summaryrefslogtreecommitdiff
path: root/sound/oss/vwsnd.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-13 15:08:24 +0530
committerSrikant Patnaik2015-01-13 15:08:24 +0530
commit97327692361306d1e6259021bc425e32832fdb50 (patch)
treefe9088f3248ec61e24f404f21b9793cb644b7f01 /sound/oss/vwsnd.c
parent2d05a8f663478a44e088d122e0d62109bbc801d0 (diff)
parenta3a8b90b61e21be3dde9101c4e86c881e0f06210 (diff)
downloadFOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.gz
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.bz2
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.zip
dirty fix to merging
Diffstat (limited to 'sound/oss/vwsnd.c')
-rw-r--r--sound/oss/vwsnd.c3498
1 files changed, 3498 insertions, 0 deletions
diff --git a/sound/oss/vwsnd.c b/sound/oss/vwsnd.c
new file mode 100644
index 00000000..643f1113
--- /dev/null
+++ b/sound/oss/vwsnd.c
@@ -0,0 +1,3498 @@
+/*
+ * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
+ * onboard audio. See notes in Documentation/sound/oss/vwsnd .
+ *
+ * Copyright 1999 Silicon Graphics, Inc. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#undef VWSND_DEBUG /* define for debugging */
+
+/*
+ * XXX to do -
+ *
+ * External sync.
+ * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
+ * Bug - if select() called before read(), pcm_setup() not called.
+ * Bug - output doesn't stop soon enough if process killed.
+ */
+
+/*
+ * Things to test -
+ *
+ * Will readv/writev work? Write a test.
+ *
+ * insmod/rmmod 100 million times.
+ *
+ * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
+ * rate).
+ *
+ * Concurrent threads banging on mixer simultaneously, both UP
+ * and SMP kernels. Especially, watch for thread A changing
+ * OUTSRC while thread B changes gain -- both write to the same
+ * ad1843 register.
+ *
+ * What happens if a client opens /dev/audio then forks?
+ * Do two procs have /dev/audio open? Test.
+ *
+ * Pump audio through the CD, MIC and line inputs and verify that
+ * they mix/mute into the output.
+ *
+ * Apps:
+ * amp
+ * mpg123
+ * x11amp
+ * mxv
+ * kmedia
+ * esound
+ * need more input apps
+ *
+ * Run tests while bombarding with signals. setitimer(2) will do it... */
+
+/*
+ * This driver is organized in nine sections.
+ * The nine sections are:
+ *
+ * debug stuff
+ * low level lithium access
+ * high level lithium access
+ * AD1843 access
+ * PCM I/O
+ * audio driver
+ * mixer driver
+ * probe/attach/unload
+ * initialization and loadable kernel module interface
+ *
+ * That is roughly the order of increasing abstraction, so forward
+ * dependencies are minimal.
+ */
+
+/*
+ * Locking Notes
+ *
+ * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
+ * open descriptors to this driver. They store it in vwsnd_use_count.
+ * The global device list, vwsnd_dev_list, is immutable when the IN_USE
+ * is true.
+ *
+ * devc->open_lock is a semaphore that is used to enforce the
+ * single reader/single writer rule for /dev/audio. The rule is
+ * that each device may have at most one reader and one writer.
+ * Open will block until the previous client has closed the
+ * device, unless O_NONBLOCK is specified.
+ *
+ * The semaphore devc->io_mutex serializes PCM I/O syscalls. This
+ * is unnecessary in Linux 2.2, because the kernel lock
+ * serializes read, write, and ioctl globally, but it's there,
+ * ready for the brave, new post-kernel-lock world.
+ *
+ * Locking between interrupt and baselevel is handled by the
+ * "lock" spinlock in vwsnd_port (one lock each for read and
+ * write). Each half holds the lock just long enough to see what
+ * area it owns and update its pointers. See pcm_output() and
+ * pcm_input() for most of the gory stuff.
+ *
+ * devc->mix_mutex serializes all mixer ioctls. This is also
+ * redundant because of the kernel lock.
+ *
+ * The lowest level lock is lith->lithium_lock. It is a
+ * spinlock which is held during the two-register tango of
+ * reading/writing an AD1843 register. See
+ * li_{read,write}_ad1843_reg().
+ */
+
+/*
+ * Sample Format Notes
+ *
+ * Lithium's DMA engine has two formats: 16-bit 2's complement
+ * and 8-bit unsigned . 16-bit transfers the data unmodified, 2
+ * bytes per sample. 8-bit unsigned transfers 1 byte per sample
+ * and XORs each byte with 0x80. Lithium can input or output
+ * either mono or stereo in either format.
+ *
+ * The AD1843 has four formats: 16-bit 2's complement, 8-bit
+ * unsigned, 8-bit mu-Law and 8-bit A-Law.
+ *
+ * This driver supports five formats: AFMT_S8, AFMT_U8,
+ * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
+ *
+ * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
+ * rely on Lithium's XOR to translate between U8 and S8.
+ *
+ * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
+ * the 0x80 bit in software to compensate for Lithium's XOR.
+ * This happens in pcm_copy_{in,out}().
+ *
+ * Changes:
+ * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
+ * Added some __init/__exit
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+
+#include <linux/spinlock.h>
+#include <linux/wait.h>
+#include <linux/interrupt.h>
+#include <linux/mutex.h>
+#include <linux/slab.h>
+
+#include <asm/visws/cobalt.h>
+
+#include "sound_config.h"
+
+/*****************************************************************************/
+/* debug stuff */
+
+#ifdef VWSND_DEBUG
+
+static DEFINE_MUTEX(vwsnd_mutex);
+static int shut_up = 1;
+
+/*
+ * dbgassert - called when an assertion fails.
+ */
+
+static void dbgassert(const char *fcn, int line, const char *expr)
+{
+ if (in_interrupt())
+ panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
+ __FILE__, fcn, line, expr);
+ else {
+ int x;
+ printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
+ __FILE__, fcn, line, expr);
+ x = * (volatile int *) 0; /* force proc to exit */
+ }
+}
+
+/*
+ * Bunch of useful debug macros:
+ *
+ * ASSERT - print unless e nonzero (panic if in interrupt)
+ * DBGDO - include arbitrary code if debugging
+ * DBGX - debug print raw (w/o function name)
+ * DBGP - debug print w/ function name
+ * DBGE - debug print function entry
+ * DBGC - debug print function call
+ * DBGR - debug print function return
+ * DBGXV - debug print raw when verbose
+ * DBGPV - debug print when verbose
+ * DBGEV - debug print function entry when verbose
+ * DBGRV - debug print function return when verbose
+ */
+
+#define ASSERT(e) ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e))
+#define DBGDO(x) x
+#define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
+#define DBGP(fmt, args...) (DBGX("%s: " fmt, __func__ , ##args))
+#define DBGE(fmt, args...) (DBGX("%s" fmt, __func__ , ##args))
+#define DBGC(rtn) (DBGP("calling %s\n", rtn))
+#define DBGR() (DBGP("returning\n"))
+#define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
+#define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
+#define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
+#define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn))
+#define DBGRV() (shut_up ? 0 : DBGR())
+
+#else /* !VWSND_DEBUG */
+
+#define ASSERT(e) ((void) 0)
+#define DBGDO(x) /* don't */
+#define DBGX(fmt, args...) ((void) 0)
+#define DBGP(fmt, args...) ((void) 0)
+#define DBGE(fmt, args...) ((void) 0)
+#define DBGC(rtn) ((void) 0)
+#define DBGR() ((void) 0)
+#define DBGPV(fmt, args...) ((void) 0)
+#define DBGXV(fmt, args...) ((void) 0)
+#define DBGEV(fmt, args...) ((void) 0)
+#define DBGCV(rtn) ((void) 0)
+#define DBGRV() ((void) 0)
+
+#endif /* !VWSND_DEBUG */
+
+/*****************************************************************************/
+/* low level lithium access */
+
+/*
+ * We need to talk to Lithium registers on three pages. Here are
+ * the pages' offsets from the base address (0xFF001000).
+ */
+
+enum {
+ LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
+ LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
+ LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
+};
+
+/* low-level lithium data */
+
+typedef struct lithium {
+ void * page0; /* virtual addresses */
+ void * page1;
+ void * page2;
+ spinlock_t lock; /* protects codec and UST/MSC access */
+} lithium_t;
+
+/*
+ * li_destroy destroys the lithium_t structure and vm mappings.
+ */
+
+static void li_destroy(lithium_t *lith)
+{
+ if (lith->page0) {
+ iounmap(lith->page0);
+ lith->page0 = NULL;
+ }
+ if (lith->page1) {
+ iounmap(lith->page1);
+ lith->page1 = NULL;
+ }
+ if (lith->page2) {
+ iounmap(lith->page2);
+ lith->page2 = NULL;
+ }
+}
+
+/*
+ * li_create initializes the lithium_t structure and sets up vm mappings
+ * to access the registers.
+ * Returns 0 on success, -errno on failure.
+ */
+
+static int __init li_create(lithium_t *lith, unsigned long baseaddr)
+{
+ spin_lock_init(&lith->lock);
+ lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
+ lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
+ lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
+ if (!lith->page0 || !lith->page1 || !lith->page2) {
+ li_destroy(lith);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+/*
+ * basic register accessors - read/write long/byte
+ */
+
+static __inline__ unsigned long li_readl(lithium_t *lith, int off)
+{
+ return * (volatile unsigned long *) (lith->page0 + off);
+}
+
+static __inline__ unsigned char li_readb(lithium_t *lith, int off)
+{
+ return * (volatile unsigned char *) (lith->page0 + off);
+}
+
+static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
+{
+ * (volatile unsigned long *) (lith->page0 + off) = val;
+}
+
+static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
+{
+ * (volatile unsigned char *) (lith->page0 + off) = val;
+}
+
+/*****************************************************************************/
+/* High Level Lithium Access */
+
+/*
+ * Lithium DMA Notes
+ *
+ * Lithium has two dedicated DMA channels for audio. They are known
+ * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for
+ * input, and comm2 is for output. Each is controlled by three
+ * registers: BASE (base address), CFG (config) and CCTL
+ * (config/control).
+ *
+ * Each DMA channel points to a physically contiguous ring buffer in
+ * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.)
+ * There are three pointers into the ring buffer: read, write, and
+ * trigger. The pointers are 8 bits each. Each pointer points to
+ * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time,
+ * so there is no finer-granularity control.
+ *
+ * In comm1, the hardware updates the write ptr, and software updates
+ * the read ptr. In comm2, it's the opposite: hardware updates the
+ * read ptr, and software updates the write ptr. I designate the
+ * hardware-updated ptr as the hwptr, and the software-updated ptr as
+ * the swptr.
+ *
+ * The trigger ptr and trigger mask are used to trigger interrupts.
+ * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
+ *
+ * Trigger Mask Value
+ *
+ * A three bit wide field that represents a power of two mask
+ * that is used whenever the trigger pointer is compared to its
+ * respective read or write pointer. A value of zero here
+ * implies a mask of 0xFF and a value of seven implies a mask
+ * 0x01. This value can be used to sub-divide the ring buffer
+ * into pie sections so that interrupts monitor the progress of
+ * hardware from section to section.
+ *
+ * My interpretation of that is, whenever the hw ptr is updated, it is
+ * compared with the trigger ptr, and the result is masked by the
+ * trigger mask. (Actually, by the complement of the trigger mask.)
+ * If the result is zero, an interrupt is triggered. I.e., interrupt
+ * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from
+ * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
+ *
+ * In yet different words, setting tmreg to 0 causes an interrupt after
+ * every 256 DMA chunks (8192 bytes) or once per traversal of the
+ * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks
+ * (64 bytes) or 128 times per traversal of the ring buffer.
+ */
+
+/* Lithium register offsets and bit definitions */
+
+#define LI_HOST_CONTROLLER 0x000
+# define LI_HC_RESET 0x00008000
+# define LI_HC_LINK_ENABLE 0x00004000
+# define LI_HC_LINK_FAILURE 0x00000004
+# define LI_HC_LINK_CODEC 0x00000002
+# define LI_HC_LINK_READY 0x00000001
+
+#define LI_INTR_STATUS 0x010
+#define LI_INTR_MASK 0x014
+# define LI_INTR_LINK_ERR 0x00008000
+# define LI_INTR_COMM2_TRIG 0x00000008
+# define LI_INTR_COMM2_UNDERFLOW 0x00000004
+# define LI_INTR_COMM1_TRIG 0x00000002
+# define LI_INTR_COMM1_OVERFLOW 0x00000001
+
+#define LI_CODEC_COMMAND 0x018
+# define LI_CC_BUSY 0x00008000
+# define LI_CC_DIR 0x00000080
+# define LI_CC_DIR_RD LI_CC_DIR
+# define LI_CC_DIR_WR (!LI_CC_DIR)
+# define LI_CC_ADDR_MASK 0x0000007F
+
+#define LI_CODEC_DATA 0x01C
+
+#define LI_COMM1_BASE 0x100
+#define LI_COMM1_CTL 0x104
+# define LI_CCTL_RESET 0x80000000
+# define LI_CCTL_SIZE 0x70000000
+# define LI_CCTL_DMA_ENABLE 0x08000000
+# define LI_CCTL_TMASK 0x07000000 /* trigger mask */
+# define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */
+# define LI_CCTL_RPTR 0x0000FF00
+# define LI_CCTL_WPTR 0x000000FF
+#define LI_COMM1_CFG 0x108
+# define LI_CCFG_LOCK 0x00008000
+# define LI_CCFG_SLOT 0x00000070
+# define LI_CCFG_DIRECTION 0x00000008
+# define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION)
+# define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION
+# define LI_CCFG_MODE 0x00000004
+# define LI_CCFG_MODE_MONO (!LI_CCFG_MODE)
+# define LI_CCFG_MODE_STEREO LI_CCFG_MODE
+# define LI_CCFG_FORMAT 0x00000003
+# define LI_CCFG_FMT_8BIT 0x00000000
+# define LI_CCFG_FMT_16BIT 0x00000001
+#define LI_COMM2_BASE 0x10C
+#define LI_COMM2_CTL 0x110
+ /* bit definitions are the same as LI_COMM1_CTL */
+#define LI_COMM2_CFG 0x114
+ /* bit definitions are the same as LI_COMM1_CFG */
+
+#define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */
+#define LI_UST_HIGH 0x204 /* microseconds since boot */
+
+#define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */
+#define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */
+#define LI_AUDIO2_UST 0x308 /* counts samples actually */
+#define LI_AUDIO2_MSC 0x30C /* processed as of time UST */
+
+/*
+ * Lithium's DMA engine operates on chunks of 32 bytes. We call that
+ * a DMACHUNK.
+ */
+
+#define DMACHUNK_SHIFT 5
+#define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
+#define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
+#define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
+
+/*
+ * Two convenient macros to shift bitfields into/out of position.
+ *
+ * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
+ * As long as mask is constant, we trust the compiler will change the
+ * multipy and divide into shifts.
+ */
+
+#define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
+#define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
+
+/*
+ * dma_chan_desc is invariant information about a Lithium
+ * DMA channel. There are two instances, li_comm1 and li_comm2.
+ *
+ * Note that the CCTL register fields are write ptr and read ptr, but what
+ * we care about are which pointer is updated by software and which by
+ * hardware.
+ */
+
+typedef struct dma_chan_desc {
+ int basereg;
+ int cfgreg;
+ int ctlreg;
+ int hwptrreg;
+ int swptrreg;
+ int ustreg;
+ int mscreg;
+ unsigned long swptrmask;
+ int ad1843_slot;
+ int direction; /* LI_CCTL_DIR_IN/OUT */
+} dma_chan_desc_t;
+
+static const dma_chan_desc_t li_comm1 = {
+ LI_COMM1_BASE, /* base register offset */
+ LI_COMM1_CFG, /* config register offset */
+ LI_COMM1_CTL, /* control register offset */
+ LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */
+ LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */
+ LI_AUDIO1_UST, /* ust reg offset */
+ LI_AUDIO1_MSC, /* msc reg offset */
+ LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */
+ 2, /* ad1843 serial slot */
+ LI_CCFG_DIR_IN /* direction */
+};
+
+static const dma_chan_desc_t li_comm2 = {
+ LI_COMM2_BASE, /* base register offset */
+ LI_COMM2_CFG, /* config register offset */
+ LI_COMM2_CTL, /* control register offset */
+ LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */
+ LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */
+ LI_AUDIO2_UST, /* ust reg offset */
+ LI_AUDIO2_MSC, /* msc reg offset */
+ LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */
+ 2, /* ad1843 serial slot */
+ LI_CCFG_DIR_OUT /* direction */
+};
+
+/*
+ * dma_chan is variable information about a Lithium DMA channel.
+ *
+ * The desc field points to invariant information.
+ * The lith field points to a lithium_t which is passed
+ * to li_read* and li_write* to access the registers.
+ * The *val fields shadow the lithium registers' contents.
+ */
+
+typedef struct dma_chan {
+ const dma_chan_desc_t *desc;
+ lithium_t *lith;
+ unsigned long baseval;
+ unsigned long cfgval;
+ unsigned long ctlval;
+} dma_chan_t;
+
+/*
+ * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
+ * UST is time in microseconds since the system booted, and MSC is a
+ * counter that increments with every audio sample.
+ */
+
+typedef struct ustmsc {
+ unsigned long long ust;
+ unsigned long msc;
+} ustmsc_t;
+
+/*
+ * li_ad1843_wait waits until lithium says the AD1843 register
+ * exchange is not busy. Returns 0 on success, -EBUSY on timeout.
+ *
+ * Locking: must be called with lithium_lock held.
+ */
+
+static int li_ad1843_wait(lithium_t *lith)
+{
+ unsigned long later = jiffies + 2;
+ while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
+ if (time_after_eq(jiffies, later))
+ return -EBUSY;
+ return 0;
+}
+
+/*
+ * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
+ *
+ * Returns unsigned register value on success, -errno on failure.
+ */
+
+static int li_read_ad1843_reg(lithium_t *lith, int reg)
+{
+ int val;
+
+ ASSERT(!in_interrupt());
+ spin_lock(&lith->lock);
+ {
+ val = li_ad1843_wait(lith);
+ if (val == 0) {
+ li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
+ val = li_ad1843_wait(lith);
+ }
+ if (val == 0)
+ val = li_readl(lith, LI_CODEC_DATA);
+ }
+ spin_unlock(&lith->lock);
+
+ DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
+ lith, reg, val);
+
+ return val;
+}
+
+/*
+ * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
+ */
+
+static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
+{
+ spin_lock(&lith->lock);
+ {
+ if (li_ad1843_wait(lith) == 0) {
+ li_writel(lith, LI_CODEC_DATA, newval);
+ li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
+ }
+ }
+ spin_unlock(&lith->lock);
+}
+
+/*
+ * li_setup_dma calculates all the register settings for DMA in a particular
+ * mode. It takes too many arguments.
+ */
+
+static void li_setup_dma(dma_chan_t *chan,
+ const dma_chan_desc_t *desc,
+ lithium_t *lith,
+ unsigned long buffer_paddr,
+ int bufshift,
+ int fragshift,
+ int channels,
+ int sampsize)
+{
+ unsigned long mode, format;
+ unsigned long size, tmask;
+
+ DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
+ "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
+ chan, desc, lith, buffer_paddr,
+ bufshift, fragshift, channels, sampsize);
+
+ /* Reset the channel first. */
+
+ li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
+
+ ASSERT(channels == 1 || channels == 2);
+ if (channels == 2)
+ mode = LI_CCFG_MODE_STEREO;
+ else
+ mode = LI_CCFG_MODE_MONO;
+ ASSERT(sampsize == 1 || sampsize == 2);
+ if (sampsize == 2)
+ format = LI_CCFG_FMT_16BIT;
+ else
+ format = LI_CCFG_FMT_8BIT;
+ chan->desc = desc;
+ chan->lith = lith;
+
+ /*
+ * Lithium DMA address register takes a 40-bit physical
+ * address, right-shifted by 8 so it fits in 32 bits. Bit 37
+ * must be set -- it enables cache coherence.
+ */
+
+ ASSERT(!(buffer_paddr & 0xFF));
+ chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
+
+ chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) |
+ SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) |
+ desc->direction |
+ mode |
+ format);
+
+ size = bufshift - 6;
+ tmask = 13 - fragshift; /* See Lithium DMA Notes above. */
+ ASSERT(size >= 2 && size <= 7);
+ ASSERT(tmask >= 1 && tmask <= 7);
+ chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) |
+ SHIFT_FIELD(size, LI_CCTL_SIZE) |
+ (chan->ctlval & ~LI_CCTL_DMA_ENABLE) |
+ SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
+ SHIFT_FIELD(0, LI_CCTL_TPTR));
+
+ DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
+ DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
+ DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
+
+ li_writel(lith, desc->basereg, chan->baseval);
+ li_writel(lith, desc->cfgreg, chan->cfgval);
+ li_writel(lith, desc->ctlreg, chan->ctlval);
+
+ DBGRV();
+}
+
+static void li_shutdown_dma(dma_chan_t *chan)
+{
+ lithium_t *lith = chan->lith;
+ void * lith1 = lith->page1;
+
+ DBGEV("(chan=0x%p)\n", chan);
+
+ chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
+ DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
+ li_writel(lith, chan->desc->ctlreg, chan->ctlval);
+
+ /*
+ * Offset 0x500 on Lithium page 1 is an undocumented,
+ * unsupported register that holds the zero sample value.
+ * Lithium is supposed to output zero samples when DMA is
+ * inactive, and repeat the last sample when DMA underflows.
+ * But it has a bug, where, after underflow occurs, the zero
+ * sample is not reset.
+ *
+ * I expect this to break in a future rev of Lithium.
+ */
+
+ if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
+ * (volatile unsigned long *) (lith1 + 0x500) = 0;
+}
+
+/*
+ * li_activate_dma always starts dma at the beginning of the buffer.
+ *
+ * N.B., these may be called from interrupt.
+ */
+
+static __inline__ void li_activate_dma(dma_chan_t *chan)
+{
+ chan->ctlval |= LI_CCTL_DMA_ENABLE;
+ DBGPV("ctlval = 0x%lx\n", chan->ctlval);
+ li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
+}
+
+static void li_deactivate_dma(dma_chan_t *chan)
+{
+ lithium_t *lith = chan->lith;
+ void * lith2 = lith->page2;
+
+ chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR);
+ DBGPV("ctlval = 0x%lx\n", chan->ctlval);
+ DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
+ li_writel(lith, chan->desc->ctlreg, chan->ctlval);
+
+ /*
+ * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
+ * unsupported registers that are internal copies of the DMA
+ * read and write pointers. Because of a Lithium bug, these
+ * registers aren't zeroed correctly when DMA is shut off. So
+ * we whack them directly.
+ *
+ * I expect this to break in a future rev of Lithium.
+ */
+
+ if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
+ * (volatile unsigned long *) (lith2 + 0x98) = 0;
+ * (volatile unsigned long *) (lith2 + 0x9C) = 0;
+ }
+}
+
+/*
+ * read/write the ring buffer pointers. These routines' arguments and results
+ * are byte offsets from the beginning of the ring buffer.
+ */
+
+static __inline__ int li_read_swptr(dma_chan_t *chan)
+{
+ const unsigned long mask = chan->desc->swptrmask;
+
+ return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
+}
+
+static __inline__ int li_read_hwptr(dma_chan_t *chan)
+{
+ return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
+}
+
+static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
+{
+ const unsigned long mask = chan->desc->swptrmask;
+
+ ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
+ val = BYTES_TO_CHUNKS(val);
+ chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
+ li_writeb(chan->lith, chan->desc->swptrreg, val);
+}
+
+/* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
+
+static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
+{
+ lithium_t *lith = chan->lith;
+ const dma_chan_desc_t *desc = chan->desc;
+ unsigned long now_low, now_high0, now_high1, chan_ust;
+
+ spin_lock(&lith->lock);
+ {
+ /*
+ * retry until we do all five reads without the
+ * high word changing. (High word increments
+ * every 2^32 microseconds, i.e., not often)
+ */
+ do {
+ now_high0 = li_readl(lith, LI_UST_HIGH);
+ now_low = li_readl(lith, LI_UST_LOW);
+
+ /*
+ * Lithium guarantees these two reads will be
+ * atomic -- ust will not increment after msc
+ * is read.
+ */
+
+ ustmsc->msc = li_readl(lith, desc->mscreg);
+ chan_ust = li_readl(lith, desc->ustreg);
+
+ now_high1 = li_readl(lith, LI_UST_HIGH);
+ } while (now_high0 != now_high1);
+ }
+ spin_unlock(&lith->lock);
+ ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
+}
+
+static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
+{
+ DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
+
+ /* clear any already-pending interrupts. */
+
+ li_writel(lith, LI_INTR_STATUS, mask);
+
+ /* enable the interrupts. */
+
+ mask |= li_readl(lith, LI_INTR_MASK);
+ li_writel(lith, LI_INTR_MASK, mask);
+}
+
+static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
+{
+ unsigned int keepmask;
+
+ DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
+
+ /* disable the interrupts */
+
+ keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
+ li_writel(lith, LI_INTR_MASK, keepmask);
+
+ /* clear any pending interrupts. */
+
+ li_writel(lith, LI_INTR_STATUS, mask);
+}
+
+/* Get the interrupt status and clear all pending interrupts. */
+
+static unsigned int li_get_clear_intr_status(lithium_t *lith)
+{
+ unsigned int status;
+
+ status = li_readl(lith, LI_INTR_STATUS);
+ li_writel(lith, LI_INTR_STATUS, ~0);
+ return status & li_readl(lith, LI_INTR_MASK);
+}
+
+static int li_init(lithium_t *lith)
+{
+ /* 1. System power supplies stabilize. */
+
+ /* 2. Assert the ~RESET signal. */
+
+ li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
+ udelay(1);
+
+ /* 3. Deassert the ~RESET signal and enter a wait period to allow
+ the AD1843 internal clocks and the external crystal oscillator
+ to stabilize. */
+
+ li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
+ udelay(1);
+
+ return 0;
+}
+
+/*****************************************************************************/
+/* AD1843 access */
+
+/*
+ * AD1843 bitfield definitions. All are named as in the AD1843 data
+ * sheet, with ad1843_ prepended and individual bit numbers removed.
+ *
+ * E.g., bits LSS0 through LSS2 become ad1843_LSS.
+ *
+ * Only the bitfields we need are defined.
+ */
+
+typedef struct ad1843_bitfield {
+ char reg;
+ char lo_bit;
+ char nbits;
+} ad1843_bitfield_t;
+
+static const ad1843_bitfield_t
+ ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */
+ ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */
+ ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */
+ ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
+ ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */
+ ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */
+ ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
+ ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */
+ ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
+ ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
+ ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
+ ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
+ ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
+ ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
+ ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
+ ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
+ ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
+ ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */
+ ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
+ ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */
+ ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */
+ ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */
+ ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
+ ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */
+ ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
+ ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */
+ ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */
+ ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */
+ ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */
+ ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */
+ ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */
+ ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
+ ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */
+ ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */
+ ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */
+ ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */
+ ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */
+ ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */
+ ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
+ ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */
+ ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */
+ ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
+ ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */
+ ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */
+ ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */
+ ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */
+ ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */
+ ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */
+ ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */
+ ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */
+ ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */
+
+/*
+ * The various registers of the AD1843 use three different formats for
+ * specifying gain. The ad1843_gain structure parameterizes the
+ * formats.
+ */
+
+typedef struct ad1843_gain {
+
+ int negative; /* nonzero if gain is negative. */
+ const ad1843_bitfield_t *lfield;
+ const ad1843_bitfield_t *rfield;
+
+} ad1843_gain_t;
+
+static const ad1843_gain_t ad1843_gain_RECLEV
+ = { 0, &ad1843_LIG, &ad1843_RIG };
+static const ad1843_gain_t ad1843_gain_LINE
+ = { 1, &ad1843_LX1M, &ad1843_RX1M };
+static const ad1843_gain_t ad1843_gain_CD
+ = { 1, &ad1843_LX2M, &ad1843_RX2M };
+static const ad1843_gain_t ad1843_gain_MIC
+ = { 1, &ad1843_LMCM, &ad1843_RMCM };
+static const ad1843_gain_t ad1843_gain_PCM
+ = { 1, &ad1843_LDA1G, &ad1843_RDA1G };
+
+/* read the current value of an AD1843 bitfield. */
+
+static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
+{
+ int w = li_read_ad1843_reg(lith, field->reg);
+ int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
+
+ DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
+ lith, field->reg, field->lo_bit, field->nbits, val);
+
+ return val;
+}
+
+/*
+ * write a new value to an AD1843 bitfield and return the old value.
+ */
+
+static int ad1843_write_bits(lithium_t *lith,
+ const ad1843_bitfield_t *field,
+ int newval)
+{
+ int w = li_read_ad1843_reg(lith, field->reg);
+ int mask = ((1 << field->nbits) - 1) << field->lo_bit;
+ int oldval = (w & mask) >> field->lo_bit;
+ int newbits = (newval << field->lo_bit) & mask;
+ w = (w & ~mask) | newbits;
+ (void) li_write_ad1843_reg(lith, field->reg, w);
+
+ DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
+ "returns 0x%x\n",
+ lith, field->reg, field->lo_bit, field->nbits, newval,
+ oldval);
+
+ return oldval;
+}
+
+/*
+ * ad1843_read_multi reads multiple bitfields from the same AD1843
+ * register. It uses a single read cycle to do it. (Reading the
+ * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
+ * microseconds.)
+ *
+ * Called ike this.
+ *
+ * ad1843_read_multi(lith, nfields,
+ * &ad1843_FIELD1, &val1,
+ * &ad1843_FIELD2, &val2, ...);
+ */
+
+static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
+{
+ va_list ap;
+ const ad1843_bitfield_t *fp;
+ int w = 0, mask, *value, reg = -1;
+
+ va_start(ap, argcount);
+ while (--argcount >= 0) {
+ fp = va_arg(ap, const ad1843_bitfield_t *);
+ value = va_arg(ap, int *);
+ if (reg == -1) {
+ reg = fp->reg;
+ w = li_read_ad1843_reg(lith, reg);
+ }
+ ASSERT(reg == fp->reg);
+ mask = (1 << fp->nbits) - 1;
+ *value = w >> fp->lo_bit & mask;
+ }
+ va_end(ap);
+}
+
+/*
+ * ad1843_write_multi stores multiple bitfields into the same AD1843
+ * register. It uses one read and one write cycle to do it.
+ *
+ * Called like this.
+ *
+ * ad1843_write_multi(lith, nfields,
+ * &ad1843_FIELD1, val1,
+ * &ad1843_FIELF2, val2, ...);
+ */
+
+static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
+{
+ va_list ap;
+ int reg;
+ const ad1843_bitfield_t *fp;
+ int value;
+ int w, m, mask, bits;
+
+ mask = 0;
+ bits = 0;
+ reg = -1;
+
+ va_start(ap, argcount);
+ while (--argcount >= 0) {
+ fp = va_arg(ap, const ad1843_bitfield_t *);
+ value = va_arg(ap, int);
+ if (reg == -1)
+ reg = fp->reg;
+ ASSERT(fp->reg == reg);
+ m = ((1 << fp->nbits) - 1) << fp->lo_bit;
+ mask |= m;
+ bits |= (value << fp->lo_bit) & m;
+ }
+ va_end(ap);
+ ASSERT(!(bits & ~mask));
+ if (~mask & 0xFFFF)
+ w = li_read_ad1843_reg(lith, reg);
+ else
+ w = 0;
+ w = (w & ~mask) | bits;
+ (void) li_write_ad1843_reg(lith, reg, w);
+}
+
+/*
+ * ad1843_get_gain reads the specified register and extracts the gain value
+ * using the supplied gain type. It returns the gain in OSS format.
+ */
+
+static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
+{
+ int lg, rg;
+ unsigned short mask = (1 << gp->lfield->nbits) - 1;
+
+ ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
+ if (gp->negative) {
+ lg = mask - lg;
+ rg = mask - rg;
+ }
+ lg = (lg * 100 + (mask >> 1)) / mask;
+ rg = (rg * 100 + (mask >> 1)) / mask;
+ return lg << 0 | rg << 8;
+}
+
+/*
+ * Set an audio channel's gain. Converts from OSS format to AD1843's
+ * format.
+ *
+ * Returns the new gain, which may be lower than the old gain.
+ */
+
+static int ad1843_set_gain(lithium_t *lith,
+ const ad1843_gain_t *gp,
+ int newval)
+{
+ unsigned short mask = (1 << gp->lfield->nbits) - 1;
+
+ int lg = newval >> 0 & 0xFF;
+ int rg = newval >> 8;
+ if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
+ return -EINVAL;
+ lg = (lg * mask + (mask >> 1)) / 100;
+ rg = (rg * mask + (mask >> 1)) / 100;
+ if (gp->negative) {
+ lg = mask - lg;
+ rg = mask - rg;
+ }
+ ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
+ return ad1843_get_gain(lith, gp);
+}
+
+/* Returns the current recording source, in OSS format. */
+
+static int ad1843_get_recsrc(lithium_t *lith)
+{
+ int ls = ad1843_read_bits(lith, &ad1843_LSS);
+
+ switch (ls) {
+ case 1:
+ return SOUND_MASK_MIC;
+ case 2:
+ return SOUND_MASK_LINE;
+ case 3:
+ return SOUND_MASK_CD;
+ case 6:
+ return SOUND_MASK_PCM;
+ default:
+ ASSERT(0);
+ return -1;
+ }
+}
+
+/*
+ * Enable/disable digital resample mode in the AD1843.
+ *
+ * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
+ * while switching modes. So we save DA1's state (DA2's state is not
+ * interesting), power them down, switch into/out of resample mode,
+ * power them up, and restore state.
+ *
+ * This will cause audible glitches if D/A or A/D is going on, so the
+ * driver disallows that (in mixer_write_ioctl()).
+ *
+ * The open question is, is this worth doing? I'm leaving it in,
+ * because it's written, but...
+ */
+
+static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
+{
+ /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
+ int save_da1 = li_read_ad1843_reg(lith, 9);
+
+ /* Power down A/D and D/A. */
+ ad1843_write_multi(lith, 4,
+ &ad1843_DA1EN, 0,
+ &ad1843_DA2EN, 0,
+ &ad1843_ADLEN, 0,
+ &ad1843_ADREN, 0);
+
+ /* Switch mode */
+ ASSERT(onoff == 0 || onoff == 1);
+ ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
+
+ /* Power up A/D and D/A. */
+ ad1843_write_multi(lith, 3,
+ &ad1843_DA1EN, 1,
+ &ad1843_ADLEN, 1,
+ &ad1843_ADREN, 1);
+
+ /* Restore DA1 mute and gain. */
+ li_write_ad1843_reg(lith, 9, save_da1);
+}
+
+/*
+ * Set recording source. Arg newsrc specifies an OSS channel mask.
+ *
+ * The complication is that when we switch into/out of loopback mode
+ * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
+ * digital resampling mode.
+ *
+ * Returns newsrc on success, -errno on failure.
+ */
+
+static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
+{
+ int bits;
+ int oldbits;
+
+ switch (newsrc) {
+ case SOUND_MASK_PCM:
+ bits = 6;
+ break;
+
+ case SOUND_MASK_MIC:
+ bits = 1;
+ break;
+
+ case SOUND_MASK_LINE:
+ bits = 2;
+ break;
+
+ case SOUND_MASK_CD:
+ bits = 3;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+ oldbits = ad1843_read_bits(lith, &ad1843_LSS);
+ if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
+ DBGP("enabling digital resample mode\n");
+ ad1843_set_resample_mode(lith, 1);
+ ad1843_write_multi(lith, 2,
+ &ad1843_DAADL, 2,
+ &ad1843_DAADR, 2);
+ } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
+ DBGP("disabling digital resample mode\n");
+ ad1843_set_resample_mode(lith, 0);
+ ad1843_write_multi(lith, 2,
+ &ad1843_DAADL, 0,
+ &ad1843_DAADR, 0);
+ }
+ ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
+ return newsrc;
+}
+
+/*
+ * Return current output sources, in OSS format.
+ */
+
+static int ad1843_get_outsrc(lithium_t *lith)
+{
+ int pcm, line, mic, cd;
+
+ pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
+ line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE;
+ cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD;
+ mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC;
+
+ return pcm | line | cd | mic;
+}
+
+/*
+ * Set output sources. Arg is a mask of active sources in OSS format.
+ *
+ * Returns source mask on success, -errno on failure.
+ */
+
+static int ad1843_set_outsrc(lithium_t *lith, int mask)
+{
+ int pcm, line, mic, cd;
+
+ if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
+ SOUND_MASK_CD | SOUND_MASK_MIC))
+ return -EINVAL;
+ pcm = (mask & SOUND_MASK_PCM) ? 0 : 1;
+ line = (mask & SOUND_MASK_LINE) ? 0 : 1;
+ mic = (mask & SOUND_MASK_MIC) ? 0 : 1;
+ cd = (mask & SOUND_MASK_CD) ? 0 : 1;
+
+ ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
+ ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
+ ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd);
+ ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic);
+
+ return mask;
+}
+
+/* Setup ad1843 for D/A conversion. */
+
+static void ad1843_setup_dac(lithium_t *lith,
+ int framerate,
+ int fmt,
+ int channels)
+{
+ int ad_fmt = 0, ad_mode = 0;
+
+ DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
+ lith, framerate, fmt, channels);
+
+ switch (fmt) {
+ case AFMT_S8: ad_fmt = 1; break;
+ case AFMT_U8: ad_fmt = 1; break;
+ case AFMT_S16_LE: ad_fmt = 1; break;
+ case AFMT_MU_LAW: ad_fmt = 2; break;
+ case AFMT_A_LAW: ad_fmt = 3; break;
+ default: ASSERT(0);
+ }
+
+ switch (channels) {
+ case 2: ad_mode = 0; break;
+ case 1: ad_mode = 1; break;
+ default: ASSERT(0);
+ }
+
+ DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
+ ASSERT(framerate >= 4000 && framerate <= 49000);
+ ad1843_write_bits(lith, &ad1843_C1C, framerate);
+ ad1843_write_multi(lith, 2,
+ &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
+}
+
+static void ad1843_shutdown_dac(lithium_t *lith)
+{
+ ad1843_write_bits(lith, &ad1843_DA1F, 1);
+}
+
+static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
+{
+ int da_fmt = 0;
+
+ DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
+ lith, framerate, fmt, channels);
+
+ switch (fmt) {
+ case AFMT_S8: da_fmt = 1; break;
+ case AFMT_U8: da_fmt = 1; break;
+ case AFMT_S16_LE: da_fmt = 1; break;
+ case AFMT_MU_LAW: da_fmt = 2; break;
+ case AFMT_A_LAW: da_fmt = 3; break;
+ default: ASSERT(0);
+ }
+
+ DBGPV("da_fmt = %d\n", da_fmt);
+ ASSERT(framerate >= 4000 && framerate <= 49000);
+ ad1843_write_bits(lith, &ad1843_C2C, framerate);
+ ad1843_write_multi(lith, 2,
+ &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
+}
+
+static void ad1843_shutdown_adc(lithium_t *lith)
+{
+ /* nothing to do */
+}
+
+/*
+ * Fully initialize the ad1843. As described in the AD1843 data
+ * sheet, section "START-UP SEQUENCE". The numbered comments are
+ * subsection headings from the data sheet. See the data sheet, pages
+ * 52-54, for more info.
+ *
+ * return 0 on success, -errno on failure. */
+
+static int __init ad1843_init(lithium_t *lith)
+{
+ unsigned long later;
+ int err;
+
+ err = li_init(lith);
+ if (err)
+ return err;
+
+ if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
+ printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
+ return -EIO;
+ }
+
+ ad1843_write_bits(lith, &ad1843_SCF, 1);
+
+ /* 4. Put the conversion resources into standby. */
+
+ ad1843_write_bits(lith, &ad1843_PDNI, 0);
+ later = jiffies + HZ / 2; /* roughly half a second */
+ DBGDO(shut_up++);
+ while (ad1843_read_bits(lith, &ad1843_PDNO)) {
+ if (time_after(jiffies, later)) {
+ printk(KERN_ERR
+ "vwsnd audio: AD1843 won't power up\n");
+ return -EIO;
+ }
+ schedule();
+ }
+ DBGDO(shut_up--);
+
+ /* 5. Power up the clock generators and enable clock output pins. */
+
+ ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
+
+ /* 6. Configure conversion resources while they are in standby. */
+
+ /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */
+
+ ad1843_write_multi(lith, 3,
+ &ad1843_DA1C, 1,
+ &ad1843_ADLC, 2,
+ &ad1843_ADRC, 2);
+
+ /* 7. Enable conversion resources. */
+
+ ad1843_write_bits(lith, &ad1843_ADTLK, 1);
+ ad1843_write_multi(lith, 5,
+ &ad1843_ANAEN, 1,
+ &ad1843_AAMEN, 1,
+ &ad1843_DA1EN, 1,
+ &ad1843_ADLEN, 1,
+ &ad1843_ADREN, 1);
+
+ /* 8. Configure conversion resources while they are enabled. */
+
+ ad1843_write_bits(lith, &ad1843_DA1C, 1);
+
+ /* Unmute all channels. */
+
+ ad1843_set_outsrc(lith,
+ (SOUND_MASK_PCM | SOUND_MASK_LINE |
+ SOUND_MASK_MIC | SOUND_MASK_CD));
+ ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
+
+ /* Set default recording source to Line In and set
+ * mic gain to +20 dB.
+ */
+
+ ad1843_set_recsrc(lith, SOUND_MASK_LINE);
+ ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
+
+ /* Set Speaker Out level to +/- 4V and unmute it. */
+
+ ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
+
+ return 0;
+}
+
+/*****************************************************************************/
+/* PCM I/O */
+
+#define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
+#define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
+
+typedef enum vwsnd_port_swstate { /* software state */
+ SW_OFF,
+ SW_INITIAL,
+ SW_RUN,
+ SW_DRAIN,
+} vwsnd_port_swstate_t;
+
+typedef enum vwsnd_port_hwstate { /* hardware state */
+ HW_STOPPED,
+ HW_RUNNING,
+} vwsnd_port_hwstate_t;
+
+/*
+ * These flags are read by ISR, but only written at baseline.
+ */
+
+typedef enum vwsnd_port_flags {
+ DISABLED = 1 << 0,
+ ERFLOWN = 1 << 1, /* overflown or underflown */
+ HW_BUSY = 1 << 2,
+} vwsnd_port_flags_t;
+
+/*
+ * vwsnd_port is the per-port data structure. Each device has two
+ * ports, one for input and one for output.
+ *
+ * Locking:
+ *
+ * port->lock protects: hwstate, flags, swb_[iu]_avail.
+ *
+ * devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx.
+ *
+ * everything else is only written by open/release or
+ * pcm_{setup,shutdown}(), which are serialized by a
+ * combination of devc->open_mutex and devc->io_mutex.
+ */
+
+typedef struct vwsnd_port {
+
+ spinlock_t lock;
+ wait_queue_head_t queue;
+ vwsnd_port_swstate_t swstate;
+ vwsnd_port_hwstate_t hwstate;
+ vwsnd_port_flags_t flags;
+
+ int sw_channels;
+ int sw_samplefmt;
+ int sw_framerate;
+ int sample_size;
+ int frame_size;
+ unsigned int zero_word; /* zero for the sample format */
+
+ int sw_fragshift;
+ int sw_fragcount;
+ int sw_subdivshift;
+
+ unsigned int hw_fragshift;
+ unsigned int hw_fragsize;
+ unsigned int hw_fragcount;
+
+ int hwbuf_size;
+ unsigned long hwbuf_paddr;
+ unsigned long hwbuf_vaddr;
+ void * hwbuf; /* hwbuf == hwbuf_vaddr */
+ int hwbuf_max; /* max bytes to preload */
+
+ void * swbuf;
+ unsigned int swbuf_size; /* size in bytes */
+ unsigned int swb_u_idx; /* index of next user byte */
+ unsigned int swb_i_idx; /* index of next intr byte */
+ unsigned int swb_u_avail; /* # bytes avail to user */
+ unsigned int swb_i_avail; /* # bytes avail to intr */
+
+ dma_chan_t chan;
+
+ /* Accounting */
+
+ int byte_count;
+ int frag_count;
+ int MSC_offset;
+
+} vwsnd_port_t;
+
+/* vwsnd_dev is the per-device data structure. */
+
+typedef struct vwsnd_dev {
+ struct vwsnd_dev *next_dev;
+ int audio_minor; /* minor number of audio device */
+ int mixer_minor; /* minor number of mixer device */
+
+ struct mutex open_mutex;
+ struct mutex io_mutex;
+ struct mutex mix_mutex;
+ fmode_t open_mode;
+ wait_queue_head_t open_wait;
+
+ lithium_t lith;
+
+ vwsnd_port_t rport;
+ vwsnd_port_t wport;
+} vwsnd_dev_t;
+
+static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */
+
+static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
+
+# define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
+# define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
+# define IN_USE (atomic_read(&vwsnd_use_count) != 0)
+
+/*
+ * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may
+ * be up to 8 Kb. This driver always uses 8 Kb.
+ *
+ * Memory bug workaround -- I'm not sure what's going on here, but
+ * somehow pcm_copy_out() was triggering segv's going on to the next
+ * page of the hw buffer. So, I make the hw buffer one size bigger
+ * than we actually use. That way, the following page is allocated
+ * and mapped, and no error. I suspect that something is broken
+ * in Cobalt, but haven't really investigated. HBO is the actual
+ * size of the buffer, and HWBUF_ORDER is what we allocate.
+ */
+
+#define HWBUF_SHIFT 13
+#define HWBUF_SIZE (1 << HWBUF_SHIFT)
+# define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
+# define HWBUF_ORDER (HBO + 1) /* next size bigger */
+#define MIN_SPEED 4000
+#define MAX_SPEED 49000
+
+#define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1)
+#define MAX_FRAGSHIFT (PAGE_SHIFT)
+#define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT)
+#define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT)
+#define MIN_FRAGCOUNT(fragsize) 3
+#define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize))
+#define DEFAULT_FRAGSHIFT 12
+#define DEFAULT_FRAGCOUNT 16
+#define DEFAULT_SUBDIVSHIFT 0
+
+/*
+ * The software buffer (swbuf) is a ring buffer shared between user
+ * level and interrupt level. Each level owns some of the bytes in
+ * the buffer, and may give bytes away by calling swb_inc_{u,i}().
+ * User level calls _u for user, and interrupt level calls _i for
+ * interrupt.
+ *
+ * port->swb_{u,i}_avail is the number of bytes available to that level.
+ *
+ * port->swb_{u,i}_idx is the index of the first available byte in the
+ * buffer.
+ *
+ * Each level calls swb_inc_{u,i}() to atomically increment its index,
+ * recalculate the number of bytes available for both sides, and
+ * return the number of bytes available. Since each side can only
+ * give away bytes, the other side can only increase the number of
+ * bytes available to this side. Each side updates its own index
+ * variable, swb_{u,i}_idx, so no lock is needed to read it.
+ *
+ * To query the number of bytes available, call swb_inc_{u,i} with an
+ * increment of zero.
+ */
+
+static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
+{
+ if (inc) {
+ port->swb_u_idx += inc;
+ port->swb_u_idx %= port->swbuf_size;
+ port->swb_u_avail -= inc;
+ port->swb_i_avail += inc;
+ }
+ return port->swb_u_avail;
+}
+
+static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
+{
+ unsigned long flags;
+ unsigned int ret;
+
+ spin_lock_irqsave(&port->lock, flags);
+ {
+ ret = __swb_inc_u(port, inc);
+ }
+ spin_unlock_irqrestore(&port->lock, flags);
+ return ret;
+}
+
+static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
+{
+ if (inc) {
+ port->swb_i_idx += inc;
+ port->swb_i_idx %= port->swbuf_size;
+ port->swb_i_avail -= inc;
+ port->swb_u_avail += inc;
+ }
+ return port->swb_i_avail;
+}
+
+static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
+{
+ unsigned long flags;
+ unsigned int ret;
+
+ spin_lock_irqsave(&port->lock, flags);
+ {
+ ret = __swb_inc_i(port, inc);
+ }
+ spin_unlock_irqrestore(&port->lock, flags);
+ return ret;
+}
+
+/*
+ * pcm_setup - this routine initializes all port state after
+ * mode-setting ioctls have been done, but before the first I/O is
+ * done.
+ *
+ * Locking: called with devc->io_mutex held.
+ *
+ * Returns 0 on success, -errno on failure.
+ */
+
+static int pcm_setup(vwsnd_dev_t *devc,
+ vwsnd_port_t *rport,
+ vwsnd_port_t *wport)
+{
+ vwsnd_port_t *aport = rport ? rport : wport;
+ int sample_size;
+ unsigned int zero_word;
+
+ DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
+
+ ASSERT(aport != NULL);
+ if (aport->swbuf != NULL)
+ return 0;
+ switch (aport->sw_samplefmt) {
+ case AFMT_MU_LAW:
+ sample_size = 1;
+ zero_word = 0xFFFFFFFF ^ 0x80808080;
+ break;
+
+ case AFMT_A_LAW:
+ sample_size = 1;
+ zero_word = 0xD5D5D5D5 ^ 0x80808080;
+ break;
+
+ case AFMT_U8:
+ sample_size = 1;
+ zero_word = 0x80808080;
+ break;
+
+ case AFMT_S8:
+ sample_size = 1;
+ zero_word = 0x00000000;
+ break;
+
+ case AFMT_S16_LE:
+ sample_size = 2;
+ zero_word = 0x00000000;
+ break;
+
+ default:
+ sample_size = 0; /* prevent compiler warning */
+ zero_word = 0;
+ ASSERT(0);
+ }
+ aport->sample_size = sample_size;
+ aport->zero_word = zero_word;
+ aport->frame_size = aport->sw_channels * aport->sample_size;
+ aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
+ aport->hw_fragsize = 1 << aport->hw_fragshift;
+ aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
+ ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
+ ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
+ ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
+ ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
+ if (rport) {
+ int hwfrags, swfrags;
+ rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
+ hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
+ swfrags = aport->hw_fragcount - hwfrags;
+ if (swfrags < 2)
+ swfrags = 2;
+ rport->swbuf_size = swfrags * aport->hw_fragsize;
+ DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
+ DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
+ rport->hwbuf_max, rport->swbuf_size);
+ }
+ if (wport) {
+ int hwfrags, swfrags;
+ int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
+ wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
+ if (wport->hwbuf_max > total_bytes)
+ wport->hwbuf_max = total_bytes;
+ hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
+ DBGPV("hwfrags = %d\n", hwfrags);
+ swfrags = aport->hw_fragcount - hwfrags;
+ if (swfrags < 2)
+ swfrags = 2;
+ wport->swbuf_size = swfrags * aport->hw_fragsize;
+ DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
+ DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
+ wport->hwbuf_max, wport->swbuf_size);
+ }
+
+ aport->swb_u_idx = 0;
+ aport->swb_i_idx = 0;
+ aport->byte_count = 0;
+
+ /*
+ * Is this a Cobalt bug? We need to make this buffer extend
+ * one page further than we actually use -- somehow memcpy
+ * causes an exceptoin otherwise. I suspect there's a bug in
+ * Cobalt (or somewhere) where it's generating a fault on a
+ * speculative load or something. Obviously, I haven't taken
+ * the time to track it down.
+ */
+
+ aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
+ if (!aport->swbuf)
+ return -ENOMEM;
+ if (rport && wport) {
+ ASSERT(aport == rport);
+ ASSERT(wport->swbuf == NULL);
+ /* One extra page - see comment above. */
+ wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
+ if (!wport->swbuf) {
+ vfree(aport->swbuf);
+ aport->swbuf = NULL;
+ return -ENOMEM;
+ }
+ wport->sample_size = rport->sample_size;
+ wport->zero_word = rport->zero_word;
+ wport->frame_size = rport->frame_size;
+ wport->hw_fragshift = rport->hw_fragshift;
+ wport->hw_fragsize = rport->hw_fragsize;
+ wport->hw_fragcount = rport->hw_fragcount;
+ wport->swbuf_size = rport->swbuf_size;
+ wport->hwbuf_max = rport->hwbuf_max;
+ wport->swb_u_idx = rport->swb_u_idx;
+ wport->swb_i_idx = rport->swb_i_idx;
+ wport->byte_count = rport->byte_count;
+ }
+ if (rport) {
+ rport->swb_u_avail = 0;
+ rport->swb_i_avail = rport->swbuf_size;
+ rport->swstate = SW_RUN;
+ li_setup_dma(&rport->chan,
+ &li_comm1,
+ &devc->lith,
+ rport->hwbuf_paddr,
+ HWBUF_SHIFT,
+ rport->hw_fragshift,
+ rport->sw_channels,
+ rport->sample_size);
+ ad1843_setup_adc(&devc->lith,
+ rport->sw_framerate,
+ rport->sw_samplefmt,
+ rport->sw_channels);
+ li_enable_interrupts(&devc->lith, READ_INTR_MASK);
+ if (!(rport->flags & DISABLED)) {
+ ustmsc_t ustmsc;
+ rport->hwstate = HW_RUNNING;
+ li_activate_dma(&rport->chan);
+ li_read_USTMSC(&rport->chan, &ustmsc);
+ rport->MSC_offset = ustmsc.msc;
+ }
+ }
+ if (wport) {
+ if (wport->hwbuf_max > wport->swbuf_size)
+ wport->hwbuf_max = wport->swbuf_size;
+ wport->flags &= ~ERFLOWN;
+ wport->swb_u_avail = wport->swbuf_size;
+ wport->swb_i_avail = 0;
+ wport->swstate = SW_RUN;
+ li_setup_dma(&wport->chan,
+ &li_comm2,
+ &devc->lith,
+ wport->hwbuf_paddr,
+ HWBUF_SHIFT,
+ wport->hw_fragshift,
+ wport->sw_channels,
+ wport->sample_size);
+ ad1843_setup_dac(&devc->lith,
+ wport->sw_framerate,
+ wport->sw_samplefmt,
+ wport->sw_channels);
+ li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
+ }
+ DBGRV();
+ return 0;
+}
+
+/*
+ * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
+ * Only called from pcm_shutdown.
+ */
+
+static void pcm_shutdown_port(vwsnd_dev_t *devc,
+ vwsnd_port_t *aport,
+ unsigned int mask)
+{
+ unsigned long flags;
+ vwsnd_port_hwstate_t hwstate;
+ DECLARE_WAITQUEUE(wait, current);
+
+ aport->swstate = SW_INITIAL;
+ add_wait_queue(&aport->queue, &wait);
+ while (1) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ spin_lock_irqsave(&aport->lock, flags);
+ {
+ hwstate = aport->hwstate;
+ }
+ spin_unlock_irqrestore(&aport->lock, flags);
+ if (hwstate == HW_STOPPED)
+ break;
+ schedule();
+ }
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&aport->queue, &wait);
+ li_disable_interrupts(&devc->lith, mask);
+ if (aport == &devc->rport)
+ ad1843_shutdown_adc(&devc->lith);
+ else /* aport == &devc->wport) */
+ ad1843_shutdown_dac(&devc->lith);
+ li_shutdown_dma(&aport->chan);
+ vfree(aport->swbuf);
+ aport->swbuf = NULL;
+ aport->byte_count = 0;
+}
+
+/*
+ * pcm_shutdown undoes what pcm_setup did.
+ * Also sets the ports' swstate to newstate.
+ */
+
+static void pcm_shutdown(vwsnd_dev_t *devc,
+ vwsnd_port_t *rport,
+ vwsnd_port_t *wport)
+{
+ DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
+
+ if (rport && rport->swbuf) {
+ DBGPV("shutting down rport\n");
+ pcm_shutdown_port(devc, rport, READ_INTR_MASK);
+ }
+ if (wport && wport->swbuf) {
+ DBGPV("shutting down wport\n");
+ pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
+ }
+ DBGRV();
+}
+
+static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
+{
+ char *src = rport->hwbuf + hwidx;
+ char *dst = rport->swbuf + swidx;
+ int fmt = rport->sw_samplefmt;
+
+ DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
+ ASSERT(rport->hwbuf != NULL);
+ ASSERT(rport->swbuf != NULL);
+ ASSERT(nb > 0 && (nb % 32) == 0);
+ ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
+ ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
+ ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
+
+ if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
+
+ /* See Sample Format Notes above. */
+
+ char *end = src + nb;
+ while (src < end)
+ *dst++ = *src++ ^ 0x80;
+ } else
+ memcpy(dst, src, nb);
+}
+
+static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
+{
+ char *src = wport->swbuf + swidx;
+ char *dst = wport->hwbuf + hwidx;
+ int fmt = wport->sw_samplefmt;
+
+ ASSERT(nb > 0 && (nb % 32) == 0);
+ ASSERT(wport->hwbuf != NULL);
+ ASSERT(wport->swbuf != NULL);
+ ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
+ ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
+ ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
+ if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
+
+ /* See Sample Format Notes above. */
+
+ char *end = src + nb;
+ while (src < end)
+ *dst++ = *src++ ^ 0x80;
+ } else
+ memcpy(dst, src, nb);
+}
+
+/*
+ * pcm_output() is called both from baselevel and from interrupt level.
+ * This is where audio frames are copied into the hardware-accessible
+ * ring buffer.
+ *
+ * Locking note: The part of this routine that figures out what to do
+ * holds wport->lock. The longer part releases wport->lock, but sets
+ * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and
+ * checks for more work to do.
+ *
+ * If another thread calls pcm_output() while HW_BUSY is set, it
+ * returns immediately, knowing that the thread that set HW_BUSY will
+ * look for more work to do before returning.
+ *
+ * This has the advantage that port->lock is held for several short
+ * periods instead of one long period. Also, when pcm_output is
+ * called from base level, it reenables interrupts.
+ */
+
+static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
+{
+ vwsnd_port_t *wport = &devc->wport;
+ const int hwmax = wport->hwbuf_max;
+ const int hwsize = wport->hwbuf_size;
+ const int swsize = wport->swbuf_size;
+ const int fragsize = wport->hw_fragsize;
+ unsigned long iflags;
+
+ DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
+ spin_lock_irqsave(&wport->lock, iflags);
+ if (erflown)
+ wport->flags |= ERFLOWN;
+ (void) __swb_inc_u(wport, nb);
+ if (wport->flags & HW_BUSY) {
+ spin_unlock_irqrestore(&wport->lock, iflags);
+ DBGPV("returning: HW BUSY\n");
+ return;
+ }
+ if (wport->flags & DISABLED) {
+ spin_unlock_irqrestore(&wport->lock, iflags);
+ DBGPV("returning: DISABLED\n");
+ return;
+ }
+ wport->flags |= HW_BUSY;
+ while (1) {
+ int swptr, hwptr, hw_avail, sw_avail, swidx;
+ vwsnd_port_hwstate_t hwstate = wport->hwstate;
+ vwsnd_port_swstate_t swstate = wport->swstate;
+ int hw_unavail;
+ ustmsc_t ustmsc;
+
+ hwptr = li_read_hwptr(&wport->chan);
+ swptr = li_read_swptr(&wport->chan);
+ hw_unavail = (swptr - hwptr + hwsize) % hwsize;
+ hw_avail = (hwmax - hw_unavail) & -fragsize;
+ sw_avail = wport->swb_i_avail & -fragsize;
+ if (sw_avail && swstate == SW_RUN) {
+ if (wport->flags & ERFLOWN) {
+ wport->flags &= ~ERFLOWN;
+ }
+ } else if (swstate == SW_INITIAL ||
+ swstate == SW_OFF ||
+ (swstate == SW_DRAIN &&
+ !sw_avail &&
+ (wport->flags & ERFLOWN))) {
+ DBGP("stopping. hwstate = %d\n", hwstate);
+ if (hwstate != HW_STOPPED) {
+ li_deactivate_dma(&wport->chan);
+ wport->hwstate = HW_STOPPED;
+ }
+ wake_up(&wport->queue);
+ break;
+ }
+ if (!sw_avail || !hw_avail)
+ break;
+ spin_unlock_irqrestore(&wport->lock, iflags);
+
+ /*
+ * We gave up the port lock, but we have the HW_BUSY flag.
+ * Proceed without accessing any nonlocal state.
+ * Do not exit the loop -- must check for more work.
+ */
+
+ swidx = wport->swb_i_idx;
+ nb = hw_avail;
+ if (nb > sw_avail)
+ nb = sw_avail;
+ if (nb > hwsize - swptr)
+ nb = hwsize - swptr; /* don't overflow hwbuf */
+ if (nb > swsize - swidx)
+ nb = swsize - swidx; /* don't overflow swbuf */
+ ASSERT(nb > 0);
+ if (nb % fragsize) {
+ DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
+ DBGP("hw_avail = %d\n", hw_avail);
+ DBGP("sw_avail = %d\n", sw_avail);
+ DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
+ DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
+ }
+ ASSERT(!(nb % fragsize));
+ DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
+ swidx, swidx + nb, swptr, swptr + nb);
+ pcm_copy_out(wport, swidx, swptr, nb);
+ li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
+ spin_lock_irqsave(&wport->lock, iflags);
+ if (hwstate == HW_STOPPED) {
+ DBGPV("starting\n");
+ li_activate_dma(&wport->chan);
+ wport->hwstate = HW_RUNNING;
+ li_read_USTMSC(&wport->chan, &ustmsc);
+ ASSERT(wport->byte_count % wport->frame_size == 0);
+ wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
+ }
+ __swb_inc_i(wport, nb);
+ wport->byte_count += nb;
+ wport->frag_count += nb / fragsize;
+ ASSERT(nb % fragsize == 0);
+ wake_up(&wport->queue);
+ }
+ wport->flags &= ~HW_BUSY;
+ spin_unlock_irqrestore(&wport->lock, iflags);
+ DBGRV();
+}
+
+/*
+ * pcm_input() is called both from baselevel and from interrupt level.
+ * This is where audio frames are copied out of the hardware-accessible
+ * ring buffer.
+ *
+ * Locking note: The part of this routine that figures out what to do
+ * holds rport->lock. The longer part releases rport->lock, but sets
+ * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and
+ * checks for more work to do.
+ *
+ * If another thread calls pcm_input() while HW_BUSY is set, it
+ * returns immediately, knowing that the thread that set HW_BUSY will
+ * look for more work to do before returning.
+ *
+ * This has the advantage that port->lock is held for several short
+ * periods instead of one long period. Also, when pcm_input is
+ * called from base level, it reenables interrupts.
+ */
+
+static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
+{
+ vwsnd_port_t *rport = &devc->rport;
+ const int hwmax = rport->hwbuf_max;
+ const int hwsize = rport->hwbuf_size;
+ const int swsize = rport->swbuf_size;
+ const int fragsize = rport->hw_fragsize;
+ unsigned long iflags;
+
+ DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
+
+ spin_lock_irqsave(&rport->lock, iflags);
+ if (erflown)
+ rport->flags |= ERFLOWN;
+ (void) __swb_inc_u(rport, nb);
+ if (rport->flags & HW_BUSY || !rport->swbuf) {
+ spin_unlock_irqrestore(&rport->lock, iflags);
+ DBGPV("returning: HW BUSY or !swbuf\n");
+ return;
+ }
+ if (rport->flags & DISABLED) {
+ spin_unlock_irqrestore(&rport->lock, iflags);
+ DBGPV("returning: DISABLED\n");
+ return;
+ }
+ rport->flags |= HW_BUSY;
+ while (1) {
+ int swptr, hwptr, hw_avail, sw_avail, swidx;
+ vwsnd_port_hwstate_t hwstate = rport->hwstate;
+ vwsnd_port_swstate_t swstate = rport->swstate;
+
+ hwptr = li_read_hwptr(&rport->chan);
+ swptr = li_read_swptr(&rport->chan);
+ hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
+ if (hw_avail > hwmax)
+ hw_avail = hwmax;
+ sw_avail = rport->swb_i_avail & -fragsize;
+ if (swstate != SW_RUN) {
+ DBGP("stopping. hwstate = %d\n", hwstate);
+ if (hwstate != HW_STOPPED) {
+ li_deactivate_dma(&rport->chan);
+ rport->hwstate = HW_STOPPED;
+ }
+ wake_up(&rport->queue);
+ break;
+ }
+ if (!sw_avail || !hw_avail)
+ break;
+ spin_unlock_irqrestore(&rport->lock, iflags);
+
+ /*
+ * We gave up the port lock, but we have the HW_BUSY flag.
+ * Proceed without accessing any nonlocal state.
+ * Do not exit the loop -- must check for more work.
+ */
+
+ swidx = rport->swb_i_idx;
+ nb = hw_avail;
+ if (nb > sw_avail)
+ nb = sw_avail;
+ if (nb > hwsize - swptr)
+ nb = hwsize - swptr; /* don't overflow hwbuf */
+ if (nb > swsize - swidx)
+ nb = swsize - swidx; /* don't overflow swbuf */
+ ASSERT(nb > 0);
+ if (nb % fragsize) {
+ DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
+ DBGP("hw_avail = %d\n", hw_avail);
+ DBGP("sw_avail = %d\n", sw_avail);
+ DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
+ DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
+ }
+ ASSERT(!(nb % fragsize));
+ DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
+ swptr, swptr + nb, swidx, swidx + nb);
+ pcm_copy_in(rport, swidx, swptr, nb);
+ li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
+ spin_lock_irqsave(&rport->lock, iflags);
+ __swb_inc_i(rport, nb);
+ rport->byte_count += nb;
+ rport->frag_count += nb / fragsize;
+ ASSERT(nb % fragsize == 0);
+ wake_up(&rport->queue);
+ }
+ rport->flags &= ~HW_BUSY;
+ spin_unlock_irqrestore(&rport->lock, iflags);
+ DBGRV();
+}
+
+/*
+ * pcm_flush_frag() writes zero samples to fill the current fragment,
+ * then flushes it to the hardware.
+ *
+ * It is only meaningful to flush output, not input.
+ */
+
+static void pcm_flush_frag(vwsnd_dev_t *devc)
+{
+ vwsnd_port_t *wport = &devc->wport;
+
+ DBGPV("swstate = %d\n", wport->swstate);
+ if (wport->swstate == SW_RUN) {
+ int idx = wport->swb_u_idx;
+ int end = (idx + wport->hw_fragsize - 1)
+ >> wport->hw_fragshift
+ << wport->hw_fragshift;
+ int nb = end - idx;
+ DBGPV("clearing %d bytes\n", nb);
+ if (nb)
+ memset(wport->swbuf + idx,
+ (char) wport->zero_word,
+ nb);
+ wport->swstate = SW_DRAIN;
+ pcm_output(devc, 0, nb);
+ }
+ DBGRV();
+}
+
+/*
+ * Wait for output to drain. This sleeps uninterruptibly because
+ * there is nothing intelligent we can do if interrupted. This
+ * means the process will be delayed in responding to the signal.
+ */
+
+static void pcm_write_sync(vwsnd_dev_t *devc)
+{
+ vwsnd_port_t *wport = &devc->wport;
+ DECLARE_WAITQUEUE(wait, current);
+ unsigned long flags;
+ vwsnd_port_hwstate_t hwstate;
+
+ DBGEV("(devc=0x%p)\n", devc);
+ add_wait_queue(&wport->queue, &wait);
+ while (1) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ spin_lock_irqsave(&wport->lock, flags);
+ {
+ hwstate = wport->hwstate;
+ }
+ spin_unlock_irqrestore(&wport->lock, flags);
+ if (hwstate == HW_STOPPED)
+ break;
+ schedule();
+ }
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&wport->queue, &wait);
+ DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
+ DBGRV();
+}
+
+/*****************************************************************************/
+/* audio driver */
+
+/*
+ * seek on an audio device always fails.
+ */
+
+static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
+{
+ int overflown = status & LI_INTR_COMM1_OVERFLOW;
+
+ if (status & READ_INTR_MASK)
+ pcm_input(devc, overflown, 0);
+}
+
+static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
+{
+ int underflown = status & LI_INTR_COMM2_UNDERFLOW;
+
+ if (status & WRITE_INTR_MASK)
+ pcm_output(devc, underflown, 0);
+}
+
+static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id)
+{
+ vwsnd_dev_t *devc = dev_id;
+ unsigned int status;
+
+ DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id);
+
+ status = li_get_clear_intr_status(&devc->lith);
+ vwsnd_audio_read_intr(devc, status);
+ vwsnd_audio_write_intr(devc, status);
+ return IRQ_HANDLED;
+}
+
+static ssize_t vwsnd_audio_do_read(struct file *file,
+ char *buffer,
+ size_t count,
+ loff_t *ppos)
+{
+ vwsnd_dev_t *devc = file->private_data;
+ vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
+ &devc->rport : NULL);
+ int ret, nb;
+
+ DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
+ file, buffer, count, ppos);
+
+ if (!rport)
+ return -EINVAL;
+
+ if (rport->swbuf == NULL) {
+ vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
+ &devc->wport : NULL;
+ ret = pcm_setup(devc, rport, wport);
+ if (ret < 0)
+ return ret;
+ }
+
+ if (!access_ok(VERIFY_READ, buffer, count))
+ return -EFAULT;
+ ret = 0;
+ while (count) {
+ DECLARE_WAITQUEUE(wait, current);
+ add_wait_queue(&rport->queue, &wait);
+ while ((nb = swb_inc_u(rport, 0)) == 0) {
+ DBGPV("blocking\n");
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (rport->flags & DISABLED ||
+ file->f_flags & O_NONBLOCK) {
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&rport->queue, &wait);
+ return ret ? ret : -EAGAIN;
+ }
+ schedule();
+ if (signal_pending(current)) {
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&rport->queue, &wait);
+ return ret ? ret : -ERESTARTSYS;
+ }
+ }
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&rport->queue, &wait);
+ pcm_input(devc, 0, 0);
+ /* nb bytes are available in userbuf. */
+ if (nb > count)
+ nb = count;
+ DBGPV("nb = %d\n", nb);
+ if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb))
+ return -EFAULT;
+ (void) swb_inc_u(rport, nb);
+ buffer += nb;
+ count -= nb;
+ ret += nb;
+ }
+ DBGPV("returning %d\n", ret);
+ return ret;
+}
+
+static ssize_t vwsnd_audio_read(struct file *file,
+ char *buffer,
+ size_t count,
+ loff_t *ppos)
+{
+ vwsnd_dev_t *devc = file->private_data;
+ ssize_t ret;
+
+ mutex_lock(&devc->io_mutex);
+ ret = vwsnd_audio_do_read(file, buffer, count, ppos);
+ mutex_unlock(&devc->io_mutex);
+ return ret;
+}
+
+static ssize_t vwsnd_audio_do_write(struct file *file,
+ const char *buffer,
+ size_t count,
+ loff_t *ppos)
+{
+ vwsnd_dev_t *devc = file->private_data;
+ vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
+ &devc->wport : NULL);
+ int ret, nb;
+
+ DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
+ file, buffer, count, ppos);
+
+ if (!wport)
+ return -EINVAL;
+
+ if (wport->swbuf == NULL) {
+ vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
+ &devc->rport : NULL;
+ ret = pcm_setup(devc, rport, wport);
+ if (ret < 0)
+ return ret;
+ }
+ if (!access_ok(VERIFY_WRITE, buffer, count))
+ return -EFAULT;
+ ret = 0;
+ while (count) {
+ DECLARE_WAITQUEUE(wait, current);
+ add_wait_queue(&wport->queue, &wait);
+ while ((nb = swb_inc_u(wport, 0)) == 0) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (wport->flags & DISABLED ||
+ file->f_flags & O_NONBLOCK) {
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&wport->queue, &wait);
+ return ret ? ret : -EAGAIN;
+ }
+ schedule();
+ if (signal_pending(current)) {
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&wport->queue, &wait);
+ return ret ? ret : -ERESTARTSYS;
+ }
+ }
+ current->state = TASK_RUNNING;
+ remove_wait_queue(&wport->queue, &wait);
+ /* nb bytes are available in userbuf. */
+ if (nb > count)
+ nb = count;
+ DBGPV("nb = %d\n", nb);
+ if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb))
+ return -EFAULT;
+ pcm_output(devc, 0, nb);
+ buffer += nb;
+ count -= nb;
+ ret += nb;
+ }
+ DBGPV("returning %d\n", ret);
+ return ret;
+}
+
+static ssize_t vwsnd_audio_write(struct file *file,
+ const char *buffer,
+ size_t count,
+ loff_t *ppos)
+{
+ vwsnd_dev_t *devc = file->private_data;
+ ssize_t ret;
+
+ mutex_lock(&devc->io_mutex);
+ ret = vwsnd_audio_do_write(file, buffer, count, ppos);
+ mutex_unlock(&devc->io_mutex);
+ return ret;
+}
+
+/* No kernel lock - fine */
+static unsigned int vwsnd_audio_poll(struct file *file,
+ struct poll_table_struct *wait)
+{
+ vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
+ vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
+ &devc->rport : NULL;
+ vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
+ &devc->wport : NULL;
+ unsigned int mask = 0;
+
+ DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
+
+ ASSERT(rport || wport);
+ if (rport) {
+ poll_wait(file, &rport->queue, wait);
+ if (swb_inc_u(rport, 0))
+ mask |= (POLLIN | POLLRDNORM);
+ }
+ if (wport) {
+ poll_wait(file, &wport->queue, wait);
+ if (wport->swbuf == NULL || swb_inc_u(wport, 0))
+ mask |= (POLLOUT | POLLWRNORM);
+ }
+
+ DBGPV("returning 0x%x\n", mask);
+ return mask;
+}
+
+static int vwsnd_audio_do_ioctl(struct file *file,
+ unsigned int cmd,
+ unsigned long arg)
+{
+ vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
+ vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
+ &devc->rport : NULL;
+ vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
+ &devc->wport : NULL;
+ vwsnd_port_t *aport = rport ? rport : wport;
+ struct audio_buf_info buf_info;
+ struct count_info info;
+ unsigned long flags;
+ int ival;
+
+
+ DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n",
+ file, cmd, arg);
+ switch (cmd) {
+ case OSS_GETVERSION: /* _SIOR ('M', 118, int) */
+ DBGX("OSS_GETVERSION\n");
+ ival = SOUND_VERSION;
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */
+ DBGX("SNDCTL_DSP_GETCAPS\n");
+ ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER;
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */
+ DBGX("SNDCTL_DSP_GETFMTS\n");
+ ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
+ AFMT_U8 | AFMT_S8);
+ return put_user(ival, (int *) arg);
+ break;
+
+ case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */
+ DBGX("SOUND_PCM_READ_RATE\n");
+ ival = aport->sw_framerate;
+ return put_user(ival, (int *) arg);
+
+ case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */
+ DBGX("SOUND_PCM_READ_CHANNELS\n");
+ ival = aport->sw_channels;
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */
+ if (get_user(ival, (int *) arg))
+ return -EFAULT;
+ DBGX("SNDCTL_DSP_SPEED %d\n", ival);
+ if (ival) {
+ if (aport->swstate != SW_INITIAL) {
+ DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
+ aport->swstate);
+ return -EINVAL;
+ }
+ if (ival < MIN_SPEED)
+ ival = MIN_SPEED;
+ if (ival > MAX_SPEED)
+ ival = MAX_SPEED;
+ if (rport)
+ rport->sw_framerate = ival;
+ if (wport)
+ wport->sw_framerate = ival;
+ } else
+ ival = aport->sw_framerate;
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */
+ if (get_user(ival, (int *) arg))
+ return -EFAULT;
+ DBGX("SNDCTL_DSP_STEREO %d\n", ival);
+ if (ival != 0 && ival != 1)
+ return -EINVAL;
+ if (aport->swstate != SW_INITIAL)
+ return -EINVAL;
+ if (rport)
+ rport->sw_channels = ival + 1;
+ if (wport)
+ wport->sw_channels = ival + 1;
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */
+ if (get_user(ival, (int *) arg))
+ return -EFAULT;
+ DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
+ if (ival != 1 && ival != 2)
+ return -EINVAL;
+ if (aport->swstate != SW_INITIAL)
+ return -EINVAL;
+ if (rport)
+ rport->sw_channels = ival;
+ if (wport)
+ wport->sw_channels = ival;
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */
+ ival = pcm_setup(devc, rport, wport);
+ if (ival < 0) {
+ DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
+ return ival;
+ }
+ ival = 1 << aport->sw_fragshift;
+ DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */
+ if (get_user(ival, (int *) arg))
+ return -EFAULT;
+ DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
+ ival >> 16, ival & 0xFFFF);
+ if (aport->swstate != SW_INITIAL)
+ return -EINVAL;
+ {
+ int sw_fragshift = ival & 0xFFFF;
+ int sw_subdivshift = aport->sw_subdivshift;
+ int hw_fragshift = sw_fragshift - sw_subdivshift;
+ int sw_fragcount = (ival >> 16) & 0xFFFF;
+ int hw_fragsize;
+ if (hw_fragshift < MIN_FRAGSHIFT)
+ hw_fragshift = MIN_FRAGSHIFT;
+ if (hw_fragshift > MAX_FRAGSHIFT)
+ hw_fragshift = MAX_FRAGSHIFT;
+ sw_fragshift = hw_fragshift + aport->sw_subdivshift;
+ hw_fragsize = 1 << hw_fragshift;
+ if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
+ sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
+ if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
+ sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
+ DBGPV("sw_fragshift = %d\n", sw_fragshift);
+ DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
+ if (rport) {
+ rport->sw_fragshift = sw_fragshift;
+ rport->sw_fragcount = sw_fragcount;
+ }
+ if (wport) {
+ wport->sw_fragshift = sw_fragshift;
+ wport->sw_fragcount = sw_fragcount;
+ }
+ ival = sw_fragcount << 16 | sw_fragshift;
+ }
+ DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
+ ival >> 16, ival & 0xFFFF);
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */
+ if (get_user(ival, (int *) arg))
+ return -EFAULT;
+ DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
+ if (aport->swstate != SW_INITIAL)
+ return -EINVAL;
+ {
+ int subdivshift;
+ int hw_fragshift, hw_fragsize, hw_fragcount;
+ switch (ival) {
+ case 1: subdivshift = 0; break;
+ case 2: subdivshift = 1; break;
+ case 4: subdivshift = 2; break;
+ default: return -EINVAL;
+ }
+ hw_fragshift = aport->sw_fragshift - subdivshift;
+ if (hw_fragshift < MIN_FRAGSHIFT ||
+ hw_fragshift > MAX_FRAGSHIFT)
+ return -EINVAL;
+ hw_fragsize = 1 << hw_fragshift;
+ hw_fragcount = aport->sw_fragcount >> subdivshift;
+ if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
+ hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
+ return -EINVAL;
+ if (rport)
+ rport->sw_subdivshift = subdivshift;
+ if (wport)
+ wport->sw_subdivshift = subdivshift;
+ }
+ return 0;
+
+ case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */
+ if (get_user(ival, (int *) arg))
+ return -EFAULT;
+ DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
+ if (ival != AFMT_QUERY) {
+ if (aport->swstate != SW_INITIAL) {
+ DBGP("SETFMT failed, swstate = %d\n",
+ aport->swstate);
+ return -EINVAL;
+ }
+ switch (ival) {
+ case AFMT_MU_LAW:
+ case AFMT_A_LAW:
+ case AFMT_U8:
+ case AFMT_S8:
+ case AFMT_S16_LE:
+ if (rport)
+ rport->sw_samplefmt = ival;
+ if (wport)
+ wport->sw_samplefmt = ival;
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+ ival = aport->sw_samplefmt;
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */
+ DBGXV("SNDCTL_DSP_GETOSPACE\n");
+ if (!wport)
+ return -EINVAL;
+ ival = pcm_setup(devc, rport, wport);
+ if (ival < 0)
+ return ival;
+ ival = swb_inc_u(wport, 0);
+ buf_info.fragments = ival >> wport->sw_fragshift;
+ buf_info.fragstotal = wport->sw_fragcount;
+ buf_info.fragsize = 1 << wport->sw_fragshift;
+ buf_info.bytes = ival;
+ DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
+ buf_info.fragments, buf_info.fragstotal,
+ buf_info.fragsize, buf_info.bytes);
+ if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
+ return -EFAULT;
+ return 0;
+
+ case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */
+ DBGX("SNDCTL_DSP_GETISPACE\n");
+ if (!rport)
+ return -EINVAL;
+ ival = pcm_setup(devc, rport, wport);
+ if (ival < 0)
+ return ival;
+ ival = swb_inc_u(rport, 0);
+ buf_info.fragments = ival >> rport->sw_fragshift;
+ buf_info.fragstotal = rport->sw_fragcount;
+ buf_info.fragsize = 1 << rport->sw_fragshift;
+ buf_info.bytes = ival;
+ DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
+ buf_info.fragments, buf_info.fragstotal,
+ buf_info.fragsize, buf_info.bytes);
+ if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
+ return -EFAULT;
+ return 0;
+
+ case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */
+ DBGX("SNDCTL_DSP_NONBLOCK\n");
+ spin_lock(&file->f_lock);
+ file->f_flags |= O_NONBLOCK;
+ spin_unlock(&file->f_lock);
+ return 0;
+
+ case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */
+ DBGX("SNDCTL_DSP_RESET\n");
+ /*
+ * Nothing special needs to be done for input. Input
+ * samples sit in swbuf, but it will be reinitialized
+ * to empty when pcm_setup() is called.
+ */
+ if (wport && wport->swbuf) {
+ wport->swstate = SW_INITIAL;
+ pcm_output(devc, 0, 0);
+ pcm_write_sync(devc);
+ }
+ pcm_shutdown(devc, rport, wport);
+ return 0;
+
+ case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */
+ DBGX("SNDCTL_DSP_SYNC\n");
+ if (wport) {
+ pcm_flush_frag(devc);
+ pcm_write_sync(devc);
+ }
+ pcm_shutdown(devc, rport, wport);
+ return 0;
+
+ case SNDCTL_DSP_POST: /* _SIO ('P', 8) */
+ DBGX("SNDCTL_DSP_POST\n");
+ if (!wport)
+ return -EINVAL;
+ pcm_flush_frag(devc);
+ return 0;
+
+ case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */
+ DBGX("SNDCTL_DSP_GETIPTR\n");
+ if (!rport)
+ return -EINVAL;
+ spin_lock_irqsave(&rport->lock, flags);
+ {
+ ustmsc_t ustmsc;
+ if (rport->hwstate == HW_RUNNING) {
+ ASSERT(rport->swstate == SW_RUN);
+ li_read_USTMSC(&rport->chan, &ustmsc);
+ info.bytes = ustmsc.msc - rport->MSC_offset;
+ info.bytes *= rport->frame_size;
+ } else {
+ info.bytes = rport->byte_count;
+ }
+ info.blocks = rport->frag_count;
+ info.ptr = 0; /* not implemented */
+ rport->frag_count = 0;
+ }
+ spin_unlock_irqrestore(&rport->lock, flags);
+ if (copy_to_user((void *) arg, &info, sizeof info))
+ return -EFAULT;
+ return 0;
+
+ case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */
+ DBGX("SNDCTL_DSP_GETOPTR\n");
+ if (!wport)
+ return -EINVAL;
+ spin_lock_irqsave(&wport->lock, flags);
+ {
+ ustmsc_t ustmsc;
+ if (wport->hwstate == HW_RUNNING) {
+ ASSERT(wport->swstate == SW_RUN);
+ li_read_USTMSC(&wport->chan, &ustmsc);
+ info.bytes = ustmsc.msc - wport->MSC_offset;
+ info.bytes *= wport->frame_size;
+ } else {
+ info.bytes = wport->byte_count;
+ }
+ info.blocks = wport->frag_count;
+ info.ptr = 0; /* not implemented */
+ wport->frag_count = 0;
+ }
+ spin_unlock_irqrestore(&wport->lock, flags);
+ if (copy_to_user((void *) arg, &info, sizeof info))
+ return -EFAULT;
+ return 0;
+
+ case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */
+ DBGX("SNDCTL_DSP_GETODELAY\n");
+ if (!wport)
+ return -EINVAL;
+ spin_lock_irqsave(&wport->lock, flags);
+ {
+ int fsize = wport->frame_size;
+ ival = wport->swb_i_avail / fsize;
+ if (wport->hwstate == HW_RUNNING) {
+ int swptr, hwptr, hwframes, hwbytes, hwsize;
+ int totalhwbytes;
+ ustmsc_t ustmsc;
+
+ hwsize = wport->hwbuf_size;
+ swptr = li_read_swptr(&wport->chan);
+ li_read_USTMSC(&wport->chan, &ustmsc);
+ hwframes = ustmsc.msc - wport->MSC_offset;
+ totalhwbytes = hwframes * fsize;
+ hwptr = totalhwbytes % hwsize;
+ hwbytes = (swptr - hwptr + hwsize) % hwsize;
+ ival += hwbytes / fsize;
+ }
+ }
+ spin_unlock_irqrestore(&wport->lock, flags);
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */
+ DBGX("SNDCTL_DSP_PROFILE\n");
+
+ /*
+ * Thomas Sailer explains SNDCTL_DSP_PROFILE
+ * (private email, March 24, 1999):
+ *
+ * This gives the sound driver a hint on what it
+ * should do with partial fragments
+ * (i.e. fragments partially filled with write).
+ * This can direct the driver to zero them or
+ * leave them alone. But don't ask me what this
+ * is good for, my driver just zeroes the last
+ * fragment before the receiver stops, no idea
+ * what good for any other behaviour could
+ * be. Implementing it as NOP seems safe.
+ */
+
+ break;
+
+ case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */
+ DBGX("SNDCTL_DSP_GETTRIGGER\n");
+ ival = 0;
+ if (rport) {
+ spin_lock_irqsave(&rport->lock, flags);
+ {
+ if (!(rport->flags & DISABLED))
+ ival |= PCM_ENABLE_INPUT;
+ }
+ spin_unlock_irqrestore(&rport->lock, flags);
+ }
+ if (wport) {
+ spin_lock_irqsave(&wport->lock, flags);
+ {
+ if (!(wport->flags & DISABLED))
+ ival |= PCM_ENABLE_OUTPUT;
+ }
+ spin_unlock_irqrestore(&wport->lock, flags);
+ }
+ return put_user(ival, (int *) arg);
+
+ case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */
+ if (get_user(ival, (int *) arg))
+ return -EFAULT;
+ DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival);
+
+ /*
+ * If user is disabling I/O and port is not in initial
+ * state, fail with EINVAL.
+ */
+
+ if (((rport && !(ival & PCM_ENABLE_INPUT)) ||
+ (wport && !(ival & PCM_ENABLE_OUTPUT))) &&
+ aport->swstate != SW_INITIAL)
+ return -EINVAL;
+
+ if (rport) {
+ vwsnd_port_hwstate_t hwstate;
+ spin_lock_irqsave(&rport->lock, flags);
+ {
+ hwstate = rport->hwstate;
+ if (ival & PCM_ENABLE_INPUT)
+ rport->flags &= ~DISABLED;
+ else
+ rport->flags |= DISABLED;
+ }
+ spin_unlock_irqrestore(&rport->lock, flags);
+ if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) {
+
+ if (rport->swstate == SW_INITIAL)
+ pcm_setup(devc, rport, wport);
+ else
+ li_activate_dma(&rport->chan);
+ }
+ }
+ if (wport) {
+ vwsnd_port_flags_t pflags;
+ spin_lock_irqsave(&wport->lock, flags);
+ {
+ pflags = wport->flags;
+ if (ival & PCM_ENABLE_OUTPUT)
+ wport->flags &= ~DISABLED;
+ else
+ wport->flags |= DISABLED;
+ }
+ spin_unlock_irqrestore(&wport->lock, flags);
+ if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) {
+ if (wport->swstate == SW_RUN)
+ pcm_output(devc, 0, 0);
+ }
+ }
+ return 0;
+
+ default:
+ DBGP("unknown ioctl 0x%x\n", cmd);
+ return -EINVAL;
+ }
+ DBGP("unimplemented ioctl 0x%x\n", cmd);
+ return -EINVAL;
+}
+
+static long vwsnd_audio_ioctl(struct file *file,
+ unsigned int cmd,
+ unsigned long arg)
+{
+ vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
+ int ret;
+
+ mutex_lock(&vwsnd_mutex);
+ mutex_lock(&devc->io_mutex);
+ ret = vwsnd_audio_do_ioctl(file, cmd, arg);
+ mutex_unlock(&devc->io_mutex);
+ mutex_unlock(&vwsnd_mutex);
+
+ return ret;
+}
+
+/* No mmap. */
+
+static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma)
+{
+ DBGE("(file=0x%p, vma=0x%p)\n", file, vma);
+ return -ENODEV;
+}
+
+/*
+ * Open the audio device for read and/or write.
+ *
+ * Returns 0 on success, -errno on failure.
+ */
+
+static int vwsnd_audio_open(struct inode *inode, struct file *file)
+{
+ vwsnd_dev_t *devc;
+ int minor = iminor(inode);
+ int sw_samplefmt;
+
+ DBGE("(inode=0x%p, file=0x%p)\n", inode, file);
+
+ mutex_lock(&vwsnd_mutex);
+ INC_USE_COUNT;
+ for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
+ if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F))
+ break;
+
+ if (devc == NULL) {
+ DEC_USE_COUNT;
+ mutex_unlock(&vwsnd_mutex);
+ return -ENODEV;
+ }
+
+ mutex_lock(&devc->open_mutex);
+ while (devc->open_mode & file->f_mode) {
+ mutex_unlock(&devc->open_mutex);
+ if (file->f_flags & O_NONBLOCK) {
+ DEC_USE_COUNT;
+ mutex_unlock(&vwsnd_mutex);
+ return -EBUSY;
+ }
+ interruptible_sleep_on(&devc->open_wait);
+ if (signal_pending(current)) {
+ DEC_USE_COUNT;
+ mutex_unlock(&vwsnd_mutex);
+ return -ERESTARTSYS;
+ }
+ mutex_lock(&devc->open_mutex);
+ }
+ devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
+ mutex_unlock(&devc->open_mutex);
+
+ /* get default sample format from minor number. */
+
+ sw_samplefmt = 0;
+ if ((minor & 0xF) == SND_DEV_DSP)
+ sw_samplefmt = AFMT_U8;
+ else if ((minor & 0xF) == SND_DEV_AUDIO)
+ sw_samplefmt = AFMT_MU_LAW;
+ else if ((minor & 0xF) == SND_DEV_DSP16)
+ sw_samplefmt = AFMT_S16_LE;
+ else
+ ASSERT(0);
+
+ /* Initialize vwsnd_ports. */
+
+ mutex_lock(&devc->io_mutex);
+ {
+ if (file->f_mode & FMODE_READ) {
+ devc->rport.swstate = SW_INITIAL;
+ devc->rport.flags = 0;
+ devc->rport.sw_channels = 1;
+ devc->rport.sw_samplefmt = sw_samplefmt;
+ devc->rport.sw_framerate = 8000;
+ devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT;
+ devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT;
+ devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
+ devc->rport.byte_count = 0;
+ devc->rport.frag_count = 0;
+ }
+ if (file->f_mode & FMODE_WRITE) {
+ devc->wport.swstate = SW_INITIAL;
+ devc->wport.flags = 0;
+ devc->wport.sw_channels = 1;
+ devc->wport.sw_samplefmt = sw_samplefmt;
+ devc->wport.sw_framerate = 8000;
+ devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT;
+ devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT;
+ devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT;
+ devc->wport.byte_count = 0;
+ devc->wport.frag_count = 0;
+ }
+ }
+ mutex_unlock(&devc->io_mutex);
+
+ file->private_data = devc;
+ DBGRV();
+ mutex_unlock(&vwsnd_mutex);
+ return 0;
+}
+
+/*
+ * Release (close) the audio device.
+ */
+
+static int vwsnd_audio_release(struct inode *inode, struct file *file)
+{
+ vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
+ vwsnd_port_t *wport = NULL, *rport = NULL;
+ int err = 0;
+
+ mutex_lock(&vwsnd_mutex);
+ mutex_lock(&devc->io_mutex);
+ {
+ DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
+
+ if (file->f_mode & FMODE_READ)
+ rport = &devc->rport;
+ if (file->f_mode & FMODE_WRITE) {
+ wport = &devc->wport;
+ pcm_flush_frag(devc);
+ pcm_write_sync(devc);
+ }
+ pcm_shutdown(devc, rport, wport);
+ if (rport)
+ rport->swstate = SW_OFF;
+ if (wport)
+ wport->swstate = SW_OFF;
+ }
+ mutex_unlock(&devc->io_mutex);
+
+ mutex_lock(&devc->open_mutex);
+ {
+ devc->open_mode &= ~file->f_mode;
+ }
+ mutex_unlock(&devc->open_mutex);
+ wake_up(&devc->open_wait);
+ DEC_USE_COUNT;
+ DBGR();
+ mutex_unlock(&vwsnd_mutex);
+ return err;
+}
+
+static const struct file_operations vwsnd_audio_fops = {
+ .owner = THIS_MODULE,
+ .llseek = no_llseek,
+ .read = vwsnd_audio_read,
+ .write = vwsnd_audio_write,
+ .poll = vwsnd_audio_poll,
+ .unlocked_ioctl = vwsnd_audio_ioctl,
+ .mmap = vwsnd_audio_mmap,
+ .open = vwsnd_audio_open,
+ .release = vwsnd_audio_release,
+};
+
+/*****************************************************************************/
+/* mixer driver */
+
+/* open the mixer device. */
+
+static int vwsnd_mixer_open(struct inode *inode, struct file *file)
+{
+ vwsnd_dev_t *devc;
+
+ DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
+
+ INC_USE_COUNT;
+ mutex_lock(&vwsnd_mutex);
+ for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
+ if (devc->mixer_minor == iminor(inode))
+ break;
+
+ if (devc == NULL) {
+ DEC_USE_COUNT;
+ mutex_unlock(&vwsnd_mutex);
+ return -ENODEV;
+ }
+ file->private_data = devc;
+ mutex_unlock(&vwsnd_mutex);
+ return 0;
+}
+
+/* release (close) the mixer device. */
+
+static int vwsnd_mixer_release(struct inode *inode, struct file *file)
+{
+ DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
+ DEC_USE_COUNT;
+ return 0;
+}
+
+/* mixer_read_ioctl handles all read ioctls on the mixer device. */
+
+static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
+{
+ int val = -1;
+
+ DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
+
+ switch (nr) {
+ case SOUND_MIXER_CAPS:
+ val = SOUND_CAP_EXCL_INPUT;
+ break;
+
+ case SOUND_MIXER_DEVMASK:
+ val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
+ SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
+ break;
+
+ case SOUND_MIXER_STEREODEVS:
+ val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
+ SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV);
+ break;
+
+ case SOUND_MIXER_OUTMASK:
+ val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
+ SOUND_MASK_MIC | SOUND_MASK_CD);
+ break;
+
+ case SOUND_MIXER_RECMASK:
+ val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
+ SOUND_MASK_MIC | SOUND_MASK_CD);
+ break;
+
+ case SOUND_MIXER_PCM:
+ val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM);
+ break;
+
+ case SOUND_MIXER_LINE:
+ val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE);
+ break;
+
+ case SOUND_MIXER_MIC:
+ val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC);
+ break;
+
+ case SOUND_MIXER_CD:
+ val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD);
+ break;
+
+ case SOUND_MIXER_RECLEV:
+ val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV);
+ break;
+
+ case SOUND_MIXER_RECSRC:
+ val = ad1843_get_recsrc(&devc->lith);
+ break;
+
+ case SOUND_MIXER_OUTSRC:
+ val = ad1843_get_outsrc(&devc->lith);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+ return put_user(val, (int __user *) arg);
+}
+
+/* mixer_write_ioctl handles all write ioctls on the mixer device. */
+
+static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
+{
+ int val;
+ int err;
+
+ DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
+
+ err = get_user(val, (int __user *) arg);
+ if (err)
+ return -EFAULT;
+ switch (nr) {
+ case SOUND_MIXER_PCM:
+ val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val);
+ break;
+
+ case SOUND_MIXER_LINE:
+ val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val);
+ break;
+
+ case SOUND_MIXER_MIC:
+ val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val);
+ break;
+
+ case SOUND_MIXER_CD:
+ val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val);
+ break;
+
+ case SOUND_MIXER_RECLEV:
+ val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val);
+ break;
+
+ case SOUND_MIXER_RECSRC:
+ if (devc->rport.swbuf || devc->wport.swbuf)
+ return -EBUSY; /* can't change recsrc while running */
+ val = ad1843_set_recsrc(&devc->lith, val);
+ break;
+
+ case SOUND_MIXER_OUTSRC:
+ val = ad1843_set_outsrc(&devc->lith, val);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+ if (val < 0)
+ return val;
+ return put_user(val, (int __user *) arg);
+}
+
+/* This is the ioctl entry to the mixer driver. */
+
+static long vwsnd_mixer_ioctl(struct file *file,
+ unsigned int cmd,
+ unsigned long arg)
+{
+ vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
+ const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT;
+ const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT;
+ int retval;
+
+ DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg);
+
+ mutex_lock(&vwsnd_mutex);
+ mutex_lock(&devc->mix_mutex);
+ {
+ if ((cmd & ~nrmask) == MIXER_READ(0))
+ retval = mixer_read_ioctl(devc, nr, (void __user *) arg);
+ else if ((cmd & ~nrmask) == MIXER_WRITE(0))
+ retval = mixer_write_ioctl(devc, nr, (void __user *) arg);
+ else
+ retval = -EINVAL;
+ }
+ mutex_unlock(&devc->mix_mutex);
+ mutex_unlock(&vwsnd_mutex);
+ return retval;
+}
+
+static const struct file_operations vwsnd_mixer_fops = {
+ .owner = THIS_MODULE,
+ .llseek = no_llseek,
+ .unlocked_ioctl = vwsnd_mixer_ioctl,
+ .open = vwsnd_mixer_open,
+ .release = vwsnd_mixer_release,
+};
+
+/*****************************************************************************/
+/* probe/attach/unload */
+
+/* driver probe routine. Return nonzero if hardware is found. */
+
+static int __init probe_vwsnd(struct address_info *hw_config)
+{
+ lithium_t lith;
+ int w;
+ unsigned long later;
+
+ DBGEV("(hw_config=0x%p)\n", hw_config);
+
+ /* XXX verify lithium present (to prevent crash on non-vw) */
+
+ if (li_create(&lith, hw_config->io_base) != 0) {
+ printk(KERN_WARNING "probe_vwsnd: can't map lithium\n");
+ return 0;
+ }
+ later = jiffies + 2;
+ li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
+ do {
+ w = li_readl(&lith, LI_HOST_CONTROLLER);
+ } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later));
+
+ li_destroy(&lith);
+
+ DBGPV("HC = 0x%04x\n", w);
+
+ if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) {
+
+ /* This may indicate a beta machine with no audio,
+ * or a future machine with different audio.
+ * On beta-release 320 w/ no audio, HC == 0x4000 */
+
+ printk(KERN_WARNING "probe_vwsnd: audio codec not found\n");
+ return 0;
+ }
+
+ if (w & LI_HC_LINK_FAILURE) {
+ printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n");
+ return 0;
+ }
+
+ printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n",
+ hw_config->io_base, hw_config->irq);
+
+ return 1;
+}
+
+/*
+ * driver attach routine. Initialize driver data structures and
+ * initialize hardware. A new vwsnd_dev_t is allocated and put
+ * onto the global list, vwsnd_dev_list.
+ *
+ * Return +minor_dev on success, -errno on failure.
+ */
+
+static int __init attach_vwsnd(struct address_info *hw_config)
+{
+ vwsnd_dev_t *devc = NULL;
+ int err = -ENOMEM;
+
+ DBGEV("(hw_config=0x%p)\n", hw_config);
+
+ devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL);
+ if (devc == NULL)
+ goto fail0;
+
+ err = li_create(&devc->lith, hw_config->io_base);
+ if (err)
+ goto fail1;
+
+ init_waitqueue_head(&devc->open_wait);
+
+ devc->rport.hwbuf_size = HWBUF_SIZE;
+ devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
+ if (!devc->rport.hwbuf_vaddr)
+ goto fail2;
+ devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr;
+ devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf);
+
+ /*
+ * Quote from the NT driver:
+ *
+ * // WARNING!!! HACK to setup output dma!!!
+ * // This is required because even on output there is some data
+ * // trickling into the input DMA channel. This is a bug in the
+ * // Lithium microcode.
+ * // --sde
+ *
+ * We set the input side's DMA base address here. It will remain
+ * valid until the driver is unloaded.
+ */
+
+ li_writel(&devc->lith, LI_COMM1_BASE,
+ devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8));
+
+ devc->wport.hwbuf_size = HWBUF_SIZE;
+ devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER);
+ if (!devc->wport.hwbuf_vaddr)
+ goto fail3;
+ devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr;
+ devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf);
+ DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf);
+
+ DBGDO(shut_up++);
+ err = ad1843_init(&devc->lith);
+ DBGDO(shut_up--);
+ if (err)
+ goto fail4;
+
+ /* install interrupt handler */
+
+ err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc);
+ if (err)
+ goto fail5;
+
+ /* register this device's drivers. */
+
+ devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1);
+ if ((err = devc->audio_minor) < 0) {
+ DBGDO(printk(KERN_WARNING
+ "attach_vwsnd: register_sound_dsp error %d\n",
+ err));
+ goto fail6;
+ }
+ devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops,
+ devc->audio_minor >> 4);
+ if ((err = devc->mixer_minor) < 0) {
+ DBGDO(printk(KERN_WARNING
+ "attach_vwsnd: register_sound_mixer error %d\n",
+ err));
+ goto fail7;
+ }
+
+ /* Squirrel away device indices for unload routine. */
+
+ hw_config->slots[0] = devc->audio_minor;
+
+ /* Initialize as much of *devc as possible */
+
+ mutex_init(&devc->open_mutex);
+ mutex_init(&devc->io_mutex);
+ mutex_init(&devc->mix_mutex);
+ devc->open_mode = 0;
+ spin_lock_init(&devc->rport.lock);
+ init_waitqueue_head(&devc->rport.queue);
+ devc->rport.swstate = SW_OFF;
+ devc->rport.hwstate = HW_STOPPED;
+ devc->rport.flags = 0;
+ devc->rport.swbuf = NULL;
+ spin_lock_init(&devc->wport.lock);
+ init_waitqueue_head(&devc->wport.queue);
+ devc->wport.swstate = SW_OFF;
+ devc->wport.hwstate = HW_STOPPED;
+ devc->wport.flags = 0;
+ devc->wport.swbuf = NULL;
+
+ /* Success. Link us onto the local device list. */
+
+ devc->next_dev = vwsnd_dev_list;
+ vwsnd_dev_list = devc;
+ return devc->audio_minor;
+
+ /* So many ways to fail. Undo what we did. */
+
+ fail7:
+ unregister_sound_dsp(devc->audio_minor);
+ fail6:
+ free_irq(hw_config->irq, devc);
+ fail5:
+ fail4:
+ free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
+ fail3:
+ free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
+ fail2:
+ li_destroy(&devc->lith);
+ fail1:
+ kfree(devc);
+ fail0:
+ return err;
+}
+
+static int __exit unload_vwsnd(struct address_info *hw_config)
+{
+ vwsnd_dev_t *devc, **devcp;
+
+ DBGE("()\n");
+
+ devcp = &vwsnd_dev_list;
+ while ((devc = *devcp)) {
+ if (devc->audio_minor == hw_config->slots[0]) {
+ *devcp = devc->next_dev;
+ break;
+ }
+ devcp = &devc->next_dev;
+ }
+
+ if (!devc)
+ return -ENODEV;
+
+ unregister_sound_mixer(devc->mixer_minor);
+ unregister_sound_dsp(devc->audio_minor);
+ free_irq(hw_config->irq, devc);
+ free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER);
+ free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER);
+ li_destroy(&devc->lith);
+ kfree(devc);
+
+ return 0;
+}
+
+/*****************************************************************************/
+/* initialization and loadable kernel module interface */
+
+static struct address_info the_hw_config = {
+ 0xFF001000, /* lithium phys addr */
+ CO_IRQ(CO_APIC_LI_AUDIO) /* irq */
+};
+
+MODULE_DESCRIPTION("SGI Visual Workstation sound module");
+MODULE_AUTHOR("Bob Miller <kbob@sgi.com>");
+MODULE_LICENSE("GPL");
+
+static int __init init_vwsnd(void)
+{
+ int err;
+
+ DBGXV("\n");
+ DBGXV("sound::vwsnd::init_module()\n");
+
+ if (!probe_vwsnd(&the_hw_config))
+ return -ENODEV;
+
+ err = attach_vwsnd(&the_hw_config);
+ if (err < 0)
+ return err;
+ return 0;
+}
+
+static void __exit cleanup_vwsnd(void)
+{
+ DBGX("sound::vwsnd::cleanup_module()\n");
+
+ unload_vwsnd(&the_hw_config);
+}
+
+module_init(init_vwsnd);
+module_exit(cleanup_vwsnd);