diff options
Diffstat (limited to 'ANDROID_3.4.5/arch/arm/mm/fault-armv.c')
-rw-r--r-- | ANDROID_3.4.5/arch/arm/mm/fault-armv.c | 270 |
1 files changed, 0 insertions, 270 deletions
diff --git a/ANDROID_3.4.5/arch/arm/mm/fault-armv.c b/ANDROID_3.4.5/arch/arm/mm/fault-armv.c deleted file mode 100644 index 7599e262..00000000 --- a/ANDROID_3.4.5/arch/arm/mm/fault-armv.c +++ /dev/null @@ -1,270 +0,0 @@ -/* - * linux/arch/arm/mm/fault-armv.c - * - * Copyright (C) 1995 Linus Torvalds - * Modifications for ARM processor (c) 1995-2002 Russell King - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ -#include <linux/sched.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/bitops.h> -#include <linux/vmalloc.h> -#include <linux/init.h> -#include <linux/pagemap.h> -#include <linux/gfp.h> - -#include <asm/bugs.h> -#include <asm/cacheflush.h> -#include <asm/cachetype.h> -#include <asm/pgtable.h> -#include <asm/tlbflush.h> - -#include "mm.h" - -static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE; - -#if __LINUX_ARM_ARCH__ < 6 -/* - * We take the easy way out of this problem - we make the - * PTE uncacheable. However, we leave the write buffer on. - * - * Note that the pte lock held when calling update_mmu_cache must also - * guard the pte (somewhere else in the same mm) that we modify here. - * Therefore those configurations which might call adjust_pte (those - * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. - */ -static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address, - unsigned long pfn, pte_t *ptep) -{ - pte_t entry = *ptep; - int ret; - - /* - * If this page is present, it's actually being shared. - */ - ret = pte_present(entry); - - /* - * If this page isn't present, or is already setup to - * fault (ie, is old), we can safely ignore any issues. - */ - if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { - flush_cache_page(vma, address, pfn); - outer_flush_range((pfn << PAGE_SHIFT), - (pfn << PAGE_SHIFT) + PAGE_SIZE); - pte_val(entry) &= ~L_PTE_MT_MASK; - pte_val(entry) |= shared_pte_mask; - set_pte_at(vma->vm_mm, address, ptep, entry); - flush_tlb_page(vma, address); - } - - return ret; -} - -#if USE_SPLIT_PTLOCKS -/* - * If we are using split PTE locks, then we need to take the page - * lock here. Otherwise we are using shared mm->page_table_lock - * which is already locked, thus cannot take it. - */ -static inline void do_pte_lock(spinlock_t *ptl) -{ - /* - * Use nested version here to indicate that we are already - * holding one similar spinlock. - */ - spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); -} - -static inline void do_pte_unlock(spinlock_t *ptl) -{ - spin_unlock(ptl); -} -#else /* !USE_SPLIT_PTLOCKS */ -static inline void do_pte_lock(spinlock_t *ptl) {} -static inline void do_pte_unlock(spinlock_t *ptl) {} -#endif /* USE_SPLIT_PTLOCKS */ - -static int adjust_pte(struct vm_area_struct *vma, unsigned long address, - unsigned long pfn) -{ - spinlock_t *ptl; - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - int ret; - - pgd = pgd_offset(vma->vm_mm, address); - if (pgd_none_or_clear_bad(pgd)) - return 0; - - pud = pud_offset(pgd, address); - if (pud_none_or_clear_bad(pud)) - return 0; - - pmd = pmd_offset(pud, address); - if (pmd_none_or_clear_bad(pmd)) - return 0; - - /* - * This is called while another page table is mapped, so we - * must use the nested version. This also means we need to - * open-code the spin-locking. - */ - ptl = pte_lockptr(vma->vm_mm, pmd); - pte = pte_offset_map(pmd, address); - do_pte_lock(ptl); - - ret = do_adjust_pte(vma, address, pfn, pte); - - do_pte_unlock(ptl); - pte_unmap(pte); - - return ret; -} - -static void -make_coherent(struct address_space *mapping, struct vm_area_struct *vma, - unsigned long addr, pte_t *ptep, unsigned long pfn) -{ - struct mm_struct *mm = vma->vm_mm; - struct vm_area_struct *mpnt; - struct prio_tree_iter iter; - unsigned long offset; - pgoff_t pgoff; - int aliases = 0; - - pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); - - /* - * If we have any shared mappings that are in the same mm - * space, then we need to handle them specially to maintain - * cache coherency. - */ - flush_dcache_mmap_lock(mapping); - vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) { - /* - * If this VMA is not in our MM, we can ignore it. - * Note that we intentionally mask out the VMA - * that we are fixing up. - */ - if (mpnt->vm_mm != mm || mpnt == vma) - continue; - if (!(mpnt->vm_flags & VM_MAYSHARE)) - continue; - offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; - aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn); - } - flush_dcache_mmap_unlock(mapping); - if (aliases) - do_adjust_pte(vma, addr, pfn, ptep); -} - -/* - * Take care of architecture specific things when placing a new PTE into - * a page table, or changing an existing PTE. Basically, there are two - * things that we need to take care of: - * - * 1. If PG_dcache_clean is not set for the page, we need to ensure - * that any cache entries for the kernels virtual memory - * range are written back to the page. - * 2. If we have multiple shared mappings of the same space in - * an object, we need to deal with the cache aliasing issues. - * - * Note that the pte lock will be held. - */ -void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, - pte_t *ptep) -{ - unsigned long pfn = pte_pfn(*ptep); - struct address_space *mapping; - struct page *page; - - if (!pfn_valid(pfn)) - return; - - /* - * The zero page is never written to, so never has any dirty - * cache lines, and therefore never needs to be flushed. - */ - page = pfn_to_page(pfn); - if (page == ZERO_PAGE(0)) - return; - - mapping = page_mapping(page); - if (!test_and_set_bit(PG_dcache_clean, &page->flags)) - __flush_dcache_page(mapping, page); - if (mapping) { - if (cache_is_vivt()) - make_coherent(mapping, vma, addr, ptep, pfn); - else if (vma->vm_flags & VM_EXEC) - __flush_icache_all(); - } -} -#endif /* __LINUX_ARM_ARCH__ < 6 */ - -/* - * Check whether the write buffer has physical address aliasing - * issues. If it has, we need to avoid them for the case where - * we have several shared mappings of the same object in user - * space. - */ -static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) -{ - register unsigned long zero = 0, one = 1, val; - - local_irq_disable(); - mb(); - *p1 = one; - mb(); - *p2 = zero; - mb(); - val = *p1; - mb(); - local_irq_enable(); - return val != zero; -} - -void __init check_writebuffer_bugs(void) -{ - struct page *page; - const char *reason; - unsigned long v = 1; - - printk(KERN_INFO "CPU: Testing write buffer coherency: "); - - page = alloc_page(GFP_KERNEL); - if (page) { - unsigned long *p1, *p2; - pgprot_t prot = __pgprot_modify(PAGE_KERNEL, - L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); - - p1 = vmap(&page, 1, VM_IOREMAP, prot); - p2 = vmap(&page, 1, VM_IOREMAP, prot); - - if (p1 && p2) { - v = check_writebuffer(p1, p2); - reason = "enabling work-around"; - } else { - reason = "unable to map memory\n"; - } - - vunmap(p1); - vunmap(p2); - put_page(page); - } else { - reason = "unable to grab page\n"; - } - - if (v) { - printk("failed, %s\n", reason); - shared_pte_mask = L_PTE_MT_UNCACHED; - } else { - printk("ok\n"); - } -} |