgt.w fsqrt_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x407f # will move in overflow? - beq.w fsqrt_sd_may_ovfl # maybe; go check - blt.w fsqrt_sd_ovfl # yes; go handle overflow - -# -# operand will NOT overflow or underflow when moved in to the fp reg file -# -fsqrt_sd_normal: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save FPSR - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsqrt_sd_normal_exit: - mov.l %d2,-(%sp) # save d2 - fmovm.x &0x80,FP_SCR0(%a6) # store out result - mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - sub.l %d0,%d1 # add scale factor - andi.w &0x8000,%d2 # keep old sign - or.w %d1,%d2 # concat old sign,new exp - mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent - mov.l (%sp)+,%d2 # restore d2 - fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0 - rts - -# -# operand is to be rounded to double precision -# -fsqrt_dbl: - mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) - mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) - mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) - - bsr.l scale_sqrt # calculate scale factor - - cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow? - beq.w fsqrt_sd_may_unfl - bgt.b fsqrt_sd_unfl # yes; go handle underflow - cmpi.l %d0,&0x3fff-0x43ff # will move in overflow? - beq.w fsqrt_sd_may_ovfl # maybe; go check - blt.w fsqrt_sd_ovfl # yes; go handle overflow - bra.w fsqrt_sd_normal # no; ho handle normalized op - -# we're on the line here and the distinguising characteristic is whether -# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number -# elsewise fall through to underflow. -fsqrt_sd_may_unfl: - btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? - bne.w fsqrt_sd_normal # yes, so no underflow - -# -# operand WILL underflow when moved in to the fp register file -# -fsqrt_sd_unfl: - bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit - - fmov.l &rz_mode*0x10,%fpcr # set FPCR - fmov.l &0x0,%fpsr # clear FPSR - - fsqrt.x FP_SCR0(%a6),%fp0 # execute square root - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -# if underflow or inexact is enabled, go calculate EXOP first. - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x0b,%d1 # is UNFL or INEX enabled? - bne.b fsqrt_sd_unfl_ena # yes - -fsqrt_sd_unfl_dis: - fmovm.x &0x80,FP_SCR0(%a6) # store out result - - lea FP_SCR0(%a6),%a0 # pass: result addr - mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode - bsr.l unf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode - fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0 - rts - -# -# operand will underflow AND underflow is enabled. -# Therefore, we must return the result rounded to extended precision. -# -fsqrt_sd_unfl_ena: - mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) - mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) - mov.w FP_SCR0_EX(%a6),%d1 # load current exponent - - mov.l %d2,-(%sp) # save d2 - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # subtract scale factor - addi.l &0x6000,%d1 # add new bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat new sign,new exp - mov.w %d1,FP_SCR1_EX(%a6) # insert new exp - fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fsqrt_sd_unfl_dis - -# -# operand WILL overflow. -# -fsqrt_sd_ovfl: - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform square root - - fmov.l &0x0,%fpcr # clear FPCR - fmov.l %fpsr,%d1 # save FPSR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - -fsqrt_sd_ovfl_tst: - or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex - - mov.b FPCR_ENABLE(%a6),%d1 - andi.b &0x13,%d1 # is OVFL or INEX enabled? - bne.b fsqrt_sd_ovfl_ena # yes - -# -# OVFL is not enabled; therefore, we must create the default result by -# calling ovf_res(). -# -fsqrt_sd_ovfl_dis: - btst &neg_bit,FPSR_CC(%a6) # is result negative? - sne %d1 # set sign param accordingly - mov.l L_SCR3(%a6),%d0 # pass: prec,mode - bsr.l ovf_res # calculate default result - or.b %d0,FPSR_CC(%a6) # set INF,N if applicable - fmovm.x (%a0),&0x80 # return default result in fp0 - rts - -# -# OVFL is enabled. -# the INEX2 bit has already been updated by the round to the correct precision. -# now, round to extended(and don't alter the FPSR). -# -fsqrt_sd_ovfl_ena: - mov.l %d2,-(%sp) # save d2 - mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} - mov.l %d1,%d2 # make a copy - andi.l &0x7fff,%d1 # strip sign - andi.w &0x8000,%d2 # keep old sign - sub.l %d0,%d1 # add scale factor - subi.l &0x6000,%d1 # subtract bias - andi.w &0x7fff,%d1 - or.w %d2,%d1 # concat sign,exp - mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent - fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1 - mov.l (%sp)+,%d2 # restore d2 - bra.b fsqrt_sd_ovfl_dis - -# -# the move in MAY underflow. so... -# -fsqrt_sd_may_ovfl: - btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff? - bne.w fsqrt_sd_ovfl # yes, so overflow - - fmov.l &0x0,%fpsr # clear FPSR - fmov.l L_SCR3(%a6),%fpcr # set FPCR - - fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute - - fmov.l %fpsr,%d1 # save status - fmov.l &0x0,%fpcr # clear FPCR - - or.l %d1,USER_FPSR(%a6) # save INEX2,N - - fmov.x %fp0,%fp1 # make a copy of result - fcmp.b %fp1,&0x1 # is |result| >= 1.b? - fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred - -# no, it didn't overflow; we have correct result - bra.w fsqrt_sd_normal_exit - -########################################################################## - -# -# input is not normalized; what is it? -# -fsqrt_not_norm: - cmpi.b %d1,&DENORM # weed out DENORM - beq.w fsqrt_denorm - cmpi.b %d1,&ZERO # weed out ZERO - beq.b fsqrt_zero - cmpi.b %d1,&INF # weed out INF - beq.b fsqrt_inf - cmpi.b %d1,&SNAN # weed out SNAN - beq.l res_snan_1op - bra.l res_qnan_1op - -# -# fsqrt(+0) = +0 -# fsqrt(-0) = -0 -# fsqrt(+INF) = +INF -# fsqrt(-INF) = OPERR -# -fsqrt_zero: - tst.b SRC_EX(%a0) # is ZERO positive or negative? - bmi.b fsqrt_zero_m # negative -fsqrt_zero_p: - fmov.s &0x00000000,%fp0 # return +ZERO - mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit - rts -fsqrt_zero_m: - fmov.s &0x80000000,%fp0 # return -ZERO - mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits - rts - -fsqrt_inf: - tst.b SRC_EX(%a0) # is INF positive or negative? - bmi.l res_operr # negative -fsqrt_inf_p: - fmovm.x SRC(%a0),&0x80 # return +INF in fp0 - mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit - rts - -######################################################################### -# XDEF **************************************************************** # -# fetch_dreg(): fetch register according to index in d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# d0 = value of register fetched # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1 which can range from zero # -# to fifteen, load the corresponding register file value (where # -# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the # -# stack. The rest should still be in their original places. # -# # -######################################################################### - -# this routine leaves d1 intact for subsequent store_dreg calls. - global fetch_dreg -fetch_dreg: - mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0 - jmp (tbl_fdreg.b,%pc,%d0.w*1) - -tbl_fdreg: - short fdreg0 - tbl_fdreg - short fdreg1 - tbl_fdreg - short fdreg2 - tbl_fdreg - short fdreg3 - tbl_fdreg - short fdreg4 - tbl_fdreg - short fdreg5 - tbl_fdreg - short fdreg6 - tbl_fdreg - short fdreg7 - tbl_fdreg - short fdreg8 - tbl_fdreg - short fdreg9 - tbl_fdreg - short fdrega - tbl_fdreg - short fdregb - tbl_fdreg - short fdregc - tbl_fdreg - short fdregd - tbl_fdreg - short fdrege - tbl_fdreg - short fdregf - tbl_fdreg - -fdreg0: - mov.l EXC_DREGS+0x0(%a6),%d0 - rts -fdreg1: - mov.l EXC_DREGS+0x4(%a6),%d0 - rts -fdreg2: - mov.l %d2,%d0 - rts -fdreg3: - mov.l %d3,%d0 - rts -fdreg4: - mov.l %d4,%d0 - rts -fdreg5: - mov.l %d5,%d0 - rts -fdreg6: - mov.l %d6,%d0 - rts -fdreg7: - mov.l %d7,%d0 - rts -fdreg8: - mov.l EXC_DREGS+0x8(%a6),%d0 - rts -fdreg9: - mov.l EXC_DREGS+0xc(%a6),%d0 - rts -fdrega: - mov.l %a2,%d0 - rts -fdregb: - mov.l %a3,%d0 - rts -fdregc: - mov.l %a4,%d0 - rts -fdregd: - mov.l %a5,%d0 - rts -fdrege: - mov.l (%a6),%d0 - rts -fdregf: - mov.l EXC_A7(%a6),%d0 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_l(): store longword to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = longowrd value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the longword value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_l -store_dreg_l: - mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregl.b,%pc,%d1.w*1) - -tbl_sdregl: - short sdregl0 - tbl_sdregl - short sdregl1 - tbl_sdregl - short sdregl2 - tbl_sdregl - short sdregl3 - tbl_sdregl - short sdregl4 - tbl_sdregl - short sdregl5 - tbl_sdregl - short sdregl6 - tbl_sdregl - short sdregl7 - tbl_sdregl - -sdregl0: - mov.l %d0,EXC_DREGS+0x0(%a6) - rts -sdregl1: - mov.l %d0,EXC_DREGS+0x4(%a6) - rts -sdregl2: - mov.l %d0,%d2 - rts -sdregl3: - mov.l %d0,%d3 - rts -sdregl4: - mov.l %d0,%d4 - rts -sdregl5: - mov.l %d0,%d5 - rts -sdregl6: - mov.l %d0,%d6 - rts -sdregl7: - mov.l %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_w(): store word to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = word value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the word value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_w -store_dreg_w: - mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregw.b,%pc,%d1.w*1) - -tbl_sdregw: - short sdregw0 - tbl_sdregw - short sdregw1 - tbl_sdregw - short sdregw2 - tbl_sdregw - short sdregw3 - tbl_sdregw - short sdregw4 - tbl_sdregw - short sdregw5 - tbl_sdregw - short sdregw6 - tbl_sdregw - short sdregw7 - tbl_sdregw - -sdregw0: - mov.w %d0,2+EXC_DREGS+0x0(%a6) - rts -sdregw1: - mov.w %d0,2+EXC_DREGS+0x4(%a6) - rts -sdregw2: - mov.w %d0,%d2 - rts -sdregw3: - mov.w %d0,%d3 - rts -sdregw4: - mov.w %d0,%d4 - rts -sdregw5: - mov.w %d0,%d5 - rts -sdregw6: - mov.w %d0,%d6 - rts -sdregw7: - mov.w %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# store_dreg_b(): store byte to data register specified by d1 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = byte value to store # -# d1 = index of register to fetch from # -# # -# OUTPUT ************************************************************** # -# (data register is updated) # -# # -# ALGORITHM *********************************************************** # -# According to the index value in d1, store the byte value # -# in d0 to the corresponding data register. D0/D1 are on the stack # -# while the rest are in their initial places. # -# # -######################################################################### - - global store_dreg_b -store_dreg_b: - mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1 - jmp (tbl_sdregb.b,%pc,%d1.w*1) - -tbl_sdregb: - short sdregb0 - tbl_sdregb - short sdregb1 - tbl_sdregb - short sdregb2 - tbl_sdregb - short sdregb3 - tbl_sdregb - short sdregb4 - tbl_sdregb - short sdregb5 - tbl_sdregb - short sdregb6 - tbl_sdregb - short sdregb7 - tbl_sdregb - -sdregb0: - mov.b %d0,3+EXC_DREGS+0x0(%a6) - rts -sdregb1: - mov.b %d0,3+EXC_DREGS+0x4(%a6) - rts -sdregb2: - mov.b %d0,%d2 - rts -sdregb3: - mov.b %d0,%d3 - rts -sdregb4: - mov.b %d0,%d4 - rts -sdregb5: - mov.b %d0,%d5 - rts -sdregb6: - mov.b %d0,%d6 - rts -sdregb7: - mov.b %d0,%d7 - rts - -######################################################################### -# XDEF **************************************************************** # -# inc_areg(): increment an address register by the value in d0 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = amount to increment by # -# d1 = index of address register to increment # -# # -# OUTPUT ************************************************************** # -# (address register is updated) # -# # -# ALGORITHM *********************************************************** # -# Typically used for an instruction w/ a post-increment <ea>, # -# this routine adds the increment value in d0 to the address register # -# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # -# in their original places. # -# For a7, if the increment amount is one, then we have to # -# increment by two. For any a7 update, set the mia7_flag so that if # -# an access error exception occurs later in emulation, this address # -# register update can be undone. # -# # -######################################################################### - - global inc_areg -inc_areg: - mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1 - jmp (tbl_iareg.b,%pc,%d1.w*1) - -tbl_iareg: - short iareg0 - tbl_iareg - short iareg1 - tbl_iareg - short iareg2 - tbl_iareg - short iareg3 - tbl_iareg - short iareg4 - tbl_iareg - short iareg5 - tbl_iareg - short iareg6 - tbl_iareg - short iareg7 - tbl_iareg - -iareg0: add.l %d0,EXC_DREGS+0x8(%a6) - rts -iareg1: add.l %d0,EXC_DREGS+0xc(%a6) - rts -iareg2: add.l %d0,%a2 - rts -iareg3: add.l %d0,%a3 - rts -iareg4: add.l %d0,%a4 - rts -iareg5: add.l %d0,%a5 - rts -iareg6: add.l %d0,(%a6) - rts -iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6) - cmpi.b %d0,&0x1 - beq.b iareg7b - add.l %d0,EXC_A7(%a6) - rts -iareg7b: - addq.l &0x2,EXC_A7(%a6) - rts - -######################################################################### -# XDEF **************************************************************** # -# dec_areg(): decrement an address register by the value in d0 # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = amount to decrement by # -# d1 = index of address register to decrement # -# # -# OUTPUT ************************************************************** # -# (address register is updated) # -# # -# ALGORITHM *********************************************************** # -# Typically used for an instruction w/ a pre-decrement <ea>, # -# this routine adds the decrement value in d0 to the address register # -# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside # -# in their original places. # -# For a7, if the decrement amount is one, then we have to # -# decrement by two. For any a7 update, set the mda7_flag so that if # -# an access error exception occurs later in emulation, this address # -# register update can be undone. # -# # -######################################################################### - - global dec_areg -dec_areg: - mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1 - jmp (tbl_dareg.b,%pc,%d1.w*1) - -tbl_dareg: - short dareg0 - tbl_dareg - short dareg1 - tbl_dareg - short dareg2 - tbl_dareg - short dareg3 - tbl_dareg - short dareg4 - tbl_dareg - short dareg5 - tbl_dareg - short dareg6 - tbl_dareg - short dareg7 - tbl_dareg - -dareg0: sub.l %d0,EXC_DREGS+0x8(%a6) - rts -dareg1: sub.l %d0,EXC_DREGS+0xc(%a6) - rts -dareg2: sub.l %d0,%a2 - rts -dareg3: sub.l %d0,%a3 - rts -dareg4: sub.l %d0,%a4 - rts -dareg5: sub.l %d0,%a5 - rts -dareg6: sub.l %d0,(%a6) - rts -dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6) - cmpi.b %d0,&0x1 - beq.b dareg7b - sub.l %d0,EXC_A7(%a6) - rts -dareg7b: - subq.l &0x2,EXC_A7(%a6) - rts - -############################################################################## - -######################################################################### -# XDEF **************************************************************** # -# load_fpn1(): load FP register value into FP_SRC(a6). # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = index of FP register to load # -# # -# OUTPUT ************************************************************** # -# FP_SRC(a6) = value loaded from FP register file # -# # -# ALGORITHM *********************************************************** # -# Using the index in d0, load FP_SRC(a6) with a number from the # -# FP register file. # -# # -######################################################################### - - global load_fpn1 -load_fpn1: - mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0 - jmp (tbl_load_fpn1.b,%pc,%d0.w*1) - -tbl_load_fpn1: - short load_fpn1_0 - tbl_load_fpn1 - short load_fpn1_1 - tbl_load_fpn1 - short load_fpn1_2 - tbl_load_fpn1 - short load_fpn1_3 - tbl_load_fpn1 - short load_fpn1_4 - tbl_load_fpn1 - short load_fpn1_5 - tbl_load_fpn1 - short load_fpn1_6 - tbl_load_fpn1 - short load_fpn1_7 - tbl_load_fpn1 - -load_fpn1_0: - mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6) - mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6) - mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_1: - mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6) - mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6) - mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_2: - fmovm.x &0x20, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_3: - fmovm.x &0x10, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_4: - fmovm.x &0x08, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_5: - fmovm.x &0x04, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_6: - fmovm.x &0x02, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts -load_fpn1_7: - fmovm.x &0x01, FP_SRC(%a6) - lea FP_SRC(%a6), %a0 - rts - -############################################################################# - -######################################################################### -# XDEF **************************************************************** # -# load_fpn2(): load FP register value into FP_DST(a6). # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# d0 = index of FP register to load # -# # -# OUTPUT ************************************************************** # -# FP_DST(a6) = value loaded from FP register file # -# # -# ALGORITHM *********************************************************** # -# Using the index in d0, load FP_DST(a6) with a number from the # -# FP register file. # -# # -######################################################################### - - global load_fpn2 -load_fpn2: - mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0 - jmp (tbl_load_fpn2.b,%pc,%d0.w*1) - -tbl_load_fpn2: - short load_fpn2_0 - tbl_load_fpn2 - short load_fpn2_1 - tbl_load_fpn2 - short load_fpn2_2 - tbl_load_fpn2 - short load_fpn2_3 - tbl_load_fpn2 - short load_fpn2_4 - tbl_load_fpn2 - short load_fpn2_5 - tbl_load_fpn2 - short load_fpn2_6 - tbl_load_fpn2 - short load_fpn2_7 - tbl_load_fpn2 - -load_fpn2_0: - mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6) - mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6) - mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_1: - mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6) - mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6) - mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_2: - fmovm.x &0x20, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_3: - fmovm.x &0x10, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_4: - fmovm.x &0x08, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_5: - fmovm.x &0x04, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_6: - fmovm.x &0x02, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts -load_fpn2_7: - fmovm.x &0x01, FP_DST(%a6) - lea FP_DST(%a6), %a0 - rts - -############################################################################# - -######################################################################### -# XDEF **************************************************************** # -# store_fpreg(): store an fp value to the fpreg designated d0. # -# # -# XREF **************************************************************** # -# None # -# # -# INPUT *************************************************************** # -# fp0 = extended precision value to store # -# d0 = index of floating-point register # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Store the value in fp0 to the FP register designated by the # -# value in d0. The FP number can be DENORM or SNAN so we have to be # -# careful that we don't take an exception here. # -# # -######################################################################### - - global store_fpreg -store_fpreg: - mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0 - jmp (tbl_store_fpreg.b,%pc,%d0.w*1) - -tbl_store_fpreg: - short store_fpreg_0 - tbl_store_fpreg - short store_fpreg_1 - tbl_store_fpreg - short store_fpreg_2 - tbl_store_fpreg - short store_fpreg_3 - tbl_store_fpreg - short store_fpreg_4 - tbl_store_fpreg - short store_fpreg_5 - tbl_store_fpreg - short store_fpreg_6 - tbl_store_fpreg - short store_fpreg_7 - tbl_store_fpreg - -store_fpreg_0: - fmovm.x &0x80, EXC_FP0(%a6) - rts -store_fpreg_1: - fmovm.x &0x80, EXC_FP1(%a6) - rts -store_fpreg_2: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x20 - rts -store_fpreg_3: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x10 - rts -store_fpreg_4: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x08 - rts -store_fpreg_5: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x04 - rts -store_fpreg_6: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x02 - rts -store_fpreg_7: - fmovm.x &0x01, -(%sp) - fmovm.x (%sp)+, &0x01 - rts - -######################################################################### -# XDEF **************************************************************** # -# get_packed(): fetch a packed operand from memory and then # -# convert it to a floating-point binary number. # -# # -# XREF **************************************************************** # -# _dcalc_ea() - calculate the correct <ea> # -# _mem_read() - fetch the packed operand from memory # -# facc_in_x() - the fetch failed so jump to special exit code # -# decbin() - convert packed to binary extended precision # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# If no failure on _mem_read(): # -# FP_SRC(a6) = packed operand now as a binary FP number # -# # -# ALGORITHM *********************************************************** # -# Get the correct <ea> which is the value on the exception stack # -# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. # -# Then, fetch the operand from memory. If the fetch fails, exit # -# through facc_in_x(). # -# If the packed operand is a ZERO,NAN, or INF, convert it to # -# its binary representation here. Else, call decbin() which will # -# convert the packed value to an extended precision binary value. # -# # -######################################################################### - -# the stacked <ea> for packed is correct except for -(An). -# the base reg must be updated for both -(An) and (An)+. - global get_packed -get_packed: - mov.l &0xc,%d0 # packed is 12 bytes - bsr.l _dcalc_ea # fetch <ea>; correct An - - lea FP_SRC(%a6),%a1 # pass: ptr to super dst - mov.l &0xc,%d0 # pass: 12 bytes - bsr.l _dmem_read # read packed operand - - tst.l %d1 # did dfetch fail? - bne.l facc_in_x # yes - -# The packed operand is an INF or a NAN if the exponent field is all ones. - bfextu FP_SRC(%a6){&1:&15},%d0 # get exp - cmpi.w %d0,&0x7fff # INF or NAN? - bne.b gp_try_zero # no - rts # operand is an INF or NAN - -# The packed operand is a zero if the mantissa is all zero, else it's -# a normal packed op. -gp_try_zero: - mov.b 3+FP_SRC(%a6),%d0 # get byte 4 - andi.b &0x0f,%d0 # clear all but last nybble - bne.b gp_not_spec # not a zero - tst.l FP_SRC_HI(%a6) # is lw 2 zero? - bne.b gp_not_spec # not a zero - tst.l FP_SRC_LO(%a6) # is lw 3 zero? - bne.b gp_not_spec # not a zero - rts # operand is a ZERO -gp_not_spec: - lea FP_SRC(%a6),%a0 # pass: ptr to packed op - bsr.l decbin # convert to extended - fmovm.x &0x80,FP_SRC(%a6) # make this the srcop - rts - -######################################################################### -# decbin(): Converts normalized packed bcd value pointed to by register # -# a0 to extended-precision value in fp0. # -# # -# INPUT *************************************************************** # -# a0 = pointer to normalized packed bcd value # -# # -# OUTPUT ************************************************************** # -# fp0 = exact fp representation of the packed bcd value. # -# # -# ALGORITHM *********************************************************** # -# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, # -# and NaN operands are dispatched without entering this routine) # -# value in 68881/882 format at location (a0). # -# # -# A1. Convert the bcd exponent to binary by successive adds and # -# muls. Set the sign according to SE. Subtract 16 to compensate # -# for the mantissa which is to be interpreted as 17 integer # -# digits, rather than 1 integer and 16 fraction digits. # -# Note: this operation can never overflow. # -# # -# A2. Convert the bcd mantissa to binary by successive # -# adds and muls in FP0. Set the sign according to SM. # -# The mantissa digits will be converted with the decimal point # -# assumed following the least-significant digit. # -# Note: this operation can never overflow. # -# # -# A3. Count the number of leading/trailing zeros in the # -# bcd string. If SE is positive, count the leading zeros; # -# if negative, count the trailing zeros. Set the adjusted # -# exponent equal to the exponent from A1 and the zero count # -# added if SM = 1 and subtracted if SM = 0. Scale the # -# mantissa the equivalent of forcing in the bcd value: # -# # -# SM = 0 a non-zero digit in the integer position # -# SM = 1 a non-zero digit in Mant0, lsd of the fraction # -# # -# this will insure that any value, regardless of its # -# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted # -# consistently. # -# # -# A4. Calculate the factor 10^exp in FP1 using a table of # -# 10^(2^n) values. To reduce the error in forming factors # -# greater than 10^27, a directed rounding scheme is used with # -# tables rounded to RN, RM, and RP, according to the table # -# in the comments of the pwrten section. # -# # -# A5. Form the final binary number by scaling the mantissa by # -# the exponent factor. This is done by multiplying the # -# mantissa in FP0 by the factor in FP1 if the adjusted # -# exponent sign is positive, and dividing FP0 by FP1 if # -# it is negative. # -# # -# Clean up and return. Check if the final mul or div was inexact. # -# If so, set INEX1 in USER_FPSR. # -# # -######################################################################### - -# -# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded -# to nearest, minus, and plus, respectively. The tables include -# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding -# is required until the power is greater than 27, however, all -# tables include the first 5 for ease of indexing. -# -RTABLE: - byte 0,0,0,0 - byte 2,3,2,3 - byte 2,3,3,2 - byte 3,2,2,3 - - set FNIBS,7 - set FSTRT,0 - - set ESTRT,4 - set EDIGITS,2 - - global decbin -decbin: - mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input - mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it - mov.l 0x8(%a0),FP_SCR0_LO(%a6) - - lea FP_SCR0(%a6),%a0 - - movm.l &0x3c00,-(%sp) # save d2-d5 - fmovm.x &0x1,-(%sp) # save fp1 -# -# Calculate exponent: -# 1. Copy bcd value in memory for use as a working copy. -# 2. Calculate absolute value of exponent in d1 by mul and add. -# 3. Correct for exponent sign. -# 4. Subtract 16 to compensate for interpreting the mant as all integer digits. -# (i.e., all digits assumed left of the decimal point.) -# -# Register usage: -# -# calc_e: -# (*) d0: temp digit storage -# (*) d1: accumulator for binary exponent -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: first word of bcd -# ( ) a0: pointer to working bcd value -# ( ) a6: pointer to original bcd value -# (*) FP_SCR1: working copy of original bcd value -# (*) L_SCR1: copy of original exponent word -# -calc_e: - mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part - mov.l &ESTRT,%d3 # counter to pick up digits - mov.l (%a0),%d4 # get first word of bcd - clr.l %d1 # zero d1 for accumulator -e_gd: - mulu.l &0xa,%d1 # mul partial product by one digit place - bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0 - add.l %d0,%d1 # d1 = d1 + d0 - addq.b &4,%d3 # advance d3 to the next digit - dbf.w %d2,e_gd # if we have used all 3 digits, exit loop - btst &30,%d4 # get SE - beq.b e_pos # don't negate if pos - neg.l %d1 # negate before subtracting -e_pos: - sub.l &16,%d1 # sub to compensate for shift of mant - bge.b e_save # if still pos, do not neg - neg.l %d1 # now negative, make pos and set SE - or.l &0x40000000,%d4 # set SE in d4, - or.l &0x40000000,(%a0) # and in working bcd -e_save: - mov.l %d1,-(%sp) # save exp on stack -# -# -# Calculate mantissa: -# 1. Calculate absolute value of mantissa in fp0 by mul and add. -# 2. Correct for mantissa sign. -# (i.e., all digits assumed left of the decimal point.) -# -# Register usage: -# -# calc_m: -# (*) d0: temp digit storage -# (*) d1: lword counter -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: words 2 and 3 of bcd -# ( ) a0: pointer to working bcd value -# ( ) a6: pointer to original bcd value -# (*) fp0: mantissa accumulator -# ( ) FP_SCR1: working copy of original bcd value -# ( ) L_SCR1: copy of original exponent word -# -calc_m: - mov.l &1,%d1 # word counter, init to 1 - fmov.s &0x00000000,%fp0 # accumulator -# -# -# Since the packed number has a long word between the first & second parts, -# get the integer digit then skip down & get the rest of the -# mantissa. We will unroll the loop once. -# - bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word - fadd.b %d0,%fp0 # add digit to sum in fp0 -# -# -# Get the rest of the mantissa. -# -loadlw: - mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4 - mov.l &FSTRT,%d3 # counter to pick up digits - mov.l &FNIBS,%d2 # reset number of digits per a0 ptr -md2b: - fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10 - bfextu %d4{%d3:&4},%d0 # get the digit and zero extend - fadd.b %d0,%fp0 # fp0 = fp0 + digit -# -# -# If all the digits (8) in that long word have been converted (d2=0), -# then inc d1 (=2) to point to the next long word and reset d3 to 0 -# to initialize the digit offset, and set d2 to 7 for the digit count; -# else continue with this long word. -# - addq.b &4,%d3 # advance d3 to the next digit - dbf.w %d2,md2b # check for last digit in this lw -nextlw: - addq.l &1,%d1 # inc lw pointer in mantissa - cmp.l %d1,&2 # test for last lw - ble.b loadlw # if not, get last one -# -# Check the sign of the mant and make the value in fp0 the same sign. -# -m_sign: - btst &31,(%a0) # test sign of the mantissa - beq.b ap_st_z # if clear, go to append/strip zeros - fneg.x %fp0 # if set, negate fp0 -# -# Append/strip zeros: -# -# For adjusted exponents which have an absolute value greater than 27*, -# this routine calculates the amount needed to normalize the mantissa -# for the adjusted exponent. That number is subtracted from the exp -# if the exp was positive, and added if it was negative. The purpose -# of this is to reduce the value of the exponent and the possibility -# of error in calculation of pwrten. -# -# 1. Branch on the sign of the adjusted exponent. -# 2p.(positive exp) -# 2. Check M16 and the digits in lwords 2 and 3 in decending order. -# 3. Add one for each zero encountered until a non-zero digit. -# 4. Subtract the count from the exp. -# 5. Check if the exp has crossed zero in #3 above; make the exp abs -# and set SE. -# 6. Multiply the mantissa by 10**count. -# 2n.(negative exp) -# 2. Check the digits in lwords 3 and 2 in decending order. -# 3. Add one for each zero encountered until a non-zero digit. -# 4. Add the count to the exp. -# 5. Check if the exp has crossed zero in #3 above; clear SE. -# 6. Divide the mantissa by 10**count. -# -# *Why 27? If the adjusted exponent is within -28 < expA < 28, than -# any adjustment due to append/strip zeros will drive the resultane -# exponent towards zero. Since all pwrten constants with a power -# of 27 or less are exact, there is no need to use this routine to -# attempt to lessen the resultant exponent. -# -# Register usage: -# -# ap_st_z: -# (*) d0: temp digit storage -# (*) d1: zero count -# (*) d2: digit count -# (*) d3: offset pointer -# ( ) d4: first word of bcd -# (*) d5: lword counter -# ( ) a0: pointer to working bcd value -# ( ) FP_SCR1: working copy of original bcd value -# ( ) L_SCR1: copy of original exponent word -# -# -# First check the absolute value of the exponent to see if this -# routine is necessary. If so, then check the sign of the exponent -# and do append (+) or strip (-) zeros accordingly. -# This section handles a positive adjusted exponent. -# -ap_st_z: - mov.l (%sp),%d1 # load expA for range test - cmp.l %d1,&27 # test is with 27 - ble.w pwrten # if abs(expA) <28, skip ap/st zeros - btst &30,(%a0) # check sign of exp - bne.b ap_st_n # if neg, go to neg side - clr.l %d1 # zero count reg - mov.l (%a0),%d4 # load lword 1 to d4 - bfextu %d4{&28:&4},%d0 # get M16 in d0 - bne.b ap_p_fx # if M16 is non-zero, go fix exp - addq.l &1,%d1 # inc zero count - mov.l &1,%d5 # init lword counter - mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4 - bne.b ap_p_cl # if lw 2 is zero, skip it - addq.l &8,%d1 # and inc count by 8 - addq.l &1,%d5 # inc lword counter - mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4 -ap_p_cl: - clr.l %d3 # init offset reg - mov.l &7,%d2 # init digit counter -ap_p_gd: - bfextu %d4{%d3:&4},%d0 # get digit - bne.b ap_p_fx # if non-zero, go to fix exp - addq.l &4,%d3 # point to next digit - addq.l &1,%d1 # inc digit counter - dbf.w %d2,ap_p_gd # get next digit -ap_p_fx: - mov.l %d1,%d0 # copy counter to d2 - mov.l (%sp),%d1 # get adjusted exp from memory - sub.l %d0,%d1 # subtract count from exp - bge.b ap_p_fm # if still pos, go to pwrten - neg.l %d1 # now its neg; get abs - mov.l (%a0),%d4 # load lword 1 to d4 - or.l &0x40000000,%d4 # and set SE in d4 - or.l &0x40000000,(%a0) # and in memory -# -# Calculate the mantissa multiplier to compensate for the striping of -# zeros from the mantissa. -# -ap_p_fm: - lea.l PTENRN(%pc),%a1 # get address of power-of-ten table - clr.l %d3 # init table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 - mov.l &3,%d2 # init d2 to count bits in counter -ap_p_el: - asr.l &1,%d0 # shift lsb into carry - bcc.b ap_p_en # if 1, mul fp1 by pwrten factor - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -ap_p_en: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b ap_p_el # if not, get next bit - fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted) - bra.b pwrten # go calc pwrten -# -# This section handles a negative adjusted exponent. -# -ap_st_n: - clr.l %d1 # clr counter - mov.l &2,%d5 # set up d5 to point to lword 3 - mov.l (%a0,%d5.L*4),%d4 # get lword 3 - bne.b ap_n_cl # if not zero, check digits - sub.l &1,%d5 # dec d5 to point to lword 2 - addq.l &8,%d1 # inc counter by 8 - mov.l (%a0,%d5.L*4),%d4 # get lword 2 -ap_n_cl: - mov.l &28,%d3 # point to last digit - mov.l &7,%d2 # init digit counter -ap_n_gd: - bfextu %d4{%d3:&4},%d0 # get digit - bne.b ap_n_fx # if non-zero, go to exp fix - subq.l &4,%d3 # point to previous digit - addq.l &1,%d1 # inc digit counter - dbf.w %d2,ap_n_gd # get next digit -ap_n_fx: - mov.l %d1,%d0 # copy counter to d0 - mov.l (%sp),%d1 # get adjusted exp from memory - sub.l %d0,%d1 # subtract count from exp - bgt.b ap_n_fm # if still pos, go fix mantissa - neg.l %d1 # take abs of exp and clr SE - mov.l (%a0),%d4 # load lword 1 to d4 - and.l &0xbfffffff,%d4 # and clr SE in d4 - and.l &0xbfffffff,(%a0) # and in memory -# -# Calculate the mantissa multiplier to compensate for the appending of -# zeros to the mantissa. -# -ap_n_fm: - lea.l PTENRN(%pc),%a1 # get address of power-of-ten table - clr.l %d3 # init table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 - mov.l &3,%d2 # init d2 to count bits in counter -ap_n_el: - asr.l &1,%d0 # shift lsb into carry - bcc.b ap_n_en # if 1, mul fp1 by pwrten factor - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -ap_n_en: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b ap_n_el # if not, get next bit - fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted) -# -# -# Calculate power-of-ten factor from adjusted and shifted exponent. -# -# Register usage: -# -# pwrten: -# (*) d0: temp -# ( ) d1: exponent -# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp -# (*) d3: FPCR work copy -# ( ) d4: first word of bcd -# (*) a1: RTABLE pointer -# calc_p: -# (*) d0: temp -# ( ) d1: exponent -# (*) d3: PWRTxx table index -# ( ) a0: pointer to working copy of bcd -# (*) a1: PWRTxx pointer -# (*) fp1: power-of-ten accumulator -# -# Pwrten calculates the exponent factor in the selected rounding mode -# according to the following table: -# -# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode -# -# ANY ANY RN RN -# -# + + RP RP -# - + RP RM -# + - RP RM -# - - RP RP -# -# + + RM RM -# - + RM RP -# + - RM RP -# - - RM RM -# -# + + RZ RM -# - + RZ RM -# + - RZ RP -# - - RZ RP -# -# -pwrten: - mov.l USER_FPCR(%a6),%d3 # get user's FPCR - bfextu %d3{&26:&2},%d2 # isolate rounding mode bits - mov.l (%a0),%d4 # reload 1st bcd word to d4 - asl.l &2,%d2 # format d2 to be - bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE} - add.l %d0,%d2 # in d2 as index into RTABLE - lea.l RTABLE(%pc),%a1 # load rtable base - mov.b (%a1,%d2),%d0 # load new rounding bits from table - clr.l %d3 # clear d3 to force no exc and extended - bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR - fmov.l %d3,%fpcr # write new FPCR - asr.l &1,%d0 # write correct PTENxx table - bcc.b not_rp # to a1 - lea.l PTENRP(%pc),%a1 # it is RP - bra.b calc_p # go to init section -not_rp: - asr.l &1,%d0 # keep checking - bcc.b not_rm - lea.l PTENRM(%pc),%a1 # it is RM - bra.b calc_p # go to init section -not_rm: - lea.l PTENRN(%pc),%a1 # it is RN -calc_p: - mov.l %d1,%d0 # copy exp to d0;use d0 - bpl.b no_neg # if exp is negative, - neg.l %d0 # invert it - or.l &0x40000000,(%a0) # and set SE bit -no_neg: - clr.l %d3 # table index - fmov.s &0x3f800000,%fp1 # init fp1 to 1 -e_loop: - asr.l &1,%d0 # shift next bit into carry - bcc.b e_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -e_next: - add.l &12,%d3 # inc d3 to next rtable entry - tst.l %d0 # check if d0 is zero - bne.b e_loop # not zero, continue shifting -# -# -# Check the sign of the adjusted exp and make the value in fp0 the -# same sign. If the exp was pos then multiply fp1*fp0; -# else divide fp0/fp1. -# -# Register Usage: -# norm: -# ( ) a0: pointer to working bcd value -# (*) fp0: mantissa accumulator -# ( ) fp1: scaling factor - 10**(abs(exp)) -# -pnorm: - btst &30,(%a0) # test the sign of the exponent - beq.b mul # if clear, go to multiply -div: - fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp - bra.b end_dec -mul: - fmul.x %fp1,%fp0 # exp is positive, so multiply by exp -# -# -# Clean up and return with result in fp0. -# -# If the final mul/div in decbin incurred an inex exception, -# it will be inex2, but will be reported as inex1 by get_op. -# -end_dec: - fmov.l %fpsr,%d0 # get status register - bclr &inex2_bit+8,%d0 # test for inex2 and clear it - beq.b no_exc # skip this if no exc - ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX -no_exc: - add.l &0x4,%sp # clear 1 lw param - fmovm.x (%sp)+,&0x40 # restore fp1 - movm.l (%sp)+,&0x3c # restore d2-d5 - fmov.l &0x0,%fpcr - fmov.l &0x0,%fpsr - rts - -######################################################################### -# bindec(): Converts an input in extended precision format to bcd format# -# # -# INPUT *************************************************************** # -# a0 = pointer to the input extended precision value in memory. # -# the input may be either normalized, unnormalized, or # -# denormalized. # -# d0 = contains the k-factor sign-extended to 32-bits. # -# # -# OUTPUT ************************************************************** # -# FP_SCR0(a6) = bcd format result on the stack. # -# # -# ALGORITHM *********************************************************** # -# # -# A1. Set RM and size ext; Set SIGMA = sign of input. # -# The k-factor is saved for use in d7. Clear the # -# BINDEC_FLG for separating normalized/denormalized # -# input. If input is unnormalized or denormalized, # -# normalize it. # -# # -# A2. Set X = abs(input). # -# # -# A3. Compute ILOG. # -# ILOG is the log base 10 of the input value. It is # -# approximated by adding e + 0.f when the original # -# value is viewed as 2^^e * 1.f in extended precision. # -# This value is stored in d6. # -# # -# A4. Clr INEX bit. # -# The operation in A3 above may have set INEX2. # -# # -# A5. Set ICTR = 0; # -# ICTR is a flag used in A13. It must be set before the # -# loop entry A6. # -# # -# A6. Calculate LEN. # -# LEN is the number of digits to be displayed. The # -# k-factor can dictate either the total number of digits, # -# if it is a positive number, or the number of digits # -# after the decimal point which are to be included as # -# significant. See the 68882 manual for examples. # -# If LEN is computed to be greater than 17, set OPERR in # -# USER_FPSR. LEN is stored in d4. # -# # -# A7. Calculate SCALE. # -# SCALE is equal to 10^ISCALE, where ISCALE is the number # -# of decimal places needed to insure LEN integer digits # -# in the output before conversion to bcd. LAMBDA is the # -# sign of ISCALE, used in A9. Fp1 contains # -# 10^^(abs(ISCALE)) using a rounding mode which is a # -# function of the original rounding mode and the signs # -# of ISCALE and X. A table is given in the code. # -# # -# A8. Clr INEX; Force RZ. # -# The operation in A3 above may have set INEX2. # -# RZ mode is forced for the scaling operation to insure # -# only one rounding error. The grs bits are collected in # -# the INEX flag for use in A10. # -# # -# A9. Scale X -> Y. # -# The mantissa is scaled to the desired number of # -# significant digits. The excess digits are collected # -# in INEX2. # -# # -# A10. Or in INEX. # -# If INEX is set, round error occurred. This is # -# compensated for by 'or-ing' in the INEX2 flag to # -# the lsb of Y. # -# # -# A11. Restore original FPCR; set size ext. # -# Perform FINT operation in the user's rounding mode. # -# Keep the size to extended. # -# # -# A12. Calculate YINT = FINT(Y) according to user's rounding # -# mode. The FPSP routine sintd0 is used. The output # -# is in fp0. # -# # -# A13. Check for LEN digits. # -# If the int operation results in more than LEN digits, # -# or less than LEN -1 digits, adjust ILOG and repeat from # -# A6. This test occurs only on the first pass. If the # -# result is exactly 10^LEN, decrement ILOG and divide # -# the mantissa by 10. # -# # -# A14. Convert the mantissa to bcd. # -# The binstr routine is used to convert the LEN digit # -# mantissa to bcd in memory. The input to binstr is # -# to be a fraction; i.e. (mantissa)/10^LEN and adjusted # -# such that the decimal point is to the left of bit 63. # -# The bcd digits are stored in the correct position in # -# the final string area in memory. # -# # -# A15. Convert the exponent to bcd. # -# As in A14 above, the exp is converted to bcd and the # -# digits are stored in the final string. # -# Test the length of the final exponent string. If the # -# length is 4, set operr. # -# # -# A16. Write sign bits to final string. # -# # -######################################################################### - -set BINDEC_FLG, EXC_TEMP # DENORM flag - -# Constants in extended precision -PLOG2: - long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 -PLOG2UP1: - long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 - -# Constants in single precision -FONE: - long 0x3F800000,0x00000000,0x00000000,0x00000000 -FTWO: - long 0x40000000,0x00000000,0x00000000,0x00000000 -FTEN: - long 0x41200000,0x00000000,0x00000000,0x00000000 -F4933: - long 0x459A2800,0x00000000,0x00000000,0x00000000 - -RBDTBL: - byte 0,0,0,0 - byte 3,3,2,2 - byte 3,2,2,3 - byte 2,3,3,2 - -# Implementation Notes: -# -# The registers are used as follows: -# -# d0: scratch; LEN input to binstr -# d1: scratch -# d2: upper 32-bits of mantissa for binstr -# d3: scratch;lower 32-bits of mantissa for binstr -# d4: LEN -# d5: LAMBDA/ICTR -# d6: ILOG -# d7: k-factor -# a0: ptr for original operand/final result -# a1: scratch pointer -# a2: pointer to FP_X; abs(original value) in ext -# fp0: scratch -# fp1: scratch -# fp2: scratch -# F_SCR1: -# F_SCR2: -# L_SCR1: -# L_SCR2: - - global bindec -bindec: - movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2} - fmovm.x &0x7,-(%sp) # {%fp0-%fp2} - -# A1. Set RM and size ext. Set SIGMA = sign input; -# The k-factor is saved for use in d7. Clear BINDEC_FLG for -# separating normalized/denormalized input. If the input -# is a denormalized number, set the BINDEC_FLG memory word -# to signal denorm. If the input is unnormalized, normalize -# the input and test for denormalized result. -# - fmov.l &rm_mode*0x10,%fpcr # set RM and ext - mov.l (%a0),L_SCR2(%a6) # save exponent for sign check - mov.l %d0,%d7 # move k-factor to d7 - - clr.b BINDEC_FLG(%a6) # clr norm/denorm flag - cmpi.b STAG(%a6),&DENORM # is input a DENORM? - bne.w A2_str # no; input is a NORM - -# -# Normalize the denorm -# -un_de_norm: - mov.w (%a0),%d0 - and.w &0x7fff,%d0 # strip sign of normalized exp - mov.l 4(%a0),%d1 - mov.l 8(%a0),%d2 -norm_loop: - sub.w &1,%d0 - lsl.l &1,%d2 - roxl.l &1,%d1 - tst.l %d1 - bge.b norm_loop -# -# Test if the normalized input is denormalized -# - tst.w %d0 - bgt.b pos_exp # if greater than zero, it is a norm - st BINDEC_FLG(%a6) # set flag for denorm -pos_exp: - and.w &0x7fff,%d0 # strip sign of normalized exp - mov.w %d0,(%a0) - mov.l %d1,4(%a0) - mov.l %d2,8(%a0) - -# A2. Set X = abs(input). -# -A2_str: - mov.l (%a0),FP_SCR1(%a6) # move input to work space - mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space - mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space - and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X) - -# A3. Compute ILOG. -# ILOG is the log base 10 of the input value. It is approx- -# imated by adding e + 0.f when the original value is viewed -# as 2^^e * 1.f in extended precision. This value is stored -# in d6. -# -# Register usage: -# Input/Output -# d0: k-factor/exponent -# d2: x/x -# d3: x/x -# d4: x/x -# d5: x/x -# d6: x/ILOG -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/x -# a2: x/x -# fp0: x/float(ILOG) -# fp1: x/x -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X)/Abs(X) with $3fff exponent -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - - tst.b BINDEC_FLG(%a6) # check for denorm - beq.b A3_cont # if clr, continue with norm - mov.l &-4933,%d6 # force ILOG = -4933 - bra.b A4_str -A3_cont: - mov.w FP_SCR1(%a6),%d0 # move exp to d0 - mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff - fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f - sub.w &0x3fff,%d0 # strip off bias - fadd.w %d0,%fp0 # add in exp - fsub.s FONE(%pc),%fp0 # subtract off 1.0 - fbge.w pos_res # if pos, branch - fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1 - fmov.l %fp0,%d6 # put ILOG in d6 as a lword - bra.b A4_str # go move out ILOG -pos_res: - fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2 - fmov.l %fp0,%d6 # put ILOG in d6 as a lword - - -# A4. Clr INEX bit. -# The operation in A3 above may have set INEX2. - -A4_str: - fmov.l &0,%fpsr # zero all of fpsr - nothing needed - - -# A5. Set ICTR = 0; -# ICTR is a flag used in A13. It must be set before the -# loop entry A6. The lower word of d5 is used for ICTR. - - clr.w %d5 # clear ICTR - -# A6. Calculate LEN. -# LEN is the number of digits to be displayed. The k-factor -# can dictate either the total number of digits, if it is -# a positive number, or the number of digits after the -# original decimal point which are to be included as -# significant. See the 68882 manual for examples. -# If LEN is computed to be greater than 17, set OPERR in -# USER_FPSR. LEN is stored in d4. -# -# Register usage: -# Input/Output -# d0: exponent/Unchanged -# d2: x/x/scratch -# d3: x/x -# d4: exc picture/LEN -# d5: ICTR/Unchanged -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/x -# a2: x/x -# fp0: float(ILOG)/Unchanged -# fp1: x/x -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A6_str: - tst.l %d7 # branch on sign of k - ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k - mov.l %d7,%d4 # if k > 0, LEN = k - bra.b len_ck # skip to LEN check -k_neg: - mov.l %d6,%d4 # first load ILOG to d4 - sub.l %d7,%d4 # subtract off k - addq.l &1,%d4 # add in the 1 -len_ck: - tst.l %d4 # LEN check: branch on sign of LEN - ble.b LEN_ng # if neg, set LEN = 1 - cmp.l %d4,&17 # test if LEN > 17 - ble.b A7_str # if not, forget it - mov.l &17,%d4 # set max LEN = 17 - tst.l %d7 # if negative, never set OPERR - ble.b A7_str # if positive, continue - or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR - bra.b A7_str # finished here -LEN_ng: - mov.l &1,%d4 # min LEN is 1 - - -# A7. Calculate SCALE. -# SCALE is equal to 10^ISCALE, where ISCALE is the number -# of decimal places needed to insure LEN integer digits -# in the output before conversion to bcd. LAMBDA is the sign -# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using -# the rounding mode as given in the following table (see -# Coonen, p. 7.23 as ref.; however, the SCALE variable is -# of opposite sign in bindec.sa from Coonen). -# -# Initial USE -# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] -# ---------------------------------------------- -# RN 00 0 0 00/0 RN -# RN 00 0 1 00/0 RN -# RN 00 1 0 00/0 RN -# RN 00 1 1 00/0 RN -# RZ 01 0 0 11/3 RP -# RZ 01 0 1 11/3 RP -# RZ 01 1 0 10/2 RM -# RZ 01 1 1 10/2 RM -# RM 10 0 0 11/3 RP -# RM 10 0 1 10/2 RM -# RM 10 1 0 10/2 RM -# RM 10 1 1 11/3 RP -# RP 11 0 0 10/2 RM -# RP 11 0 1 11/3 RP -# RP 11 1 0 11/3 RP -# RP 11 1 1 10/2 RM -# -# Register usage: -# Input/Output -# d0: exponent/scratch - final is 0 -# d2: x/0 or 24 for A9 -# d3: x/scratch - offset ptr into PTENRM array -# d4: LEN/Unchanged -# d5: 0/ICTR:LAMBDA -# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: x/ptr to PTENRM array -# a2: x/x -# fp0: float(ILOG)/Unchanged -# fp1: x/10^ISCALE -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A7_str: - tst.l %d7 # test sign of k - bgt.b k_pos # if pos and > 0, skip this - cmp.l %d7,%d6 # test k - ILOG - blt.b k_pos # if ILOG >= k, skip this - mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k -k_pos: - mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0 - addq.l &1,%d0 # add the 1 - sub.l %d4,%d0 # sub off LEN - swap %d5 # use upper word of d5 for LAMBDA - clr.w %d5 # set it zero initially - clr.w %d2 # set up d2 for very small case - tst.l %d0 # test sign of ISCALE - bge.b iscale # if pos, skip next inst - addq.w &1,%d5 # if neg, set LAMBDA true - cmp.l %d0,&0xffffecd4 # test iscale <= -4908 - bgt.b no_inf # if false, skip rest - add.l &24,%d0 # add in 24 to iscale - mov.l &24,%d2 # put 24 in d2 for A9 -no_inf: - neg.l %d0 # and take abs of ISCALE -iscale: - fmov.s FONE(%pc),%fp1 # init fp1 to 1 - bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits - lsl.w &1,%d1 # put them in bits 2:1 - add.w %d5,%d1 # add in LAMBDA - lsl.w &1,%d1 # put them in bits 3:1 - tst.l L_SCR2(%a6) # test sign of original x - bge.b x_pos # if pos, don't set bit 0 - addq.l &1,%d1 # if neg, set bit 0 -x_pos: - lea.l RBDTBL(%pc),%a2 # load rbdtbl base - mov.b (%a2,%d1),%d3 # load d3 with new rmode - lsl.l &4,%d3 # put bits in proper position - fmov.l %d3,%fpcr # load bits into fpu - lsr.l &4,%d3 # put bits in proper position - tst.b %d3 # decode new rmode for pten table - bne.b not_rn # if zero, it is RN - lea.l PTENRN(%pc),%a1 # load a1 with RN table base - bra.b rmode # exit decode -not_rn: - lsr.b &1,%d3 # get lsb in carry - bcc.b not_rp2 # if carry clear, it is RM - lea.l PTENRP(%pc),%a1 # load a1 with RP table base - bra.b rmode # exit decode -not_rp2: - lea.l PTENRM(%pc),%a1 # load a1 with RM table base -rmode: - clr.l %d3 # clr table index -e_loop2: - lsr.l &1,%d0 # shift next bit into carry - bcc.b e_next2 # if zero, skip the mul - fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no) -e_next2: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if ISCALE is zero - bne.b e_loop2 # if not, loop - -# A8. Clr INEX; Force RZ. -# The operation in A3 above may have set INEX2. -# RZ mode is forced for the scaling operation to insure -# only one rounding error. The grs bits are collected in -# the INEX flag for use in A10. -# -# Register usage: -# Input/Output - - fmov.l &0,%fpsr # clr INEX - fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode - -# A9. Scale X -> Y. -# The mantissa is scaled to the desired number of significant -# digits. The excess digits are collected in INEX2. If mul, -# Check d2 for excess 10 exponential value. If not zero, -# the iscale value would have caused the pwrten calculation -# to overflow. Only a negative iscale can cause this, so -# multiply by 10^(d2), which is now only allowed to be 24, -# with a multiply by 10^8 and 10^16, which is exact since -# 10^24 is exact. If the input was denormalized, we must -# create a busy stack frame with the mul command and the -# two operands, and allow the fpu to complete the multiply. -# -# Register usage: -# Input/Output -# d0: FPCR with RZ mode/Unchanged -# d2: 0 or 24/unchanged -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: ptr to PTENRM array/Unchanged -# a2: x/x -# fp0: float(ILOG)/X adjusted for SCALE (Y) -# fp1: 10^ISCALE/Unchanged -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Abs(X) with $3fff exponent/Unchanged -# L_SCR1:x/x -# L_SCR2:first word of X packed/Unchanged - -A9_str: - fmov.x (%a0),%fp0 # load X from memory - fabs.x %fp0 # use abs(X) - tst.w %d5 # LAMBDA is in lower word of d5 - bne.b sc_mul # if neg (LAMBDA = 1), scale by mul - fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0 - bra.w A10_st # branch to A10 - -sc_mul: - tst.b BINDEC_FLG(%a6) # check for denorm - beq.w A9_norm # if norm, continue with mul - -# for DENORM, we must calculate: -# fp0 = input_op * 10^ISCALE * 10^24 -# since the input operand is a DENORM, we can't multiply it directly. -# so, we do the multiplication of the exponents and mantissas separately. -# in this way, we avoid underflow on intermediate stages of the -# multiplication and guarantee a result without exception. - fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack - - mov.w (%sp),%d3 # grab exponent - andi.w &0x7fff,%d3 # clear sign - ori.w &0x8000,(%a0) # make DENORM exp negative - add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp - subi.w &0x3fff,%d3 # subtract BIAS - add.w 36(%a1),%d3 - subi.w &0x3fff,%d3 # subtract BIAS - add.w 48(%a1),%d3 - subi.w &0x3fff,%d3 # subtract BIAS - - bmi.w sc_mul_err # is result is DENORM, punt!!! - - andi.w &0x8000,(%sp) # keep sign - or.w %d3,(%sp) # insert new exponent - andi.w &0x7fff,(%a0) # clear sign bit on DENORM again - mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk - mov.l 0x4(%a0),-(%sp) - mov.l &0x3fff0000,-(%sp) # force exp to zero - fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0 - fmul.x (%sp)+,%fp0 - -# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 -# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 - mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa - mov.l 36+4(%a1),-(%sp) - mov.l &0x3fff0000,-(%sp) # force exp to zero - mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa - mov.l 48+4(%a1),-(%sp) - mov.l &0x3fff0000,-(%sp)# force exp to zero - fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8 - fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16 - bra.b A10_st - -sc_mul_err: - bra.b sc_mul_err - -A9_norm: - tst.w %d2 # test for small exp case - beq.b A9_con # if zero, continue as normal - fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8 - fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16 -A9_con: - fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0 - -# A10. Or in INEX. -# If INEX is set, round error occurred. This is compensated -# for by 'or-ing' in the INEX2 flag to the lsb of Y. -# -# Register usage: -# Input/Output -# d0: FPCR with RZ mode/FPSR with INEX2 isolated -# d2: x/x -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/final result -# a1: ptr to PTENxx array/Unchanged -# a2: x/ptr to FP_SCR1(a6) -# fp0: Y/Y with lsb adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: x/x - -A10_st: - fmov.l %fpsr,%d0 # get FPSR - fmov.x %fp0,FP_SCR1(%a6) # move Y to memory - lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1 - btst &9,%d0 # check if INEX2 set - beq.b A11_st # if clear, skip rest - or.l &1,8(%a2) # or in 1 to lsb of mantissa - fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu - - -# A11. Restore original FPCR; set size ext. -# Perform FINT operation in the user's rounding mode. Keep -# the size to extended. The sintdo entry point in the sint -# routine expects the FPCR value to be in USER_FPCR for -# mode and precision. The original FPCR is saved in L_SCR1. - -A11_st: - mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later - and.l &0x00000030,USER_FPCR(%a6) # set size to ext, -# ;block exceptions - - -# A12. Calculate YINT = FINT(Y) according to user's rounding mode. -# The FPSP routine sintd0 is used. The output is in fp0. -# -# Register usage: -# Input/Output -# d0: FPSR with AINEX cleared/FPCR with size set to ext -# d2: x/x/scratch -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/Unchanged -# d6: ILOG/Unchanged -# d7: k-factor/Unchanged -# a0: ptr for original operand/src ptr for sintdo -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored -# fp0: Y/YINT -# fp1: 10^ISCALE/Unchanged -# fp2: x/x -# F_SCR1:x/x -# F_SCR2:Y adjusted for inex/Y with original exponent -# L_SCR1:x/original USER_FPCR -# L_SCR2:first word of X packed/Unchanged - -A12_st: - movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1} - mov.l L_SCR1(%a6),-(%sp) - mov.l L_SCR2(%a6),-(%sp) - - lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6) - fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6) - tst.l L_SCR2(%a6) # test sign of original operand - bge.b do_fint12 # if pos, use Y - or.l &0x80000000,(%a0) # if neg, use -Y -do_fint12: - mov.l USER_FPSR(%a6),-(%sp) -# bsr sintdo # sint routine returns int in fp0 - - fmov.l USER_FPCR(%a6),%fpcr - fmov.l &0x0,%fpsr # clear the AEXC bits!!! -## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode -## andi.l &0x00000030,%d0 -## fmov.l %d0,%fpcr - fint.x FP_SCR1(%a6),%fp0 # do fint() - fmov.l %fpsr,%d0 - or.w %d0,FPSR_EXCEPT(%a6) -## fmov.l &0x0,%fpcr -## fmov.l %fpsr,%d0 # don't keep ccodes -## or.w %d0,FPSR_EXCEPT(%a6) - - mov.b (%sp),USER_FPSR(%a6) - add.l &4,%sp - - mov.l (%sp)+,L_SCR2(%a6) - mov.l (%sp)+,L_SCR1(%a6) - movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1} - - mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent - mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR - -# A13. Check for LEN digits. -# If the int operation results in more than LEN digits, -# or less than LEN -1 digits, adjust ILOG and repeat from -# A6. This test occurs only on the first pass. If the -# result is exactly 10^LEN, decrement ILOG and divide -# the mantissa by 10. The calculation of 10^LEN cannot -# be inexact, since all powers of ten up to 10^27 are exact -# in extended precision, so the use of a previous power-of-ten -# table will introduce no error. -# -# -# Register usage: -# Input/Output -# d0: FPCR with size set to ext/scratch final = 0 -# d2: x/x -# d3: x/scratch final = x -# d4: LEN/LEN adjusted -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG/ILOG adjusted -# d7: k-factor/Unchanged -# a0: pointer into memory for packed bcd string formation -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: int portion of Y/abs(YINT) adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: x/10^LEN -# F_SCR1:x/x -# F_SCR2:Y with original exponent/Unchanged -# L_SCR1:original USER_FPCR/Unchanged -# L_SCR2:first word of X packed/Unchanged - -A13_st: - swap %d5 # put ICTR in lower word of d5 - tst.w %d5 # check if ICTR = 0 - bne not_zr # if non-zero, go to second test -# -# Compute 10^(LEN-1) -# - fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 - mov.l %d4,%d0 # put LEN in d0 - subq.l &1,%d0 # d0 = LEN -1 - clr.l %d3 # clr table index -l_loop: - lsr.l &1,%d0 # shift next bit into carry - bcc.b l_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) -l_next: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if LEN is zero - bne.b l_loop # if not, loop -# -# 10^LEN-1 is computed for this test and A14. If the input was -# denormalized, check only the case in which YINT > 10^LEN. -# - tst.b BINDEC_FLG(%a6) # check if input was norm - beq.b A13_con # if norm, continue with checking - fabs.x %fp0 # take abs of YINT - bra test_2 -# -# Compare abs(YINT) to 10^(LEN-1) and 10^LEN -# -A13_con: - fabs.x %fp0 # take abs of YINT - fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1) - fbge.w test_2 # if greater, do next test - subq.l &1,%d6 # subtract 1 from ILOG - mov.w &1,%d5 # set ICTR - fmov.l &rm_mode*0x10,%fpcr # set rmode to RM - fmul.s FTEN(%pc),%fp2 # compute 10^LEN - bra.w A6_str # return to A6 and recompute YINT -test_2: - fmul.s FTEN(%pc),%fp2 # compute 10^LEN - fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN - fblt.w A14_st # if less, all is ok, go to A14 - fbgt.w fix_ex # if greater, fix and redo - fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10 - addq.l &1,%d6 # and inc ILOG - bra.b A14_st # and continue elsewhere -fix_ex: - addq.l &1,%d6 # increment ILOG by 1 - mov.w &1,%d5 # set ICTR - fmov.l &rm_mode*0x10,%fpcr # set rmode to RM - bra.w A6_str # return to A6 and recompute YINT -# -# Since ICTR <> 0, we have already been through one adjustment, -# and shouldn't have another; this is to check if abs(YINT) = 10^LEN -# 10^LEN is again computed using whatever table is in a1 since the -# value calculated cannot be inexact. -# -not_zr: - fmov.s FONE(%pc),%fp2 # init fp2 to 1.0 - mov.l %d4,%d0 # put LEN in d0 - clr.l %d3 # clr table index -z_loop: - lsr.l &1,%d0 # shift next bit into carry - bcc.b z_next # if zero, skip the mul - fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no) -z_next: - add.l &12,%d3 # inc d3 to next pwrten table entry - tst.l %d0 # test if LEN is zero - bne.b z_loop # if not, loop - fabs.x %fp0 # get abs(YINT) - fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN - fbneq.w A14_st # if not, skip this - fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10 - addq.l &1,%d6 # and inc ILOG by 1 - addq.l &1,%d4 # and inc LEN - fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN - -# A14. Convert the mantissa to bcd. -# The binstr routine is used to convert the LEN digit -# mantissa to bcd in memory. The input to binstr is -# to be a fraction; i.e. (mantissa)/10^LEN and adjusted -# such that the decimal point is to the left of bit 63. -# The bcd digits are stored in the correct position in -# the final string area in memory. -# -# -# Register usage: -# Input/Output -# d0: x/LEN call to binstr - final is 0 -# d1: x/0 -# d2: x/ms 32-bits of mant of abs(YINT) -# d3: x/ls 32-bits of mant of abs(YINT) -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG -# d7: k-factor/Unchanged -# a0: pointer into memory for packed bcd string formation -# /ptr to first mantissa byte in result string -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: int portion of Y/abs(YINT) adjusted -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:x/Work area for final result -# F_SCR2:Y with original exponent/Unchanged -# L_SCR1:original USER_FPCR/Unchanged -# L_SCR2:first word of X packed/Unchanged - -A14_st: - fmov.l &rz_mode*0x10,%fpcr # force rz for conversion - fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN - lea.l FP_SCR0(%a6),%a0 - fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory - mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2 - mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3 - clr.l 4(%a0) # zero word 2 of FP_RES - clr.l 8(%a0) # zero word 3 of FP_RES - mov.l (%a0),%d0 # move exponent to d0 - swap %d0 # put exponent in lower word - beq.b no_sft # if zero, don't shift - sub.l &0x3ffd,%d0 # sub bias less 2 to make fract - tst.l %d0 # check if > 1 - bgt.b no_sft # if so, don't shift - neg.l %d0 # make exp positive -m_loop: - lsr.l &1,%d2 # shift d2:d3 right, add 0s - roxr.l &1,%d3 # the number of places - dbf.w %d0,m_loop # given in d0 -no_sft: - tst.l %d2 # check for mantissa of zero - bne.b no_zr # if not, go on - tst.l %d3 # continue zero check - beq.b zer_m # if zero, go directly to binstr -no_zr: - clr.l %d1 # put zero in d1 for addx - add.l &0x00000080,%d3 # inc at bit 7 - addx.l %d1,%d2 # continue inc - and.l &0xffffff80,%d3 # strip off lsb not used by 882 -zer_m: - mov.l %d4,%d0 # put LEN in d0 for binstr call - addq.l &3,%a0 # a0 points to M16 byte in result - bsr binstr # call binstr to convert mant - - -# A15. Convert the exponent to bcd. -# As in A14 above, the exp is converted to bcd and the -# digits are stored in the final string. -# -# Digits are stored in L_SCR1(a6) on return from BINDEC as: -# -# 32 16 15 0 -# ----------------------------------------- -# | 0 | e3 | e2 | e1 | e4 | X | X | X | -# ----------------------------------------- -# -# And are moved into their proper places in FP_SCR0. If digit e4 -# is non-zero, OPERR is signaled. In all cases, all 4 digits are -# written as specified in the 881/882 manual for packed decimal. -# -# Register usage: -# Input/Output -# d0: x/LEN call to binstr - final is 0 -# d1: x/scratch (0);shift count for final exponent packing -# d2: x/ms 32-bits of exp fraction/scratch -# d3: x/ls 32-bits of exp fraction -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG -# d7: k-factor/Unchanged -# a0: ptr to result string/ptr to L_SCR1(a6) -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: abs(YINT) adjusted/float(ILOG) -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:Work area for final result/BCD result -# F_SCR2:Y with original exponent/ILOG/10^4 -# L_SCR1:original USER_FPCR/Exponent digits on return from binstr -# L_SCR2:first word of X packed/Unchanged - -A15_st: - tst.b BINDEC_FLG(%a6) # check for denorm - beq.b not_denorm - ftest.x %fp0 # test for zero - fbeq.w den_zero # if zero, use k-factor or 4933 - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG - bra.b convrt -den_zero: - tst.l %d7 # check sign of the k-factor - blt.b use_ilog # if negative, use ILOG - fmov.s F4933(%pc),%fp0 # force exponent to 4933 - bra.b convrt # do it -use_ilog: - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG - bra.b convrt -not_denorm: - ftest.x %fp0 # test for zero - fbneq.w not_zero # if zero, force exponent - fmov.s FONE(%pc),%fp0 # force exponent to 1 - bra.b convrt # do it -not_zero: - fmov.l %d6,%fp0 # float ILOG - fabs.x %fp0 # get abs of ILOG -convrt: - fdiv.x 24(%a1),%fp0 # compute ILOG/10^4 - fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory - mov.l 4(%a2),%d2 # move word 2 to d2 - mov.l 8(%a2),%d3 # move word 3 to d3 - mov.w (%a2),%d0 # move exp to d0 - beq.b x_loop_fin # if zero, skip the shift - sub.w &0x3ffd,%d0 # subtract off bias - neg.w %d0 # make exp positive -x_loop: - lsr.l &1,%d2 # shift d2:d3 right - roxr.l &1,%d3 # the number of places - dbf.w %d0,x_loop # given in d0 -x_loop_fin: - clr.l %d1 # put zero in d1 for addx - add.l &0x00000080,%d3 # inc at bit 6 - addx.l %d1,%d2 # continue inc - and.l &0xffffff80,%d3 # strip off lsb not used by 882 - mov.l &4,%d0 # put 4 in d0 for binstr call - lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits - bsr binstr # call binstr to convert exp - mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0 - mov.l &12,%d1 # use d1 for shift count - lsr.l %d1,%d0 # shift d0 right by 12 - bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0 - lsr.l %d1,%d0 # shift d0 right by 12 - bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0 - tst.b %d0 # check if e4 is zero - beq.b A16_st # if zero, skip rest - or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR - - -# A16. Write sign bits to final string. -# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). -# -# Register usage: -# Input/Output -# d0: x/scratch - final is x -# d2: x/x -# d3: x/x -# d4: LEN/Unchanged -# d5: ICTR:LAMBDA/LAMBDA:ICTR -# d6: ILOG/ILOG adjusted -# d7: k-factor/Unchanged -# a0: ptr to L_SCR1(a6)/Unchanged -# a1: ptr to PTENxx array/Unchanged -# a2: ptr to FP_SCR1(a6)/Unchanged -# fp0: float(ILOG)/Unchanged -# fp1: 10^ISCALE/Unchanged -# fp2: 10^LEN/Unchanged -# F_SCR1:BCD result with correct signs -# F_SCR2:ILOG/10^4 -# L_SCR1:Exponent digits on return from binstr -# L_SCR2:first word of X packed/Unchanged - -A16_st: - clr.l %d0 # clr d0 for collection of signs - and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0 - tst.l L_SCR2(%a6) # check sign of original mantissa - bge.b mant_p # if pos, don't set SM - mov.l &2,%d0 # move 2 in to d0 for SM -mant_p: - tst.l %d6 # check sign of ILOG - bge.b wr_sgn # if pos, don't set SE - addq.l &1,%d0 # set bit 0 in d0 for SE -wr_sgn: - bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0 - -# Clean up and restore all registers used. - - fmov.l &0,%fpsr # clear possible inex2/ainex bits - fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2} - movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2} - rts - - global PTENRN -PTENRN: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - - global PTENRP -PTENRP: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096 - - global PTENRM -PTENRM: - long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1 - long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2 - long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4 - long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8 - long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16 - long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32 - long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64 - long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128 - long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256 - long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512 - long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024 - long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048 - long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096 - -######################################################################### -# binstr(): Converts a 64-bit binary integer to bcd. # -# # -# INPUT *************************************************************** # -# d2:d3 = 64-bit binary integer # -# d0 = desired length (LEN) # -# a0 = pointer to start in memory for bcd characters # -# (This pointer must point to byte 4 of the first # -# lword of the packed decimal memory string.) # -# # -# OUTPUT ************************************************************** # -# a0 = pointer to LEN bcd digits representing the 64-bit integer. # -# # -# ALGORITHM *********************************************************** # -# The 64-bit binary is assumed to have a decimal point before # -# bit 63. The fraction is multiplied by 10 using a mul by 2 # -# shift and a mul by 8 shift. The bits shifted out of the # -# msb form a decimal digit. This process is iterated until # -# LEN digits are formed. # -# # -# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the # -# digit formed will be assumed the least significant. This is # -# to force the first byte formed to have a 0 in the upper 4 bits. # -# # -# A2. Beginning of the loop: # -# Copy the fraction in d2:d3 to d4:d5. # -# # -# A3. Multiply the fraction in d2:d3 by 8 using bit-field # -# extracts and shifts. The three msbs from d2 will go into d1. # -# # -# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb # -# will be collected by the carry. # -# # -# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 # -# into d2:d3. D1 will contain the bcd digit formed. # -# # -# A6. Test d7. If zero, the digit formed is the ms digit. If non- # -# zero, it is the ls digit. Put the digit in its place in the # -# upper word of d0. If it is the ls digit, write the word # -# from d0 to memory. # -# # -# A7. Decrement d6 (LEN counter) and repeat the loop until zero. # -# # -######################################################################### - -# Implementation Notes: -# -# The registers are used as follows: -# -# d0: LEN counter -# d1: temp used to form the digit -# d2: upper 32-bits of fraction for mul by 8 -# d3: lower 32-bits of fraction for mul by 8 -# d4: upper 32-bits of fraction for mul by 2 -# d5: lower 32-bits of fraction for mul by 2 -# d6: temp for bit-field extracts -# d7: byte digit formation word;digit count {0,1} -# a0: pointer into memory for packed bcd string formation -# - - global binstr -binstr: - movm.l &0xff00,-(%sp) # {%d0-%d7} - -# -# A1: Init d7 -# - mov.l &1,%d7 # init d7 for second digit - subq.l &1,%d0 # for dbf d0 would have LEN+1 passes -# -# A2. Copy d2:d3 to d4:d5. Start loop. -# -loop: - mov.l %d2,%d4 # copy the fraction before muls - mov.l %d3,%d5 # to d4:d5 -# -# A3. Multiply d2:d3 by 8; extract msbs into d1. -# - bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1 - asl.l &3,%d2 # shift d2 left by 3 places - bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6 - asl.l &3,%d3 # shift d3 left by 3 places - or.l %d6,%d2 # or in msbs from d3 into d2 -# -# A4. Multiply d4:d5 by 2; add carry out to d1. -# - asl.l &1,%d5 # mul d5 by 2 - roxl.l &1,%d4 # mul d4 by 2 - swap %d6 # put 0 in d6 lower word - addx.w %d6,%d1 # add in extend from mul by 2 -# -# A5. Add mul by 8 to mul by 2. D1 contains the digit formed. -# - add.l %d5,%d3 # add lower 32 bits - nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) - addx.l %d4,%d2 # add with extend upper 32 bits - nop # ERRATA FIX #13 (Rev. 1.2 6/6/90) - addx.w %d6,%d1 # add in extend from add to d1 - swap %d6 # with d6 = 0; put 0 in upper word -# -# A6. Test d7 and branch. -# - tst.w %d7 # if zero, store digit & to loop - beq.b first_d # if non-zero, form byte & write -sec_d: - swap %d7 # bring first digit to word d7b - asl.w &4,%d7 # first digit in upper 4 bits d7b - add.w %d1,%d7 # add in ls digit to d7b - mov.b %d7,(%a0)+ # store d7b byte in memory - swap %d7 # put LEN counter in word d7a - clr.w %d7 # set d7a to signal no digits done - dbf.w %d0,loop # do loop some more! - bra.b end_bstr # finished, so exit -first_d: - swap %d7 # put digit word in d7b - mov.w %d1,%d7 # put new digit in d7b - swap %d7 # put LEN counter in word d7a - addq.w &1,%d7 # set d7a to signal first digit done - dbf.w %d0,loop # do loop some more! - swap %d7 # put last digit in string - lsl.w &4,%d7 # move it to upper 4 bits - mov.b %d7,(%a0)+ # store it in memory string -# -# Clean up and return with result in fp0. -# -end_bstr: - movm.l (%sp)+,&0xff # {%d0-%d7} - rts - -######################################################################### -# XDEF **************************************************************** # -# facc_in_b(): dmem_read_byte failed # -# facc_in_w(): dmem_read_word failed # -# facc_in_l(): dmem_read_long failed # -# facc_in_d(): dmem_read of dbl prec failed # -# facc_in_x(): dmem_read of ext prec failed # -# # -# facc_out_b(): dmem_write_byte failed # -# facc_out_w(): dmem_write_word failed # -# facc_out_l(): dmem_write_long failed # -# facc_out_d(): dmem_write of dbl prec failed # -# facc_out_x(): dmem_write of ext prec failed # -# # -# XREF **************************************************************** # -# _real_access() - exit through access error handler # -# # -# INPUT *************************************************************** # -# None # -# # -# OUTPUT ************************************************************** # -# None # -# # -# ALGORITHM *********************************************************** # -# Flow jumps here when an FP data fetch call gets an error # -# result. This means the operating system wants an access error frame # -# made out of the current exception stack frame. # -# So, we first call restore() which makes sure that any updated # -# -(an)+ register gets returned to its pre-exception value and then # -# we change the stack to an access error stack frame. # -# # -######################################################################### - -facc_in_b: - movq.l &0x1,%d0 # one byte - bsr.w restore # fix An - - mov.w &0x0121,EXC_VOFF(%a6) # set FSLW - bra.w facc_finish - -facc_in_w: - movq.l &0x2,%d0 # two bytes - bsr.w restore # fix An - - mov.w &0x0141,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_l: - movq.l &0x4,%d0 # four bytes - bsr.w restore # fix An - - mov.w &0x0101,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_d: - movq.l &0x8,%d0 # eight bytes - bsr.w restore # fix An - - mov.w &0x0161,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_in_x: - movq.l &0xc,%d0 # twelve bytes - bsr.w restore # fix An - - mov.w &0x0161,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -################################################################ - -facc_out_b: - movq.l &0x1,%d0 # one byte - bsr.w restore # restore An - - mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_w: - movq.l &0x2,%d0 # two bytes - bsr.w restore # restore An - - mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_l: - movq.l &0x4,%d0 # four bytes - bsr.w restore # restore An - - mov.w &0x0081,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_d: - movq.l &0x8,%d0 # eight bytes - bsr.w restore # restore An - - mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW - bra.b facc_finish - -facc_out_x: - mov.l &0xc,%d0 # twelve bytes - bsr.w restore # restore An - - mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW - -# here's where we actually create the access error frame from the -# current exception stack frame. -facc_finish: - mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC - - fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 - fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs - movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1 - - unlk %a6 - - mov.l (%sp),-(%sp) # store SR, hi(PC) - mov.l 0x8(%sp),0x4(%sp) # store lo(PC) - mov.l 0xc(%sp),0x8(%sp) # store EA - mov.l &0x00000001,0xc(%sp) # store FSLW - mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size) - mov.w &0x4008,0x6(%sp) # store voff - - btst &0x5,(%sp) # supervisor or user mode? - beq.b facc_out2 # user - bset &0x2,0xd(%sp) # set supervisor TM bit - -facc_out2: - bra.l _real_access - -################################################################## - -# if the effective addressing mode was predecrement or postincrement, -# the emulation has already changed its value to the correct post- -# instruction value. but since we're exiting to the access error -# handler, then AN must be returned to its pre-instruction value. -# we do that here. -restore: - mov.b EXC_OPWORD+0x1(%a6),%d1 - andi.b &0x38,%d1 # extract opmode - cmpi.b %d1,&0x18 # postinc? - beq.w rest_inc - cmpi.b %d1,&0x20 # predec? - beq.w rest_dec - rts - -rest_inc: - mov.b EXC_OPWORD+0x1(%a6),%d1 - andi.w &0x0007,%d1 # fetch An - - mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1 - jmp (tbl_rest_inc.b,%pc,%d1.w*1) - -tbl_rest_inc: - short ri_a0 - tbl_rest_inc - short ri_a1 - tbl_rest_inc - short ri_a2 - tbl_rest_inc - short ri_a3 - tbl_rest_inc - short ri_a4 - tbl_rest_inc - short ri_a5 - tbl_rest_inc - short ri_a6 - tbl_rest_inc - short ri_a7 - tbl_rest_inc - -ri_a0: - sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0 - rts -ri_a1: - sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1 - rts -ri_a2: - sub.l %d0,%a2 # fix a2 - rts -ri_a3: - sub.l %d0,%a3 # fix a3 - rts -ri_a4: - sub.l %d0,%a4 # fix a4 - rts -ri_a5: - sub.l %d0,%a5 # fix a5 - rts -ri_a6: - sub.l %d0,(%a6) # fix stacked a6 - rts -# if it's a fmove out instruction, we don't have to fix a7 -# because we hadn't changed it yet. if it's an opclass two -# instruction (data moved in) and the exception was in supervisor -# mode, then also also wasn't updated. if it was user mode, then -# restore the correct a7 which is in the USP currently. -ri_a7: - cmpi.b EXC_VOFF(%a6),&0x30 # move in or out? - bne.b ri_a7_done # out - - btst &0x5,EXC_SR(%a6) # user or supervisor? - bne.b ri_a7_done # supervisor - movc %usp,%a0 # restore USP - sub.l %d0,%a0 - movc %a0,%usp -ri_a7_done: - rts - -# need to invert adjustment value if the <ea> was predec -rest_dec: - neg.l %d0 - bra.b rest_inc |