diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /security/selinux/ss/conditional.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'security/selinux/ss/conditional.c')
-rw-r--r-- | security/selinux/ss/conditional.c | 648 |
1 files changed, 648 insertions, 0 deletions
diff --git a/security/selinux/ss/conditional.c b/security/selinux/ss/conditional.c new file mode 100644 index 00000000..377d148e --- /dev/null +++ b/security/selinux/ss/conditional.c @@ -0,0 +1,648 @@ +/* Authors: Karl MacMillan <kmacmillan@tresys.com> + * Frank Mayer <mayerf@tresys.com> + * + * Copyright (C) 2003 - 2004 Tresys Technology, LLC + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, version 2. + */ + +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/string.h> +#include <linux/spinlock.h> +#include <linux/slab.h> + +#include "security.h" +#include "conditional.h" + +/* + * cond_evaluate_expr evaluates a conditional expr + * in reverse polish notation. It returns true (1), false (0), + * or undefined (-1). Undefined occurs when the expression + * exceeds the stack depth of COND_EXPR_MAXDEPTH. + */ +static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr) +{ + + struct cond_expr *cur; + int s[COND_EXPR_MAXDEPTH]; + int sp = -1; + + for (cur = expr; cur; cur = cur->next) { + switch (cur->expr_type) { + case COND_BOOL: + if (sp == (COND_EXPR_MAXDEPTH - 1)) + return -1; + sp++; + s[sp] = p->bool_val_to_struct[cur->bool - 1]->state; + break; + case COND_NOT: + if (sp < 0) + return -1; + s[sp] = !s[sp]; + break; + case COND_OR: + if (sp < 1) + return -1; + sp--; + s[sp] |= s[sp + 1]; + break; + case COND_AND: + if (sp < 1) + return -1; + sp--; + s[sp] &= s[sp + 1]; + break; + case COND_XOR: + if (sp < 1) + return -1; + sp--; + s[sp] ^= s[sp + 1]; + break; + case COND_EQ: + if (sp < 1) + return -1; + sp--; + s[sp] = (s[sp] == s[sp + 1]); + break; + case COND_NEQ: + if (sp < 1) + return -1; + sp--; + s[sp] = (s[sp] != s[sp + 1]); + break; + default: + return -1; + } + } + return s[0]; +} + +/* + * evaluate_cond_node evaluates the conditional stored in + * a struct cond_node and if the result is different than the + * current state of the node it sets the rules in the true/false + * list appropriately. If the result of the expression is undefined + * all of the rules are disabled for safety. + */ +int evaluate_cond_node(struct policydb *p, struct cond_node *node) +{ + int new_state; + struct cond_av_list *cur; + + new_state = cond_evaluate_expr(p, node->expr); + if (new_state != node->cur_state) { + node->cur_state = new_state; + if (new_state == -1) + printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n"); + /* turn the rules on or off */ + for (cur = node->true_list; cur; cur = cur->next) { + if (new_state <= 0) + cur->node->key.specified &= ~AVTAB_ENABLED; + else + cur->node->key.specified |= AVTAB_ENABLED; + } + + for (cur = node->false_list; cur; cur = cur->next) { + /* -1 or 1 */ + if (new_state) + cur->node->key.specified &= ~AVTAB_ENABLED; + else + cur->node->key.specified |= AVTAB_ENABLED; + } + } + return 0; +} + +int cond_policydb_init(struct policydb *p) +{ + int rc; + + p->bool_val_to_struct = NULL; + p->cond_list = NULL; + + rc = avtab_init(&p->te_cond_avtab); + if (rc) + return rc; + + return 0; +} + +static void cond_av_list_destroy(struct cond_av_list *list) +{ + struct cond_av_list *cur, *next; + for (cur = list; cur; cur = next) { + next = cur->next; + /* the avtab_ptr_t node is destroy by the avtab */ + kfree(cur); + } +} + +static void cond_node_destroy(struct cond_node *node) +{ + struct cond_expr *cur_expr, *next_expr; + + for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) { + next_expr = cur_expr->next; + kfree(cur_expr); + } + cond_av_list_destroy(node->true_list); + cond_av_list_destroy(node->false_list); + kfree(node); +} + +static void cond_list_destroy(struct cond_node *list) +{ + struct cond_node *next, *cur; + + if (list == NULL) + return; + + for (cur = list; cur; cur = next) { + next = cur->next; + cond_node_destroy(cur); + } +} + +void cond_policydb_destroy(struct policydb *p) +{ + kfree(p->bool_val_to_struct); + avtab_destroy(&p->te_cond_avtab); + cond_list_destroy(p->cond_list); +} + +int cond_init_bool_indexes(struct policydb *p) +{ + kfree(p->bool_val_to_struct); + p->bool_val_to_struct = + kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL); + if (!p->bool_val_to_struct) + return -ENOMEM; + return 0; +} + +int cond_destroy_bool(void *key, void *datum, void *p) +{ + kfree(key); + kfree(datum); + return 0; +} + +int cond_index_bool(void *key, void *datum, void *datap) +{ + struct policydb *p; + struct cond_bool_datum *booldatum; + struct flex_array *fa; + + booldatum = datum; + p = datap; + + if (!booldatum->value || booldatum->value > p->p_bools.nprim) + return -EINVAL; + + fa = p->sym_val_to_name[SYM_BOOLS]; + if (flex_array_put_ptr(fa, booldatum->value - 1, key, + GFP_KERNEL | __GFP_ZERO)) + BUG(); + p->bool_val_to_struct[booldatum->value - 1] = booldatum; + + return 0; +} + +static int bool_isvalid(struct cond_bool_datum *b) +{ + if (!(b->state == 0 || b->state == 1)) + return 0; + return 1; +} + +int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp) +{ + char *key = NULL; + struct cond_bool_datum *booldatum; + __le32 buf[3]; + u32 len; + int rc; + + booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL); + if (!booldatum) + return -ENOMEM; + + rc = next_entry(buf, fp, sizeof buf); + if (rc) + goto err; + + booldatum->value = le32_to_cpu(buf[0]); + booldatum->state = le32_to_cpu(buf[1]); + + rc = -EINVAL; + if (!bool_isvalid(booldatum)) + goto err; + + len = le32_to_cpu(buf[2]); + + rc = -ENOMEM; + key = kmalloc(len + 1, GFP_KERNEL); + if (!key) + goto err; + rc = next_entry(key, fp, len); + if (rc) + goto err; + key[len] = '\0'; + rc = hashtab_insert(h, key, booldatum); + if (rc) + goto err; + + return 0; +err: + cond_destroy_bool(key, booldatum, NULL); + return rc; +} + +struct cond_insertf_data { + struct policydb *p; + struct cond_av_list *other; + struct cond_av_list *head; + struct cond_av_list *tail; +}; + +static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr) +{ + struct cond_insertf_data *data = ptr; + struct policydb *p = data->p; + struct cond_av_list *other = data->other, *list, *cur; + struct avtab_node *node_ptr; + u8 found; + int rc = -EINVAL; + + /* + * For type rules we have to make certain there aren't any + * conflicting rules by searching the te_avtab and the + * cond_te_avtab. + */ + if (k->specified & AVTAB_TYPE) { + if (avtab_search(&p->te_avtab, k)) { + printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n"); + goto err; + } + /* + * If we are reading the false list other will be a pointer to + * the true list. We can have duplicate entries if there is only + * 1 other entry and it is in our true list. + * + * If we are reading the true list (other == NULL) there shouldn't + * be any other entries. + */ + if (other) { + node_ptr = avtab_search_node(&p->te_cond_avtab, k); + if (node_ptr) { + if (avtab_search_node_next(node_ptr, k->specified)) { + printk(KERN_ERR "SELinux: too many conflicting type rules.\n"); + goto err; + } + found = 0; + for (cur = other; cur; cur = cur->next) { + if (cur->node == node_ptr) { + found = 1; + break; + } + } + if (!found) { + printk(KERN_ERR "SELinux: conflicting type rules.\n"); + goto err; + } + } + } else { + if (avtab_search(&p->te_cond_avtab, k)) { + printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n"); + goto err; + } + } + } + + node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d); + if (!node_ptr) { + printk(KERN_ERR "SELinux: could not insert rule.\n"); + rc = -ENOMEM; + goto err; + } + + list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL); + if (!list) { + rc = -ENOMEM; + goto err; + } + + list->node = node_ptr; + if (!data->head) + data->head = list; + else + data->tail->next = list; + data->tail = list; + return 0; + +err: + cond_av_list_destroy(data->head); + data->head = NULL; + return rc; +} + +static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other) +{ + int i, rc; + __le32 buf[1]; + u32 len; + struct cond_insertf_data data; + + *ret_list = NULL; + + len = 0; + rc = next_entry(buf, fp, sizeof(u32)); + if (rc) + return rc; + + len = le32_to_cpu(buf[0]); + if (len == 0) + return 0; + + data.p = p; + data.other = other; + data.head = NULL; + data.tail = NULL; + for (i = 0; i < len; i++) { + rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf, + &data); + if (rc) + return rc; + } + + *ret_list = data.head; + return 0; +} + +static int expr_isvalid(struct policydb *p, struct cond_expr *expr) +{ + if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) { + printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n"); + return 0; + } + + if (expr->bool > p->p_bools.nprim) { + printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n"); + return 0; + } + return 1; +} + +static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp) +{ + __le32 buf[2]; + u32 len, i; + int rc; + struct cond_expr *expr = NULL, *last = NULL; + + rc = next_entry(buf, fp, sizeof(u32)); + if (rc) + return rc; + + node->cur_state = le32_to_cpu(buf[0]); + + len = 0; + rc = next_entry(buf, fp, sizeof(u32)); + if (rc) + return rc; + + /* expr */ + len = le32_to_cpu(buf[0]); + + for (i = 0; i < len; i++) { + rc = next_entry(buf, fp, sizeof(u32) * 2); + if (rc) + goto err; + + rc = -ENOMEM; + expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL); + if (!expr) + goto err; + + expr->expr_type = le32_to_cpu(buf[0]); + expr->bool = le32_to_cpu(buf[1]); + + if (!expr_isvalid(p, expr)) { + rc = -EINVAL; + kfree(expr); + goto err; + } + + if (i == 0) + node->expr = expr; + else + last->next = expr; + last = expr; + } + + rc = cond_read_av_list(p, fp, &node->true_list, NULL); + if (rc) + goto err; + rc = cond_read_av_list(p, fp, &node->false_list, node->true_list); + if (rc) + goto err; + return 0; +err: + cond_node_destroy(node); + return rc; +} + +int cond_read_list(struct policydb *p, void *fp) +{ + struct cond_node *node, *last = NULL; + __le32 buf[1]; + u32 i, len; + int rc; + + rc = next_entry(buf, fp, sizeof buf); + if (rc) + return rc; + + len = le32_to_cpu(buf[0]); + + rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel); + if (rc) + goto err; + + for (i = 0; i < len; i++) { + rc = -ENOMEM; + node = kzalloc(sizeof(struct cond_node), GFP_KERNEL); + if (!node) + goto err; + + rc = cond_read_node(p, node, fp); + if (rc) + goto err; + + if (i == 0) + p->cond_list = node; + else + last->next = node; + last = node; + } + return 0; +err: + cond_list_destroy(p->cond_list); + p->cond_list = NULL; + return rc; +} + +int cond_write_bool(void *vkey, void *datum, void *ptr) +{ + char *key = vkey; + struct cond_bool_datum *booldatum = datum; + struct policy_data *pd = ptr; + void *fp = pd->fp; + __le32 buf[3]; + u32 len; + int rc; + + len = strlen(key); + buf[0] = cpu_to_le32(booldatum->value); + buf[1] = cpu_to_le32(booldatum->state); + buf[2] = cpu_to_le32(len); + rc = put_entry(buf, sizeof(u32), 3, fp); + if (rc) + return rc; + rc = put_entry(key, 1, len, fp); + if (rc) + return rc; + return 0; +} + +/* + * cond_write_cond_av_list doesn't write out the av_list nodes. + * Instead it writes out the key/value pairs from the avtab. This + * is necessary because there is no way to uniquely identifying rules + * in the avtab so it is not possible to associate individual rules + * in the avtab with a conditional without saving them as part of + * the conditional. This means that the avtab with the conditional + * rules will not be saved but will be rebuilt on policy load. + */ +static int cond_write_av_list(struct policydb *p, + struct cond_av_list *list, struct policy_file *fp) +{ + __le32 buf[1]; + struct cond_av_list *cur_list; + u32 len; + int rc; + + len = 0; + for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) + len++; + + buf[0] = cpu_to_le32(len); + rc = put_entry(buf, sizeof(u32), 1, fp); + if (rc) + return rc; + + if (len == 0) + return 0; + + for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) { + rc = avtab_write_item(p, cur_list->node, fp); + if (rc) + return rc; + } + + return 0; +} + +static int cond_write_node(struct policydb *p, struct cond_node *node, + struct policy_file *fp) +{ + struct cond_expr *cur_expr; + __le32 buf[2]; + int rc; + u32 len = 0; + + buf[0] = cpu_to_le32(node->cur_state); + rc = put_entry(buf, sizeof(u32), 1, fp); + if (rc) + return rc; + + for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) + len++; + + buf[0] = cpu_to_le32(len); + rc = put_entry(buf, sizeof(u32), 1, fp); + if (rc) + return rc; + + for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) { + buf[0] = cpu_to_le32(cur_expr->expr_type); + buf[1] = cpu_to_le32(cur_expr->bool); + rc = put_entry(buf, sizeof(u32), 2, fp); + if (rc) + return rc; + } + + rc = cond_write_av_list(p, node->true_list, fp); + if (rc) + return rc; + rc = cond_write_av_list(p, node->false_list, fp); + if (rc) + return rc; + + return 0; +} + +int cond_write_list(struct policydb *p, struct cond_node *list, void *fp) +{ + struct cond_node *cur; + u32 len; + __le32 buf[1]; + int rc; + + len = 0; + for (cur = list; cur != NULL; cur = cur->next) + len++; + buf[0] = cpu_to_le32(len); + rc = put_entry(buf, sizeof(u32), 1, fp); + if (rc) + return rc; + + for (cur = list; cur != NULL; cur = cur->next) { + rc = cond_write_node(p, cur, fp); + if (rc) + return rc; + } + + return 0; +} +/* Determine whether additional permissions are granted by the conditional + * av table, and if so, add them to the result + */ +void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd) +{ + struct avtab_node *node; + + if (!ctab || !key || !avd) + return; + + for (node = avtab_search_node(ctab, key); node; + node = avtab_search_node_next(node, key->specified)) { + if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) == + (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED))) + avd->allowed |= node->datum.data; + if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) == + (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED))) + /* Since a '0' in an auditdeny mask represents a + * permission we do NOT want to audit (dontaudit), we use + * the '&' operand to ensure that all '0's in the mask + * are retained (much unlike the allow and auditallow cases). + */ + avd->auditdeny &= node->datum.data; + if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) == + (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED))) + avd->auditallow |= node->datum.data; + } + return; +} |