summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S
diff options
context:
space:
mode:
Diffstat (limited to 'ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S')
-rw-r--r--ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S4299
1 files changed, 0 insertions, 4299 deletions
diff --git a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S b/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S
deleted file mode 100644
index 6dccda76..00000000
--- a/ANDROID_3.4.5/arch/m68k/ifpsp060/src/isp.S
+++ /dev/null
@@ -1,4299 +0,0 @@
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
-M68000 Hi-Performance Microprocessor Division
-M68060 Software Package
-Production Release P1.00 -- October 10, 1994
-
-M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
-
-THE SOFTWARE is provided on an "AS IS" basis and without warranty.
-To the maximum extent permitted by applicable law,
-MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
-INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
-and any warranty against infringement with regard to the SOFTWARE
-(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
-
-To the maximum extent permitted by applicable law,
-IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
-(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
-BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
-ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
-Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
-
-You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
-so long as this entire notice is retained without alteration in any modified and/or
-redistributed versions, and that such modified versions are clearly identified as such.
-No licenses are granted by implication, estoppel or otherwise under any patents
-or trademarks of Motorola, Inc.
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-# ireal.s:
-# This file is appended to the top of the 060ISP package
-# and contains the entry points into the package. The user, in
-# effect, branches to one of the branch table entries located
-# after _060ISP_TABLE.
-# Also, subroutine stubs exist in this file (_isp_done for
-# example) that are referenced by the ISP package itself in order
-# to call a given routine. The stub routine actually performs the
-# callout. The ISP code does a "bsr" to the stub routine. This
-# extra layer of hierarchy adds a slight performance penalty but
-# it makes the ISP code easier to read and more mainatinable.
-#
-
-set _off_chk, 0x00
-set _off_divbyzero, 0x04
-set _off_trace, 0x08
-set _off_access, 0x0c
-set _off_done, 0x10
-
-set _off_cas, 0x14
-set _off_cas2, 0x18
-set _off_lock, 0x1c
-set _off_unlock, 0x20
-
-set _off_imr, 0x40
-set _off_dmr, 0x44
-set _off_dmw, 0x48
-set _off_irw, 0x4c
-set _off_irl, 0x50
-set _off_drb, 0x54
-set _off_drw, 0x58
-set _off_drl, 0x5c
-set _off_dwb, 0x60
-set _off_dww, 0x64
-set _off_dwl, 0x68
-
-_060ISP_TABLE:
-
-# Here's the table of ENTRY POINTS for those linking the package.
- bra.l _isp_unimp
- short 0x0000
-
- bra.l _isp_cas
- short 0x0000
-
- bra.l _isp_cas2
- short 0x0000
-
- bra.l _isp_cas_finish
- short 0x0000
-
- bra.l _isp_cas2_finish
- short 0x0000
-
- bra.l _isp_cas_inrange
- short 0x0000
-
- bra.l _isp_cas_terminate
- short 0x0000
-
- bra.l _isp_cas_restart
- short 0x0000
-
- space 64
-
-#############################################################
-
- global _real_chk
-_real_chk:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_chk,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_divbyzero
-_real_divbyzero:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_divbyzero,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_trace
-_real_trace:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_trace,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_access
-_real_access:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_access,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _isp_done
-_isp_done:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_done,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#######################################
-
- global _real_cas
-_real_cas:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_cas,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_cas2
-_real_cas2:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_cas2,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_lock_page
-_real_lock_page:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_lock,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _real_unlock_page
-_real_unlock_page:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_unlock,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#######################################
-
- global _imem_read
-_imem_read:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_imr,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read
-_dmem_read:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dmr,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write
-_dmem_write:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dmw,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_word
-_imem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_irw,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _imem_read_long
-_imem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_irl,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_byte
-_dmem_read_byte:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_drb,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_word
-_dmem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_drw,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_read_long
-_dmem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_drl,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_byte
-_dmem_write_byte:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dwb,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_word
-_dmem_write_word:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dww,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
- global _dmem_write_long
-_dmem_write_long:
- mov.l %d0,-(%sp)
- mov.l (_060ISP_TABLE-0x80+_off_dwl,%pc),%d0
- pea.l (_060ISP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
-
-#
-# This file contains a set of define statements for constants
-# in oreder to promote readability within the core code itself.
-#
-
-set LOCAL_SIZE, 96 # stack frame size(bytes)
-set LV, -LOCAL_SIZE # stack offset
-
-set EXC_ISR, 0x4 # stack status register
-set EXC_IPC, 0x6 # stack pc
-set EXC_IVOFF, 0xa # stacked vector offset
-
-set EXC_AREGS, LV+64 # offset of all address regs
-set EXC_DREGS, LV+32 # offset of all data regs
-
-set EXC_A7, EXC_AREGS+(7*4) # offset of a7
-set EXC_A6, EXC_AREGS+(6*4) # offset of a6
-set EXC_A5, EXC_AREGS+(5*4) # offset of a5
-set EXC_A4, EXC_AREGS+(4*4) # offset of a4
-set EXC_A3, EXC_AREGS+(3*4) # offset of a3
-set EXC_A2, EXC_AREGS+(2*4) # offset of a2
-set EXC_A1, EXC_AREGS+(1*4) # offset of a1
-set EXC_A0, EXC_AREGS+(0*4) # offset of a0
-set EXC_D7, EXC_DREGS+(7*4) # offset of d7
-set EXC_D6, EXC_DREGS+(6*4) # offset of d6
-set EXC_D5, EXC_DREGS+(5*4) # offset of d5
-set EXC_D4, EXC_DREGS+(4*4) # offset of d4
-set EXC_D3, EXC_DREGS+(3*4) # offset of d3
-set EXC_D2, EXC_DREGS+(2*4) # offset of d2
-set EXC_D1, EXC_DREGS+(1*4) # offset of d1
-set EXC_D0, EXC_DREGS+(0*4) # offset of d0
-
-set EXC_TEMP, LV+16 # offset of temp stack space
-
-set EXC_SAVVAL, LV+12 # offset of old areg value
-set EXC_SAVREG, LV+11 # offset of old areg index
-
-set SPCOND_FLG, LV+10 # offset of spc condition flg
-
-set EXC_CC, LV+8 # offset of cc register
-set EXC_EXTWPTR, LV+4 # offset of current PC
-set EXC_EXTWORD, LV+2 # offset of current ext opword
-set EXC_OPWORD, LV+0 # offset of current opword
-
-###########################
-# SPecial CONDition FLaGs #
-###########################
-set mia7_flg, 0x04 # (a7)+ flag
-set mda7_flg, 0x08 # -(a7) flag
-set ichk_flg, 0x10 # chk exception flag
-set idbyz_flg, 0x20 # divbyzero flag
-set restore_flg, 0x40 # restore -(an)+ flag
-set immed_flg, 0x80 # immediate data flag
-
-set mia7_bit, 0x2 # (a7)+ bit
-set mda7_bit, 0x3 # -(a7) bit
-set ichk_bit, 0x4 # chk exception bit
-set idbyz_bit, 0x5 # divbyzero bit
-set restore_bit, 0x6 # restore -(a7)+ bit
-set immed_bit, 0x7 # immediate data bit
-
-#########
-# Misc. #
-#########
-set BYTE, 1 # len(byte) == 1 byte
-set WORD, 2 # len(word) == 2 bytes
-set LONG, 4 # len(longword) == 4 bytes
-
-#########################################################################
-# XDEF **************************************************************** #
-# _isp_unimp(): 060ISP entry point for Unimplemented Instruction #
-# #
-# This handler should be the first code executed upon taking the #
-# "Unimplemented Integer Instruction" exception in an operating #
-# system. #
-# #
-# XREF **************************************************************** #
-# _imem_read_{word,long}() - read instruction word/longword #
-# _mul64() - emulate 64-bit multiply #
-# _div64() - emulate 64-bit divide #
-# _moveperipheral() - emulate "movep" #
-# _compandset() - emulate misaligned "cas" #
-# _compandset2() - emulate "cas2" #
-# _chk2_cmp2() - emulate "cmp2" and "chk2" #
-# _isp_done() - "callout" for normal final exit #
-# _real_trace() - "callout" for Trace exception #
-# _real_chk() - "callout" for Chk exception #
-# _real_divbyzero() - "callout" for DZ exception #
-# _real_access() - "callout" for access error exception #
-# #
-# INPUT *************************************************************** #
-# - The system stack contains the Unimp Int Instr stack frame #
-# #
-# OUTPUT ************************************************************** #
-# If Trace exception: #
-# - The system stack changed to contain Trace exc stack frame #
-# If Chk exception: #
-# - The system stack changed to contain Chk exc stack frame #
-# If DZ exception: #
-# - The system stack changed to contain DZ exc stack frame #
-# If access error exception: #
-# - The system stack changed to contain access err exc stk frame #
-# Else: #
-# - Results saved as appropriate #
-# #
-# ALGORITHM *********************************************************** #
-# This handler fetches the first instruction longword from #
-# memory and decodes it to determine which of the unimplemented #
-# integer instructions caused this exception. This handler then calls #
-# one of _mul64(), _div64(), _moveperipheral(), _compandset(), #
-# _compandset2(), or _chk2_cmp2() as appropriate. #
-# Some of these instructions, by their nature, may produce other #
-# types of exceptions. "div" can produce a divide-by-zero exception, #
-# and "chk2" can cause a "Chk" exception. In both cases, the current #
-# exception stack frame must be converted to an exception stack frame #
-# of the correct exception type and an exit must be made through #
-# _real_divbyzero() or _real_chk() as appropriate. In addition, all #
-# instructions may be executing while Trace is enabled. If so, then #
-# a Trace exception stack frame must be created and an exit made #
-# through _real_trace(). #
-# Meanwhile, if any read or write to memory using the #
-# _mem_{read,write}() "callout"s returns a failing value, then an #
-# access error frame must be created and an exit made through #
-# _real_access(). #
-# If none of these occur, then a normal exit is made through #
-# _isp_done(). #
-# #
-# This handler, upon entry, saves almost all user-visible #
-# address and data registers to the stack. Although this may seem to #
-# cause excess memory traffic, it was found that due to having to #
-# access these register files for things like data retrieval and <ea> #
-# calculations, it was more efficient to have them on the stack where #
-# they could be accessed by indexing rather than to make subroutine #
-# calls to retrieve a register of a particular index. #
-# #
-#########################################################################
-
- global _isp_unimp
-_isp_unimp:
- link.w %a6,&-LOCAL_SIZE # create room for stack frame
-
- movm.l &0x3fff,EXC_DREGS(%a6) # store d0-d7/a0-a5
- mov.l (%a6),EXC_A6(%a6) # store a6
-
- btst &0x5,EXC_ISR(%a6) # from s or u mode?
- bne.b uieh_s # supervisor mode
-uieh_u:
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # store a7
- bra.b uieh_cont
-uieh_s:
- lea 0xc(%a6),%a0
- mov.l %a0,EXC_A7(%a6) # store corrected sp
-
-###############################################################################
-
-uieh_cont:
- clr.b SPCOND_FLG(%a6) # clear "special case" flag
-
- mov.w EXC_ISR(%a6),EXC_CC(%a6) # store cc copy on stack
- mov.l EXC_IPC(%a6),EXC_EXTWPTR(%a6) # store extwptr on stack
-
-#
-# fetch the opword and first extension word pointed to by the stacked pc
-# and store them to the stack for now
-#
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch opword & extword
- mov.l %d0,EXC_OPWORD(%a6) # store extword on stack
-
-
-#########################################################################
-# muls.l 0100 1100 00 |<ea>| 0*** 1100 0000 0*** #
-# mulu.l 0100 1100 00 |<ea>| 0*** 0100 0000 0*** #
-# #
-# divs.l 0100 1100 01 |<ea>| 0*** 1100 0000 0*** #
-# divu.l 0100 1100 01 |<ea>| 0*** 0100 0000 0*** #
-# #
-# movep.w m2r 0000 ***1 00 001*** | <displacement> | #
-# movep.l m2r 0000 ***1 01 001*** | <displacement> | #
-# movep.w r2m 0000 ***1 10 001*** | <displacement> | #
-# movep.l r2m 0000 ***1 11 001*** | <displacement> | #
-# #
-# cas.w 0000 1100 11 |<ea>| 0000 000* **00 0*** #
-# cas.l 0000 1110 11 |<ea>| 0000 000* **00 0*** #
-# #
-# cas2.w 0000 1100 11 111100 **** 000* **00 0*** #
-# **** 000* **00 0*** #
-# cas2.l 0000 1110 11 111100 **** 000* **00 0*** #
-# **** 000* **00 0*** #
-# #
-# chk2.b 0000 0000 11 |<ea>| **** 1000 0000 0000 #
-# chk2.w 0000 0010 11 |<ea>| **** 1000 0000 0000 #
-# chk2.l 0000 0100 11 |<ea>| **** 1000 0000 0000 #
-# #
-# cmp2.b 0000 0000 11 |<ea>| **** 0000 0000 0000 #
-# cmp2.w 0000 0010 11 |<ea>| **** 0000 0000 0000 #
-# cmp2.l 0000 0100 11 |<ea>| **** 0000 0000 0000 #
-#########################################################################
-
-#
-# using bit 14 of the operation word, separate into 2 groups:
-# (group1) mul64, div64
-# (group2) movep, chk2, cmp2, cas2, cas
-#
- btst &0x1e,%d0 # group1 or group2
- beq.b uieh_group2 # go handle group2
-
-#
-# now, w/ group1, make mul64's decode the fastest since it will
-# most likely be used the most.
-#
-uieh_group1:
- btst &0x16,%d0 # test for div64
- bne.b uieh_div64 # go handle div64
-
-uieh_mul64:
-# mul64() may use ()+ addressing and may, therefore, alter a7
-
- bsr.l _mul64 # _mul64()
-
- btst &0x5,EXC_ISR(%a6) # supervisor mode?
- beq.w uieh_done
- btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed?
- beq.w uieh_done # no
- btst &0x7,EXC_ISR(%a6) # is trace enabled?
- bne.w uieh_trace_a7 # yes
- bra.w uieh_a7 # no
-
-uieh_div64:
-# div64() may use ()+ addressing and may, therefore, alter a7.
-# div64() may take a divide by zero exception.
-
- bsr.l _div64 # _div64()
-
-# here, we sort out all of the special cases that may have happened.
- btst &mia7_bit,SPCOND_FLG(%a6) # was a7 changed?
- bne.b uieh_div64_a7 # yes
-uieh_div64_dbyz:
- btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur?
- bne.w uieh_divbyzero # yes
- bra.w uieh_done # no
-uieh_div64_a7:
- btst &0x5,EXC_ISR(%a6) # supervisor mode?
- beq.b uieh_div64_dbyz # no
-# here, a7 has been incremented by 4 bytes in supervisor mode. we still
-# may have the following 3 cases:
-# (i) (a7)+
-# (ii) (a7)+; trace
-# (iii) (a7)+; divide-by-zero
-#
- btst &idbyz_bit,SPCOND_FLG(%a6) # did divide-by-zero occur?
- bne.w uieh_divbyzero_a7 # yes
- tst.b EXC_ISR(%a6) # no; is trace enabled?
- bmi.w uieh_trace_a7 # yes
- bra.w uieh_a7 # no
-
-#
-# now, w/ group2, make movep's decode the fastest since it will
-# most likely be used the most.
-#
-uieh_group2:
- btst &0x18,%d0 # test for not movep
- beq.b uieh_not_movep
-
-
- bsr.l _moveperipheral # _movep()
- bra.w uieh_done
-
-uieh_not_movep:
- btst &0x1b,%d0 # test for chk2,cmp2
- beq.b uieh_chk2cmp2 # go handle chk2,cmp2
-
- swap %d0 # put opword in lo word
- cmpi.b %d0,&0xfc # test for cas2
- beq.b uieh_cas2 # go handle cas2
-
-uieh_cas:
-
- bsr.l _compandset # _cas()
-
-# the cases of "cas Dc,Du,(a7)+" and "cas Dc,Du,-(a7)" used from supervisor
-# mode are simply not considered valid and therefore are not handled.
-
- bra.w uieh_done
-
-uieh_cas2:
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # read extension word
-
- tst.l %d1 # ifetch error?
- bne.w isp_iacc # yes
-
- bsr.l _compandset2 # _cas2()
- bra.w uieh_done
-
-uieh_chk2cmp2:
-# chk2 may take a chk exception
-
- bsr.l _chk2_cmp2 # _chk2_cmp2()
-
-# here we check to see if a chk trap should be taken
- cmpi.b SPCOND_FLG(%a6),&ichk_flg
- bne.w uieh_done
- bra.b uieh_chk_trap
-
-###########################################################################
-
-#
-# the required emulation has been completed. now, clean up the necessary stack
-# info and prepare for rte
-#
-uieh_done:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
-
-# if exception occurred in user mode, then we have to restore a7 in case it
-# changed. we don't have to update a7 for supervisor mose because that case
-# doesn't flow through here
- btst &0x5,EXC_ISR(%a6) # user or supervisor?
- bne.b uieh_finish # supervisor
-
- mov.l EXC_A7(%a6),%a0 # fetch user stack pointer
- mov.l %a0,%usp # restore it
-
-uieh_finish:
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- btst &0x7,EXC_ISR(%a6) # is trace mode on?
- bne.b uieh_trace # yes;go handle trace mode
-
- mov.l EXC_EXTWPTR(%a6),EXC_IPC(%a6) # new pc on stack frame
- mov.l EXC_A6(%a6),(%a6) # prepare new a6 for unlink
- unlk %a6 # unlink stack frame
- bra.l _isp_done
-
-#
-# The instruction that was just emulated was also being traced. The trace
-# trap for this instruction will be lost unless we jump to the trace handler.
-# So, here we create a Trace Exception format number two exception stack
-# frame from the Unimplemented Integer Intruction Exception stack frame
-# format number zero and jump to the user supplied hook "_real_trace()".
-#
-# UIEH FRAME TRACE FRAME
-# ***************** *****************
-# * 0x0 * 0x0f4 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x024 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# ->* Old * *****************
-# from link -->* A6 * * SR *
-# ***************** *****************
-# /* A7 * * New * <-- for final unlink
-# / * * * A6 *
-# link frame < ***************** *****************
-# \ ~ ~ ~ ~
-# \***************** *****************
-#
-uieh_trace:
- mov.l EXC_A6(%a6),-0x4(%a6)
- mov.w EXC_ISR(%a6),0x0(%a6)
- mov.l EXC_IPC(%a6),0x8(%a6)
- mov.l EXC_EXTWPTR(%a6),0x2(%a6)
- mov.w &0x2024,0x6(%a6)
- sub.l &0x4,%a6
- unlk %a6
- bra.l _real_trace
-
-#
-# UIEH FRAME CHK FRAME
-# ***************** *****************
-# * 0x0 * 0x0f4 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x018 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# (4 words) *****************
-# * SR *
-# *****************
-# (6 words)
-#
-# the chk2 instruction should take a chk trap. so, here we must create a
-# chk stack frame from an unimplemented integer instruction exception frame
-# and jump to the user supplied entry point "_real_chk()".
-#
-uieh_chk_trap:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.w EXC_ISR(%a6),(%a6) # put new SR on stack
- mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack
- mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack
- mov.w &0x2018,0x6(%a6) # put Vector Offset on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_chk
-
-#
-# UIEH FRAME DIVBYZERO FRAME
-# ***************** *****************
-# * 0x0 * 0x0f4 * * Current *
-# ***************** * PC *
-# * Current * *****************
-# * PC * * 0x2 * 0x014 *
-# ***************** *****************
-# * SR * * Next *
-# ***************** * PC *
-# (4 words) *****************
-# * SR *
-# *****************
-# (6 words)
-#
-# the divide instruction should take an integer divide by zero trap. so, here
-# we must create a divbyzero stack frame from an unimplemented integer
-# instruction exception frame and jump to the user supplied entry point
-# "_real_divbyzero()".
-#
-uieh_divbyzero:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.w EXC_ISR(%a6),(%a6) # put new SR on stack
- mov.l EXC_IPC(%a6),0x8(%a6) # put "Current PC" on stack
- mov.l EXC_EXTWPTR(%a6),0x2(%a6) # put "Next PC" on stack
- mov.w &0x2014,0x6(%a6) # put Vector Offset on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_divbyzero
-
-#
-# DIVBYZERO FRAME
-# *****************
-# * Current *
-# UIEH FRAME * PC *
-# ***************** *****************
-# * 0x0 * 0x0f4 * * 0x2 * 0x014 *
-# ***************** *****************
-# * Current * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-# (4 words) (6 words)
-#
-# the divide instruction should take an integer divide by zero trap. so, here
-# we must create a divbyzero stack frame from an unimplemented integer
-# instruction exception frame and jump to the user supplied entry point
-# "_real_divbyzero()".
-#
-# However, we must also deal with the fact that (a7)+ was used from supervisor
-# mode, thereby shifting the stack frame up 4 bytes.
-#
-uieh_divbyzero_a7:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack
- mov.w &0x2014,0xa(%a6) # put Vector Offset on stack
- mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &4+LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_divbyzero
-
-#
-# TRACE FRAME
-# *****************
-# * Current *
-# UIEH FRAME * PC *
-# ***************** *****************
-# * 0x0 * 0x0f4 * * 0x2 * 0x024 *
-# ***************** *****************
-# * Current * * Next *
-# * PC * * PC *
-# ***************** *****************
-# * SR * * SR *
-# ***************** *****************
-# (4 words) (6 words)
-#
-#
-# The instruction that was just emulated was also being traced. The trace
-# trap for this instruction will be lost unless we jump to the trace handler.
-# So, here we create a Trace Exception format number two exception stack
-# frame from the Unimplemented Integer Intruction Exception stack frame
-# format number zero and jump to the user supplied hook "_real_trace()".
-#
-# However, we must also deal with the fact that (a7)+ was used from supervisor
-# mode, thereby shifting the stack frame up 4 bytes.
-#
-uieh_trace_a7:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.l EXC_IPC(%a6),0xc(%a6) # put "Current PC" on stack
- mov.w &0x2024,0xa(%a6) # put Vector Offset on stack
- mov.l EXC_EXTWPTR(%a6),0x6(%a6) # put "Next PC" on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &4+LOCAL_SIZE,%sp # clear stack frame
-
- bra.l _real_trace
-
-#
-# UIEH FRAME
-# *****************
-# * 0x0 * 0x0f4 *
-# UIEH FRAME *****************
-# ***************** * Next *
-# * 0x0 * 0x0f4 * * PC *
-# ***************** *****************
-# * Current * * SR *
-# * PC * *****************
-# ***************** (4 words)
-# * SR *
-# *****************
-# (4 words)
-uieh_a7:
- mov.b EXC_CC+1(%a6),EXC_ISR+1(%a6) # insert new ccodes
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
-
- mov.w &0x00f4,0xe(%a6) # put Vector Offset on stack
- mov.l EXC_EXTWPTR(%a6),0xa(%a6) # put "Next PC" on stack
- mov.w EXC_ISR(%a6),0x8(%a6) # put SR on stack
-
- mov.l EXC_A6(%a6),%a6 # restore a6
- add.l &8+LOCAL_SIZE,%sp # clear stack frame
- bra.l _isp_done
-
-##########
-
-# this is the exit point if a data read or write fails.
-# a0 = failing address
-# d0 = fslw
-isp_dacc:
- mov.l %a0,(%a6) # save address
- mov.l %d0,-0x4(%a6) # save partial fslw
-
- lea -64(%a6),%sp
- movm.l (%sp)+,&0x7fff # restore d0-d7/a0-a6
-
- mov.l 0xc(%sp),-(%sp) # move voff,hi(pc)
- mov.l 0x4(%sp),0x10(%sp) # store fslw
- mov.l 0xc(%sp),0x4(%sp) # store sr,lo(pc)
- mov.l 0x8(%sp),0xc(%sp) # store address
- mov.l (%sp)+,0x4(%sp) # store voff,hi(pc)
- mov.w &0x4008,0x6(%sp) # store new voff
-
- bra.b isp_acc_exit
-
-# this is the exit point if an instruction word read fails.
-# FSLW:
-# misaligned = true
-# read = true
-# size = word
-# instruction = true
-# software emulation error = true
-isp_iacc:
- movm.l EXC_DREGS(%a6),&0x3fff # restore d0-d7/a0-a5
- unlk %a6 # unlink frame
- sub.w &0x8,%sp # make room for acc frame
- mov.l 0x8(%sp),(%sp) # store sr,lo(pc)
- mov.w 0xc(%sp),0x4(%sp) # store hi(pc)
- mov.w &0x4008,0x6(%sp) # store new voff
- mov.l 0x2(%sp),0x8(%sp) # store address (=pc)
- mov.l &0x09428001,0xc(%sp) # store fslw
-
-isp_acc_exit:
- btst &0x5,(%sp) # user or supervisor?
- beq.b isp_acc_exit2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
-isp_acc_exit2:
- bra.l _real_access
-
-# if the addressing mode was (an)+ or -(an), the address register must
-# be restored to its pre-exception value before entering _real_access.
-isp_restore:
- cmpi.b SPCOND_FLG(%a6),&restore_flg # do we need a restore?
- bne.b isp_restore_done # no
- clr.l %d0
- mov.b EXC_SAVREG(%a6),%d0 # regno to restore
- mov.l EXC_SAVVAL(%a6),(EXC_AREGS,%a6,%d0.l*4) # restore value
-isp_restore_done:
- rts
-
-#########################################################################
-# XDEF **************************************************************** #
-# _calc_ea(): routine to calculate effective address #
-# #
-# XREF **************************************************************** #
-# _imem_read_word() - read instruction word #
-# _imem_read_long() - read instruction longword #
-# _dmem_read_long() - read data longword (for memory indirect) #
-# isp_iacc() - handle instruction access error exception #
-# isp_dacc() - handle data access error exception #
-# #
-# INPUT *************************************************************** #
-# d0 = number of bytes related to effective address (w,l) #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# elsif exiting though isp_iacc... #
-# none #
-# else #
-# a0 = effective address #
-# #
-# ALGORITHM *********************************************************** #
-# The effective address type is decoded from the opword residing #
-# on the stack. A jump table is used to vector to a routine for the #
-# appropriate mode. Since none of the emulated integer instructions #
-# uses byte-sized operands, only handle word and long operations. #
-# #
-# Dn,An - shouldn't enter here #
-# (An) - fetch An value from stack #
-# -(An) - fetch An value from stack; return decr value; #
-# place decr value on stack; store old value in case of #
-# future access error; if -(a7), set mda7_flg in #
-# SPCOND_FLG #
-# (An)+ - fetch An value from stack; return value; #
-# place incr value on stack; store old value in case of #
-# future access error; if (a7)+, set mia7_flg in #
-# SPCOND_FLG #
-# (d16,An) - fetch An value from stack; read d16 using #
-# _imem_read_word(); fetch may fail -> branch to #
-# isp_iacc() #
-# (xxx).w,(xxx).l - use _imem_read_{word,long}() to fetch #
-# address; fetch may fail #
-# #<data> - return address of immediate value; set immed_flg #
-# in SPCOND_FLG #
-# (d16,PC) - fetch stacked PC value; read d16 using #
-# _imem_read_word(); fetch may fail -> branch to #
-# isp_iacc() #
-# everything else - read needed displacements as appropriate w/ #
-# _imem_read_{word,long}(); read may fail; if memory #
-# indirect, read indirect address using #
-# _dmem_read_long() which may also fail #
-# #
-#########################################################################
-
- global _calc_ea
-_calc_ea:
- mov.l %d0,%a0 # move # bytes to a0
-
-# MODE and REG are taken from the EXC_OPWORD.
- mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.w %d0,%d1 # make a copy
-
- andi.w &0x3f,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
-
-# jump to the corresponding function for each {MODE,REG} pair.
- mov.w (tbl_ea_mode.b,%pc,%d0.w*2), %d0 # fetch jmp distance
- jmp (tbl_ea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
-
- swbeg &64
-tbl_ea_mode:
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
-
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
-
- short addr_ind_a0 - tbl_ea_mode
- short addr_ind_a1 - tbl_ea_mode
- short addr_ind_a2 - tbl_ea_mode
- short addr_ind_a3 - tbl_ea_mode
- short addr_ind_a4 - tbl_ea_mode
- short addr_ind_a5 - tbl_ea_mode
- short addr_ind_a6 - tbl_ea_mode
- short addr_ind_a7 - tbl_ea_mode
-
- short addr_ind_p_a0 - tbl_ea_mode
- short addr_ind_p_a1 - tbl_ea_mode
- short addr_ind_p_a2 - tbl_ea_mode
- short addr_ind_p_a3 - tbl_ea_mode
- short addr_ind_p_a4 - tbl_ea_mode
- short addr_ind_p_a5 - tbl_ea_mode
- short addr_ind_p_a6 - tbl_ea_mode
- short addr_ind_p_a7 - tbl_ea_mode
-
- short addr_ind_m_a0 - tbl_ea_mode
- short addr_ind_m_a1 - tbl_ea_mode
- short addr_ind_m_a2 - tbl_ea_mode
- short addr_ind_m_a3 - tbl_ea_mode
- short addr_ind_m_a4 - tbl_ea_mode
- short addr_ind_m_a5 - tbl_ea_mode
- short addr_ind_m_a6 - tbl_ea_mode
- short addr_ind_m_a7 - tbl_ea_mode
-
- short addr_ind_disp_a0 - tbl_ea_mode
- short addr_ind_disp_a1 - tbl_ea_mode
- short addr_ind_disp_a2 - tbl_ea_mode
- short addr_ind_disp_a3 - tbl_ea_mode
- short addr_ind_disp_a4 - tbl_ea_mode
- short addr_ind_disp_a5 - tbl_ea_mode
- short addr_ind_disp_a6 - tbl_ea_mode
- short addr_ind_disp_a7 - tbl_ea_mode
-
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
- short _addr_ind_ext - tbl_ea_mode
-
- short abs_short - tbl_ea_mode
- short abs_long - tbl_ea_mode
- short pc_ind - tbl_ea_mode
- short pc_ind_ext - tbl_ea_mode
- short immediate - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
- short tbl_ea_mode - tbl_ea_mode
-
-###################################
-# Address register indirect: (An) #
-###################################
-addr_ind_a0:
- mov.l EXC_A0(%a6),%a0 # Get current a0
- rts
-
-addr_ind_a1:
- mov.l EXC_A1(%a6),%a0 # Get current a1
- rts
-
-addr_ind_a2:
- mov.l EXC_A2(%a6),%a0 # Get current a2
- rts
-
-addr_ind_a3:
- mov.l EXC_A3(%a6),%a0 # Get current a3
- rts
-
-addr_ind_a4:
- mov.l EXC_A4(%a6),%a0 # Get current a4
- rts
-
-addr_ind_a5:
- mov.l EXC_A5(%a6),%a0 # Get current a5
- rts
-
-addr_ind_a6:
- mov.l EXC_A6(%a6),%a0 # Get current a6
- rts
-
-addr_ind_a7:
- mov.l EXC_A7(%a6),%a0 # Get current a7
- rts
-
-#####################################################
-# Address register indirect w/ postincrement: (An)+ #
-#####################################################
-addr_ind_p_a0:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A0(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A0(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x0,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a1:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A1(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A1(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x1,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a2:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A2(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A2(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x2,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a3:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A3(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A3(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x3,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a4:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A4(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A4(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x4,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a5:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A5(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A5(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x5,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a6:
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A6(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A6(%a6) # save incremented value
-
- mov.l %a0,EXC_SAVVAL(%a6) # save in case of access error
- mov.b &0x6,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_p_a7:
- mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l %a0,%d0 # copy no. bytes
- mov.l EXC_A7(%a6),%a0 # load current value
- add.l %a0,%d0 # increment
- mov.l %d0,EXC_A7(%a6) # save incremented value
- rts
-
-####################################################
-# Address register indirect w/ predecrement: -(An) #
-####################################################
-addr_ind_m_a0:
- mov.l EXC_A0(%a6),%d0 # Get current a0
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A0(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x0,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a1:
- mov.l EXC_A1(%a6),%d0 # Get current a1
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A1(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x1,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a2:
- mov.l EXC_A2(%a6),%d0 # Get current a2
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A2(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x2,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a3:
- mov.l EXC_A3(%a6),%d0 # Get current a3
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A3(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x3,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a4:
- mov.l EXC_A4(%a6),%d0 # Get current a4
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A4(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x4,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a5:
- mov.l EXC_A5(%a6),%d0 # Get current a5
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A5(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x5,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a6:
- mov.l EXC_A6(%a6),%d0 # Get current a6
- mov.l %d0,EXC_SAVVAL(%a6) # save in case of access error
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A6(%a6) # Save decr value
- mov.l %d0,%a0
-
- mov.b &0x6,EXC_SAVREG(%a6) # save regno, too
- mov.b &restore_flg,SPCOND_FLG(%a6) # set flag
- rts
-
-addr_ind_m_a7:
- mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
-
- mov.l EXC_A7(%a6),%d0 # Get current a7
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A7(%a6) # Save decr value
- mov.l %d0,%a0
- rts
-
-########################################################
-# Address register indirect w/ displacement: (d16, An) #
-########################################################
-addr_ind_disp_a0:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A0(%a6),%a0 # a0 + d16
- rts
-
-addr_ind_disp_a1:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A1(%a6),%a0 # a1 + d16
- rts
-
-addr_ind_disp_a2:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A2(%a6),%a0 # a2 + d16
- rts
-
-addr_ind_disp_a3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A3(%a6),%a0 # a3 + d16
- rts
-
-addr_ind_disp_a4:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A4(%a6),%a0 # a4 + d16
- rts
-
-addr_ind_disp_a5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A5(%a6),%a0 # a5 + d16
- rts
-
-addr_ind_disp_a6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A6(%a6),%a0 # a6 + d16
- rts
-
-addr_ind_disp_a7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A7(%a6),%a0 # a7 + d16
- rts
-
-########################################################################
-# Address register indirect w/ index(8-bit displacement): (dn, An, Xn) #
-# " " " w/ " (base displacement): (bd, An, Xn) #
-# Memory indirect postindexed: ([bd, An], Xn, od) #
-# Memory indirect preindexed: ([bd, An, Xn], od) #
-########################################################################
-_addr_ind_ext:
- mov.l %d1,-(%sp)
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch extword in d0
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l (%sp)+,%d1
-
- mov.l (EXC_AREGS,%a6,%d1.w*4),%a0 # put base in a0
-
- btst &0x8,%d0
- beq.b addr_ind_index_8bit # for ext word or not?
-
- movm.l &0x3c00,-(%sp) # save d2-d5
-
- mov.l %d0,%d5 # put extword in d5
- mov.l %a0,%d3 # put base in d3
-
- bra.l calc_mem_ind # calc memory indirect
-
-addr_ind_index_8bit:
- mov.l %d2,-(%sp) # save old d2
-
- mov.l %d0,%d1
- rol.w &0x4,%d1
- andi.w &0xf,%d1 # extract index regno
-
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value
-
- btst &0xb,%d0 # is it word or long?
- bne.b aii8_long
- ext.l %d1 # sign extend word index
-aii8_long:
- mov.l %d0,%d2
- rol.w &0x7,%d2
- andi.l &0x3,%d2 # extract scale value
-
- lsl.l %d2,%d1 # shift index by scale
-
- extb.l %d0 # sign extend displacement
- add.l %d1,%d0 # index + disp
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore old d2
- rts
-
-######################
-# Immediate: #<data> #
-#########################################################################
-# word, long: <ea> of the data is the current extension word #
-# pointer value. new extension word pointer is simply the old #
-# plus the number of bytes in the data type(2 or 4). #
-#########################################################################
-immediate:
- mov.b &immed_flg,SPCOND_FLG(%a6) # set immediate flag
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch extension word ptr
- rts
-
-###########################
-# Absolute short: (XXX).W #
-###########################
-abs_short:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch short address
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # return <ea> in a0
- rts
-
-##########################
-# Absolute long: (XXX).L #
-##########################
-abs_long:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch long address
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l %d0,%a0 # return <ea> in a0
- rts
-
-#######################################################
-# Program counter indirect w/ displacement: (d16, PC) #
-#######################################################
-pc_ind:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch word displacement
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.w %d0,%a0 # sign extend displacement
-
- add.l EXC_EXTWPTR(%a6),%a0 # pc + d16
-
-# _imem_read_word() increased the extwptr by 2. need to adjust here.
- subq.l &0x2,%a0 # adjust <ea>
-
- rts
-
-##########################################################
-# PC indirect w/ index(8-bit displacement): (d8, PC, An) #
-# " " w/ " (base displacement): (bd, PC, An) #
-# PC memory indirect postindexed: ([bd, PC], Xn, od) #
-# PC memory indirect preindexed: ([bd, PC, Xn], od) #
-##########################################################
-pc_ind_ext:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch ext word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0
- subq.l &0x2,%a0 # adjust base
-
- btst &0x8,%d0 # is disp only 8 bits?
- beq.b pc_ind_index_8bit # yes
-
-# the indexed addressing mode uses a base displacement of size
-# word or long
- movm.l &0x3c00,-(%sp) # save d2-d5
-
- mov.l %d0,%d5 # put extword in d5
- mov.l %a0,%d3 # put base in d3
-
- bra.l calc_mem_ind # calc memory indirect
-
-pc_ind_index_8bit:
- mov.l %d2,-(%sp) # create a temp register
-
- mov.l %d0,%d1 # make extword copy
- rol.w &0x4,%d1 # rotate reg num into place
- andi.w &0xf,%d1 # extract register number
-
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d1 # fetch index reg value
-
- btst &0xb,%d0 # is index word or long?
- bne.b pii8_long # long
- ext.l %d1 # sign extend word index
-pii8_long:
- mov.l %d0,%d2 # make extword copy
- rol.w &0x7,%d2 # rotate scale value into place
- andi.l &0x3,%d2 # extract scale value
-
- lsl.l %d2,%d1 # shift index by scale
-
- extb.l %d0 # sign extend displacement
- add.l %d1,%d0 # index + disp
- add.l %d0,%a0 # An + (index + disp)
-
- mov.l (%sp)+,%d2 # restore temp register
-
- rts
-
-# a5 = exc_extwptr (global to uaeh)
-# a4 = exc_opword (global to uaeh)
-# a3 = exc_dregs (global to uaeh)
-
-# d2 = index (internal " " )
-# d3 = base (internal " " )
-# d4 = od (internal " " )
-# d5 = extword (internal " " )
-calc_mem_ind:
- btst &0x6,%d5 # is the index suppressed?
- beq.b calc_index
- clr.l %d2 # yes, so index = 0
- bra.b base_supp_ck
-calc_index:
- bfextu %d5{&16:&4},%d2
- mov.l (EXC_DREGS,%a6,%d2.w*4),%d2
- btst &0xb,%d5 # is index word or long?
- bne.b no_ext
- ext.l %d2
-no_ext:
- bfextu %d5{&21:&2},%d0
- lsl.l %d0,%d2
-base_supp_ck:
- btst &0x7,%d5 # is the bd suppressed?
- beq.b no_base_sup
- clr.l %d3
-no_base_sup:
- bfextu %d5{&26:&2},%d0 # get bd size
-# beq.l _error # if (size == 0) it's reserved
- cmpi.b %d0,&2
- blt.b no_bd
- beq.b get_word_bd
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- bra.b chk_ind
-get_word_bd:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- ext.l %d0 # sign extend bd
-
-chk_ind:
- add.l %d0,%d3 # base += bd
-no_bd:
- bfextu %d5{&30:&2},%d0 # is od suppressed?
- beq.w aii_bd
- cmpi.b %d0,&0x2
- blt.b null_od
- beq.b word_od
-
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- bra.b add_them
-
-word_od:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- ext.l %d0 # sign extend od
- bra.b add_them
-
-null_od:
- clr.l %d0
-add_them:
- mov.l %d0,%d4
- btst &0x2,%d5 # pre or post indexing?
- beq.b pre_indexed
-
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # dfetch error?
- bne.b calc_ea_err # yes
-
- add.l %d2,%d0 # <ea> += index
- add.l %d4,%d0 # <ea> += od
- bra.b done_ea
-
-pre_indexed:
- add.l %d2,%d3 # preindexing
- mov.l %d3,%a0
- bsr.l _dmem_read_long
-
- tst.l %d1 # ifetch error?
- bne.b calc_ea_err # yes
-
- add.l %d4,%d0 # ea += od
- bra.b done_ea
-
-aii_bd:
- add.l %d2,%d3 # ea = (base + bd) + index
- mov.l %d3,%d0
-done_ea:
- mov.l %d0,%a0
-
- movm.l (%sp)+,&0x003c # restore d2-d5
- rts
-
-# if dmem_read_long() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-calc_ea_err:
- mov.l %d3,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _moveperipheral(): routine to emulate movep instruction #
-# #
-# XREF **************************************************************** #
-# _dmem_read_byte() - read byte from memory #
-# _dmem_write_byte() - write byte to memory #
-# isp_dacc() - handle data access error exception #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# Decode the movep instruction words stored at EXC_OPWORD and #
-# either read or write the required bytes from/to memory. Use the #
-# _dmem_{read,write}_byte() routines. If one of the memory routines #
-# returns a failing value, we must pass the failing address and a FSLW #
-# to the _isp_dacc() routine. #
-# Since this instruction is used to access peripherals, make sure #
-# to only access the required bytes. #
-# #
-#########################################################################
-
-###########################
-# movep.(w,l) Dx,(d,Ay) #
-# movep.(w,l) (d,Ay),Dx #
-###########################
- global _moveperipheral
-_moveperipheral:
- mov.w EXC_OPWORD(%a6),%d1 # fetch the opcode word
-
- mov.b %d1,%d0
- and.w &0x7,%d0 # extract Ay from opcode word
-
- mov.l (EXC_AREGS,%a6,%d0.w*4),%a0 # fetch ay
-
- add.w EXC_EXTWORD(%a6),%a0 # add: an + sgn_ext(disp)
-
- btst &0x7,%d1 # (reg 2 mem) or (mem 2 reg)
- beq.w mem2reg
-
-# reg2mem: fetch dx, then write it to memory
-reg2mem:
- mov.w %d1,%d0
- rol.w &0x7,%d0
- and.w &0x7,%d0 # extract Dx from opcode word
-
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d0 # fetch dx
-
- btst &0x6,%d1 # word or long operation?
- beq.b r2mwtrans
-
-# a0 = dst addr
-# d0 = Dx
-r2mltrans:
- mov.l %d0,%d2 # store data
- mov.l %a0,%a2 # store addr
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write hi
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2 # incr addr
- mov.l %a2,%a0
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2 # incr addr
- mov.l %a2,%a0
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2 # incr addr
- mov.l %a2,%a0
- rol.l &0x8,%d2
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- rts
-
-# a0 = dst addr
-# d0 = Dx
-r2mwtrans:
- mov.l %d0,%d2 # store data
- mov.l %a0,%a2 # store addr
- lsr.w &0x8,%d0
-
- bsr.l _dmem_write_byte # os : write hi
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- add.w &0x2,%a2
- mov.l %a2,%a0
- mov.l %d2,%d0
-
- bsr.l _dmem_write_byte # os : write lo
-
- tst.l %d1 # dfetch error?
- bne.w movp_write_err # yes
-
- rts
-
-# mem2reg: read bytes from memory.
-# determines the dest register, and then writes the bytes into it.
-mem2reg:
- btst &0x6,%d1 # word or long operation?
- beq.b m2rwtrans
-
-# a0 = dst addr
-m2rltrans:
- mov.l %a0,%a2 # store addr
-
- bsr.l _dmem_read_byte # read first byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- mov.l %d0,%d2
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.w &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.l &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.l &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- mov.b EXC_OPWORD(%a6),%d1
- lsr.b &0x1,%d1
- and.w &0x7,%d1 # extract Dx from opcode word
-
- mov.l %d2,(EXC_DREGS,%a6,%d1.w*4) # store dx
-
- rts
-
-# a0 = dst addr
-m2rwtrans:
- mov.l %a0,%a2 # store addr
-
- bsr.l _dmem_read_byte # read first byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- mov.l %d0,%d2
-
- add.w &0x2,%a2 # incr addr by 2 bytes
- mov.l %a2,%a0
-
- bsr.l _dmem_read_byte # read second byte
-
- tst.l %d1 # dfetch error?
- bne.w movp_read_err # yes
-
- lsl.w &0x8,%d2
- mov.b %d0,%d2 # append bytes
-
- mov.b EXC_OPWORD(%a6),%d1
- lsr.b &0x1,%d1
- and.w &0x7,%d1 # extract Dx from opcode word
-
- mov.w %d2,(EXC_DREGS+2,%a6,%d1.w*4) # store dx
-
- rts
-
-# if dmem_{read,write}_byte() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# FSLW:
-# write = true
-# size = byte
-# TM = data
-# software emulation error = true
-movp_write_err:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x00a10001,%d0 # pass fslw
- bra.l isp_dacc
-
-# FSLW:
-# read = true
-# size = byte
-# TM = data
-# software emulation error = true
-movp_read_err:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01210001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _chk2_cmp2(): routine to emulate chk2/cmp2 instructions #
-# #
-# XREF **************************************************************** #
-# _calc_ea(): calculate effective address #
-# _dmem_read_long(): read operands #
-# _dmem_read_word(): read operands #
-# isp_dacc(): handle data access error exception #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# First, calculate the effective address, then fetch the byte, #
-# word, or longword sized operands. Then, in the interest of #
-# simplicity, all operands are converted to longword size whether the #
-# operation is byte, word, or long. The bounds are sign extended #
-# accordingly. If Rn is a data regsiter, Rn is also sign extended. If #
-# Rn is an address register, it need not be sign extended since the #
-# full register is always used. #
-# The comparisons are made and the condition codes calculated. #
-# If the instruction is chk2 and the Rn value is out-of-bounds, set #
-# the ichk_flg in SPCOND_FLG. #
-# If the memory fetch returns a failing value, pass the failing #
-# address and FSLW to the isp_dacc() routine. #
-# #
-#########################################################################
-
- global _chk2_cmp2
-_chk2_cmp2:
-
-# passing size parameter doesn't matter since chk2 & cmp2 can't do
-# either predecrement, postincrement, or immediate.
- bsr.l _calc_ea # calculate <ea>
-
- mov.b EXC_EXTWORD(%a6), %d0 # fetch hi extension word
- rol.b &0x4, %d0 # rotate reg bits into lo
- and.w &0xf, %d0 # extract reg bits
-
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d2 # get regval
-
- cmpi.b EXC_OPWORD(%a6), &0x2 # what size is operation?
- blt.b chk2_cmp2_byte # size == byte
- beq.b chk2_cmp2_word # size == word
-
-# the bounds are longword size. call routine to read the lower
-# bound into d0 and the higher bound into d1.
-chk2_cmp2_long:
- mov.l %a0,%a2 # save copy of <ea>
- bsr.l _dmem_read_long # fetch long lower bound
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_l # yes
-
- mov.l %d0,%d3 # save long lower bound
- addq.l &0x4,%a2
- mov.l %a2,%a0 # pass <ea> of long upper bound
- bsr.l _dmem_read_long # fetch long upper bound
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_l # yes
-
- mov.l %d0,%d1 # long upper bound in d1
- mov.l %d3,%d0 # long lower bound in d0
- bra.w chk2_cmp2_compare # go do the compare emulation
-
-# the bounds are word size. fetch them in one subroutine call by
-# reading a longword. sign extend both. if it's a data operation,
-# sign extend Rn to long, also.
-chk2_cmp2_word:
- mov.l %a0,%a2
- bsr.l _dmem_read_long # fetch 2 word bounds
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_l # yes
-
- mov.w %d0, %d1 # place hi in %d1
- swap %d0 # place lo in %d0
-
- ext.l %d0 # sign extend lo bnd
- ext.l %d1 # sign extend hi bnd
-
- btst &0x7, EXC_EXTWORD(%a6) # address compare?
- bne.w chk2_cmp2_compare # yes; don't sign extend
-
-# operation is a data register compare.
-# sign extend word to long so we can do simple longword compares.
- ext.l %d2 # sign extend data word
- bra.w chk2_cmp2_compare # go emulate compare
-
-# the bounds are byte size. fetch them in one subroutine call by
-# reading a word. sign extend both. if it's a data operation,
-# sign extend Rn to long, also.
-chk2_cmp2_byte:
- mov.l %a0,%a2
- bsr.l _dmem_read_word # fetch 2 byte bounds
-
- tst.l %d1 # dfetch error?
- bne.w chk2_cmp2_err_w # yes
-
- mov.b %d0, %d1 # place hi in %d1
- lsr.w &0x8, %d0 # place lo in %d0
-
- extb.l %d0 # sign extend lo bnd
- extb.l %d1 # sign extend hi bnd
-
- btst &0x7, EXC_EXTWORD(%a6) # address compare?
- bne.b chk2_cmp2_compare # yes; don't sign extend
-
-# operation is a data register compare.
-# sign extend byte to long so we can do simple longword compares.
- extb.l %d2 # sign extend data byte
-
-#
-# To set the ccodes correctly:
-# (1) save 'Z' bit from (Rn - lo)
-# (2) save 'Z' and 'N' bits from ((hi - lo) - (Rn - hi))
-# (3) keep 'X', 'N', and 'V' from before instruction
-# (4) combine ccodes
-#
-chk2_cmp2_compare:
- sub.l %d0, %d2 # (Rn - lo)
- mov.w %cc, %d3 # fetch resulting ccodes
- andi.b &0x4, %d3 # keep 'Z' bit
- sub.l %d0, %d1 # (hi - lo)
- cmp.l %d1,%d2 # ((hi - lo) - (Rn - hi))
-
- mov.w %cc, %d4 # fetch resulting ccodes
- or.b %d4, %d3 # combine w/ earlier ccodes
- andi.b &0x5, %d3 # keep 'Z' and 'N'
-
- mov.w EXC_CC(%a6), %d4 # fetch old ccodes
- andi.b &0x1a, %d4 # keep 'X','N','V' bits
- or.b %d3, %d4 # insert new ccodes
- mov.w %d4, EXC_CC(%a6) # save new ccodes
-
- btst &0x3, EXC_EXTWORD(%a6) # separate chk2,cmp2
- bne.b chk2_finish # it's a chk2
-
- rts
-
-# this code handles the only difference between chk2 and cmp2. chk2 would
-# have trapped out if the value was out of bounds. we check this by seeing
-# if the 'N' bit was set by the operation.
-chk2_finish:
- btst &0x0, %d4 # is 'N' bit set?
- bne.b chk2_trap # yes;chk2 should trap
- rts
-chk2_trap:
- mov.b &ichk_flg,SPCOND_FLG(%a6) # set "special case" flag
- rts
-
-# if dmem_read_{long,word}() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-chk2_cmp2_err_l:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-# FSLW:
-# read = true
-# size = word
-# TM = data
-# software emulation error = true
-chk2_cmp2_err_w:
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01410001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _div64(): routine to emulate div{u,s}.l <ea>,Dr:Dq #
-# 64/32->32r:32q #
-# #
-# XREF **************************************************************** #
-# _calc_ea() - calculate effective address #
-# isp_iacc() - handle instruction access error exception #
-# isp_dacc() - handle data access error exception #
-# isp_restore() - restore An on access error w/ -() or ()+ #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# First, decode the operand location. If it's in Dn, fetch from #
-# the stack. If it's in memory, use _calc_ea() to calculate the #
-# effective address. Use _dmem_read_long() to fetch at that address. #
-# Unless the operand is immediate data. Then use _imem_read_long(). #
-# Send failures to isp_dacc() or isp_iacc() as appropriate. #
-# If the operands are signed, make them unsigned and save the #
-# sign info for later. Separate out special cases like divide-by-zero #
-# or 32-bit divides if possible. Else, use a special math algorithm #
-# to calculate the result. #
-# Restore sign info if signed instruction. Set the condition #
-# codes. Set idbyz_flg in SPCOND_FLG if divisor was zero. Store the #
-# quotient and remainder in the appropriate data registers on the stack.#
-# #
-#########################################################################
-
-set NDIVISOR, EXC_TEMP+0x0
-set NDIVIDEND, EXC_TEMP+0x1
-set NDRSAVE, EXC_TEMP+0x2
-set NDQSAVE, EXC_TEMP+0x4
-set DDSECOND, EXC_TEMP+0x6
-set DDQUOTIENT, EXC_TEMP+0x8
-set DDNORMAL, EXC_TEMP+0xc
-
- global _div64
-#############
-# div(u,s)l #
-#############
-_div64:
- mov.b EXC_OPWORD+1(%a6), %d0
- andi.b &0x38, %d0 # extract src mode
-
- bne.w dcontrolmodel_s # %dn dest or control mode?
-
- mov.b EXC_OPWORD+1(%a6), %d0 # extract Dn from opcode
- andi.w &0x7, %d0
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d7 # fetch divisor from register
-
-dgotsrcl:
- beq.w div64eq0 # divisor is = 0!!!
-
- mov.b EXC_EXTWORD+1(%a6), %d0 # extract Dr from extword
- mov.b EXC_EXTWORD(%a6), %d1 # extract Dq from extword
- and.w &0x7, %d0
- lsr.b &0x4, %d1
- and.w &0x7, %d1
- mov.w %d0, NDRSAVE(%a6) # save Dr for later
- mov.w %d1, NDQSAVE(%a6) # save Dq for later
-
-# fetch %dr and %dq directly off stack since all regs are saved there
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d5 # get dividend hi
- mov.l (EXC_DREGS,%a6,%d1.w*4), %d6 # get dividend lo
-
-# separate signed and unsigned divide
- btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned?
- beq.b dspecialcases # use positive divide
-
-# save the sign of the divisor
-# make divisor unsigned if it's negative
- tst.l %d7 # chk sign of divisor
- slt NDIVISOR(%a6) # save sign of divisor
- bpl.b dsgndividend
- neg.l %d7 # complement negative divisor
-
-# save the sign of the dividend
-# make dividend unsigned if it's negative
-dsgndividend:
- tst.l %d5 # chk sign of hi(dividend)
- slt NDIVIDEND(%a6) # save sign of dividend
- bpl.b dspecialcases
-
- mov.w &0x0, %cc # clear 'X' cc bit
- negx.l %d6 # complement signed dividend
- negx.l %d5
-
-# extract some special cases:
-# - is (dividend == 0) ?
-# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)
-dspecialcases:
- tst.l %d5 # is (hi(dividend) == 0)
- bne.b dnormaldivide # no, so try it the long way
-
- tst.l %d6 # is (lo(dividend) == 0), too
- beq.w ddone # yes, so (dividend == 0)
-
- cmp.l %d7,%d6 # is (divisor <= lo(dividend))
- bls.b d32bitdivide # yes, so use 32 bit divide
-
- exg %d5,%d6 # q = 0, r = dividend
- bra.w divfinish # can't divide, we're done.
-
-d32bitdivide:
- tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div!
-
- bra.b divfinish
-
-dnormaldivide:
-# last special case:
-# - is hi(dividend) >= divisor ? if yes, then overflow
- cmp.l %d7,%d5
- bls.b ddovf # answer won't fit in 32 bits
-
-# perform the divide algorithm:
- bsr.l dclassical # do int divide
-
-# separate into signed and unsigned finishes.
-divfinish:
- btst &0x3, EXC_EXTWORD(%a6) # do divs, divu separately
- beq.b ddone # divu has no processing!!!
-
-# it was a divs.l, so ccode setting is a little more complicated...
- tst.b NDIVIDEND(%a6) # remainder has same sign
- beq.b dcc # as dividend.
- neg.l %d5 # sgn(rem) = sgn(dividend)
-dcc:
- mov.b NDIVISOR(%a6), %d0
- eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative
- beq.b dqpos # branch to quot positive
-
-# 0x80000000 is the largest number representable as a 32-bit negative
-# number. the negative of 0x80000000 is 0x80000000.
- cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits?
- bhi.b ddovf
-
- neg.l %d6 # make (-quot) 2's comp
-
- bra.b ddone
-
-dqpos:
- btst &0x1f, %d6 # will (+quot) fit in 32 bits?
- bne.b ddovf
-
-ddone:
-# at this point, result is normal so ccodes are set based on result.
- mov.w EXC_CC(%a6), %cc
- tst.l %d6 # set %ccode bits
- mov.w %cc, EXC_CC(%a6)
-
- mov.w NDRSAVE(%a6), %d0 # get Dr off stack
- mov.w NDQSAVE(%a6), %d1 # get Dq off stack
-
-# if the register numbers are the same, only the quotient gets saved.
-# so, if we always save the quotient second, we save ourselves a cmp&beq
- mov.l %d5, (EXC_DREGS,%a6,%d0.w*4) # save remainder
- mov.l %d6, (EXC_DREGS,%a6,%d1.w*4) # save quotient
-
- rts
-
-ddovf:
- bset &0x1, EXC_CC+1(%a6) # 'V' set on overflow
- bclr &0x0, EXC_CC+1(%a6) # 'C' cleared on overflow
-
- rts
-
-div64eq0:
- andi.b &0x1e, EXC_CC+1(%a6) # clear 'C' bit on divbyzero
- ori.b &idbyz_flg,SPCOND_FLG(%a6) # set "special case" flag
- rts
-
-###########################################################################
-#########################################################################
-# This routine uses the 'classical' Algorithm D from Donald Knuth's #
-# Art of Computer Programming, vol II, Seminumerical Algorithms. #
-# For this implementation b=2**16, and the target is U1U2U3U4/V1V2, #
-# where U,V are words of the quadword dividend and longword divisor, #
-# and U1, V1 are the most significant words. #
-# #
-# The most sig. longword of the 64 bit dividend must be in %d5, least #
-# in %d6. The divisor must be in the variable ddivisor, and the #
-# signed/unsigned flag ddusign must be set (0=unsigned,1=signed). #
-# The quotient is returned in %d6, remainder in %d5, unless the #
-# v (overflow) bit is set in the saved %ccr. If overflow, the dividend #
-# is unchanged. #
-#########################################################################
-dclassical:
-# if the divisor msw is 0, use simpler algorithm then the full blown
-# one at ddknuth:
-
- cmpi.l %d7, &0xffff
- bhi.b ddknuth # go use D. Knuth algorithm
-
-# Since the divisor is only a word (and larger than the mslw of the dividend),
-# a simpler algorithm may be used :
-# In the general case, four quotient words would be created by
-# dividing the divisor word into each dividend word. In this case,
-# the first two quotient words must be zero, or overflow would occur.
-# Since we already checked this case above, we can treat the most significant
-# longword of the dividend as (0) remainder (see Knuth) and merely complete
-# the last two divisions to get a quotient longword and word remainder:
-
- clr.l %d1
- swap %d5 # same as r*b if previous step rqd
- swap %d6 # get u3 to lsw position
- mov.w %d6, %d5 # rb + u3
-
- divu.w %d7, %d5
-
- mov.w %d5, %d1 # first quotient word
- swap %d6 # get u4
- mov.w %d6, %d5 # rb + u4
-
- divu.w %d7, %d5
-
- swap %d1
- mov.w %d5, %d1 # 2nd quotient 'digit'
- clr.w %d5
- swap %d5 # now remainder
- mov.l %d1, %d6 # and quotient
-
- rts
-
-ddknuth:
-# In this algorithm, the divisor is treated as a 2 digit (word) number
-# which is divided into a 3 digit (word) dividend to get one quotient
-# digit (word). After subtraction, the dividend is shifted and the
-# process repeated. Before beginning, the divisor and quotient are
-# 'normalized' so that the process of estimating the quotient digit
-# will yield verifiably correct results..
-
- clr.l DDNORMAL(%a6) # count of shifts for normalization
- clr.b DDSECOND(%a6) # clear flag for quotient digits
- clr.l %d1 # %d1 will hold trial quotient
-ddnchk:
- btst &31, %d7 # must we normalize? first word of
- bne.b ddnormalized # divisor (V1) must be >= 65536/2
- addq.l &0x1, DDNORMAL(%a6) # count normalization shifts
- lsl.l &0x1, %d7 # shift the divisor
- lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2
- roxl.l &0x1, %d5 # shift u1,u2
- bra.w ddnchk
-ddnormalized:
-
-# Now calculate an estimate of the quotient words (msw first, then lsw).
-# The comments use subscripts for the first quotient digit determination.
- mov.l %d7, %d3 # divisor
- mov.l %d5, %d2 # dividend mslw
- swap %d2
- swap %d3
- cmp.w %d2, %d3 # V1 = U1 ?
- bne.b ddqcalc1
- mov.w &0xffff, %d1 # use max trial quotient word
- bra.b ddadj0
-ddqcalc1:
- mov.l %d5, %d1
-
- divu.w %d3, %d1 # use quotient of mslw/msw
-
- andi.l &0x0000ffff, %d1 # zero any remainder
-ddadj0:
-
-# now test the trial quotient and adjust. This step plus the
-# normalization assures (according to Knuth) that the trial
-# quotient will be at worst 1 too large.
- mov.l %d6, -(%sp)
- clr.w %d6 # word u3 left
- swap %d6 # in lsw position
-ddadj1: mov.l %d7, %d3
- mov.l %d1, %d2
- mulu.w %d7, %d2 # V2q
- swap %d3
- mulu.w %d1, %d3 # V1q
- mov.l %d5, %d4 # U1U2
- sub.l %d3, %d4 # U1U2 - V1q
-
- swap %d4
-
- mov.w %d4,%d0
- mov.w %d6,%d4 # insert lower word (U3)
-
- tst.w %d0 # is upper word set?
- bne.w ddadjd1
-
-# add.l %d6, %d4 # (U1U2 - V1q) + U3
-
- cmp.l %d2, %d4
- bls.b ddadjd1 # is V2q > (U1U2-V1q) + U3 ?
- subq.l &0x1, %d1 # yes, decrement and recheck
- bra.b ddadj1
-ddadjd1:
-# now test the word by multiplying it by the divisor (V1V2) and comparing
-# the 3 digit (word) result with the current dividend words
- mov.l %d5, -(%sp) # save %d5 (%d6 already saved)
- mov.l %d1, %d6
- swap %d6 # shift answer to ms 3 words
- mov.l %d7, %d5
- bsr.l dmm2
- mov.l %d5, %d2 # now %d2,%d3 are trial*divisor
- mov.l %d6, %d3
- mov.l (%sp)+, %d5 # restore dividend
- mov.l (%sp)+, %d6
- sub.l %d3, %d6
- subx.l %d2, %d5 # subtract double precision
- bcc dd2nd # no carry, do next quotient digit
- subq.l &0x1, %d1 # q is one too large
-# need to add back divisor longword to current ms 3 digits of dividend
-# - according to Knuth, this is done only 2 out of 65536 times for random
-# divisor, dividend selection.
- clr.l %d2
- mov.l %d7, %d3
- swap %d3
- clr.w %d3 # %d3 now ls word of divisor
- add.l %d3, %d6 # aligned with 3rd word of dividend
- addx.l %d2, %d5
- mov.l %d7, %d3
- clr.w %d3 # %d3 now ms word of divisor
- swap %d3 # aligned with 2nd word of dividend
- add.l %d3, %d5
-dd2nd:
- tst.b DDSECOND(%a6) # both q words done?
- bne.b ddremain
-# first quotient digit now correct. store digit and shift the
-# (subtracted) dividend
- mov.w %d1, DDQUOTIENT(%a6)
- clr.l %d1
- swap %d5
- swap %d6
- mov.w %d6, %d5
- clr.w %d6
- st DDSECOND(%a6) # second digit
- bra.w ddnormalized
-ddremain:
-# add 2nd word to quotient, get the remainder.
- mov.w %d1, DDQUOTIENT+2(%a6)
-# shift down one word/digit to renormalize remainder.
- mov.w %d5, %d6
- swap %d6
- swap %d5
- mov.l DDNORMAL(%a6), %d7 # get norm shift count
- beq.b ddrn
- subq.l &0x1, %d7 # set for loop count
-ddnlp:
- lsr.l &0x1, %d5 # shift into %d6
- roxr.l &0x1, %d6
- dbf %d7, ddnlp
-ddrn:
- mov.l %d6, %d5 # remainder
- mov.l DDQUOTIENT(%a6), %d6 # quotient
-
- rts
-dmm2:
-# factors for the 32X32->64 multiplication are in %d5 and %d6.
-# returns 64 bit result in %d5 (hi) %d6(lo).
-# destroys %d2,%d3,%d4.
-
-# multiply hi,lo words of each factor to get 4 intermediate products
- mov.l %d6, %d2
- mov.l %d6, %d3
- mov.l %d5, %d4
- swap %d3
- swap %d4
- mulu.w %d5, %d6 # %d6 <- lsw*lsw
- mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source
- mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest
- mulu.w %d4, %d3 # %d3 <- msw*msw
-# now use swap and addx to consolidate to two longwords
- clr.l %d4
- swap %d6
- add.w %d5, %d6 # add msw of l*l to lsw of m*l product
- addx.w %d4, %d3 # add any carry to m*m product
- add.w %d2, %d6 # add in lsw of other m*l product
- addx.w %d4, %d3 # add any carry to m*m product
- swap %d6 # %d6 is low 32 bits of final product
- clr.w %d5
- clr.w %d2 # lsw of two mixed products used,
- swap %d5 # now use msws of longwords
- swap %d2
- add.l %d2, %d5
- add.l %d3, %d5 # %d5 now ms 32 bits of final product
- rts
-
-##########
-dcontrolmodel_s:
- movq.l &LONG,%d0
- bsr.l _calc_ea # calc <ea>
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode?
- beq.b dimmed # yes
-
- mov.l %a0,%a2
- bsr.l _dmem_read_long # fetch divisor from <ea>
-
- tst.l %d1 # dfetch error?
- bne.b div64_err # yes
-
- mov.l %d0, %d7
- bra.w dgotsrcl
-
-# we have to split out immediate data here because it must be read using
-# imem_read() instead of dmem_read(). this becomes especially important
-# if the fetch runs into some deadly fault.
-dimmed:
- addq.l &0x4,EXC_EXTWPTR(%a6)
- bsr.l _imem_read_long # read immediate value
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l %d0,%d7
- bra.w dgotsrcl
-
-##########
-
-# if dmem_read_long() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# also, we call isp_restore in case the effective addressing mode was
-# (an)+ or -(an) in which case the previous "an" value must be restored.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-div64_err:
- bsr.l isp_restore # restore addr reg
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _mul64(): routine to emulate mul{u,s}.l <ea>,Dh:Dl 32x32->64 #
-# #
-# XREF **************************************************************** #
-# _calc_ea() - calculate effective address #
-# isp_iacc() - handle instruction access error exception #
-# isp_dacc() - handle data access error exception #
-# isp_restore() - restore An on access error w/ -() or ()+ #
-# #
-# INPUT *************************************************************** #
-# none #
-# #
-# OUTPUT ************************************************************** #
-# If exiting through isp_dacc... #
-# a0 = failing address #
-# d0 = FSLW #
-# else #
-# none #
-# #
-# ALGORITHM *********************************************************** #
-# First, decode the operand location. If it's in Dn, fetch from #
-# the stack. If it's in memory, use _calc_ea() to calculate the #
-# effective address. Use _dmem_read_long() to fetch at that address. #
-# Unless the operand is immediate data. Then use _imem_read_long(). #
-# Send failures to isp_dacc() or isp_iacc() as appropriate. #
-# If the operands are signed, make them unsigned and save the #
-# sign info for later. Perform the multiplication using 16x16->32 #
-# unsigned multiplies and "add" instructions. Store the high and low #
-# portions of the result in the appropriate data registers on the #
-# stack. Calculate the condition codes, also. #
-# #
-#########################################################################
-
-#############
-# mul(u,s)l #
-#############
- global _mul64
-_mul64:
- mov.b EXC_OPWORD+1(%a6), %d0 # extract src {mode,reg}
- cmpi.b %d0, &0x7 # is src mode Dn or other?
- bgt.w mul64_memop # src is in memory
-
-# multiplier operand in the data register file.
-# must extract the register number and fetch the operand from the stack.
-mul64_regop:
- andi.w &0x7, %d0 # extract Dn
- mov.l (EXC_DREGS,%a6,%d0.w*4), %d3 # fetch multiplier
-
-# multiplier is in %d3. now, extract Dl and Dh fields and fetch the
-# multiplicand from the data register specified by Dl.
-mul64_multiplicand:
- mov.w EXC_EXTWORD(%a6), %d2 # fetch ext word
- clr.w %d1 # clear Dh reg
- mov.b %d2, %d1 # grab Dh
- rol.w &0x4, %d2 # align Dl byte
- andi.w &0x7, %d2 # extract Dl
-
- mov.l (EXC_DREGS,%a6,%d2.w*4), %d4 # get multiplicand
-
-# check for the case of "zero" result early
- tst.l %d4 # test multiplicand
- beq.w mul64_zero # handle zero separately
- tst.l %d3 # test multiplier
- beq.w mul64_zero # handle zero separately
-
-# multiplier is in %d3 and multiplicand is in %d4.
-# if the operation is to be signed, then the operands are converted
-# to unsigned and the result sign is saved for the end.
- clr.b EXC_TEMP(%a6) # clear temp space
- btst &0x3, EXC_EXTWORD(%a6) # signed or unsigned?
- beq.b mul64_alg # unsigned; skip sgn calc
-
- tst.l %d3 # is multiplier negative?
- bge.b mul64_chk_md_sgn # no
- neg.l %d3 # make multiplier positive
- ori.b &0x1, EXC_TEMP(%a6) # save multiplier sgn
-
-# the result sign is the exclusive or of the operand sign bits.
-mul64_chk_md_sgn:
- tst.l %d4 # is multiplicand negative?
- bge.b mul64_alg # no
- neg.l %d4 # make multiplicand positive
- eori.b &0x1, EXC_TEMP(%a6) # calculate correct sign
-
-#########################################################################
-# 63 32 0 #
-# ---------------------------- #
-# | hi(mplier) * hi(mplicand)| #
-# ---------------------------- #
-# ----------------------------- #
-# | hi(mplier) * lo(mplicand) | #
-# ----------------------------- #
-# ----------------------------- #
-# | lo(mplier) * hi(mplicand) | #
-# ----------------------------- #
-# | ----------------------------- #
-# --|-- | lo(mplier) * lo(mplicand) | #
-# | ----------------------------- #
-# ======================================================== #
-# -------------------------------------------------------- #
-# | hi(result) | lo(result) | #
-# -------------------------------------------------------- #
-#########################################################################
-mul64_alg:
-# load temp registers with operands
- mov.l %d3, %d5 # mr in %d5
- mov.l %d3, %d6 # mr in %d6
- mov.l %d4, %d7 # md in %d7
- swap %d6 # hi(mr) in lo %d6
- swap %d7 # hi(md) in lo %d7
-
-# complete necessary multiplies:
- mulu.w %d4, %d3 # [1] lo(mr) * lo(md)
- mulu.w %d6, %d4 # [2] hi(mr) * lo(md)
- mulu.w %d7, %d5 # [3] lo(mr) * hi(md)
- mulu.w %d7, %d6 # [4] hi(mr) * hi(md)
-
-# add lo portions of [2],[3] to hi portion of [1].
-# add carries produced from these adds to [4].
-# lo([1]) is the final lo 16 bits of the result.
- clr.l %d7 # load %d7 w/ zero value
- swap %d3 # hi([1]) <==> lo([1])
- add.w %d4, %d3 # hi([1]) + lo([2])
- addx.l %d7, %d6 # [4] + carry
- add.w %d5, %d3 # hi([1]) + lo([3])
- addx.l %d7, %d6 # [4] + carry
- swap %d3 # lo([1]) <==> hi([1])
-
-# lo portions of [2],[3] have been added in to final result.
-# now, clear lo, put hi in lo reg, and add to [4]
- clr.w %d4 # clear lo([2])
- clr.w %d5 # clear hi([3])
- swap %d4 # hi([2]) in lo %d4
- swap %d5 # hi([3]) in lo %d5
- add.l %d5, %d4 # [4] + hi([2])
- add.l %d6, %d4 # [4] + hi([3])
-
-# unsigned result is now in {%d4,%d3}
- tst.b EXC_TEMP(%a6) # should result be signed?
- beq.b mul64_done # no
-
-# result should be a signed negative number.
-# compute 2's complement of the unsigned number:
-# -negate all bits and add 1
-mul64_neg:
- not.l %d3 # negate lo(result) bits
- not.l %d4 # negate hi(result) bits
- addq.l &1, %d3 # add 1 to lo(result)
- addx.l %d7, %d4 # add carry to hi(result)
-
-# the result is saved to the register file.
-# for '040 compatibility, if Dl == Dh then only the hi(result) is
-# saved. so, saving hi after lo accomplishes this without need to
-# check Dl,Dh equality.
-mul64_done:
- mov.l %d3, (EXC_DREGS,%a6,%d2.w*4) # save lo(result)
- mov.w &0x0, %cc
- mov.l %d4, (EXC_DREGS,%a6,%d1.w*4) # save hi(result)
-
-# now, grab the condition codes. only one that can be set is 'N'.
-# 'N' CAN be set if the operation is unsigned if bit 63 is set.
- mov.w %cc, %d7 # fetch %ccr to see if 'N' set
- andi.b &0x8, %d7 # extract 'N' bit
-
-mul64_ccode_set:
- mov.b EXC_CC+1(%a6), %d6 # fetch previous %ccr
- andi.b &0x10, %d6 # all but 'X' bit changes
-
- or.b %d7, %d6 # group 'X' and 'N'
- mov.b %d6, EXC_CC+1(%a6) # save new %ccr
-
- rts
-
-# one or both of the operands is zero so the result is also zero.
-# save the zero result to the register file and set the 'Z' ccode bit.
-mul64_zero:
- clr.l (EXC_DREGS,%a6,%d2.w*4) # save lo(result)
- clr.l (EXC_DREGS,%a6,%d1.w*4) # save hi(result)
-
- movq.l &0x4, %d7 # set 'Z' ccode bit
- bra.b mul64_ccode_set # finish ccode set
-
-##########
-
-# multiplier operand is in memory at the effective address.
-# must calculate the <ea> and go fetch the 32-bit operand.
-mul64_memop:
- movq.l &LONG, %d0 # pass # of bytes
- bsr.l _calc_ea # calculate <ea>
-
- cmpi.b SPCOND_FLG(%a6),&immed_flg # immediate addressing mode?
- beq.b mul64_immed # yes
-
- mov.l %a0,%a2
- bsr.l _dmem_read_long # fetch src from addr (%a0)
-
- tst.l %d1 # dfetch error?
- bne.w mul64_err # yes
-
- mov.l %d0, %d3 # store multiplier in %d3
-
- bra.w mul64_multiplicand
-
-# we have to split out immediate data here because it must be read using
-# imem_read() instead of dmem_read(). this becomes especially important
-# if the fetch runs into some deadly fault.
-mul64_immed:
- addq.l &0x4,EXC_EXTWPTR(%a6)
- bsr.l _imem_read_long # read immediate value
-
- tst.l %d1 # ifetch error?
- bne.l isp_iacc # yes
-
- mov.l %d0,%d3
- bra.w mul64_multiplicand
-
-##########
-
-# if dmem_read_long() returns a fail message in d1, the package
-# must create an access error frame. here, we pass a skeleton fslw
-# and the failing address to the routine that creates the new frame.
-# also, we call isp_restore in case the effective addressing mode was
-# (an)+ or -(an) in which case the previous "an" value must be restored.
-# FSLW:
-# read = true
-# size = longword
-# TM = data
-# software emulation error = true
-mul64_err:
- bsr.l isp_restore # restore addr reg
- mov.l %a2,%a0 # pass failing address
- mov.l &0x01010001,%d0 # pass fslw
- bra.l isp_dacc
-
-#########################################################################
-# XDEF **************************************************************** #
-# _compandset2(): routine to emulate cas2() #
-# (internal to package) #
-# #
-# _isp_cas2_finish(): store ccodes, store compare regs #
-# (external to package) #
-# #
-# XREF **************************************************************** #
-# _real_lock_page() - "callout" to lock op's page from page-outs #
-# _cas_terminate2() - access error exit #
-# _real_cas2() - "callout" to core cas2 emulation code #
-# _real_unlock_page() - "callout" to unlock page #
-# #
-# INPUT *************************************************************** #
-# _compandset2(): #
-# d0 = instruction extension word #
-# #
-# _isp_cas2_finish(): #
-# see cas2 core emulation code #
-# #
-# OUTPUT ************************************************************** #
-# _compandset2(): #
-# see cas2 core emulation code #
-# #
-# _isp_cas_finish(): #
-# None (register file or memroy changed as appropriate) #
-# #
-# ALGORITHM *********************************************************** #
-# compandset2(): #
-# Decode the instruction and fetch the appropriate Update and #
-# Compare operands. Then call the "callout" _real_lock_page() for each #
-# memory operand address so that the operating system can keep these #
-# pages from being paged out. If either _real_lock_page() fails, exit #
-# through _cas_terminate2(). Don't forget to unlock the 1st locked page #
-# using _real_unlock_paged() if the 2nd lock-page fails. #
-# Finally, branch to the core cas2 emulation code by calling the #
-# "callout" _real_cas2(). #
-# #
-# _isp_cas2_finish(): #
-# Re-perform the comparison so we can determine the condition #
-# codes which were too much trouble to keep around during the locked #
-# emulation. Then unlock each operands page by calling the "callout" #
-# _real_unlock_page(). #
-# #
-#########################################################################
-
-set ADDR1, EXC_TEMP+0xc
-set ADDR2, EXC_TEMP+0x0
-set DC2, EXC_TEMP+0xa
-set DC1, EXC_TEMP+0x8
-
- global _compandset2
-_compandset2:
- mov.l %d0,EXC_TEMP+0x4(%a6) # store for possible restart
- mov.l %d0,%d1 # extension word in d0
-
- rol.w &0x4,%d0
- andi.w &0xf,%d0 # extract Rn2
- mov.l (EXC_DREGS,%a6,%d0.w*4),%a1 # fetch ADDR2
- mov.l %a1,ADDR2(%a6)
-
- mov.l %d1,%d0
-
- lsr.w &0x6,%d1
- andi.w &0x7,%d1 # extract Du2
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d5 # fetch Update2 Op
-
- andi.w &0x7,%d0 # extract Dc2
- mov.l (EXC_DREGS,%a6,%d0.w*4),%d3 # fetch Compare2 Op
- mov.w %d0,DC2(%a6)
-
- mov.w EXC_EXTWORD(%a6),%d0
- mov.l %d0,%d1
-
- rol.w &0x4,%d0
- andi.w &0xf,%d0 # extract Rn1
- mov.l (EXC_DREGS,%a6,%d0.w*4),%a0 # fetch ADDR1
- mov.l %a0,ADDR1(%a6)
-
- mov.l %d1,%d0
-
- lsr.w &0x6,%d1
- andi.w &0x7,%d1 # extract Du1
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # fetch Update1 Op
-
- andi.w &0x7,%d0 # extract Dc1
- mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # fetch Compare1 Op
- mov.w %d0,DC1(%a6)
-
- btst &0x1,EXC_OPWORD(%a6) # word or long?
- sne %d7
-
- btst &0x5,EXC_ISR(%a6) # user or supervisor?
- sne %d6
-
- mov.l %a0,%a2
- mov.l %a1,%a3
-
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- bsr.l _real_lock_page # lock page
- mov.l %a2,%a0
- tst.l %d0 # error?
- bne.l _cas_terminate2 # yes
-
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- mov.l %a3,%a0 # pass addr
- bsr.l _real_lock_page # lock page
- mov.l %a3,%a0
- tst.l %d0 # error?
- bne.b cas_preterm # yes
-
- mov.l %a2,%a0
- mov.l %a3,%a1
-
- bra.l _real_cas2
-
-# if the 2nd lock attempt fails, then we must still unlock the
-# first page(s).
-cas_preterm:
- mov.l %d0,-(%sp) # save FSLW
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- mov.l %a2,%a0 # pass ADDR1
- bsr.l _real_unlock_page # unlock first page(s)
- mov.l (%sp)+,%d0 # restore FSLW
- mov.l %a3,%a0 # pass failing addr
- bra.l _cas_terminate2
-
-#############################################################
-
- global _isp_cas2_finish
-_isp_cas2_finish:
- btst &0x1,EXC_OPWORD(%a6)
- bne.b cas2_finish_l
-
- mov.w EXC_CC(%a6),%cc # load old ccodes
- cmp.w %d0,%d2
- bne.b cas2_finish_w_save
- cmp.w %d1,%d3
-cas2_finish_w_save:
- mov.w %cc,EXC_CC(%a6) # save new ccodes
-
- tst.b %d4 # update compare reg?
- bne.b cas2_finish_w_done # no
-
- mov.w DC2(%a6),%d3 # fetch Dc2
- mov.w %d1,(2+EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op
-
- mov.w DC1(%a6),%d2 # fetch Dc1
- mov.w %d0,(2+EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op
-
-cas2_finish_w_done:
- btst &0x5,EXC_ISR(%a6)
- sne %d2
- mov.l %d2,%d0 # pass mode
- sf %d1 # pass size
- mov.l ADDR1(%a6),%a0 # pass ADDR1
- bsr.l _real_unlock_page # unlock page
-
- mov.l %d2,%d0 # pass mode
- sf %d1 # pass size
- mov.l ADDR2(%a6),%a0 # pass ADDR2
- bsr.l _real_unlock_page # unlock page
- rts
-
-cas2_finish_l:
- mov.w EXC_CC(%a6),%cc # load old ccodes
- cmp.l %d0,%d2
- bne.b cas2_finish_l_save
- cmp.l %d1,%d3
-cas2_finish_l_save:
- mov.w %cc,EXC_CC(%a6) # save new ccodes
-
- tst.b %d4 # update compare reg?
- bne.b cas2_finish_l_done # no
-
- mov.w DC2(%a6),%d3 # fetch Dc2
- mov.l %d1,(EXC_DREGS,%a6,%d3.w*4) # store new Compare2 Op
-
- mov.w DC1(%a6),%d2 # fetch Dc1
- mov.l %d0,(EXC_DREGS,%a6,%d2.w*4) # store new Compare1 Op
-
-cas2_finish_l_done:
- btst &0x5,EXC_ISR(%a6)
- sne %d2
- mov.l %d2,%d0 # pass mode
- st %d1 # pass size
- mov.l ADDR1(%a6),%a0 # pass ADDR1
- bsr.l _real_unlock_page # unlock page
-
- mov.l %d2,%d0 # pass mode
- st %d1 # pass size
- mov.l ADDR2(%a6),%a0 # pass ADDR2
- bsr.l _real_unlock_page # unlock page
- rts
-
-########
- global cr_cas2
-cr_cas2:
- mov.l EXC_TEMP+0x4(%a6),%d0
- bra.w _compandset2
-
-#########################################################################
-# XDEF **************************************************************** #
-# _compandset(): routine to emulate cas w/ misaligned <ea> #
-# (internal to package) #
-# _isp_cas_finish(): routine called when cas emulation completes #
-# (external and internal to package) #
-# _isp_cas_restart(): restart cas emulation after a fault #
-# (external to package) #
-# _isp_cas_terminate(): create access error stack frame on fault #
-# (external and internal to package) #
-# _isp_cas_inrange(): checks whether instr addess is within range #
-# of core cas/cas2emulation code #
-# (external to package) #
-# #
-# XREF **************************************************************** #
-# _calc_ea(): calculate effective address #
-# #
-# INPUT *************************************************************** #
-# compandset(): #
-# none #
-# _isp_cas_restart(): #
-# d6 = previous sfc/dfc #
-# _isp_cas_finish(): #
-# _isp_cas_terminate(): #
-# a0 = failing address #
-# d0 = FSLW #
-# d6 = previous sfc/dfc #
-# _isp_cas_inrange(): #
-# a0 = instruction address to be checked #
-# #
-# OUTPUT ************************************************************** #
-# compandset(): #
-# none #
-# _isp_cas_restart(): #
-# a0 = effective address #
-# d7 = word or longword flag #
-# _isp_cas_finish(): #
-# a0 = effective address #
-# _isp_cas_terminate(): #
-# initial register set before emulation exception #
-# _isp_cas_inrange(): #
-# d0 = 0 => in range; -1 => out of range #
-# #
-# ALGORITHM *********************************************************** #
-# #
-# compandset(): #
-# First, calculate the effective address. Then, decode the #
-# instruction word and fetch the "compare" (DC) and "update" (Du) #
-# operands. #
-# Next, call the external routine _real_lock_page() so that the #
-# operating system can keep this page from being paged out while we're #
-# in this routine. If this call fails, jump to _cas_terminate2(). #
-# The routine then branches to _real_cas(). This external routine #
-# that actually emulates cas can be supplied by the external os or #
-# made to point directly back into the 060ISP which has a routine for #
-# this purpose. #
-# #
-# _isp_cas_finish(): #
-# Either way, after emulation, the package is re-entered at #
-# _isp_cas_finish(). This routine re-compares the operands in order to #
-# set the condition codes. Finally, these routines will call #
-# _real_unlock_page() in order to unlock the pages that were previously #
-# locked. #
-# #
-# _isp_cas_restart(): #
-# This routine can be entered from an access error handler where #
-# the emulation sequence should be re-started from the beginning. #
-# #
-# _isp_cas_terminate(): #
-# This routine can be entered from an access error handler where #
-# an emulation operand access failed and the operating system would #
-# like an access error stack frame created instead of the current #
-# unimplemented integer instruction frame. #
-# Also, the package enters here if a call to _real_lock_page() #
-# fails. #
-# #
-# _isp_cas_inrange(): #
-# Checks to see whether the instruction address passed to it in #
-# a0 is within the software package cas/cas2 emulation routines. This #
-# can be helpful for an operating system to determine whether an access #
-# error during emulation was due to a cas/cas2 emulation access. #
-# #
-#########################################################################
-
-set DC, EXC_TEMP+0x8
-set ADDR, EXC_TEMP+0x4
-
- global _compandset
-_compandset:
- btst &0x1,EXC_OPWORD(%a6) # word or long operation?
- bne.b compandsetl # long
-
-compandsetw:
- movq.l &0x2,%d0 # size = 2 bytes
- bsr.l _calc_ea # a0 = calculated <ea>
- mov.l %a0,ADDR(%a6) # save <ea> for possible restart
- sf %d7 # clear d7 for word size
- bra.b compandsetfetch
-
-compandsetl:
- movq.l &0x4,%d0 # size = 4 bytes
- bsr.l _calc_ea # a0 = calculated <ea>
- mov.l %a0,ADDR(%a6) # save <ea> for possible restart
- st %d7 # set d7 for longword size
-
-compandsetfetch:
- mov.w EXC_EXTWORD(%a6),%d0 # fetch cas extension word
- mov.l %d0,%d1 # make a copy
-
- lsr.w &0x6,%d0
- andi.w &0x7,%d0 # extract Du
- mov.l (EXC_DREGS,%a6,%d0.w*4),%d2 # get update operand
-
- andi.w &0x7,%d1 # extract Dc
- mov.l (EXC_DREGS,%a6,%d1.w*4),%d4 # get compare operand
- mov.w %d1,DC(%a6) # save Dc
-
- btst &0x5,EXC_ISR(%a6) # which mode for exception?
- sne %d6 # set on supervisor mode
-
- mov.l %a0,%a2 # save temporarily
- mov.l %d7,%d1 # pass size
- mov.l %d6,%d0 # pass mode
- bsr.l _real_lock_page # lock page
- tst.l %d0 # did error occur?
- bne.w _cas_terminate2 # yes, clean up the mess
- mov.l %a2,%a0 # pass addr in a0
-
- bra.l _real_cas
-
-########
- global _isp_cas_finish
-_isp_cas_finish:
- btst &0x1,EXC_OPWORD(%a6)
- bne.b cas_finish_l
-
-# just do the compare again since it's faster than saving the ccodes
-# from the locked routine...
-cas_finish_w:
- mov.w EXC_CC(%a6),%cc # restore cc
- cmp.w %d0,%d4 # do word compare
- mov.w %cc,EXC_CC(%a6) # save cc
-
- tst.b %d1 # update compare reg?
- bne.b cas_finish_w_done # no
-
- mov.w DC(%a6),%d3
- mov.w %d0,(EXC_DREGS+2,%a6,%d3.w*4) # Dc = destination
-
-cas_finish_w_done:
- mov.l ADDR(%a6),%a0 # pass addr
- sf %d1 # pass size
- btst &0x5,EXC_ISR(%a6)
- sne %d0 # pass mode
- bsr.l _real_unlock_page # unlock page
- rts
-
-# just do the compare again since it's faster than saving the ccodes
-# from the locked routine...
-cas_finish_l:
- mov.w EXC_CC(%a6),%cc # restore cc
- cmp.l %d0,%d4 # do longword compare
- mov.w %cc,EXC_CC(%a6) # save cc
-
- tst.b %d1 # update compare reg?
- bne.b cas_finish_l_done # no
-
- mov.w DC(%a6),%d3
- mov.l %d0,(EXC_DREGS,%a6,%d3.w*4) # Dc = destination
-
-cas_finish_l_done:
- mov.l ADDR(%a6),%a0 # pass addr
- st %d1 # pass size
- btst &0x5,EXC_ISR(%a6)
- sne %d0 # pass mode
- bsr.l _real_unlock_page # unlock page
- rts
-
-########
-
- global _isp_cas_restart
-_isp_cas_restart:
- mov.l %d6,%sfc # restore previous sfc
- mov.l %d6,%dfc # restore previous dfc
-
- cmpi.b EXC_OPWORD+1(%a6),&0xfc # cas or cas2?
- beq.l cr_cas2 # cas2
-cr_cas:
- mov.l ADDR(%a6),%a0 # load <ea>
- btst &0x1,EXC_OPWORD(%a6) # word or long operation?
- sne %d7 # set d7 accordingly
- bra.w compandsetfetch
-
-########
-
-# At this stage, it would be nice if d0 held the FSLW.
- global _isp_cas_terminate
-_isp_cas_terminate:
- mov.l %d6,%sfc # restore previous sfc
- mov.l %d6,%dfc # restore previous dfc
-
- global _cas_terminate2
-_cas_terminate2:
- mov.l %a0,%a2 # copy failing addr to a2
-
- mov.l %d0,-(%sp)
- bsr.l isp_restore # restore An (if ()+ or -())
- mov.l (%sp)+,%d0
-
- addq.l &0x4,%sp # remove sub return addr
- subq.l &0x8,%sp # make room for bigger stack
- subq.l &0x8,%a6 # shift frame ptr down, too
- mov.l &26,%d1 # want to move 51 longwords
- lea 0x8(%sp),%a0 # get address of old stack
- lea 0x0(%sp),%a1 # get address of new stack
-cas_term_cont:
- mov.l (%a0)+,(%a1)+ # move a longword
- dbra.w %d1,cas_term_cont # keep going
-
- mov.w &0x4008,EXC_IVOFF(%a6) # put new stk fmt, voff
- mov.l %a2,EXC_IVOFF+0x2(%a6) # put faulting addr on stack
- mov.l %d0,EXC_IVOFF+0x6(%a6) # put FSLW on stack
- movm.l EXC_DREGS(%a6),&0x3fff # restore user regs
- unlk %a6 # unlink stack frame
- bra.l _real_access
-
-########
-
- global _isp_cas_inrange
-_isp_cas_inrange:
- clr.l %d0 # clear return result
- lea _CASHI(%pc),%a1 # load end of CAS core code
- cmp.l %a1,%a0 # is PC in range?
- blt.b cin_no # no
- lea _CASLO(%pc),%a1 # load begin of CAS core code
- cmp.l %a0,%a1 # is PC in range?
- blt.b cin_no # no
- rts # yes; return d0 = 0
-cin_no:
- mov.l &-0x1,%d0 # out of range; return d0 = -1
- rts
-
-#################################################################
-#################################################################
-#################################################################
-# This is the start of the cas and cas2 "core" emulation code. #
-# This is the section that may need to be replaced by the host #
-# OS if it is too operating system-specific. #
-# Please refer to the package documentation to see how to #
-# "replace" this section, if necessary. #
-#################################################################
-#################################################################
-#################################################################
-
-# ###### ## ###### ####
-# # # # # # #
-# # ###### ###### #
-# # # # # #
-# ###### # # ###### ######
-
-#########################################################################
-# XDEF **************************************************************** #
-# _isp_cas2(): "core" emulation code for the cas2 instruction #
-# #
-# XREF **************************************************************** #
-# _isp_cas2_finish() - only exit point for this emulation code; #
-# do clean-up; calculate ccodes; store #
-# Compare Ops if appropriate. #
-# #
-# INPUT *************************************************************** #
-# *see chart below* #
-# #
-# OUTPUT ************************************************************** #
-# *see chart below* #
-# #
-# ALGORITHM *********************************************************** #
-# (1) Make several copies of the effective address. #
-# (2) Save current SR; Then mask off all maskable interrupts. #
-# (3) Save current SFC/DFC (ASSUMED TO BE EQUAL!!!); Then set #
-# according to whether exception occurred in user or #
-# supervisor mode. #
-# (4) Use "plpaw" instruction to pre-load ATC with effective #
-# address pages(s). THIS SHOULD NOT FAULT!!! The relevant #
-# page(s) should have already been made resident prior to #
-# entering this routine. #
-# (5) Push the operand lines from the cache w/ "cpushl". #
-# In the 68040, this was done within the locked region. In #
-# the 68060, it is done outside of the locked region. #
-# (6) Use "plpar" instruction to do a re-load of ATC entries for #
-# ADDR1 since ADDR2 entries may have pushed ADDR1 out of the #
-# ATC. #
-# (7) Pre-fetch the core emulation instructions by executing #
-# one branch within each physical line (16 bytes) of the code #
-# before actually executing the code. #
-# (8) Load the BUSCR w/ the bus lock value. #
-# (9) Fetch the source operands using "moves". #
-# (10)Do the compares. If both equal, go to step (13). #
-# (11)Unequal. No update occurs. But, we do write the DST1 op #
-# back to itself (as w/ the '040) so we can gracefully unlock #
-# the bus (and assert LOCKE*) using BUSCR and the final move. #
-# (12)Exit. #
-# (13)Write update operand to the DST locations. Use BUSCR to #
-# assert LOCKE* for the final write operation. #
-# (14)Exit. #
-# #
-# The algorithm is actually implemented slightly differently #
-# depending on the size of the operation and the misalignment of the #
-# operands. A misaligned operand must be written in aligned chunks or #
-# else the BUSCR register control gets confused. #
-# #
-#########################################################################
-
-#################################################################
-# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas2(). #
-# #
-# D0 = xxxxxxxx #
-# D1 = xxxxxxxx #
-# D2 = cmp operand 1 #
-# D3 = cmp operand 2 #
-# D4 = update oper 1 #
-# D5 = update oper 2 #
-# D6 = 'xxxxxxff if supervisor mode; 'xxxxxx00 if user mode #
-# D7 = 'xxxxxxff if longword operation; 'xxxxxx00 if word #
-# A0 = ADDR1 #
-# A1 = ADDR2 #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-# align 0x1000
-# beginning label used by _isp_cas_inrange()
- global _CASLO
-_CASLO:
-
- global _isp_cas2
-_isp_cas2:
- tst.b %d6 # user or supervisor mode?
- bne.b cas2_supervisor # supervisor
-cas2_user:
- movq.l &0x1,%d0 # load user data fc
- bra.b cas2_cont
-cas2_supervisor:
- movq.l &0x5,%d0 # load supervisor data fc
-cas2_cont:
- tst.b %d7 # word or longword?
- beq.w cas2w # word
-
-####
-cas2l:
- mov.l %a0,%a2 # copy ADDR1
- mov.l %a1,%a3 # copy ADDR2
- mov.l %a0,%a4 # copy ADDR1
- mov.l %a1,%a5 # copy ADDR2
-
- addq.l &0x3,%a4 # ADDR1+3
- addq.l &0x3,%a5 # ADDR2+3
- mov.l %a2,%d1 # ADDR1
-
-# mask interrupts levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # store new SFC
- movc %d0,%dfc # store new DFC
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this.
- plpaw (%a2) # load atc for ADDR1
- plpaw (%a4) # load atc for ADDR1+3
- plpaw (%a3) # load atc for ADDR2
- plpaw (%a5) # load atc for ADDR2+3
-
-# push the operand lines from the cache if they exist.
- cpushl %dc,(%a2) # push line for ADDR1
- cpushl %dc,(%a4) # push line for ADDR1+3
- cpushl %dc,(%a3) # push line for ADDR2
- cpushl %dc,(%a5) # push line for ADDR2+2
-
- mov.l %d1,%a2 # ADDR1
- addq.l &0x3,%d1
- mov.l %d1,%a4 # ADDR1+3
-# if ADDR1 was ATC resident before the above "plpaw" and was executed
-# and it was the next entry scheduled for replacement and ADDR2
-# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1
-# entries from the ATC. so, we do a second set of "plpa"s.
- plpar (%a2) # load atc for ADDR1
- plpar (%a4) # load atc for ADDR1+3
-
-# load the BUSCR values.
- mov.l &0x80000000,%a2 # assert LOCK* buscr value
- mov.l &0xa0000000,%a3 # assert LOCKE* buscr value
- mov.l &0x00000000,%a4 # buscr unlock value
-
-# there are three possible mis-aligned cases for longword cas. they
-# are separated because the final write which asserts LOCKE* must
-# be aligned.
- mov.l %a0,%d0 # is ADDR1 misaligned?
- andi.b &0x3,%d0
- beq.b CAS2L_ENTER # no
- cmpi.b %d0,&0x2
- beq.w CAS2L2_ENTER # yes; word misaligned
- bra.w CAS2L3_ENTER # yes; byte misaligned
-
-#
-# D0 = dst operand 1 <-
-# D1 = dst operand 2 <-
-# D2 = cmp operand 1
-# D3 = cmp operand 2
-# D4 = update oper 1
-# D5 = update oper 2
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR1
-# A1 = ADDR2
-# A2 = bus LOCK* value
-# A3 = bus LOCKE* value
-# A4 = bus unlock value
-# A5 = xxxxxxxx
-#
- align 0x10
-CAS2L_START:
- movc %a2,%buscr # assert LOCK*
- movs.l (%a1),%d1 # fetch Dest2[31:0]
- movs.l (%a0),%d0 # fetch Dest1[31:0]
- bra.b CAS2L_CONT
-CAS2L_ENTER:
- bra.b ~+16
-
-CAS2L_CONT:
- cmp.l %d0,%d2 # Dest1 - Compare1
- bne.b CAS2L_NOUPDATE
- cmp.l %d1,%d3 # Dest2 - Compare2
- bne.b CAS2L_NOUPDATE
- movs.l %d5,(%a1) # Update2[31:0] -> DEST2
- bra.b CAS2L_UPDATE
- bra.b ~+16
-
-CAS2L_UPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.l %d4,(%a0) # Update1[31:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2l_update_done
- bra.b ~+16
-
-CAS2L_NOUPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.l %d0,(%a0) # Dest1[31:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2l_noupdate_done
- bra.b ~+16
-
-CAS2L_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2L_START
-
-####
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas2(). #
-# #
-# D0 = destination[31:0] operand 1 #
-# D1 = destination[31:0] operand 2 #
-# D2 = cmp[31:0] operand 1 #
-# D3 = cmp[31:0] operand 2 #
-# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-cas2l_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d4 # indicate no update was done
- bra.l _isp_cas2_finish
-
-cas2l_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d4 # indicate update was done
- bra.l _isp_cas2_finish
-####
-
- align 0x10
-CAS2L2_START:
- movc %a2,%buscr # assert LOCK*
- movs.l (%a1),%d1 # fetch Dest2[31:0]
- movs.l (%a0),%d0 # fetch Dest1[31:0]
- bra.b CAS2L2_CONT
-CAS2L2_ENTER:
- bra.b ~+16
-
-CAS2L2_CONT:
- cmp.l %d0,%d2 # Dest1 - Compare1
- bne.b CAS2L2_NOUPDATE
- cmp.l %d1,%d3 # Dest2 - Compare2
- bne.b CAS2L2_NOUPDATE
- movs.l %d5,(%a1) # Update2[31:0] -> Dest2
- bra.b CAS2L2_UPDATE
- bra.b ~+16
-
-CAS2L2_UPDATE:
- swap %d4 # get Update1[31:16]
- movs.w %d4,(%a0)+ # Update1[31:16] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- swap %d4 # get Update1[15:0]
- bra.b CAS2L2_UPDATE2
- bra.b ~+16
-
-CAS2L2_UPDATE2:
- movs.w %d4,(%a0) # Update1[15:0] -> DEST1+0x2
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_update_done
- nop
- bra.b ~+16
-
-CAS2L2_NOUPDATE:
- swap %d0 # get Dest1[31:16]
- movs.w %d0,(%a0)+ # Dest1[31:16] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- swap %d0 # get Dest1[15:0]
- bra.b CAS2L2_NOUPDATE2
- bra.b ~+16
-
-CAS2L2_NOUPDATE2:
- movs.w %d0,(%a0) # Dest1[15:0] -> DEST1+0x2
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_noupdate_done
- nop
- bra.b ~+16
-
-CAS2L2_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2L2_START
-
-#################################
-
- align 0x10
-CAS2L3_START:
- movc %a2,%buscr # assert LOCK*
- movs.l (%a1),%d1 # fetch Dest2[31:0]
- movs.l (%a0),%d0 # fetch Dest1[31:0]
- bra.b CAS2L3_CONT
-CAS2L3_ENTER:
- bra.b ~+16
-
-CAS2L3_CONT:
- cmp.l %d0,%d2 # Dest1 - Compare1
- bne.b CAS2L3_NOUPDATE
- cmp.l %d1,%d3 # Dest2 - Compare2
- bne.b CAS2L3_NOUPDATE
- movs.l %d5,(%a1) # Update2[31:0] -> DEST2
- bra.b CAS2L3_UPDATE
- bra.b ~+16
-
-CAS2L3_UPDATE:
- rol.l &0x8,%d4 # get Update1[31:24]
- movs.b %d4,(%a0)+ # Update1[31:24] -> DEST1
- swap %d4 # get Update1[23:8]
- movs.w %d4,(%a0)+ # Update1[23:8] -> DEST1+0x1
- bra.b CAS2L3_UPDATE2
- bra.b ~+16
-
-CAS2L3_UPDATE2:
- rol.l &0x8,%d4 # get Update1[7:0]
- movc %a3,%buscr # assert LOCKE*
- movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x3
- bra.b CAS2L3_UPDATE3
- nop
- bra.b ~+16
-
-CAS2L3_UPDATE3:
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_update_done
- nop
- nop
- nop
- bra.b ~+16
-
-CAS2L3_NOUPDATE:
- rol.l &0x8,%d0 # get Dest1[31:24]
- movs.b %d0,(%a0)+ # Dest1[31:24] -> DEST1
- swap %d0 # get Dest1[23:8]
- movs.w %d0,(%a0)+ # Dest1[23:8] -> DEST1+0x1
- bra.b CAS2L3_NOUPDATE2
- bra.b ~+16
-
-CAS2L3_NOUPDATE2:
- rol.l &0x8,%d0 # get Dest1[7:0]
- movc %a3,%buscr # assert LOCKE*
- movs.b %d0,(%a0) # Update1[7:0] -> DEST1+0x3
- bra.b CAS2L3_NOUPDATE3
- nop
- bra.b ~+16
-
-CAS2L3_NOUPDATE3:
- movc %a4,%buscr # unlock the bus
- bra.w cas2l_noupdate_done
- nop
- nop
- nop
- bra.b ~+14
-
-CAS2L3_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- bra.w CAS2L3_START
-
-#############################################################
-#############################################################
-
-cas2w:
- mov.l %a0,%a2 # copy ADDR1
- mov.l %a1,%a3 # copy ADDR2
- mov.l %a0,%a4 # copy ADDR1
- mov.l %a1,%a5 # copy ADDR2
-
- addq.l &0x1,%a4 # ADDR1+1
- addq.l &0x1,%a5 # ADDR2+1
- mov.l %a2,%d1 # ADDR1
-
-# mask interrupt levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # store new SFC
- movc %d0,%dfc # store new DFC
-
-# pre-load the operand ATC. no page faults should occur because
-# _real_lock_page() should have taken care of this.
- plpaw (%a2) # load atc for ADDR1
- plpaw (%a4) # load atc for ADDR1+1
- plpaw (%a3) # load atc for ADDR2
- plpaw (%a5) # load atc for ADDR2+1
-
-# push the operand cache lines from the cache if they exist.
- cpushl %dc,(%a2) # push line for ADDR1
- cpushl %dc,(%a4) # push line for ADDR1+1
- cpushl %dc,(%a3) # push line for ADDR2
- cpushl %dc,(%a5) # push line for ADDR2+1
-
- mov.l %d1,%a2 # ADDR1
- addq.l &0x3,%d1
- mov.l %d1,%a4 # ADDR1+3
-# if ADDR1 was ATC resident before the above "plpaw" and was executed
-# and it was the next entry scheduled for replacement and ADDR2
-# shares the same set, then the "plpaw" for ADDR2 can push the ADDR1
-# entries from the ATC. so, we do a second set of "plpa"s.
- plpar (%a2) # load atc for ADDR1
- plpar (%a4) # load atc for ADDR1+3
-
-# load the BUSCR values.
- mov.l &0x80000000,%a2 # assert LOCK* buscr value
- mov.l &0xa0000000,%a3 # assert LOCKE* buscr value
- mov.l &0x00000000,%a4 # buscr unlock value
-
-# there are two possible mis-aligned cases for word cas. they
-# are separated because the final write which asserts LOCKE* must
-# be aligned.
- mov.l %a0,%d0 # is ADDR1 misaligned?
- btst &0x0,%d0
- bne.w CAS2W2_ENTER # yes
- bra.b CAS2W_ENTER # no
-
-#
-# D0 = dst operand 1 <-
-# D1 = dst operand 2 <-
-# D2 = cmp operand 1
-# D3 = cmp operand 2
-# D4 = update oper 1
-# D5 = update oper 2
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR1
-# A1 = ADDR2
-# A2 = bus LOCK* value
-# A3 = bus LOCKE* value
-# A4 = bus unlock value
-# A5 = xxxxxxxx
-#
- align 0x10
-CAS2W_START:
- movc %a2,%buscr # assert LOCK*
- movs.w (%a1),%d1 # fetch Dest2[15:0]
- movs.w (%a0),%d0 # fetch Dest1[15:0]
- bra.b CAS2W_CONT2
-CAS2W_ENTER:
- bra.b ~+16
-
-CAS2W_CONT2:
- cmp.w %d0,%d2 # Dest1 - Compare1
- bne.b CAS2W_NOUPDATE
- cmp.w %d1,%d3 # Dest2 - Compare2
- bne.b CAS2W_NOUPDATE
- movs.w %d5,(%a1) # Update2[15:0] -> DEST2
- bra.b CAS2W_UPDATE
- bra.b ~+16
-
-CAS2W_UPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.w %d4,(%a0) # Update1[15:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2w_update_done
- bra.b ~+16
-
-CAS2W_NOUPDATE:
- movc %a3,%buscr # assert LOCKE*
- movs.w %d0,(%a0) # Dest1[15:0] -> DEST1
- movc %a4,%buscr # unlock the bus
- bra.b cas2w_noupdate_done
- bra.b ~+16
-
-CAS2W_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2W_START
-
-####
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas2(). #
-# #
-# D0 = destination[15:0] operand 1 #
-# D1 = destination[15:0] operand 2 #
-# D2 = cmp[15:0] operand 1 #
-# D3 = cmp[15:0] operand 2 #
-# D4 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-cas2w_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d4 # indicate no update was done
- bra.l _isp_cas2_finish
-
-cas2w_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d4 # indicate update was done
- bra.l _isp_cas2_finish
-####
-
- align 0x10
-CAS2W2_START:
- movc %a2,%buscr # assert LOCK*
- movs.w (%a1),%d1 # fetch Dest2[15:0]
- movs.w (%a0),%d0 # fetch Dest1[15:0]
- bra.b CAS2W2_CONT2
-CAS2W2_ENTER:
- bra.b ~+16
-
-CAS2W2_CONT2:
- cmp.w %d0,%d2 # Dest1 - Compare1
- bne.b CAS2W2_NOUPDATE
- cmp.w %d1,%d3 # Dest2 - Compare2
- bne.b CAS2W2_NOUPDATE
- movs.w %d5,(%a1) # Update2[15:0] -> DEST2
- bra.b CAS2W2_UPDATE
- bra.b ~+16
-
-CAS2W2_UPDATE:
- ror.l &0x8,%d4 # get Update1[15:8]
- movs.b %d4,(%a0)+ # Update1[15:8] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- rol.l &0x8,%d4 # get Update1[7:0]
- bra.b CAS2W2_UPDATE2
- bra.b ~+16
-
-CAS2W2_UPDATE2:
- movs.b %d4,(%a0) # Update1[7:0] -> DEST1+0x1
- movc %a4,%buscr # unlock the bus
- bra.w cas2w_update_done
- nop
- bra.b ~+16
-
-CAS2W2_NOUPDATE:
- ror.l &0x8,%d0 # get Dest1[15:8]
- movs.b %d0,(%a0)+ # Dest1[15:8] -> DEST1
- movc %a3,%buscr # assert LOCKE*
- rol.l &0x8,%d0 # get Dest1[7:0]
- bra.b CAS2W2_NOUPDATE2
- bra.b ~+16
-
-CAS2W2_NOUPDATE2:
- movs.b %d0,(%a0) # Dest1[7:0] -> DEST1+0x1
- movc %a4,%buscr # unlock the bus
- bra.w cas2w_noupdate_done
- nop
- bra.b ~+16
-
-CAS2W2_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CAS2W2_START
-
-# ###### ## ######
-# # # # #
-# # ###### ######
-# # # # #
-# ###### # # ######
-
-#########################################################################
-# XDEF **************************************************************** #
-# _isp_cas(): "core" emulation code for the cas instruction #
-# #
-# XREF **************************************************************** #
-# _isp_cas_finish() - only exit point for this emulation code; #
-# do clean-up #
-# #
-# INPUT *************************************************************** #
-# *see entry chart below* #
-# #
-# OUTPUT ************************************************************** #
-# *see exit chart below* #
-# #
-# ALGORITHM *********************************************************** #
-# (1) Make several copies of the effective address. #
-# (2) Save current SR; Then mask off all maskable interrupts. #
-# (3) Save current DFC/SFC (ASSUMED TO BE EQUAL!!!); Then set #
-# SFC/DFC according to whether exception occurred in user or #
-# supervisor mode. #
-# (4) Use "plpaw" instruction to pre-load ATC with efective #
-# address page(s). THIS SHOULD NOT FAULT!!! The relevant #
-# page(s) should have been made resident prior to entering #
-# this routine. #
-# (5) Push the operand lines from the cache w/ "cpushl". #
-# In the 68040, this was done within the locked region. In #
-# the 68060, it is done outside of the locked region. #
-# (6) Pre-fetch the core emulation instructions by executing one #
-# branch within each physical line (16 bytes) of the code #
-# before actually executing the code. #
-# (7) Load the BUSCR with the bus lock value. #
-# (8) Fetch the source operand. #
-# (9) Do the compare. If equal, go to step (12). #
-# (10)Unequal. No update occurs. But, we do write the DST op back #
-# to itself (as w/ the '040) so we can gracefully unlock #
-# the bus (and assert LOCKE*) using BUSCR and the final move. #
-# (11)Exit. #
-# (12)Write update operand to the DST location. Use BUSCR to #
-# assert LOCKE* for the final write operation. #
-# (13)Exit. #
-# #
-# The algorithm is actually implemented slightly differently #
-# depending on the size of the operation and the misalignment of the #
-# operand. A misaligned operand must be written in aligned chunks or #
-# else the BUSCR register control gets confused. #
-# #
-#########################################################################
-
-#########################################################
-# THIS IS THE STATE OF THE INTEGER REGISTER FILE UPON #
-# ENTERING _isp_cas(). #
-# #
-# D0 = xxxxxxxx #
-# D1 = xxxxxxxx #
-# D2 = update operand #
-# D3 = xxxxxxxx #
-# D4 = compare operand #
-# D5 = xxxxxxxx #
-# D6 = supervisor ('xxxxxxff) or user mode ('xxxxxx00) #
-# D7 = longword ('xxxxxxff) or word size ('xxxxxx00) #
-# A0 = ADDR #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#########################################################
-
- global _isp_cas
-_isp_cas:
- tst.b %d6 # user or supervisor mode?
- bne.b cas_super # supervisor
-cas_user:
- movq.l &0x1,%d0 # load user data fc
- bra.b cas_cont
-cas_super:
- movq.l &0x5,%d0 # load supervisor data fc
-
-cas_cont:
- tst.b %d7 # word or longword?
- bne.w casl # longword
-
-####
-casw:
- mov.l %a0,%a1 # make copy for plpaw1
- mov.l %a0,%a2 # make copy for plpaw2
- addq.l &0x1,%a2 # plpaw2 points to end of word
-
- mov.l %d2,%d3 # d3 = update[7:0]
- lsr.w &0x8,%d2 # d2 = update[15:8]
-
-# mask interrupt levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # load new sfc
- movc %d0,%dfc # load new dfc
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this.
- plpaw (%a1) # load atc for ADDR
- plpaw (%a2) # load atc for ADDR+1
-
-# push the operand lines from the cache if they exist.
- cpushl %dc,(%a1) # push dirty data
- cpushl %dc,(%a2) # push dirty data
-
-# load the BUSCR values.
- mov.l &0x80000000,%a1 # assert LOCK* buscr value
- mov.l &0xa0000000,%a2 # assert LOCKE* buscr value
- mov.l &0x00000000,%a3 # buscr unlock value
-
-# pre-load the instruction cache for the following algorithm.
-# this will minimize the number of cycles that LOCK* will be asserted.
- bra.b CASW_ENTER # start pre-loading icache
-
-#
-# D0 = dst operand <-
-# D1 = update[15:8] operand
-# D2 = update[7:0] operand
-# D3 = xxxxxxxx
-# D4 = compare[15:0] operand
-# D5 = xxxxxxxx
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR
-# A1 = bus LOCK* value
-# A2 = bus LOCKE* value
-# A3 = bus unlock value
-# A4 = xxxxxxxx
-# A5 = xxxxxxxx
-#
- align 0x10
-CASW_START:
- movc %a1,%buscr # assert LOCK*
- movs.w (%a0),%d0 # fetch Dest[15:0]
- cmp.w %d0,%d4 # Dest - Compare
- bne.b CASW_NOUPDATE
- bra.b CASW_UPDATE
-CASW_ENTER:
- bra.b ~+16
-
-CASW_UPDATE:
- movs.b %d2,(%a0)+ # Update[15:8] -> DEST
- movc %a2,%buscr # assert LOCKE*
- movs.b %d3,(%a0) # Update[7:0] -> DEST+0x1
- bra.b CASW_UPDATE2
- bra.b ~+16
-
-CASW_UPDATE2:
- movc %a3,%buscr # unlock the bus
- bra.b casw_update_done
- nop
- nop
- nop
- nop
- bra.b ~+16
-
-CASW_NOUPDATE:
- ror.l &0x8,%d0 # get Dest[15:8]
- movs.b %d0,(%a0)+ # Dest[15:8] -> DEST
- movc %a2,%buscr # assert LOCKE*
- rol.l &0x8,%d0 # get Dest[7:0]
- bra.b CASW_NOUPDATE2
- bra.b ~+16
-
-CASW_NOUPDATE2:
- movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x1
- movc %a3,%buscr # unlock the bus
- bra.b casw_noupdate_done
- nop
- nop
- bra.b ~+16
-
-CASW_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CASW_START
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# CALLING _isp_cas_finish(). #
-# #
-# D0 = destination[15:0] operand #
-# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D2 = xxxxxxxx #
-# D3 = xxxxxxxx #
-# D4 = compare[15:0] operand #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-casw_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d1 # indicate no update was done
- bra.l _isp_cas_finish
-
-casw_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d1 # indicate update was done
- bra.l _isp_cas_finish
-
-################
-
-# there are two possible mis-aligned cases for longword cas. they
-# are separated because the final write which asserts LOCKE* must
-# be an aligned write.
-casl:
- mov.l %a0,%a1 # make copy for plpaw1
- mov.l %a0,%a2 # make copy for plpaw2
- addq.l &0x3,%a2 # plpaw2 points to end of longword
-
- mov.l %a0,%d1 # byte or word misaligned?
- btst &0x0,%d1
- bne.w casl2 # byte misaligned
-
- mov.l %d2,%d3 # d3 = update[15:0]
- swap %d2 # d2 = update[31:16]
-
-# mask interrupts levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # load new sfc
- movc %d0,%dfc # load new dfc
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this.
- plpaw (%a1) # load atc for ADDR
- plpaw (%a2) # load atc for ADDR+3
-
-# push the operand lines from the cache if they exist.
- cpushl %dc,(%a1) # push dirty data
- cpushl %dc,(%a2) # push dirty data
-
-# load the BUSCR values.
- mov.l &0x80000000,%a1 # assert LOCK* buscr value
- mov.l &0xa0000000,%a2 # assert LOCKE* buscr value
- mov.l &0x00000000,%a3 # buscr unlock value
-
- bra.b CASL_ENTER # start pre-loading icache
-
-#
-# D0 = dst operand <-
-# D1 = xxxxxxxx
-# D2 = update[31:16] operand
-# D3 = update[15:0] operand
-# D4 = compare[31:0] operand
-# D5 = xxxxxxxx
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR
-# A1 = bus LOCK* value
-# A2 = bus LOCKE* value
-# A3 = bus unlock value
-# A4 = xxxxxxxx
-# A5 = xxxxxxxx
-#
- align 0x10
-CASL_START:
- movc %a1,%buscr # assert LOCK*
- movs.l (%a0),%d0 # fetch Dest[31:0]
- cmp.l %d0,%d4 # Dest - Compare
- bne.b CASL_NOUPDATE
- bra.b CASL_UPDATE
-CASL_ENTER:
- bra.b ~+16
-
-CASL_UPDATE:
- movs.w %d2,(%a0)+ # Update[31:16] -> DEST
- movc %a2,%buscr # assert LOCKE*
- movs.w %d3,(%a0) # Update[15:0] -> DEST+0x2
- bra.b CASL_UPDATE2
- bra.b ~+16
-
-CASL_UPDATE2:
- movc %a3,%buscr # unlock the bus
- bra.b casl_update_done
- nop
- nop
- nop
- nop
- bra.b ~+16
-
-CASL_NOUPDATE:
- swap %d0 # get Dest[31:16]
- movs.w %d0,(%a0)+ # Dest[31:16] -> DEST
- swap %d0 # get Dest[15:0]
- movc %a2,%buscr # assert LOCKE*
- bra.b CASL_NOUPDATE2
- bra.b ~+16
-
-CASL_NOUPDATE2:
- movs.w %d0,(%a0) # Dest[15:0] -> DEST+0x2
- movc %a3,%buscr # unlock the bus
- bra.b casl_noupdate_done
- nop
- nop
- bra.b ~+16
-
-CASL_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CASL_START
-
-#################################################################
-# THIS MUST BE THE STATE OF THE INTEGER REGISTER FILE UPON #
-# CALLING _isp_cas_finish(). #
-# #
-# D0 = destination[31:0] operand #
-# D1 = 'xxxxxx11 -> no reg update; 'xxxxxx00 -> update required #
-# D2 = xxxxxxxx #
-# D3 = xxxxxxxx #
-# D4 = compare[31:0] operand #
-# D5 = xxxxxxxx #
-# D6 = xxxxxxxx #
-# D7 = xxxxxxxx #
-# A0 = xxxxxxxx #
-# A1 = xxxxxxxx #
-# A2 = xxxxxxxx #
-# A3 = xxxxxxxx #
-# A4 = xxxxxxxx #
-# A5 = xxxxxxxx #
-# A6 = frame pointer #
-# A7 = stack pointer #
-#################################################################
-
-casl_noupdate_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupt mask level.
- mov.w %d7,%sr # restore old SR
-
- sf %d1 # indicate no update was done
- bra.l _isp_cas_finish
-
-casl_update_done:
-
-# restore previous SFC/DFC value.
- movc %d6,%sfc # restore old SFC
- movc %d6,%dfc # restore old DFC
-
-# restore previous interrupts mask level.
- mov.w %d7,%sr # restore old SR
-
- st %d1 # indicate update was done
- bra.l _isp_cas_finish
-
-#######################################
-casl2:
- mov.l %d2,%d5 # d5 = Update[7:0]
- lsr.l &0x8,%d2
- mov.l %d2,%d3 # d3 = Update[23:8]
- swap %d2 # d2 = Update[31:24]
-
-# mask interrupts levels 0-6. save old mask value.
- mov.w %sr,%d7 # save current SR
- ori.w &0x0700,%sr # inhibit interrupts
-
-# load the SFC and DFC with the appropriate mode.
- movc %sfc,%d6 # save old SFC/DFC
- movc %d0,%sfc # load new sfc
- movc %d0,%dfc # load new dfc
-
-# pre-load the operand ATC. no page faults should occur here because
-# _real_lock_page() should have taken care of this already.
- plpaw (%a1) # load atc for ADDR
- plpaw (%a2) # load atc for ADDR+3
-
-# puch the operand lines from the cache if they exist.
- cpushl %dc,(%a1) # push dirty data
- cpushl %dc,(%a2) # push dirty data
-
-# load the BUSCR values.
- mov.l &0x80000000,%a1 # assert LOCK* buscr value
- mov.l &0xa0000000,%a2 # assert LOCKE* buscr value
- mov.l &0x00000000,%a3 # buscr unlock value
-
-# pre-load the instruction cache for the following algorithm.
-# this will minimize the number of cycles that LOCK* will be asserted.
- bra.b CASL2_ENTER # start pre-loading icache
-
-#
-# D0 = dst operand <-
-# D1 = xxxxxxxx
-# D2 = update[31:24] operand
-# D3 = update[23:8] operand
-# D4 = compare[31:0] operand
-# D5 = update[7:0] operand
-# D6 = old SFC/DFC
-# D7 = old SR
-# A0 = ADDR
-# A1 = bus LOCK* value
-# A2 = bus LOCKE* value
-# A3 = bus unlock value
-# A4 = xxxxxxxx
-# A5 = xxxxxxxx
-#
- align 0x10
-CASL2_START:
- movc %a1,%buscr # assert LOCK*
- movs.l (%a0),%d0 # fetch Dest[31:0]
- cmp.l %d0,%d4 # Dest - Compare
- bne.b CASL2_NOUPDATE
- bra.b CASL2_UPDATE
-CASL2_ENTER:
- bra.b ~+16
-
-CASL2_UPDATE:
- movs.b %d2,(%a0)+ # Update[31:24] -> DEST
- movs.w %d3,(%a0)+ # Update[23:8] -> DEST+0x1
- movc %a2,%buscr # assert LOCKE*
- bra.b CASL2_UPDATE2
- bra.b ~+16
-
-CASL2_UPDATE2:
- movs.b %d5,(%a0) # Update[7:0] -> DEST+0x3
- movc %a3,%buscr # unlock the bus
- bra.w casl_update_done
- nop
- bra.b ~+16
-
-CASL2_NOUPDATE:
- rol.l &0x8,%d0 # get Dest[31:24]
- movs.b %d0,(%a0)+ # Dest[31:24] -> DEST
- swap %d0 # get Dest[23:8]
- movs.w %d0,(%a0)+ # Dest[23:8] -> DEST+0x1
- bra.b CASL2_NOUPDATE2
- bra.b ~+16
-
-CASL2_NOUPDATE2:
- rol.l &0x8,%d0 # get Dest[7:0]
- movc %a2,%buscr # assert LOCKE*
- movs.b %d0,(%a0) # Dest[7:0] -> DEST+0x3
- bra.b CASL2_NOUPDATE3
- nop
- bra.b ~+16
-
-CASL2_NOUPDATE3:
- movc %a3,%buscr # unlock the bus
- bra.w casl_noupdate_done
- nop
- nop
- nop
- bra.b ~+16
-
-CASL2_FILLER:
- nop
- nop
- nop
- nop
- nop
- nop
- nop
- bra.b CASL2_START
-
-####
-####
-# end label used by _isp_cas_inrange()
- global _CASHI
-_CASHI: