summaryrefslogtreecommitdiff
path: root/fs/btrfs
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /fs/btrfs
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'fs/btrfs')
-rw-r--r--fs/btrfs/Kconfig52
-rw-r--r--fs/btrfs/Makefile14
-rw-r--r--fs/btrfs/acl.c273
-rw-r--r--fs/btrfs/async-thread.c707
-rw-r--r--fs/btrfs/async-thread.h119
-rw-r--r--fs/btrfs/backref.c1432
-rw-r--r--fs/btrfs/backref.h68
-rw-r--r--fs/btrfs/btrfs_inode.h205
-rw-r--r--fs/btrfs/check-integrity.c3068
-rw-r--r--fs/btrfs/check-integrity.h36
-rw-r--r--fs/btrfs/compat.h7
-rw-r--r--fs/btrfs/compression.c1038
-rw-r--r--fs/btrfs/compression.h83
-rw-r--r--fs/btrfs/ctree.c4382
-rw-r--r--fs/btrfs/ctree.h3101
-rw-r--r--fs/btrfs/delayed-inode.c1881
-rw-r--r--fs/btrfs/delayed-inode.h145
-rw-r--r--fs/btrfs/delayed-ref.c759
-rw-r--r--fs/btrfs/delayed-ref.h283
-rw-r--r--fs/btrfs/dir-item.c422
-rw-r--r--fs/btrfs/disk-io.c3693
-rw-r--r--fs/btrfs/disk-io.h106
-rw-r--r--fs/btrfs/export.c317
-rw-r--r--fs/btrfs/export.h19
-rw-r--r--fs/btrfs/extent-tree.c8025
-rw-r--r--fs/btrfs/extent_io.c4891
-rw-r--r--fs/btrfs/extent_io.h331
-rw-r--r--fs/btrfs/extent_map.c363
-rw-r--r--fs/btrfs/extent_map.h66
-rw-r--r--fs/btrfs/file-item.c861
-rw-r--r--fs/btrfs/file.c1908
-rw-r--r--fs/btrfs/free-space-cache.c2943
-rw-r--r--fs/btrfs/free-space-cache.h113
-rw-r--r--fs/btrfs/hash.h27
-rw-r--r--fs/btrfs/inode-item.c236
-rw-r--r--fs/btrfs/inode-map.c576
-rw-r--r--fs/btrfs/inode-map.h13
-rw-r--r--fs/btrfs/inode.c7681
-rw-r--r--fs/btrfs/ioctl.c3430
-rw-r--r--fs/btrfs/ioctl.h334
-rw-r--r--fs/btrfs/locking.c267
-rw-r--r--fs/btrfs/locking.h61
-rw-r--r--fs/btrfs/lzo.c427
-rw-r--r--fs/btrfs/ordered-data.c977
-rw-r--r--fs/btrfs/ordered-data.h179
-rw-r--r--fs/btrfs/orphan.c91
-rw-r--r--fs/btrfs/print-tree.c342
-rw-r--r--fs/btrfs/print-tree.h23
-rw-r--r--fs/btrfs/reada.c961
-rw-r--r--fs/btrfs/relocation.c4464
-rw-r--r--fs/btrfs/root-tree.c456
-rw-r--r--fs/btrfs/scrub.c2440
-rw-r--r--fs/btrfs/struct-funcs.c140
-rw-r--r--fs/btrfs/super.c1578
-rw-r--r--fs/btrfs/sysfs.c46
-rw-r--r--fs/btrfs/transaction.c1539
-rw-r--r--fs/btrfs/transaction.h120
-rw-r--r--fs/btrfs/tree-defrag.c145
-rw-r--r--fs/btrfs/tree-log.c3398
-rw-r--r--fs/btrfs/tree-log.h52
-rw-r--r--fs/btrfs/ulist.c220
-rw-r--r--fs/btrfs/ulist.h68
-rw-r--r--fs/btrfs/version.h4
-rw-r--r--fs/btrfs/volumes.c4585
-rw-r--r--fs/btrfs/volumes.h284
-rw-r--r--fs/btrfs/xattr.c429
-rw-r--r--fs/btrfs/xattr.h43
-rw-r--r--fs/btrfs/zlib.c399
68 files changed, 77746 insertions, 0 deletions
diff --git a/fs/btrfs/Kconfig b/fs/btrfs/Kconfig
new file mode 100644
index 00000000..d33f01c0
--- /dev/null
+++ b/fs/btrfs/Kconfig
@@ -0,0 +1,52 @@
+config BTRFS_FS
+ tristate "Btrfs filesystem (EXPERIMENTAL) Unstable disk format"
+ depends on EXPERIMENTAL
+ select LIBCRC32C
+ select ZLIB_INFLATE
+ select ZLIB_DEFLATE
+ select LZO_COMPRESS
+ select LZO_DECOMPRESS
+ help
+ Btrfs is a new filesystem with extents, writable snapshotting,
+ support for multiple devices and many more features.
+
+ Btrfs is highly experimental, and THE DISK FORMAT IS NOT YET
+ FINALIZED. You should say N here unless you are interested in
+ testing Btrfs with non-critical data.
+
+ To compile this file system support as a module, choose M here. The
+ module will be called btrfs.
+
+ If unsure, say N.
+
+config BTRFS_FS_POSIX_ACL
+ bool "Btrfs POSIX Access Control Lists"
+ depends on BTRFS_FS
+ select FS_POSIX_ACL
+ help
+ POSIX Access Control Lists (ACLs) support permissions for users and
+ groups beyond the owner/group/world scheme.
+
+ To learn more about Access Control Lists, visit the POSIX ACLs for
+ Linux website <http://acl.bestbits.at/>.
+
+ If you don't know what Access Control Lists are, say N
+
+config BTRFS_FS_CHECK_INTEGRITY
+ bool "Btrfs with integrity check tool compiled in (DANGEROUS)"
+ depends on BTRFS_FS
+ help
+ Adds code that examines all block write requests (including
+ writes of the super block). The goal is to verify that the
+ state of the filesystem on disk is always consistent, i.e.,
+ after a power-loss or kernel panic event the filesystem is
+ in a consistent state.
+
+ If the integrity check tool is included and activated in
+ the mount options, plenty of kernel memory is used, and
+ plenty of additional CPU cycles are spent. Enabling this
+ functionality is not intended for normal use.
+
+ In most cases, unless you are a btrfs developer who needs
+ to verify the integrity of (super)-block write requests
+ during the run of a regression test, say N
diff --git a/fs/btrfs/Makefile b/fs/btrfs/Makefile
new file mode 100644
index 00000000..0c4fa2be
--- /dev/null
+++ b/fs/btrfs/Makefile
@@ -0,0 +1,14 @@
+
+obj-$(CONFIG_BTRFS_FS) := btrfs.o
+
+btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \
+ file-item.o inode-item.o inode-map.o disk-io.o \
+ transaction.o inode.o file.o tree-defrag.o \
+ extent_map.o sysfs.o struct-funcs.o xattr.o ordered-data.o \
+ extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \
+ export.o tree-log.o free-space-cache.o zlib.o lzo.o \
+ compression.o delayed-ref.o relocation.o delayed-inode.o scrub.o \
+ reada.o backref.o ulist.o
+
+btrfs-$(CONFIG_BTRFS_FS_POSIX_ACL) += acl.o
+btrfs-$(CONFIG_BTRFS_FS_CHECK_INTEGRITY) += check-integrity.o
diff --git a/fs/btrfs/acl.c b/fs/btrfs/acl.c
new file mode 100644
index 00000000..89b156d8
--- /dev/null
+++ b/fs/btrfs/acl.c
@@ -0,0 +1,273 @@
+/*
+ * Copyright (C) 2007 Red Hat. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/fs.h>
+#include <linux/string.h>
+#include <linux/xattr.h>
+#include <linux/posix_acl_xattr.h>
+#include <linux/posix_acl.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+
+#include "ctree.h"
+#include "btrfs_inode.h"
+#include "xattr.h"
+
+struct posix_acl *btrfs_get_acl(struct inode *inode, int type)
+{
+ int size;
+ const char *name;
+ char *value = NULL;
+ struct posix_acl *acl;
+
+ if (!IS_POSIXACL(inode))
+ return NULL;
+
+ acl = get_cached_acl(inode, type);
+ if (acl != ACL_NOT_CACHED)
+ return acl;
+
+ switch (type) {
+ case ACL_TYPE_ACCESS:
+ name = POSIX_ACL_XATTR_ACCESS;
+ break;
+ case ACL_TYPE_DEFAULT:
+ name = POSIX_ACL_XATTR_DEFAULT;
+ break;
+ default:
+ BUG();
+ }
+
+ size = __btrfs_getxattr(inode, name, "", 0);
+ if (size > 0) {
+ value = kzalloc(size, GFP_NOFS);
+ if (!value)
+ return ERR_PTR(-ENOMEM);
+ size = __btrfs_getxattr(inode, name, value, size);
+ }
+ if (size > 0) {
+ acl = posix_acl_from_xattr(value, size);
+ } else if (size == -ENOENT || size == -ENODATA || size == 0) {
+ /* FIXME, who returns -ENOENT? I think nobody */
+ acl = NULL;
+ } else {
+ acl = ERR_PTR(-EIO);
+ }
+ kfree(value);
+
+ if (!IS_ERR(acl))
+ set_cached_acl(inode, type, acl);
+
+ return acl;
+}
+
+static int btrfs_xattr_acl_get(struct dentry *dentry, const char *name,
+ void *value, size_t size, int type)
+{
+ struct posix_acl *acl;
+ int ret = 0;
+
+ if (!IS_POSIXACL(dentry->d_inode))
+ return -EOPNOTSUPP;
+
+ acl = btrfs_get_acl(dentry->d_inode, type);
+
+ if (IS_ERR(acl))
+ return PTR_ERR(acl);
+ if (acl == NULL)
+ return -ENODATA;
+ ret = posix_acl_to_xattr(acl, value, size);
+ posix_acl_release(acl);
+
+ return ret;
+}
+
+/*
+ * Needs to be called with fs_mutex held
+ */
+static int btrfs_set_acl(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct posix_acl *acl, int type)
+{
+ int ret, size = 0;
+ const char *name;
+ char *value = NULL;
+
+ if (acl) {
+ ret = posix_acl_valid(acl);
+ if (ret < 0)
+ return ret;
+ ret = 0;
+ }
+
+ switch (type) {
+ case ACL_TYPE_ACCESS:
+ name = POSIX_ACL_XATTR_ACCESS;
+ if (acl) {
+ ret = posix_acl_equiv_mode(acl, &inode->i_mode);
+ if (ret < 0)
+ return ret;
+ }
+ ret = 0;
+ break;
+ case ACL_TYPE_DEFAULT:
+ if (!S_ISDIR(inode->i_mode))
+ return acl ? -EINVAL : 0;
+ name = POSIX_ACL_XATTR_DEFAULT;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (acl) {
+ size = posix_acl_xattr_size(acl->a_count);
+ value = kmalloc(size, GFP_NOFS);
+ if (!value) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = posix_acl_to_xattr(acl, value, size);
+ if (ret < 0)
+ goto out;
+ }
+
+ ret = __btrfs_setxattr(trans, inode, name, value, size, 0);
+out:
+ kfree(value);
+
+ if (!ret)
+ set_cached_acl(inode, type, acl);
+
+ return ret;
+}
+
+static int btrfs_xattr_acl_set(struct dentry *dentry, const char *name,
+ const void *value, size_t size, int flags, int type)
+{
+ int ret;
+ struct posix_acl *acl = NULL;
+
+ if (!inode_owner_or_capable(dentry->d_inode))
+ return -EPERM;
+
+ if (!IS_POSIXACL(dentry->d_inode))
+ return -EOPNOTSUPP;
+
+ if (value) {
+ acl = posix_acl_from_xattr(value, size);
+ if (IS_ERR(acl))
+ return PTR_ERR(acl);
+
+ if (acl) {
+ ret = posix_acl_valid(acl);
+ if (ret)
+ goto out;
+ }
+ }
+
+ ret = btrfs_set_acl(NULL, dentry->d_inode, acl, type);
+out:
+ posix_acl_release(acl);
+
+ return ret;
+}
+
+/*
+ * btrfs_init_acl is already generally called under fs_mutex, so the locking
+ * stuff has been fixed to work with that. If the locking stuff changes, we
+ * need to re-evaluate the acl locking stuff.
+ */
+int btrfs_init_acl(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *dir)
+{
+ struct posix_acl *acl = NULL;
+ int ret = 0;
+
+ /* this happens with subvols */
+ if (!dir)
+ return 0;
+
+ if (!S_ISLNK(inode->i_mode)) {
+ if (IS_POSIXACL(dir)) {
+ acl = btrfs_get_acl(dir, ACL_TYPE_DEFAULT);
+ if (IS_ERR(acl))
+ return PTR_ERR(acl);
+ }
+
+ if (!acl)
+ inode->i_mode &= ~current_umask();
+ }
+
+ if (IS_POSIXACL(dir) && acl) {
+ if (S_ISDIR(inode->i_mode)) {
+ ret = btrfs_set_acl(trans, inode, acl,
+ ACL_TYPE_DEFAULT);
+ if (ret)
+ goto failed;
+ }
+ ret = posix_acl_create(&acl, GFP_NOFS, &inode->i_mode);
+ if (ret < 0)
+ return ret;
+
+ if (ret > 0) {
+ /* we need an acl */
+ ret = btrfs_set_acl(trans, inode, acl, ACL_TYPE_ACCESS);
+ }
+ }
+failed:
+ posix_acl_release(acl);
+
+ return ret;
+}
+
+int btrfs_acl_chmod(struct inode *inode)
+{
+ struct posix_acl *acl;
+ int ret = 0;
+
+ if (S_ISLNK(inode->i_mode))
+ return -EOPNOTSUPP;
+
+ if (!IS_POSIXACL(inode))
+ return 0;
+
+ acl = btrfs_get_acl(inode, ACL_TYPE_ACCESS);
+ if (IS_ERR_OR_NULL(acl))
+ return PTR_ERR(acl);
+
+ ret = posix_acl_chmod(&acl, GFP_KERNEL, inode->i_mode);
+ if (ret)
+ return ret;
+ ret = btrfs_set_acl(NULL, inode, acl, ACL_TYPE_ACCESS);
+ posix_acl_release(acl);
+ return ret;
+}
+
+const struct xattr_handler btrfs_xattr_acl_default_handler = {
+ .prefix = POSIX_ACL_XATTR_DEFAULT,
+ .flags = ACL_TYPE_DEFAULT,
+ .get = btrfs_xattr_acl_get,
+ .set = btrfs_xattr_acl_set,
+};
+
+const struct xattr_handler btrfs_xattr_acl_access_handler = {
+ .prefix = POSIX_ACL_XATTR_ACCESS,
+ .flags = ACL_TYPE_ACCESS,
+ .get = btrfs_xattr_acl_get,
+ .set = btrfs_xattr_acl_set,
+};
diff --git a/fs/btrfs/async-thread.c b/fs/btrfs/async-thread.c
new file mode 100644
index 00000000..42704149
--- /dev/null
+++ b/fs/btrfs/async-thread.c
@@ -0,0 +1,707 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kthread.h>
+#include <linux/slab.h>
+#include <linux/list.h>
+#include <linux/spinlock.h>
+#include <linux/freezer.h>
+#include "async-thread.h"
+
+#define WORK_QUEUED_BIT 0
+#define WORK_DONE_BIT 1
+#define WORK_ORDER_DONE_BIT 2
+#define WORK_HIGH_PRIO_BIT 3
+
+/*
+ * container for the kthread task pointer and the list of pending work
+ * One of these is allocated per thread.
+ */
+struct btrfs_worker_thread {
+ /* pool we belong to */
+ struct btrfs_workers *workers;
+
+ /* list of struct btrfs_work that are waiting for service */
+ struct list_head pending;
+ struct list_head prio_pending;
+
+ /* list of worker threads from struct btrfs_workers */
+ struct list_head worker_list;
+
+ /* kthread */
+ struct task_struct *task;
+
+ /* number of things on the pending list */
+ atomic_t num_pending;
+
+ /* reference counter for this struct */
+ atomic_t refs;
+
+ unsigned long sequence;
+
+ /* protects the pending list. */
+ spinlock_t lock;
+
+ /* set to non-zero when this thread is already awake and kicking */
+ int working;
+
+ /* are we currently idle */
+ int idle;
+};
+
+static int __btrfs_start_workers(struct btrfs_workers *workers);
+
+/*
+ * btrfs_start_workers uses kthread_run, which can block waiting for memory
+ * for a very long time. It will actually throttle on page writeback,
+ * and so it may not make progress until after our btrfs worker threads
+ * process all of the pending work structs in their queue
+ *
+ * This means we can't use btrfs_start_workers from inside a btrfs worker
+ * thread that is used as part of cleaning dirty memory, which pretty much
+ * involves all of the worker threads.
+ *
+ * Instead we have a helper queue who never has more than one thread
+ * where we scheduler thread start operations. This worker_start struct
+ * is used to contain the work and hold a pointer to the queue that needs
+ * another worker.
+ */
+struct worker_start {
+ struct btrfs_work work;
+ struct btrfs_workers *queue;
+};
+
+static void start_new_worker_func(struct btrfs_work *work)
+{
+ struct worker_start *start;
+ start = container_of(work, struct worker_start, work);
+ __btrfs_start_workers(start->queue);
+ kfree(start);
+}
+
+/*
+ * helper function to move a thread onto the idle list after it
+ * has finished some requests.
+ */
+static void check_idle_worker(struct btrfs_worker_thread *worker)
+{
+ if (!worker->idle && atomic_read(&worker->num_pending) <
+ worker->workers->idle_thresh / 2) {
+ unsigned long flags;
+ spin_lock_irqsave(&worker->workers->lock, flags);
+ worker->idle = 1;
+
+ /* the list may be empty if the worker is just starting */
+ if (!list_empty(&worker->worker_list)) {
+ list_move(&worker->worker_list,
+ &worker->workers->idle_list);
+ }
+ spin_unlock_irqrestore(&worker->workers->lock, flags);
+ }
+}
+
+/*
+ * helper function to move a thread off the idle list after new
+ * pending work is added.
+ */
+static void check_busy_worker(struct btrfs_worker_thread *worker)
+{
+ if (worker->idle && atomic_read(&worker->num_pending) >=
+ worker->workers->idle_thresh) {
+ unsigned long flags;
+ spin_lock_irqsave(&worker->workers->lock, flags);
+ worker->idle = 0;
+
+ if (!list_empty(&worker->worker_list)) {
+ list_move_tail(&worker->worker_list,
+ &worker->workers->worker_list);
+ }
+ spin_unlock_irqrestore(&worker->workers->lock, flags);
+ }
+}
+
+static void check_pending_worker_creates(struct btrfs_worker_thread *worker)
+{
+ struct btrfs_workers *workers = worker->workers;
+ struct worker_start *start;
+ unsigned long flags;
+
+ rmb();
+ if (!workers->atomic_start_pending)
+ return;
+
+ start = kzalloc(sizeof(*start), GFP_NOFS);
+ if (!start)
+ return;
+
+ start->work.func = start_new_worker_func;
+ start->queue = workers;
+
+ spin_lock_irqsave(&workers->lock, flags);
+ if (!workers->atomic_start_pending)
+ goto out;
+
+ workers->atomic_start_pending = 0;
+ if (workers->num_workers + workers->num_workers_starting >=
+ workers->max_workers)
+ goto out;
+
+ workers->num_workers_starting += 1;
+ spin_unlock_irqrestore(&workers->lock, flags);
+ btrfs_queue_worker(workers->atomic_worker_start, &start->work);
+ return;
+
+out:
+ kfree(start);
+ spin_unlock_irqrestore(&workers->lock, flags);
+}
+
+static noinline void run_ordered_completions(struct btrfs_workers *workers,
+ struct btrfs_work *work)
+{
+ if (!workers->ordered)
+ return;
+
+ set_bit(WORK_DONE_BIT, &work->flags);
+
+ spin_lock(&workers->order_lock);
+
+ while (1) {
+ if (!list_empty(&workers->prio_order_list)) {
+ work = list_entry(workers->prio_order_list.next,
+ struct btrfs_work, order_list);
+ } else if (!list_empty(&workers->order_list)) {
+ work = list_entry(workers->order_list.next,
+ struct btrfs_work, order_list);
+ } else {
+ break;
+ }
+ if (!test_bit(WORK_DONE_BIT, &work->flags))
+ break;
+
+ /* we are going to call the ordered done function, but
+ * we leave the work item on the list as a barrier so
+ * that later work items that are done don't have their
+ * functions called before this one returns
+ */
+ if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
+ break;
+
+ spin_unlock(&workers->order_lock);
+
+ work->ordered_func(work);
+
+ /* now take the lock again and call the freeing code */
+ spin_lock(&workers->order_lock);
+ list_del(&work->order_list);
+ work->ordered_free(work);
+ }
+
+ spin_unlock(&workers->order_lock);
+}
+
+static void put_worker(struct btrfs_worker_thread *worker)
+{
+ if (atomic_dec_and_test(&worker->refs))
+ kfree(worker);
+}
+
+static int try_worker_shutdown(struct btrfs_worker_thread *worker)
+{
+ int freeit = 0;
+
+ spin_lock_irq(&worker->lock);
+ spin_lock(&worker->workers->lock);
+ if (worker->workers->num_workers > 1 &&
+ worker->idle &&
+ !worker->working &&
+ !list_empty(&worker->worker_list) &&
+ list_empty(&worker->prio_pending) &&
+ list_empty(&worker->pending) &&
+ atomic_read(&worker->num_pending) == 0) {
+ freeit = 1;
+ list_del_init(&worker->worker_list);
+ worker->workers->num_workers--;
+ }
+ spin_unlock(&worker->workers->lock);
+ spin_unlock_irq(&worker->lock);
+
+ if (freeit)
+ put_worker(worker);
+ return freeit;
+}
+
+static struct btrfs_work *get_next_work(struct btrfs_worker_thread *worker,
+ struct list_head *prio_head,
+ struct list_head *head)
+{
+ struct btrfs_work *work = NULL;
+ struct list_head *cur = NULL;
+
+ if(!list_empty(prio_head))
+ cur = prio_head->next;
+
+ smp_mb();
+ if (!list_empty(&worker->prio_pending))
+ goto refill;
+
+ if (!list_empty(head))
+ cur = head->next;
+
+ if (cur)
+ goto out;
+
+refill:
+ spin_lock_irq(&worker->lock);
+ list_splice_tail_init(&worker->prio_pending, prio_head);
+ list_splice_tail_init(&worker->pending, head);
+
+ if (!list_empty(prio_head))
+ cur = prio_head->next;
+ else if (!list_empty(head))
+ cur = head->next;
+ spin_unlock_irq(&worker->lock);
+
+ if (!cur)
+ goto out_fail;
+
+out:
+ work = list_entry(cur, struct btrfs_work, list);
+
+out_fail:
+ return work;
+}
+
+/*
+ * main loop for servicing work items
+ */
+static int worker_loop(void *arg)
+{
+ struct btrfs_worker_thread *worker = arg;
+ struct list_head head;
+ struct list_head prio_head;
+ struct btrfs_work *work;
+
+ INIT_LIST_HEAD(&head);
+ INIT_LIST_HEAD(&prio_head);
+
+ do {
+again:
+ while (1) {
+
+
+ work = get_next_work(worker, &prio_head, &head);
+ if (!work)
+ break;
+
+ list_del(&work->list);
+ clear_bit(WORK_QUEUED_BIT, &work->flags);
+
+ work->worker = worker;
+
+ work->func(work);
+
+ atomic_dec(&worker->num_pending);
+ /*
+ * unless this is an ordered work queue,
+ * 'work' was probably freed by func above.
+ */
+ run_ordered_completions(worker->workers, work);
+
+ check_pending_worker_creates(worker);
+ cond_resched();
+ }
+
+ spin_lock_irq(&worker->lock);
+ check_idle_worker(worker);
+
+ if (freezing(current)) {
+ worker->working = 0;
+ spin_unlock_irq(&worker->lock);
+ try_to_freeze();
+ } else {
+ spin_unlock_irq(&worker->lock);
+ if (!kthread_should_stop()) {
+ cpu_relax();
+ /*
+ * we've dropped the lock, did someone else
+ * jump_in?
+ */
+ smp_mb();
+ if (!list_empty(&worker->pending) ||
+ !list_empty(&worker->prio_pending))
+ continue;
+
+ /*
+ * this short schedule allows more work to
+ * come in without the queue functions
+ * needing to go through wake_up_process()
+ *
+ * worker->working is still 1, so nobody
+ * is going to try and wake us up
+ */
+ schedule_timeout(1);
+ smp_mb();
+ if (!list_empty(&worker->pending) ||
+ !list_empty(&worker->prio_pending))
+ continue;
+
+ if (kthread_should_stop())
+ break;
+
+ /* still no more work?, sleep for real */
+ spin_lock_irq(&worker->lock);
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (!list_empty(&worker->pending) ||
+ !list_empty(&worker->prio_pending)) {
+ spin_unlock_irq(&worker->lock);
+ set_current_state(TASK_RUNNING);
+ goto again;
+ }
+
+ /*
+ * this makes sure we get a wakeup when someone
+ * adds something new to the queue
+ */
+ worker->working = 0;
+ spin_unlock_irq(&worker->lock);
+
+ if (!kthread_should_stop()) {
+ schedule_timeout(HZ * 120);
+ if (!worker->working &&
+ try_worker_shutdown(worker)) {
+ return 0;
+ }
+ }
+ }
+ __set_current_state(TASK_RUNNING);
+ }
+ } while (!kthread_should_stop());
+ return 0;
+}
+
+/*
+ * this will wait for all the worker threads to shutdown
+ */
+void btrfs_stop_workers(struct btrfs_workers *workers)
+{
+ struct list_head *cur;
+ struct btrfs_worker_thread *worker;
+ int can_stop;
+
+ spin_lock_irq(&workers->lock);
+ list_splice_init(&workers->idle_list, &workers->worker_list);
+ while (!list_empty(&workers->worker_list)) {
+ cur = workers->worker_list.next;
+ worker = list_entry(cur, struct btrfs_worker_thread,
+ worker_list);
+
+ atomic_inc(&worker->refs);
+ workers->num_workers -= 1;
+ if (!list_empty(&worker->worker_list)) {
+ list_del_init(&worker->worker_list);
+ put_worker(worker);
+ can_stop = 1;
+ } else
+ can_stop = 0;
+ spin_unlock_irq(&workers->lock);
+ if (can_stop)
+ kthread_stop(worker->task);
+ spin_lock_irq(&workers->lock);
+ put_worker(worker);
+ }
+ spin_unlock_irq(&workers->lock);
+}
+
+/*
+ * simple init on struct btrfs_workers
+ */
+void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
+ struct btrfs_workers *async_helper)
+{
+ workers->num_workers = 0;
+ workers->num_workers_starting = 0;
+ INIT_LIST_HEAD(&workers->worker_list);
+ INIT_LIST_HEAD(&workers->idle_list);
+ INIT_LIST_HEAD(&workers->order_list);
+ INIT_LIST_HEAD(&workers->prio_order_list);
+ spin_lock_init(&workers->lock);
+ spin_lock_init(&workers->order_lock);
+ workers->max_workers = max;
+ workers->idle_thresh = 32;
+ workers->name = name;
+ workers->ordered = 0;
+ workers->atomic_start_pending = 0;
+ workers->atomic_worker_start = async_helper;
+}
+
+/*
+ * starts new worker threads. This does not enforce the max worker
+ * count in case you need to temporarily go past it.
+ */
+static int __btrfs_start_workers(struct btrfs_workers *workers)
+{
+ struct btrfs_worker_thread *worker;
+ int ret = 0;
+
+ worker = kzalloc(sizeof(*worker), GFP_NOFS);
+ if (!worker) {
+ ret = -ENOMEM;
+ goto fail;
+ }
+
+ INIT_LIST_HEAD(&worker->pending);
+ INIT_LIST_HEAD(&worker->prio_pending);
+ INIT_LIST_HEAD(&worker->worker_list);
+ spin_lock_init(&worker->lock);
+
+ atomic_set(&worker->num_pending, 0);
+ atomic_set(&worker->refs, 1);
+ worker->workers = workers;
+ worker->task = kthread_run(worker_loop, worker,
+ "btrfs-%s-%d", workers->name,
+ workers->num_workers + 1);
+ if (IS_ERR(worker->task)) {
+ ret = PTR_ERR(worker->task);
+ kfree(worker);
+ goto fail;
+ }
+ spin_lock_irq(&workers->lock);
+ list_add_tail(&worker->worker_list, &workers->idle_list);
+ worker->idle = 1;
+ workers->num_workers++;
+ workers->num_workers_starting--;
+ WARN_ON(workers->num_workers_starting < 0);
+ spin_unlock_irq(&workers->lock);
+
+ return 0;
+fail:
+ spin_lock_irq(&workers->lock);
+ workers->num_workers_starting--;
+ spin_unlock_irq(&workers->lock);
+ return ret;
+}
+
+int btrfs_start_workers(struct btrfs_workers *workers)
+{
+ spin_lock_irq(&workers->lock);
+ workers->num_workers_starting++;
+ spin_unlock_irq(&workers->lock);
+ return __btrfs_start_workers(workers);
+}
+
+/*
+ * run through the list and find a worker thread that doesn't have a lot
+ * to do right now. This can return null if we aren't yet at the thread
+ * count limit and all of the threads are busy.
+ */
+static struct btrfs_worker_thread *next_worker(struct btrfs_workers *workers)
+{
+ struct btrfs_worker_thread *worker;
+ struct list_head *next;
+ int enforce_min;
+
+ enforce_min = (workers->num_workers + workers->num_workers_starting) <
+ workers->max_workers;
+
+ /*
+ * if we find an idle thread, don't move it to the end of the
+ * idle list. This improves the chance that the next submission
+ * will reuse the same thread, and maybe catch it while it is still
+ * working
+ */
+ if (!list_empty(&workers->idle_list)) {
+ next = workers->idle_list.next;
+ worker = list_entry(next, struct btrfs_worker_thread,
+ worker_list);
+ return worker;
+ }
+ if (enforce_min || list_empty(&workers->worker_list))
+ return NULL;
+
+ /*
+ * if we pick a busy task, move the task to the end of the list.
+ * hopefully this will keep things somewhat evenly balanced.
+ * Do the move in batches based on the sequence number. This groups
+ * requests submitted at roughly the same time onto the same worker.
+ */
+ next = workers->worker_list.next;
+ worker = list_entry(next, struct btrfs_worker_thread, worker_list);
+ worker->sequence++;
+
+ if (worker->sequence % workers->idle_thresh == 0)
+ list_move_tail(next, &workers->worker_list);
+ return worker;
+}
+
+/*
+ * selects a worker thread to take the next job. This will either find
+ * an idle worker, start a new worker up to the max count, or just return
+ * one of the existing busy workers.
+ */
+static struct btrfs_worker_thread *find_worker(struct btrfs_workers *workers)
+{
+ struct btrfs_worker_thread *worker;
+ unsigned long flags;
+ struct list_head *fallback;
+ int ret;
+
+ spin_lock_irqsave(&workers->lock, flags);
+again:
+ worker = next_worker(workers);
+
+ if (!worker) {
+ if (workers->num_workers + workers->num_workers_starting >=
+ workers->max_workers) {
+ goto fallback;
+ } else if (workers->atomic_worker_start) {
+ workers->atomic_start_pending = 1;
+ goto fallback;
+ } else {
+ workers->num_workers_starting++;
+ spin_unlock_irqrestore(&workers->lock, flags);
+ /* we're below the limit, start another worker */
+ ret = __btrfs_start_workers(workers);
+ spin_lock_irqsave(&workers->lock, flags);
+ if (ret)
+ goto fallback;
+ goto again;
+ }
+ }
+ goto found;
+
+fallback:
+ fallback = NULL;
+ /*
+ * we have failed to find any workers, just
+ * return the first one we can find.
+ */
+ if (!list_empty(&workers->worker_list))
+ fallback = workers->worker_list.next;
+ if (!list_empty(&workers->idle_list))
+ fallback = workers->idle_list.next;
+ BUG_ON(!fallback);
+ worker = list_entry(fallback,
+ struct btrfs_worker_thread, worker_list);
+found:
+ /*
+ * this makes sure the worker doesn't exit before it is placed
+ * onto a busy/idle list
+ */
+ atomic_inc(&worker->num_pending);
+ spin_unlock_irqrestore(&workers->lock, flags);
+ return worker;
+}
+
+/*
+ * btrfs_requeue_work just puts the work item back on the tail of the list
+ * it was taken from. It is intended for use with long running work functions
+ * that make some progress and want to give the cpu up for others.
+ */
+void btrfs_requeue_work(struct btrfs_work *work)
+{
+ struct btrfs_worker_thread *worker = work->worker;
+ unsigned long flags;
+ int wake = 0;
+
+ if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
+ return;
+
+ spin_lock_irqsave(&worker->lock, flags);
+ if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
+ list_add_tail(&work->list, &worker->prio_pending);
+ else
+ list_add_tail(&work->list, &worker->pending);
+ atomic_inc(&worker->num_pending);
+
+ /* by definition we're busy, take ourselves off the idle
+ * list
+ */
+ if (worker->idle) {
+ spin_lock(&worker->workers->lock);
+ worker->idle = 0;
+ list_move_tail(&worker->worker_list,
+ &worker->workers->worker_list);
+ spin_unlock(&worker->workers->lock);
+ }
+ if (!worker->working) {
+ wake = 1;
+ worker->working = 1;
+ }
+
+ if (wake)
+ wake_up_process(worker->task);
+ spin_unlock_irqrestore(&worker->lock, flags);
+}
+
+void btrfs_set_work_high_prio(struct btrfs_work *work)
+{
+ set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
+}
+
+/*
+ * places a struct btrfs_work into the pending queue of one of the kthreads
+ */
+void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work)
+{
+ struct btrfs_worker_thread *worker;
+ unsigned long flags;
+ int wake = 0;
+
+ /* don't requeue something already on a list */
+ if (test_and_set_bit(WORK_QUEUED_BIT, &work->flags))
+ return;
+
+ worker = find_worker(workers);
+ if (workers->ordered) {
+ /*
+ * you're not allowed to do ordered queues from an
+ * interrupt handler
+ */
+ spin_lock(&workers->order_lock);
+ if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags)) {
+ list_add_tail(&work->order_list,
+ &workers->prio_order_list);
+ } else {
+ list_add_tail(&work->order_list, &workers->order_list);
+ }
+ spin_unlock(&workers->order_lock);
+ } else {
+ INIT_LIST_HEAD(&work->order_list);
+ }
+
+ spin_lock_irqsave(&worker->lock, flags);
+
+ if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags))
+ list_add_tail(&work->list, &worker->prio_pending);
+ else
+ list_add_tail(&work->list, &worker->pending);
+ check_busy_worker(worker);
+
+ /*
+ * avoid calling into wake_up_process if this thread has already
+ * been kicked
+ */
+ if (!worker->working)
+ wake = 1;
+ worker->working = 1;
+
+ if (wake)
+ wake_up_process(worker->task);
+ spin_unlock_irqrestore(&worker->lock, flags);
+}
diff --git a/fs/btrfs/async-thread.h b/fs/btrfs/async-thread.h
new file mode 100644
index 00000000..063698b9
--- /dev/null
+++ b/fs/btrfs/async-thread.h
@@ -0,0 +1,119 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_ASYNC_THREAD_
+#define __BTRFS_ASYNC_THREAD_
+
+struct btrfs_worker_thread;
+
+/*
+ * This is similar to a workqueue, but it is meant to spread the operations
+ * across all available cpus instead of just the CPU that was used to
+ * queue the work. There is also some batching introduced to try and
+ * cut down on context switches.
+ *
+ * By default threads are added on demand up to 2 * the number of cpus.
+ * Changing struct btrfs_workers->max_workers is one way to prevent
+ * demand creation of kthreads.
+ *
+ * the basic model of these worker threads is to embed a btrfs_work
+ * structure in your own data struct, and use container_of in a
+ * work function to get back to your data struct.
+ */
+struct btrfs_work {
+ /*
+ * func should be set to the function you want called
+ * your work struct is passed as the only arg
+ *
+ * ordered_func must be set for work sent to an ordered work queue,
+ * and it is called to complete a given work item in the same
+ * order they were sent to the queue.
+ */
+ void (*func)(struct btrfs_work *work);
+ void (*ordered_func)(struct btrfs_work *work);
+ void (*ordered_free)(struct btrfs_work *work);
+
+ /*
+ * flags should be set to zero. It is used to make sure the
+ * struct is only inserted once into the list.
+ */
+ unsigned long flags;
+
+ /* don't touch these */
+ struct btrfs_worker_thread *worker;
+ struct list_head list;
+ struct list_head order_list;
+};
+
+struct btrfs_workers {
+ /* current number of running workers */
+ int num_workers;
+
+ int num_workers_starting;
+
+ /* max number of workers allowed. changed by btrfs_start_workers */
+ int max_workers;
+
+ /* once a worker has this many requests or fewer, it is idle */
+ int idle_thresh;
+
+ /* force completions in the order they were queued */
+ int ordered;
+
+ /* more workers required, but in an interrupt handler */
+ int atomic_start_pending;
+
+ /*
+ * are we allowed to sleep while starting workers or are we required
+ * to start them at a later time? If we can't sleep, this indicates
+ * which queue we need to use to schedule thread creation.
+ */
+ struct btrfs_workers *atomic_worker_start;
+
+ /* list with all the work threads. The workers on the idle thread
+ * may be actively servicing jobs, but they haven't yet hit the
+ * idle thresh limit above.
+ */
+ struct list_head worker_list;
+ struct list_head idle_list;
+
+ /*
+ * when operating in ordered mode, this maintains the list
+ * of work items waiting for completion
+ */
+ struct list_head order_list;
+ struct list_head prio_order_list;
+
+ /* lock for finding the next worker thread to queue on */
+ spinlock_t lock;
+
+ /* lock for the ordered lists */
+ spinlock_t order_lock;
+
+ /* extra name for this worker, used for current->name */
+ char *name;
+};
+
+void btrfs_queue_worker(struct btrfs_workers *workers, struct btrfs_work *work);
+int btrfs_start_workers(struct btrfs_workers *workers);
+void btrfs_stop_workers(struct btrfs_workers *workers);
+void btrfs_init_workers(struct btrfs_workers *workers, char *name, int max,
+ struct btrfs_workers *async_starter);
+void btrfs_requeue_work(struct btrfs_work *work);
+void btrfs_set_work_high_prio(struct btrfs_work *work);
+#endif
diff --git a/fs/btrfs/backref.c b/fs/btrfs/backref.c
new file mode 100644
index 00000000..bcec0675
--- /dev/null
+++ b/fs/btrfs/backref.c
@@ -0,0 +1,1432 @@
+/*
+ * Copyright (C) 2011 STRATO. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include "ctree.h"
+#include "disk-io.h"
+#include "backref.h"
+#include "ulist.h"
+#include "transaction.h"
+#include "delayed-ref.h"
+#include "locking.h"
+
+/*
+ * this structure records all encountered refs on the way up to the root
+ */
+struct __prelim_ref {
+ struct list_head list;
+ u64 root_id;
+ struct btrfs_key key;
+ int level;
+ int count;
+ u64 parent;
+ u64 wanted_disk_byte;
+};
+
+static int __add_prelim_ref(struct list_head *head, u64 root_id,
+ struct btrfs_key *key, int level, u64 parent,
+ u64 wanted_disk_byte, int count)
+{
+ struct __prelim_ref *ref;
+
+ /* in case we're adding delayed refs, we're holding the refs spinlock */
+ ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
+ if (!ref)
+ return -ENOMEM;
+
+ ref->root_id = root_id;
+ if (key)
+ ref->key = *key;
+ else
+ memset(&ref->key, 0, sizeof(ref->key));
+
+ ref->level = level;
+ ref->count = count;
+ ref->parent = parent;
+ ref->wanted_disk_byte = wanted_disk_byte;
+ list_add_tail(&ref->list, head);
+
+ return 0;
+}
+
+static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
+ struct ulist *parents,
+ struct extent_buffer *eb, int level,
+ u64 wanted_objectid, u64 wanted_disk_byte)
+{
+ int ret;
+ int slot;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_key key;
+ u64 disk_byte;
+
+add_parent:
+ ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
+ if (ret < 0)
+ return ret;
+
+ if (level != 0)
+ return 0;
+
+ /*
+ * if the current leaf is full with EXTENT_DATA items, we must
+ * check the next one if that holds a reference as well.
+ * ref->count cannot be used to skip this check.
+ * repeat this until we don't find any additional EXTENT_DATA items.
+ */
+ while (1) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ return ret;
+ if (ret)
+ return 0;
+
+ eb = path->nodes[0];
+ for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
+ btrfs_item_key_to_cpu(eb, &key, slot);
+ if (key.objectid != wanted_objectid ||
+ key.type != BTRFS_EXTENT_DATA_KEY)
+ return 0;
+ fi = btrfs_item_ptr(eb, slot,
+ struct btrfs_file_extent_item);
+ disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
+ if (disk_byte == wanted_disk_byte)
+ goto add_parent;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * resolve an indirect backref in the form (root_id, key, level)
+ * to a logical address
+ */
+static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
+ int search_commit_root,
+ struct __prelim_ref *ref,
+ struct ulist *parents)
+{
+ struct btrfs_path *path;
+ struct btrfs_root *root;
+ struct btrfs_key root_key;
+ struct btrfs_key key = {0};
+ struct extent_buffer *eb;
+ int ret = 0;
+ int root_level;
+ int level = ref->level;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->search_commit_root = !!search_commit_root;
+
+ root_key.objectid = ref->root_id;
+ root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root_key.offset = (u64)-1;
+ root = btrfs_read_fs_root_no_name(fs_info, &root_key);
+ if (IS_ERR(root)) {
+ ret = PTR_ERR(root);
+ goto out;
+ }
+
+ rcu_read_lock();
+ root_level = btrfs_header_level(root->node);
+ rcu_read_unlock();
+
+ if (root_level + 1 == level)
+ goto out;
+
+ path->lowest_level = level;
+ ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0);
+ pr_debug("search slot in root %llu (level %d, ref count %d) returned "
+ "%d for key (%llu %u %llu)\n",
+ (unsigned long long)ref->root_id, level, ref->count, ret,
+ (unsigned long long)ref->key.objectid, ref->key.type,
+ (unsigned long long)ref->key.offset);
+ if (ret < 0)
+ goto out;
+
+ eb = path->nodes[level];
+ if (!eb) {
+ WARN_ON(1);
+ ret = 1;
+ goto out;
+ }
+
+ if (level == 0) {
+ if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret)
+ goto out;
+ eb = path->nodes[0];
+ }
+
+ btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
+ }
+
+ /* the last two parameters will only be used for level == 0 */
+ ret = add_all_parents(root, path, parents, eb, level, key.objectid,
+ ref->wanted_disk_byte);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * resolve all indirect backrefs from the list
+ */
+static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
+ int search_commit_root,
+ struct list_head *head)
+{
+ int err;
+ int ret = 0;
+ struct __prelim_ref *ref;
+ struct __prelim_ref *ref_safe;
+ struct __prelim_ref *new_ref;
+ struct ulist *parents;
+ struct ulist_node *node;
+
+ parents = ulist_alloc(GFP_NOFS);
+ if (!parents)
+ return -ENOMEM;
+
+ /*
+ * _safe allows us to insert directly after the current item without
+ * iterating over the newly inserted items.
+ * we're also allowed to re-assign ref during iteration.
+ */
+ list_for_each_entry_safe(ref, ref_safe, head, list) {
+ if (ref->parent) /* already direct */
+ continue;
+ if (ref->count == 0)
+ continue;
+ err = __resolve_indirect_ref(fs_info, search_commit_root,
+ ref, parents);
+ if (err) {
+ if (ret == 0)
+ ret = err;
+ continue;
+ }
+
+ /* we put the first parent into the ref at hand */
+ node = ulist_next(parents, NULL);
+ ref->parent = node ? node->val : 0;
+
+ /* additional parents require new refs being added here */
+ while ((node = ulist_next(parents, node))) {
+ new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
+ if (!new_ref) {
+ ret = -ENOMEM;
+ break;
+ }
+ memcpy(new_ref, ref, sizeof(*ref));
+ new_ref->parent = node->val;
+ list_add(&new_ref->list, &ref->list);
+ }
+ ulist_reinit(parents);
+ }
+
+ ulist_free(parents);
+ return ret;
+}
+
+/*
+ * merge two lists of backrefs and adjust counts accordingly
+ *
+ * mode = 1: merge identical keys, if key is set
+ * mode = 2: merge identical parents
+ */
+static int __merge_refs(struct list_head *head, int mode)
+{
+ struct list_head *pos1;
+
+ list_for_each(pos1, head) {
+ struct list_head *n2;
+ struct list_head *pos2;
+ struct __prelim_ref *ref1;
+
+ ref1 = list_entry(pos1, struct __prelim_ref, list);
+
+ if (mode == 1 && ref1->key.type == 0)
+ continue;
+ for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
+ pos2 = n2, n2 = pos2->next) {
+ struct __prelim_ref *ref2;
+
+ ref2 = list_entry(pos2, struct __prelim_ref, list);
+
+ if (mode == 1) {
+ if (memcmp(&ref1->key, &ref2->key,
+ sizeof(ref1->key)) ||
+ ref1->level != ref2->level ||
+ ref1->root_id != ref2->root_id)
+ continue;
+ ref1->count += ref2->count;
+ } else {
+ if (ref1->parent != ref2->parent)
+ continue;
+ ref1->count += ref2->count;
+ }
+ list_del(&ref2->list);
+ kfree(ref2);
+ }
+
+ }
+ return 0;
+}
+
+/*
+ * add all currently queued delayed refs from this head whose seq nr is
+ * smaller or equal that seq to the list
+ */
+static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
+ struct btrfs_key *info_key,
+ struct list_head *prefs)
+{
+ struct btrfs_delayed_extent_op *extent_op = head->extent_op;
+ struct rb_node *n = &head->node.rb_node;
+ int sgn;
+ int ret = 0;
+
+ if (extent_op && extent_op->update_key)
+ btrfs_disk_key_to_cpu(info_key, &extent_op->key);
+
+ while ((n = rb_prev(n))) {
+ struct btrfs_delayed_ref_node *node;
+ node = rb_entry(n, struct btrfs_delayed_ref_node,
+ rb_node);
+ if (node->bytenr != head->node.bytenr)
+ break;
+ WARN_ON(node->is_head);
+
+ if (node->seq > seq)
+ continue;
+
+ switch (node->action) {
+ case BTRFS_ADD_DELAYED_EXTENT:
+ case BTRFS_UPDATE_DELAYED_HEAD:
+ WARN_ON(1);
+ continue;
+ case BTRFS_ADD_DELAYED_REF:
+ sgn = 1;
+ break;
+ case BTRFS_DROP_DELAYED_REF:
+ sgn = -1;
+ break;
+ default:
+ BUG_ON(1);
+ }
+ switch (node->type) {
+ case BTRFS_TREE_BLOCK_REF_KEY: {
+ struct btrfs_delayed_tree_ref *ref;
+
+ ref = btrfs_delayed_node_to_tree_ref(node);
+ ret = __add_prelim_ref(prefs, ref->root, info_key,
+ ref->level + 1, 0, node->bytenr,
+ node->ref_mod * sgn);
+ break;
+ }
+ case BTRFS_SHARED_BLOCK_REF_KEY: {
+ struct btrfs_delayed_tree_ref *ref;
+
+ ref = btrfs_delayed_node_to_tree_ref(node);
+ ret = __add_prelim_ref(prefs, ref->root, info_key,
+ ref->level + 1, ref->parent,
+ node->bytenr,
+ node->ref_mod * sgn);
+ break;
+ }
+ case BTRFS_EXTENT_DATA_REF_KEY: {
+ struct btrfs_delayed_data_ref *ref;
+ struct btrfs_key key;
+
+ ref = btrfs_delayed_node_to_data_ref(node);
+
+ key.objectid = ref->objectid;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = ref->offset;
+ ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
+ node->bytenr,
+ node->ref_mod * sgn);
+ break;
+ }
+ case BTRFS_SHARED_DATA_REF_KEY: {
+ struct btrfs_delayed_data_ref *ref;
+ struct btrfs_key key;
+
+ ref = btrfs_delayed_node_to_data_ref(node);
+
+ key.objectid = ref->objectid;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = ref->offset;
+ ret = __add_prelim_ref(prefs, ref->root, &key, 0,
+ ref->parent, node->bytenr,
+ node->ref_mod * sgn);
+ break;
+ }
+ default:
+ WARN_ON(1);
+ }
+ BUG_ON(ret);
+ }
+
+ return 0;
+}
+
+/*
+ * add all inline backrefs for bytenr to the list
+ */
+static int __add_inline_refs(struct btrfs_fs_info *fs_info,
+ struct btrfs_path *path, u64 bytenr,
+ struct btrfs_key *info_key, int *info_level,
+ struct list_head *prefs)
+{
+ int ret = 0;
+ int slot;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ unsigned long ptr;
+ unsigned long end;
+ struct btrfs_extent_item *ei;
+ u64 flags;
+ u64 item_size;
+
+ /*
+ * enumerate all inline refs
+ */
+ leaf = path->nodes[0];
+ slot = path->slots[0] - 1;
+
+ item_size = btrfs_item_size_nr(leaf, slot);
+ BUG_ON(item_size < sizeof(*ei));
+
+ ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
+ flags = btrfs_extent_flags(leaf, ei);
+
+ ptr = (unsigned long)(ei + 1);
+ end = (unsigned long)ei + item_size;
+
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ struct btrfs_tree_block_info *info;
+ struct btrfs_disk_key disk_key;
+
+ info = (struct btrfs_tree_block_info *)ptr;
+ *info_level = btrfs_tree_block_level(leaf, info);
+ btrfs_tree_block_key(leaf, info, &disk_key);
+ btrfs_disk_key_to_cpu(info_key, &disk_key);
+ ptr += sizeof(struct btrfs_tree_block_info);
+ BUG_ON(ptr > end);
+ } else {
+ BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
+ }
+
+ while (ptr < end) {
+ struct btrfs_extent_inline_ref *iref;
+ u64 offset;
+ int type;
+
+ iref = (struct btrfs_extent_inline_ref *)ptr;
+ type = btrfs_extent_inline_ref_type(leaf, iref);
+ offset = btrfs_extent_inline_ref_offset(leaf, iref);
+
+ switch (type) {
+ case BTRFS_SHARED_BLOCK_REF_KEY:
+ ret = __add_prelim_ref(prefs, 0, info_key,
+ *info_level + 1, offset,
+ bytenr, 1);
+ break;
+ case BTRFS_SHARED_DATA_REF_KEY: {
+ struct btrfs_shared_data_ref *sdref;
+ int count;
+
+ sdref = (struct btrfs_shared_data_ref *)(iref + 1);
+ count = btrfs_shared_data_ref_count(leaf, sdref);
+ ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
+ bytenr, count);
+ break;
+ }
+ case BTRFS_TREE_BLOCK_REF_KEY:
+ ret = __add_prelim_ref(prefs, offset, info_key,
+ *info_level + 1, 0, bytenr, 1);
+ break;
+ case BTRFS_EXTENT_DATA_REF_KEY: {
+ struct btrfs_extent_data_ref *dref;
+ int count;
+ u64 root;
+
+ dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ count = btrfs_extent_data_ref_count(leaf, dref);
+ key.objectid = btrfs_extent_data_ref_objectid(leaf,
+ dref);
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = btrfs_extent_data_ref_offset(leaf, dref);
+ root = btrfs_extent_data_ref_root(leaf, dref);
+ ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr,
+ count);
+ break;
+ }
+ default:
+ WARN_ON(1);
+ }
+ BUG_ON(ret);
+ ptr += btrfs_extent_inline_ref_size(type);
+ }
+
+ return 0;
+}
+
+/*
+ * add all non-inline backrefs for bytenr to the list
+ */
+static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
+ struct btrfs_path *path, u64 bytenr,
+ struct btrfs_key *info_key, int info_level,
+ struct list_head *prefs)
+{
+ struct btrfs_root *extent_root = fs_info->extent_root;
+ int ret;
+ int slot;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+
+ while (1) {
+ ret = btrfs_next_item(extent_root, path);
+ if (ret < 0)
+ break;
+ if (ret) {
+ ret = 0;
+ break;
+ }
+
+ slot = path->slots[0];
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+
+ if (key.objectid != bytenr)
+ break;
+ if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
+ continue;
+ if (key.type > BTRFS_SHARED_DATA_REF_KEY)
+ break;
+
+ switch (key.type) {
+ case BTRFS_SHARED_BLOCK_REF_KEY:
+ ret = __add_prelim_ref(prefs, 0, info_key,
+ info_level + 1, key.offset,
+ bytenr, 1);
+ break;
+ case BTRFS_SHARED_DATA_REF_KEY: {
+ struct btrfs_shared_data_ref *sdref;
+ int count;
+
+ sdref = btrfs_item_ptr(leaf, slot,
+ struct btrfs_shared_data_ref);
+ count = btrfs_shared_data_ref_count(leaf, sdref);
+ ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
+ bytenr, count);
+ break;
+ }
+ case BTRFS_TREE_BLOCK_REF_KEY:
+ ret = __add_prelim_ref(prefs, key.offset, info_key,
+ info_level + 1, 0, bytenr, 1);
+ break;
+ case BTRFS_EXTENT_DATA_REF_KEY: {
+ struct btrfs_extent_data_ref *dref;
+ int count;
+ u64 root;
+
+ dref = btrfs_item_ptr(leaf, slot,
+ struct btrfs_extent_data_ref);
+ count = btrfs_extent_data_ref_count(leaf, dref);
+ key.objectid = btrfs_extent_data_ref_objectid(leaf,
+ dref);
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = btrfs_extent_data_ref_offset(leaf, dref);
+ root = btrfs_extent_data_ref_root(leaf, dref);
+ ret = __add_prelim_ref(prefs, root, &key, 0, 0,
+ bytenr, count);
+ break;
+ }
+ default:
+ WARN_ON(1);
+ }
+ BUG_ON(ret);
+ }
+
+ return ret;
+}
+
+/*
+ * this adds all existing backrefs (inline backrefs, backrefs and delayed
+ * refs) for the given bytenr to the refs list, merges duplicates and resolves
+ * indirect refs to their parent bytenr.
+ * When roots are found, they're added to the roots list
+ *
+ * FIXME some caching might speed things up
+ */
+static int find_parent_nodes(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info, u64 bytenr,
+ u64 seq, struct ulist *refs, struct ulist *roots)
+{
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct btrfs_key info_key = { 0 };
+ struct btrfs_delayed_ref_root *delayed_refs = NULL;
+ struct btrfs_delayed_ref_head *head;
+ int info_level = 0;
+ int ret;
+ int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
+ struct list_head prefs_delayed;
+ struct list_head prefs;
+ struct __prelim_ref *ref;
+
+ INIT_LIST_HEAD(&prefs);
+ INIT_LIST_HEAD(&prefs_delayed);
+
+ key.objectid = bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = (u64)-1;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->search_commit_root = !!search_commit_root;
+
+ /*
+ * grab both a lock on the path and a lock on the delayed ref head.
+ * We need both to get a consistent picture of how the refs look
+ * at a specified point in time
+ */
+again:
+ head = NULL;
+
+ ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ BUG_ON(ret == 0);
+
+ if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
+ /*
+ * look if there are updates for this ref queued and lock the
+ * head
+ */
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+ head = btrfs_find_delayed_ref_head(trans, bytenr);
+ if (head) {
+ if (!mutex_trylock(&head->mutex)) {
+ atomic_inc(&head->node.refs);
+ spin_unlock(&delayed_refs->lock);
+
+ btrfs_release_path(path);
+
+ /*
+ * Mutex was contended, block until it's
+ * released and try again
+ */
+ mutex_lock(&head->mutex);
+ mutex_unlock(&head->mutex);
+ btrfs_put_delayed_ref(&head->node);
+ goto again;
+ }
+ ret = __add_delayed_refs(head, seq, &info_key,
+ &prefs_delayed);
+ if (ret) {
+ spin_unlock(&delayed_refs->lock);
+ goto out;
+ }
+ }
+ spin_unlock(&delayed_refs->lock);
+ }
+
+ if (path->slots[0]) {
+ struct extent_buffer *leaf;
+ int slot;
+
+ leaf = path->nodes[0];
+ slot = path->slots[0] - 1;
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+ if (key.objectid == bytenr &&
+ key.type == BTRFS_EXTENT_ITEM_KEY) {
+ ret = __add_inline_refs(fs_info, path, bytenr,
+ &info_key, &info_level, &prefs);
+ if (ret)
+ goto out;
+ ret = __add_keyed_refs(fs_info, path, bytenr, &info_key,
+ info_level, &prefs);
+ if (ret)
+ goto out;
+ }
+ }
+ btrfs_release_path(path);
+
+ /*
+ * when adding the delayed refs above, the info_key might not have
+ * been known yet. Go over the list and replace the missing keys
+ */
+ list_for_each_entry(ref, &prefs_delayed, list) {
+ if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0)
+ memcpy(&ref->key, &info_key, sizeof(ref->key));
+ }
+ list_splice_init(&prefs_delayed, &prefs);
+
+ ret = __merge_refs(&prefs, 1);
+ if (ret)
+ goto out;
+
+ ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs);
+ if (ret)
+ goto out;
+
+ ret = __merge_refs(&prefs, 2);
+ if (ret)
+ goto out;
+
+ while (!list_empty(&prefs)) {
+ ref = list_first_entry(&prefs, struct __prelim_ref, list);
+ list_del(&ref->list);
+ if (ref->count < 0)
+ WARN_ON(1);
+ if (ref->count && ref->root_id && ref->parent == 0) {
+ /* no parent == root of tree */
+ ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
+ BUG_ON(ret < 0);
+ }
+ if (ref->count && ref->parent) {
+ ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
+ BUG_ON(ret < 0);
+ }
+ kfree(ref);
+ }
+
+out:
+ if (head)
+ mutex_unlock(&head->mutex);
+ btrfs_free_path(path);
+ while (!list_empty(&prefs)) {
+ ref = list_first_entry(&prefs, struct __prelim_ref, list);
+ list_del(&ref->list);
+ kfree(ref);
+ }
+ while (!list_empty(&prefs_delayed)) {
+ ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
+ list);
+ list_del(&ref->list);
+ kfree(ref);
+ }
+
+ return ret;
+}
+
+/*
+ * Finds all leafs with a reference to the specified combination of bytenr and
+ * offset. key_list_head will point to a list of corresponding keys (caller must
+ * free each list element). The leafs will be stored in the leafs ulist, which
+ * must be freed with ulist_free.
+ *
+ * returns 0 on success, <0 on error
+ */
+static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info, u64 bytenr,
+ u64 num_bytes, u64 seq, struct ulist **leafs)
+{
+ struct ulist *tmp;
+ int ret;
+
+ tmp = ulist_alloc(GFP_NOFS);
+ if (!tmp)
+ return -ENOMEM;
+ *leafs = ulist_alloc(GFP_NOFS);
+ if (!*leafs) {
+ ulist_free(tmp);
+ return -ENOMEM;
+ }
+
+ ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
+ ulist_free(tmp);
+
+ if (ret < 0 && ret != -ENOENT) {
+ ulist_free(*leafs);
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * walk all backrefs for a given extent to find all roots that reference this
+ * extent. Walking a backref means finding all extents that reference this
+ * extent and in turn walk the backrefs of those, too. Naturally this is a
+ * recursive process, but here it is implemented in an iterative fashion: We
+ * find all referencing extents for the extent in question and put them on a
+ * list. In turn, we find all referencing extents for those, further appending
+ * to the list. The way we iterate the list allows adding more elements after
+ * the current while iterating. The process stops when we reach the end of the
+ * list. Found roots are added to the roots list.
+ *
+ * returns 0 on success, < 0 on error.
+ */
+int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info, u64 bytenr,
+ u64 num_bytes, u64 seq, struct ulist **roots)
+{
+ struct ulist *tmp;
+ struct ulist_node *node = NULL;
+ int ret;
+
+ tmp = ulist_alloc(GFP_NOFS);
+ if (!tmp)
+ return -ENOMEM;
+ *roots = ulist_alloc(GFP_NOFS);
+ if (!*roots) {
+ ulist_free(tmp);
+ return -ENOMEM;
+ }
+
+ while (1) {
+ ret = find_parent_nodes(trans, fs_info, bytenr, seq,
+ tmp, *roots);
+ if (ret < 0 && ret != -ENOENT) {
+ ulist_free(tmp);
+ ulist_free(*roots);
+ return ret;
+ }
+ node = ulist_next(tmp, node);
+ if (!node)
+ break;
+ bytenr = node->val;
+ }
+
+ ulist_free(tmp);
+ return 0;
+}
+
+
+static int __inode_info(u64 inum, u64 ioff, u8 key_type,
+ struct btrfs_root *fs_root, struct btrfs_path *path,
+ struct btrfs_key *found_key)
+{
+ int ret;
+ struct btrfs_key key;
+ struct extent_buffer *eb;
+
+ key.type = key_type;
+ key.objectid = inum;
+ key.offset = ioff;
+
+ ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
+ if (ret < 0)
+ return ret;
+
+ eb = path->nodes[0];
+ if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
+ ret = btrfs_next_leaf(fs_root, path);
+ if (ret)
+ return ret;
+ eb = path->nodes[0];
+ }
+
+ btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
+ if (found_key->type != key.type || found_key->objectid != key.objectid)
+ return 1;
+
+ return 0;
+}
+
+/*
+ * this makes the path point to (inum INODE_ITEM ioff)
+ */
+int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
+ struct btrfs_path *path)
+{
+ struct btrfs_key key;
+ return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
+ &key);
+}
+
+static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
+ struct btrfs_path *path,
+ struct btrfs_key *found_key)
+{
+ return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
+ found_key);
+}
+
+/*
+ * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
+ * of the path are separated by '/' and the path is guaranteed to be
+ * 0-terminated. the path is only given within the current file system.
+ * Therefore, it never starts with a '/'. the caller is responsible to provide
+ * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
+ * the start point of the resulting string is returned. this pointer is within
+ * dest, normally.
+ * in case the path buffer would overflow, the pointer is decremented further
+ * as if output was written to the buffer, though no more output is actually
+ * generated. that way, the caller can determine how much space would be
+ * required for the path to fit into the buffer. in that case, the returned
+ * value will be smaller than dest. callers must check this!
+ */
+static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
+ struct btrfs_inode_ref *iref,
+ struct extent_buffer *eb_in, u64 parent,
+ char *dest, u32 size)
+{
+ u32 len;
+ int slot;
+ u64 next_inum;
+ int ret;
+ s64 bytes_left = size - 1;
+ struct extent_buffer *eb = eb_in;
+ struct btrfs_key found_key;
+ int leave_spinning = path->leave_spinning;
+
+ if (bytes_left >= 0)
+ dest[bytes_left] = '\0';
+
+ path->leave_spinning = 1;
+ while (1) {
+ len = btrfs_inode_ref_name_len(eb, iref);
+ bytes_left -= len;
+ if (bytes_left >= 0)
+ read_extent_buffer(eb, dest + bytes_left,
+ (unsigned long)(iref + 1), len);
+ if (eb != eb_in) {
+ btrfs_tree_read_unlock_blocking(eb);
+ free_extent_buffer(eb);
+ }
+ ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
+ if (ret > 0)
+ ret = -ENOENT;
+ if (ret)
+ break;
+ next_inum = found_key.offset;
+
+ /* regular exit ahead */
+ if (parent == next_inum)
+ break;
+
+ slot = path->slots[0];
+ eb = path->nodes[0];
+ /* make sure we can use eb after releasing the path */
+ if (eb != eb_in) {
+ atomic_inc(&eb->refs);
+ btrfs_tree_read_lock(eb);
+ btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
+ }
+ btrfs_release_path(path);
+
+ iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
+ parent = next_inum;
+ --bytes_left;
+ if (bytes_left >= 0)
+ dest[bytes_left] = '/';
+ }
+
+ btrfs_release_path(path);
+ path->leave_spinning = leave_spinning;
+
+ if (ret)
+ return ERR_PTR(ret);
+
+ return dest + bytes_left;
+}
+
+/*
+ * this makes the path point to (logical EXTENT_ITEM *)
+ * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
+ * tree blocks and <0 on error.
+ */
+int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
+ struct btrfs_path *path, struct btrfs_key *found_key)
+{
+ int ret;
+ u64 flags;
+ u32 item_size;
+ struct extent_buffer *eb;
+ struct btrfs_extent_item *ei;
+ struct btrfs_key key;
+
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.objectid = logical;
+ key.offset = (u64)-1;
+
+ ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
+ if (ret < 0)
+ return ret;
+ ret = btrfs_previous_item(fs_info->extent_root, path,
+ 0, BTRFS_EXTENT_ITEM_KEY);
+ if (ret < 0)
+ return ret;
+
+ btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
+ if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
+ found_key->objectid > logical ||
+ found_key->objectid + found_key->offset <= logical) {
+ pr_debug("logical %llu is not within any extent\n",
+ (unsigned long long)logical);
+ return -ENOENT;
+ }
+
+ eb = path->nodes[0];
+ item_size = btrfs_item_size_nr(eb, path->slots[0]);
+ BUG_ON(item_size < sizeof(*ei));
+
+ ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
+ flags = btrfs_extent_flags(eb, ei);
+
+ pr_debug("logical %llu is at position %llu within the extent (%llu "
+ "EXTENT_ITEM %llu) flags %#llx size %u\n",
+ (unsigned long long)logical,
+ (unsigned long long)(logical - found_key->objectid),
+ (unsigned long long)found_key->objectid,
+ (unsigned long long)found_key->offset,
+ (unsigned long long)flags, item_size);
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ return BTRFS_EXTENT_FLAG_TREE_BLOCK;
+ if (flags & BTRFS_EXTENT_FLAG_DATA)
+ return BTRFS_EXTENT_FLAG_DATA;
+
+ return -EIO;
+}
+
+/*
+ * helper function to iterate extent inline refs. ptr must point to a 0 value
+ * for the first call and may be modified. it is used to track state.
+ * if more refs exist, 0 is returned and the next call to
+ * __get_extent_inline_ref must pass the modified ptr parameter to get the
+ * next ref. after the last ref was processed, 1 is returned.
+ * returns <0 on error
+ */
+static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
+ struct btrfs_extent_item *ei, u32 item_size,
+ struct btrfs_extent_inline_ref **out_eiref,
+ int *out_type)
+{
+ unsigned long end;
+ u64 flags;
+ struct btrfs_tree_block_info *info;
+
+ if (!*ptr) {
+ /* first call */
+ flags = btrfs_extent_flags(eb, ei);
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ info = (struct btrfs_tree_block_info *)(ei + 1);
+ *out_eiref =
+ (struct btrfs_extent_inline_ref *)(info + 1);
+ } else {
+ *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
+ }
+ *ptr = (unsigned long)*out_eiref;
+ if ((void *)*ptr >= (void *)ei + item_size)
+ return -ENOENT;
+ }
+
+ end = (unsigned long)ei + item_size;
+ *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
+ *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
+
+ *ptr += btrfs_extent_inline_ref_size(*out_type);
+ WARN_ON(*ptr > end);
+ if (*ptr == end)
+ return 1; /* last */
+
+ return 0;
+}
+
+/*
+ * reads the tree block backref for an extent. tree level and root are returned
+ * through out_level and out_root. ptr must point to a 0 value for the first
+ * call and may be modified (see __get_extent_inline_ref comment).
+ * returns 0 if data was provided, 1 if there was no more data to provide or
+ * <0 on error.
+ */
+int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
+ struct btrfs_extent_item *ei, u32 item_size,
+ u64 *out_root, u8 *out_level)
+{
+ int ret;
+ int type;
+ struct btrfs_tree_block_info *info;
+ struct btrfs_extent_inline_ref *eiref;
+
+ if (*ptr == (unsigned long)-1)
+ return 1;
+
+ while (1) {
+ ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
+ &eiref, &type);
+ if (ret < 0)
+ return ret;
+
+ if (type == BTRFS_TREE_BLOCK_REF_KEY ||
+ type == BTRFS_SHARED_BLOCK_REF_KEY)
+ break;
+
+ if (ret == 1)
+ return 1;
+ }
+
+ /* we can treat both ref types equally here */
+ info = (struct btrfs_tree_block_info *)(ei + 1);
+ *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
+ *out_level = btrfs_tree_block_level(eb, info);
+
+ if (ret == 1)
+ *ptr = (unsigned long)-1;
+
+ return 0;
+}
+
+static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, u64 logical,
+ u64 orig_extent_item_objectid,
+ u64 extent_item_pos, u64 root,
+ iterate_extent_inodes_t *iterate, void *ctx)
+{
+ u64 disk_byte;
+ struct btrfs_key key;
+ struct btrfs_file_extent_item *fi;
+ struct extent_buffer *eb;
+ int slot;
+ int nritems;
+ int ret = 0;
+ int extent_type;
+ u64 data_offset;
+ u64 data_len;
+
+ eb = read_tree_block(fs_info->tree_root, logical,
+ fs_info->tree_root->leafsize, 0);
+ if (!eb)
+ return -EIO;
+
+ /*
+ * from the shared data ref, we only have the leaf but we need
+ * the key. thus, we must look into all items and see that we
+ * find one (some) with a reference to our extent item.
+ */
+ nritems = btrfs_header_nritems(eb);
+ for (slot = 0; slot < nritems; ++slot) {
+ btrfs_item_key_to_cpu(eb, &key, slot);
+ if (key.type != BTRFS_EXTENT_DATA_KEY)
+ continue;
+ fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
+ extent_type = btrfs_file_extent_type(eb, fi);
+ if (extent_type == BTRFS_FILE_EXTENT_INLINE)
+ continue;
+ /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
+ disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
+ if (disk_byte != orig_extent_item_objectid)
+ continue;
+
+ data_offset = btrfs_file_extent_offset(eb, fi);
+ data_len = btrfs_file_extent_num_bytes(eb, fi);
+
+ if (extent_item_pos < data_offset ||
+ extent_item_pos >= data_offset + data_len)
+ continue;
+
+ pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
+ "root %llu\n", orig_extent_item_objectid,
+ key.objectid, key.offset, root);
+ ret = iterate(key.objectid,
+ key.offset + (extent_item_pos - data_offset),
+ root, ctx);
+ if (ret) {
+ pr_debug("stopping iteration because ret=%d\n", ret);
+ break;
+ }
+ }
+
+ free_extent_buffer(eb);
+
+ return ret;
+}
+
+/*
+ * calls iterate() for every inode that references the extent identified by
+ * the given parameters.
+ * when the iterator function returns a non-zero value, iteration stops.
+ */
+int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
+ u64 extent_item_objectid, u64 extent_item_pos,
+ int search_commit_root,
+ iterate_extent_inodes_t *iterate, void *ctx)
+{
+ int ret;
+ struct list_head data_refs = LIST_HEAD_INIT(data_refs);
+ struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
+ struct btrfs_trans_handle *trans;
+ struct ulist *refs = NULL;
+ struct ulist *roots = NULL;
+ struct ulist_node *ref_node = NULL;
+ struct ulist_node *root_node = NULL;
+ struct seq_list seq_elem;
+ struct btrfs_delayed_ref_root *delayed_refs = NULL;
+
+ pr_debug("resolving all inodes for extent %llu\n",
+ extent_item_objectid);
+
+ if (search_commit_root) {
+ trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
+ } else {
+ trans = btrfs_join_transaction(fs_info->extent_root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+ btrfs_get_delayed_seq(delayed_refs, &seq_elem);
+ spin_unlock(&delayed_refs->lock);
+ }
+
+ ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
+ extent_item_pos, seq_elem.seq,
+ &refs);
+
+ if (ret)
+ goto out;
+
+ while (!ret && (ref_node = ulist_next(refs, ref_node))) {
+ ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
+ seq_elem.seq, &roots);
+ if (ret)
+ break;
+ while (!ret && (root_node = ulist_next(roots, root_node))) {
+ pr_debug("root %llu references leaf %llu\n",
+ root_node->val, ref_node->val);
+ ret = iterate_leaf_refs(fs_info, ref_node->val,
+ extent_item_objectid,
+ extent_item_pos, root_node->val,
+ iterate, ctx);
+ }
+ }
+
+ ulist_free(refs);
+ ulist_free(roots);
+out:
+ if (!search_commit_root) {
+ btrfs_put_delayed_seq(delayed_refs, &seq_elem);
+ btrfs_end_transaction(trans, fs_info->extent_root);
+ }
+
+ return ret;
+}
+
+int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
+ struct btrfs_path *path,
+ iterate_extent_inodes_t *iterate, void *ctx)
+{
+ int ret;
+ u64 extent_item_pos;
+ struct btrfs_key found_key;
+ int search_commit_root = path->search_commit_root;
+
+ ret = extent_from_logical(fs_info, logical, path,
+ &found_key);
+ btrfs_release_path(path);
+ if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ ret = -EINVAL;
+ if (ret < 0)
+ return ret;
+
+ extent_item_pos = logical - found_key.objectid;
+ ret = iterate_extent_inodes(fs_info, found_key.objectid,
+ extent_item_pos, search_commit_root,
+ iterate, ctx);
+
+ return ret;
+}
+
+static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
+ struct btrfs_path *path,
+ iterate_irefs_t *iterate, void *ctx)
+{
+ int ret = 0;
+ int slot;
+ u32 cur;
+ u32 len;
+ u32 name_len;
+ u64 parent = 0;
+ int found = 0;
+ struct extent_buffer *eb;
+ struct btrfs_item *item;
+ struct btrfs_inode_ref *iref;
+ struct btrfs_key found_key;
+
+ while (!ret) {
+ path->leave_spinning = 1;
+ ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
+ &found_key);
+ if (ret < 0)
+ break;
+ if (ret) {
+ ret = found ? 0 : -ENOENT;
+ break;
+ }
+ ++found;
+
+ parent = found_key.offset;
+ slot = path->slots[0];
+ eb = path->nodes[0];
+ /* make sure we can use eb after releasing the path */
+ atomic_inc(&eb->refs);
+ btrfs_tree_read_lock(eb);
+ btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
+ btrfs_release_path(path);
+
+ item = btrfs_item_nr(eb, slot);
+ iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
+
+ for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
+ name_len = btrfs_inode_ref_name_len(eb, iref);
+ /* path must be released before calling iterate()! */
+ pr_debug("following ref at offset %u for inode %llu in "
+ "tree %llu\n", cur,
+ (unsigned long long)found_key.objectid,
+ (unsigned long long)fs_root->objectid);
+ ret = iterate(parent, iref, eb, ctx);
+ if (ret)
+ break;
+ len = sizeof(*iref) + name_len;
+ iref = (struct btrfs_inode_ref *)((char *)iref + len);
+ }
+ btrfs_tree_read_unlock_blocking(eb);
+ free_extent_buffer(eb);
+ }
+
+ btrfs_release_path(path);
+
+ return ret;
+}
+
+/*
+ * returns 0 if the path could be dumped (probably truncated)
+ * returns <0 in case of an error
+ */
+static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
+ struct extent_buffer *eb, void *ctx)
+{
+ struct inode_fs_paths *ipath = ctx;
+ char *fspath;
+ char *fspath_min;
+ int i = ipath->fspath->elem_cnt;
+ const int s_ptr = sizeof(char *);
+ u32 bytes_left;
+
+ bytes_left = ipath->fspath->bytes_left > s_ptr ?
+ ipath->fspath->bytes_left - s_ptr : 0;
+
+ fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
+ fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
+ inum, fspath_min, bytes_left);
+ if (IS_ERR(fspath))
+ return PTR_ERR(fspath);
+
+ if (fspath > fspath_min) {
+ pr_debug("path resolved: %s\n", fspath);
+ ipath->fspath->val[i] = (u64)(unsigned long)fspath;
+ ++ipath->fspath->elem_cnt;
+ ipath->fspath->bytes_left = fspath - fspath_min;
+ } else {
+ pr_debug("missed path, not enough space. missing bytes: %lu, "
+ "constructed so far: %s\n",
+ (unsigned long)(fspath_min - fspath), fspath_min);
+ ++ipath->fspath->elem_missed;
+ ipath->fspath->bytes_missing += fspath_min - fspath;
+ ipath->fspath->bytes_left = 0;
+ }
+
+ return 0;
+}
+
+/*
+ * this dumps all file system paths to the inode into the ipath struct, provided
+ * is has been created large enough. each path is zero-terminated and accessed
+ * from ipath->fspath->val[i].
+ * when it returns, there are ipath->fspath->elem_cnt number of paths available
+ * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
+ * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
+ * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
+ * have been needed to return all paths.
+ */
+int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
+{
+ return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
+ inode_to_path, ipath);
+}
+
+struct btrfs_data_container *init_data_container(u32 total_bytes)
+{
+ struct btrfs_data_container *data;
+ size_t alloc_bytes;
+
+ alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
+ data = kmalloc(alloc_bytes, GFP_NOFS);
+ if (!data)
+ return ERR_PTR(-ENOMEM);
+
+ if (total_bytes >= sizeof(*data)) {
+ data->bytes_left = total_bytes - sizeof(*data);
+ data->bytes_missing = 0;
+ } else {
+ data->bytes_missing = sizeof(*data) - total_bytes;
+ data->bytes_left = 0;
+ }
+
+ data->elem_cnt = 0;
+ data->elem_missed = 0;
+
+ return data;
+}
+
+/*
+ * allocates space to return multiple file system paths for an inode.
+ * total_bytes to allocate are passed, note that space usable for actual path
+ * information will be total_bytes - sizeof(struct inode_fs_paths).
+ * the returned pointer must be freed with free_ipath() in the end.
+ */
+struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
+ struct btrfs_path *path)
+{
+ struct inode_fs_paths *ifp;
+ struct btrfs_data_container *fspath;
+
+ fspath = init_data_container(total_bytes);
+ if (IS_ERR(fspath))
+ return (void *)fspath;
+
+ ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
+ if (!ifp) {
+ kfree(fspath);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ ifp->btrfs_path = path;
+ ifp->fspath = fspath;
+ ifp->fs_root = fs_root;
+
+ return ifp;
+}
+
+void free_ipath(struct inode_fs_paths *ipath)
+{
+ if (!ipath)
+ return;
+ kfree(ipath->fspath);
+ kfree(ipath);
+}
diff --git a/fs/btrfs/backref.h b/fs/btrfs/backref.h
new file mode 100644
index 00000000..57ea2e95
--- /dev/null
+++ b/fs/btrfs/backref.h
@@ -0,0 +1,68 @@
+/*
+ * Copyright (C) 2011 STRATO. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_BACKREF__
+#define __BTRFS_BACKREF__
+
+#include "ioctl.h"
+#include "ulist.h"
+
+#define BTRFS_BACKREF_SEARCH_COMMIT_ROOT ((struct btrfs_trans_handle *)0)
+
+struct inode_fs_paths {
+ struct btrfs_path *btrfs_path;
+ struct btrfs_root *fs_root;
+ struct btrfs_data_container *fspath;
+};
+
+typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 root,
+ void *ctx);
+typedef int (iterate_irefs_t)(u64 parent, struct btrfs_inode_ref *iref,
+ struct extent_buffer *eb, void *ctx);
+
+int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
+ struct btrfs_path *path);
+
+int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
+ struct btrfs_path *path, struct btrfs_key *found_key);
+
+int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
+ struct btrfs_extent_item *ei, u32 item_size,
+ u64 *out_root, u8 *out_level);
+
+int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
+ u64 extent_item_objectid,
+ u64 extent_offset, int search_commit_root,
+ iterate_extent_inodes_t *iterate, void *ctx);
+
+int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
+ struct btrfs_path *path,
+ iterate_extent_inodes_t *iterate, void *ctx);
+
+int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
+
+int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info, u64 bytenr,
+ u64 num_bytes, u64 seq, struct ulist **roots);
+
+struct btrfs_data_container *init_data_container(u32 total_bytes);
+struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
+ struct btrfs_path *path);
+void free_ipath(struct inode_fs_paths *ipath);
+
+#endif
diff --git a/fs/btrfs/btrfs_inode.h b/fs/btrfs/btrfs_inode.h
new file mode 100644
index 00000000..9b9b15fd
--- /dev/null
+++ b/fs/btrfs/btrfs_inode.h
@@ -0,0 +1,205 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_I__
+#define __BTRFS_I__
+
+#include "extent_map.h"
+#include "extent_io.h"
+#include "ordered-data.h"
+#include "delayed-inode.h"
+
+/* in memory btrfs inode */
+struct btrfs_inode {
+ /* which subvolume this inode belongs to */
+ struct btrfs_root *root;
+
+ /* key used to find this inode on disk. This is used by the code
+ * to read in roots of subvolumes
+ */
+ struct btrfs_key location;
+
+ /* Lock for counters */
+ spinlock_t lock;
+
+ /* the extent_tree has caches of all the extent mappings to disk */
+ struct extent_map_tree extent_tree;
+
+ /* the io_tree does range state (DIRTY, LOCKED etc) */
+ struct extent_io_tree io_tree;
+
+ /* special utility tree used to record which mirrors have already been
+ * tried when checksums fail for a given block
+ */
+ struct extent_io_tree io_failure_tree;
+
+ /* held while logging the inode in tree-log.c */
+ struct mutex log_mutex;
+
+ /* held while doing delalloc reservations */
+ struct mutex delalloc_mutex;
+
+ /* used to order data wrt metadata */
+ struct btrfs_ordered_inode_tree ordered_tree;
+
+ /* for keeping track of orphaned inodes */
+ struct list_head i_orphan;
+
+ /* list of all the delalloc inodes in the FS. There are times we need
+ * to write all the delalloc pages to disk, and this list is used
+ * to walk them all.
+ */
+ struct list_head delalloc_inodes;
+
+ /*
+ * list for tracking inodes that must be sent to disk before a
+ * rename or truncate commit
+ */
+ struct list_head ordered_operations;
+
+ /* node for the red-black tree that links inodes in subvolume root */
+ struct rb_node rb_node;
+
+ /* the space_info for where this inode's data allocations are done */
+ struct btrfs_space_info *space_info;
+
+ /* full 64 bit generation number, struct vfs_inode doesn't have a big
+ * enough field for this.
+ */
+ u64 generation;
+
+ /* sequence number for NFS changes */
+ u64 sequence;
+
+ /*
+ * transid of the trans_handle that last modified this inode
+ */
+ u64 last_trans;
+
+ /*
+ * log transid when this inode was last modified
+ */
+ u64 last_sub_trans;
+
+ /*
+ * transid that last logged this inode
+ */
+ u64 logged_trans;
+
+ /* total number of bytes pending delalloc, used by stat to calc the
+ * real block usage of the file
+ */
+ u64 delalloc_bytes;
+
+ /*
+ * the size of the file stored in the metadata on disk. data=ordered
+ * means the in-memory i_size might be larger than the size on disk
+ * because not all the blocks are written yet.
+ */
+ u64 disk_i_size;
+
+ /*
+ * if this is a directory then index_cnt is the counter for the index
+ * number for new files that are created
+ */
+ u64 index_cnt;
+
+ /* the fsync log has some corner cases that mean we have to check
+ * directories to see if any unlinks have been done before
+ * the directory was logged. See tree-log.c for all the
+ * details
+ */
+ u64 last_unlink_trans;
+
+ /*
+ * Number of bytes outstanding that are going to need csums. This is
+ * used in ENOSPC accounting.
+ */
+ u64 csum_bytes;
+
+ /* flags field from the on disk inode */
+ u32 flags;
+
+ /*
+ * Counters to keep track of the number of extent item's we may use due
+ * to delalloc and such. outstanding_extents is the number of extent
+ * items we think we'll end up using, and reserved_extents is the number
+ * of extent items we've reserved metadata for.
+ */
+ unsigned outstanding_extents;
+ unsigned reserved_extents;
+
+ /*
+ * ordered_data_close is set by truncate when a file that used
+ * to have good data has been truncated to zero. When it is set
+ * the btrfs file release call will add this inode to the
+ * ordered operations list so that we make sure to flush out any
+ * new data the application may have written before commit.
+ */
+ unsigned ordered_data_close:1;
+ unsigned orphan_meta_reserved:1;
+ unsigned dummy_inode:1;
+ unsigned in_defrag:1;
+ unsigned delalloc_meta_reserved:1;
+
+ /*
+ * always compress this one file
+ */
+ unsigned force_compress:4;
+
+ struct btrfs_delayed_node *delayed_node;
+
+ struct inode vfs_inode;
+};
+
+extern unsigned char btrfs_filetype_table[];
+
+static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
+{
+ return container_of(inode, struct btrfs_inode, vfs_inode);
+}
+
+static inline u64 btrfs_ino(struct inode *inode)
+{
+ u64 ino = BTRFS_I(inode)->location.objectid;
+
+ /*
+ * !ino: btree_inode
+ * type == BTRFS_ROOT_ITEM_KEY: subvol dir
+ */
+ if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY)
+ ino = inode->i_ino;
+ return ino;
+}
+
+static inline void btrfs_i_size_write(struct inode *inode, u64 size)
+{
+ i_size_write(inode, size);
+ BTRFS_I(inode)->disk_i_size = size;
+}
+
+static inline bool btrfs_is_free_space_inode(struct btrfs_root *root,
+ struct inode *inode)
+{
+ if (root == root->fs_info->tree_root ||
+ BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
+ return true;
+ return false;
+}
+
+#endif
diff --git a/fs/btrfs/check-integrity.c b/fs/btrfs/check-integrity.c
new file mode 100644
index 00000000..c053e90f
--- /dev/null
+++ b/fs/btrfs/check-integrity.c
@@ -0,0 +1,3068 @@
+/*
+ * Copyright (C) STRATO AG 2011. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+/*
+ * This module can be used to catch cases when the btrfs kernel
+ * code executes write requests to the disk that bring the file
+ * system in an inconsistent state. In such a state, a power-loss
+ * or kernel panic event would cause that the data on disk is
+ * lost or at least damaged.
+ *
+ * Code is added that examines all block write requests during
+ * runtime (including writes of the super block). Three rules
+ * are verified and an error is printed on violation of the
+ * rules:
+ * 1. It is not allowed to write a disk block which is
+ * currently referenced by the super block (either directly
+ * or indirectly).
+ * 2. When a super block is written, it is verified that all
+ * referenced (directly or indirectly) blocks fulfill the
+ * following requirements:
+ * 2a. All referenced blocks have either been present when
+ * the file system was mounted, (i.e., they have been
+ * referenced by the super block) or they have been
+ * written since then and the write completion callback
+ * was called and a FLUSH request to the device where
+ * these blocks are located was received and completed.
+ * 2b. All referenced blocks need to have a generation
+ * number which is equal to the parent's number.
+ *
+ * One issue that was found using this module was that the log
+ * tree on disk became temporarily corrupted because disk blocks
+ * that had been in use for the log tree had been freed and
+ * reused too early, while being referenced by the written super
+ * block.
+ *
+ * The search term in the kernel log that can be used to filter
+ * on the existence of detected integrity issues is
+ * "btrfs: attempt".
+ *
+ * The integrity check is enabled via mount options. These
+ * mount options are only supported if the integrity check
+ * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
+ *
+ * Example #1, apply integrity checks to all metadata:
+ * mount /dev/sdb1 /mnt -o check_int
+ *
+ * Example #2, apply integrity checks to all metadata and
+ * to data extents:
+ * mount /dev/sdb1 /mnt -o check_int_data
+ *
+ * Example #3, apply integrity checks to all metadata and dump
+ * the tree that the super block references to kernel messages
+ * each time after a super block was written:
+ * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
+ *
+ * If the integrity check tool is included and activated in
+ * the mount options, plenty of kernel memory is used, and
+ * plenty of additional CPU cycles are spent. Enabling this
+ * functionality is not intended for normal use. In most
+ * cases, unless you are a btrfs developer who needs to verify
+ * the integrity of (super)-block write requests, do not
+ * enable the config option BTRFS_FS_CHECK_INTEGRITY to
+ * include and compile the integrity check tool.
+ */
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/buffer_head.h>
+#include <linux/mutex.h>
+#include <linux/crc32c.h>
+#include <linux/genhd.h>
+#include <linux/blkdev.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "extent_io.h"
+#include "volumes.h"
+#include "print-tree.h"
+#include "locking.h"
+#include "check-integrity.h"
+
+#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
+#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
+#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
+#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
+#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
+#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
+#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
+#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
+ * excluding " [...]" */
+#define BTRFSIC_BLOCK_SIZE PAGE_SIZE
+
+#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
+
+/*
+ * The definition of the bitmask fields for the print_mask.
+ * They are specified with the mount option check_integrity_print_mask.
+ */
+#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
+#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
+#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
+#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
+#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
+#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
+#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
+#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
+#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
+#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
+#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
+#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
+#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
+
+struct btrfsic_dev_state;
+struct btrfsic_state;
+
+struct btrfsic_block {
+ u32 magic_num; /* only used for debug purposes */
+ unsigned int is_metadata:1; /* if it is meta-data, not data-data */
+ unsigned int is_superblock:1; /* if it is one of the superblocks */
+ unsigned int is_iodone:1; /* if is done by lower subsystem */
+ unsigned int iodone_w_error:1; /* error was indicated to endio */
+ unsigned int never_written:1; /* block was added because it was
+ * referenced, not because it was
+ * written */
+ unsigned int mirror_num:2; /* large enough to hold
+ * BTRFS_SUPER_MIRROR_MAX */
+ struct btrfsic_dev_state *dev_state;
+ u64 dev_bytenr; /* key, physical byte num on disk */
+ u64 logical_bytenr; /* logical byte num on disk */
+ u64 generation;
+ struct btrfs_disk_key disk_key; /* extra info to print in case of
+ * issues, will not always be correct */
+ struct list_head collision_resolving_node; /* list node */
+ struct list_head all_blocks_node; /* list node */
+
+ /* the following two lists contain block_link items */
+ struct list_head ref_to_list; /* list */
+ struct list_head ref_from_list; /* list */
+ struct btrfsic_block *next_in_same_bio;
+ void *orig_bio_bh_private;
+ union {
+ bio_end_io_t *bio;
+ bh_end_io_t *bh;
+ } orig_bio_bh_end_io;
+ int submit_bio_bh_rw;
+ u64 flush_gen; /* only valid if !never_written */
+};
+
+/*
+ * Elements of this type are allocated dynamically and required because
+ * each block object can refer to and can be ref from multiple blocks.
+ * The key to lookup them in the hashtable is the dev_bytenr of
+ * the block ref to plus the one from the block refered from.
+ * The fact that they are searchable via a hashtable and that a
+ * ref_cnt is maintained is not required for the btrfs integrity
+ * check algorithm itself, it is only used to make the output more
+ * beautiful in case that an error is detected (an error is defined
+ * as a write operation to a block while that block is still referenced).
+ */
+struct btrfsic_block_link {
+ u32 magic_num; /* only used for debug purposes */
+ u32 ref_cnt;
+ struct list_head node_ref_to; /* list node */
+ struct list_head node_ref_from; /* list node */
+ struct list_head collision_resolving_node; /* list node */
+ struct btrfsic_block *block_ref_to;
+ struct btrfsic_block *block_ref_from;
+ u64 parent_generation;
+};
+
+struct btrfsic_dev_state {
+ u32 magic_num; /* only used for debug purposes */
+ struct block_device *bdev;
+ struct btrfsic_state *state;
+ struct list_head collision_resolving_node; /* list node */
+ struct btrfsic_block dummy_block_for_bio_bh_flush;
+ u64 last_flush_gen;
+ char name[BDEVNAME_SIZE];
+};
+
+struct btrfsic_block_hashtable {
+ struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
+};
+
+struct btrfsic_block_link_hashtable {
+ struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
+};
+
+struct btrfsic_dev_state_hashtable {
+ struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
+};
+
+struct btrfsic_block_data_ctx {
+ u64 start; /* virtual bytenr */
+ u64 dev_bytenr; /* physical bytenr on device */
+ u32 len;
+ struct btrfsic_dev_state *dev;
+ char *data;
+ struct buffer_head *bh; /* do not use if set to NULL */
+};
+
+/* This structure is used to implement recursion without occupying
+ * any stack space, refer to btrfsic_process_metablock() */
+struct btrfsic_stack_frame {
+ u32 magic;
+ u32 nr;
+ int error;
+ int i;
+ int limit_nesting;
+ int num_copies;
+ int mirror_num;
+ struct btrfsic_block *block;
+ struct btrfsic_block_data_ctx *block_ctx;
+ struct btrfsic_block *next_block;
+ struct btrfsic_block_data_ctx next_block_ctx;
+ struct btrfs_header *hdr;
+ struct btrfsic_stack_frame *prev;
+};
+
+/* Some state per mounted filesystem */
+struct btrfsic_state {
+ u32 print_mask;
+ int include_extent_data;
+ int csum_size;
+ struct list_head all_blocks_list;
+ struct btrfsic_block_hashtable block_hashtable;
+ struct btrfsic_block_link_hashtable block_link_hashtable;
+ struct btrfs_root *root;
+ u64 max_superblock_generation;
+ struct btrfsic_block *latest_superblock;
+};
+
+static void btrfsic_block_init(struct btrfsic_block *b);
+static struct btrfsic_block *btrfsic_block_alloc(void);
+static void btrfsic_block_free(struct btrfsic_block *b);
+static void btrfsic_block_link_init(struct btrfsic_block_link *n);
+static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
+static void btrfsic_block_link_free(struct btrfsic_block_link *n);
+static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
+static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
+static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
+static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
+static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
+ struct btrfsic_block_hashtable *h);
+static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
+static struct btrfsic_block *btrfsic_block_hashtable_lookup(
+ struct block_device *bdev,
+ u64 dev_bytenr,
+ struct btrfsic_block_hashtable *h);
+static void btrfsic_block_link_hashtable_init(
+ struct btrfsic_block_link_hashtable *h);
+static void btrfsic_block_link_hashtable_add(
+ struct btrfsic_block_link *l,
+ struct btrfsic_block_link_hashtable *h);
+static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
+static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
+ struct block_device *bdev_ref_to,
+ u64 dev_bytenr_ref_to,
+ struct block_device *bdev_ref_from,
+ u64 dev_bytenr_ref_from,
+ struct btrfsic_block_link_hashtable *h);
+static void btrfsic_dev_state_hashtable_init(
+ struct btrfsic_dev_state_hashtable *h);
+static void btrfsic_dev_state_hashtable_add(
+ struct btrfsic_dev_state *ds,
+ struct btrfsic_dev_state_hashtable *h);
+static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
+static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
+ struct block_device *bdev,
+ struct btrfsic_dev_state_hashtable *h);
+static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
+static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
+static int btrfsic_process_superblock(struct btrfsic_state *state,
+ struct btrfs_fs_devices *fs_devices);
+static int btrfsic_process_metablock(struct btrfsic_state *state,
+ struct btrfsic_block *block,
+ struct btrfsic_block_data_ctx *block_ctx,
+ struct btrfs_header *hdr,
+ int limit_nesting, int force_iodone_flag);
+static int btrfsic_create_link_to_next_block(
+ struct btrfsic_state *state,
+ struct btrfsic_block *block,
+ struct btrfsic_block_data_ctx
+ *block_ctx, u64 next_bytenr,
+ int limit_nesting,
+ struct btrfsic_block_data_ctx *next_block_ctx,
+ struct btrfsic_block **next_blockp,
+ int force_iodone_flag,
+ int *num_copiesp, int *mirror_nump,
+ struct btrfs_disk_key *disk_key,
+ u64 parent_generation);
+static int btrfsic_handle_extent_data(struct btrfsic_state *state,
+ struct btrfsic_block *block,
+ struct btrfsic_block_data_ctx *block_ctx,
+ u32 item_offset, int force_iodone_flag);
+static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
+ struct btrfsic_block_data_ctx *block_ctx_out,
+ int mirror_num);
+static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
+ u32 len, struct block_device *bdev,
+ struct btrfsic_block_data_ctx *block_ctx_out);
+static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
+static int btrfsic_read_block(struct btrfsic_state *state,
+ struct btrfsic_block_data_ctx *block_ctx);
+static void btrfsic_dump_database(struct btrfsic_state *state);
+static int btrfsic_test_for_metadata(struct btrfsic_state *state,
+ const u8 *data, unsigned int size);
+static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
+ u64 dev_bytenr, u8 *mapped_data,
+ unsigned int len, struct bio *bio,
+ int *bio_is_patched,
+ struct buffer_head *bh,
+ int submit_bio_bh_rw);
+static int btrfsic_process_written_superblock(
+ struct btrfsic_state *state,
+ struct btrfsic_block *const block,
+ struct btrfs_super_block *const super_hdr);
+static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
+static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
+static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
+ const struct btrfsic_block *block,
+ int recursion_level);
+static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
+ struct btrfsic_block *const block,
+ int recursion_level);
+static void btrfsic_print_add_link(const struct btrfsic_state *state,
+ const struct btrfsic_block_link *l);
+static void btrfsic_print_rem_link(const struct btrfsic_state *state,
+ const struct btrfsic_block_link *l);
+static char btrfsic_get_block_type(const struct btrfsic_state *state,
+ const struct btrfsic_block *block);
+static void btrfsic_dump_tree(const struct btrfsic_state *state);
+static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
+ const struct btrfsic_block *block,
+ int indent_level);
+static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
+ struct btrfsic_state *state,
+ struct btrfsic_block_data_ctx *next_block_ctx,
+ struct btrfsic_block *next_block,
+ struct btrfsic_block *from_block,
+ u64 parent_generation);
+static struct btrfsic_block *btrfsic_block_lookup_or_add(
+ struct btrfsic_state *state,
+ struct btrfsic_block_data_ctx *block_ctx,
+ const char *additional_string,
+ int is_metadata,
+ int is_iodone,
+ int never_written,
+ int mirror_num,
+ int *was_created);
+static int btrfsic_process_superblock_dev_mirror(
+ struct btrfsic_state *state,
+ struct btrfsic_dev_state *dev_state,
+ struct btrfs_device *device,
+ int superblock_mirror_num,
+ struct btrfsic_dev_state **selected_dev_state,
+ struct btrfs_super_block *selected_super);
+static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
+ struct block_device *bdev);
+static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
+ u64 bytenr,
+ struct btrfsic_dev_state *dev_state,
+ u64 dev_bytenr, char *data);
+
+static struct mutex btrfsic_mutex;
+static int btrfsic_is_initialized;
+static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
+
+
+static void btrfsic_block_init(struct btrfsic_block *b)
+{
+ b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
+ b->dev_state = NULL;
+ b->dev_bytenr = 0;
+ b->logical_bytenr = 0;
+ b->generation = BTRFSIC_GENERATION_UNKNOWN;
+ b->disk_key.objectid = 0;
+ b->disk_key.type = 0;
+ b->disk_key.offset = 0;
+ b->is_metadata = 0;
+ b->is_superblock = 0;
+ b->is_iodone = 0;
+ b->iodone_w_error = 0;
+ b->never_written = 0;
+ b->mirror_num = 0;
+ b->next_in_same_bio = NULL;
+ b->orig_bio_bh_private = NULL;
+ b->orig_bio_bh_end_io.bio = NULL;
+ INIT_LIST_HEAD(&b->collision_resolving_node);
+ INIT_LIST_HEAD(&b->all_blocks_node);
+ INIT_LIST_HEAD(&b->ref_to_list);
+ INIT_LIST_HEAD(&b->ref_from_list);
+ b->submit_bio_bh_rw = 0;
+ b->flush_gen = 0;
+}
+
+static struct btrfsic_block *btrfsic_block_alloc(void)
+{
+ struct btrfsic_block *b;
+
+ b = kzalloc(sizeof(*b), GFP_NOFS);
+ if (NULL != b)
+ btrfsic_block_init(b);
+
+ return b;
+}
+
+static void btrfsic_block_free(struct btrfsic_block *b)
+{
+ BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
+ kfree(b);
+}
+
+static void btrfsic_block_link_init(struct btrfsic_block_link *l)
+{
+ l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
+ l->ref_cnt = 1;
+ INIT_LIST_HEAD(&l->node_ref_to);
+ INIT_LIST_HEAD(&l->node_ref_from);
+ INIT_LIST_HEAD(&l->collision_resolving_node);
+ l->block_ref_to = NULL;
+ l->block_ref_from = NULL;
+}
+
+static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
+{
+ struct btrfsic_block_link *l;
+
+ l = kzalloc(sizeof(*l), GFP_NOFS);
+ if (NULL != l)
+ btrfsic_block_link_init(l);
+
+ return l;
+}
+
+static void btrfsic_block_link_free(struct btrfsic_block_link *l)
+{
+ BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
+ kfree(l);
+}
+
+static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
+{
+ ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
+ ds->bdev = NULL;
+ ds->state = NULL;
+ ds->name[0] = '\0';
+ INIT_LIST_HEAD(&ds->collision_resolving_node);
+ ds->last_flush_gen = 0;
+ btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
+ ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
+ ds->dummy_block_for_bio_bh_flush.dev_state = ds;
+}
+
+static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
+{
+ struct btrfsic_dev_state *ds;
+
+ ds = kzalloc(sizeof(*ds), GFP_NOFS);
+ if (NULL != ds)
+ btrfsic_dev_state_init(ds);
+
+ return ds;
+}
+
+static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
+{
+ BUG_ON(!(NULL == ds ||
+ BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
+ kfree(ds);
+}
+
+static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
+{
+ int i;
+
+ for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
+ INIT_LIST_HEAD(h->table + i);
+}
+
+static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
+ struct btrfsic_block_hashtable *h)
+{
+ const unsigned int hashval =
+ (((unsigned int)(b->dev_bytenr >> 16)) ^
+ ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
+ (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
+
+ list_add(&b->collision_resolving_node, h->table + hashval);
+}
+
+static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
+{
+ list_del(&b->collision_resolving_node);
+}
+
+static struct btrfsic_block *btrfsic_block_hashtable_lookup(
+ struct block_device *bdev,
+ u64 dev_bytenr,
+ struct btrfsic_block_hashtable *h)
+{
+ const unsigned int hashval =
+ (((unsigned int)(dev_bytenr >> 16)) ^
+ ((unsigned int)((uintptr_t)bdev))) &
+ (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
+ struct list_head *elem;
+
+ list_for_each(elem, h->table + hashval) {
+ struct btrfsic_block *const b =
+ list_entry(elem, struct btrfsic_block,
+ collision_resolving_node);
+
+ if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
+ return b;
+ }
+
+ return NULL;
+}
+
+static void btrfsic_block_link_hashtable_init(
+ struct btrfsic_block_link_hashtable *h)
+{
+ int i;
+
+ for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
+ INIT_LIST_HEAD(h->table + i);
+}
+
+static void btrfsic_block_link_hashtable_add(
+ struct btrfsic_block_link *l,
+ struct btrfsic_block_link_hashtable *h)
+{
+ const unsigned int hashval =
+ (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
+ ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
+ ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
+ ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
+ & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
+
+ BUG_ON(NULL == l->block_ref_to);
+ BUG_ON(NULL == l->block_ref_from);
+ list_add(&l->collision_resolving_node, h->table + hashval);
+}
+
+static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
+{
+ list_del(&l->collision_resolving_node);
+}
+
+static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
+ struct block_device *bdev_ref_to,
+ u64 dev_bytenr_ref_to,
+ struct block_device *bdev_ref_from,
+ u64 dev_bytenr_ref_from,
+ struct btrfsic_block_link_hashtable *h)
+{
+ const unsigned int hashval =
+ (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
+ ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
+ ((unsigned int)((uintptr_t)bdev_ref_to)) ^
+ ((unsigned int)((uintptr_t)bdev_ref_from))) &
+ (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
+ struct list_head *elem;
+
+ list_for_each(elem, h->table + hashval) {
+ struct btrfsic_block_link *const l =
+ list_entry(elem, struct btrfsic_block_link,
+ collision_resolving_node);
+
+ BUG_ON(NULL == l->block_ref_to);
+ BUG_ON(NULL == l->block_ref_from);
+ if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
+ l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
+ l->block_ref_from->dev_state->bdev == bdev_ref_from &&
+ l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
+ return l;
+ }
+
+ return NULL;
+}
+
+static void btrfsic_dev_state_hashtable_init(
+ struct btrfsic_dev_state_hashtable *h)
+{
+ int i;
+
+ for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
+ INIT_LIST_HEAD(h->table + i);
+}
+
+static void btrfsic_dev_state_hashtable_add(
+ struct btrfsic_dev_state *ds,
+ struct btrfsic_dev_state_hashtable *h)
+{
+ const unsigned int hashval =
+ (((unsigned int)((uintptr_t)ds->bdev)) &
+ (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
+
+ list_add(&ds->collision_resolving_node, h->table + hashval);
+}
+
+static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
+{
+ list_del(&ds->collision_resolving_node);
+}
+
+static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
+ struct block_device *bdev,
+ struct btrfsic_dev_state_hashtable *h)
+{
+ const unsigned int hashval =
+ (((unsigned int)((uintptr_t)bdev)) &
+ (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
+ struct list_head *elem;
+
+ list_for_each(elem, h->table + hashval) {
+ struct btrfsic_dev_state *const ds =
+ list_entry(elem, struct btrfsic_dev_state,
+ collision_resolving_node);
+
+ if (ds->bdev == bdev)
+ return ds;
+ }
+
+ return NULL;
+}
+
+static int btrfsic_process_superblock(struct btrfsic_state *state,
+ struct btrfs_fs_devices *fs_devices)
+{
+ int ret = 0;
+ struct btrfs_super_block *selected_super;
+ struct list_head *dev_head = &fs_devices->devices;
+ struct btrfs_device *device;
+ struct btrfsic_dev_state *selected_dev_state = NULL;
+ int pass;
+
+ BUG_ON(NULL == state);
+ selected_super = kmalloc(sizeof(*selected_super), GFP_NOFS);
+ if (NULL == selected_super) {
+ printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
+ return -1;
+ }
+
+ list_for_each_entry(device, dev_head, dev_list) {
+ int i;
+ struct btrfsic_dev_state *dev_state;
+
+ if (!device->bdev || !device->name)
+ continue;
+
+ dev_state = btrfsic_dev_state_lookup(device->bdev);
+ BUG_ON(NULL == dev_state);
+ for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
+ ret = btrfsic_process_superblock_dev_mirror(
+ state, dev_state, device, i,
+ &selected_dev_state, selected_super);
+ if (0 != ret && 0 == i) {
+ kfree(selected_super);
+ return ret;
+ }
+ }
+ }
+
+ if (NULL == state->latest_superblock) {
+ printk(KERN_INFO "btrfsic: no superblock found!\n");
+ kfree(selected_super);
+ return -1;
+ }
+
+ state->csum_size = btrfs_super_csum_size(selected_super);
+
+ for (pass = 0; pass < 3; pass++) {
+ int num_copies;
+ int mirror_num;
+ u64 next_bytenr;
+
+ switch (pass) {
+ case 0:
+ next_bytenr = btrfs_super_root(selected_super);
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
+ printk(KERN_INFO "root@%llu\n",
+ (unsigned long long)next_bytenr);
+ break;
+ case 1:
+ next_bytenr = btrfs_super_chunk_root(selected_super);
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
+ printk(KERN_INFO "chunk@%llu\n",
+ (unsigned long long)next_bytenr);
+ break;
+ case 2:
+ next_bytenr = btrfs_super_log_root(selected_super);
+ if (0 == next_bytenr)
+ continue;
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
+ printk(KERN_INFO "log@%llu\n",
+ (unsigned long long)next_bytenr);
+ break;
+ }
+
+ num_copies =
+ btrfs_num_copies(&state->root->fs_info->mapping_tree,
+ next_bytenr, PAGE_SIZE);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
+ printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
+ (unsigned long long)next_bytenr, num_copies);
+
+ for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
+ struct btrfsic_block *next_block;
+ struct btrfsic_block_data_ctx tmp_next_block_ctx;
+ struct btrfsic_block_link *l;
+ struct btrfs_header *hdr;
+
+ ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
+ &tmp_next_block_ctx,
+ mirror_num);
+ if (ret) {
+ printk(KERN_INFO "btrfsic:"
+ " btrfsic_map_block(root @%llu,"
+ " mirror %d) failed!\n",
+ (unsigned long long)next_bytenr,
+ mirror_num);
+ kfree(selected_super);
+ return -1;
+ }
+
+ next_block = btrfsic_block_hashtable_lookup(
+ tmp_next_block_ctx.dev->bdev,
+ tmp_next_block_ctx.dev_bytenr,
+ &state->block_hashtable);
+ BUG_ON(NULL == next_block);
+
+ l = btrfsic_block_link_hashtable_lookup(
+ tmp_next_block_ctx.dev->bdev,
+ tmp_next_block_ctx.dev_bytenr,
+ state->latest_superblock->dev_state->
+ bdev,
+ state->latest_superblock->dev_bytenr,
+ &state->block_link_hashtable);
+ BUG_ON(NULL == l);
+
+ ret = btrfsic_read_block(state, &tmp_next_block_ctx);
+ if (ret < (int)BTRFSIC_BLOCK_SIZE) {
+ printk(KERN_INFO
+ "btrfsic: read @logical %llu failed!\n",
+ (unsigned long long)
+ tmp_next_block_ctx.start);
+ btrfsic_release_block_ctx(&tmp_next_block_ctx);
+ kfree(selected_super);
+ return -1;
+ }
+
+ hdr = (struct btrfs_header *)tmp_next_block_ctx.data;
+ ret = btrfsic_process_metablock(state,
+ next_block,
+ &tmp_next_block_ctx,
+ hdr,
+ BTRFS_MAX_LEVEL + 3, 1);
+ btrfsic_release_block_ctx(&tmp_next_block_ctx);
+ }
+ }
+
+ kfree(selected_super);
+ return ret;
+}
+
+static int btrfsic_process_superblock_dev_mirror(
+ struct btrfsic_state *state,
+ struct btrfsic_dev_state *dev_state,
+ struct btrfs_device *device,
+ int superblock_mirror_num,
+ struct btrfsic_dev_state **selected_dev_state,
+ struct btrfs_super_block *selected_super)
+{
+ struct btrfs_super_block *super_tmp;
+ u64 dev_bytenr;
+ struct buffer_head *bh;
+ struct btrfsic_block *superblock_tmp;
+ int pass;
+ struct block_device *const superblock_bdev = device->bdev;
+
+ /* super block bytenr is always the unmapped device bytenr */
+ dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
+ bh = __bread(superblock_bdev, dev_bytenr / 4096, 4096);
+ if (NULL == bh)
+ return -1;
+ super_tmp = (struct btrfs_super_block *)
+ (bh->b_data + (dev_bytenr & 4095));
+
+ if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
+ strncmp((char *)(&(super_tmp->magic)), BTRFS_MAGIC,
+ sizeof(super_tmp->magic)) ||
+ memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE)) {
+ brelse(bh);
+ return 0;
+ }
+
+ superblock_tmp =
+ btrfsic_block_hashtable_lookup(superblock_bdev,
+ dev_bytenr,
+ &state->block_hashtable);
+ if (NULL == superblock_tmp) {
+ superblock_tmp = btrfsic_block_alloc();
+ if (NULL == superblock_tmp) {
+ printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
+ brelse(bh);
+ return -1;
+ }
+ /* for superblock, only the dev_bytenr makes sense */
+ superblock_tmp->dev_bytenr = dev_bytenr;
+ superblock_tmp->dev_state = dev_state;
+ superblock_tmp->logical_bytenr = dev_bytenr;
+ superblock_tmp->generation = btrfs_super_generation(super_tmp);
+ superblock_tmp->is_metadata = 1;
+ superblock_tmp->is_superblock = 1;
+ superblock_tmp->is_iodone = 1;
+ superblock_tmp->never_written = 0;
+ superblock_tmp->mirror_num = 1 + superblock_mirror_num;
+ if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
+ printk(KERN_INFO "New initial S-block (bdev %p, %s)"
+ " @%llu (%s/%llu/%d)\n",
+ superblock_bdev, device->name,
+ (unsigned long long)dev_bytenr,
+ dev_state->name,
+ (unsigned long long)dev_bytenr,
+ superblock_mirror_num);
+ list_add(&superblock_tmp->all_blocks_node,
+ &state->all_blocks_list);
+ btrfsic_block_hashtable_add(superblock_tmp,
+ &state->block_hashtable);
+ }
+
+ /* select the one with the highest generation field */
+ if (btrfs_super_generation(super_tmp) >
+ state->max_superblock_generation ||
+ 0 == state->max_superblock_generation) {
+ memcpy(selected_super, super_tmp, sizeof(*selected_super));
+ *selected_dev_state = dev_state;
+ state->max_superblock_generation =
+ btrfs_super_generation(super_tmp);
+ state->latest_superblock = superblock_tmp;
+ }
+
+ for (pass = 0; pass < 3; pass++) {
+ u64 next_bytenr;
+ int num_copies;
+ int mirror_num;
+ const char *additional_string = NULL;
+ struct btrfs_disk_key tmp_disk_key;
+
+ tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
+ tmp_disk_key.offset = 0;
+ switch (pass) {
+ case 0:
+ tmp_disk_key.objectid =
+ cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
+ additional_string = "initial root ";
+ next_bytenr = btrfs_super_root(super_tmp);
+ break;
+ case 1:
+ tmp_disk_key.objectid =
+ cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
+ additional_string = "initial chunk ";
+ next_bytenr = btrfs_super_chunk_root(super_tmp);
+ break;
+ case 2:
+ tmp_disk_key.objectid =
+ cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
+ additional_string = "initial log ";
+ next_bytenr = btrfs_super_log_root(super_tmp);
+ if (0 == next_bytenr)
+ continue;
+ break;
+ }
+
+ num_copies =
+ btrfs_num_copies(&state->root->fs_info->mapping_tree,
+ next_bytenr, PAGE_SIZE);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
+ printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
+ (unsigned long long)next_bytenr, num_copies);
+ for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
+ struct btrfsic_block *next_block;
+ struct btrfsic_block_data_ctx tmp_next_block_ctx;
+ struct btrfsic_block_link *l;
+
+ if (btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
+ &tmp_next_block_ctx,
+ mirror_num)) {
+ printk(KERN_INFO "btrfsic: btrfsic_map_block("
+ "bytenr @%llu, mirror %d) failed!\n",
+ (unsigned long long)next_bytenr,
+ mirror_num);
+ brelse(bh);
+ return -1;
+ }
+
+ next_block = btrfsic_block_lookup_or_add(
+ state, &tmp_next_block_ctx,
+ additional_string, 1, 1, 0,
+ mirror_num, NULL);
+ if (NULL == next_block) {
+ btrfsic_release_block_ctx(&tmp_next_block_ctx);
+ brelse(bh);
+ return -1;
+ }
+
+ next_block->disk_key = tmp_disk_key;
+ next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
+ l = btrfsic_block_link_lookup_or_add(
+ state, &tmp_next_block_ctx,
+ next_block, superblock_tmp,
+ BTRFSIC_GENERATION_UNKNOWN);
+ btrfsic_release_block_ctx(&tmp_next_block_ctx);
+ if (NULL == l) {
+ brelse(bh);
+ return -1;
+ }
+ }
+ }
+ if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
+ btrfsic_dump_tree_sub(state, superblock_tmp, 0);
+
+ brelse(bh);
+ return 0;
+}
+
+static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
+{
+ struct btrfsic_stack_frame *sf;
+
+ sf = kzalloc(sizeof(*sf), GFP_NOFS);
+ if (NULL == sf)
+ printk(KERN_INFO "btrfsic: alloc memory failed!\n");
+ else
+ sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
+ return sf;
+}
+
+static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
+{
+ BUG_ON(!(NULL == sf ||
+ BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
+ kfree(sf);
+}
+
+static int btrfsic_process_metablock(
+ struct btrfsic_state *state,
+ struct btrfsic_block *const first_block,
+ struct btrfsic_block_data_ctx *const first_block_ctx,
+ struct btrfs_header *const first_hdr,
+ int first_limit_nesting, int force_iodone_flag)
+{
+ struct btrfsic_stack_frame initial_stack_frame = { 0 };
+ struct btrfsic_stack_frame *sf;
+ struct btrfsic_stack_frame *next_stack;
+
+ sf = &initial_stack_frame;
+ sf->error = 0;
+ sf->i = -1;
+ sf->limit_nesting = first_limit_nesting;
+ sf->block = first_block;
+ sf->block_ctx = first_block_ctx;
+ sf->next_block = NULL;
+ sf->hdr = first_hdr;
+ sf->prev = NULL;
+
+continue_with_new_stack_frame:
+ sf->block->generation = le64_to_cpu(sf->hdr->generation);
+ if (0 == sf->hdr->level) {
+ struct btrfs_leaf *const leafhdr =
+ (struct btrfs_leaf *)sf->hdr;
+
+ if (-1 == sf->i) {
+ sf->nr = le32_to_cpu(leafhdr->header.nritems);
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "leaf %llu items %d generation %llu"
+ " owner %llu\n",
+ (unsigned long long)
+ sf->block_ctx->start,
+ sf->nr,
+ (unsigned long long)
+ le64_to_cpu(leafhdr->header.generation),
+ (unsigned long long)
+ le64_to_cpu(leafhdr->header.owner));
+ }
+
+continue_with_current_leaf_stack_frame:
+ if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
+ sf->i++;
+ sf->num_copies = 0;
+ }
+
+ if (sf->i < sf->nr) {
+ struct btrfs_item *disk_item = leafhdr->items + sf->i;
+ struct btrfs_disk_key *disk_key = &disk_item->key;
+ u8 type;
+ const u32 item_offset = le32_to_cpu(disk_item->offset);
+
+ type = disk_key->type;
+
+ if (BTRFS_ROOT_ITEM_KEY == type) {
+ const struct btrfs_root_item *const root_item =
+ (struct btrfs_root_item *)
+ (sf->block_ctx->data +
+ offsetof(struct btrfs_leaf, items) +
+ item_offset);
+ const u64 next_bytenr =
+ le64_to_cpu(root_item->bytenr);
+
+ sf->error =
+ btrfsic_create_link_to_next_block(
+ state,
+ sf->block,
+ sf->block_ctx,
+ next_bytenr,
+ sf->limit_nesting,
+ &sf->next_block_ctx,
+ &sf->next_block,
+ force_iodone_flag,
+ &sf->num_copies,
+ &sf->mirror_num,
+ disk_key,
+ le64_to_cpu(root_item->
+ generation));
+ if (sf->error)
+ goto one_stack_frame_backwards;
+
+ if (NULL != sf->next_block) {
+ struct btrfs_header *const next_hdr =
+ (struct btrfs_header *)
+ sf->next_block_ctx.data;
+
+ next_stack =
+ btrfsic_stack_frame_alloc();
+ if (NULL == next_stack) {
+ btrfsic_release_block_ctx(
+ &sf->
+ next_block_ctx);
+ goto one_stack_frame_backwards;
+ }
+
+ next_stack->i = -1;
+ next_stack->block = sf->next_block;
+ next_stack->block_ctx =
+ &sf->next_block_ctx;
+ next_stack->next_block = NULL;
+ next_stack->hdr = next_hdr;
+ next_stack->limit_nesting =
+ sf->limit_nesting - 1;
+ next_stack->prev = sf;
+ sf = next_stack;
+ goto continue_with_new_stack_frame;
+ }
+ } else if (BTRFS_EXTENT_DATA_KEY == type &&
+ state->include_extent_data) {
+ sf->error = btrfsic_handle_extent_data(
+ state,
+ sf->block,
+ sf->block_ctx,
+ item_offset,
+ force_iodone_flag);
+ if (sf->error)
+ goto one_stack_frame_backwards;
+ }
+
+ goto continue_with_current_leaf_stack_frame;
+ }
+ } else {
+ struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
+
+ if (-1 == sf->i) {
+ sf->nr = le32_to_cpu(nodehdr->header.nritems);
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO "node %llu level %d items %d"
+ " generation %llu owner %llu\n",
+ (unsigned long long)
+ sf->block_ctx->start,
+ nodehdr->header.level, sf->nr,
+ (unsigned long long)
+ le64_to_cpu(nodehdr->header.generation),
+ (unsigned long long)
+ le64_to_cpu(nodehdr->header.owner));
+ }
+
+continue_with_current_node_stack_frame:
+ if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
+ sf->i++;
+ sf->num_copies = 0;
+ }
+
+ if (sf->i < sf->nr) {
+ struct btrfs_key_ptr *disk_key_ptr =
+ nodehdr->ptrs + sf->i;
+ const u64 next_bytenr =
+ le64_to_cpu(disk_key_ptr->blockptr);
+
+ sf->error = btrfsic_create_link_to_next_block(
+ state,
+ sf->block,
+ sf->block_ctx,
+ next_bytenr,
+ sf->limit_nesting,
+ &sf->next_block_ctx,
+ &sf->next_block,
+ force_iodone_flag,
+ &sf->num_copies,
+ &sf->mirror_num,
+ &disk_key_ptr->key,
+ le64_to_cpu(disk_key_ptr->generation));
+ if (sf->error)
+ goto one_stack_frame_backwards;
+
+ if (NULL != sf->next_block) {
+ struct btrfs_header *const next_hdr =
+ (struct btrfs_header *)
+ sf->next_block_ctx.data;
+
+ next_stack = btrfsic_stack_frame_alloc();
+ if (NULL == next_stack)
+ goto one_stack_frame_backwards;
+
+ next_stack->i = -1;
+ next_stack->block = sf->next_block;
+ next_stack->block_ctx = &sf->next_block_ctx;
+ next_stack->next_block = NULL;
+ next_stack->hdr = next_hdr;
+ next_stack->limit_nesting =
+ sf->limit_nesting - 1;
+ next_stack->prev = sf;
+ sf = next_stack;
+ goto continue_with_new_stack_frame;
+ }
+
+ goto continue_with_current_node_stack_frame;
+ }
+ }
+
+one_stack_frame_backwards:
+ if (NULL != sf->prev) {
+ struct btrfsic_stack_frame *const prev = sf->prev;
+
+ /* the one for the initial block is freed in the caller */
+ btrfsic_release_block_ctx(sf->block_ctx);
+
+ if (sf->error) {
+ prev->error = sf->error;
+ btrfsic_stack_frame_free(sf);
+ sf = prev;
+ goto one_stack_frame_backwards;
+ }
+
+ btrfsic_stack_frame_free(sf);
+ sf = prev;
+ goto continue_with_new_stack_frame;
+ } else {
+ BUG_ON(&initial_stack_frame != sf);
+ }
+
+ return sf->error;
+}
+
+static int btrfsic_create_link_to_next_block(
+ struct btrfsic_state *state,
+ struct btrfsic_block *block,
+ struct btrfsic_block_data_ctx *block_ctx,
+ u64 next_bytenr,
+ int limit_nesting,
+ struct btrfsic_block_data_ctx *next_block_ctx,
+ struct btrfsic_block **next_blockp,
+ int force_iodone_flag,
+ int *num_copiesp, int *mirror_nump,
+ struct btrfs_disk_key *disk_key,
+ u64 parent_generation)
+{
+ struct btrfsic_block *next_block = NULL;
+ int ret;
+ struct btrfsic_block_link *l;
+ int did_alloc_block_link;
+ int block_was_created;
+
+ *next_blockp = NULL;
+ if (0 == *num_copiesp) {
+ *num_copiesp =
+ btrfs_num_copies(&state->root->fs_info->mapping_tree,
+ next_bytenr, PAGE_SIZE);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
+ printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
+ (unsigned long long)next_bytenr, *num_copiesp);
+ *mirror_nump = 1;
+ }
+
+ if (*mirror_nump > *num_copiesp)
+ return 0;
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
+ *mirror_nump);
+ ret = btrfsic_map_block(state, next_bytenr,
+ BTRFSIC_BLOCK_SIZE,
+ next_block_ctx, *mirror_nump);
+ if (ret) {
+ printk(KERN_INFO
+ "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
+ (unsigned long long)next_bytenr, *mirror_nump);
+ btrfsic_release_block_ctx(next_block_ctx);
+ *next_blockp = NULL;
+ return -1;
+ }
+
+ next_block = btrfsic_block_lookup_or_add(state,
+ next_block_ctx, "referenced ",
+ 1, force_iodone_flag,
+ !force_iodone_flag,
+ *mirror_nump,
+ &block_was_created);
+ if (NULL == next_block) {
+ btrfsic_release_block_ctx(next_block_ctx);
+ *next_blockp = NULL;
+ return -1;
+ }
+ if (block_was_created) {
+ l = NULL;
+ next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
+ } else {
+ if (next_block->logical_bytenr != next_bytenr &&
+ !(!next_block->is_metadata &&
+ 0 == next_block->logical_bytenr)) {
+ printk(KERN_INFO
+ "Referenced block @%llu (%s/%llu/%d)"
+ " found in hash table, %c,"
+ " bytenr mismatch (!= stored %llu).\n",
+ (unsigned long long)next_bytenr,
+ next_block_ctx->dev->name,
+ (unsigned long long)next_block_ctx->dev_bytenr,
+ *mirror_nump,
+ btrfsic_get_block_type(state, next_block),
+ (unsigned long long)next_block->logical_bytenr);
+ } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "Referenced block @%llu (%s/%llu/%d)"
+ " found in hash table, %c.\n",
+ (unsigned long long)next_bytenr,
+ next_block_ctx->dev->name,
+ (unsigned long long)next_block_ctx->dev_bytenr,
+ *mirror_nump,
+ btrfsic_get_block_type(state, next_block));
+ next_block->logical_bytenr = next_bytenr;
+
+ next_block->mirror_num = *mirror_nump;
+ l = btrfsic_block_link_hashtable_lookup(
+ next_block_ctx->dev->bdev,
+ next_block_ctx->dev_bytenr,
+ block_ctx->dev->bdev,
+ block_ctx->dev_bytenr,
+ &state->block_link_hashtable);
+ }
+
+ next_block->disk_key = *disk_key;
+ if (NULL == l) {
+ l = btrfsic_block_link_alloc();
+ if (NULL == l) {
+ printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
+ btrfsic_release_block_ctx(next_block_ctx);
+ *next_blockp = NULL;
+ return -1;
+ }
+
+ did_alloc_block_link = 1;
+ l->block_ref_to = next_block;
+ l->block_ref_from = block;
+ l->ref_cnt = 1;
+ l->parent_generation = parent_generation;
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ btrfsic_print_add_link(state, l);
+
+ list_add(&l->node_ref_to, &block->ref_to_list);
+ list_add(&l->node_ref_from, &next_block->ref_from_list);
+
+ btrfsic_block_link_hashtable_add(l,
+ &state->block_link_hashtable);
+ } else {
+ did_alloc_block_link = 0;
+ if (0 == limit_nesting) {
+ l->ref_cnt++;
+ l->parent_generation = parent_generation;
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ btrfsic_print_add_link(state, l);
+ }
+ }
+
+ if (limit_nesting > 0 && did_alloc_block_link) {
+ ret = btrfsic_read_block(state, next_block_ctx);
+ if (ret < (int)BTRFSIC_BLOCK_SIZE) {
+ printk(KERN_INFO
+ "btrfsic: read block @logical %llu failed!\n",
+ (unsigned long long)next_bytenr);
+ btrfsic_release_block_ctx(next_block_ctx);
+ *next_blockp = NULL;
+ return -1;
+ }
+
+ *next_blockp = next_block;
+ } else {
+ *next_blockp = NULL;
+ }
+ (*mirror_nump)++;
+
+ return 0;
+}
+
+static int btrfsic_handle_extent_data(
+ struct btrfsic_state *state,
+ struct btrfsic_block *block,
+ struct btrfsic_block_data_ctx *block_ctx,
+ u32 item_offset, int force_iodone_flag)
+{
+ int ret;
+ struct btrfs_file_extent_item *file_extent_item =
+ (struct btrfs_file_extent_item *)(block_ctx->data +
+ offsetof(struct btrfs_leaf,
+ items) + item_offset);
+ u64 next_bytenr =
+ le64_to_cpu(file_extent_item->disk_bytenr) +
+ le64_to_cpu(file_extent_item->offset);
+ u64 num_bytes = le64_to_cpu(file_extent_item->num_bytes);
+ u64 generation = le64_to_cpu(file_extent_item->generation);
+ struct btrfsic_block_link *l;
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
+ printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
+ " offset = %llu, num_bytes = %llu\n",
+ file_extent_item->type,
+ (unsigned long long)
+ le64_to_cpu(file_extent_item->disk_bytenr),
+ (unsigned long long)
+ le64_to_cpu(file_extent_item->offset),
+ (unsigned long long)
+ le64_to_cpu(file_extent_item->num_bytes));
+ if (BTRFS_FILE_EXTENT_REG != file_extent_item->type ||
+ ((u64)0) == le64_to_cpu(file_extent_item->disk_bytenr))
+ return 0;
+ while (num_bytes > 0) {
+ u32 chunk_len;
+ int num_copies;
+ int mirror_num;
+
+ if (num_bytes > BTRFSIC_BLOCK_SIZE)
+ chunk_len = BTRFSIC_BLOCK_SIZE;
+ else
+ chunk_len = num_bytes;
+
+ num_copies =
+ btrfs_num_copies(&state->root->fs_info->mapping_tree,
+ next_bytenr, PAGE_SIZE);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
+ printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
+ (unsigned long long)next_bytenr, num_copies);
+ for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
+ struct btrfsic_block_data_ctx next_block_ctx;
+ struct btrfsic_block *next_block;
+ int block_was_created;
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO "btrfsic_handle_extent_data("
+ "mirror_num=%d)\n", mirror_num);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
+ printk(KERN_INFO
+ "\tdisk_bytenr = %llu, num_bytes %u\n",
+ (unsigned long long)next_bytenr,
+ chunk_len);
+ ret = btrfsic_map_block(state, next_bytenr,
+ chunk_len, &next_block_ctx,
+ mirror_num);
+ if (ret) {
+ printk(KERN_INFO
+ "btrfsic: btrfsic_map_block(@%llu,"
+ " mirror=%d) failed!\n",
+ (unsigned long long)next_bytenr,
+ mirror_num);
+ return -1;
+ }
+
+ next_block = btrfsic_block_lookup_or_add(
+ state,
+ &next_block_ctx,
+ "referenced ",
+ 0,
+ force_iodone_flag,
+ !force_iodone_flag,
+ mirror_num,
+ &block_was_created);
+ if (NULL == next_block) {
+ printk(KERN_INFO
+ "btrfsic: error, kmalloc failed!\n");
+ btrfsic_release_block_ctx(&next_block_ctx);
+ return -1;
+ }
+ if (!block_was_created) {
+ if (next_block->logical_bytenr != next_bytenr &&
+ !(!next_block->is_metadata &&
+ 0 == next_block->logical_bytenr)) {
+ printk(KERN_INFO
+ "Referenced block"
+ " @%llu (%s/%llu/%d)"
+ " found in hash table, D,"
+ " bytenr mismatch"
+ " (!= stored %llu).\n",
+ (unsigned long long)next_bytenr,
+ next_block_ctx.dev->name,
+ (unsigned long long)
+ next_block_ctx.dev_bytenr,
+ mirror_num,
+ (unsigned long long)
+ next_block->logical_bytenr);
+ }
+ next_block->logical_bytenr = next_bytenr;
+ next_block->mirror_num = mirror_num;
+ }
+
+ l = btrfsic_block_link_lookup_or_add(state,
+ &next_block_ctx,
+ next_block, block,
+ generation);
+ btrfsic_release_block_ctx(&next_block_ctx);
+ if (NULL == l)
+ return -1;
+ }
+
+ next_bytenr += chunk_len;
+ num_bytes -= chunk_len;
+ }
+
+ return 0;
+}
+
+static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
+ struct btrfsic_block_data_ctx *block_ctx_out,
+ int mirror_num)
+{
+ int ret;
+ u64 length;
+ struct btrfs_bio *multi = NULL;
+ struct btrfs_device *device;
+
+ length = len;
+ ret = btrfs_map_block(&state->root->fs_info->mapping_tree, READ,
+ bytenr, &length, &multi, mirror_num);
+
+ device = multi->stripes[0].dev;
+ block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
+ block_ctx_out->dev_bytenr = multi->stripes[0].physical;
+ block_ctx_out->start = bytenr;
+ block_ctx_out->len = len;
+ block_ctx_out->data = NULL;
+ block_ctx_out->bh = NULL;
+
+ if (0 == ret)
+ kfree(multi);
+ if (NULL == block_ctx_out->dev) {
+ ret = -ENXIO;
+ printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
+ }
+
+ return ret;
+}
+
+static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
+ u32 len, struct block_device *bdev,
+ struct btrfsic_block_data_ctx *block_ctx_out)
+{
+ block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
+ block_ctx_out->dev_bytenr = bytenr;
+ block_ctx_out->start = bytenr;
+ block_ctx_out->len = len;
+ block_ctx_out->data = NULL;
+ block_ctx_out->bh = NULL;
+ if (NULL != block_ctx_out->dev) {
+ return 0;
+ } else {
+ printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
+ return -ENXIO;
+ }
+}
+
+static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
+{
+ if (NULL != block_ctx->bh) {
+ brelse(block_ctx->bh);
+ block_ctx->bh = NULL;
+ }
+}
+
+static int btrfsic_read_block(struct btrfsic_state *state,
+ struct btrfsic_block_data_ctx *block_ctx)
+{
+ block_ctx->bh = NULL;
+ if (block_ctx->dev_bytenr & 4095) {
+ printk(KERN_INFO
+ "btrfsic: read_block() with unaligned bytenr %llu\n",
+ (unsigned long long)block_ctx->dev_bytenr);
+ return -1;
+ }
+ if (block_ctx->len > 4096) {
+ printk(KERN_INFO
+ "btrfsic: read_block() with too huge size %d\n",
+ block_ctx->len);
+ return -1;
+ }
+
+ block_ctx->bh = __bread(block_ctx->dev->bdev,
+ block_ctx->dev_bytenr >> 12, 4096);
+ if (NULL == block_ctx->bh)
+ return -1;
+ block_ctx->data = block_ctx->bh->b_data;
+
+ return block_ctx->len;
+}
+
+static void btrfsic_dump_database(struct btrfsic_state *state)
+{
+ struct list_head *elem_all;
+
+ BUG_ON(NULL == state);
+
+ printk(KERN_INFO "all_blocks_list:\n");
+ list_for_each(elem_all, &state->all_blocks_list) {
+ const struct btrfsic_block *const b_all =
+ list_entry(elem_all, struct btrfsic_block,
+ all_blocks_node);
+ struct list_head *elem_ref_to;
+ struct list_head *elem_ref_from;
+
+ printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
+ btrfsic_get_block_type(state, b_all),
+ (unsigned long long)b_all->logical_bytenr,
+ b_all->dev_state->name,
+ (unsigned long long)b_all->dev_bytenr,
+ b_all->mirror_num);
+
+ list_for_each(elem_ref_to, &b_all->ref_to_list) {
+ const struct btrfsic_block_link *const l =
+ list_entry(elem_ref_to,
+ struct btrfsic_block_link,
+ node_ref_to);
+
+ printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
+ " refers %u* to"
+ " %c @%llu (%s/%llu/%d)\n",
+ btrfsic_get_block_type(state, b_all),
+ (unsigned long long)b_all->logical_bytenr,
+ b_all->dev_state->name,
+ (unsigned long long)b_all->dev_bytenr,
+ b_all->mirror_num,
+ l->ref_cnt,
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)
+ l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num);
+ }
+
+ list_for_each(elem_ref_from, &b_all->ref_from_list) {
+ const struct btrfsic_block_link *const l =
+ list_entry(elem_ref_from,
+ struct btrfsic_block_link,
+ node_ref_from);
+
+ printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
+ " is ref %u* from"
+ " %c @%llu (%s/%llu/%d)\n",
+ btrfsic_get_block_type(state, b_all),
+ (unsigned long long)b_all->logical_bytenr,
+ b_all->dev_state->name,
+ (unsigned long long)b_all->dev_bytenr,
+ b_all->mirror_num,
+ l->ref_cnt,
+ btrfsic_get_block_type(state, l->block_ref_from),
+ (unsigned long long)
+ l->block_ref_from->logical_bytenr,
+ l->block_ref_from->dev_state->name,
+ (unsigned long long)
+ l->block_ref_from->dev_bytenr,
+ l->block_ref_from->mirror_num);
+ }
+
+ printk(KERN_INFO "\n");
+ }
+}
+
+/*
+ * Test whether the disk block contains a tree block (leaf or node)
+ * (note that this test fails for the super block)
+ */
+static int btrfsic_test_for_metadata(struct btrfsic_state *state,
+ const u8 *data, unsigned int size)
+{
+ struct btrfs_header *h;
+ u8 csum[BTRFS_CSUM_SIZE];
+ u32 crc = ~(u32)0;
+ int fail = 0;
+ int crc_fail = 0;
+
+ h = (struct btrfs_header *)data;
+
+ if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
+ fail++;
+
+ crc = crc32c(crc, data + BTRFS_CSUM_SIZE, PAGE_SIZE - BTRFS_CSUM_SIZE);
+ btrfs_csum_final(crc, csum);
+ if (memcmp(csum, h->csum, state->csum_size))
+ crc_fail++;
+
+ return fail || crc_fail;
+}
+
+static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
+ u64 dev_bytenr,
+ u8 *mapped_data, unsigned int len,
+ struct bio *bio,
+ int *bio_is_patched,
+ struct buffer_head *bh,
+ int submit_bio_bh_rw)
+{
+ int is_metadata;
+ struct btrfsic_block *block;
+ struct btrfsic_block_data_ctx block_ctx;
+ int ret;
+ struct btrfsic_state *state = dev_state->state;
+ struct block_device *bdev = dev_state->bdev;
+
+ WARN_ON(len > PAGE_SIZE);
+ is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_data, len));
+ if (NULL != bio_is_patched)
+ *bio_is_patched = 0;
+
+ block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
+ &state->block_hashtable);
+ if (NULL != block) {
+ u64 bytenr = 0;
+ struct list_head *elem_ref_to;
+ struct list_head *tmp_ref_to;
+
+ if (block->is_superblock) {
+ bytenr = le64_to_cpu(((struct btrfs_super_block *)
+ mapped_data)->bytenr);
+ is_metadata = 1;
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
+ printk(KERN_INFO
+ "[before new superblock is written]:\n");
+ btrfsic_dump_tree_sub(state, block, 0);
+ }
+ }
+ if (is_metadata) {
+ if (!block->is_superblock) {
+ bytenr = le64_to_cpu(((struct btrfs_header *)
+ mapped_data)->bytenr);
+ btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
+ dev_state,
+ dev_bytenr,
+ mapped_data);
+ }
+ if (block->logical_bytenr != bytenr) {
+ printk(KERN_INFO
+ "Written block @%llu (%s/%llu/%d)"
+ " found in hash table, %c,"
+ " bytenr mismatch"
+ " (!= stored %llu).\n",
+ (unsigned long long)bytenr,
+ dev_state->name,
+ (unsigned long long)dev_bytenr,
+ block->mirror_num,
+ btrfsic_get_block_type(state, block),
+ (unsigned long long)
+ block->logical_bytenr);
+ block->logical_bytenr = bytenr;
+ } else if (state->print_mask &
+ BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "Written block @%llu (%s/%llu/%d)"
+ " found in hash table, %c.\n",
+ (unsigned long long)bytenr,
+ dev_state->name,
+ (unsigned long long)dev_bytenr,
+ block->mirror_num,
+ btrfsic_get_block_type(state, block));
+ } else {
+ bytenr = block->logical_bytenr;
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "Written block @%llu (%s/%llu/%d)"
+ " found in hash table, %c.\n",
+ (unsigned long long)bytenr,
+ dev_state->name,
+ (unsigned long long)dev_bytenr,
+ block->mirror_num,
+ btrfsic_get_block_type(state, block));
+ }
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "ref_to_list: %cE, ref_from_list: %cE\n",
+ list_empty(&block->ref_to_list) ? ' ' : '!',
+ list_empty(&block->ref_from_list) ? ' ' : '!');
+ if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
+ printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
+ " @%llu (%s/%llu/%d), old(gen=%llu,"
+ " objectid=%llu, type=%d, offset=%llu),"
+ " new(gen=%llu),"
+ " which is referenced by most recent superblock"
+ " (superblockgen=%llu)!\n",
+ btrfsic_get_block_type(state, block),
+ (unsigned long long)bytenr,
+ dev_state->name,
+ (unsigned long long)dev_bytenr,
+ block->mirror_num,
+ (unsigned long long)block->generation,
+ (unsigned long long)
+ le64_to_cpu(block->disk_key.objectid),
+ block->disk_key.type,
+ (unsigned long long)
+ le64_to_cpu(block->disk_key.offset),
+ (unsigned long long)
+ le64_to_cpu(((struct btrfs_header *)
+ mapped_data)->generation),
+ (unsigned long long)
+ state->max_superblock_generation);
+ btrfsic_dump_tree(state);
+ }
+
+ if (!block->is_iodone && !block->never_written) {
+ printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
+ " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
+ " which is not yet iodone!\n",
+ btrfsic_get_block_type(state, block),
+ (unsigned long long)bytenr,
+ dev_state->name,
+ (unsigned long long)dev_bytenr,
+ block->mirror_num,
+ (unsigned long long)block->generation,
+ (unsigned long long)
+ le64_to_cpu(((struct btrfs_header *)
+ mapped_data)->generation));
+ /* it would not be safe to go on */
+ btrfsic_dump_tree(state);
+ return;
+ }
+
+ /*
+ * Clear all references of this block. Do not free
+ * the block itself even if is not referenced anymore
+ * because it still carries valueable information
+ * like whether it was ever written and IO completed.
+ */
+ list_for_each_safe(elem_ref_to, tmp_ref_to,
+ &block->ref_to_list) {
+ struct btrfsic_block_link *const l =
+ list_entry(elem_ref_to,
+ struct btrfsic_block_link,
+ node_ref_to);
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ btrfsic_print_rem_link(state, l);
+ l->ref_cnt--;
+ if (0 == l->ref_cnt) {
+ list_del(&l->node_ref_to);
+ list_del(&l->node_ref_from);
+ btrfsic_block_link_hashtable_remove(l);
+ btrfsic_block_link_free(l);
+ }
+ }
+
+ if (block->is_superblock)
+ ret = btrfsic_map_superblock(state, bytenr, len,
+ bdev, &block_ctx);
+ else
+ ret = btrfsic_map_block(state, bytenr, len,
+ &block_ctx, 0);
+ if (ret) {
+ printk(KERN_INFO
+ "btrfsic: btrfsic_map_block(root @%llu)"
+ " failed!\n", (unsigned long long)bytenr);
+ return;
+ }
+ block_ctx.data = mapped_data;
+ /* the following is required in case of writes to mirrors,
+ * use the same that was used for the lookup */
+ block_ctx.dev = dev_state;
+ block_ctx.dev_bytenr = dev_bytenr;
+
+ if (is_metadata || state->include_extent_data) {
+ block->never_written = 0;
+ block->iodone_w_error = 0;
+ if (NULL != bio) {
+ block->is_iodone = 0;
+ BUG_ON(NULL == bio_is_patched);
+ if (!*bio_is_patched) {
+ block->orig_bio_bh_private =
+ bio->bi_private;
+ block->orig_bio_bh_end_io.bio =
+ bio->bi_end_io;
+ block->next_in_same_bio = NULL;
+ bio->bi_private = block;
+ bio->bi_end_io = btrfsic_bio_end_io;
+ *bio_is_patched = 1;
+ } else {
+ struct btrfsic_block *chained_block =
+ (struct btrfsic_block *)
+ bio->bi_private;
+
+ BUG_ON(NULL == chained_block);
+ block->orig_bio_bh_private =
+ chained_block->orig_bio_bh_private;
+ block->orig_bio_bh_end_io.bio =
+ chained_block->orig_bio_bh_end_io.
+ bio;
+ block->next_in_same_bio = chained_block;
+ bio->bi_private = block;
+ }
+ } else if (NULL != bh) {
+ block->is_iodone = 0;
+ block->orig_bio_bh_private = bh->b_private;
+ block->orig_bio_bh_end_io.bh = bh->b_end_io;
+ block->next_in_same_bio = NULL;
+ bh->b_private = block;
+ bh->b_end_io = btrfsic_bh_end_io;
+ } else {
+ block->is_iodone = 1;
+ block->orig_bio_bh_private = NULL;
+ block->orig_bio_bh_end_io.bio = NULL;
+ block->next_in_same_bio = NULL;
+ }
+ }
+
+ block->flush_gen = dev_state->last_flush_gen + 1;
+ block->submit_bio_bh_rw = submit_bio_bh_rw;
+ if (is_metadata) {
+ block->logical_bytenr = bytenr;
+ block->is_metadata = 1;
+ if (block->is_superblock) {
+ ret = btrfsic_process_written_superblock(
+ state,
+ block,
+ (struct btrfs_super_block *)
+ mapped_data);
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
+ printk(KERN_INFO
+ "[after new superblock is written]:\n");
+ btrfsic_dump_tree_sub(state, block, 0);
+ }
+ } else {
+ block->mirror_num = 0; /* unknown */
+ ret = btrfsic_process_metablock(
+ state,
+ block,
+ &block_ctx,
+ (struct btrfs_header *)
+ block_ctx.data,
+ 0, 0);
+ }
+ if (ret)
+ printk(KERN_INFO
+ "btrfsic: btrfsic_process_metablock"
+ "(root @%llu) failed!\n",
+ (unsigned long long)dev_bytenr);
+ } else {
+ block->is_metadata = 0;
+ block->mirror_num = 0; /* unknown */
+ block->generation = BTRFSIC_GENERATION_UNKNOWN;
+ if (!state->include_extent_data
+ && list_empty(&block->ref_from_list)) {
+ /*
+ * disk block is overwritten with extent
+ * data (not meta data) and we are configured
+ * to not include extent data: take the
+ * chance and free the block's memory
+ */
+ btrfsic_block_hashtable_remove(block);
+ list_del(&block->all_blocks_node);
+ btrfsic_block_free(block);
+ }
+ }
+ btrfsic_release_block_ctx(&block_ctx);
+ } else {
+ /* block has not been found in hash table */
+ u64 bytenr;
+
+ if (!is_metadata) {
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO "Written block (%s/%llu/?)"
+ " !found in hash table, D.\n",
+ dev_state->name,
+ (unsigned long long)dev_bytenr);
+ if (!state->include_extent_data)
+ return; /* ignore that written D block */
+
+ /* this is getting ugly for the
+ * include_extent_data case... */
+ bytenr = 0; /* unknown */
+ block_ctx.start = bytenr;
+ block_ctx.len = len;
+ block_ctx.bh = NULL;
+ } else {
+ bytenr = le64_to_cpu(((struct btrfs_header *)
+ mapped_data)->bytenr);
+ btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
+ dev_bytenr,
+ mapped_data);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "Written block @%llu (%s/%llu/?)"
+ " !found in hash table, M.\n",
+ (unsigned long long)bytenr,
+ dev_state->name,
+ (unsigned long long)dev_bytenr);
+
+ ret = btrfsic_map_block(state, bytenr, len, &block_ctx,
+ 0);
+ if (ret) {
+ printk(KERN_INFO
+ "btrfsic: btrfsic_map_block(root @%llu)"
+ " failed!\n",
+ (unsigned long long)dev_bytenr);
+ return;
+ }
+ }
+ block_ctx.data = mapped_data;
+ /* the following is required in case of writes to mirrors,
+ * use the same that was used for the lookup */
+ block_ctx.dev = dev_state;
+ block_ctx.dev_bytenr = dev_bytenr;
+
+ block = btrfsic_block_alloc();
+ if (NULL == block) {
+ printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
+ btrfsic_release_block_ctx(&block_ctx);
+ return;
+ }
+ block->dev_state = dev_state;
+ block->dev_bytenr = dev_bytenr;
+ block->logical_bytenr = bytenr;
+ block->is_metadata = is_metadata;
+ block->never_written = 0;
+ block->iodone_w_error = 0;
+ block->mirror_num = 0; /* unknown */
+ block->flush_gen = dev_state->last_flush_gen + 1;
+ block->submit_bio_bh_rw = submit_bio_bh_rw;
+ if (NULL != bio) {
+ block->is_iodone = 0;
+ BUG_ON(NULL == bio_is_patched);
+ if (!*bio_is_patched) {
+ block->orig_bio_bh_private = bio->bi_private;
+ block->orig_bio_bh_end_io.bio = bio->bi_end_io;
+ block->next_in_same_bio = NULL;
+ bio->bi_private = block;
+ bio->bi_end_io = btrfsic_bio_end_io;
+ *bio_is_patched = 1;
+ } else {
+ struct btrfsic_block *chained_block =
+ (struct btrfsic_block *)
+ bio->bi_private;
+
+ BUG_ON(NULL == chained_block);
+ block->orig_bio_bh_private =
+ chained_block->orig_bio_bh_private;
+ block->orig_bio_bh_end_io.bio =
+ chained_block->orig_bio_bh_end_io.bio;
+ block->next_in_same_bio = chained_block;
+ bio->bi_private = block;
+ }
+ } else if (NULL != bh) {
+ block->is_iodone = 0;
+ block->orig_bio_bh_private = bh->b_private;
+ block->orig_bio_bh_end_io.bh = bh->b_end_io;
+ block->next_in_same_bio = NULL;
+ bh->b_private = block;
+ bh->b_end_io = btrfsic_bh_end_io;
+ } else {
+ block->is_iodone = 1;
+ block->orig_bio_bh_private = NULL;
+ block->orig_bio_bh_end_io.bio = NULL;
+ block->next_in_same_bio = NULL;
+ }
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "New written %c-block @%llu (%s/%llu/%d)\n",
+ is_metadata ? 'M' : 'D',
+ (unsigned long long)block->logical_bytenr,
+ block->dev_state->name,
+ (unsigned long long)block->dev_bytenr,
+ block->mirror_num);
+ list_add(&block->all_blocks_node, &state->all_blocks_list);
+ btrfsic_block_hashtable_add(block, &state->block_hashtable);
+
+ if (is_metadata) {
+ ret = btrfsic_process_metablock(state, block,
+ &block_ctx,
+ (struct btrfs_header *)
+ block_ctx.data, 0, 0);
+ if (ret)
+ printk(KERN_INFO
+ "btrfsic: process_metablock(root @%llu)"
+ " failed!\n",
+ (unsigned long long)dev_bytenr);
+ }
+ btrfsic_release_block_ctx(&block_ctx);
+ }
+}
+
+static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
+{
+ struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
+ int iodone_w_error;
+
+ /* mutex is not held! This is not save if IO is not yet completed
+ * on umount */
+ iodone_w_error = 0;
+ if (bio_error_status)
+ iodone_w_error = 1;
+
+ BUG_ON(NULL == block);
+ bp->bi_private = block->orig_bio_bh_private;
+ bp->bi_end_io = block->orig_bio_bh_end_io.bio;
+
+ do {
+ struct btrfsic_block *next_block;
+ struct btrfsic_dev_state *const dev_state = block->dev_state;
+
+ if ((dev_state->state->print_mask &
+ BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
+ printk(KERN_INFO
+ "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
+ bio_error_status,
+ btrfsic_get_block_type(dev_state->state, block),
+ (unsigned long long)block->logical_bytenr,
+ dev_state->name,
+ (unsigned long long)block->dev_bytenr,
+ block->mirror_num);
+ next_block = block->next_in_same_bio;
+ block->iodone_w_error = iodone_w_error;
+ if (block->submit_bio_bh_rw & REQ_FLUSH) {
+ dev_state->last_flush_gen++;
+ if ((dev_state->state->print_mask &
+ BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
+ printk(KERN_INFO
+ "bio_end_io() new %s flush_gen=%llu\n",
+ dev_state->name,
+ (unsigned long long)
+ dev_state->last_flush_gen);
+ }
+ if (block->submit_bio_bh_rw & REQ_FUA)
+ block->flush_gen = 0; /* FUA completed means block is
+ * on disk */
+ block->is_iodone = 1; /* for FLUSH, this releases the block */
+ block = next_block;
+ } while (NULL != block);
+
+ bp->bi_end_io(bp, bio_error_status);
+}
+
+static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
+{
+ struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
+ int iodone_w_error = !uptodate;
+ struct btrfsic_dev_state *dev_state;
+
+ BUG_ON(NULL == block);
+ dev_state = block->dev_state;
+ if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
+ printk(KERN_INFO
+ "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
+ iodone_w_error,
+ btrfsic_get_block_type(dev_state->state, block),
+ (unsigned long long)block->logical_bytenr,
+ block->dev_state->name,
+ (unsigned long long)block->dev_bytenr,
+ block->mirror_num);
+
+ block->iodone_w_error = iodone_w_error;
+ if (block->submit_bio_bh_rw & REQ_FLUSH) {
+ dev_state->last_flush_gen++;
+ if ((dev_state->state->print_mask &
+ BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
+ printk(KERN_INFO
+ "bh_end_io() new %s flush_gen=%llu\n",
+ dev_state->name,
+ (unsigned long long)dev_state->last_flush_gen);
+ }
+ if (block->submit_bio_bh_rw & REQ_FUA)
+ block->flush_gen = 0; /* FUA completed means block is on disk */
+
+ bh->b_private = block->orig_bio_bh_private;
+ bh->b_end_io = block->orig_bio_bh_end_io.bh;
+ block->is_iodone = 1; /* for FLUSH, this releases the block */
+ bh->b_end_io(bh, uptodate);
+}
+
+static int btrfsic_process_written_superblock(
+ struct btrfsic_state *state,
+ struct btrfsic_block *const superblock,
+ struct btrfs_super_block *const super_hdr)
+{
+ int pass;
+
+ superblock->generation = btrfs_super_generation(super_hdr);
+ if (!(superblock->generation > state->max_superblock_generation ||
+ 0 == state->max_superblock_generation)) {
+ if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
+ printk(KERN_INFO
+ "btrfsic: superblock @%llu (%s/%llu/%d)"
+ " with old gen %llu <= %llu\n",
+ (unsigned long long)superblock->logical_bytenr,
+ superblock->dev_state->name,
+ (unsigned long long)superblock->dev_bytenr,
+ superblock->mirror_num,
+ (unsigned long long)
+ btrfs_super_generation(super_hdr),
+ (unsigned long long)
+ state->max_superblock_generation);
+ } else {
+ if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
+ printk(KERN_INFO
+ "btrfsic: got new superblock @%llu (%s/%llu/%d)"
+ " with new gen %llu > %llu\n",
+ (unsigned long long)superblock->logical_bytenr,
+ superblock->dev_state->name,
+ (unsigned long long)superblock->dev_bytenr,
+ superblock->mirror_num,
+ (unsigned long long)
+ btrfs_super_generation(super_hdr),
+ (unsigned long long)
+ state->max_superblock_generation);
+
+ state->max_superblock_generation =
+ btrfs_super_generation(super_hdr);
+ state->latest_superblock = superblock;
+ }
+
+ for (pass = 0; pass < 3; pass++) {
+ int ret;
+ u64 next_bytenr;
+ struct btrfsic_block *next_block;
+ struct btrfsic_block_data_ctx tmp_next_block_ctx;
+ struct btrfsic_block_link *l;
+ int num_copies;
+ int mirror_num;
+ const char *additional_string = NULL;
+ struct btrfs_disk_key tmp_disk_key;
+
+ tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
+ tmp_disk_key.offset = 0;
+
+ switch (pass) {
+ case 0:
+ tmp_disk_key.objectid =
+ cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
+ additional_string = "root ";
+ next_bytenr = btrfs_super_root(super_hdr);
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
+ printk(KERN_INFO "root@%llu\n",
+ (unsigned long long)next_bytenr);
+ break;
+ case 1:
+ tmp_disk_key.objectid =
+ cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
+ additional_string = "chunk ";
+ next_bytenr = btrfs_super_chunk_root(super_hdr);
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
+ printk(KERN_INFO "chunk@%llu\n",
+ (unsigned long long)next_bytenr);
+ break;
+ case 2:
+ tmp_disk_key.objectid =
+ cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
+ additional_string = "log ";
+ next_bytenr = btrfs_super_log_root(super_hdr);
+ if (0 == next_bytenr)
+ continue;
+ if (state->print_mask &
+ BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
+ printk(KERN_INFO "log@%llu\n",
+ (unsigned long long)next_bytenr);
+ break;
+ }
+
+ num_copies =
+ btrfs_num_copies(&state->root->fs_info->mapping_tree,
+ next_bytenr, PAGE_SIZE);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
+ printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
+ (unsigned long long)next_bytenr, num_copies);
+ for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
+ int was_created;
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "btrfsic_process_written_superblock("
+ "mirror_num=%d)\n", mirror_num);
+ ret = btrfsic_map_block(state, next_bytenr, PAGE_SIZE,
+ &tmp_next_block_ctx,
+ mirror_num);
+ if (ret) {
+ printk(KERN_INFO
+ "btrfsic: btrfsic_map_block(@%llu,"
+ " mirror=%d) failed!\n",
+ (unsigned long long)next_bytenr,
+ mirror_num);
+ return -1;
+ }
+
+ next_block = btrfsic_block_lookup_or_add(
+ state,
+ &tmp_next_block_ctx,
+ additional_string,
+ 1, 0, 1,
+ mirror_num,
+ &was_created);
+ if (NULL == next_block) {
+ printk(KERN_INFO
+ "btrfsic: error, kmalloc failed!\n");
+ btrfsic_release_block_ctx(&tmp_next_block_ctx);
+ return -1;
+ }
+
+ next_block->disk_key = tmp_disk_key;
+ if (was_created)
+ next_block->generation =
+ BTRFSIC_GENERATION_UNKNOWN;
+ l = btrfsic_block_link_lookup_or_add(
+ state,
+ &tmp_next_block_ctx,
+ next_block,
+ superblock,
+ BTRFSIC_GENERATION_UNKNOWN);
+ btrfsic_release_block_ctx(&tmp_next_block_ctx);
+ if (NULL == l)
+ return -1;
+ }
+ }
+
+ if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
+ WARN_ON(1);
+ btrfsic_dump_tree(state);
+ }
+
+ return 0;
+}
+
+static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
+ struct btrfsic_block *const block,
+ int recursion_level)
+{
+ struct list_head *elem_ref_to;
+ int ret = 0;
+
+ if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
+ /*
+ * Note that this situation can happen and does not
+ * indicate an error in regular cases. It happens
+ * when disk blocks are freed and later reused.
+ * The check-integrity module is not aware of any
+ * block free operations, it just recognizes block
+ * write operations. Therefore it keeps the linkage
+ * information for a block until a block is
+ * rewritten. This can temporarily cause incorrect
+ * and even circular linkage informations. This
+ * causes no harm unless such blocks are referenced
+ * by the most recent super block.
+ */
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "btrfsic: abort cyclic linkage (case 1).\n");
+
+ return ret;
+ }
+
+ /*
+ * This algorithm is recursive because the amount of used stack
+ * space is very small and the max recursion depth is limited.
+ */
+ list_for_each(elem_ref_to, &block->ref_to_list) {
+ const struct btrfsic_block_link *const l =
+ list_entry(elem_ref_to, struct btrfsic_block_link,
+ node_ref_to);
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "rl=%d, %c @%llu (%s/%llu/%d)"
+ " %u* refers to %c @%llu (%s/%llu/%d)\n",
+ recursion_level,
+ btrfsic_get_block_type(state, block),
+ (unsigned long long)block->logical_bytenr,
+ block->dev_state->name,
+ (unsigned long long)block->dev_bytenr,
+ block->mirror_num,
+ l->ref_cnt,
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)
+ l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num);
+ if (l->block_ref_to->never_written) {
+ printk(KERN_INFO "btrfs: attempt to write superblock"
+ " which references block %c @%llu (%s/%llu/%d)"
+ " which is never written!\n",
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)
+ l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num);
+ ret = -1;
+ } else if (!l->block_ref_to->is_iodone) {
+ printk(KERN_INFO "btrfs: attempt to write superblock"
+ " which references block %c @%llu (%s/%llu/%d)"
+ " which is not yet iodone!\n",
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)
+ l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num);
+ ret = -1;
+ } else if (l->parent_generation !=
+ l->block_ref_to->generation &&
+ BTRFSIC_GENERATION_UNKNOWN !=
+ l->parent_generation &&
+ BTRFSIC_GENERATION_UNKNOWN !=
+ l->block_ref_to->generation) {
+ printk(KERN_INFO "btrfs: attempt to write superblock"
+ " which references block %c @%llu (%s/%llu/%d)"
+ " with generation %llu !="
+ " parent generation %llu!\n",
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)
+ l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num,
+ (unsigned long long)l->block_ref_to->generation,
+ (unsigned long long)l->parent_generation);
+ ret = -1;
+ } else if (l->block_ref_to->flush_gen >
+ l->block_ref_to->dev_state->last_flush_gen) {
+ printk(KERN_INFO "btrfs: attempt to write superblock"
+ " which references block %c @%llu (%s/%llu/%d)"
+ " which is not flushed out of disk's write cache"
+ " (block flush_gen=%llu,"
+ " dev->flush_gen=%llu)!\n",
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)
+ l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num,
+ (unsigned long long)block->flush_gen,
+ (unsigned long long)
+ l->block_ref_to->dev_state->last_flush_gen);
+ ret = -1;
+ } else if (-1 == btrfsic_check_all_ref_blocks(state,
+ l->block_ref_to,
+ recursion_level +
+ 1)) {
+ ret = -1;
+ }
+ }
+
+ return ret;
+}
+
+static int btrfsic_is_block_ref_by_superblock(
+ const struct btrfsic_state *state,
+ const struct btrfsic_block *block,
+ int recursion_level)
+{
+ struct list_head *elem_ref_from;
+
+ if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
+ /* refer to comment at "abort cyclic linkage (case 1)" */
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "btrfsic: abort cyclic linkage (case 2).\n");
+
+ return 0;
+ }
+
+ /*
+ * This algorithm is recursive because the amount of used stack space
+ * is very small and the max recursion depth is limited.
+ */
+ list_for_each(elem_ref_from, &block->ref_from_list) {
+ const struct btrfsic_block_link *const l =
+ list_entry(elem_ref_from, struct btrfsic_block_link,
+ node_ref_from);
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "rl=%d, %c @%llu (%s/%llu/%d)"
+ " is ref %u* from %c @%llu (%s/%llu/%d)\n",
+ recursion_level,
+ btrfsic_get_block_type(state, block),
+ (unsigned long long)block->logical_bytenr,
+ block->dev_state->name,
+ (unsigned long long)block->dev_bytenr,
+ block->mirror_num,
+ l->ref_cnt,
+ btrfsic_get_block_type(state, l->block_ref_from),
+ (unsigned long long)
+ l->block_ref_from->logical_bytenr,
+ l->block_ref_from->dev_state->name,
+ (unsigned long long)
+ l->block_ref_from->dev_bytenr,
+ l->block_ref_from->mirror_num);
+ if (l->block_ref_from->is_superblock &&
+ state->latest_superblock->dev_bytenr ==
+ l->block_ref_from->dev_bytenr &&
+ state->latest_superblock->dev_state->bdev ==
+ l->block_ref_from->dev_state->bdev)
+ return 1;
+ else if (btrfsic_is_block_ref_by_superblock(state,
+ l->block_ref_from,
+ recursion_level +
+ 1))
+ return 1;
+ }
+
+ return 0;
+}
+
+static void btrfsic_print_add_link(const struct btrfsic_state *state,
+ const struct btrfsic_block_link *l)
+{
+ printk(KERN_INFO
+ "Add %u* link from %c @%llu (%s/%llu/%d)"
+ " to %c @%llu (%s/%llu/%d).\n",
+ l->ref_cnt,
+ btrfsic_get_block_type(state, l->block_ref_from),
+ (unsigned long long)l->block_ref_from->logical_bytenr,
+ l->block_ref_from->dev_state->name,
+ (unsigned long long)l->block_ref_from->dev_bytenr,
+ l->block_ref_from->mirror_num,
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num);
+}
+
+static void btrfsic_print_rem_link(const struct btrfsic_state *state,
+ const struct btrfsic_block_link *l)
+{
+ printk(KERN_INFO
+ "Rem %u* link from %c @%llu (%s/%llu/%d)"
+ " to %c @%llu (%s/%llu/%d).\n",
+ l->ref_cnt,
+ btrfsic_get_block_type(state, l->block_ref_from),
+ (unsigned long long)l->block_ref_from->logical_bytenr,
+ l->block_ref_from->dev_state->name,
+ (unsigned long long)l->block_ref_from->dev_bytenr,
+ l->block_ref_from->mirror_num,
+ btrfsic_get_block_type(state, l->block_ref_to),
+ (unsigned long long)l->block_ref_to->logical_bytenr,
+ l->block_ref_to->dev_state->name,
+ (unsigned long long)l->block_ref_to->dev_bytenr,
+ l->block_ref_to->mirror_num);
+}
+
+static char btrfsic_get_block_type(const struct btrfsic_state *state,
+ const struct btrfsic_block *block)
+{
+ if (block->is_superblock &&
+ state->latest_superblock->dev_bytenr == block->dev_bytenr &&
+ state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
+ return 'S';
+ else if (block->is_superblock)
+ return 's';
+ else if (block->is_metadata)
+ return 'M';
+ else
+ return 'D';
+}
+
+static void btrfsic_dump_tree(const struct btrfsic_state *state)
+{
+ btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
+}
+
+static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
+ const struct btrfsic_block *block,
+ int indent_level)
+{
+ struct list_head *elem_ref_to;
+ int indent_add;
+ static char buf[80];
+ int cursor_position;
+
+ /*
+ * Should better fill an on-stack buffer with a complete line and
+ * dump it at once when it is time to print a newline character.
+ */
+
+ /*
+ * This algorithm is recursive because the amount of used stack space
+ * is very small and the max recursion depth is limited.
+ */
+ indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
+ btrfsic_get_block_type(state, block),
+ (unsigned long long)block->logical_bytenr,
+ block->dev_state->name,
+ (unsigned long long)block->dev_bytenr,
+ block->mirror_num);
+ if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
+ printk("[...]\n");
+ return;
+ }
+ printk(buf);
+ indent_level += indent_add;
+ if (list_empty(&block->ref_to_list)) {
+ printk("\n");
+ return;
+ }
+ if (block->mirror_num > 1 &&
+ !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
+ printk(" [...]\n");
+ return;
+ }
+
+ cursor_position = indent_level;
+ list_for_each(elem_ref_to, &block->ref_to_list) {
+ const struct btrfsic_block_link *const l =
+ list_entry(elem_ref_to, struct btrfsic_block_link,
+ node_ref_to);
+
+ while (cursor_position < indent_level) {
+ printk(" ");
+ cursor_position++;
+ }
+ if (l->ref_cnt > 1)
+ indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
+ else
+ indent_add = sprintf(buf, " --> ");
+ if (indent_level + indent_add >
+ BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
+ printk("[...]\n");
+ cursor_position = 0;
+ continue;
+ }
+
+ printk(buf);
+
+ btrfsic_dump_tree_sub(state, l->block_ref_to,
+ indent_level + indent_add);
+ cursor_position = 0;
+ }
+}
+
+static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
+ struct btrfsic_state *state,
+ struct btrfsic_block_data_ctx *next_block_ctx,
+ struct btrfsic_block *next_block,
+ struct btrfsic_block *from_block,
+ u64 parent_generation)
+{
+ struct btrfsic_block_link *l;
+
+ l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
+ next_block_ctx->dev_bytenr,
+ from_block->dev_state->bdev,
+ from_block->dev_bytenr,
+ &state->block_link_hashtable);
+ if (NULL == l) {
+ l = btrfsic_block_link_alloc();
+ if (NULL == l) {
+ printk(KERN_INFO
+ "btrfsic: error, kmalloc" " failed!\n");
+ return NULL;
+ }
+
+ l->block_ref_to = next_block;
+ l->block_ref_from = from_block;
+ l->ref_cnt = 1;
+ l->parent_generation = parent_generation;
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ btrfsic_print_add_link(state, l);
+
+ list_add(&l->node_ref_to, &from_block->ref_to_list);
+ list_add(&l->node_ref_from, &next_block->ref_from_list);
+
+ btrfsic_block_link_hashtable_add(l,
+ &state->block_link_hashtable);
+ } else {
+ l->ref_cnt++;
+ l->parent_generation = parent_generation;
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ btrfsic_print_add_link(state, l);
+ }
+
+ return l;
+}
+
+static struct btrfsic_block *btrfsic_block_lookup_or_add(
+ struct btrfsic_state *state,
+ struct btrfsic_block_data_ctx *block_ctx,
+ const char *additional_string,
+ int is_metadata,
+ int is_iodone,
+ int never_written,
+ int mirror_num,
+ int *was_created)
+{
+ struct btrfsic_block *block;
+
+ block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
+ block_ctx->dev_bytenr,
+ &state->block_hashtable);
+ if (NULL == block) {
+ struct btrfsic_dev_state *dev_state;
+
+ block = btrfsic_block_alloc();
+ if (NULL == block) {
+ printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
+ return NULL;
+ }
+ dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
+ if (NULL == dev_state) {
+ printk(KERN_INFO
+ "btrfsic: error, lookup dev_state failed!\n");
+ btrfsic_block_free(block);
+ return NULL;
+ }
+ block->dev_state = dev_state;
+ block->dev_bytenr = block_ctx->dev_bytenr;
+ block->logical_bytenr = block_ctx->start;
+ block->is_metadata = is_metadata;
+ block->is_iodone = is_iodone;
+ block->never_written = never_written;
+ block->mirror_num = mirror_num;
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ printk(KERN_INFO
+ "New %s%c-block @%llu (%s/%llu/%d)\n",
+ additional_string,
+ btrfsic_get_block_type(state, block),
+ (unsigned long long)block->logical_bytenr,
+ dev_state->name,
+ (unsigned long long)block->dev_bytenr,
+ mirror_num);
+ list_add(&block->all_blocks_node, &state->all_blocks_list);
+ btrfsic_block_hashtable_add(block, &state->block_hashtable);
+ if (NULL != was_created)
+ *was_created = 1;
+ } else {
+ if (NULL != was_created)
+ *was_created = 0;
+ }
+
+ return block;
+}
+
+static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
+ u64 bytenr,
+ struct btrfsic_dev_state *dev_state,
+ u64 dev_bytenr, char *data)
+{
+ int num_copies;
+ int mirror_num;
+ int ret;
+ struct btrfsic_block_data_ctx block_ctx;
+ int match = 0;
+
+ num_copies = btrfs_num_copies(&state->root->fs_info->mapping_tree,
+ bytenr, PAGE_SIZE);
+
+ for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
+ ret = btrfsic_map_block(state, bytenr, PAGE_SIZE,
+ &block_ctx, mirror_num);
+ if (ret) {
+ printk(KERN_INFO "btrfsic:"
+ " btrfsic_map_block(logical @%llu,"
+ " mirror %d) failed!\n",
+ (unsigned long long)bytenr, mirror_num);
+ continue;
+ }
+
+ if (dev_state->bdev == block_ctx.dev->bdev &&
+ dev_bytenr == block_ctx.dev_bytenr) {
+ match++;
+ btrfsic_release_block_ctx(&block_ctx);
+ break;
+ }
+ btrfsic_release_block_ctx(&block_ctx);
+ }
+
+ if (!match) {
+ printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
+ " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
+ " phys_bytenr=%llu)!\n",
+ (unsigned long long)bytenr, dev_state->name,
+ (unsigned long long)dev_bytenr);
+ for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
+ ret = btrfsic_map_block(state, bytenr, PAGE_SIZE,
+ &block_ctx, mirror_num);
+ if (ret)
+ continue;
+
+ printk(KERN_INFO "Read logical bytenr @%llu maps to"
+ " (%s/%llu/%d)\n",
+ (unsigned long long)bytenr,
+ block_ctx.dev->name,
+ (unsigned long long)block_ctx.dev_bytenr,
+ mirror_num);
+ }
+ WARN_ON(1);
+ }
+}
+
+static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
+ struct block_device *bdev)
+{
+ struct btrfsic_dev_state *ds;
+
+ ds = btrfsic_dev_state_hashtable_lookup(bdev,
+ &btrfsic_dev_state_hashtable);
+ return ds;
+}
+
+int btrfsic_submit_bh(int rw, struct buffer_head *bh)
+{
+ struct btrfsic_dev_state *dev_state;
+
+ if (!btrfsic_is_initialized)
+ return submit_bh(rw, bh);
+
+ mutex_lock(&btrfsic_mutex);
+ /* since btrfsic_submit_bh() might also be called before
+ * btrfsic_mount(), this might return NULL */
+ dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
+
+ /* Only called to write the superblock (incl. FLUSH/FUA) */
+ if (NULL != dev_state &&
+ (rw & WRITE) && bh->b_size > 0) {
+ u64 dev_bytenr;
+
+ dev_bytenr = 4096 * bh->b_blocknr;
+ if (dev_state->state->print_mask &
+ BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
+ printk(KERN_INFO
+ "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
+ " size=%lu, data=%p, bdev=%p)\n",
+ rw, (unsigned long)bh->b_blocknr,
+ (unsigned long long)dev_bytenr,
+ (unsigned long)bh->b_size, bh->b_data,
+ bh->b_bdev);
+ btrfsic_process_written_block(dev_state, dev_bytenr,
+ bh->b_data, bh->b_size, NULL,
+ NULL, bh, rw);
+ } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
+ if (dev_state->state->print_mask &
+ BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
+ printk(KERN_INFO
+ "submit_bh(rw=0x%x) FLUSH, bdev=%p)\n",
+ rw, bh->b_bdev);
+ if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
+ if ((dev_state->state->print_mask &
+ (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
+ BTRFSIC_PRINT_MASK_VERBOSE)))
+ printk(KERN_INFO
+ "btrfsic_submit_bh(%s) with FLUSH"
+ " but dummy block already in use"
+ " (ignored)!\n",
+ dev_state->name);
+ } else {
+ struct btrfsic_block *const block =
+ &dev_state->dummy_block_for_bio_bh_flush;
+
+ block->is_iodone = 0;
+ block->never_written = 0;
+ block->iodone_w_error = 0;
+ block->flush_gen = dev_state->last_flush_gen + 1;
+ block->submit_bio_bh_rw = rw;
+ block->orig_bio_bh_private = bh->b_private;
+ block->orig_bio_bh_end_io.bh = bh->b_end_io;
+ block->next_in_same_bio = NULL;
+ bh->b_private = block;
+ bh->b_end_io = btrfsic_bh_end_io;
+ }
+ }
+ mutex_unlock(&btrfsic_mutex);
+ return submit_bh(rw, bh);
+}
+
+void btrfsic_submit_bio(int rw, struct bio *bio)
+{
+ struct btrfsic_dev_state *dev_state;
+
+ if (!btrfsic_is_initialized) {
+ submit_bio(rw, bio);
+ return;
+ }
+
+ mutex_lock(&btrfsic_mutex);
+ /* since btrfsic_submit_bio() is also called before
+ * btrfsic_mount(), this might return NULL */
+ dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
+ if (NULL != dev_state &&
+ (rw & WRITE) && NULL != bio->bi_io_vec) {
+ unsigned int i;
+ u64 dev_bytenr;
+ int bio_is_patched;
+
+ dev_bytenr = 512 * bio->bi_sector;
+ bio_is_patched = 0;
+ if (dev_state->state->print_mask &
+ BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
+ printk(KERN_INFO
+ "submit_bio(rw=0x%x, bi_vcnt=%u,"
+ " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
+ rw, bio->bi_vcnt, (unsigned long)bio->bi_sector,
+ (unsigned long long)dev_bytenr,
+ bio->bi_bdev);
+
+ for (i = 0; i < bio->bi_vcnt; i++) {
+ u8 *mapped_data;
+
+ mapped_data = kmap(bio->bi_io_vec[i].bv_page);
+ if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
+ BTRFSIC_PRINT_MASK_VERBOSE) ==
+ (dev_state->state->print_mask &
+ (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
+ BTRFSIC_PRINT_MASK_VERBOSE)))
+ printk(KERN_INFO
+ "#%u: page=%p, mapped=%p, len=%u,"
+ " offset=%u\n",
+ i, bio->bi_io_vec[i].bv_page,
+ mapped_data,
+ bio->bi_io_vec[i].bv_len,
+ bio->bi_io_vec[i].bv_offset);
+ btrfsic_process_written_block(dev_state, dev_bytenr,
+ mapped_data,
+ bio->bi_io_vec[i].bv_len,
+ bio, &bio_is_patched,
+ NULL, rw);
+ kunmap(bio->bi_io_vec[i].bv_page);
+ dev_bytenr += bio->bi_io_vec[i].bv_len;
+ }
+ } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
+ if (dev_state->state->print_mask &
+ BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
+ printk(KERN_INFO
+ "submit_bio(rw=0x%x) FLUSH, bdev=%p)\n",
+ rw, bio->bi_bdev);
+ if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
+ if ((dev_state->state->print_mask &
+ (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
+ BTRFSIC_PRINT_MASK_VERBOSE)))
+ printk(KERN_INFO
+ "btrfsic_submit_bio(%s) with FLUSH"
+ " but dummy block already in use"
+ " (ignored)!\n",
+ dev_state->name);
+ } else {
+ struct btrfsic_block *const block =
+ &dev_state->dummy_block_for_bio_bh_flush;
+
+ block->is_iodone = 0;
+ block->never_written = 0;
+ block->iodone_w_error = 0;
+ block->flush_gen = dev_state->last_flush_gen + 1;
+ block->submit_bio_bh_rw = rw;
+ block->orig_bio_bh_private = bio->bi_private;
+ block->orig_bio_bh_end_io.bio = bio->bi_end_io;
+ block->next_in_same_bio = NULL;
+ bio->bi_private = block;
+ bio->bi_end_io = btrfsic_bio_end_io;
+ }
+ }
+ mutex_unlock(&btrfsic_mutex);
+
+ submit_bio(rw, bio);
+}
+
+int btrfsic_mount(struct btrfs_root *root,
+ struct btrfs_fs_devices *fs_devices,
+ int including_extent_data, u32 print_mask)
+{
+ int ret;
+ struct btrfsic_state *state;
+ struct list_head *dev_head = &fs_devices->devices;
+ struct btrfs_device *device;
+
+ state = kzalloc(sizeof(*state), GFP_NOFS);
+ if (NULL == state) {
+ printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
+ return -1;
+ }
+
+ if (!btrfsic_is_initialized) {
+ mutex_init(&btrfsic_mutex);
+ btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
+ btrfsic_is_initialized = 1;
+ }
+ mutex_lock(&btrfsic_mutex);
+ state->root = root;
+ state->print_mask = print_mask;
+ state->include_extent_data = including_extent_data;
+ state->csum_size = 0;
+ INIT_LIST_HEAD(&state->all_blocks_list);
+ btrfsic_block_hashtable_init(&state->block_hashtable);
+ btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
+ state->max_superblock_generation = 0;
+ state->latest_superblock = NULL;
+
+ list_for_each_entry(device, dev_head, dev_list) {
+ struct btrfsic_dev_state *ds;
+ char *p;
+
+ if (!device->bdev || !device->name)
+ continue;
+
+ ds = btrfsic_dev_state_alloc();
+ if (NULL == ds) {
+ printk(KERN_INFO
+ "btrfs check-integrity: kmalloc() failed!\n");
+ mutex_unlock(&btrfsic_mutex);
+ return -1;
+ }
+ ds->bdev = device->bdev;
+ ds->state = state;
+ bdevname(ds->bdev, ds->name);
+ ds->name[BDEVNAME_SIZE - 1] = '\0';
+ for (p = ds->name; *p != '\0'; p++);
+ while (p > ds->name && *p != '/')
+ p--;
+ if (*p == '/')
+ p++;
+ strlcpy(ds->name, p, sizeof(ds->name));
+ btrfsic_dev_state_hashtable_add(ds,
+ &btrfsic_dev_state_hashtable);
+ }
+
+ ret = btrfsic_process_superblock(state, fs_devices);
+ if (0 != ret) {
+ mutex_unlock(&btrfsic_mutex);
+ btrfsic_unmount(root, fs_devices);
+ return ret;
+ }
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
+ btrfsic_dump_database(state);
+ if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
+ btrfsic_dump_tree(state);
+
+ mutex_unlock(&btrfsic_mutex);
+ return 0;
+}
+
+void btrfsic_unmount(struct btrfs_root *root,
+ struct btrfs_fs_devices *fs_devices)
+{
+ struct list_head *elem_all;
+ struct list_head *tmp_all;
+ struct btrfsic_state *state;
+ struct list_head *dev_head = &fs_devices->devices;
+ struct btrfs_device *device;
+
+ if (!btrfsic_is_initialized)
+ return;
+
+ mutex_lock(&btrfsic_mutex);
+
+ state = NULL;
+ list_for_each_entry(device, dev_head, dev_list) {
+ struct btrfsic_dev_state *ds;
+
+ if (!device->bdev || !device->name)
+ continue;
+
+ ds = btrfsic_dev_state_hashtable_lookup(
+ device->bdev,
+ &btrfsic_dev_state_hashtable);
+ if (NULL != ds) {
+ state = ds->state;
+ btrfsic_dev_state_hashtable_remove(ds);
+ btrfsic_dev_state_free(ds);
+ }
+ }
+
+ if (NULL == state) {
+ printk(KERN_INFO
+ "btrfsic: error, cannot find state information"
+ " on umount!\n");
+ mutex_unlock(&btrfsic_mutex);
+ return;
+ }
+
+ /*
+ * Don't care about keeping the lists' state up to date,
+ * just free all memory that was allocated dynamically.
+ * Free the blocks and the block_links.
+ */
+ list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
+ struct btrfsic_block *const b_all =
+ list_entry(elem_all, struct btrfsic_block,
+ all_blocks_node);
+ struct list_head *elem_ref_to;
+ struct list_head *tmp_ref_to;
+
+ list_for_each_safe(elem_ref_to, tmp_ref_to,
+ &b_all->ref_to_list) {
+ struct btrfsic_block_link *const l =
+ list_entry(elem_ref_to,
+ struct btrfsic_block_link,
+ node_ref_to);
+
+ if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
+ btrfsic_print_rem_link(state, l);
+
+ l->ref_cnt--;
+ if (0 == l->ref_cnt)
+ btrfsic_block_link_free(l);
+ }
+
+ if (b_all->is_iodone)
+ btrfsic_block_free(b_all);
+ else
+ printk(KERN_INFO "btrfs: attempt to free %c-block"
+ " @%llu (%s/%llu/%d) on umount which is"
+ " not yet iodone!\n",
+ btrfsic_get_block_type(state, b_all),
+ (unsigned long long)b_all->logical_bytenr,
+ b_all->dev_state->name,
+ (unsigned long long)b_all->dev_bytenr,
+ b_all->mirror_num);
+ }
+
+ mutex_unlock(&btrfsic_mutex);
+
+ kfree(state);
+}
diff --git a/fs/btrfs/check-integrity.h b/fs/btrfs/check-integrity.h
new file mode 100644
index 00000000..8b59175c
--- /dev/null
+++ b/fs/btrfs/check-integrity.h
@@ -0,0 +1,36 @@
+/*
+ * Copyright (C) STRATO AG 2011. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#if !defined(__BTRFS_CHECK_INTEGRITY__)
+#define __BTRFS_CHECK_INTEGRITY__
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+int btrfsic_submit_bh(int rw, struct buffer_head *bh);
+void btrfsic_submit_bio(int rw, struct bio *bio);
+#else
+#define btrfsic_submit_bh submit_bh
+#define btrfsic_submit_bio submit_bio
+#endif
+
+int btrfsic_mount(struct btrfs_root *root,
+ struct btrfs_fs_devices *fs_devices,
+ int including_extent_data, u32 print_mask);
+void btrfsic_unmount(struct btrfs_root *root,
+ struct btrfs_fs_devices *fs_devices);
+
+#endif
diff --git a/fs/btrfs/compat.h b/fs/btrfs/compat.h
new file mode 100644
index 00000000..7c4503ef
--- /dev/null
+++ b/fs/btrfs/compat.h
@@ -0,0 +1,7 @@
+#ifndef _COMPAT_H_
+#define _COMPAT_H_
+
+#define btrfs_drop_nlink(inode) drop_nlink(inode)
+#define btrfs_inc_nlink(inode) inc_nlink(inode)
+
+#endif /* _COMPAT_H_ */
diff --git a/fs/btrfs/compression.c b/fs/btrfs/compression.c
new file mode 100644
index 00000000..86eff48d
--- /dev/null
+++ b/fs/btrfs/compression.c
@@ -0,0 +1,1038 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/buffer_head.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/bit_spinlock.h>
+#include <linux/slab.h>
+#include "compat.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "ordered-data.h"
+#include "compression.h"
+#include "extent_io.h"
+#include "extent_map.h"
+
+struct compressed_bio {
+ /* number of bios pending for this compressed extent */
+ atomic_t pending_bios;
+
+ /* the pages with the compressed data on them */
+ struct page **compressed_pages;
+
+ /* inode that owns this data */
+ struct inode *inode;
+
+ /* starting offset in the inode for our pages */
+ u64 start;
+
+ /* number of bytes in the inode we're working on */
+ unsigned long len;
+
+ /* number of bytes on disk */
+ unsigned long compressed_len;
+
+ /* the compression algorithm for this bio */
+ int compress_type;
+
+ /* number of compressed pages in the array */
+ unsigned long nr_pages;
+
+ /* IO errors */
+ int errors;
+ int mirror_num;
+
+ /* for reads, this is the bio we are copying the data into */
+ struct bio *orig_bio;
+
+ /*
+ * the start of a variable length array of checksums only
+ * used by reads
+ */
+ u32 sums;
+};
+
+static inline int compressed_bio_size(struct btrfs_root *root,
+ unsigned long disk_size)
+{
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+
+ return sizeof(struct compressed_bio) +
+ ((disk_size + root->sectorsize - 1) / root->sectorsize) *
+ csum_size;
+}
+
+static struct bio *compressed_bio_alloc(struct block_device *bdev,
+ u64 first_byte, gfp_t gfp_flags)
+{
+ int nr_vecs;
+
+ nr_vecs = bio_get_nr_vecs(bdev);
+ return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
+}
+
+static int check_compressed_csum(struct inode *inode,
+ struct compressed_bio *cb,
+ u64 disk_start)
+{
+ int ret;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct page *page;
+ unsigned long i;
+ char *kaddr;
+ u32 csum;
+ u32 *cb_sum = &cb->sums;
+
+ if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
+ return 0;
+
+ for (i = 0; i < cb->nr_pages; i++) {
+ page = cb->compressed_pages[i];
+ csum = ~(u32)0;
+
+ kaddr = kmap_atomic(page);
+ csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
+ btrfs_csum_final(csum, (char *)&csum);
+ kunmap_atomic(kaddr);
+
+ if (csum != *cb_sum) {
+ printk(KERN_INFO "btrfs csum failed ino %llu "
+ "extent %llu csum %u "
+ "wanted %u mirror %d\n",
+ (unsigned long long)btrfs_ino(inode),
+ (unsigned long long)disk_start,
+ csum, *cb_sum, cb->mirror_num);
+ ret = -EIO;
+ goto fail;
+ }
+ cb_sum++;
+
+ }
+ ret = 0;
+fail:
+ return ret;
+}
+
+/* when we finish reading compressed pages from the disk, we
+ * decompress them and then run the bio end_io routines on the
+ * decompressed pages (in the inode address space).
+ *
+ * This allows the checksumming and other IO error handling routines
+ * to work normally
+ *
+ * The compressed pages are freed here, and it must be run
+ * in process context
+ */
+static void end_compressed_bio_read(struct bio *bio, int err)
+{
+ struct compressed_bio *cb = bio->bi_private;
+ struct inode *inode;
+ struct page *page;
+ unsigned long index;
+ int ret;
+
+ if (err)
+ cb->errors = 1;
+
+ /* if there are more bios still pending for this compressed
+ * extent, just exit
+ */
+ if (!atomic_dec_and_test(&cb->pending_bios))
+ goto out;
+
+ inode = cb->inode;
+ ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
+ if (ret)
+ goto csum_failed;
+
+ /* ok, we're the last bio for this extent, lets start
+ * the decompression.
+ */
+ ret = btrfs_decompress_biovec(cb->compress_type,
+ cb->compressed_pages,
+ cb->start,
+ cb->orig_bio->bi_io_vec,
+ cb->orig_bio->bi_vcnt,
+ cb->compressed_len);
+csum_failed:
+ if (ret)
+ cb->errors = 1;
+
+ /* release the compressed pages */
+ index = 0;
+ for (index = 0; index < cb->nr_pages; index++) {
+ page = cb->compressed_pages[index];
+ page->mapping = NULL;
+ page_cache_release(page);
+ }
+
+ /* do io completion on the original bio */
+ if (cb->errors) {
+ bio_io_error(cb->orig_bio);
+ } else {
+ int bio_index = 0;
+ struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
+
+ /*
+ * we have verified the checksum already, set page
+ * checked so the end_io handlers know about it
+ */
+ while (bio_index < cb->orig_bio->bi_vcnt) {
+ SetPageChecked(bvec->bv_page);
+ bvec++;
+ bio_index++;
+ }
+ bio_endio(cb->orig_bio, 0);
+ }
+
+ /* finally free the cb struct */
+ kfree(cb->compressed_pages);
+ kfree(cb);
+out:
+ bio_put(bio);
+}
+
+/*
+ * Clear the writeback bits on all of the file
+ * pages for a compressed write
+ */
+static noinline void end_compressed_writeback(struct inode *inode, u64 start,
+ unsigned long ram_size)
+{
+ unsigned long index = start >> PAGE_CACHE_SHIFT;
+ unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
+ struct page *pages[16];
+ unsigned long nr_pages = end_index - index + 1;
+ int i;
+ int ret;
+
+ while (nr_pages > 0) {
+ ret = find_get_pages_contig(inode->i_mapping, index,
+ min_t(unsigned long,
+ nr_pages, ARRAY_SIZE(pages)), pages);
+ if (ret == 0) {
+ nr_pages -= 1;
+ index += 1;
+ continue;
+ }
+ for (i = 0; i < ret; i++) {
+ end_page_writeback(pages[i]);
+ page_cache_release(pages[i]);
+ }
+ nr_pages -= ret;
+ index += ret;
+ }
+ /* the inode may be gone now */
+}
+
+/*
+ * do the cleanup once all the compressed pages hit the disk.
+ * This will clear writeback on the file pages and free the compressed
+ * pages.
+ *
+ * This also calls the writeback end hooks for the file pages so that
+ * metadata and checksums can be updated in the file.
+ */
+static void end_compressed_bio_write(struct bio *bio, int err)
+{
+ struct extent_io_tree *tree;
+ struct compressed_bio *cb = bio->bi_private;
+ struct inode *inode;
+ struct page *page;
+ unsigned long index;
+
+ if (err)
+ cb->errors = 1;
+
+ /* if there are more bios still pending for this compressed
+ * extent, just exit
+ */
+ if (!atomic_dec_and_test(&cb->pending_bios))
+ goto out;
+
+ /* ok, we're the last bio for this extent, step one is to
+ * call back into the FS and do all the end_io operations
+ */
+ inode = cb->inode;
+ tree = &BTRFS_I(inode)->io_tree;
+ cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
+ tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
+ cb->start,
+ cb->start + cb->len - 1,
+ NULL, 1);
+ cb->compressed_pages[0]->mapping = NULL;
+
+ end_compressed_writeback(inode, cb->start, cb->len);
+ /* note, our inode could be gone now */
+
+ /*
+ * release the compressed pages, these came from alloc_page and
+ * are not attached to the inode at all
+ */
+ index = 0;
+ for (index = 0; index < cb->nr_pages; index++) {
+ page = cb->compressed_pages[index];
+ page->mapping = NULL;
+ page_cache_release(page);
+ }
+
+ /* finally free the cb struct */
+ kfree(cb->compressed_pages);
+ kfree(cb);
+out:
+ bio_put(bio);
+}
+
+/*
+ * worker function to build and submit bios for previously compressed pages.
+ * The corresponding pages in the inode should be marked for writeback
+ * and the compressed pages should have a reference on them for dropping
+ * when the IO is complete.
+ *
+ * This also checksums the file bytes and gets things ready for
+ * the end io hooks.
+ */
+int btrfs_submit_compressed_write(struct inode *inode, u64 start,
+ unsigned long len, u64 disk_start,
+ unsigned long compressed_len,
+ struct page **compressed_pages,
+ unsigned long nr_pages)
+{
+ struct bio *bio = NULL;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct compressed_bio *cb;
+ unsigned long bytes_left;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ int pg_index = 0;
+ struct page *page;
+ u64 first_byte = disk_start;
+ struct block_device *bdev;
+ int ret;
+ int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+ WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
+ cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
+ if (!cb)
+ return -ENOMEM;
+ atomic_set(&cb->pending_bios, 0);
+ cb->errors = 0;
+ cb->inode = inode;
+ cb->start = start;
+ cb->len = len;
+ cb->mirror_num = 0;
+ cb->compressed_pages = compressed_pages;
+ cb->compressed_len = compressed_len;
+ cb->orig_bio = NULL;
+ cb->nr_pages = nr_pages;
+
+ bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+ bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
+ if(!bio) {
+ kfree(cb);
+ return -ENOMEM;
+ }
+ bio->bi_private = cb;
+ bio->bi_end_io = end_compressed_bio_write;
+ atomic_inc(&cb->pending_bios);
+
+ /* create and submit bios for the compressed pages */
+ bytes_left = compressed_len;
+ for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
+ page = compressed_pages[pg_index];
+ page->mapping = inode->i_mapping;
+ if (bio->bi_size)
+ ret = io_tree->ops->merge_bio_hook(page, 0,
+ PAGE_CACHE_SIZE,
+ bio, 0);
+ else
+ ret = 0;
+
+ page->mapping = NULL;
+ if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
+ PAGE_CACHE_SIZE) {
+ bio_get(bio);
+
+ /*
+ * inc the count before we submit the bio so
+ * we know the end IO handler won't happen before
+ * we inc the count. Otherwise, the cb might get
+ * freed before we're done setting it up
+ */
+ atomic_inc(&cb->pending_bios);
+ ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ if (!skip_sum) {
+ ret = btrfs_csum_one_bio(root, inode, bio,
+ start, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
+ BUG_ON(ret); /* -ENOMEM */
+
+ bio_put(bio);
+
+ bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
+ BUG_ON(!bio);
+ bio->bi_private = cb;
+ bio->bi_end_io = end_compressed_bio_write;
+ bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
+ }
+ if (bytes_left < PAGE_CACHE_SIZE) {
+ printk("bytes left %lu compress len %lu nr %lu\n",
+ bytes_left, cb->compressed_len, cb->nr_pages);
+ }
+ bytes_left -= PAGE_CACHE_SIZE;
+ first_byte += PAGE_CACHE_SIZE;
+ cond_resched();
+ }
+ bio_get(bio);
+
+ ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ if (!skip_sum) {
+ ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
+ BUG_ON(ret); /* -ENOMEM */
+
+ bio_put(bio);
+ return 0;
+}
+
+static noinline int add_ra_bio_pages(struct inode *inode,
+ u64 compressed_end,
+ struct compressed_bio *cb)
+{
+ unsigned long end_index;
+ unsigned long pg_index;
+ u64 last_offset;
+ u64 isize = i_size_read(inode);
+ int ret;
+ struct page *page;
+ unsigned long nr_pages = 0;
+ struct extent_map *em;
+ struct address_space *mapping = inode->i_mapping;
+ struct extent_map_tree *em_tree;
+ struct extent_io_tree *tree;
+ u64 end;
+ int misses = 0;
+
+ page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
+ last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
+ em_tree = &BTRFS_I(inode)->extent_tree;
+ tree = &BTRFS_I(inode)->io_tree;
+
+ if (isize == 0)
+ return 0;
+
+ end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
+
+ while (last_offset < compressed_end) {
+ pg_index = last_offset >> PAGE_CACHE_SHIFT;
+
+ if (pg_index > end_index)
+ break;
+
+ rcu_read_lock();
+ page = radix_tree_lookup(&mapping->page_tree, pg_index);
+ rcu_read_unlock();
+ if (page) {
+ misses++;
+ if (misses > 4)
+ break;
+ goto next;
+ }
+
+ page = __page_cache_alloc(mapping_gfp_mask(mapping) &
+ ~__GFP_FS);
+ if (!page)
+ break;
+
+ if (add_to_page_cache_lru(page, mapping, pg_index,
+ GFP_NOFS)) {
+ page_cache_release(page);
+ goto next;
+ }
+
+ end = last_offset + PAGE_CACHE_SIZE - 1;
+ /*
+ * at this point, we have a locked page in the page cache
+ * for these bytes in the file. But, we have to make
+ * sure they map to this compressed extent on disk.
+ */
+ set_page_extent_mapped(page);
+ lock_extent(tree, last_offset, end);
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, last_offset,
+ PAGE_CACHE_SIZE);
+ read_unlock(&em_tree->lock);
+
+ if (!em || last_offset < em->start ||
+ (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
+ (em->block_start >> 9) != cb->orig_bio->bi_sector) {
+ free_extent_map(em);
+ unlock_extent(tree, last_offset, end);
+ unlock_page(page);
+ page_cache_release(page);
+ break;
+ }
+ free_extent_map(em);
+
+ if (page->index == end_index) {
+ char *userpage;
+ size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
+
+ if (zero_offset) {
+ int zeros;
+ zeros = PAGE_CACHE_SIZE - zero_offset;
+ userpage = kmap_atomic(page);
+ memset(userpage + zero_offset, 0, zeros);
+ flush_dcache_page(page);
+ kunmap_atomic(userpage);
+ }
+ }
+
+ ret = bio_add_page(cb->orig_bio, page,
+ PAGE_CACHE_SIZE, 0);
+
+ if (ret == PAGE_CACHE_SIZE) {
+ nr_pages++;
+ page_cache_release(page);
+ } else {
+ unlock_extent(tree, last_offset, end);
+ unlock_page(page);
+ page_cache_release(page);
+ break;
+ }
+next:
+ last_offset += PAGE_CACHE_SIZE;
+ }
+ return 0;
+}
+
+/*
+ * for a compressed read, the bio we get passed has all the inode pages
+ * in it. We don't actually do IO on those pages but allocate new ones
+ * to hold the compressed pages on disk.
+ *
+ * bio->bi_sector points to the compressed extent on disk
+ * bio->bi_io_vec points to all of the inode pages
+ * bio->bi_vcnt is a count of pages
+ *
+ * After the compressed pages are read, we copy the bytes into the
+ * bio we were passed and then call the bio end_io calls
+ */
+int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
+ int mirror_num, unsigned long bio_flags)
+{
+ struct extent_io_tree *tree;
+ struct extent_map_tree *em_tree;
+ struct compressed_bio *cb;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
+ unsigned long compressed_len;
+ unsigned long nr_pages;
+ unsigned long pg_index;
+ struct page *page;
+ struct block_device *bdev;
+ struct bio *comp_bio;
+ u64 cur_disk_byte = (u64)bio->bi_sector << 9;
+ u64 em_len;
+ u64 em_start;
+ struct extent_map *em;
+ int ret = -ENOMEM;
+ u32 *sums;
+
+ tree = &BTRFS_I(inode)->io_tree;
+ em_tree = &BTRFS_I(inode)->extent_tree;
+
+ /* we need the actual starting offset of this extent in the file */
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree,
+ page_offset(bio->bi_io_vec->bv_page),
+ PAGE_CACHE_SIZE);
+ read_unlock(&em_tree->lock);
+ if (!em)
+ return -EIO;
+
+ compressed_len = em->block_len;
+ cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
+ if (!cb)
+ goto out;
+
+ atomic_set(&cb->pending_bios, 0);
+ cb->errors = 0;
+ cb->inode = inode;
+ cb->mirror_num = mirror_num;
+ sums = &cb->sums;
+
+ cb->start = em->orig_start;
+ em_len = em->len;
+ em_start = em->start;
+
+ free_extent_map(em);
+ em = NULL;
+
+ cb->len = uncompressed_len;
+ cb->compressed_len = compressed_len;
+ cb->compress_type = extent_compress_type(bio_flags);
+ cb->orig_bio = bio;
+
+ nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
+ PAGE_CACHE_SIZE;
+ cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
+ GFP_NOFS);
+ if (!cb->compressed_pages)
+ goto fail1;
+
+ bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+ for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+ cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
+ __GFP_HIGHMEM);
+ if (!cb->compressed_pages[pg_index])
+ goto fail2;
+ }
+ cb->nr_pages = nr_pages;
+
+ add_ra_bio_pages(inode, em_start + em_len, cb);
+
+ /* include any pages we added in add_ra-bio_pages */
+ uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
+ cb->len = uncompressed_len;
+
+ comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
+ if (!comp_bio)
+ goto fail2;
+ comp_bio->bi_private = cb;
+ comp_bio->bi_end_io = end_compressed_bio_read;
+ atomic_inc(&cb->pending_bios);
+
+ for (pg_index = 0; pg_index < nr_pages; pg_index++) {
+ page = cb->compressed_pages[pg_index];
+ page->mapping = inode->i_mapping;
+ page->index = em_start >> PAGE_CACHE_SHIFT;
+
+ if (comp_bio->bi_size)
+ ret = tree->ops->merge_bio_hook(page, 0,
+ PAGE_CACHE_SIZE,
+ comp_bio, 0);
+ else
+ ret = 0;
+
+ page->mapping = NULL;
+ if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
+ PAGE_CACHE_SIZE) {
+ bio_get(comp_bio);
+
+ ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ /*
+ * inc the count before we submit the bio so
+ * we know the end IO handler won't happen before
+ * we inc the count. Otherwise, the cb might get
+ * freed before we're done setting it up
+ */
+ atomic_inc(&cb->pending_bios);
+
+ if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+ ret = btrfs_lookup_bio_sums(root, inode,
+ comp_bio, sums);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ sums += (comp_bio->bi_size + root->sectorsize - 1) /
+ root->sectorsize;
+
+ ret = btrfs_map_bio(root, READ, comp_bio,
+ mirror_num, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ bio_put(comp_bio);
+
+ comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
+ GFP_NOFS);
+ BUG_ON(!comp_bio);
+ comp_bio->bi_private = cb;
+ comp_bio->bi_end_io = end_compressed_bio_read;
+
+ bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
+ }
+ cur_disk_byte += PAGE_CACHE_SIZE;
+ }
+ bio_get(comp_bio);
+
+ ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+ ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ bio_put(comp_bio);
+ return 0;
+
+fail2:
+ for (pg_index = 0; pg_index < nr_pages; pg_index++)
+ free_page((unsigned long)cb->compressed_pages[pg_index]);
+
+ kfree(cb->compressed_pages);
+fail1:
+ kfree(cb);
+out:
+ free_extent_map(em);
+ return ret;
+}
+
+static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
+static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
+static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
+static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
+static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
+
+struct btrfs_compress_op *btrfs_compress_op[] = {
+ &btrfs_zlib_compress,
+ &btrfs_lzo_compress,
+};
+
+void __init btrfs_init_compress(void)
+{
+ int i;
+
+ for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+ INIT_LIST_HEAD(&comp_idle_workspace[i]);
+ spin_lock_init(&comp_workspace_lock[i]);
+ atomic_set(&comp_alloc_workspace[i], 0);
+ init_waitqueue_head(&comp_workspace_wait[i]);
+ }
+}
+
+/*
+ * this finds an available workspace or allocates a new one
+ * ERR_PTR is returned if things go bad.
+ */
+static struct list_head *find_workspace(int type)
+{
+ struct list_head *workspace;
+ int cpus = num_online_cpus();
+ int idx = type - 1;
+
+ struct list_head *idle_workspace = &comp_idle_workspace[idx];
+ spinlock_t *workspace_lock = &comp_workspace_lock[idx];
+ atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
+ wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
+ int *num_workspace = &comp_num_workspace[idx];
+again:
+ spin_lock(workspace_lock);
+ if (!list_empty(idle_workspace)) {
+ workspace = idle_workspace->next;
+ list_del(workspace);
+ (*num_workspace)--;
+ spin_unlock(workspace_lock);
+ return workspace;
+
+ }
+ if (atomic_read(alloc_workspace) > cpus) {
+ DEFINE_WAIT(wait);
+
+ spin_unlock(workspace_lock);
+ prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
+ if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
+ schedule();
+ finish_wait(workspace_wait, &wait);
+ goto again;
+ }
+ atomic_inc(alloc_workspace);
+ spin_unlock(workspace_lock);
+
+ workspace = btrfs_compress_op[idx]->alloc_workspace();
+ if (IS_ERR(workspace)) {
+ atomic_dec(alloc_workspace);
+ wake_up(workspace_wait);
+ }
+ return workspace;
+}
+
+/*
+ * put a workspace struct back on the list or free it if we have enough
+ * idle ones sitting around
+ */
+static void free_workspace(int type, struct list_head *workspace)
+{
+ int idx = type - 1;
+ struct list_head *idle_workspace = &comp_idle_workspace[idx];
+ spinlock_t *workspace_lock = &comp_workspace_lock[idx];
+ atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
+ wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
+ int *num_workspace = &comp_num_workspace[idx];
+
+ spin_lock(workspace_lock);
+ if (*num_workspace < num_online_cpus()) {
+ list_add_tail(workspace, idle_workspace);
+ (*num_workspace)++;
+ spin_unlock(workspace_lock);
+ goto wake;
+ }
+ spin_unlock(workspace_lock);
+
+ btrfs_compress_op[idx]->free_workspace(workspace);
+ atomic_dec(alloc_workspace);
+wake:
+ if (waitqueue_active(workspace_wait))
+ wake_up(workspace_wait);
+}
+
+/*
+ * cleanup function for module exit
+ */
+static void free_workspaces(void)
+{
+ struct list_head *workspace;
+ int i;
+
+ for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
+ while (!list_empty(&comp_idle_workspace[i])) {
+ workspace = comp_idle_workspace[i].next;
+ list_del(workspace);
+ btrfs_compress_op[i]->free_workspace(workspace);
+ atomic_dec(&comp_alloc_workspace[i]);
+ }
+ }
+}
+
+/*
+ * given an address space and start/len, compress the bytes.
+ *
+ * pages are allocated to hold the compressed result and stored
+ * in 'pages'
+ *
+ * out_pages is used to return the number of pages allocated. There
+ * may be pages allocated even if we return an error
+ *
+ * total_in is used to return the number of bytes actually read. It
+ * may be smaller then len if we had to exit early because we
+ * ran out of room in the pages array or because we cross the
+ * max_out threshold.
+ *
+ * total_out is used to return the total number of compressed bytes
+ *
+ * max_out tells us the max number of bytes that we're allowed to
+ * stuff into pages
+ */
+int btrfs_compress_pages(int type, struct address_space *mapping,
+ u64 start, unsigned long len,
+ struct page **pages,
+ unsigned long nr_dest_pages,
+ unsigned long *out_pages,
+ unsigned long *total_in,
+ unsigned long *total_out,
+ unsigned long max_out)
+{
+ struct list_head *workspace;
+ int ret;
+
+ workspace = find_workspace(type);
+ if (IS_ERR(workspace))
+ return -1;
+
+ ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
+ start, len, pages,
+ nr_dest_pages, out_pages,
+ total_in, total_out,
+ max_out);
+ free_workspace(type, workspace);
+ return ret;
+}
+
+/*
+ * pages_in is an array of pages with compressed data.
+ *
+ * disk_start is the starting logical offset of this array in the file
+ *
+ * bvec is a bio_vec of pages from the file that we want to decompress into
+ *
+ * vcnt is the count of pages in the biovec
+ *
+ * srclen is the number of bytes in pages_in
+ *
+ * The basic idea is that we have a bio that was created by readpages.
+ * The pages in the bio are for the uncompressed data, and they may not
+ * be contiguous. They all correspond to the range of bytes covered by
+ * the compressed extent.
+ */
+int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
+ struct bio_vec *bvec, int vcnt, size_t srclen)
+{
+ struct list_head *workspace;
+ int ret;
+
+ workspace = find_workspace(type);
+ if (IS_ERR(workspace))
+ return -ENOMEM;
+
+ ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
+ disk_start,
+ bvec, vcnt, srclen);
+ free_workspace(type, workspace);
+ return ret;
+}
+
+/*
+ * a less complex decompression routine. Our compressed data fits in a
+ * single page, and we want to read a single page out of it.
+ * start_byte tells us the offset into the compressed data we're interested in
+ */
+int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
+ unsigned long start_byte, size_t srclen, size_t destlen)
+{
+ struct list_head *workspace;
+ int ret;
+
+ workspace = find_workspace(type);
+ if (IS_ERR(workspace))
+ return -ENOMEM;
+
+ ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
+ dest_page, start_byte,
+ srclen, destlen);
+
+ free_workspace(type, workspace);
+ return ret;
+}
+
+void btrfs_exit_compress(void)
+{
+ free_workspaces();
+}
+
+/*
+ * Copy uncompressed data from working buffer to pages.
+ *
+ * buf_start is the byte offset we're of the start of our workspace buffer.
+ *
+ * total_out is the last byte of the buffer
+ */
+int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
+ unsigned long total_out, u64 disk_start,
+ struct bio_vec *bvec, int vcnt,
+ unsigned long *pg_index,
+ unsigned long *pg_offset)
+{
+ unsigned long buf_offset;
+ unsigned long current_buf_start;
+ unsigned long start_byte;
+ unsigned long working_bytes = total_out - buf_start;
+ unsigned long bytes;
+ char *kaddr;
+ struct page *page_out = bvec[*pg_index].bv_page;
+
+ /*
+ * start byte is the first byte of the page we're currently
+ * copying into relative to the start of the compressed data.
+ */
+ start_byte = page_offset(page_out) - disk_start;
+
+ /* we haven't yet hit data corresponding to this page */
+ if (total_out <= start_byte)
+ return 1;
+
+ /*
+ * the start of the data we care about is offset into
+ * the middle of our working buffer
+ */
+ if (total_out > start_byte && buf_start < start_byte) {
+ buf_offset = start_byte - buf_start;
+ working_bytes -= buf_offset;
+ } else {
+ buf_offset = 0;
+ }
+ current_buf_start = buf_start;
+
+ /* copy bytes from the working buffer into the pages */
+ while (working_bytes > 0) {
+ bytes = min(PAGE_CACHE_SIZE - *pg_offset,
+ PAGE_CACHE_SIZE - buf_offset);
+ bytes = min(bytes, working_bytes);
+ kaddr = kmap_atomic(page_out);
+ memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
+ kunmap_atomic(kaddr);
+ flush_dcache_page(page_out);
+
+ *pg_offset += bytes;
+ buf_offset += bytes;
+ working_bytes -= bytes;
+ current_buf_start += bytes;
+
+ /* check if we need to pick another page */
+ if (*pg_offset == PAGE_CACHE_SIZE) {
+ (*pg_index)++;
+ if (*pg_index >= vcnt)
+ return 0;
+
+ page_out = bvec[*pg_index].bv_page;
+ *pg_offset = 0;
+ start_byte = page_offset(page_out) - disk_start;
+
+ /*
+ * make sure our new page is covered by this
+ * working buffer
+ */
+ if (total_out <= start_byte)
+ return 1;
+
+ /*
+ * the next page in the biovec might not be adjacent
+ * to the last page, but it might still be found
+ * inside this working buffer. bump our offset pointer
+ */
+ if (total_out > start_byte &&
+ current_buf_start < start_byte) {
+ buf_offset = start_byte - buf_start;
+ working_bytes = total_out - start_byte;
+ current_buf_start = buf_start + buf_offset;
+ }
+ }
+ }
+
+ return 1;
+}
diff --git a/fs/btrfs/compression.h b/fs/btrfs/compression.h
new file mode 100644
index 00000000..9afb0a62
--- /dev/null
+++ b/fs/btrfs/compression.h
@@ -0,0 +1,83 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_COMPRESSION_
+#define __BTRFS_COMPRESSION_
+
+void btrfs_init_compress(void);
+void btrfs_exit_compress(void);
+
+int btrfs_compress_pages(int type, struct address_space *mapping,
+ u64 start, unsigned long len,
+ struct page **pages,
+ unsigned long nr_dest_pages,
+ unsigned long *out_pages,
+ unsigned long *total_in,
+ unsigned long *total_out,
+ unsigned long max_out);
+int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
+ struct bio_vec *bvec, int vcnt, size_t srclen);
+int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
+ unsigned long start_byte, size_t srclen, size_t destlen);
+int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
+ unsigned long total_out, u64 disk_start,
+ struct bio_vec *bvec, int vcnt,
+ unsigned long *pg_index,
+ unsigned long *pg_offset);
+
+int btrfs_submit_compressed_write(struct inode *inode, u64 start,
+ unsigned long len, u64 disk_start,
+ unsigned long compressed_len,
+ struct page **compressed_pages,
+ unsigned long nr_pages);
+int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
+ int mirror_num, unsigned long bio_flags);
+
+struct btrfs_compress_op {
+ struct list_head *(*alloc_workspace)(void);
+
+ void (*free_workspace)(struct list_head *workspace);
+
+ int (*compress_pages)(struct list_head *workspace,
+ struct address_space *mapping,
+ u64 start, unsigned long len,
+ struct page **pages,
+ unsigned long nr_dest_pages,
+ unsigned long *out_pages,
+ unsigned long *total_in,
+ unsigned long *total_out,
+ unsigned long max_out);
+
+ int (*decompress_biovec)(struct list_head *workspace,
+ struct page **pages_in,
+ u64 disk_start,
+ struct bio_vec *bvec,
+ int vcnt,
+ size_t srclen);
+
+ int (*decompress)(struct list_head *workspace,
+ unsigned char *data_in,
+ struct page *dest_page,
+ unsigned long start_byte,
+ size_t srclen, size_t destlen);
+};
+
+extern struct btrfs_compress_op btrfs_zlib_compress;
+extern struct btrfs_compress_op btrfs_lzo_compress;
+
+#endif
diff --git a/fs/btrfs/ctree.c b/fs/btrfs/ctree.c
new file mode 100644
index 00000000..4106264f
--- /dev/null
+++ b/fs/btrfs/ctree.c
@@ -0,0 +1,4382 @@
+/*
+ * Copyright (C) 2007,2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+#include "locking.h"
+
+static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_path *path, int level);
+static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_key *ins_key,
+ struct btrfs_path *path, int data_size, int extend);
+static int push_node_left(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *dst,
+ struct extent_buffer *src, int empty);
+static int balance_node_right(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *dst_buf,
+ struct extent_buffer *src_buf);
+static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct btrfs_path *path, int level, int slot);
+
+struct btrfs_path *btrfs_alloc_path(void)
+{
+ struct btrfs_path *path;
+ path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
+ return path;
+}
+
+/*
+ * set all locked nodes in the path to blocking locks. This should
+ * be done before scheduling
+ */
+noinline void btrfs_set_path_blocking(struct btrfs_path *p)
+{
+ int i;
+ for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
+ if (!p->nodes[i] || !p->locks[i])
+ continue;
+ btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
+ if (p->locks[i] == BTRFS_READ_LOCK)
+ p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
+ else if (p->locks[i] == BTRFS_WRITE_LOCK)
+ p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
+ }
+}
+
+/*
+ * reset all the locked nodes in the patch to spinning locks.
+ *
+ * held is used to keep lockdep happy, when lockdep is enabled
+ * we set held to a blocking lock before we go around and
+ * retake all the spinlocks in the path. You can safely use NULL
+ * for held
+ */
+noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
+ struct extent_buffer *held, int held_rw)
+{
+ int i;
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+ /* lockdep really cares that we take all of these spinlocks
+ * in the right order. If any of the locks in the path are not
+ * currently blocking, it is going to complain. So, make really
+ * really sure by forcing the path to blocking before we clear
+ * the path blocking.
+ */
+ if (held) {
+ btrfs_set_lock_blocking_rw(held, held_rw);
+ if (held_rw == BTRFS_WRITE_LOCK)
+ held_rw = BTRFS_WRITE_LOCK_BLOCKING;
+ else if (held_rw == BTRFS_READ_LOCK)
+ held_rw = BTRFS_READ_LOCK_BLOCKING;
+ }
+ btrfs_set_path_blocking(p);
+#endif
+
+ for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
+ if (p->nodes[i] && p->locks[i]) {
+ btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
+ if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
+ p->locks[i] = BTRFS_WRITE_LOCK;
+ else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
+ p->locks[i] = BTRFS_READ_LOCK;
+ }
+ }
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+ if (held)
+ btrfs_clear_lock_blocking_rw(held, held_rw);
+#endif
+}
+
+/* this also releases the path */
+void btrfs_free_path(struct btrfs_path *p)
+{
+ if (!p)
+ return;
+ btrfs_release_path(p);
+ kmem_cache_free(btrfs_path_cachep, p);
+}
+
+/*
+ * path release drops references on the extent buffers in the path
+ * and it drops any locks held by this path
+ *
+ * It is safe to call this on paths that no locks or extent buffers held.
+ */
+noinline void btrfs_release_path(struct btrfs_path *p)
+{
+ int i;
+
+ for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
+ p->slots[i] = 0;
+ if (!p->nodes[i])
+ continue;
+ if (p->locks[i]) {
+ btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
+ p->locks[i] = 0;
+ }
+ free_extent_buffer(p->nodes[i]);
+ p->nodes[i] = NULL;
+ }
+}
+
+/*
+ * safely gets a reference on the root node of a tree. A lock
+ * is not taken, so a concurrent writer may put a different node
+ * at the root of the tree. See btrfs_lock_root_node for the
+ * looping required.
+ *
+ * The extent buffer returned by this has a reference taken, so
+ * it won't disappear. It may stop being the root of the tree
+ * at any time because there are no locks held.
+ */
+struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
+{
+ struct extent_buffer *eb;
+
+ while (1) {
+ rcu_read_lock();
+ eb = rcu_dereference(root->node);
+
+ /*
+ * RCU really hurts here, we could free up the root node because
+ * it was cow'ed but we may not get the new root node yet so do
+ * the inc_not_zero dance and if it doesn't work then
+ * synchronize_rcu and try again.
+ */
+ if (atomic_inc_not_zero(&eb->refs)) {
+ rcu_read_unlock();
+ break;
+ }
+ rcu_read_unlock();
+ synchronize_rcu();
+ }
+ return eb;
+}
+
+/* loop around taking references on and locking the root node of the
+ * tree until you end up with a lock on the root. A locked buffer
+ * is returned, with a reference held.
+ */
+struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
+{
+ struct extent_buffer *eb;
+
+ while (1) {
+ eb = btrfs_root_node(root);
+ btrfs_tree_lock(eb);
+ if (eb == root->node)
+ break;
+ btrfs_tree_unlock(eb);
+ free_extent_buffer(eb);
+ }
+ return eb;
+}
+
+/* loop around taking references on and locking the root node of the
+ * tree until you end up with a lock on the root. A locked buffer
+ * is returned, with a reference held.
+ */
+struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
+{
+ struct extent_buffer *eb;
+
+ while (1) {
+ eb = btrfs_root_node(root);
+ btrfs_tree_read_lock(eb);
+ if (eb == root->node)
+ break;
+ btrfs_tree_read_unlock(eb);
+ free_extent_buffer(eb);
+ }
+ return eb;
+}
+
+/* cowonly root (everything not a reference counted cow subvolume), just get
+ * put onto a simple dirty list. transaction.c walks this to make sure they
+ * get properly updated on disk.
+ */
+static void add_root_to_dirty_list(struct btrfs_root *root)
+{
+ spin_lock(&root->fs_info->trans_lock);
+ if (root->track_dirty && list_empty(&root->dirty_list)) {
+ list_add(&root->dirty_list,
+ &root->fs_info->dirty_cowonly_roots);
+ }
+ spin_unlock(&root->fs_info->trans_lock);
+}
+
+/*
+ * used by snapshot creation to make a copy of a root for a tree with
+ * a given objectid. The buffer with the new root node is returned in
+ * cow_ret, and this func returns zero on success or a negative error code.
+ */
+int btrfs_copy_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf,
+ struct extent_buffer **cow_ret, u64 new_root_objectid)
+{
+ struct extent_buffer *cow;
+ int ret = 0;
+ int level;
+ struct btrfs_disk_key disk_key;
+
+ WARN_ON(root->ref_cows && trans->transid !=
+ root->fs_info->running_transaction->transid);
+ WARN_ON(root->ref_cows && trans->transid != root->last_trans);
+
+ level = btrfs_header_level(buf);
+ if (level == 0)
+ btrfs_item_key(buf, &disk_key, 0);
+ else
+ btrfs_node_key(buf, &disk_key, 0);
+
+ cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
+ new_root_objectid, &disk_key, level,
+ buf->start, 0, 1);
+ if (IS_ERR(cow))
+ return PTR_ERR(cow);
+
+ copy_extent_buffer(cow, buf, 0, 0, cow->len);
+ btrfs_set_header_bytenr(cow, cow->start);
+ btrfs_set_header_generation(cow, trans->transid);
+ btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
+ btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
+ BTRFS_HEADER_FLAG_RELOC);
+ if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
+ btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
+ else
+ btrfs_set_header_owner(cow, new_root_objectid);
+
+ write_extent_buffer(cow, root->fs_info->fsid,
+ (unsigned long)btrfs_header_fsid(cow),
+ BTRFS_FSID_SIZE);
+
+ WARN_ON(btrfs_header_generation(buf) > trans->transid);
+ if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
+ ret = btrfs_inc_ref(trans, root, cow, 1, 1);
+ else
+ ret = btrfs_inc_ref(trans, root, cow, 0, 1);
+
+ if (ret)
+ return ret;
+
+ btrfs_mark_buffer_dirty(cow);
+ *cow_ret = cow;
+ return 0;
+}
+
+/*
+ * check if the tree block can be shared by multiple trees
+ */
+int btrfs_block_can_be_shared(struct btrfs_root *root,
+ struct extent_buffer *buf)
+{
+ /*
+ * Tree blocks not in refernece counted trees and tree roots
+ * are never shared. If a block was allocated after the last
+ * snapshot and the block was not allocated by tree relocation,
+ * we know the block is not shared.
+ */
+ if (root->ref_cows &&
+ buf != root->node && buf != root->commit_root &&
+ (btrfs_header_generation(buf) <=
+ btrfs_root_last_snapshot(&root->root_item) ||
+ btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
+ return 1;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (root->ref_cows &&
+ btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
+ return 1;
+#endif
+ return 0;
+}
+
+static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf,
+ struct extent_buffer *cow,
+ int *last_ref)
+{
+ u64 refs;
+ u64 owner;
+ u64 flags;
+ u64 new_flags = 0;
+ int ret;
+
+ /*
+ * Backrefs update rules:
+ *
+ * Always use full backrefs for extent pointers in tree block
+ * allocated by tree relocation.
+ *
+ * If a shared tree block is no longer referenced by its owner
+ * tree (btrfs_header_owner(buf) == root->root_key.objectid),
+ * use full backrefs for extent pointers in tree block.
+ *
+ * If a tree block is been relocating
+ * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
+ * use full backrefs for extent pointers in tree block.
+ * The reason for this is some operations (such as drop tree)
+ * are only allowed for blocks use full backrefs.
+ */
+
+ if (btrfs_block_can_be_shared(root, buf)) {
+ ret = btrfs_lookup_extent_info(trans, root, buf->start,
+ buf->len, &refs, &flags);
+ if (ret)
+ return ret;
+ if (refs == 0) {
+ ret = -EROFS;
+ btrfs_std_error(root->fs_info, ret);
+ return ret;
+ }
+ } else {
+ refs = 1;
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
+ btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
+ flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+ else
+ flags = 0;
+ }
+
+ owner = btrfs_header_owner(buf);
+ BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
+ !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
+
+ if (refs > 1) {
+ if ((owner == root->root_key.objectid ||
+ root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
+ !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
+ ret = btrfs_inc_ref(trans, root, buf, 1, 1);
+ BUG_ON(ret); /* -ENOMEM */
+
+ if (root->root_key.objectid ==
+ BTRFS_TREE_RELOC_OBJECTID) {
+ ret = btrfs_dec_ref(trans, root, buf, 0, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ ret = btrfs_inc_ref(trans, root, cow, 1, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
+ } else {
+
+ if (root->root_key.objectid ==
+ BTRFS_TREE_RELOC_OBJECTID)
+ ret = btrfs_inc_ref(trans, root, cow, 1, 1);
+ else
+ ret = btrfs_inc_ref(trans, root, cow, 0, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ if (new_flags != 0) {
+ ret = btrfs_set_disk_extent_flags(trans, root,
+ buf->start,
+ buf->len,
+ new_flags, 0);
+ if (ret)
+ return ret;
+ }
+ } else {
+ if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
+ if (root->root_key.objectid ==
+ BTRFS_TREE_RELOC_OBJECTID)
+ ret = btrfs_inc_ref(trans, root, cow, 1, 1);
+ else
+ ret = btrfs_inc_ref(trans, root, cow, 0, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ ret = btrfs_dec_ref(trans, root, buf, 1, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ clean_tree_block(trans, root, buf);
+ *last_ref = 1;
+ }
+ return 0;
+}
+
+/*
+ * does the dirty work in cow of a single block. The parent block (if
+ * supplied) is updated to point to the new cow copy. The new buffer is marked
+ * dirty and returned locked. If you modify the block it needs to be marked
+ * dirty again.
+ *
+ * search_start -- an allocation hint for the new block
+ *
+ * empty_size -- a hint that you plan on doing more cow. This is the size in
+ * bytes the allocator should try to find free next to the block it returns.
+ * This is just a hint and may be ignored by the allocator.
+ */
+static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf,
+ struct extent_buffer *parent, int parent_slot,
+ struct extent_buffer **cow_ret,
+ u64 search_start, u64 empty_size)
+{
+ struct btrfs_disk_key disk_key;
+ struct extent_buffer *cow;
+ int level, ret;
+ int last_ref = 0;
+ int unlock_orig = 0;
+ u64 parent_start;
+
+ if (*cow_ret == buf)
+ unlock_orig = 1;
+
+ btrfs_assert_tree_locked(buf);
+
+ WARN_ON(root->ref_cows && trans->transid !=
+ root->fs_info->running_transaction->transid);
+ WARN_ON(root->ref_cows && trans->transid != root->last_trans);
+
+ level = btrfs_header_level(buf);
+
+ if (level == 0)
+ btrfs_item_key(buf, &disk_key, 0);
+ else
+ btrfs_node_key(buf, &disk_key, 0);
+
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
+ if (parent)
+ parent_start = parent->start;
+ else
+ parent_start = 0;
+ } else
+ parent_start = 0;
+
+ cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
+ root->root_key.objectid, &disk_key,
+ level, search_start, empty_size, 1);
+ if (IS_ERR(cow))
+ return PTR_ERR(cow);
+
+ /* cow is set to blocking by btrfs_init_new_buffer */
+
+ copy_extent_buffer(cow, buf, 0, 0, cow->len);
+ btrfs_set_header_bytenr(cow, cow->start);
+ btrfs_set_header_generation(cow, trans->transid);
+ btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
+ btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
+ BTRFS_HEADER_FLAG_RELOC);
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
+ btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
+ else
+ btrfs_set_header_owner(cow, root->root_key.objectid);
+
+ write_extent_buffer(cow, root->fs_info->fsid,
+ (unsigned long)btrfs_header_fsid(cow),
+ BTRFS_FSID_SIZE);
+
+ ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+
+ if (root->ref_cows)
+ btrfs_reloc_cow_block(trans, root, buf, cow);
+
+ if (buf == root->node) {
+ WARN_ON(parent && parent != buf);
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
+ btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
+ parent_start = buf->start;
+ else
+ parent_start = 0;
+
+ extent_buffer_get(cow);
+ rcu_assign_pointer(root->node, cow);
+
+ btrfs_free_tree_block(trans, root, buf, parent_start,
+ last_ref, 1);
+ free_extent_buffer(buf);
+ add_root_to_dirty_list(root);
+ } else {
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
+ parent_start = parent->start;
+ else
+ parent_start = 0;
+
+ WARN_ON(trans->transid != btrfs_header_generation(parent));
+ btrfs_set_node_blockptr(parent, parent_slot,
+ cow->start);
+ btrfs_set_node_ptr_generation(parent, parent_slot,
+ trans->transid);
+ btrfs_mark_buffer_dirty(parent);
+ btrfs_free_tree_block(trans, root, buf, parent_start,
+ last_ref, 1);
+ }
+ if (unlock_orig)
+ btrfs_tree_unlock(buf);
+ free_extent_buffer_stale(buf);
+ btrfs_mark_buffer_dirty(cow);
+ *cow_ret = cow;
+ return 0;
+}
+
+static inline int should_cow_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf)
+{
+ /* ensure we can see the force_cow */
+ smp_rmb();
+
+ /*
+ * We do not need to cow a block if
+ * 1) this block is not created or changed in this transaction;
+ * 2) this block does not belong to TREE_RELOC tree;
+ * 3) the root is not forced COW.
+ *
+ * What is forced COW:
+ * when we create snapshot during commiting the transaction,
+ * after we've finished coping src root, we must COW the shared
+ * block to ensure the metadata consistency.
+ */
+ if (btrfs_header_generation(buf) == trans->transid &&
+ !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
+ !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
+ btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
+ !root->force_cow)
+ return 0;
+ return 1;
+}
+
+/*
+ * cows a single block, see __btrfs_cow_block for the real work.
+ * This version of it has extra checks so that a block isn't cow'd more than
+ * once per transaction, as long as it hasn't been written yet
+ */
+noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *buf,
+ struct extent_buffer *parent, int parent_slot,
+ struct extent_buffer **cow_ret)
+{
+ u64 search_start;
+ int ret;
+
+ if (trans->transaction != root->fs_info->running_transaction) {
+ printk(KERN_CRIT "trans %llu running %llu\n",
+ (unsigned long long)trans->transid,
+ (unsigned long long)
+ root->fs_info->running_transaction->transid);
+ WARN_ON(1);
+ }
+ if (trans->transid != root->fs_info->generation) {
+ printk(KERN_CRIT "trans %llu running %llu\n",
+ (unsigned long long)trans->transid,
+ (unsigned long long)root->fs_info->generation);
+ WARN_ON(1);
+ }
+
+ if (!should_cow_block(trans, root, buf)) {
+ *cow_ret = buf;
+ return 0;
+ }
+
+ search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
+
+ if (parent)
+ btrfs_set_lock_blocking(parent);
+ btrfs_set_lock_blocking(buf);
+
+ ret = __btrfs_cow_block(trans, root, buf, parent,
+ parent_slot, cow_ret, search_start, 0);
+
+ trace_btrfs_cow_block(root, buf, *cow_ret);
+
+ return ret;
+}
+
+/*
+ * helper function for defrag to decide if two blocks pointed to by a
+ * node are actually close by
+ */
+static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
+{
+ if (blocknr < other && other - (blocknr + blocksize) < 32768)
+ return 1;
+ if (blocknr > other && blocknr - (other + blocksize) < 32768)
+ return 1;
+ return 0;
+}
+
+/*
+ * compare two keys in a memcmp fashion
+ */
+static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
+{
+ struct btrfs_key k1;
+
+ btrfs_disk_key_to_cpu(&k1, disk);
+
+ return btrfs_comp_cpu_keys(&k1, k2);
+}
+
+/*
+ * same as comp_keys only with two btrfs_key's
+ */
+int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
+{
+ if (k1->objectid > k2->objectid)
+ return 1;
+ if (k1->objectid < k2->objectid)
+ return -1;
+ if (k1->type > k2->type)
+ return 1;
+ if (k1->type < k2->type)
+ return -1;
+ if (k1->offset > k2->offset)
+ return 1;
+ if (k1->offset < k2->offset)
+ return -1;
+ return 0;
+}
+
+/*
+ * this is used by the defrag code to go through all the
+ * leaves pointed to by a node and reallocate them so that
+ * disk order is close to key order
+ */
+int btrfs_realloc_node(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *parent,
+ int start_slot, int cache_only, u64 *last_ret,
+ struct btrfs_key *progress)
+{
+ struct extent_buffer *cur;
+ u64 blocknr;
+ u64 gen;
+ u64 search_start = *last_ret;
+ u64 last_block = 0;
+ u64 other;
+ u32 parent_nritems;
+ int end_slot;
+ int i;
+ int err = 0;
+ int parent_level;
+ int uptodate;
+ u32 blocksize;
+ int progress_passed = 0;
+ struct btrfs_disk_key disk_key;
+
+ parent_level = btrfs_header_level(parent);
+ if (cache_only && parent_level != 1)
+ return 0;
+
+ if (trans->transaction != root->fs_info->running_transaction)
+ WARN_ON(1);
+ if (trans->transid != root->fs_info->generation)
+ WARN_ON(1);
+
+ parent_nritems = btrfs_header_nritems(parent);
+ blocksize = btrfs_level_size(root, parent_level - 1);
+ end_slot = parent_nritems;
+
+ if (parent_nritems == 1)
+ return 0;
+
+ btrfs_set_lock_blocking(parent);
+
+ for (i = start_slot; i < end_slot; i++) {
+ int close = 1;
+
+ btrfs_node_key(parent, &disk_key, i);
+ if (!progress_passed && comp_keys(&disk_key, progress) < 0)
+ continue;
+
+ progress_passed = 1;
+ blocknr = btrfs_node_blockptr(parent, i);
+ gen = btrfs_node_ptr_generation(parent, i);
+ if (last_block == 0)
+ last_block = blocknr;
+
+ if (i > 0) {
+ other = btrfs_node_blockptr(parent, i - 1);
+ close = close_blocks(blocknr, other, blocksize);
+ }
+ if (!close && i < end_slot - 2) {
+ other = btrfs_node_blockptr(parent, i + 1);
+ close = close_blocks(blocknr, other, blocksize);
+ }
+ if (close) {
+ last_block = blocknr;
+ continue;
+ }
+
+ cur = btrfs_find_tree_block(root, blocknr, blocksize);
+ if (cur)
+ uptodate = btrfs_buffer_uptodate(cur, gen, 0);
+ else
+ uptodate = 0;
+ if (!cur || !uptodate) {
+ if (cache_only) {
+ free_extent_buffer(cur);
+ continue;
+ }
+ if (!cur) {
+ cur = read_tree_block(root, blocknr,
+ blocksize, gen);
+ if (!cur)
+ return -EIO;
+ } else if (!uptodate) {
+ btrfs_read_buffer(cur, gen);
+ }
+ }
+ if (search_start == 0)
+ search_start = last_block;
+
+ btrfs_tree_lock(cur);
+ btrfs_set_lock_blocking(cur);
+ err = __btrfs_cow_block(trans, root, cur, parent, i,
+ &cur, search_start,
+ min(16 * blocksize,
+ (end_slot - i) * blocksize));
+ if (err) {
+ btrfs_tree_unlock(cur);
+ free_extent_buffer(cur);
+ break;
+ }
+ search_start = cur->start;
+ last_block = cur->start;
+ *last_ret = search_start;
+ btrfs_tree_unlock(cur);
+ free_extent_buffer(cur);
+ }
+ return err;
+}
+
+/*
+ * The leaf data grows from end-to-front in the node.
+ * this returns the address of the start of the last item,
+ * which is the stop of the leaf data stack
+ */
+static inline unsigned int leaf_data_end(struct btrfs_root *root,
+ struct extent_buffer *leaf)
+{
+ u32 nr = btrfs_header_nritems(leaf);
+ if (nr == 0)
+ return BTRFS_LEAF_DATA_SIZE(root);
+ return btrfs_item_offset_nr(leaf, nr - 1);
+}
+
+
+/*
+ * search for key in the extent_buffer. The items start at offset p,
+ * and they are item_size apart. There are 'max' items in p.
+ *
+ * the slot in the array is returned via slot, and it points to
+ * the place where you would insert key if it is not found in
+ * the array.
+ *
+ * slot may point to max if the key is bigger than all of the keys
+ */
+static noinline int generic_bin_search(struct extent_buffer *eb,
+ unsigned long p,
+ int item_size, struct btrfs_key *key,
+ int max, int *slot)
+{
+ int low = 0;
+ int high = max;
+ int mid;
+ int ret;
+ struct btrfs_disk_key *tmp = NULL;
+ struct btrfs_disk_key unaligned;
+ unsigned long offset;
+ char *kaddr = NULL;
+ unsigned long map_start = 0;
+ unsigned long map_len = 0;
+ int err;
+
+ while (low < high) {
+ mid = (low + high) / 2;
+ offset = p + mid * item_size;
+
+ if (!kaddr || offset < map_start ||
+ (offset + sizeof(struct btrfs_disk_key)) >
+ map_start + map_len) {
+
+ err = map_private_extent_buffer(eb, offset,
+ sizeof(struct btrfs_disk_key),
+ &kaddr, &map_start, &map_len);
+
+ if (!err) {
+ tmp = (struct btrfs_disk_key *)(kaddr + offset -
+ map_start);
+ } else {
+ read_extent_buffer(eb, &unaligned,
+ offset, sizeof(unaligned));
+ tmp = &unaligned;
+ }
+
+ } else {
+ tmp = (struct btrfs_disk_key *)(kaddr + offset -
+ map_start);
+ }
+ ret = comp_keys(tmp, key);
+
+ if (ret < 0)
+ low = mid + 1;
+ else if (ret > 0)
+ high = mid;
+ else {
+ *slot = mid;
+ return 0;
+ }
+ }
+ *slot = low;
+ return 1;
+}
+
+/*
+ * simple bin_search frontend that does the right thing for
+ * leaves vs nodes
+ */
+static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
+ int level, int *slot)
+{
+ if (level == 0) {
+ return generic_bin_search(eb,
+ offsetof(struct btrfs_leaf, items),
+ sizeof(struct btrfs_item),
+ key, btrfs_header_nritems(eb),
+ slot);
+ } else {
+ return generic_bin_search(eb,
+ offsetof(struct btrfs_node, ptrs),
+ sizeof(struct btrfs_key_ptr),
+ key, btrfs_header_nritems(eb),
+ slot);
+ }
+ return -1;
+}
+
+int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
+ int level, int *slot)
+{
+ return bin_search(eb, key, level, slot);
+}
+
+static void root_add_used(struct btrfs_root *root, u32 size)
+{
+ spin_lock(&root->accounting_lock);
+ btrfs_set_root_used(&root->root_item,
+ btrfs_root_used(&root->root_item) + size);
+ spin_unlock(&root->accounting_lock);
+}
+
+static void root_sub_used(struct btrfs_root *root, u32 size)
+{
+ spin_lock(&root->accounting_lock);
+ btrfs_set_root_used(&root->root_item,
+ btrfs_root_used(&root->root_item) - size);
+ spin_unlock(&root->accounting_lock);
+}
+
+/* given a node and slot number, this reads the blocks it points to. The
+ * extent buffer is returned with a reference taken (but unlocked).
+ * NULL is returned on error.
+ */
+static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
+ struct extent_buffer *parent, int slot)
+{
+ int level = btrfs_header_level(parent);
+ if (slot < 0)
+ return NULL;
+ if (slot >= btrfs_header_nritems(parent))
+ return NULL;
+
+ BUG_ON(level == 0);
+
+ return read_tree_block(root, btrfs_node_blockptr(parent, slot),
+ btrfs_level_size(root, level - 1),
+ btrfs_node_ptr_generation(parent, slot));
+}
+
+/*
+ * node level balancing, used to make sure nodes are in proper order for
+ * item deletion. We balance from the top down, so we have to make sure
+ * that a deletion won't leave an node completely empty later on.
+ */
+static noinline int balance_level(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int level)
+{
+ struct extent_buffer *right = NULL;
+ struct extent_buffer *mid;
+ struct extent_buffer *left = NULL;
+ struct extent_buffer *parent = NULL;
+ int ret = 0;
+ int wret;
+ int pslot;
+ int orig_slot = path->slots[level];
+ u64 orig_ptr;
+
+ if (level == 0)
+ return 0;
+
+ mid = path->nodes[level];
+
+ WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
+ path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
+ WARN_ON(btrfs_header_generation(mid) != trans->transid);
+
+ orig_ptr = btrfs_node_blockptr(mid, orig_slot);
+
+ if (level < BTRFS_MAX_LEVEL - 1) {
+ parent = path->nodes[level + 1];
+ pslot = path->slots[level + 1];
+ }
+
+ /*
+ * deal with the case where there is only one pointer in the root
+ * by promoting the node below to a root
+ */
+ if (!parent) {
+ struct extent_buffer *child;
+
+ if (btrfs_header_nritems(mid) != 1)
+ return 0;
+
+ /* promote the child to a root */
+ child = read_node_slot(root, mid, 0);
+ if (!child) {
+ ret = -EROFS;
+ btrfs_std_error(root->fs_info, ret);
+ goto enospc;
+ }
+
+ btrfs_tree_lock(child);
+ btrfs_set_lock_blocking(child);
+ ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
+ if (ret) {
+ btrfs_tree_unlock(child);
+ free_extent_buffer(child);
+ goto enospc;
+ }
+
+ rcu_assign_pointer(root->node, child);
+
+ add_root_to_dirty_list(root);
+ btrfs_tree_unlock(child);
+
+ path->locks[level] = 0;
+ path->nodes[level] = NULL;
+ clean_tree_block(trans, root, mid);
+ btrfs_tree_unlock(mid);
+ /* once for the path */
+ free_extent_buffer(mid);
+
+ root_sub_used(root, mid->len);
+ btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
+ /* once for the root ptr */
+ free_extent_buffer_stale(mid);
+ return 0;
+ }
+ if (btrfs_header_nritems(mid) >
+ BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
+ return 0;
+
+ btrfs_header_nritems(mid);
+
+ left = read_node_slot(root, parent, pslot - 1);
+ if (left) {
+ btrfs_tree_lock(left);
+ btrfs_set_lock_blocking(left);
+ wret = btrfs_cow_block(trans, root, left,
+ parent, pslot - 1, &left);
+ if (wret) {
+ ret = wret;
+ goto enospc;
+ }
+ }
+ right = read_node_slot(root, parent, pslot + 1);
+ if (right) {
+ btrfs_tree_lock(right);
+ btrfs_set_lock_blocking(right);
+ wret = btrfs_cow_block(trans, root, right,
+ parent, pslot + 1, &right);
+ if (wret) {
+ ret = wret;
+ goto enospc;
+ }
+ }
+
+ /* first, try to make some room in the middle buffer */
+ if (left) {
+ orig_slot += btrfs_header_nritems(left);
+ wret = push_node_left(trans, root, left, mid, 1);
+ if (wret < 0)
+ ret = wret;
+ btrfs_header_nritems(mid);
+ }
+
+ /*
+ * then try to empty the right most buffer into the middle
+ */
+ if (right) {
+ wret = push_node_left(trans, root, mid, right, 1);
+ if (wret < 0 && wret != -ENOSPC)
+ ret = wret;
+ if (btrfs_header_nritems(right) == 0) {
+ clean_tree_block(trans, root, right);
+ btrfs_tree_unlock(right);
+ del_ptr(trans, root, path, level + 1, pslot + 1);
+ root_sub_used(root, right->len);
+ btrfs_free_tree_block(trans, root, right, 0, 1, 0);
+ free_extent_buffer_stale(right);
+ right = NULL;
+ } else {
+ struct btrfs_disk_key right_key;
+ btrfs_node_key(right, &right_key, 0);
+ btrfs_set_node_key(parent, &right_key, pslot + 1);
+ btrfs_mark_buffer_dirty(parent);
+ }
+ }
+ if (btrfs_header_nritems(mid) == 1) {
+ /*
+ * we're not allowed to leave a node with one item in the
+ * tree during a delete. A deletion from lower in the tree
+ * could try to delete the only pointer in this node.
+ * So, pull some keys from the left.
+ * There has to be a left pointer at this point because
+ * otherwise we would have pulled some pointers from the
+ * right
+ */
+ if (!left) {
+ ret = -EROFS;
+ btrfs_std_error(root->fs_info, ret);
+ goto enospc;
+ }
+ wret = balance_node_right(trans, root, mid, left);
+ if (wret < 0) {
+ ret = wret;
+ goto enospc;
+ }
+ if (wret == 1) {
+ wret = push_node_left(trans, root, left, mid, 1);
+ if (wret < 0)
+ ret = wret;
+ }
+ BUG_ON(wret == 1);
+ }
+ if (btrfs_header_nritems(mid) == 0) {
+ clean_tree_block(trans, root, mid);
+ btrfs_tree_unlock(mid);
+ del_ptr(trans, root, path, level + 1, pslot);
+ root_sub_used(root, mid->len);
+ btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
+ free_extent_buffer_stale(mid);
+ mid = NULL;
+ } else {
+ /* update the parent key to reflect our changes */
+ struct btrfs_disk_key mid_key;
+ btrfs_node_key(mid, &mid_key, 0);
+ btrfs_set_node_key(parent, &mid_key, pslot);
+ btrfs_mark_buffer_dirty(parent);
+ }
+
+ /* update the path */
+ if (left) {
+ if (btrfs_header_nritems(left) > orig_slot) {
+ extent_buffer_get(left);
+ /* left was locked after cow */
+ path->nodes[level] = left;
+ path->slots[level + 1] -= 1;
+ path->slots[level] = orig_slot;
+ if (mid) {
+ btrfs_tree_unlock(mid);
+ free_extent_buffer(mid);
+ }
+ } else {
+ orig_slot -= btrfs_header_nritems(left);
+ path->slots[level] = orig_slot;
+ }
+ }
+ /* double check we haven't messed things up */
+ if (orig_ptr !=
+ btrfs_node_blockptr(path->nodes[level], path->slots[level]))
+ BUG();
+enospc:
+ if (right) {
+ btrfs_tree_unlock(right);
+ free_extent_buffer(right);
+ }
+ if (left) {
+ if (path->nodes[level] != left)
+ btrfs_tree_unlock(left);
+ free_extent_buffer(left);
+ }
+ return ret;
+}
+
+/* Node balancing for insertion. Here we only split or push nodes around
+ * when they are completely full. This is also done top down, so we
+ * have to be pessimistic.
+ */
+static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int level)
+{
+ struct extent_buffer *right = NULL;
+ struct extent_buffer *mid;
+ struct extent_buffer *left = NULL;
+ struct extent_buffer *parent = NULL;
+ int ret = 0;
+ int wret;
+ int pslot;
+ int orig_slot = path->slots[level];
+
+ if (level == 0)
+ return 1;
+
+ mid = path->nodes[level];
+ WARN_ON(btrfs_header_generation(mid) != trans->transid);
+
+ if (level < BTRFS_MAX_LEVEL - 1) {
+ parent = path->nodes[level + 1];
+ pslot = path->slots[level + 1];
+ }
+
+ if (!parent)
+ return 1;
+
+ left = read_node_slot(root, parent, pslot - 1);
+
+ /* first, try to make some room in the middle buffer */
+ if (left) {
+ u32 left_nr;
+
+ btrfs_tree_lock(left);
+ btrfs_set_lock_blocking(left);
+
+ left_nr = btrfs_header_nritems(left);
+ if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
+ wret = 1;
+ } else {
+ ret = btrfs_cow_block(trans, root, left, parent,
+ pslot - 1, &left);
+ if (ret)
+ wret = 1;
+ else {
+ wret = push_node_left(trans, root,
+ left, mid, 0);
+ }
+ }
+ if (wret < 0)
+ ret = wret;
+ if (wret == 0) {
+ struct btrfs_disk_key disk_key;
+ orig_slot += left_nr;
+ btrfs_node_key(mid, &disk_key, 0);
+ btrfs_set_node_key(parent, &disk_key, pslot);
+ btrfs_mark_buffer_dirty(parent);
+ if (btrfs_header_nritems(left) > orig_slot) {
+ path->nodes[level] = left;
+ path->slots[level + 1] -= 1;
+ path->slots[level] = orig_slot;
+ btrfs_tree_unlock(mid);
+ free_extent_buffer(mid);
+ } else {
+ orig_slot -=
+ btrfs_header_nritems(left);
+ path->slots[level] = orig_slot;
+ btrfs_tree_unlock(left);
+ free_extent_buffer(left);
+ }
+ return 0;
+ }
+ btrfs_tree_unlock(left);
+ free_extent_buffer(left);
+ }
+ right = read_node_slot(root, parent, pslot + 1);
+
+ /*
+ * then try to empty the right most buffer into the middle
+ */
+ if (right) {
+ u32 right_nr;
+
+ btrfs_tree_lock(right);
+ btrfs_set_lock_blocking(right);
+
+ right_nr = btrfs_header_nritems(right);
+ if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
+ wret = 1;
+ } else {
+ ret = btrfs_cow_block(trans, root, right,
+ parent, pslot + 1,
+ &right);
+ if (ret)
+ wret = 1;
+ else {
+ wret = balance_node_right(trans, root,
+ right, mid);
+ }
+ }
+ if (wret < 0)
+ ret = wret;
+ if (wret == 0) {
+ struct btrfs_disk_key disk_key;
+
+ btrfs_node_key(right, &disk_key, 0);
+ btrfs_set_node_key(parent, &disk_key, pslot + 1);
+ btrfs_mark_buffer_dirty(parent);
+
+ if (btrfs_header_nritems(mid) <= orig_slot) {
+ path->nodes[level] = right;
+ path->slots[level + 1] += 1;
+ path->slots[level] = orig_slot -
+ btrfs_header_nritems(mid);
+ btrfs_tree_unlock(mid);
+ free_extent_buffer(mid);
+ } else {
+ btrfs_tree_unlock(right);
+ free_extent_buffer(right);
+ }
+ return 0;
+ }
+ btrfs_tree_unlock(right);
+ free_extent_buffer(right);
+ }
+ return 1;
+}
+
+/*
+ * readahead one full node of leaves, finding things that are close
+ * to the block in 'slot', and triggering ra on them.
+ */
+static void reada_for_search(struct btrfs_root *root,
+ struct btrfs_path *path,
+ int level, int slot, u64 objectid)
+{
+ struct extent_buffer *node;
+ struct btrfs_disk_key disk_key;
+ u32 nritems;
+ u64 search;
+ u64 target;
+ u64 nread = 0;
+ u64 gen;
+ int direction = path->reada;
+ struct extent_buffer *eb;
+ u32 nr;
+ u32 blocksize;
+ u32 nscan = 0;
+
+ if (level != 1)
+ return;
+
+ if (!path->nodes[level])
+ return;
+
+ node = path->nodes[level];
+
+ search = btrfs_node_blockptr(node, slot);
+ blocksize = btrfs_level_size(root, level - 1);
+ eb = btrfs_find_tree_block(root, search, blocksize);
+ if (eb) {
+ free_extent_buffer(eb);
+ return;
+ }
+
+ target = search;
+
+ nritems = btrfs_header_nritems(node);
+ nr = slot;
+
+ while (1) {
+ if (direction < 0) {
+ if (nr == 0)
+ break;
+ nr--;
+ } else if (direction > 0) {
+ nr++;
+ if (nr >= nritems)
+ break;
+ }
+ if (path->reada < 0 && objectid) {
+ btrfs_node_key(node, &disk_key, nr);
+ if (btrfs_disk_key_objectid(&disk_key) != objectid)
+ break;
+ }
+ search = btrfs_node_blockptr(node, nr);
+ if ((search <= target && target - search <= 65536) ||
+ (search > target && search - target <= 65536)) {
+ gen = btrfs_node_ptr_generation(node, nr);
+ readahead_tree_block(root, search, blocksize, gen);
+ nread += blocksize;
+ }
+ nscan++;
+ if ((nread > 65536 || nscan > 32))
+ break;
+ }
+}
+
+/*
+ * returns -EAGAIN if it had to drop the path, or zero if everything was in
+ * cache
+ */
+static noinline int reada_for_balance(struct btrfs_root *root,
+ struct btrfs_path *path, int level)
+{
+ int slot;
+ int nritems;
+ struct extent_buffer *parent;
+ struct extent_buffer *eb;
+ u64 gen;
+ u64 block1 = 0;
+ u64 block2 = 0;
+ int ret = 0;
+ int blocksize;
+
+ parent = path->nodes[level + 1];
+ if (!parent)
+ return 0;
+
+ nritems = btrfs_header_nritems(parent);
+ slot = path->slots[level + 1];
+ blocksize = btrfs_level_size(root, level);
+
+ if (slot > 0) {
+ block1 = btrfs_node_blockptr(parent, slot - 1);
+ gen = btrfs_node_ptr_generation(parent, slot - 1);
+ eb = btrfs_find_tree_block(root, block1, blocksize);
+ /*
+ * if we get -eagain from btrfs_buffer_uptodate, we
+ * don't want to return eagain here. That will loop
+ * forever
+ */
+ if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
+ block1 = 0;
+ free_extent_buffer(eb);
+ }
+ if (slot + 1 < nritems) {
+ block2 = btrfs_node_blockptr(parent, slot + 1);
+ gen = btrfs_node_ptr_generation(parent, slot + 1);
+ eb = btrfs_find_tree_block(root, block2, blocksize);
+ if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
+ block2 = 0;
+ free_extent_buffer(eb);
+ }
+ if (block1 || block2) {
+ ret = -EAGAIN;
+
+ /* release the whole path */
+ btrfs_release_path(path);
+
+ /* read the blocks */
+ if (block1)
+ readahead_tree_block(root, block1, blocksize, 0);
+ if (block2)
+ readahead_tree_block(root, block2, blocksize, 0);
+
+ if (block1) {
+ eb = read_tree_block(root, block1, blocksize, 0);
+ free_extent_buffer(eb);
+ }
+ if (block2) {
+ eb = read_tree_block(root, block2, blocksize, 0);
+ free_extent_buffer(eb);
+ }
+ }
+ return ret;
+}
+
+
+/*
+ * when we walk down the tree, it is usually safe to unlock the higher layers
+ * in the tree. The exceptions are when our path goes through slot 0, because
+ * operations on the tree might require changing key pointers higher up in the
+ * tree.
+ *
+ * callers might also have set path->keep_locks, which tells this code to keep
+ * the lock if the path points to the last slot in the block. This is part of
+ * walking through the tree, and selecting the next slot in the higher block.
+ *
+ * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
+ * if lowest_unlock is 1, level 0 won't be unlocked
+ */
+static noinline void unlock_up(struct btrfs_path *path, int level,
+ int lowest_unlock, int min_write_lock_level,
+ int *write_lock_level)
+{
+ int i;
+ int skip_level = level;
+ int no_skips = 0;
+ struct extent_buffer *t;
+
+ for (i = level; i < BTRFS_MAX_LEVEL; i++) {
+ if (!path->nodes[i])
+ break;
+ if (!path->locks[i])
+ break;
+ if (!no_skips && path->slots[i] == 0) {
+ skip_level = i + 1;
+ continue;
+ }
+ if (!no_skips && path->keep_locks) {
+ u32 nritems;
+ t = path->nodes[i];
+ nritems = btrfs_header_nritems(t);
+ if (nritems < 1 || path->slots[i] >= nritems - 1) {
+ skip_level = i + 1;
+ continue;
+ }
+ }
+ if (skip_level < i && i >= lowest_unlock)
+ no_skips = 1;
+
+ t = path->nodes[i];
+ if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
+ btrfs_tree_unlock_rw(t, path->locks[i]);
+ path->locks[i] = 0;
+ if (write_lock_level &&
+ i > min_write_lock_level &&
+ i <= *write_lock_level) {
+ *write_lock_level = i - 1;
+ }
+ }
+ }
+}
+
+/*
+ * This releases any locks held in the path starting at level and
+ * going all the way up to the root.
+ *
+ * btrfs_search_slot will keep the lock held on higher nodes in a few
+ * corner cases, such as COW of the block at slot zero in the node. This
+ * ignores those rules, and it should only be called when there are no
+ * more updates to be done higher up in the tree.
+ */
+noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
+{
+ int i;
+
+ if (path->keep_locks)
+ return;
+
+ for (i = level; i < BTRFS_MAX_LEVEL; i++) {
+ if (!path->nodes[i])
+ continue;
+ if (!path->locks[i])
+ continue;
+ btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
+ path->locks[i] = 0;
+ }
+}
+
+/*
+ * helper function for btrfs_search_slot. The goal is to find a block
+ * in cache without setting the path to blocking. If we find the block
+ * we return zero and the path is unchanged.
+ *
+ * If we can't find the block, we set the path blocking and do some
+ * reada. -EAGAIN is returned and the search must be repeated.
+ */
+static int
+read_block_for_search(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *p,
+ struct extent_buffer **eb_ret, int level, int slot,
+ struct btrfs_key *key)
+{
+ u64 blocknr;
+ u64 gen;
+ u32 blocksize;
+ struct extent_buffer *b = *eb_ret;
+ struct extent_buffer *tmp;
+ int ret;
+
+ blocknr = btrfs_node_blockptr(b, slot);
+ gen = btrfs_node_ptr_generation(b, slot);
+ blocksize = btrfs_level_size(root, level - 1);
+
+ tmp = btrfs_find_tree_block(root, blocknr, blocksize);
+ if (tmp) {
+ /* first we do an atomic uptodate check */
+ if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
+ if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
+ /*
+ * we found an up to date block without
+ * sleeping, return
+ * right away
+ */
+ *eb_ret = tmp;
+ return 0;
+ }
+ /* the pages were up to date, but we failed
+ * the generation number check. Do a full
+ * read for the generation number that is correct.
+ * We must do this without dropping locks so
+ * we can trust our generation number
+ */
+ free_extent_buffer(tmp);
+ btrfs_set_path_blocking(p);
+
+ /* now we're allowed to do a blocking uptodate check */
+ tmp = read_tree_block(root, blocknr, blocksize, gen);
+ if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
+ *eb_ret = tmp;
+ return 0;
+ }
+ free_extent_buffer(tmp);
+ btrfs_release_path(p);
+ return -EIO;
+ }
+ }
+
+ /*
+ * reduce lock contention at high levels
+ * of the btree by dropping locks before
+ * we read. Don't release the lock on the current
+ * level because we need to walk this node to figure
+ * out which blocks to read.
+ */
+ btrfs_unlock_up_safe(p, level + 1);
+ btrfs_set_path_blocking(p);
+
+ free_extent_buffer(tmp);
+ if (p->reada)
+ reada_for_search(root, p, level, slot, key->objectid);
+
+ btrfs_release_path(p);
+
+ ret = -EAGAIN;
+ tmp = read_tree_block(root, blocknr, blocksize, 0);
+ if (tmp) {
+ /*
+ * If the read above didn't mark this buffer up to date,
+ * it will never end up being up to date. Set ret to EIO now
+ * and give up so that our caller doesn't loop forever
+ * on our EAGAINs.
+ */
+ if (!btrfs_buffer_uptodate(tmp, 0, 0))
+ ret = -EIO;
+ free_extent_buffer(tmp);
+ }
+ return ret;
+}
+
+/*
+ * helper function for btrfs_search_slot. This does all of the checks
+ * for node-level blocks and does any balancing required based on
+ * the ins_len.
+ *
+ * If no extra work was required, zero is returned. If we had to
+ * drop the path, -EAGAIN is returned and btrfs_search_slot must
+ * start over
+ */
+static int
+setup_nodes_for_search(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *p,
+ struct extent_buffer *b, int level, int ins_len,
+ int *write_lock_level)
+{
+ int ret;
+ if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
+ BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
+ int sret;
+
+ if (*write_lock_level < level + 1) {
+ *write_lock_level = level + 1;
+ btrfs_release_path(p);
+ goto again;
+ }
+
+ sret = reada_for_balance(root, p, level);
+ if (sret)
+ goto again;
+
+ btrfs_set_path_blocking(p);
+ sret = split_node(trans, root, p, level);
+ btrfs_clear_path_blocking(p, NULL, 0);
+
+ BUG_ON(sret > 0);
+ if (sret) {
+ ret = sret;
+ goto done;
+ }
+ b = p->nodes[level];
+ } else if (ins_len < 0 && btrfs_header_nritems(b) <
+ BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
+ int sret;
+
+ if (*write_lock_level < level + 1) {
+ *write_lock_level = level + 1;
+ btrfs_release_path(p);
+ goto again;
+ }
+
+ sret = reada_for_balance(root, p, level);
+ if (sret)
+ goto again;
+
+ btrfs_set_path_blocking(p);
+ sret = balance_level(trans, root, p, level);
+ btrfs_clear_path_blocking(p, NULL, 0);
+
+ if (sret) {
+ ret = sret;
+ goto done;
+ }
+ b = p->nodes[level];
+ if (!b) {
+ btrfs_release_path(p);
+ goto again;
+ }
+ BUG_ON(btrfs_header_nritems(b) == 1);
+ }
+ return 0;
+
+again:
+ ret = -EAGAIN;
+done:
+ return ret;
+}
+
+/*
+ * look for key in the tree. path is filled in with nodes along the way
+ * if key is found, we return zero and you can find the item in the leaf
+ * level of the path (level 0)
+ *
+ * If the key isn't found, the path points to the slot where it should
+ * be inserted, and 1 is returned. If there are other errors during the
+ * search a negative error number is returned.
+ *
+ * if ins_len > 0, nodes and leaves will be split as we walk down the
+ * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
+ * possible)
+ */
+int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_key *key, struct btrfs_path *p, int
+ ins_len, int cow)
+{
+ struct extent_buffer *b;
+ int slot;
+ int ret;
+ int err;
+ int level;
+ int lowest_unlock = 1;
+ int root_lock;
+ /* everything at write_lock_level or lower must be write locked */
+ int write_lock_level = 0;
+ u8 lowest_level = 0;
+ int min_write_lock_level;
+
+ lowest_level = p->lowest_level;
+ WARN_ON(lowest_level && ins_len > 0);
+ WARN_ON(p->nodes[0] != NULL);
+
+ if (ins_len < 0) {
+ lowest_unlock = 2;
+
+ /* when we are removing items, we might have to go up to level
+ * two as we update tree pointers Make sure we keep write
+ * for those levels as well
+ */
+ write_lock_level = 2;
+ } else if (ins_len > 0) {
+ /*
+ * for inserting items, make sure we have a write lock on
+ * level 1 so we can update keys
+ */
+ write_lock_level = 1;
+ }
+
+ if (!cow)
+ write_lock_level = -1;
+
+ if (cow && (p->keep_locks || p->lowest_level))
+ write_lock_level = BTRFS_MAX_LEVEL;
+
+ min_write_lock_level = write_lock_level;
+
+again:
+ /*
+ * we try very hard to do read locks on the root
+ */
+ root_lock = BTRFS_READ_LOCK;
+ level = 0;
+ if (p->search_commit_root) {
+ /*
+ * the commit roots are read only
+ * so we always do read locks
+ */
+ b = root->commit_root;
+ extent_buffer_get(b);
+ level = btrfs_header_level(b);
+ if (!p->skip_locking)
+ btrfs_tree_read_lock(b);
+ } else {
+ if (p->skip_locking) {
+ b = btrfs_root_node(root);
+ level = btrfs_header_level(b);
+ } else {
+ /* we don't know the level of the root node
+ * until we actually have it read locked
+ */
+ b = btrfs_read_lock_root_node(root);
+ level = btrfs_header_level(b);
+ if (level <= write_lock_level) {
+ /* whoops, must trade for write lock */
+ btrfs_tree_read_unlock(b);
+ free_extent_buffer(b);
+ b = btrfs_lock_root_node(root);
+ root_lock = BTRFS_WRITE_LOCK;
+
+ /* the level might have changed, check again */
+ level = btrfs_header_level(b);
+ }
+ }
+ }
+ p->nodes[level] = b;
+ if (!p->skip_locking)
+ p->locks[level] = root_lock;
+
+ while (b) {
+ level = btrfs_header_level(b);
+
+ /*
+ * setup the path here so we can release it under lock
+ * contention with the cow code
+ */
+ if (cow) {
+ /*
+ * if we don't really need to cow this block
+ * then we don't want to set the path blocking,
+ * so we test it here
+ */
+ if (!should_cow_block(trans, root, b))
+ goto cow_done;
+
+ btrfs_set_path_blocking(p);
+
+ /*
+ * must have write locks on this node and the
+ * parent
+ */
+ if (level + 1 > write_lock_level) {
+ write_lock_level = level + 1;
+ btrfs_release_path(p);
+ goto again;
+ }
+
+ err = btrfs_cow_block(trans, root, b,
+ p->nodes[level + 1],
+ p->slots[level + 1], &b);
+ if (err) {
+ ret = err;
+ goto done;
+ }
+ }
+cow_done:
+ BUG_ON(!cow && ins_len);
+
+ p->nodes[level] = b;
+ btrfs_clear_path_blocking(p, NULL, 0);
+
+ /*
+ * we have a lock on b and as long as we aren't changing
+ * the tree, there is no way to for the items in b to change.
+ * It is safe to drop the lock on our parent before we
+ * go through the expensive btree search on b.
+ *
+ * If cow is true, then we might be changing slot zero,
+ * which may require changing the parent. So, we can't
+ * drop the lock until after we know which slot we're
+ * operating on.
+ */
+ if (!cow)
+ btrfs_unlock_up_safe(p, level + 1);
+
+ ret = bin_search(b, key, level, &slot);
+
+ if (level != 0) {
+ int dec = 0;
+ if (ret && slot > 0) {
+ dec = 1;
+ slot -= 1;
+ }
+ p->slots[level] = slot;
+ err = setup_nodes_for_search(trans, root, p, b, level,
+ ins_len, &write_lock_level);
+ if (err == -EAGAIN)
+ goto again;
+ if (err) {
+ ret = err;
+ goto done;
+ }
+ b = p->nodes[level];
+ slot = p->slots[level];
+
+ /*
+ * slot 0 is special, if we change the key
+ * we have to update the parent pointer
+ * which means we must have a write lock
+ * on the parent
+ */
+ if (slot == 0 && cow &&
+ write_lock_level < level + 1) {
+ write_lock_level = level + 1;
+ btrfs_release_path(p);
+ goto again;
+ }
+
+ unlock_up(p, level, lowest_unlock,
+ min_write_lock_level, &write_lock_level);
+
+ if (level == lowest_level) {
+ if (dec)
+ p->slots[level]++;
+ goto done;
+ }
+
+ err = read_block_for_search(trans, root, p,
+ &b, level, slot, key);
+ if (err == -EAGAIN)
+ goto again;
+ if (err) {
+ ret = err;
+ goto done;
+ }
+
+ if (!p->skip_locking) {
+ level = btrfs_header_level(b);
+ if (level <= write_lock_level) {
+ err = btrfs_try_tree_write_lock(b);
+ if (!err) {
+ btrfs_set_path_blocking(p);
+ btrfs_tree_lock(b);
+ btrfs_clear_path_blocking(p, b,
+ BTRFS_WRITE_LOCK);
+ }
+ p->locks[level] = BTRFS_WRITE_LOCK;
+ } else {
+ err = btrfs_try_tree_read_lock(b);
+ if (!err) {
+ btrfs_set_path_blocking(p);
+ btrfs_tree_read_lock(b);
+ btrfs_clear_path_blocking(p, b,
+ BTRFS_READ_LOCK);
+ }
+ p->locks[level] = BTRFS_READ_LOCK;
+ }
+ p->nodes[level] = b;
+ }
+ } else {
+ p->slots[level] = slot;
+ if (ins_len > 0 &&
+ btrfs_leaf_free_space(root, b) < ins_len) {
+ if (write_lock_level < 1) {
+ write_lock_level = 1;
+ btrfs_release_path(p);
+ goto again;
+ }
+
+ btrfs_set_path_blocking(p);
+ err = split_leaf(trans, root, key,
+ p, ins_len, ret == 0);
+ btrfs_clear_path_blocking(p, NULL, 0);
+
+ BUG_ON(err > 0);
+ if (err) {
+ ret = err;
+ goto done;
+ }
+ }
+ if (!p->search_for_split)
+ unlock_up(p, level, lowest_unlock,
+ min_write_lock_level, &write_lock_level);
+ goto done;
+ }
+ }
+ ret = 1;
+done:
+ /*
+ * we don't really know what they plan on doing with the path
+ * from here on, so for now just mark it as blocking
+ */
+ if (!p->leave_spinning)
+ btrfs_set_path_blocking(p);
+ if (ret < 0)
+ btrfs_release_path(p);
+ return ret;
+}
+
+/*
+ * adjust the pointers going up the tree, starting at level
+ * making sure the right key of each node is points to 'key'.
+ * This is used after shifting pointers to the left, so it stops
+ * fixing up pointers when a given leaf/node is not in slot 0 of the
+ * higher levels
+ *
+ */
+static void fixup_low_keys(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_disk_key *key, int level)
+{
+ int i;
+ struct extent_buffer *t;
+
+ for (i = level; i < BTRFS_MAX_LEVEL; i++) {
+ int tslot = path->slots[i];
+ if (!path->nodes[i])
+ break;
+ t = path->nodes[i];
+ btrfs_set_node_key(t, key, tslot);
+ btrfs_mark_buffer_dirty(path->nodes[i]);
+ if (tslot != 0)
+ break;
+ }
+}
+
+/*
+ * update item key.
+ *
+ * This function isn't completely safe. It's the caller's responsibility
+ * that the new key won't break the order
+ */
+void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_key *new_key)
+{
+ struct btrfs_disk_key disk_key;
+ struct extent_buffer *eb;
+ int slot;
+
+ eb = path->nodes[0];
+ slot = path->slots[0];
+ if (slot > 0) {
+ btrfs_item_key(eb, &disk_key, slot - 1);
+ BUG_ON(comp_keys(&disk_key, new_key) >= 0);
+ }
+ if (slot < btrfs_header_nritems(eb) - 1) {
+ btrfs_item_key(eb, &disk_key, slot + 1);
+ BUG_ON(comp_keys(&disk_key, new_key) <= 0);
+ }
+
+ btrfs_cpu_key_to_disk(&disk_key, new_key);
+ btrfs_set_item_key(eb, &disk_key, slot);
+ btrfs_mark_buffer_dirty(eb);
+ if (slot == 0)
+ fixup_low_keys(trans, root, path, &disk_key, 1);
+}
+
+/*
+ * try to push data from one node into the next node left in the
+ * tree.
+ *
+ * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
+ * error, and > 0 if there was no room in the left hand block.
+ */
+static int push_node_left(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *dst,
+ struct extent_buffer *src, int empty)
+{
+ int push_items = 0;
+ int src_nritems;
+ int dst_nritems;
+ int ret = 0;
+
+ src_nritems = btrfs_header_nritems(src);
+ dst_nritems = btrfs_header_nritems(dst);
+ push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
+ WARN_ON(btrfs_header_generation(src) != trans->transid);
+ WARN_ON(btrfs_header_generation(dst) != trans->transid);
+
+ if (!empty && src_nritems <= 8)
+ return 1;
+
+ if (push_items <= 0)
+ return 1;
+
+ if (empty) {
+ push_items = min(src_nritems, push_items);
+ if (push_items < src_nritems) {
+ /* leave at least 8 pointers in the node if
+ * we aren't going to empty it
+ */
+ if (src_nritems - push_items < 8) {
+ if (push_items <= 8)
+ return 1;
+ push_items -= 8;
+ }
+ }
+ } else
+ push_items = min(src_nritems - 8, push_items);
+
+ copy_extent_buffer(dst, src,
+ btrfs_node_key_ptr_offset(dst_nritems),
+ btrfs_node_key_ptr_offset(0),
+ push_items * sizeof(struct btrfs_key_ptr));
+
+ if (push_items < src_nritems) {
+ memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
+ btrfs_node_key_ptr_offset(push_items),
+ (src_nritems - push_items) *
+ sizeof(struct btrfs_key_ptr));
+ }
+ btrfs_set_header_nritems(src, src_nritems - push_items);
+ btrfs_set_header_nritems(dst, dst_nritems + push_items);
+ btrfs_mark_buffer_dirty(src);
+ btrfs_mark_buffer_dirty(dst);
+
+ return ret;
+}
+
+/*
+ * try to push data from one node into the next node right in the
+ * tree.
+ *
+ * returns 0 if some ptrs were pushed, < 0 if there was some horrible
+ * error, and > 0 if there was no room in the right hand block.
+ *
+ * this will only push up to 1/2 the contents of the left node over
+ */
+static int balance_node_right(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *dst,
+ struct extent_buffer *src)
+{
+ int push_items = 0;
+ int max_push;
+ int src_nritems;
+ int dst_nritems;
+ int ret = 0;
+
+ WARN_ON(btrfs_header_generation(src) != trans->transid);
+ WARN_ON(btrfs_header_generation(dst) != trans->transid);
+
+ src_nritems = btrfs_header_nritems(src);
+ dst_nritems = btrfs_header_nritems(dst);
+ push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
+ if (push_items <= 0)
+ return 1;
+
+ if (src_nritems < 4)
+ return 1;
+
+ max_push = src_nritems / 2 + 1;
+ /* don't try to empty the node */
+ if (max_push >= src_nritems)
+ return 1;
+
+ if (max_push < push_items)
+ push_items = max_push;
+
+ memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
+ btrfs_node_key_ptr_offset(0),
+ (dst_nritems) *
+ sizeof(struct btrfs_key_ptr));
+
+ copy_extent_buffer(dst, src,
+ btrfs_node_key_ptr_offset(0),
+ btrfs_node_key_ptr_offset(src_nritems - push_items),
+ push_items * sizeof(struct btrfs_key_ptr));
+
+ btrfs_set_header_nritems(src, src_nritems - push_items);
+ btrfs_set_header_nritems(dst, dst_nritems + push_items);
+
+ btrfs_mark_buffer_dirty(src);
+ btrfs_mark_buffer_dirty(dst);
+
+ return ret;
+}
+
+/*
+ * helper function to insert a new root level in the tree.
+ * A new node is allocated, and a single item is inserted to
+ * point to the existing root
+ *
+ * returns zero on success or < 0 on failure.
+ */
+static noinline int insert_new_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int level)
+{
+ u64 lower_gen;
+ struct extent_buffer *lower;
+ struct extent_buffer *c;
+ struct extent_buffer *old;
+ struct btrfs_disk_key lower_key;
+
+ BUG_ON(path->nodes[level]);
+ BUG_ON(path->nodes[level-1] != root->node);
+
+ lower = path->nodes[level-1];
+ if (level == 1)
+ btrfs_item_key(lower, &lower_key, 0);
+ else
+ btrfs_node_key(lower, &lower_key, 0);
+
+ c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
+ root->root_key.objectid, &lower_key,
+ level, root->node->start, 0, 0);
+ if (IS_ERR(c))
+ return PTR_ERR(c);
+
+ root_add_used(root, root->nodesize);
+
+ memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
+ btrfs_set_header_nritems(c, 1);
+ btrfs_set_header_level(c, level);
+ btrfs_set_header_bytenr(c, c->start);
+ btrfs_set_header_generation(c, trans->transid);
+ btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
+ btrfs_set_header_owner(c, root->root_key.objectid);
+
+ write_extent_buffer(c, root->fs_info->fsid,
+ (unsigned long)btrfs_header_fsid(c),
+ BTRFS_FSID_SIZE);
+
+ write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
+ (unsigned long)btrfs_header_chunk_tree_uuid(c),
+ BTRFS_UUID_SIZE);
+
+ btrfs_set_node_key(c, &lower_key, 0);
+ btrfs_set_node_blockptr(c, 0, lower->start);
+ lower_gen = btrfs_header_generation(lower);
+ WARN_ON(lower_gen != trans->transid);
+
+ btrfs_set_node_ptr_generation(c, 0, lower_gen);
+
+ btrfs_mark_buffer_dirty(c);
+
+ old = root->node;
+ rcu_assign_pointer(root->node, c);
+
+ /* the super has an extra ref to root->node */
+ free_extent_buffer(old);
+
+ add_root_to_dirty_list(root);
+ extent_buffer_get(c);
+ path->nodes[level] = c;
+ path->locks[level] = BTRFS_WRITE_LOCK;
+ path->slots[level] = 0;
+ return 0;
+}
+
+/*
+ * worker function to insert a single pointer in a node.
+ * the node should have enough room for the pointer already
+ *
+ * slot and level indicate where you want the key to go, and
+ * blocknr is the block the key points to.
+ */
+static void insert_ptr(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_disk_key *key, u64 bytenr,
+ int slot, int level)
+{
+ struct extent_buffer *lower;
+ int nritems;
+
+ BUG_ON(!path->nodes[level]);
+ btrfs_assert_tree_locked(path->nodes[level]);
+ lower = path->nodes[level];
+ nritems = btrfs_header_nritems(lower);
+ BUG_ON(slot > nritems);
+ BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
+ if (slot != nritems) {
+ memmove_extent_buffer(lower,
+ btrfs_node_key_ptr_offset(slot + 1),
+ btrfs_node_key_ptr_offset(slot),
+ (nritems - slot) * sizeof(struct btrfs_key_ptr));
+ }
+ btrfs_set_node_key(lower, key, slot);
+ btrfs_set_node_blockptr(lower, slot, bytenr);
+ WARN_ON(trans->transid == 0);
+ btrfs_set_node_ptr_generation(lower, slot, trans->transid);
+ btrfs_set_header_nritems(lower, nritems + 1);
+ btrfs_mark_buffer_dirty(lower);
+}
+
+/*
+ * split the node at the specified level in path in two.
+ * The path is corrected to point to the appropriate node after the split
+ *
+ * Before splitting this tries to make some room in the node by pushing
+ * left and right, if either one works, it returns right away.
+ *
+ * returns 0 on success and < 0 on failure
+ */
+static noinline int split_node(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int level)
+{
+ struct extent_buffer *c;
+ struct extent_buffer *split;
+ struct btrfs_disk_key disk_key;
+ int mid;
+ int ret;
+ u32 c_nritems;
+
+ c = path->nodes[level];
+ WARN_ON(btrfs_header_generation(c) != trans->transid);
+ if (c == root->node) {
+ /* trying to split the root, lets make a new one */
+ ret = insert_new_root(trans, root, path, level + 1);
+ if (ret)
+ return ret;
+ } else {
+ ret = push_nodes_for_insert(trans, root, path, level);
+ c = path->nodes[level];
+ if (!ret && btrfs_header_nritems(c) <
+ BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
+ return 0;
+ if (ret < 0)
+ return ret;
+ }
+
+ c_nritems = btrfs_header_nritems(c);
+ mid = (c_nritems + 1) / 2;
+ btrfs_node_key(c, &disk_key, mid);
+
+ split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
+ root->root_key.objectid,
+ &disk_key, level, c->start, 0, 0);
+ if (IS_ERR(split))
+ return PTR_ERR(split);
+
+ root_add_used(root, root->nodesize);
+
+ memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
+ btrfs_set_header_level(split, btrfs_header_level(c));
+ btrfs_set_header_bytenr(split, split->start);
+ btrfs_set_header_generation(split, trans->transid);
+ btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
+ btrfs_set_header_owner(split, root->root_key.objectid);
+ write_extent_buffer(split, root->fs_info->fsid,
+ (unsigned long)btrfs_header_fsid(split),
+ BTRFS_FSID_SIZE);
+ write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
+ (unsigned long)btrfs_header_chunk_tree_uuid(split),
+ BTRFS_UUID_SIZE);
+
+
+ copy_extent_buffer(split, c,
+ btrfs_node_key_ptr_offset(0),
+ btrfs_node_key_ptr_offset(mid),
+ (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
+ btrfs_set_header_nritems(split, c_nritems - mid);
+ btrfs_set_header_nritems(c, mid);
+ ret = 0;
+
+ btrfs_mark_buffer_dirty(c);
+ btrfs_mark_buffer_dirty(split);
+
+ insert_ptr(trans, root, path, &disk_key, split->start,
+ path->slots[level + 1] + 1, level + 1);
+
+ if (path->slots[level] >= mid) {
+ path->slots[level] -= mid;
+ btrfs_tree_unlock(c);
+ free_extent_buffer(c);
+ path->nodes[level] = split;
+ path->slots[level + 1] += 1;
+ } else {
+ btrfs_tree_unlock(split);
+ free_extent_buffer(split);
+ }
+ return ret;
+}
+
+/*
+ * how many bytes are required to store the items in a leaf. start
+ * and nr indicate which items in the leaf to check. This totals up the
+ * space used both by the item structs and the item data
+ */
+static int leaf_space_used(struct extent_buffer *l, int start, int nr)
+{
+ int data_len;
+ int nritems = btrfs_header_nritems(l);
+ int end = min(nritems, start + nr) - 1;
+
+ if (!nr)
+ return 0;
+ data_len = btrfs_item_end_nr(l, start);
+ data_len = data_len - btrfs_item_offset_nr(l, end);
+ data_len += sizeof(struct btrfs_item) * nr;
+ WARN_ON(data_len < 0);
+ return data_len;
+}
+
+/*
+ * The space between the end of the leaf items and
+ * the start of the leaf data. IOW, how much room
+ * the leaf has left for both items and data
+ */
+noinline int btrfs_leaf_free_space(struct btrfs_root *root,
+ struct extent_buffer *leaf)
+{
+ int nritems = btrfs_header_nritems(leaf);
+ int ret;
+ ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
+ if (ret < 0) {
+ printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
+ "used %d nritems %d\n",
+ ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
+ leaf_space_used(leaf, 0, nritems), nritems);
+ }
+ return ret;
+}
+
+/*
+ * min slot controls the lowest index we're willing to push to the
+ * right. We'll push up to and including min_slot, but no lower
+ */
+static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ int data_size, int empty,
+ struct extent_buffer *right,
+ int free_space, u32 left_nritems,
+ u32 min_slot)
+{
+ struct extent_buffer *left = path->nodes[0];
+ struct extent_buffer *upper = path->nodes[1];
+ struct btrfs_map_token token;
+ struct btrfs_disk_key disk_key;
+ int slot;
+ u32 i;
+ int push_space = 0;
+ int push_items = 0;
+ struct btrfs_item *item;
+ u32 nr;
+ u32 right_nritems;
+ u32 data_end;
+ u32 this_item_size;
+
+ btrfs_init_map_token(&token);
+
+ if (empty)
+ nr = 0;
+ else
+ nr = max_t(u32, 1, min_slot);
+
+ if (path->slots[0] >= left_nritems)
+ push_space += data_size;
+
+ slot = path->slots[1];
+ i = left_nritems - 1;
+ while (i >= nr) {
+ item = btrfs_item_nr(left, i);
+
+ if (!empty && push_items > 0) {
+ if (path->slots[0] > i)
+ break;
+ if (path->slots[0] == i) {
+ int space = btrfs_leaf_free_space(root, left);
+ if (space + push_space * 2 > free_space)
+ break;
+ }
+ }
+
+ if (path->slots[0] == i)
+ push_space += data_size;
+
+ this_item_size = btrfs_item_size(left, item);
+ if (this_item_size + sizeof(*item) + push_space > free_space)
+ break;
+
+ push_items++;
+ push_space += this_item_size + sizeof(*item);
+ if (i == 0)
+ break;
+ i--;
+ }
+
+ if (push_items == 0)
+ goto out_unlock;
+
+ if (!empty && push_items == left_nritems)
+ WARN_ON(1);
+
+ /* push left to right */
+ right_nritems = btrfs_header_nritems(right);
+
+ push_space = btrfs_item_end_nr(left, left_nritems - push_items);
+ push_space -= leaf_data_end(root, left);
+
+ /* make room in the right data area */
+ data_end = leaf_data_end(root, right);
+ memmove_extent_buffer(right,
+ btrfs_leaf_data(right) + data_end - push_space,
+ btrfs_leaf_data(right) + data_end,
+ BTRFS_LEAF_DATA_SIZE(root) - data_end);
+
+ /* copy from the left data area */
+ copy_extent_buffer(right, left, btrfs_leaf_data(right) +
+ BTRFS_LEAF_DATA_SIZE(root) - push_space,
+ btrfs_leaf_data(left) + leaf_data_end(root, left),
+ push_space);
+
+ memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
+ btrfs_item_nr_offset(0),
+ right_nritems * sizeof(struct btrfs_item));
+
+ /* copy the items from left to right */
+ copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
+ btrfs_item_nr_offset(left_nritems - push_items),
+ push_items * sizeof(struct btrfs_item));
+
+ /* update the item pointers */
+ right_nritems += push_items;
+ btrfs_set_header_nritems(right, right_nritems);
+ push_space = BTRFS_LEAF_DATA_SIZE(root);
+ for (i = 0; i < right_nritems; i++) {
+ item = btrfs_item_nr(right, i);
+ push_space -= btrfs_token_item_size(right, item, &token);
+ btrfs_set_token_item_offset(right, item, push_space, &token);
+ }
+
+ left_nritems -= push_items;
+ btrfs_set_header_nritems(left, left_nritems);
+
+ if (left_nritems)
+ btrfs_mark_buffer_dirty(left);
+ else
+ clean_tree_block(trans, root, left);
+
+ btrfs_mark_buffer_dirty(right);
+
+ btrfs_item_key(right, &disk_key, 0);
+ btrfs_set_node_key(upper, &disk_key, slot + 1);
+ btrfs_mark_buffer_dirty(upper);
+
+ /* then fixup the leaf pointer in the path */
+ if (path->slots[0] >= left_nritems) {
+ path->slots[0] -= left_nritems;
+ if (btrfs_header_nritems(path->nodes[0]) == 0)
+ clean_tree_block(trans, root, path->nodes[0]);
+ btrfs_tree_unlock(path->nodes[0]);
+ free_extent_buffer(path->nodes[0]);
+ path->nodes[0] = right;
+ path->slots[1] += 1;
+ } else {
+ btrfs_tree_unlock(right);
+ free_extent_buffer(right);
+ }
+ return 0;
+
+out_unlock:
+ btrfs_tree_unlock(right);
+ free_extent_buffer(right);
+ return 1;
+}
+
+/*
+ * push some data in the path leaf to the right, trying to free up at
+ * least data_size bytes. returns zero if the push worked, nonzero otherwise
+ *
+ * returns 1 if the push failed because the other node didn't have enough
+ * room, 0 if everything worked out and < 0 if there were major errors.
+ *
+ * this will push starting from min_slot to the end of the leaf. It won't
+ * push any slot lower than min_slot
+ */
+static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_path *path,
+ int min_data_size, int data_size,
+ int empty, u32 min_slot)
+{
+ struct extent_buffer *left = path->nodes[0];
+ struct extent_buffer *right;
+ struct extent_buffer *upper;
+ int slot;
+ int free_space;
+ u32 left_nritems;
+ int ret;
+
+ if (!path->nodes[1])
+ return 1;
+
+ slot = path->slots[1];
+ upper = path->nodes[1];
+ if (slot >= btrfs_header_nritems(upper) - 1)
+ return 1;
+
+ btrfs_assert_tree_locked(path->nodes[1]);
+
+ right = read_node_slot(root, upper, slot + 1);
+ if (right == NULL)
+ return 1;
+
+ btrfs_tree_lock(right);
+ btrfs_set_lock_blocking(right);
+
+ free_space = btrfs_leaf_free_space(root, right);
+ if (free_space < data_size)
+ goto out_unlock;
+
+ /* cow and double check */
+ ret = btrfs_cow_block(trans, root, right, upper,
+ slot + 1, &right);
+ if (ret)
+ goto out_unlock;
+
+ free_space = btrfs_leaf_free_space(root, right);
+ if (free_space < data_size)
+ goto out_unlock;
+
+ left_nritems = btrfs_header_nritems(left);
+ if (left_nritems == 0)
+ goto out_unlock;
+
+ return __push_leaf_right(trans, root, path, min_data_size, empty,
+ right, free_space, left_nritems, min_slot);
+out_unlock:
+ btrfs_tree_unlock(right);
+ free_extent_buffer(right);
+ return 1;
+}
+
+/*
+ * push some data in the path leaf to the left, trying to free up at
+ * least data_size bytes. returns zero if the push worked, nonzero otherwise
+ *
+ * max_slot can put a limit on how far into the leaf we'll push items. The
+ * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
+ * items
+ */
+static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int data_size,
+ int empty, struct extent_buffer *left,
+ int free_space, u32 right_nritems,
+ u32 max_slot)
+{
+ struct btrfs_disk_key disk_key;
+ struct extent_buffer *right = path->nodes[0];
+ int i;
+ int push_space = 0;
+ int push_items = 0;
+ struct btrfs_item *item;
+ u32 old_left_nritems;
+ u32 nr;
+ int ret = 0;
+ u32 this_item_size;
+ u32 old_left_item_size;
+ struct btrfs_map_token token;
+
+ btrfs_init_map_token(&token);
+
+ if (empty)
+ nr = min(right_nritems, max_slot);
+ else
+ nr = min(right_nritems - 1, max_slot);
+
+ for (i = 0; i < nr; i++) {
+ item = btrfs_item_nr(right, i);
+
+ if (!empty && push_items > 0) {
+ if (path->slots[0] < i)
+ break;
+ if (path->slots[0] == i) {
+ int space = btrfs_leaf_free_space(root, right);
+ if (space + push_space * 2 > free_space)
+ break;
+ }
+ }
+
+ if (path->slots[0] == i)
+ push_space += data_size;
+
+ this_item_size = btrfs_item_size(right, item);
+ if (this_item_size + sizeof(*item) + push_space > free_space)
+ break;
+
+ push_items++;
+ push_space += this_item_size + sizeof(*item);
+ }
+
+ if (push_items == 0) {
+ ret = 1;
+ goto out;
+ }
+ if (!empty && push_items == btrfs_header_nritems(right))
+ WARN_ON(1);
+
+ /* push data from right to left */
+ copy_extent_buffer(left, right,
+ btrfs_item_nr_offset(btrfs_header_nritems(left)),
+ btrfs_item_nr_offset(0),
+ push_items * sizeof(struct btrfs_item));
+
+ push_space = BTRFS_LEAF_DATA_SIZE(root) -
+ btrfs_item_offset_nr(right, push_items - 1);
+
+ copy_extent_buffer(left, right, btrfs_leaf_data(left) +
+ leaf_data_end(root, left) - push_space,
+ btrfs_leaf_data(right) +
+ btrfs_item_offset_nr(right, push_items - 1),
+ push_space);
+ old_left_nritems = btrfs_header_nritems(left);
+ BUG_ON(old_left_nritems <= 0);
+
+ old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
+ for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
+ u32 ioff;
+
+ item = btrfs_item_nr(left, i);
+
+ ioff = btrfs_token_item_offset(left, item, &token);
+ btrfs_set_token_item_offset(left, item,
+ ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
+ &token);
+ }
+ btrfs_set_header_nritems(left, old_left_nritems + push_items);
+
+ /* fixup right node */
+ if (push_items > right_nritems) {
+ printk(KERN_CRIT "push items %d nr %u\n", push_items,
+ right_nritems);
+ WARN_ON(1);
+ }
+
+ if (push_items < right_nritems) {
+ push_space = btrfs_item_offset_nr(right, push_items - 1) -
+ leaf_data_end(root, right);
+ memmove_extent_buffer(right, btrfs_leaf_data(right) +
+ BTRFS_LEAF_DATA_SIZE(root) - push_space,
+ btrfs_leaf_data(right) +
+ leaf_data_end(root, right), push_space);
+
+ memmove_extent_buffer(right, btrfs_item_nr_offset(0),
+ btrfs_item_nr_offset(push_items),
+ (btrfs_header_nritems(right) - push_items) *
+ sizeof(struct btrfs_item));
+ }
+ right_nritems -= push_items;
+ btrfs_set_header_nritems(right, right_nritems);
+ push_space = BTRFS_LEAF_DATA_SIZE(root);
+ for (i = 0; i < right_nritems; i++) {
+ item = btrfs_item_nr(right, i);
+
+ push_space = push_space - btrfs_token_item_size(right,
+ item, &token);
+ btrfs_set_token_item_offset(right, item, push_space, &token);
+ }
+
+ btrfs_mark_buffer_dirty(left);
+ if (right_nritems)
+ btrfs_mark_buffer_dirty(right);
+ else
+ clean_tree_block(trans, root, right);
+
+ btrfs_item_key(right, &disk_key, 0);
+ fixup_low_keys(trans, root, path, &disk_key, 1);
+
+ /* then fixup the leaf pointer in the path */
+ if (path->slots[0] < push_items) {
+ path->slots[0] += old_left_nritems;
+ btrfs_tree_unlock(path->nodes[0]);
+ free_extent_buffer(path->nodes[0]);
+ path->nodes[0] = left;
+ path->slots[1] -= 1;
+ } else {
+ btrfs_tree_unlock(left);
+ free_extent_buffer(left);
+ path->slots[0] -= push_items;
+ }
+ BUG_ON(path->slots[0] < 0);
+ return ret;
+out:
+ btrfs_tree_unlock(left);
+ free_extent_buffer(left);
+ return ret;
+}
+
+/*
+ * push some data in the path leaf to the left, trying to free up at
+ * least data_size bytes. returns zero if the push worked, nonzero otherwise
+ *
+ * max_slot can put a limit on how far into the leaf we'll push items. The
+ * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
+ * items
+ */
+static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_path *path, int min_data_size,
+ int data_size, int empty, u32 max_slot)
+{
+ struct extent_buffer *right = path->nodes[0];
+ struct extent_buffer *left;
+ int slot;
+ int free_space;
+ u32 right_nritems;
+ int ret = 0;
+
+ slot = path->slots[1];
+ if (slot == 0)
+ return 1;
+ if (!path->nodes[1])
+ return 1;
+
+ right_nritems = btrfs_header_nritems(right);
+ if (right_nritems == 0)
+ return 1;
+
+ btrfs_assert_tree_locked(path->nodes[1]);
+
+ left = read_node_slot(root, path->nodes[1], slot - 1);
+ if (left == NULL)
+ return 1;
+
+ btrfs_tree_lock(left);
+ btrfs_set_lock_blocking(left);
+
+ free_space = btrfs_leaf_free_space(root, left);
+ if (free_space < data_size) {
+ ret = 1;
+ goto out;
+ }
+
+ /* cow and double check */
+ ret = btrfs_cow_block(trans, root, left,
+ path->nodes[1], slot - 1, &left);
+ if (ret) {
+ /* we hit -ENOSPC, but it isn't fatal here */
+ if (ret == -ENOSPC)
+ ret = 1;
+ goto out;
+ }
+
+ free_space = btrfs_leaf_free_space(root, left);
+ if (free_space < data_size) {
+ ret = 1;
+ goto out;
+ }
+
+ return __push_leaf_left(trans, root, path, min_data_size,
+ empty, left, free_space, right_nritems,
+ max_slot);
+out:
+ btrfs_tree_unlock(left);
+ free_extent_buffer(left);
+ return ret;
+}
+
+/*
+ * split the path's leaf in two, making sure there is at least data_size
+ * available for the resulting leaf level of the path.
+ */
+static noinline void copy_for_split(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct extent_buffer *l,
+ struct extent_buffer *right,
+ int slot, int mid, int nritems)
+{
+ int data_copy_size;
+ int rt_data_off;
+ int i;
+ struct btrfs_disk_key disk_key;
+ struct btrfs_map_token token;
+
+ btrfs_init_map_token(&token);
+
+ nritems = nritems - mid;
+ btrfs_set_header_nritems(right, nritems);
+ data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
+
+ copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
+ btrfs_item_nr_offset(mid),
+ nritems * sizeof(struct btrfs_item));
+
+ copy_extent_buffer(right, l,
+ btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
+ data_copy_size, btrfs_leaf_data(l) +
+ leaf_data_end(root, l), data_copy_size);
+
+ rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
+ btrfs_item_end_nr(l, mid);
+
+ for (i = 0; i < nritems; i++) {
+ struct btrfs_item *item = btrfs_item_nr(right, i);
+ u32 ioff;
+
+ ioff = btrfs_token_item_offset(right, item, &token);
+ btrfs_set_token_item_offset(right, item,
+ ioff + rt_data_off, &token);
+ }
+
+ btrfs_set_header_nritems(l, mid);
+ btrfs_item_key(right, &disk_key, 0);
+ insert_ptr(trans, root, path, &disk_key, right->start,
+ path->slots[1] + 1, 1);
+
+ btrfs_mark_buffer_dirty(right);
+ btrfs_mark_buffer_dirty(l);
+ BUG_ON(path->slots[0] != slot);
+
+ if (mid <= slot) {
+ btrfs_tree_unlock(path->nodes[0]);
+ free_extent_buffer(path->nodes[0]);
+ path->nodes[0] = right;
+ path->slots[0] -= mid;
+ path->slots[1] += 1;
+ } else {
+ btrfs_tree_unlock(right);
+ free_extent_buffer(right);
+ }
+
+ BUG_ON(path->slots[0] < 0);
+}
+
+/*
+ * double splits happen when we need to insert a big item in the middle
+ * of a leaf. A double split can leave us with 3 mostly empty leaves:
+ * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
+ * A B C
+ *
+ * We avoid this by trying to push the items on either side of our target
+ * into the adjacent leaves. If all goes well we can avoid the double split
+ * completely.
+ */
+static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ int data_size)
+{
+ int ret;
+ int progress = 0;
+ int slot;
+ u32 nritems;
+
+ slot = path->slots[0];
+
+ /*
+ * try to push all the items after our slot into the
+ * right leaf
+ */
+ ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
+ if (ret < 0)
+ return ret;
+
+ if (ret == 0)
+ progress++;
+
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ /*
+ * our goal is to get our slot at the start or end of a leaf. If
+ * we've done so we're done
+ */
+ if (path->slots[0] == 0 || path->slots[0] == nritems)
+ return 0;
+
+ if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
+ return 0;
+
+ /* try to push all the items before our slot into the next leaf */
+ slot = path->slots[0];
+ ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
+ if (ret < 0)
+ return ret;
+
+ if (ret == 0)
+ progress++;
+
+ if (progress)
+ return 0;
+ return 1;
+}
+
+/*
+ * split the path's leaf in two, making sure there is at least data_size
+ * available for the resulting leaf level of the path.
+ *
+ * returns 0 if all went well and < 0 on failure.
+ */
+static noinline int split_leaf(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_key *ins_key,
+ struct btrfs_path *path, int data_size,
+ int extend)
+{
+ struct btrfs_disk_key disk_key;
+ struct extent_buffer *l;
+ u32 nritems;
+ int mid;
+ int slot;
+ struct extent_buffer *right;
+ int ret = 0;
+ int wret;
+ int split;
+ int num_doubles = 0;
+ int tried_avoid_double = 0;
+
+ l = path->nodes[0];
+ slot = path->slots[0];
+ if (extend && data_size + btrfs_item_size_nr(l, slot) +
+ sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
+ return -EOVERFLOW;
+
+ /* first try to make some room by pushing left and right */
+ if (data_size) {
+ wret = push_leaf_right(trans, root, path, data_size,
+ data_size, 0, 0);
+ if (wret < 0)
+ return wret;
+ if (wret) {
+ wret = push_leaf_left(trans, root, path, data_size,
+ data_size, 0, (u32)-1);
+ if (wret < 0)
+ return wret;
+ }
+ l = path->nodes[0];
+
+ /* did the pushes work? */
+ if (btrfs_leaf_free_space(root, l) >= data_size)
+ return 0;
+ }
+
+ if (!path->nodes[1]) {
+ ret = insert_new_root(trans, root, path, 1);
+ if (ret)
+ return ret;
+ }
+again:
+ split = 1;
+ l = path->nodes[0];
+ slot = path->slots[0];
+ nritems = btrfs_header_nritems(l);
+ mid = (nritems + 1) / 2;
+
+ if (mid <= slot) {
+ if (nritems == 1 ||
+ leaf_space_used(l, mid, nritems - mid) + data_size >
+ BTRFS_LEAF_DATA_SIZE(root)) {
+ if (slot >= nritems) {
+ split = 0;
+ } else {
+ mid = slot;
+ if (mid != nritems &&
+ leaf_space_used(l, mid, nritems - mid) +
+ data_size > BTRFS_LEAF_DATA_SIZE(root)) {
+ if (data_size && !tried_avoid_double)
+ goto push_for_double;
+ split = 2;
+ }
+ }
+ }
+ } else {
+ if (leaf_space_used(l, 0, mid) + data_size >
+ BTRFS_LEAF_DATA_SIZE(root)) {
+ if (!extend && data_size && slot == 0) {
+ split = 0;
+ } else if ((extend || !data_size) && slot == 0) {
+ mid = 1;
+ } else {
+ mid = slot;
+ if (mid != nritems &&
+ leaf_space_used(l, mid, nritems - mid) +
+ data_size > BTRFS_LEAF_DATA_SIZE(root)) {
+ if (data_size && !tried_avoid_double)
+ goto push_for_double;
+ split = 2 ;
+ }
+ }
+ }
+ }
+
+ if (split == 0)
+ btrfs_cpu_key_to_disk(&disk_key, ins_key);
+ else
+ btrfs_item_key(l, &disk_key, mid);
+
+ right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
+ root->root_key.objectid,
+ &disk_key, 0, l->start, 0, 0);
+ if (IS_ERR(right))
+ return PTR_ERR(right);
+
+ root_add_used(root, root->leafsize);
+
+ memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
+ btrfs_set_header_bytenr(right, right->start);
+ btrfs_set_header_generation(right, trans->transid);
+ btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
+ btrfs_set_header_owner(right, root->root_key.objectid);
+ btrfs_set_header_level(right, 0);
+ write_extent_buffer(right, root->fs_info->fsid,
+ (unsigned long)btrfs_header_fsid(right),
+ BTRFS_FSID_SIZE);
+
+ write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
+ (unsigned long)btrfs_header_chunk_tree_uuid(right),
+ BTRFS_UUID_SIZE);
+
+ if (split == 0) {
+ if (mid <= slot) {
+ btrfs_set_header_nritems(right, 0);
+ insert_ptr(trans, root, path, &disk_key, right->start,
+ path->slots[1] + 1, 1);
+ btrfs_tree_unlock(path->nodes[0]);
+ free_extent_buffer(path->nodes[0]);
+ path->nodes[0] = right;
+ path->slots[0] = 0;
+ path->slots[1] += 1;
+ } else {
+ btrfs_set_header_nritems(right, 0);
+ insert_ptr(trans, root, path, &disk_key, right->start,
+ path->slots[1], 1);
+ btrfs_tree_unlock(path->nodes[0]);
+ free_extent_buffer(path->nodes[0]);
+ path->nodes[0] = right;
+ path->slots[0] = 0;
+ if (path->slots[1] == 0)
+ fixup_low_keys(trans, root, path,
+ &disk_key, 1);
+ }
+ btrfs_mark_buffer_dirty(right);
+ return ret;
+ }
+
+ copy_for_split(trans, root, path, l, right, slot, mid, nritems);
+
+ if (split == 2) {
+ BUG_ON(num_doubles != 0);
+ num_doubles++;
+ goto again;
+ }
+
+ return 0;
+
+push_for_double:
+ push_for_double_split(trans, root, path, data_size);
+ tried_avoid_double = 1;
+ if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
+ return 0;
+ goto again;
+}
+
+static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int ins_len)
+{
+ struct btrfs_key key;
+ struct extent_buffer *leaf;
+ struct btrfs_file_extent_item *fi;
+ u64 extent_len = 0;
+ u32 item_size;
+ int ret;
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+ BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
+ key.type != BTRFS_EXTENT_CSUM_KEY);
+
+ if (btrfs_leaf_free_space(root, leaf) >= ins_len)
+ return 0;
+
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ if (key.type == BTRFS_EXTENT_DATA_KEY) {
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ extent_len = btrfs_file_extent_num_bytes(leaf, fi);
+ }
+ btrfs_release_path(path);
+
+ path->keep_locks = 1;
+ path->search_for_split = 1;
+ ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+ path->search_for_split = 0;
+ if (ret < 0)
+ goto err;
+
+ ret = -EAGAIN;
+ leaf = path->nodes[0];
+ /* if our item isn't there or got smaller, return now */
+ if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
+ goto err;
+
+ /* the leaf has changed, it now has room. return now */
+ if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
+ goto err;
+
+ if (key.type == BTRFS_EXTENT_DATA_KEY) {
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
+ goto err;
+ }
+
+ btrfs_set_path_blocking(path);
+ ret = split_leaf(trans, root, &key, path, ins_len, 1);
+ if (ret)
+ goto err;
+
+ path->keep_locks = 0;
+ btrfs_unlock_up_safe(path, 1);
+ return 0;
+err:
+ path->keep_locks = 0;
+ return ret;
+}
+
+static noinline int split_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *new_key,
+ unsigned long split_offset)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_item *item;
+ struct btrfs_item *new_item;
+ int slot;
+ char *buf;
+ u32 nritems;
+ u32 item_size;
+ u32 orig_offset;
+ struct btrfs_disk_key disk_key;
+
+ leaf = path->nodes[0];
+ BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
+
+ btrfs_set_path_blocking(path);
+
+ item = btrfs_item_nr(leaf, path->slots[0]);
+ orig_offset = btrfs_item_offset(leaf, item);
+ item_size = btrfs_item_size(leaf, item);
+
+ buf = kmalloc(item_size, GFP_NOFS);
+ if (!buf)
+ return -ENOMEM;
+
+ read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
+ path->slots[0]), item_size);
+
+ slot = path->slots[0] + 1;
+ nritems = btrfs_header_nritems(leaf);
+ if (slot != nritems) {
+ /* shift the items */
+ memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
+ btrfs_item_nr_offset(slot),
+ (nritems - slot) * sizeof(struct btrfs_item));
+ }
+
+ btrfs_cpu_key_to_disk(&disk_key, new_key);
+ btrfs_set_item_key(leaf, &disk_key, slot);
+
+ new_item = btrfs_item_nr(leaf, slot);
+
+ btrfs_set_item_offset(leaf, new_item, orig_offset);
+ btrfs_set_item_size(leaf, new_item, item_size - split_offset);
+
+ btrfs_set_item_offset(leaf, item,
+ orig_offset + item_size - split_offset);
+ btrfs_set_item_size(leaf, item, split_offset);
+
+ btrfs_set_header_nritems(leaf, nritems + 1);
+
+ /* write the data for the start of the original item */
+ write_extent_buffer(leaf, buf,
+ btrfs_item_ptr_offset(leaf, path->slots[0]),
+ split_offset);
+
+ /* write the data for the new item */
+ write_extent_buffer(leaf, buf + split_offset,
+ btrfs_item_ptr_offset(leaf, slot),
+ item_size - split_offset);
+ btrfs_mark_buffer_dirty(leaf);
+
+ BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
+ kfree(buf);
+ return 0;
+}
+
+/*
+ * This function splits a single item into two items,
+ * giving 'new_key' to the new item and splitting the
+ * old one at split_offset (from the start of the item).
+ *
+ * The path may be released by this operation. After
+ * the split, the path is pointing to the old item. The
+ * new item is going to be in the same node as the old one.
+ *
+ * Note, the item being split must be smaller enough to live alone on
+ * a tree block with room for one extra struct btrfs_item
+ *
+ * This allows us to split the item in place, keeping a lock on the
+ * leaf the entire time.
+ */
+int btrfs_split_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *new_key,
+ unsigned long split_offset)
+{
+ int ret;
+ ret = setup_leaf_for_split(trans, root, path,
+ sizeof(struct btrfs_item));
+ if (ret)
+ return ret;
+
+ ret = split_item(trans, root, path, new_key, split_offset);
+ return ret;
+}
+
+/*
+ * This function duplicate a item, giving 'new_key' to the new item.
+ * It guarantees both items live in the same tree leaf and the new item
+ * is contiguous with the original item.
+ *
+ * This allows us to split file extent in place, keeping a lock on the
+ * leaf the entire time.
+ */
+int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *new_key)
+{
+ struct extent_buffer *leaf;
+ int ret;
+ u32 item_size;
+
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ ret = setup_leaf_for_split(trans, root, path,
+ item_size + sizeof(struct btrfs_item));
+ if (ret)
+ return ret;
+
+ path->slots[0]++;
+ setup_items_for_insert(trans, root, path, new_key, &item_size,
+ item_size, item_size +
+ sizeof(struct btrfs_item), 1);
+ leaf = path->nodes[0];
+ memcpy_extent_buffer(leaf,
+ btrfs_item_ptr_offset(leaf, path->slots[0]),
+ btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
+ item_size);
+ return 0;
+}
+
+/*
+ * make the item pointed to by the path smaller. new_size indicates
+ * how small to make it, and from_end tells us if we just chop bytes
+ * off the end of the item or if we shift the item to chop bytes off
+ * the front.
+ */
+void btrfs_truncate_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u32 new_size, int from_end)
+{
+ int slot;
+ struct extent_buffer *leaf;
+ struct btrfs_item *item;
+ u32 nritems;
+ unsigned int data_end;
+ unsigned int old_data_start;
+ unsigned int old_size;
+ unsigned int size_diff;
+ int i;
+ struct btrfs_map_token token;
+
+ btrfs_init_map_token(&token);
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+
+ old_size = btrfs_item_size_nr(leaf, slot);
+ if (old_size == new_size)
+ return;
+
+ nritems = btrfs_header_nritems(leaf);
+ data_end = leaf_data_end(root, leaf);
+
+ old_data_start = btrfs_item_offset_nr(leaf, slot);
+
+ size_diff = old_size - new_size;
+
+ BUG_ON(slot < 0);
+ BUG_ON(slot >= nritems);
+
+ /*
+ * item0..itemN ... dataN.offset..dataN.size .. data0.size
+ */
+ /* first correct the data pointers */
+ for (i = slot; i < nritems; i++) {
+ u32 ioff;
+ item = btrfs_item_nr(leaf, i);
+
+ ioff = btrfs_token_item_offset(leaf, item, &token);
+ btrfs_set_token_item_offset(leaf, item,
+ ioff + size_diff, &token);
+ }
+
+ /* shift the data */
+ if (from_end) {
+ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+ data_end + size_diff, btrfs_leaf_data(leaf) +
+ data_end, old_data_start + new_size - data_end);
+ } else {
+ struct btrfs_disk_key disk_key;
+ u64 offset;
+
+ btrfs_item_key(leaf, &disk_key, slot);
+
+ if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
+ unsigned long ptr;
+ struct btrfs_file_extent_item *fi;
+
+ fi = btrfs_item_ptr(leaf, slot,
+ struct btrfs_file_extent_item);
+ fi = (struct btrfs_file_extent_item *)(
+ (unsigned long)fi - size_diff);
+
+ if (btrfs_file_extent_type(leaf, fi) ==
+ BTRFS_FILE_EXTENT_INLINE) {
+ ptr = btrfs_item_ptr_offset(leaf, slot);
+ memmove_extent_buffer(leaf, ptr,
+ (unsigned long)fi,
+ offsetof(struct btrfs_file_extent_item,
+ disk_bytenr));
+ }
+ }
+
+ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+ data_end + size_diff, btrfs_leaf_data(leaf) +
+ data_end, old_data_start - data_end);
+
+ offset = btrfs_disk_key_offset(&disk_key);
+ btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
+ btrfs_set_item_key(leaf, &disk_key, slot);
+ if (slot == 0)
+ fixup_low_keys(trans, root, path, &disk_key, 1);
+ }
+
+ item = btrfs_item_nr(leaf, slot);
+ btrfs_set_item_size(leaf, item, new_size);
+ btrfs_mark_buffer_dirty(leaf);
+
+ if (btrfs_leaf_free_space(root, leaf) < 0) {
+ btrfs_print_leaf(root, leaf);
+ BUG();
+ }
+}
+
+/*
+ * make the item pointed to by the path bigger, data_size is the new size.
+ */
+void btrfs_extend_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ u32 data_size)
+{
+ int slot;
+ struct extent_buffer *leaf;
+ struct btrfs_item *item;
+ u32 nritems;
+ unsigned int data_end;
+ unsigned int old_data;
+ unsigned int old_size;
+ int i;
+ struct btrfs_map_token token;
+
+ btrfs_init_map_token(&token);
+
+ leaf = path->nodes[0];
+
+ nritems = btrfs_header_nritems(leaf);
+ data_end = leaf_data_end(root, leaf);
+
+ if (btrfs_leaf_free_space(root, leaf) < data_size) {
+ btrfs_print_leaf(root, leaf);
+ BUG();
+ }
+ slot = path->slots[0];
+ old_data = btrfs_item_end_nr(leaf, slot);
+
+ BUG_ON(slot < 0);
+ if (slot >= nritems) {
+ btrfs_print_leaf(root, leaf);
+ printk(KERN_CRIT "slot %d too large, nritems %d\n",
+ slot, nritems);
+ BUG_ON(1);
+ }
+
+ /*
+ * item0..itemN ... dataN.offset..dataN.size .. data0.size
+ */
+ /* first correct the data pointers */
+ for (i = slot; i < nritems; i++) {
+ u32 ioff;
+ item = btrfs_item_nr(leaf, i);
+
+ ioff = btrfs_token_item_offset(leaf, item, &token);
+ btrfs_set_token_item_offset(leaf, item,
+ ioff - data_size, &token);
+ }
+
+ /* shift the data */
+ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+ data_end - data_size, btrfs_leaf_data(leaf) +
+ data_end, old_data - data_end);
+
+ data_end = old_data;
+ old_size = btrfs_item_size_nr(leaf, slot);
+ item = btrfs_item_nr(leaf, slot);
+ btrfs_set_item_size(leaf, item, old_size + data_size);
+ btrfs_mark_buffer_dirty(leaf);
+
+ if (btrfs_leaf_free_space(root, leaf) < 0) {
+ btrfs_print_leaf(root, leaf);
+ BUG();
+ }
+}
+
+/*
+ * Given a key and some data, insert items into the tree.
+ * This does all the path init required, making room in the tree if needed.
+ * Returns the number of keys that were inserted.
+ */
+int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *cpu_key, u32 *data_size,
+ int nr)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_item *item;
+ int ret = 0;
+ int slot;
+ int i;
+ u32 nritems;
+ u32 total_data = 0;
+ u32 total_size = 0;
+ unsigned int data_end;
+ struct btrfs_disk_key disk_key;
+ struct btrfs_key found_key;
+ struct btrfs_map_token token;
+
+ btrfs_init_map_token(&token);
+
+ for (i = 0; i < nr; i++) {
+ if (total_size + data_size[i] + sizeof(struct btrfs_item) >
+ BTRFS_LEAF_DATA_SIZE(root)) {
+ break;
+ nr = i;
+ }
+ total_data += data_size[i];
+ total_size += data_size[i] + sizeof(struct btrfs_item);
+ }
+ BUG_ON(nr == 0);
+
+ ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
+ if (ret == 0)
+ return -EEXIST;
+ if (ret < 0)
+ goto out;
+
+ leaf = path->nodes[0];
+
+ nritems = btrfs_header_nritems(leaf);
+ data_end = leaf_data_end(root, leaf);
+
+ if (btrfs_leaf_free_space(root, leaf) < total_size) {
+ for (i = nr; i >= 0; i--) {
+ total_data -= data_size[i];
+ total_size -= data_size[i] + sizeof(struct btrfs_item);
+ if (total_size < btrfs_leaf_free_space(root, leaf))
+ break;
+ }
+ nr = i;
+ }
+
+ slot = path->slots[0];
+ BUG_ON(slot < 0);
+
+ if (slot != nritems) {
+ unsigned int old_data = btrfs_item_end_nr(leaf, slot);
+
+ item = btrfs_item_nr(leaf, slot);
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+ /* figure out how many keys we can insert in here */
+ total_data = data_size[0];
+ for (i = 1; i < nr; i++) {
+ if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
+ break;
+ total_data += data_size[i];
+ }
+ nr = i;
+
+ if (old_data < data_end) {
+ btrfs_print_leaf(root, leaf);
+ printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
+ slot, old_data, data_end);
+ BUG_ON(1);
+ }
+ /*
+ * item0..itemN ... dataN.offset..dataN.size .. data0.size
+ */
+ /* first correct the data pointers */
+ for (i = slot; i < nritems; i++) {
+ u32 ioff;
+
+ item = btrfs_item_nr(leaf, i);
+ ioff = btrfs_token_item_offset(leaf, item, &token);
+ btrfs_set_token_item_offset(leaf, item,
+ ioff - total_data, &token);
+ }
+ /* shift the items */
+ memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
+ btrfs_item_nr_offset(slot),
+ (nritems - slot) * sizeof(struct btrfs_item));
+
+ /* shift the data */
+ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+ data_end - total_data, btrfs_leaf_data(leaf) +
+ data_end, old_data - data_end);
+ data_end = old_data;
+ } else {
+ /*
+ * this sucks but it has to be done, if we are inserting at
+ * the end of the leaf only insert 1 of the items, since we
+ * have no way of knowing whats on the next leaf and we'd have
+ * to drop our current locks to figure it out
+ */
+ nr = 1;
+ }
+
+ /* setup the item for the new data */
+ for (i = 0; i < nr; i++) {
+ btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
+ btrfs_set_item_key(leaf, &disk_key, slot + i);
+ item = btrfs_item_nr(leaf, slot + i);
+ btrfs_set_token_item_offset(leaf, item,
+ data_end - data_size[i], &token);
+ data_end -= data_size[i];
+ btrfs_set_token_item_size(leaf, item, data_size[i], &token);
+ }
+ btrfs_set_header_nritems(leaf, nritems + nr);
+ btrfs_mark_buffer_dirty(leaf);
+
+ ret = 0;
+ if (slot == 0) {
+ btrfs_cpu_key_to_disk(&disk_key, cpu_key);
+ fixup_low_keys(trans, root, path, &disk_key, 1);
+ }
+
+ if (btrfs_leaf_free_space(root, leaf) < 0) {
+ btrfs_print_leaf(root, leaf);
+ BUG();
+ }
+out:
+ if (!ret)
+ ret = nr;
+ return ret;
+}
+
+/*
+ * this is a helper for btrfs_insert_empty_items, the main goal here is
+ * to save stack depth by doing the bulk of the work in a function
+ * that doesn't call btrfs_search_slot
+ */
+void setup_items_for_insert(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_key *cpu_key, u32 *data_size,
+ u32 total_data, u32 total_size, int nr)
+{
+ struct btrfs_item *item;
+ int i;
+ u32 nritems;
+ unsigned int data_end;
+ struct btrfs_disk_key disk_key;
+ struct extent_buffer *leaf;
+ int slot;
+ struct btrfs_map_token token;
+
+ btrfs_init_map_token(&token);
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+
+ nritems = btrfs_header_nritems(leaf);
+ data_end = leaf_data_end(root, leaf);
+
+ if (btrfs_leaf_free_space(root, leaf) < total_size) {
+ btrfs_print_leaf(root, leaf);
+ printk(KERN_CRIT "not enough freespace need %u have %d\n",
+ total_size, btrfs_leaf_free_space(root, leaf));
+ BUG();
+ }
+
+ if (slot != nritems) {
+ unsigned int old_data = btrfs_item_end_nr(leaf, slot);
+
+ if (old_data < data_end) {
+ btrfs_print_leaf(root, leaf);
+ printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
+ slot, old_data, data_end);
+ BUG_ON(1);
+ }
+ /*
+ * item0..itemN ... dataN.offset..dataN.size .. data0.size
+ */
+ /* first correct the data pointers */
+ for (i = slot; i < nritems; i++) {
+ u32 ioff;
+
+ item = btrfs_item_nr(leaf, i);
+ ioff = btrfs_token_item_offset(leaf, item, &token);
+ btrfs_set_token_item_offset(leaf, item,
+ ioff - total_data, &token);
+ }
+ /* shift the items */
+ memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
+ btrfs_item_nr_offset(slot),
+ (nritems - slot) * sizeof(struct btrfs_item));
+
+ /* shift the data */
+ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+ data_end - total_data, btrfs_leaf_data(leaf) +
+ data_end, old_data - data_end);
+ data_end = old_data;
+ }
+
+ /* setup the item for the new data */
+ for (i = 0; i < nr; i++) {
+ btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
+ btrfs_set_item_key(leaf, &disk_key, slot + i);
+ item = btrfs_item_nr(leaf, slot + i);
+ btrfs_set_token_item_offset(leaf, item,
+ data_end - data_size[i], &token);
+ data_end -= data_size[i];
+ btrfs_set_token_item_size(leaf, item, data_size[i], &token);
+ }
+
+ btrfs_set_header_nritems(leaf, nritems + nr);
+
+ if (slot == 0) {
+ btrfs_cpu_key_to_disk(&disk_key, cpu_key);
+ fixup_low_keys(trans, root, path, &disk_key, 1);
+ }
+ btrfs_unlock_up_safe(path, 1);
+ btrfs_mark_buffer_dirty(leaf);
+
+ if (btrfs_leaf_free_space(root, leaf) < 0) {
+ btrfs_print_leaf(root, leaf);
+ BUG();
+ }
+}
+
+/*
+ * Given a key and some data, insert items into the tree.
+ * This does all the path init required, making room in the tree if needed.
+ */
+int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *cpu_key, u32 *data_size,
+ int nr)
+{
+ int ret = 0;
+ int slot;
+ int i;
+ u32 total_size = 0;
+ u32 total_data = 0;
+
+ for (i = 0; i < nr; i++)
+ total_data += data_size[i];
+
+ total_size = total_data + (nr * sizeof(struct btrfs_item));
+ ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
+ if (ret == 0)
+ return -EEXIST;
+ if (ret < 0)
+ return ret;
+
+ slot = path->slots[0];
+ BUG_ON(slot < 0);
+
+ setup_items_for_insert(trans, root, path, cpu_key, data_size,
+ total_data, total_size, nr);
+ return 0;
+}
+
+/*
+ * Given a key and some data, insert an item into the tree.
+ * This does all the path init required, making room in the tree if needed.
+ */
+int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_key *cpu_key, void *data, u32
+ data_size)
+{
+ int ret = 0;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ unsigned long ptr;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
+ if (!ret) {
+ leaf = path->nodes[0];
+ ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
+ write_extent_buffer(leaf, data, ptr, data_size);
+ btrfs_mark_buffer_dirty(leaf);
+ }
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * delete the pointer from a given node.
+ *
+ * the tree should have been previously balanced so the deletion does not
+ * empty a node.
+ */
+static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct btrfs_path *path, int level, int slot)
+{
+ struct extent_buffer *parent = path->nodes[level];
+ u32 nritems;
+
+ nritems = btrfs_header_nritems(parent);
+ if (slot != nritems - 1) {
+ memmove_extent_buffer(parent,
+ btrfs_node_key_ptr_offset(slot),
+ btrfs_node_key_ptr_offset(slot + 1),
+ sizeof(struct btrfs_key_ptr) *
+ (nritems - slot - 1));
+ }
+ nritems--;
+ btrfs_set_header_nritems(parent, nritems);
+ if (nritems == 0 && parent == root->node) {
+ BUG_ON(btrfs_header_level(root->node) != 1);
+ /* just turn the root into a leaf and break */
+ btrfs_set_header_level(root->node, 0);
+ } else if (slot == 0) {
+ struct btrfs_disk_key disk_key;
+
+ btrfs_node_key(parent, &disk_key, 0);
+ fixup_low_keys(trans, root, path, &disk_key, level + 1);
+ }
+ btrfs_mark_buffer_dirty(parent);
+}
+
+/*
+ * a helper function to delete the leaf pointed to by path->slots[1] and
+ * path->nodes[1].
+ *
+ * This deletes the pointer in path->nodes[1] and frees the leaf
+ * block extent. zero is returned if it all worked out, < 0 otherwise.
+ *
+ * The path must have already been setup for deleting the leaf, including
+ * all the proper balancing. path->nodes[1] must be locked.
+ */
+static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct extent_buffer *leaf)
+{
+ WARN_ON(btrfs_header_generation(leaf) != trans->transid);
+ del_ptr(trans, root, path, 1, path->slots[1]);
+
+ /*
+ * btrfs_free_extent is expensive, we want to make sure we
+ * aren't holding any locks when we call it
+ */
+ btrfs_unlock_up_safe(path, 0);
+
+ root_sub_used(root, leaf->len);
+
+ extent_buffer_get(leaf);
+ btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
+ free_extent_buffer_stale(leaf);
+}
+/*
+ * delete the item at the leaf level in path. If that empties
+ * the leaf, remove it from the tree
+ */
+int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct btrfs_path *path, int slot, int nr)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_item *item;
+ int last_off;
+ int dsize = 0;
+ int ret = 0;
+ int wret;
+ int i;
+ u32 nritems;
+ struct btrfs_map_token token;
+
+ btrfs_init_map_token(&token);
+
+ leaf = path->nodes[0];
+ last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
+
+ for (i = 0; i < nr; i++)
+ dsize += btrfs_item_size_nr(leaf, slot + i);
+
+ nritems = btrfs_header_nritems(leaf);
+
+ if (slot + nr != nritems) {
+ int data_end = leaf_data_end(root, leaf);
+
+ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
+ data_end + dsize,
+ btrfs_leaf_data(leaf) + data_end,
+ last_off - data_end);
+
+ for (i = slot + nr; i < nritems; i++) {
+ u32 ioff;
+
+ item = btrfs_item_nr(leaf, i);
+ ioff = btrfs_token_item_offset(leaf, item, &token);
+ btrfs_set_token_item_offset(leaf, item,
+ ioff + dsize, &token);
+ }
+
+ memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
+ btrfs_item_nr_offset(slot + nr),
+ sizeof(struct btrfs_item) *
+ (nritems - slot - nr));
+ }
+ btrfs_set_header_nritems(leaf, nritems - nr);
+ nritems -= nr;
+
+ /* delete the leaf if we've emptied it */
+ if (nritems == 0) {
+ if (leaf == root->node) {
+ btrfs_set_header_level(leaf, 0);
+ } else {
+ btrfs_set_path_blocking(path);
+ clean_tree_block(trans, root, leaf);
+ btrfs_del_leaf(trans, root, path, leaf);
+ }
+ } else {
+ int used = leaf_space_used(leaf, 0, nritems);
+ if (slot == 0) {
+ struct btrfs_disk_key disk_key;
+
+ btrfs_item_key(leaf, &disk_key, 0);
+ fixup_low_keys(trans, root, path, &disk_key, 1);
+ }
+
+ /* delete the leaf if it is mostly empty */
+ if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
+ /* push_leaf_left fixes the path.
+ * make sure the path still points to our leaf
+ * for possible call to del_ptr below
+ */
+ slot = path->slots[1];
+ extent_buffer_get(leaf);
+
+ btrfs_set_path_blocking(path);
+ wret = push_leaf_left(trans, root, path, 1, 1,
+ 1, (u32)-1);
+ if (wret < 0 && wret != -ENOSPC)
+ ret = wret;
+
+ if (path->nodes[0] == leaf &&
+ btrfs_header_nritems(leaf)) {
+ wret = push_leaf_right(trans, root, path, 1,
+ 1, 1, 0);
+ if (wret < 0 && wret != -ENOSPC)
+ ret = wret;
+ }
+
+ if (btrfs_header_nritems(leaf) == 0) {
+ path->slots[1] = slot;
+ btrfs_del_leaf(trans, root, path, leaf);
+ free_extent_buffer(leaf);
+ ret = 0;
+ } else {
+ /* if we're still in the path, make sure
+ * we're dirty. Otherwise, one of the
+ * push_leaf functions must have already
+ * dirtied this buffer
+ */
+ if (path->nodes[0] == leaf)
+ btrfs_mark_buffer_dirty(leaf);
+ free_extent_buffer(leaf);
+ }
+ } else {
+ btrfs_mark_buffer_dirty(leaf);
+ }
+ }
+ return ret;
+}
+
+/*
+ * search the tree again to find a leaf with lesser keys
+ * returns 0 if it found something or 1 if there are no lesser leaves.
+ * returns < 0 on io errors.
+ *
+ * This may release the path, and so you may lose any locks held at the
+ * time you call it.
+ */
+int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
+{
+ struct btrfs_key key;
+ struct btrfs_disk_key found_key;
+ int ret;
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
+
+ if (key.offset > 0)
+ key.offset--;
+ else if (key.type > 0)
+ key.type--;
+ else if (key.objectid > 0)
+ key.objectid--;
+ else
+ return 1;
+
+ btrfs_release_path(path);
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ return ret;
+ btrfs_item_key(path->nodes[0], &found_key, 0);
+ ret = comp_keys(&found_key, &key);
+ if (ret < 0)
+ return 0;
+ return 1;
+}
+
+/*
+ * A helper function to walk down the tree starting at min_key, and looking
+ * for nodes or leaves that are either in cache or have a minimum
+ * transaction id. This is used by the btree defrag code, and tree logging
+ *
+ * This does not cow, but it does stuff the starting key it finds back
+ * into min_key, so you can call btrfs_search_slot with cow=1 on the
+ * key and get a writable path.
+ *
+ * This does lock as it descends, and path->keep_locks should be set
+ * to 1 by the caller.
+ *
+ * This honors path->lowest_level to prevent descent past a given level
+ * of the tree.
+ *
+ * min_trans indicates the oldest transaction that you are interested
+ * in walking through. Any nodes or leaves older than min_trans are
+ * skipped over (without reading them).
+ *
+ * returns zero if something useful was found, < 0 on error and 1 if there
+ * was nothing in the tree that matched the search criteria.
+ */
+int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
+ struct btrfs_key *max_key,
+ struct btrfs_path *path, int cache_only,
+ u64 min_trans)
+{
+ struct extent_buffer *cur;
+ struct btrfs_key found_key;
+ int slot;
+ int sret;
+ u32 nritems;
+ int level;
+ int ret = 1;
+
+ WARN_ON(!path->keep_locks);
+again:
+ cur = btrfs_read_lock_root_node(root);
+ level = btrfs_header_level(cur);
+ WARN_ON(path->nodes[level]);
+ path->nodes[level] = cur;
+ path->locks[level] = BTRFS_READ_LOCK;
+
+ if (btrfs_header_generation(cur) < min_trans) {
+ ret = 1;
+ goto out;
+ }
+ while (1) {
+ nritems = btrfs_header_nritems(cur);
+ level = btrfs_header_level(cur);
+ sret = bin_search(cur, min_key, level, &slot);
+
+ /* at the lowest level, we're done, setup the path and exit */
+ if (level == path->lowest_level) {
+ if (slot >= nritems)
+ goto find_next_key;
+ ret = 0;
+ path->slots[level] = slot;
+ btrfs_item_key_to_cpu(cur, &found_key, slot);
+ goto out;
+ }
+ if (sret && slot > 0)
+ slot--;
+ /*
+ * check this node pointer against the cache_only and
+ * min_trans parameters. If it isn't in cache or is too
+ * old, skip to the next one.
+ */
+ while (slot < nritems) {
+ u64 blockptr;
+ u64 gen;
+ struct extent_buffer *tmp;
+ struct btrfs_disk_key disk_key;
+
+ blockptr = btrfs_node_blockptr(cur, slot);
+ gen = btrfs_node_ptr_generation(cur, slot);
+ if (gen < min_trans) {
+ slot++;
+ continue;
+ }
+ if (!cache_only)
+ break;
+
+ if (max_key) {
+ btrfs_node_key(cur, &disk_key, slot);
+ if (comp_keys(&disk_key, max_key) >= 0) {
+ ret = 1;
+ goto out;
+ }
+ }
+
+ tmp = btrfs_find_tree_block(root, blockptr,
+ btrfs_level_size(root, level - 1));
+
+ if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
+ free_extent_buffer(tmp);
+ break;
+ }
+ if (tmp)
+ free_extent_buffer(tmp);
+ slot++;
+ }
+find_next_key:
+ /*
+ * we didn't find a candidate key in this node, walk forward
+ * and find another one
+ */
+ if (slot >= nritems) {
+ path->slots[level] = slot;
+ btrfs_set_path_blocking(path);
+ sret = btrfs_find_next_key(root, path, min_key, level,
+ cache_only, min_trans);
+ if (sret == 0) {
+ btrfs_release_path(path);
+ goto again;
+ } else {
+ goto out;
+ }
+ }
+ /* save our key for returning back */
+ btrfs_node_key_to_cpu(cur, &found_key, slot);
+ path->slots[level] = slot;
+ if (level == path->lowest_level) {
+ ret = 0;
+ unlock_up(path, level, 1, 0, NULL);
+ goto out;
+ }
+ btrfs_set_path_blocking(path);
+ cur = read_node_slot(root, cur, slot);
+ BUG_ON(!cur); /* -ENOMEM */
+
+ btrfs_tree_read_lock(cur);
+
+ path->locks[level - 1] = BTRFS_READ_LOCK;
+ path->nodes[level - 1] = cur;
+ unlock_up(path, level, 1, 0, NULL);
+ btrfs_clear_path_blocking(path, NULL, 0);
+ }
+out:
+ if (ret == 0)
+ memcpy(min_key, &found_key, sizeof(found_key));
+ btrfs_set_path_blocking(path);
+ return ret;
+}
+
+/*
+ * this is similar to btrfs_next_leaf, but does not try to preserve
+ * and fixup the path. It looks for and returns the next key in the
+ * tree based on the current path and the cache_only and min_trans
+ * parameters.
+ *
+ * 0 is returned if another key is found, < 0 if there are any errors
+ * and 1 is returned if there are no higher keys in the tree
+ *
+ * path->keep_locks should be set to 1 on the search made before
+ * calling this function.
+ */
+int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_key *key, int level,
+ int cache_only, u64 min_trans)
+{
+ int slot;
+ struct extent_buffer *c;
+
+ WARN_ON(!path->keep_locks);
+ while (level < BTRFS_MAX_LEVEL) {
+ if (!path->nodes[level])
+ return 1;
+
+ slot = path->slots[level] + 1;
+ c = path->nodes[level];
+next:
+ if (slot >= btrfs_header_nritems(c)) {
+ int ret;
+ int orig_lowest;
+ struct btrfs_key cur_key;
+ if (level + 1 >= BTRFS_MAX_LEVEL ||
+ !path->nodes[level + 1])
+ return 1;
+
+ if (path->locks[level + 1]) {
+ level++;
+ continue;
+ }
+
+ slot = btrfs_header_nritems(c) - 1;
+ if (level == 0)
+ btrfs_item_key_to_cpu(c, &cur_key, slot);
+ else
+ btrfs_node_key_to_cpu(c, &cur_key, slot);
+
+ orig_lowest = path->lowest_level;
+ btrfs_release_path(path);
+ path->lowest_level = level;
+ ret = btrfs_search_slot(NULL, root, &cur_key, path,
+ 0, 0);
+ path->lowest_level = orig_lowest;
+ if (ret < 0)
+ return ret;
+
+ c = path->nodes[level];
+ slot = path->slots[level];
+ if (ret == 0)
+ slot++;
+ goto next;
+ }
+
+ if (level == 0)
+ btrfs_item_key_to_cpu(c, key, slot);
+ else {
+ u64 blockptr = btrfs_node_blockptr(c, slot);
+ u64 gen = btrfs_node_ptr_generation(c, slot);
+
+ if (cache_only) {
+ struct extent_buffer *cur;
+ cur = btrfs_find_tree_block(root, blockptr,
+ btrfs_level_size(root, level - 1));
+ if (!cur ||
+ btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
+ slot++;
+ if (cur)
+ free_extent_buffer(cur);
+ goto next;
+ }
+ free_extent_buffer(cur);
+ }
+ if (gen < min_trans) {
+ slot++;
+ goto next;
+ }
+ btrfs_node_key_to_cpu(c, key, slot);
+ }
+ return 0;
+ }
+ return 1;
+}
+
+/*
+ * search the tree again to find a leaf with greater keys
+ * returns 0 if it found something or 1 if there are no greater leaves.
+ * returns < 0 on io errors.
+ */
+int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
+{
+ int slot;
+ int level;
+ struct extent_buffer *c;
+ struct extent_buffer *next;
+ struct btrfs_key key;
+ u32 nritems;
+ int ret;
+ int old_spinning = path->leave_spinning;
+ int next_rw_lock = 0;
+
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ if (nritems == 0)
+ return 1;
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
+again:
+ level = 1;
+ next = NULL;
+ next_rw_lock = 0;
+ btrfs_release_path(path);
+
+ path->keep_locks = 1;
+ path->leave_spinning = 1;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ path->keep_locks = 0;
+
+ if (ret < 0)
+ return ret;
+
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ /*
+ * by releasing the path above we dropped all our locks. A balance
+ * could have added more items next to the key that used to be
+ * at the very end of the block. So, check again here and
+ * advance the path if there are now more items available.
+ */
+ if (nritems > 0 && path->slots[0] < nritems - 1) {
+ if (ret == 0)
+ path->slots[0]++;
+ ret = 0;
+ goto done;
+ }
+
+ while (level < BTRFS_MAX_LEVEL) {
+ if (!path->nodes[level]) {
+ ret = 1;
+ goto done;
+ }
+
+ slot = path->slots[level] + 1;
+ c = path->nodes[level];
+ if (slot >= btrfs_header_nritems(c)) {
+ level++;
+ if (level == BTRFS_MAX_LEVEL) {
+ ret = 1;
+ goto done;
+ }
+ continue;
+ }
+
+ if (next) {
+ btrfs_tree_unlock_rw(next, next_rw_lock);
+ free_extent_buffer(next);
+ }
+
+ next = c;
+ next_rw_lock = path->locks[level];
+ ret = read_block_for_search(NULL, root, path, &next, level,
+ slot, &key);
+ if (ret == -EAGAIN)
+ goto again;
+
+ if (ret < 0) {
+ btrfs_release_path(path);
+ goto done;
+ }
+
+ if (!path->skip_locking) {
+ ret = btrfs_try_tree_read_lock(next);
+ if (!ret) {
+ btrfs_set_path_blocking(path);
+ btrfs_tree_read_lock(next);
+ btrfs_clear_path_blocking(path, next,
+ BTRFS_READ_LOCK);
+ }
+ next_rw_lock = BTRFS_READ_LOCK;
+ }
+ break;
+ }
+ path->slots[level] = slot;
+ while (1) {
+ level--;
+ c = path->nodes[level];
+ if (path->locks[level])
+ btrfs_tree_unlock_rw(c, path->locks[level]);
+
+ free_extent_buffer(c);
+ path->nodes[level] = next;
+ path->slots[level] = 0;
+ if (!path->skip_locking)
+ path->locks[level] = next_rw_lock;
+ if (!level)
+ break;
+
+ ret = read_block_for_search(NULL, root, path, &next, level,
+ 0, &key);
+ if (ret == -EAGAIN)
+ goto again;
+
+ if (ret < 0) {
+ btrfs_release_path(path);
+ goto done;
+ }
+
+ if (!path->skip_locking) {
+ ret = btrfs_try_tree_read_lock(next);
+ if (!ret) {
+ btrfs_set_path_blocking(path);
+ btrfs_tree_read_lock(next);
+ btrfs_clear_path_blocking(path, next,
+ BTRFS_READ_LOCK);
+ }
+ next_rw_lock = BTRFS_READ_LOCK;
+ }
+ }
+ ret = 0;
+done:
+ unlock_up(path, 0, 1, 0, NULL);
+ path->leave_spinning = old_spinning;
+ if (!old_spinning)
+ btrfs_set_path_blocking(path);
+
+ return ret;
+}
+
+/*
+ * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
+ * searching until it gets past min_objectid or finds an item of 'type'
+ *
+ * returns 0 if something is found, 1 if nothing was found and < 0 on error
+ */
+int btrfs_previous_item(struct btrfs_root *root,
+ struct btrfs_path *path, u64 min_objectid,
+ int type)
+{
+ struct btrfs_key found_key;
+ struct extent_buffer *leaf;
+ u32 nritems;
+ int ret;
+
+ while (1) {
+ if (path->slots[0] == 0) {
+ btrfs_set_path_blocking(path);
+ ret = btrfs_prev_leaf(root, path);
+ if (ret != 0)
+ return ret;
+ } else {
+ path->slots[0]--;
+ }
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ if (nritems == 0)
+ return 1;
+ if (path->slots[0] == nritems)
+ path->slots[0]--;
+
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ if (found_key.objectid < min_objectid)
+ break;
+ if (found_key.type == type)
+ return 0;
+ if (found_key.objectid == min_objectid &&
+ found_key.type < type)
+ break;
+ }
+ return 1;
+}
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h
new file mode 100644
index 00000000..8fd72331
--- /dev/null
+++ b/fs/btrfs/ctree.h
@@ -0,0 +1,3101 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_CTREE__
+#define __BTRFS_CTREE__
+
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/fs.h>
+#include <linux/rwsem.h>
+#include <linux/completion.h>
+#include <linux/backing-dev.h>
+#include <linux/wait.h>
+#include <linux/slab.h>
+#include <linux/kobject.h>
+#include <trace/events/btrfs.h>
+#include <asm/kmap_types.h>
+#include <linux/pagemap.h>
+#include "extent_io.h"
+#include "extent_map.h"
+#include "async-thread.h"
+#include "ioctl.h"
+
+struct btrfs_trans_handle;
+struct btrfs_transaction;
+struct btrfs_pending_snapshot;
+extern struct kmem_cache *btrfs_trans_handle_cachep;
+extern struct kmem_cache *btrfs_transaction_cachep;
+extern struct kmem_cache *btrfs_bit_radix_cachep;
+extern struct kmem_cache *btrfs_path_cachep;
+extern struct kmem_cache *btrfs_free_space_cachep;
+struct btrfs_ordered_sum;
+
+#define BTRFS_MAGIC "_BHRfS_M"
+
+#define BTRFS_MAX_MIRRORS 2
+
+#define BTRFS_MAX_LEVEL 8
+
+#define BTRFS_COMPAT_EXTENT_TREE_V0
+
+/*
+ * files bigger than this get some pre-flushing when they are added
+ * to the ordered operations list. That way we limit the total
+ * work done by the commit
+ */
+#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
+
+/* holds pointers to all of the tree roots */
+#define BTRFS_ROOT_TREE_OBJECTID 1ULL
+
+/* stores information about which extents are in use, and reference counts */
+#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
+
+/*
+ * chunk tree stores translations from logical -> physical block numbering
+ * the super block points to the chunk tree
+ */
+#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
+
+/*
+ * stores information about which areas of a given device are in use.
+ * one per device. The tree of tree roots points to the device tree
+ */
+#define BTRFS_DEV_TREE_OBJECTID 4ULL
+
+/* one per subvolume, storing files and directories */
+#define BTRFS_FS_TREE_OBJECTID 5ULL
+
+/* directory objectid inside the root tree */
+#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
+
+/* holds checksums of all the data extents */
+#define BTRFS_CSUM_TREE_OBJECTID 7ULL
+
+/* for storing balance parameters in the root tree */
+#define BTRFS_BALANCE_OBJECTID -4ULL
+
+/* orhpan objectid for tracking unlinked/truncated files */
+#define BTRFS_ORPHAN_OBJECTID -5ULL
+
+/* does write ahead logging to speed up fsyncs */
+#define BTRFS_TREE_LOG_OBJECTID -6ULL
+#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
+
+/* for space balancing */
+#define BTRFS_TREE_RELOC_OBJECTID -8ULL
+#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
+
+/*
+ * extent checksums all have this objectid
+ * this allows them to share the logging tree
+ * for fsyncs
+ */
+#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
+
+/* For storing free space cache */
+#define BTRFS_FREE_SPACE_OBJECTID -11ULL
+
+/*
+ * The inode number assigned to the special inode for sotring
+ * free ino cache
+ */
+#define BTRFS_FREE_INO_OBJECTID -12ULL
+
+/* dummy objectid represents multiple objectids */
+#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
+
+/*
+ * All files have objectids in this range.
+ */
+#define BTRFS_FIRST_FREE_OBJECTID 256ULL
+#define BTRFS_LAST_FREE_OBJECTID -256ULL
+#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
+
+
+/*
+ * the device items go into the chunk tree. The key is in the form
+ * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
+ */
+#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
+
+#define BTRFS_BTREE_INODE_OBJECTID 1
+
+#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
+
+/*
+ * the max metadata block size. This limit is somewhat artificial,
+ * but the memmove costs go through the roof for larger blocks.
+ */
+#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
+
+/*
+ * we can actually store much bigger names, but lets not confuse the rest
+ * of linux
+ */
+#define BTRFS_NAME_LEN 255
+
+/* 32 bytes in various csum fields */
+#define BTRFS_CSUM_SIZE 32
+
+/* csum types */
+#define BTRFS_CSUM_TYPE_CRC32 0
+
+static int btrfs_csum_sizes[] = { 4, 0 };
+
+/* four bytes for CRC32 */
+#define BTRFS_EMPTY_DIR_SIZE 0
+
+#define BTRFS_FT_UNKNOWN 0
+#define BTRFS_FT_REG_FILE 1
+#define BTRFS_FT_DIR 2
+#define BTRFS_FT_CHRDEV 3
+#define BTRFS_FT_BLKDEV 4
+#define BTRFS_FT_FIFO 5
+#define BTRFS_FT_SOCK 6
+#define BTRFS_FT_SYMLINK 7
+#define BTRFS_FT_XATTR 8
+#define BTRFS_FT_MAX 9
+
+/*
+ * The key defines the order in the tree, and so it also defines (optimal)
+ * block layout.
+ *
+ * objectid corresponds to the inode number.
+ *
+ * type tells us things about the object, and is a kind of stream selector.
+ * so for a given inode, keys with type of 1 might refer to the inode data,
+ * type of 2 may point to file data in the btree and type == 3 may point to
+ * extents.
+ *
+ * offset is the starting byte offset for this key in the stream.
+ *
+ * btrfs_disk_key is in disk byte order. struct btrfs_key is always
+ * in cpu native order. Otherwise they are identical and their sizes
+ * should be the same (ie both packed)
+ */
+struct btrfs_disk_key {
+ __le64 objectid;
+ u8 type;
+ __le64 offset;
+} __attribute__ ((__packed__));
+
+struct btrfs_key {
+ u64 objectid;
+ u8 type;
+ u64 offset;
+} __attribute__ ((__packed__));
+
+struct btrfs_mapping_tree {
+ struct extent_map_tree map_tree;
+};
+
+struct btrfs_dev_item {
+ /* the internal btrfs device id */
+ __le64 devid;
+
+ /* size of the device */
+ __le64 total_bytes;
+
+ /* bytes used */
+ __le64 bytes_used;
+
+ /* optimal io alignment for this device */
+ __le32 io_align;
+
+ /* optimal io width for this device */
+ __le32 io_width;
+
+ /* minimal io size for this device */
+ __le32 sector_size;
+
+ /* type and info about this device */
+ __le64 type;
+
+ /* expected generation for this device */
+ __le64 generation;
+
+ /*
+ * starting byte of this partition on the device,
+ * to allow for stripe alignment in the future
+ */
+ __le64 start_offset;
+
+ /* grouping information for allocation decisions */
+ __le32 dev_group;
+
+ /* seek speed 0-100 where 100 is fastest */
+ u8 seek_speed;
+
+ /* bandwidth 0-100 where 100 is fastest */
+ u8 bandwidth;
+
+ /* btrfs generated uuid for this device */
+ u8 uuid[BTRFS_UUID_SIZE];
+
+ /* uuid of FS who owns this device */
+ u8 fsid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_stripe {
+ __le64 devid;
+ __le64 offset;
+ u8 dev_uuid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_chunk {
+ /* size of this chunk in bytes */
+ __le64 length;
+
+ /* objectid of the root referencing this chunk */
+ __le64 owner;
+
+ __le64 stripe_len;
+ __le64 type;
+
+ /* optimal io alignment for this chunk */
+ __le32 io_align;
+
+ /* optimal io width for this chunk */
+ __le32 io_width;
+
+ /* minimal io size for this chunk */
+ __le32 sector_size;
+
+ /* 2^16 stripes is quite a lot, a second limit is the size of a single
+ * item in the btree
+ */
+ __le16 num_stripes;
+
+ /* sub stripes only matter for raid10 */
+ __le16 sub_stripes;
+ struct btrfs_stripe stripe;
+ /* additional stripes go here */
+} __attribute__ ((__packed__));
+
+#define BTRFS_FREE_SPACE_EXTENT 1
+#define BTRFS_FREE_SPACE_BITMAP 2
+
+struct btrfs_free_space_entry {
+ __le64 offset;
+ __le64 bytes;
+ u8 type;
+} __attribute__ ((__packed__));
+
+struct btrfs_free_space_header {
+ struct btrfs_disk_key location;
+ __le64 generation;
+ __le64 num_entries;
+ __le64 num_bitmaps;
+} __attribute__ ((__packed__));
+
+static inline unsigned long btrfs_chunk_item_size(int num_stripes)
+{
+ BUG_ON(num_stripes == 0);
+ return sizeof(struct btrfs_chunk) +
+ sizeof(struct btrfs_stripe) * (num_stripes - 1);
+}
+
+#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
+#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
+
+/*
+ * File system states
+ */
+
+/* Errors detected */
+#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
+
+#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
+#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
+
+#define BTRFS_BACKREF_REV_MAX 256
+#define BTRFS_BACKREF_REV_SHIFT 56
+#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
+ BTRFS_BACKREF_REV_SHIFT)
+
+#define BTRFS_OLD_BACKREF_REV 0
+#define BTRFS_MIXED_BACKREF_REV 1
+
+/*
+ * every tree block (leaf or node) starts with this header.
+ */
+struct btrfs_header {
+ /* these first four must match the super block */
+ u8 csum[BTRFS_CSUM_SIZE];
+ u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
+ __le64 bytenr; /* which block this node is supposed to live in */
+ __le64 flags;
+
+ /* allowed to be different from the super from here on down */
+ u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
+ __le64 generation;
+ __le64 owner;
+ __le32 nritems;
+ u8 level;
+} __attribute__ ((__packed__));
+
+#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
+ sizeof(struct btrfs_header)) / \
+ sizeof(struct btrfs_key_ptr))
+#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
+#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
+#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
+ sizeof(struct btrfs_item) - \
+ sizeof(struct btrfs_file_extent_item))
+#define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
+ sizeof(struct btrfs_item) -\
+ sizeof(struct btrfs_dir_item))
+
+
+/*
+ * this is a very generous portion of the super block, giving us
+ * room to translate 14 chunks with 3 stripes each.
+ */
+#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
+#define BTRFS_LABEL_SIZE 256
+
+/*
+ * just in case we somehow lose the roots and are not able to mount,
+ * we store an array of the roots from previous transactions
+ * in the super.
+ */
+#define BTRFS_NUM_BACKUP_ROOTS 4
+struct btrfs_root_backup {
+ __le64 tree_root;
+ __le64 tree_root_gen;
+
+ __le64 chunk_root;
+ __le64 chunk_root_gen;
+
+ __le64 extent_root;
+ __le64 extent_root_gen;
+
+ __le64 fs_root;
+ __le64 fs_root_gen;
+
+ __le64 dev_root;
+ __le64 dev_root_gen;
+
+ __le64 csum_root;
+ __le64 csum_root_gen;
+
+ __le64 total_bytes;
+ __le64 bytes_used;
+ __le64 num_devices;
+ /* future */
+ __le64 unsed_64[4];
+
+ u8 tree_root_level;
+ u8 chunk_root_level;
+ u8 extent_root_level;
+ u8 fs_root_level;
+ u8 dev_root_level;
+ u8 csum_root_level;
+ /* future and to align */
+ u8 unused_8[10];
+} __attribute__ ((__packed__));
+
+/*
+ * the super block basically lists the main trees of the FS
+ * it currently lacks any block count etc etc
+ */
+struct btrfs_super_block {
+ u8 csum[BTRFS_CSUM_SIZE];
+ /* the first 4 fields must match struct btrfs_header */
+ u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
+ __le64 bytenr; /* this block number */
+ __le64 flags;
+
+ /* allowed to be different from the btrfs_header from here own down */
+ __le64 magic;
+ __le64 generation;
+ __le64 root;
+ __le64 chunk_root;
+ __le64 log_root;
+
+ /* this will help find the new super based on the log root */
+ __le64 log_root_transid;
+ __le64 total_bytes;
+ __le64 bytes_used;
+ __le64 root_dir_objectid;
+ __le64 num_devices;
+ __le32 sectorsize;
+ __le32 nodesize;
+ __le32 leafsize;
+ __le32 stripesize;
+ __le32 sys_chunk_array_size;
+ __le64 chunk_root_generation;
+ __le64 compat_flags;
+ __le64 compat_ro_flags;
+ __le64 incompat_flags;
+ __le16 csum_type;
+ u8 root_level;
+ u8 chunk_root_level;
+ u8 log_root_level;
+ struct btrfs_dev_item dev_item;
+
+ char label[BTRFS_LABEL_SIZE];
+
+ __le64 cache_generation;
+
+ /* future expansion */
+ __le64 reserved[31];
+ u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
+ struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
+} __attribute__ ((__packed__));
+
+/*
+ * Compat flags that we support. If any incompat flags are set other than the
+ * ones specified below then we will fail to mount
+ */
+#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
+#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
+#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
+#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
+/*
+ * some patches floated around with a second compression method
+ * lets save that incompat here for when they do get in
+ * Note we don't actually support it, we're just reserving the
+ * number
+ */
+#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4)
+
+/*
+ * older kernels tried to do bigger metadata blocks, but the
+ * code was pretty buggy. Lets not let them try anymore.
+ */
+#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
+
+#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
+#define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
+#define BTRFS_FEATURE_INCOMPAT_SUPP \
+ (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
+ BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
+ BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
+ BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
+ BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO)
+
+/*
+ * A leaf is full of items. offset and size tell us where to find
+ * the item in the leaf (relative to the start of the data area)
+ */
+struct btrfs_item {
+ struct btrfs_disk_key key;
+ __le32 offset;
+ __le32 size;
+} __attribute__ ((__packed__));
+
+/*
+ * leaves have an item area and a data area:
+ * [item0, item1....itemN] [free space] [dataN...data1, data0]
+ *
+ * The data is separate from the items to get the keys closer together
+ * during searches.
+ */
+struct btrfs_leaf {
+ struct btrfs_header header;
+ struct btrfs_item items[];
+} __attribute__ ((__packed__));
+
+/*
+ * all non-leaf blocks are nodes, they hold only keys and pointers to
+ * other blocks
+ */
+struct btrfs_key_ptr {
+ struct btrfs_disk_key key;
+ __le64 blockptr;
+ __le64 generation;
+} __attribute__ ((__packed__));
+
+struct btrfs_node {
+ struct btrfs_header header;
+ struct btrfs_key_ptr ptrs[];
+} __attribute__ ((__packed__));
+
+/*
+ * btrfs_paths remember the path taken from the root down to the leaf.
+ * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
+ * to any other levels that are present.
+ *
+ * The slots array records the index of the item or block pointer
+ * used while walking the tree.
+ */
+struct btrfs_path {
+ struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
+ int slots[BTRFS_MAX_LEVEL];
+ /* if there is real range locking, this locks field will change */
+ int locks[BTRFS_MAX_LEVEL];
+ int reada;
+ /* keep some upper locks as we walk down */
+ int lowest_level;
+
+ /*
+ * set by btrfs_split_item, tells search_slot to keep all locks
+ * and to force calls to keep space in the nodes
+ */
+ unsigned int search_for_split:1;
+ unsigned int keep_locks:1;
+ unsigned int skip_locking:1;
+ unsigned int leave_spinning:1;
+ unsigned int search_commit_root:1;
+};
+
+/*
+ * items in the extent btree are used to record the objectid of the
+ * owner of the block and the number of references
+ */
+
+struct btrfs_extent_item {
+ __le64 refs;
+ __le64 generation;
+ __le64 flags;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_item_v0 {
+ __le32 refs;
+} __attribute__ ((__packed__));
+
+#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
+ sizeof(struct btrfs_item))
+
+#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
+#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
+
+/* following flags only apply to tree blocks */
+
+/* use full backrefs for extent pointers in the block */
+#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
+
+/*
+ * this flag is only used internally by scrub and may be changed at any time
+ * it is only declared here to avoid collisions
+ */
+#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
+
+struct btrfs_tree_block_info {
+ struct btrfs_disk_key key;
+ u8 level;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_data_ref {
+ __le64 root;
+ __le64 objectid;
+ __le64 offset;
+ __le32 count;
+} __attribute__ ((__packed__));
+
+struct btrfs_shared_data_ref {
+ __le32 count;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_inline_ref {
+ u8 type;
+ __le64 offset;
+} __attribute__ ((__packed__));
+
+/* old style backrefs item */
+struct btrfs_extent_ref_v0 {
+ __le64 root;
+ __le64 generation;
+ __le64 objectid;
+ __le32 count;
+} __attribute__ ((__packed__));
+
+
+/* dev extents record free space on individual devices. The owner
+ * field points back to the chunk allocation mapping tree that allocated
+ * the extent. The chunk tree uuid field is a way to double check the owner
+ */
+struct btrfs_dev_extent {
+ __le64 chunk_tree;
+ __le64 chunk_objectid;
+ __le64 chunk_offset;
+ __le64 length;
+ u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_inode_ref {
+ __le64 index;
+ __le16 name_len;
+ /* name goes here */
+} __attribute__ ((__packed__));
+
+struct btrfs_timespec {
+ __le64 sec;
+ __le32 nsec;
+} __attribute__ ((__packed__));
+
+enum btrfs_compression_type {
+ BTRFS_COMPRESS_NONE = 0,
+ BTRFS_COMPRESS_ZLIB = 1,
+ BTRFS_COMPRESS_LZO = 2,
+ BTRFS_COMPRESS_TYPES = 2,
+ BTRFS_COMPRESS_LAST = 3,
+};
+
+struct btrfs_inode_item {
+ /* nfs style generation number */
+ __le64 generation;
+ /* transid that last touched this inode */
+ __le64 transid;
+ __le64 size;
+ __le64 nbytes;
+ __le64 block_group;
+ __le32 nlink;
+ __le32 uid;
+ __le32 gid;
+ __le32 mode;
+ __le64 rdev;
+ __le64 flags;
+
+ /* modification sequence number for NFS */
+ __le64 sequence;
+
+ /*
+ * a little future expansion, for more than this we can
+ * just grow the inode item and version it
+ */
+ __le64 reserved[4];
+ struct btrfs_timespec atime;
+ struct btrfs_timespec ctime;
+ struct btrfs_timespec mtime;
+ struct btrfs_timespec otime;
+} __attribute__ ((__packed__));
+
+struct btrfs_dir_log_item {
+ __le64 end;
+} __attribute__ ((__packed__));
+
+struct btrfs_dir_item {
+ struct btrfs_disk_key location;
+ __le64 transid;
+ __le16 data_len;
+ __le16 name_len;
+ u8 type;
+} __attribute__ ((__packed__));
+
+#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
+
+struct btrfs_root_item {
+ struct btrfs_inode_item inode;
+ __le64 generation;
+ __le64 root_dirid;
+ __le64 bytenr;
+ __le64 byte_limit;
+ __le64 bytes_used;
+ __le64 last_snapshot;
+ __le64 flags;
+ __le32 refs;
+ struct btrfs_disk_key drop_progress;
+ u8 drop_level;
+ u8 level;
+} __attribute__ ((__packed__));
+
+/*
+ * this is used for both forward and backward root refs
+ */
+struct btrfs_root_ref {
+ __le64 dirid;
+ __le64 sequence;
+ __le16 name_len;
+} __attribute__ ((__packed__));
+
+struct btrfs_disk_balance_args {
+ /*
+ * profiles to operate on, single is denoted by
+ * BTRFS_AVAIL_ALLOC_BIT_SINGLE
+ */
+ __le64 profiles;
+
+ /* usage filter */
+ __le64 usage;
+
+ /* devid filter */
+ __le64 devid;
+
+ /* devid subset filter [pstart..pend) */
+ __le64 pstart;
+ __le64 pend;
+
+ /* btrfs virtual address space subset filter [vstart..vend) */
+ __le64 vstart;
+ __le64 vend;
+
+ /*
+ * profile to convert to, single is denoted by
+ * BTRFS_AVAIL_ALLOC_BIT_SINGLE
+ */
+ __le64 target;
+
+ /* BTRFS_BALANCE_ARGS_* */
+ __le64 flags;
+
+ __le64 unused[8];
+} __attribute__ ((__packed__));
+
+/*
+ * store balance parameters to disk so that balance can be properly
+ * resumed after crash or unmount
+ */
+struct btrfs_balance_item {
+ /* BTRFS_BALANCE_* */
+ __le64 flags;
+
+ struct btrfs_disk_balance_args data;
+ struct btrfs_disk_balance_args meta;
+ struct btrfs_disk_balance_args sys;
+
+ __le64 unused[4];
+} __attribute__ ((__packed__));
+
+#define BTRFS_FILE_EXTENT_INLINE 0
+#define BTRFS_FILE_EXTENT_REG 1
+#define BTRFS_FILE_EXTENT_PREALLOC 2
+
+struct btrfs_file_extent_item {
+ /*
+ * transaction id that created this extent
+ */
+ __le64 generation;
+ /*
+ * max number of bytes to hold this extent in ram
+ * when we split a compressed extent we can't know how big
+ * each of the resulting pieces will be. So, this is
+ * an upper limit on the size of the extent in ram instead of
+ * an exact limit.
+ */
+ __le64 ram_bytes;
+
+ /*
+ * 32 bits for the various ways we might encode the data,
+ * including compression and encryption. If any of these
+ * are set to something a given disk format doesn't understand
+ * it is treated like an incompat flag for reading and writing,
+ * but not for stat.
+ */
+ u8 compression;
+ u8 encryption;
+ __le16 other_encoding; /* spare for later use */
+
+ /* are we inline data or a real extent? */
+ u8 type;
+
+ /*
+ * disk space consumed by the extent, checksum blocks are included
+ * in these numbers
+ */
+ __le64 disk_bytenr;
+ __le64 disk_num_bytes;
+ /*
+ * the logical offset in file blocks (no csums)
+ * this extent record is for. This allows a file extent to point
+ * into the middle of an existing extent on disk, sharing it
+ * between two snapshots (useful if some bytes in the middle of the
+ * extent have changed
+ */
+ __le64 offset;
+ /*
+ * the logical number of file blocks (no csums included). This
+ * always reflects the size uncompressed and without encoding.
+ */
+ __le64 num_bytes;
+
+} __attribute__ ((__packed__));
+
+struct btrfs_csum_item {
+ u8 csum;
+} __attribute__ ((__packed__));
+
+/* different types of block groups (and chunks) */
+#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
+#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
+#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
+#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
+#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
+#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
+#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
+#define BTRFS_BLOCK_GROUP_RESERVED BTRFS_AVAIL_ALLOC_BIT_SINGLE
+#define BTRFS_NR_RAID_TYPES 5
+
+#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
+ BTRFS_BLOCK_GROUP_SYSTEM | \
+ BTRFS_BLOCK_GROUP_METADATA)
+
+#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
+ BTRFS_BLOCK_GROUP_RAID1 | \
+ BTRFS_BLOCK_GROUP_DUP | \
+ BTRFS_BLOCK_GROUP_RAID10)
+/*
+ * We need a bit for restriper to be able to tell when chunks of type
+ * SINGLE are available. This "extended" profile format is used in
+ * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
+ * (on-disk). The corresponding on-disk bit in chunk.type is reserved
+ * to avoid remappings between two formats in future.
+ */
+#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
+
+#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
+ BTRFS_AVAIL_ALLOC_BIT_SINGLE)
+
+static inline u64 chunk_to_extended(u64 flags)
+{
+ if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
+ flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+
+ return flags;
+}
+static inline u64 extended_to_chunk(u64 flags)
+{
+ return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+}
+
+struct btrfs_block_group_item {
+ __le64 used;
+ __le64 chunk_objectid;
+ __le64 flags;
+} __attribute__ ((__packed__));
+
+struct btrfs_space_info {
+ u64 flags;
+
+ u64 total_bytes; /* total bytes in the space,
+ this doesn't take mirrors into account */
+ u64 bytes_used; /* total bytes used,
+ this doesn't take mirrors into account */
+ u64 bytes_pinned; /* total bytes pinned, will be freed when the
+ transaction finishes */
+ u64 bytes_reserved; /* total bytes the allocator has reserved for
+ current allocations */
+ u64 bytes_readonly; /* total bytes that are read only */
+
+ u64 bytes_may_use; /* number of bytes that may be used for
+ delalloc/allocations */
+ u64 disk_used; /* total bytes used on disk */
+ u64 disk_total; /* total bytes on disk, takes mirrors into
+ account */
+
+ /*
+ * we bump reservation progress every time we decrement
+ * bytes_reserved. This way people waiting for reservations
+ * know something good has happened and they can check
+ * for progress. The number here isn't to be trusted, it
+ * just shows reclaim activity
+ */
+ unsigned long reservation_progress;
+
+ unsigned int full:1; /* indicates that we cannot allocate any more
+ chunks for this space */
+ unsigned int chunk_alloc:1; /* set if we are allocating a chunk */
+
+ unsigned int flush:1; /* set if we are trying to make space */
+
+ unsigned int force_alloc; /* set if we need to force a chunk
+ alloc for this space */
+
+ struct list_head list;
+
+ /* for block groups in our same type */
+ struct list_head block_groups[BTRFS_NR_RAID_TYPES];
+ spinlock_t lock;
+ struct rw_semaphore groups_sem;
+ wait_queue_head_t wait;
+};
+
+struct btrfs_block_rsv {
+ u64 size;
+ u64 reserved;
+ struct btrfs_space_info *space_info;
+ spinlock_t lock;
+ unsigned int full;
+};
+
+/*
+ * free clusters are used to claim free space in relatively large chunks,
+ * allowing us to do less seeky writes. They are used for all metadata
+ * allocations and data allocations in ssd mode.
+ */
+struct btrfs_free_cluster {
+ spinlock_t lock;
+ spinlock_t refill_lock;
+ struct rb_root root;
+
+ /* largest extent in this cluster */
+ u64 max_size;
+
+ /* first extent starting offset */
+ u64 window_start;
+
+ struct btrfs_block_group_cache *block_group;
+ /*
+ * when a cluster is allocated from a block group, we put the
+ * cluster onto a list in the block group so that it can
+ * be freed before the block group is freed.
+ */
+ struct list_head block_group_list;
+};
+
+enum btrfs_caching_type {
+ BTRFS_CACHE_NO = 0,
+ BTRFS_CACHE_STARTED = 1,
+ BTRFS_CACHE_FAST = 2,
+ BTRFS_CACHE_FINISHED = 3,
+};
+
+enum btrfs_disk_cache_state {
+ BTRFS_DC_WRITTEN = 0,
+ BTRFS_DC_ERROR = 1,
+ BTRFS_DC_CLEAR = 2,
+ BTRFS_DC_SETUP = 3,
+ BTRFS_DC_NEED_WRITE = 4,
+};
+
+struct btrfs_caching_control {
+ struct list_head list;
+ struct mutex mutex;
+ wait_queue_head_t wait;
+ struct btrfs_work work;
+ struct btrfs_block_group_cache *block_group;
+ u64 progress;
+ atomic_t count;
+};
+
+struct btrfs_block_group_cache {
+ struct btrfs_key key;
+ struct btrfs_block_group_item item;
+ struct btrfs_fs_info *fs_info;
+ struct inode *inode;
+ spinlock_t lock;
+ u64 pinned;
+ u64 reserved;
+ u64 bytes_super;
+ u64 flags;
+ u64 sectorsize;
+ u64 cache_generation;
+ unsigned int ro:1;
+ unsigned int dirty:1;
+ unsigned int iref:1;
+
+ int disk_cache_state;
+
+ /* cache tracking stuff */
+ int cached;
+ struct btrfs_caching_control *caching_ctl;
+ u64 last_byte_to_unpin;
+
+ struct btrfs_space_info *space_info;
+
+ /* free space cache stuff */
+ struct btrfs_free_space_ctl *free_space_ctl;
+
+ /* block group cache stuff */
+ struct rb_node cache_node;
+
+ /* for block groups in the same raid type */
+ struct list_head list;
+
+ /* usage count */
+ atomic_t count;
+
+ /* List of struct btrfs_free_clusters for this block group.
+ * Today it will only have one thing on it, but that may change
+ */
+ struct list_head cluster_list;
+};
+
+struct reloc_control;
+struct btrfs_device;
+struct btrfs_fs_devices;
+struct btrfs_balance_control;
+struct btrfs_delayed_root;
+struct btrfs_fs_info {
+ u8 fsid[BTRFS_FSID_SIZE];
+ u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
+ struct btrfs_root *extent_root;
+ struct btrfs_root *tree_root;
+ struct btrfs_root *chunk_root;
+ struct btrfs_root *dev_root;
+ struct btrfs_root *fs_root;
+ struct btrfs_root *csum_root;
+
+ /* the log root tree is a directory of all the other log roots */
+ struct btrfs_root *log_root_tree;
+
+ spinlock_t fs_roots_radix_lock;
+ struct radix_tree_root fs_roots_radix;
+
+ /* block group cache stuff */
+ spinlock_t block_group_cache_lock;
+ struct rb_root block_group_cache_tree;
+
+ /* keep track of unallocated space */
+ spinlock_t free_chunk_lock;
+ u64 free_chunk_space;
+
+ struct extent_io_tree freed_extents[2];
+ struct extent_io_tree *pinned_extents;
+
+ /* logical->physical extent mapping */
+ struct btrfs_mapping_tree mapping_tree;
+
+ /*
+ * block reservation for extent, checksum, root tree and
+ * delayed dir index item
+ */
+ struct btrfs_block_rsv global_block_rsv;
+ /* block reservation for delay allocation */
+ struct btrfs_block_rsv delalloc_block_rsv;
+ /* block reservation for metadata operations */
+ struct btrfs_block_rsv trans_block_rsv;
+ /* block reservation for chunk tree */
+ struct btrfs_block_rsv chunk_block_rsv;
+ /* block reservation for delayed operations */
+ struct btrfs_block_rsv delayed_block_rsv;
+
+ struct btrfs_block_rsv empty_block_rsv;
+
+ u64 generation;
+ u64 last_trans_committed;
+
+ /*
+ * this is updated to the current trans every time a full commit
+ * is required instead of the faster short fsync log commits
+ */
+ u64 last_trans_log_full_commit;
+ unsigned long mount_opt;
+ unsigned long compress_type:4;
+ u64 max_inline;
+ u64 alloc_start;
+ struct btrfs_transaction *running_transaction;
+ wait_queue_head_t transaction_throttle;
+ wait_queue_head_t transaction_wait;
+ wait_queue_head_t transaction_blocked_wait;
+ wait_queue_head_t async_submit_wait;
+
+ struct btrfs_super_block *super_copy;
+ struct btrfs_super_block *super_for_commit;
+ struct block_device *__bdev;
+ struct super_block *sb;
+ struct inode *btree_inode;
+ struct backing_dev_info bdi;
+ struct mutex tree_log_mutex;
+ struct mutex transaction_kthread_mutex;
+ struct mutex cleaner_mutex;
+ struct mutex chunk_mutex;
+ struct mutex volume_mutex;
+ /*
+ * this protects the ordered operations list only while we are
+ * processing all of the entries on it. This way we make
+ * sure the commit code doesn't find the list temporarily empty
+ * because another function happens to be doing non-waiting preflush
+ * before jumping into the main commit.
+ */
+ struct mutex ordered_operations_mutex;
+ struct rw_semaphore extent_commit_sem;
+
+ struct rw_semaphore cleanup_work_sem;
+
+ struct rw_semaphore subvol_sem;
+ struct srcu_struct subvol_srcu;
+
+ spinlock_t trans_lock;
+ /*
+ * the reloc mutex goes with the trans lock, it is taken
+ * during commit to protect us from the relocation code
+ */
+ struct mutex reloc_mutex;
+
+ struct list_head trans_list;
+ struct list_head hashers;
+ struct list_head dead_roots;
+ struct list_head caching_block_groups;
+
+ spinlock_t delayed_iput_lock;
+ struct list_head delayed_iputs;
+
+ atomic_t nr_async_submits;
+ atomic_t async_submit_draining;
+ atomic_t nr_async_bios;
+ atomic_t async_delalloc_pages;
+ atomic_t open_ioctl_trans;
+
+ /*
+ * this is used by the balancing code to wait for all the pending
+ * ordered extents
+ */
+ spinlock_t ordered_extent_lock;
+
+ /*
+ * all of the data=ordered extents pending writeback
+ * these can span multiple transactions and basically include
+ * every dirty data page that isn't from nodatacow
+ */
+ struct list_head ordered_extents;
+
+ /*
+ * all of the inodes that have delalloc bytes. It is possible for
+ * this list to be empty even when there is still dirty data=ordered
+ * extents waiting to finish IO.
+ */
+ struct list_head delalloc_inodes;
+
+ /*
+ * special rename and truncate targets that must be on disk before
+ * we're allowed to commit. This is basically the ext3 style
+ * data=ordered list.
+ */
+ struct list_head ordered_operations;
+
+ /*
+ * there is a pool of worker threads for checksumming during writes
+ * and a pool for checksumming after reads. This is because readers
+ * can run with FS locks held, and the writers may be waiting for
+ * those locks. We don't want ordering in the pending list to cause
+ * deadlocks, and so the two are serviced separately.
+ *
+ * A third pool does submit_bio to avoid deadlocking with the other
+ * two
+ */
+ struct btrfs_workers generic_worker;
+ struct btrfs_workers workers;
+ struct btrfs_workers delalloc_workers;
+ struct btrfs_workers endio_workers;
+ struct btrfs_workers endio_meta_workers;
+ struct btrfs_workers endio_meta_write_workers;
+ struct btrfs_workers endio_write_workers;
+ struct btrfs_workers endio_freespace_worker;
+ struct btrfs_workers submit_workers;
+ struct btrfs_workers caching_workers;
+ struct btrfs_workers readahead_workers;
+
+ /*
+ * fixup workers take dirty pages that didn't properly go through
+ * the cow mechanism and make them safe to write. It happens
+ * for the sys_munmap function call path
+ */
+ struct btrfs_workers fixup_workers;
+ struct btrfs_workers delayed_workers;
+ struct task_struct *transaction_kthread;
+ struct task_struct *cleaner_kthread;
+ int thread_pool_size;
+
+ struct kobject super_kobj;
+ struct completion kobj_unregister;
+ int do_barriers;
+ int closing;
+ int log_root_recovering;
+ int enospc_unlink;
+ int trans_no_join;
+
+ u64 total_pinned;
+
+ /* protected by the delalloc lock, used to keep from writing
+ * metadata until there is a nice batch
+ */
+ u64 dirty_metadata_bytes;
+ struct list_head dirty_cowonly_roots;
+
+ struct btrfs_fs_devices *fs_devices;
+
+ /*
+ * the space_info list is almost entirely read only. It only changes
+ * when we add a new raid type to the FS, and that happens
+ * very rarely. RCU is used to protect it.
+ */
+ struct list_head space_info;
+
+ struct reloc_control *reloc_ctl;
+
+ spinlock_t delalloc_lock;
+ u64 delalloc_bytes;
+
+ /* data_alloc_cluster is only used in ssd mode */
+ struct btrfs_free_cluster data_alloc_cluster;
+
+ /* all metadata allocations go through this cluster */
+ struct btrfs_free_cluster meta_alloc_cluster;
+
+ /* auto defrag inodes go here */
+ spinlock_t defrag_inodes_lock;
+ struct rb_root defrag_inodes;
+ atomic_t defrag_running;
+
+ spinlock_t ref_cache_lock;
+ u64 total_ref_cache_size;
+
+ /*
+ * these three are in extended format (availability of single
+ * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
+ * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
+ */
+ u64 avail_data_alloc_bits;
+ u64 avail_metadata_alloc_bits;
+ u64 avail_system_alloc_bits;
+
+ /* restriper state */
+ spinlock_t balance_lock;
+ struct mutex balance_mutex;
+ atomic_t balance_running;
+ atomic_t balance_pause_req;
+ atomic_t balance_cancel_req;
+ struct btrfs_balance_control *balance_ctl;
+ wait_queue_head_t balance_wait_q;
+
+ unsigned data_chunk_allocations;
+ unsigned metadata_ratio;
+
+ void *bdev_holder;
+
+ /* private scrub information */
+ struct mutex scrub_lock;
+ atomic_t scrubs_running;
+ atomic_t scrub_pause_req;
+ atomic_t scrubs_paused;
+ atomic_t scrub_cancel_req;
+ wait_queue_head_t scrub_pause_wait;
+ struct rw_semaphore scrub_super_lock;
+ int scrub_workers_refcnt;
+ struct btrfs_workers scrub_workers;
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ u32 check_integrity_print_mask;
+#endif
+
+ /* filesystem state */
+ u64 fs_state;
+
+ struct btrfs_delayed_root *delayed_root;
+
+ /* readahead tree */
+ spinlock_t reada_lock;
+ struct radix_tree_root reada_tree;
+
+ /* next backup root to be overwritten */
+ int backup_root_index;
+};
+
+/*
+ * in ram representation of the tree. extent_root is used for all allocations
+ * and for the extent tree extent_root root.
+ */
+struct btrfs_root {
+ struct extent_buffer *node;
+
+ struct extent_buffer *commit_root;
+ struct btrfs_root *log_root;
+ struct btrfs_root *reloc_root;
+
+ struct btrfs_root_item root_item;
+ struct btrfs_key root_key;
+ struct btrfs_fs_info *fs_info;
+ struct extent_io_tree dirty_log_pages;
+
+ struct kobject root_kobj;
+ struct completion kobj_unregister;
+ struct mutex objectid_mutex;
+
+ spinlock_t accounting_lock;
+ struct btrfs_block_rsv *block_rsv;
+
+ /* free ino cache stuff */
+ struct mutex fs_commit_mutex;
+ struct btrfs_free_space_ctl *free_ino_ctl;
+ enum btrfs_caching_type cached;
+ spinlock_t cache_lock;
+ wait_queue_head_t cache_wait;
+ struct btrfs_free_space_ctl *free_ino_pinned;
+ u64 cache_progress;
+ struct inode *cache_inode;
+
+ struct mutex log_mutex;
+ wait_queue_head_t log_writer_wait;
+ wait_queue_head_t log_commit_wait[2];
+ atomic_t log_writers;
+ atomic_t log_commit[2];
+ unsigned long log_transid;
+ unsigned long last_log_commit;
+ unsigned long log_batch;
+ pid_t log_start_pid;
+ bool log_multiple_pids;
+
+ u64 objectid;
+ u64 last_trans;
+
+ /* data allocations are done in sectorsize units */
+ u32 sectorsize;
+
+ /* node allocations are done in nodesize units */
+ u32 nodesize;
+
+ /* leaf allocations are done in leafsize units */
+ u32 leafsize;
+
+ u32 stripesize;
+
+ u32 type;
+
+ u64 highest_objectid;
+
+ /* btrfs_record_root_in_trans is a multi-step process,
+ * and it can race with the balancing code. But the
+ * race is very small, and only the first time the root
+ * is added to each transaction. So in_trans_setup
+ * is used to tell us when more checks are required
+ */
+ unsigned long in_trans_setup;
+ int ref_cows;
+ int track_dirty;
+ int in_radix;
+
+ u64 defrag_trans_start;
+ struct btrfs_key defrag_progress;
+ struct btrfs_key defrag_max;
+ int defrag_running;
+ char *name;
+
+ /* the dirty list is only used by non-reference counted roots */
+ struct list_head dirty_list;
+
+ struct list_head root_list;
+
+ spinlock_t orphan_lock;
+ struct list_head orphan_list;
+ struct btrfs_block_rsv *orphan_block_rsv;
+ int orphan_item_inserted;
+ int orphan_cleanup_state;
+
+ spinlock_t inode_lock;
+ /* red-black tree that keeps track of in-memory inodes */
+ struct rb_root inode_tree;
+
+ /*
+ * radix tree that keeps track of delayed nodes of every inode,
+ * protected by inode_lock
+ */
+ struct radix_tree_root delayed_nodes_tree;
+ /*
+ * right now this just gets used so that a root has its own devid
+ * for stat. It may be used for more later
+ */
+ dev_t anon_dev;
+
+ int force_cow;
+};
+
+struct btrfs_ioctl_defrag_range_args {
+ /* start of the defrag operation */
+ __u64 start;
+
+ /* number of bytes to defrag, use (u64)-1 to say all */
+ __u64 len;
+
+ /*
+ * flags for the operation, which can include turning
+ * on compression for this one defrag
+ */
+ __u64 flags;
+
+ /*
+ * any extent bigger than this will be considered
+ * already defragged. Use 0 to take the kernel default
+ * Use 1 to say every single extent must be rewritten
+ */
+ __u32 extent_thresh;
+
+ /*
+ * which compression method to use if turning on compression
+ * for this defrag operation. If unspecified, zlib will
+ * be used
+ */
+ __u32 compress_type;
+
+ /* spare for later */
+ __u32 unused[4];
+};
+
+
+/*
+ * inode items have the data typically returned from stat and store other
+ * info about object characteristics. There is one for every file and dir in
+ * the FS
+ */
+#define BTRFS_INODE_ITEM_KEY 1
+#define BTRFS_INODE_REF_KEY 12
+#define BTRFS_XATTR_ITEM_KEY 24
+#define BTRFS_ORPHAN_ITEM_KEY 48
+/* reserve 2-15 close to the inode for later flexibility */
+
+/*
+ * dir items are the name -> inode pointers in a directory. There is one
+ * for every name in a directory.
+ */
+#define BTRFS_DIR_LOG_ITEM_KEY 60
+#define BTRFS_DIR_LOG_INDEX_KEY 72
+#define BTRFS_DIR_ITEM_KEY 84
+#define BTRFS_DIR_INDEX_KEY 96
+/*
+ * extent data is for file data
+ */
+#define BTRFS_EXTENT_DATA_KEY 108
+
+/*
+ * extent csums are stored in a separate tree and hold csums for
+ * an entire extent on disk.
+ */
+#define BTRFS_EXTENT_CSUM_KEY 128
+
+/*
+ * root items point to tree roots. They are typically in the root
+ * tree used by the super block to find all the other trees
+ */
+#define BTRFS_ROOT_ITEM_KEY 132
+
+/*
+ * root backrefs tie subvols and snapshots to the directory entries that
+ * reference them
+ */
+#define BTRFS_ROOT_BACKREF_KEY 144
+
+/*
+ * root refs make a fast index for listing all of the snapshots and
+ * subvolumes referenced by a given root. They point directly to the
+ * directory item in the root that references the subvol
+ */
+#define BTRFS_ROOT_REF_KEY 156
+
+/*
+ * extent items are in the extent map tree. These record which blocks
+ * are used, and how many references there are to each block
+ */
+#define BTRFS_EXTENT_ITEM_KEY 168
+
+#define BTRFS_TREE_BLOCK_REF_KEY 176
+
+#define BTRFS_EXTENT_DATA_REF_KEY 178
+
+#define BTRFS_EXTENT_REF_V0_KEY 180
+
+#define BTRFS_SHARED_BLOCK_REF_KEY 182
+
+#define BTRFS_SHARED_DATA_REF_KEY 184
+
+/*
+ * block groups give us hints into the extent allocation trees. Which
+ * blocks are free etc etc
+ */
+#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
+
+#define BTRFS_DEV_EXTENT_KEY 204
+#define BTRFS_DEV_ITEM_KEY 216
+#define BTRFS_CHUNK_ITEM_KEY 228
+
+#define BTRFS_BALANCE_ITEM_KEY 248
+
+/*
+ * string items are for debugging. They just store a short string of
+ * data in the FS
+ */
+#define BTRFS_STRING_ITEM_KEY 253
+
+/*
+ * Flags for mount options.
+ *
+ * Note: don't forget to add new options to btrfs_show_options()
+ */
+#define BTRFS_MOUNT_NODATASUM (1 << 0)
+#define BTRFS_MOUNT_NODATACOW (1 << 1)
+#define BTRFS_MOUNT_NOBARRIER (1 << 2)
+#define BTRFS_MOUNT_SSD (1 << 3)
+#define BTRFS_MOUNT_DEGRADED (1 << 4)
+#define BTRFS_MOUNT_COMPRESS (1 << 5)
+#define BTRFS_MOUNT_NOTREELOG (1 << 6)
+#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
+#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
+#define BTRFS_MOUNT_NOSSD (1 << 9)
+#define BTRFS_MOUNT_DISCARD (1 << 10)
+#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
+#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
+#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
+#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
+#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
+#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
+#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
+#define BTRFS_MOUNT_RECOVERY (1 << 18)
+#define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
+#define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
+#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
+#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
+
+#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
+#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
+#define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \
+ BTRFS_MOUNT_##opt)
+/*
+ * Inode flags
+ */
+#define BTRFS_INODE_NODATASUM (1 << 0)
+#define BTRFS_INODE_NODATACOW (1 << 1)
+#define BTRFS_INODE_READONLY (1 << 2)
+#define BTRFS_INODE_NOCOMPRESS (1 << 3)
+#define BTRFS_INODE_PREALLOC (1 << 4)
+#define BTRFS_INODE_SYNC (1 << 5)
+#define BTRFS_INODE_IMMUTABLE (1 << 6)
+#define BTRFS_INODE_APPEND (1 << 7)
+#define BTRFS_INODE_NODUMP (1 << 8)
+#define BTRFS_INODE_NOATIME (1 << 9)
+#define BTRFS_INODE_DIRSYNC (1 << 10)
+#define BTRFS_INODE_COMPRESS (1 << 11)
+
+#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
+
+struct btrfs_map_token {
+ struct extent_buffer *eb;
+ char *kaddr;
+ unsigned long offset;
+};
+
+static inline void btrfs_init_map_token (struct btrfs_map_token *token)
+{
+ memset(token, 0, sizeof(*token));
+}
+
+/* some macros to generate set/get funcs for the struct fields. This
+ * assumes there is a lefoo_to_cpu for every type, so lets make a simple
+ * one for u8:
+ */
+#define le8_to_cpu(v) (v)
+#define cpu_to_le8(v) (v)
+#define __le8 u8
+
+#define read_eb_member(eb, ptr, type, member, result) ( \
+ read_extent_buffer(eb, (char *)(result), \
+ ((unsigned long)(ptr)) + \
+ offsetof(type, member), \
+ sizeof(((type *)0)->member)))
+
+#define write_eb_member(eb, ptr, type, member, result) ( \
+ write_extent_buffer(eb, (char *)(result), \
+ ((unsigned long)(ptr)) + \
+ offsetof(type, member), \
+ sizeof(((type *)0)->member)))
+
+#ifndef BTRFS_SETGET_FUNCS
+#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
+u##bits btrfs_##name(struct extent_buffer *eb, type *s); \
+u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, struct btrfs_map_token *token); \
+void btrfs_set_token_##name(struct extent_buffer *eb, type *s, u##bits val, struct btrfs_map_token *token);\
+void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val);
+#endif
+
+#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
+static inline u##bits btrfs_##name(struct extent_buffer *eb) \
+{ \
+ type *p = page_address(eb->pages[0]); \
+ u##bits res = le##bits##_to_cpu(p->member); \
+ return res; \
+} \
+static inline void btrfs_set_##name(struct extent_buffer *eb, \
+ u##bits val) \
+{ \
+ type *p = page_address(eb->pages[0]); \
+ p->member = cpu_to_le##bits(val); \
+}
+
+#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
+static inline u##bits btrfs_##name(type *s) \
+{ \
+ return le##bits##_to_cpu(s->member); \
+} \
+static inline void btrfs_set_##name(type *s, u##bits val) \
+{ \
+ s->member = cpu_to_le##bits(val); \
+}
+
+BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
+BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
+BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
+BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
+BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
+BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
+ start_offset, 64);
+BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
+BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
+BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
+BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
+BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
+BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
+
+BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
+ total_bytes, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
+ bytes_used, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
+ io_align, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
+ io_width, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
+ sector_size, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
+ dev_group, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
+ seek_speed, 8);
+BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
+ bandwidth, 8);
+BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
+ generation, 64);
+
+static inline char *btrfs_device_uuid(struct btrfs_dev_item *d)
+{
+ return (char *)d + offsetof(struct btrfs_dev_item, uuid);
+}
+
+static inline char *btrfs_device_fsid(struct btrfs_dev_item *d)
+{
+ return (char *)d + offsetof(struct btrfs_dev_item, fsid);
+}
+
+BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
+BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
+BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
+BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
+BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
+BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
+BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
+BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
+BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
+BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
+BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
+
+static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
+{
+ return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
+}
+
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
+ stripe_len, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
+ io_align, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
+ io_width, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
+ sector_size, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
+ num_stripes, 16);
+BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
+ sub_stripes, 16);
+BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
+
+static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
+ int nr)
+{
+ unsigned long offset = (unsigned long)c;
+ offset += offsetof(struct btrfs_chunk, stripe);
+ offset += nr * sizeof(struct btrfs_stripe);
+ return (struct btrfs_stripe *)offset;
+}
+
+static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
+{
+ return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
+}
+
+static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
+ struct btrfs_chunk *c, int nr)
+{
+ return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
+}
+
+static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
+ struct btrfs_chunk *c, int nr)
+{
+ return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
+}
+
+/* struct btrfs_block_group_item */
+BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
+ used, 64);
+BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
+ used, 64);
+BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
+ struct btrfs_block_group_item, chunk_objectid, 64);
+
+BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
+ struct btrfs_block_group_item, chunk_objectid, 64);
+BTRFS_SETGET_FUNCS(disk_block_group_flags,
+ struct btrfs_block_group_item, flags, 64);
+BTRFS_SETGET_STACK_FUNCS(block_group_flags,
+ struct btrfs_block_group_item, flags, 64);
+
+/* struct btrfs_inode_ref */
+BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
+BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
+
+/* struct btrfs_inode_item */
+BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
+BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
+BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
+BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
+BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
+BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
+BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
+BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
+BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
+BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
+BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
+BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
+
+static inline struct btrfs_timespec *
+btrfs_inode_atime(struct btrfs_inode_item *inode_item)
+{
+ unsigned long ptr = (unsigned long)inode_item;
+ ptr += offsetof(struct btrfs_inode_item, atime);
+ return (struct btrfs_timespec *)ptr;
+}
+
+static inline struct btrfs_timespec *
+btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
+{
+ unsigned long ptr = (unsigned long)inode_item;
+ ptr += offsetof(struct btrfs_inode_item, mtime);
+ return (struct btrfs_timespec *)ptr;
+}
+
+static inline struct btrfs_timespec *
+btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
+{
+ unsigned long ptr = (unsigned long)inode_item;
+ ptr += offsetof(struct btrfs_inode_item, ctime);
+ return (struct btrfs_timespec *)ptr;
+}
+
+BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
+BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
+
+/* struct btrfs_dev_extent */
+BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
+ chunk_tree, 64);
+BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
+ chunk_objectid, 64);
+BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
+ chunk_offset, 64);
+BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
+
+static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
+{
+ unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
+ return (u8 *)((unsigned long)dev + ptr);
+}
+
+BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
+BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
+ generation, 64);
+BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
+
+BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
+
+
+BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
+
+static inline void btrfs_tree_block_key(struct extent_buffer *eb,
+ struct btrfs_tree_block_info *item,
+ struct btrfs_disk_key *key)
+{
+ read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
+}
+
+static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
+ struct btrfs_tree_block_info *item,
+ struct btrfs_disk_key *key)
+{
+ write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
+}
+
+BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
+ root, 64);
+BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
+ objectid, 64);
+BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
+ offset, 64);
+BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
+ count, 32);
+
+BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
+ count, 32);
+
+BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
+ type, 8);
+BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
+ offset, 64);
+
+static inline u32 btrfs_extent_inline_ref_size(int type)
+{
+ if (type == BTRFS_TREE_BLOCK_REF_KEY ||
+ type == BTRFS_SHARED_BLOCK_REF_KEY)
+ return sizeof(struct btrfs_extent_inline_ref);
+ if (type == BTRFS_SHARED_DATA_REF_KEY)
+ return sizeof(struct btrfs_shared_data_ref) +
+ sizeof(struct btrfs_extent_inline_ref);
+ if (type == BTRFS_EXTENT_DATA_REF_KEY)
+ return sizeof(struct btrfs_extent_data_ref) +
+ offsetof(struct btrfs_extent_inline_ref, offset);
+ BUG();
+ return 0;
+}
+
+BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
+BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
+ generation, 64);
+BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
+BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
+
+/* struct btrfs_node */
+BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
+BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
+
+static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
+{
+ unsigned long ptr;
+ ptr = offsetof(struct btrfs_node, ptrs) +
+ sizeof(struct btrfs_key_ptr) * nr;
+ return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
+}
+
+static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
+ int nr, u64 val)
+{
+ unsigned long ptr;
+ ptr = offsetof(struct btrfs_node, ptrs) +
+ sizeof(struct btrfs_key_ptr) * nr;
+ btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
+}
+
+static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
+{
+ unsigned long ptr;
+ ptr = offsetof(struct btrfs_node, ptrs) +
+ sizeof(struct btrfs_key_ptr) * nr;
+ return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
+}
+
+static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
+ int nr, u64 val)
+{
+ unsigned long ptr;
+ ptr = offsetof(struct btrfs_node, ptrs) +
+ sizeof(struct btrfs_key_ptr) * nr;
+ btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
+}
+
+static inline unsigned long btrfs_node_key_ptr_offset(int nr)
+{
+ return offsetof(struct btrfs_node, ptrs) +
+ sizeof(struct btrfs_key_ptr) * nr;
+}
+
+void btrfs_node_key(struct extent_buffer *eb,
+ struct btrfs_disk_key *disk_key, int nr);
+
+static inline void btrfs_set_node_key(struct extent_buffer *eb,
+ struct btrfs_disk_key *disk_key, int nr)
+{
+ unsigned long ptr;
+ ptr = btrfs_node_key_ptr_offset(nr);
+ write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
+ struct btrfs_key_ptr, key, disk_key);
+}
+
+/* struct btrfs_item */
+BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
+BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
+
+static inline unsigned long btrfs_item_nr_offset(int nr)
+{
+ return offsetof(struct btrfs_leaf, items) +
+ sizeof(struct btrfs_item) * nr;
+}
+
+static inline struct btrfs_item *btrfs_item_nr(struct extent_buffer *eb,
+ int nr)
+{
+ return (struct btrfs_item *)btrfs_item_nr_offset(nr);
+}
+
+static inline u32 btrfs_item_end(struct extent_buffer *eb,
+ struct btrfs_item *item)
+{
+ return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
+}
+
+static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
+{
+ return btrfs_item_end(eb, btrfs_item_nr(eb, nr));
+}
+
+static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
+{
+ return btrfs_item_offset(eb, btrfs_item_nr(eb, nr));
+}
+
+static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
+{
+ return btrfs_item_size(eb, btrfs_item_nr(eb, nr));
+}
+
+static inline void btrfs_item_key(struct extent_buffer *eb,
+ struct btrfs_disk_key *disk_key, int nr)
+{
+ struct btrfs_item *item = btrfs_item_nr(eb, nr);
+ read_eb_member(eb, item, struct btrfs_item, key, disk_key);
+}
+
+static inline void btrfs_set_item_key(struct extent_buffer *eb,
+ struct btrfs_disk_key *disk_key, int nr)
+{
+ struct btrfs_item *item = btrfs_item_nr(eb, nr);
+ write_eb_member(eb, item, struct btrfs_item, key, disk_key);
+}
+
+BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
+
+/*
+ * struct btrfs_root_ref
+ */
+BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
+BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
+BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
+
+/* struct btrfs_dir_item */
+BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
+BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
+BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
+BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
+
+static inline void btrfs_dir_item_key(struct extent_buffer *eb,
+ struct btrfs_dir_item *item,
+ struct btrfs_disk_key *key)
+{
+ read_eb_member(eb, item, struct btrfs_dir_item, location, key);
+}
+
+static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
+ struct btrfs_dir_item *item,
+ struct btrfs_disk_key *key)
+{
+ write_eb_member(eb, item, struct btrfs_dir_item, location, key);
+}
+
+BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
+ num_entries, 64);
+BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
+ num_bitmaps, 64);
+BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
+ generation, 64);
+
+static inline void btrfs_free_space_key(struct extent_buffer *eb,
+ struct btrfs_free_space_header *h,
+ struct btrfs_disk_key *key)
+{
+ read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
+}
+
+static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
+ struct btrfs_free_space_header *h,
+ struct btrfs_disk_key *key)
+{
+ write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
+}
+
+/* struct btrfs_disk_key */
+BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
+ objectid, 64);
+BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
+BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
+
+static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
+ struct btrfs_disk_key *disk)
+{
+ cpu->offset = le64_to_cpu(disk->offset);
+ cpu->type = disk->type;
+ cpu->objectid = le64_to_cpu(disk->objectid);
+}
+
+static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
+ struct btrfs_key *cpu)
+{
+ disk->offset = cpu_to_le64(cpu->offset);
+ disk->type = cpu->type;
+ disk->objectid = cpu_to_le64(cpu->objectid);
+}
+
+static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
+ struct btrfs_key *key, int nr)
+{
+ struct btrfs_disk_key disk_key;
+ btrfs_node_key(eb, &disk_key, nr);
+ btrfs_disk_key_to_cpu(key, &disk_key);
+}
+
+static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
+ struct btrfs_key *key, int nr)
+{
+ struct btrfs_disk_key disk_key;
+ btrfs_item_key(eb, &disk_key, nr);
+ btrfs_disk_key_to_cpu(key, &disk_key);
+}
+
+static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
+ struct btrfs_dir_item *item,
+ struct btrfs_key *key)
+{
+ struct btrfs_disk_key disk_key;
+ btrfs_dir_item_key(eb, item, &disk_key);
+ btrfs_disk_key_to_cpu(key, &disk_key);
+}
+
+
+static inline u8 btrfs_key_type(struct btrfs_key *key)
+{
+ return key->type;
+}
+
+static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
+{
+ key->type = val;
+}
+
+/* struct btrfs_header */
+BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
+BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
+ generation, 64);
+BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
+BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
+BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
+BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
+
+static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
+{
+ return (btrfs_header_flags(eb) & flag) == flag;
+}
+
+static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
+{
+ u64 flags = btrfs_header_flags(eb);
+ btrfs_set_header_flags(eb, flags | flag);
+ return (flags & flag) == flag;
+}
+
+static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
+{
+ u64 flags = btrfs_header_flags(eb);
+ btrfs_set_header_flags(eb, flags & ~flag);
+ return (flags & flag) == flag;
+}
+
+static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
+{
+ u64 flags = btrfs_header_flags(eb);
+ return flags >> BTRFS_BACKREF_REV_SHIFT;
+}
+
+static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
+ int rev)
+{
+ u64 flags = btrfs_header_flags(eb);
+ flags &= ~BTRFS_BACKREF_REV_MASK;
+ flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
+ btrfs_set_header_flags(eb, flags);
+}
+
+static inline u8 *btrfs_header_fsid(struct extent_buffer *eb)
+{
+ unsigned long ptr = offsetof(struct btrfs_header, fsid);
+ return (u8 *)ptr;
+}
+
+static inline u8 *btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
+{
+ unsigned long ptr = offsetof(struct btrfs_header, chunk_tree_uuid);
+ return (u8 *)ptr;
+}
+
+static inline int btrfs_is_leaf(struct extent_buffer *eb)
+{
+ return btrfs_header_level(eb) == 0;
+}
+
+/* struct btrfs_root_item */
+BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
+ generation, 64);
+BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
+BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
+BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
+
+BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
+ generation, 64);
+BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
+BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
+BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
+BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
+BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
+BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
+BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
+BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
+ last_snapshot, 64);
+
+static inline bool btrfs_root_readonly(struct btrfs_root *root)
+{
+ return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
+}
+
+/* struct btrfs_root_backup */
+BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
+ tree_root, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
+ tree_root_gen, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
+ tree_root_level, 8);
+
+BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
+ chunk_root, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
+ chunk_root_gen, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
+ chunk_root_level, 8);
+
+BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
+ extent_root, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
+ extent_root_gen, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
+ extent_root_level, 8);
+
+BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
+ fs_root, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
+ fs_root_gen, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
+ fs_root_level, 8);
+
+BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
+ dev_root, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
+ dev_root_gen, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
+ dev_root_level, 8);
+
+BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
+ csum_root, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
+ csum_root_gen, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
+ csum_root_level, 8);
+BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
+ total_bytes, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
+ bytes_used, 64);
+BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
+ num_devices, 64);
+
+/* struct btrfs_balance_item */
+BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
+
+static inline void btrfs_balance_data(struct extent_buffer *eb,
+ struct btrfs_balance_item *bi,
+ struct btrfs_disk_balance_args *ba)
+{
+ read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
+}
+
+static inline void btrfs_set_balance_data(struct extent_buffer *eb,
+ struct btrfs_balance_item *bi,
+ struct btrfs_disk_balance_args *ba)
+{
+ write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
+}
+
+static inline void btrfs_balance_meta(struct extent_buffer *eb,
+ struct btrfs_balance_item *bi,
+ struct btrfs_disk_balance_args *ba)
+{
+ read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
+}
+
+static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
+ struct btrfs_balance_item *bi,
+ struct btrfs_disk_balance_args *ba)
+{
+ write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
+}
+
+static inline void btrfs_balance_sys(struct extent_buffer *eb,
+ struct btrfs_balance_item *bi,
+ struct btrfs_disk_balance_args *ba)
+{
+ read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
+}
+
+static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
+ struct btrfs_balance_item *bi,
+ struct btrfs_disk_balance_args *ba)
+{
+ write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
+}
+
+static inline void
+btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
+ struct btrfs_disk_balance_args *disk)
+{
+ memset(cpu, 0, sizeof(*cpu));
+
+ cpu->profiles = le64_to_cpu(disk->profiles);
+ cpu->usage = le64_to_cpu(disk->usage);
+ cpu->devid = le64_to_cpu(disk->devid);
+ cpu->pstart = le64_to_cpu(disk->pstart);
+ cpu->pend = le64_to_cpu(disk->pend);
+ cpu->vstart = le64_to_cpu(disk->vstart);
+ cpu->vend = le64_to_cpu(disk->vend);
+ cpu->target = le64_to_cpu(disk->target);
+ cpu->flags = le64_to_cpu(disk->flags);
+}
+
+static inline void
+btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
+ struct btrfs_balance_args *cpu)
+{
+ memset(disk, 0, sizeof(*disk));
+
+ disk->profiles = cpu_to_le64(cpu->profiles);
+ disk->usage = cpu_to_le64(cpu->usage);
+ disk->devid = cpu_to_le64(cpu->devid);
+ disk->pstart = cpu_to_le64(cpu->pstart);
+ disk->pend = cpu_to_le64(cpu->pend);
+ disk->vstart = cpu_to_le64(cpu->vstart);
+ disk->vend = cpu_to_le64(cpu->vend);
+ disk->target = cpu_to_le64(cpu->target);
+ disk->flags = cpu_to_le64(cpu->flags);
+}
+
+/* struct btrfs_super_block */
+BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
+BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
+BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
+ generation, 64);
+BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
+BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
+ struct btrfs_super_block, sys_chunk_array_size, 32);
+BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
+ struct btrfs_super_block, chunk_root_generation, 64);
+BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
+ root_level, 8);
+BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
+ chunk_root, 64);
+BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
+ chunk_root_level, 8);
+BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
+ log_root, 64);
+BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
+ log_root_transid, 64);
+BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
+ log_root_level, 8);
+BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
+ total_bytes, 64);
+BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
+ bytes_used, 64);
+BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
+ sectorsize, 32);
+BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
+ nodesize, 32);
+BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
+ leafsize, 32);
+BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
+ stripesize, 32);
+BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
+ root_dir_objectid, 64);
+BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
+ num_devices, 64);
+BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
+ compat_flags, 64);
+BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
+ compat_ro_flags, 64);
+BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
+ incompat_flags, 64);
+BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
+ csum_type, 16);
+BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
+ cache_generation, 64);
+
+static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
+{
+ int t = btrfs_super_csum_type(s);
+ BUG_ON(t >= ARRAY_SIZE(btrfs_csum_sizes));
+ return btrfs_csum_sizes[t];
+}
+
+static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
+{
+ return offsetof(struct btrfs_leaf, items);
+}
+
+/* struct btrfs_file_extent_item */
+BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
+
+static inline unsigned long
+btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
+{
+ unsigned long offset = (unsigned long)e;
+ offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
+ return offset;
+}
+
+static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
+{
+ return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
+}
+
+BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
+ disk_bytenr, 64);
+BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
+ generation, 64);
+BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
+ disk_num_bytes, 64);
+BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
+ offset, 64);
+BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
+ num_bytes, 64);
+BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
+ ram_bytes, 64);
+BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
+ compression, 8);
+BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
+ encryption, 8);
+BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
+ other_encoding, 16);
+
+/* this returns the number of file bytes represented by the inline item.
+ * If an item is compressed, this is the uncompressed size
+ */
+static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
+ struct btrfs_file_extent_item *e)
+{
+ return btrfs_file_extent_ram_bytes(eb, e);
+}
+
+/*
+ * this returns the number of bytes used by the item on disk, minus the
+ * size of any extent headers. If a file is compressed on disk, this is
+ * the compressed size
+ */
+static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
+ struct btrfs_item *e)
+{
+ unsigned long offset;
+ offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
+ return btrfs_item_size(eb, e) - offset;
+}
+
+static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
+{
+ return sb->s_fs_info;
+}
+
+static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
+{
+ if (level == 0)
+ return root->leafsize;
+ return root->nodesize;
+}
+
+/* helper function to cast into the data area of the leaf. */
+#define btrfs_item_ptr(leaf, slot, type) \
+ ((type *)(btrfs_leaf_data(leaf) + \
+ btrfs_item_offset_nr(leaf, slot)))
+
+#define btrfs_item_ptr_offset(leaf, slot) \
+ ((unsigned long)(btrfs_leaf_data(leaf) + \
+ btrfs_item_offset_nr(leaf, slot)))
+
+static inline struct dentry *fdentry(struct file *file)
+{
+ return file->f_path.dentry;
+}
+
+static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
+{
+ return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
+ (space_info->flags & BTRFS_BLOCK_GROUP_DATA));
+}
+
+static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
+{
+ return mapping_gfp_mask(mapping) & ~__GFP_FS;
+}
+
+/* extent-tree.c */
+static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
+ unsigned num_items)
+{
+ return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
+ 3 * num_items;
+}
+
+/*
+ * Doing a truncate won't result in new nodes or leaves, just what we need for
+ * COW.
+ */
+static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
+ unsigned num_items)
+{
+ return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
+ num_items;
+}
+
+void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
+int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, unsigned long count);
+int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
+int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 bytenr,
+ u64 num_bytes, u64 *refs, u64 *flags);
+int btrfs_pin_extent(struct btrfs_root *root,
+ u64 bytenr, u64 num, int reserved);
+int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes);
+int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 objectid, u64 offset, u64 bytenr);
+struct btrfs_block_group_cache *btrfs_lookup_block_group(
+ struct btrfs_fs_info *info,
+ u64 bytenr);
+void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
+u64 btrfs_find_block_group(struct btrfs_root *root,
+ u64 search_start, u64 search_hint, int owner);
+struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u32 blocksize,
+ u64 parent, u64 root_objectid,
+ struct btrfs_disk_key *key, int level,
+ u64 hint, u64 empty_size, int for_cow);
+void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf,
+ u64 parent, int last_ref, int for_cow);
+struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u32 blocksize,
+ int level);
+int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 root_objectid, u64 owner,
+ u64 offset, struct btrfs_key *ins);
+int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 root_objectid, u64 owner, u64 offset,
+ struct btrfs_key *ins);
+int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 num_bytes, u64 min_alloc_size,
+ u64 empty_size, u64 hint_byte,
+ struct btrfs_key *ins, u64 data);
+int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct extent_buffer *buf, int full_backref, int for_cow);
+int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct extent_buffer *buf, int full_backref, int for_cow);
+int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 flags,
+ int is_data);
+int btrfs_free_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
+ u64 owner, u64 offset, int for_cow);
+
+int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
+int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
+ u64 start, u64 len);
+void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 root_objectid, u64 owner, u64 offset, int for_cow);
+
+int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
+int btrfs_free_block_groups(struct btrfs_fs_info *info);
+int btrfs_read_block_groups(struct btrfs_root *root);
+int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
+int btrfs_make_block_group(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 bytes_used,
+ u64 type, u64 chunk_objectid, u64 chunk_offset,
+ u64 size);
+int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 group_start);
+u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags);
+u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
+void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *ionde);
+void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
+int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
+void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
+void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
+ struct inode *inode);
+void btrfs_orphan_release_metadata(struct inode *inode);
+int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
+ struct btrfs_pending_snapshot *pending);
+int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
+void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
+int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
+void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
+void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv);
+struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root);
+void btrfs_free_block_rsv(struct btrfs_root *root,
+ struct btrfs_block_rsv *rsv);
+int btrfs_block_rsv_add(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes);
+int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes);
+int btrfs_block_rsv_check(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv, int min_factor);
+int btrfs_block_rsv_refill(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 min_reserved);
+int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 min_reserved);
+int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
+ struct btrfs_block_rsv *dst_rsv,
+ u64 num_bytes);
+void btrfs_block_rsv_release(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes);
+int btrfs_set_block_group_ro(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache);
+void btrfs_set_block_group_rw(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache);
+void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
+u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
+int btrfs_error_unpin_extent_range(struct btrfs_root *root,
+ u64 start, u64 end);
+int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
+ u64 num_bytes, u64 *actual_bytes);
+int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 type);
+int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
+
+int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
+/* ctree.c */
+int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
+ int level, int *slot);
+int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
+int btrfs_previous_item(struct btrfs_root *root,
+ struct btrfs_path *path, u64 min_objectid,
+ int type);
+void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_key *new_key);
+struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
+struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
+int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_key *key, int lowest_level,
+ int cache_only, u64 min_trans);
+int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
+ struct btrfs_key *max_key,
+ struct btrfs_path *path, int cache_only,
+ u64 min_trans);
+int btrfs_cow_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *buf,
+ struct extent_buffer *parent, int parent_slot,
+ struct extent_buffer **cow_ret);
+int btrfs_copy_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf,
+ struct extent_buffer **cow_ret, u64 new_root_objectid);
+int btrfs_block_can_be_shared(struct btrfs_root *root,
+ struct extent_buffer *buf);
+void btrfs_extend_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ u32 data_size);
+void btrfs_truncate_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u32 new_size, int from_end);
+int btrfs_split_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *new_key,
+ unsigned long split_offset);
+int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *new_key);
+int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_key *key, struct btrfs_path *p, int
+ ins_len, int cow);
+int btrfs_realloc_node(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *parent,
+ int start_slot, int cache_only, u64 *last_ret,
+ struct btrfs_key *progress);
+void btrfs_release_path(struct btrfs_path *p);
+struct btrfs_path *btrfs_alloc_path(void);
+void btrfs_free_path(struct btrfs_path *p);
+void btrfs_set_path_blocking(struct btrfs_path *p);
+void btrfs_clear_path_blocking(struct btrfs_path *p,
+ struct extent_buffer *held, int held_rw);
+void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
+
+int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct btrfs_path *path, int slot, int nr);
+static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path)
+{
+ return btrfs_del_items(trans, root, path, path->slots[0], 1);
+}
+
+void setup_items_for_insert(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_key *cpu_key, u32 *data_size,
+ u32 total_data, u32 total_size, int nr);
+int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_key *key, void *data, u32 data_size);
+int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *cpu_key, u32 *data_size, int nr);
+
+static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *key,
+ u32 data_size)
+{
+ return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
+}
+
+int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
+static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
+{
+ ++p->slots[0];
+ if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
+ return btrfs_next_leaf(root, p);
+ return 0;
+}
+int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
+int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
+int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ int update_ref, int for_reloc);
+int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *node,
+ struct extent_buffer *parent);
+static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
+{
+ /*
+ * Get synced with close_ctree()
+ */
+ smp_mb();
+ return fs_info->closing;
+}
+static inline void free_fs_info(struct btrfs_fs_info *fs_info)
+{
+ kfree(fs_info->balance_ctl);
+ kfree(fs_info->delayed_root);
+ kfree(fs_info->extent_root);
+ kfree(fs_info->tree_root);
+ kfree(fs_info->chunk_root);
+ kfree(fs_info->dev_root);
+ kfree(fs_info->csum_root);
+ kfree(fs_info->super_copy);
+ kfree(fs_info->super_for_commit);
+ kfree(fs_info);
+}
+
+/* root-item.c */
+int btrfs_find_root_ref(struct btrfs_root *tree_root,
+ struct btrfs_path *path,
+ u64 root_id, u64 ref_id);
+int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *tree_root,
+ u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
+ const char *name, int name_len);
+int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *tree_root,
+ u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
+ const char *name, int name_len);
+int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct btrfs_key *key);
+int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_key *key, struct btrfs_root_item
+ *item);
+int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_key *key,
+ struct btrfs_root_item *item);
+int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
+ btrfs_root_item *item, struct btrfs_key *key);
+int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid);
+int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
+void btrfs_set_root_node(struct btrfs_root_item *item,
+ struct extent_buffer *node);
+void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
+
+/* dir-item.c */
+int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, const char *name,
+ int name_len, struct inode *dir,
+ struct btrfs_key *location, u8 type, u64 index);
+struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 dir,
+ const char *name, int name_len,
+ int mod);
+struct btrfs_dir_item *
+btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 dir,
+ u64 objectid, const char *name, int name_len,
+ int mod);
+struct btrfs_dir_item *
+btrfs_search_dir_index_item(struct btrfs_root *root,
+ struct btrfs_path *path, u64 dirid,
+ const char *name, int name_len);
+struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
+ struct btrfs_path *path,
+ const char *name, int name_len);
+int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_dir_item *di);
+int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 objectid,
+ const char *name, u16 name_len,
+ const void *data, u16 data_len);
+struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 dir,
+ const char *name, u16 name_len,
+ int mod);
+int verify_dir_item(struct btrfs_root *root,
+ struct extent_buffer *leaf,
+ struct btrfs_dir_item *dir_item);
+
+/* orphan.c */
+int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 offset);
+int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 offset);
+int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
+
+/* inode-item.c */
+int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ u64 inode_objectid, u64 ref_objectid, u64 index);
+int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ u64 inode_objectid, u64 ref_objectid, u64 *index);
+struct btrfs_inode_ref *
+btrfs_lookup_inode_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ const char *name, int name_len,
+ u64 inode_objectid, u64 ref_objectid, int mod);
+int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 objectid);
+int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_path *path,
+ struct btrfs_key *location, int mod);
+
+/* file-item.c */
+int btrfs_del_csums(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 bytenr, u64 len);
+int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
+ struct bio *bio, u32 *dst);
+int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
+ struct bio *bio, u64 logical_offset, u32 *dst);
+int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 objectid, u64 pos,
+ u64 disk_offset, u64 disk_num_bytes,
+ u64 num_bytes, u64 offset, u64 ram_bytes,
+ u8 compression, u8 encryption, u16 other_encoding);
+int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 objectid,
+ u64 bytenr, int mod);
+int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_ordered_sum *sums);
+int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
+ struct bio *bio, u64 file_start, int contig);
+struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, int cow);
+int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct btrfs_path *path,
+ u64 isize);
+int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
+ struct list_head *list, int search_commit);
+/* inode.c */
+struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
+ size_t pg_offset, u64 start, u64 len,
+ int create);
+
+/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
+#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
+#define ClearPageChecked ClearPageFsMisc
+#define SetPageChecked SetPageFsMisc
+#define PageChecked PageFsMisc
+#endif
+
+/* This forces readahead on a given range of bytes in an inode */
+static inline void btrfs_force_ra(struct address_space *mapping,
+ struct file_ra_state *ra, struct file *file,
+ pgoff_t offset, unsigned long req_size)
+{
+ page_cache_sync_readahead(mapping, ra, file, offset, req_size);
+}
+
+struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
+int btrfs_set_inode_index(struct inode *dir, u64 *index);
+int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *dir, struct inode *inode,
+ const char *name, int name_len);
+int btrfs_add_link(struct btrfs_trans_handle *trans,
+ struct inode *parent_inode, struct inode *inode,
+ const char *name, int name_len, int add_backref, u64 index);
+int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *dir, u64 objectid,
+ const char *name, int name_len);
+int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *inode, u64 new_size,
+ u32 min_type);
+
+int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
+int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
+ struct extent_state **cached_state);
+int btrfs_writepages(struct address_space *mapping,
+ struct writeback_control *wbc);
+int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *new_root, u64 new_dirid);
+int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
+ size_t size, struct bio *bio, unsigned long bio_flags);
+
+int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
+int btrfs_readpage(struct file *file, struct page *page);
+void btrfs_evict_inode(struct inode *inode);
+int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
+int btrfs_dirty_inode(struct inode *inode);
+int btrfs_update_time(struct file *file);
+struct inode *btrfs_alloc_inode(struct super_block *sb);
+void btrfs_destroy_inode(struct inode *inode);
+int btrfs_drop_inode(struct inode *inode);
+int btrfs_init_cachep(void);
+void btrfs_destroy_cachep(void);
+long btrfs_ioctl_trans_end(struct file *file);
+struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
+ struct btrfs_root *root, int *was_new);
+struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
+ size_t pg_offset, u64 start, u64 end,
+ int create);
+int btrfs_update_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *inode);
+int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
+int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode);
+int btrfs_orphan_cleanup(struct btrfs_root *root);
+void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
+void btrfs_invalidate_inodes(struct btrfs_root *root);
+void btrfs_add_delayed_iput(struct inode *inode);
+void btrfs_run_delayed_iputs(struct btrfs_root *root);
+int btrfs_prealloc_file_range(struct inode *inode, int mode,
+ u64 start, u64 num_bytes, u64 min_size,
+ loff_t actual_len, u64 *alloc_hint);
+int btrfs_prealloc_file_range_trans(struct inode *inode,
+ struct btrfs_trans_handle *trans, int mode,
+ u64 start, u64 num_bytes, u64 min_size,
+ loff_t actual_len, u64 *alloc_hint);
+extern const struct dentry_operations btrfs_dentry_operations;
+
+/* ioctl.c */
+long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
+void btrfs_update_iflags(struct inode *inode);
+void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
+int btrfs_defrag_file(struct inode *inode, struct file *file,
+ struct btrfs_ioctl_defrag_range_args *range,
+ u64 newer_than, unsigned long max_pages);
+/* file.c */
+int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
+ struct inode *inode);
+int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
+int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
+int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
+ int skip_pinned);
+extern const struct file_operations btrfs_file_operations;
+int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
+ u64 start, u64 end, u64 *hint_byte, int drop_cache);
+int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
+ struct inode *inode, u64 start, u64 end);
+int btrfs_release_file(struct inode *inode, struct file *file);
+void btrfs_drop_pages(struct page **pages, size_t num_pages);
+int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
+ struct page **pages, size_t num_pages,
+ loff_t pos, size_t write_bytes,
+ struct extent_state **cached);
+
+/* tree-defrag.c */
+int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, int cache_only);
+
+/* sysfs.c */
+int btrfs_init_sysfs(void);
+void btrfs_exit_sysfs(void);
+
+/* xattr.c */
+ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
+
+/* super.c */
+int btrfs_parse_options(struct btrfs_root *root, char *options);
+int btrfs_sync_fs(struct super_block *sb, int wait);
+void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...);
+void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
+ unsigned int line, int errno, const char *fmt, ...);
+
+void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, const char *function,
+ unsigned int line, int errno);
+
+#define btrfs_abort_transaction(trans, root, errno) \
+do { \
+ __btrfs_abort_transaction(trans, root, __func__, \
+ __LINE__, errno); \
+} while (0)
+
+#define btrfs_std_error(fs_info, errno) \
+do { \
+ if ((errno)) \
+ __btrfs_std_error((fs_info), __func__, \
+ __LINE__, (errno), NULL); \
+} while (0)
+
+#define btrfs_error(fs_info, errno, fmt, args...) \
+do { \
+ __btrfs_std_error((fs_info), __func__, __LINE__, \
+ (errno), fmt, ##args); \
+} while (0)
+
+void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
+ unsigned int line, int errno, const char *fmt, ...);
+
+#define btrfs_panic(fs_info, errno, fmt, args...) \
+do { \
+ struct btrfs_fs_info *_i = (fs_info); \
+ __btrfs_panic(_i, __func__, __LINE__, errno, fmt, ##args); \
+ BUG_ON(!(_i->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)); \
+} while (0)
+
+/* acl.c */
+#ifdef CONFIG_BTRFS_FS_POSIX_ACL
+struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
+int btrfs_init_acl(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *dir);
+int btrfs_acl_chmod(struct inode *inode);
+#else
+#define btrfs_get_acl NULL
+static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *dir)
+{
+ return 0;
+}
+static inline int btrfs_acl_chmod(struct inode *inode)
+{
+ return 0;
+}
+#endif
+
+/* relocation.c */
+int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
+int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_recover_relocation(struct btrfs_root *root);
+int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
+void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *buf,
+ struct extent_buffer *cow);
+void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
+ struct btrfs_pending_snapshot *pending,
+ u64 *bytes_to_reserve);
+int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
+ struct btrfs_pending_snapshot *pending);
+
+/* scrub.c */
+int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
+ struct btrfs_scrub_progress *progress, int readonly);
+void btrfs_scrub_pause(struct btrfs_root *root);
+void btrfs_scrub_pause_super(struct btrfs_root *root);
+void btrfs_scrub_continue(struct btrfs_root *root);
+void btrfs_scrub_continue_super(struct btrfs_root *root);
+int __btrfs_scrub_cancel(struct btrfs_fs_info *info);
+int btrfs_scrub_cancel(struct btrfs_root *root);
+int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev);
+int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid);
+int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
+ struct btrfs_scrub_progress *progress);
+
+/* reada.c */
+struct reada_control {
+ struct btrfs_root *root; /* tree to prefetch */
+ struct btrfs_key key_start;
+ struct btrfs_key key_end; /* exclusive */
+ atomic_t elems;
+ struct kref refcnt;
+ wait_queue_head_t wait;
+};
+struct reada_control *btrfs_reada_add(struct btrfs_root *root,
+ struct btrfs_key *start, struct btrfs_key *end);
+int btrfs_reada_wait(void *handle);
+void btrfs_reada_detach(void *handle);
+int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
+ u64 start, int err);
+
+#endif
diff --git a/fs/btrfs/delayed-inode.c b/fs/btrfs/delayed-inode.c
new file mode 100644
index 00000000..03e3748d
--- /dev/null
+++ b/fs/btrfs/delayed-inode.c
@@ -0,0 +1,1881 @@
+/*
+ * Copyright (C) 2011 Fujitsu. All rights reserved.
+ * Written by Miao Xie <miaox@cn.fujitsu.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/slab.h>
+#include "delayed-inode.h"
+#include "disk-io.h"
+#include "transaction.h"
+
+#define BTRFS_DELAYED_WRITEBACK 400
+#define BTRFS_DELAYED_BACKGROUND 100
+
+static struct kmem_cache *delayed_node_cache;
+
+int __init btrfs_delayed_inode_init(void)
+{
+ delayed_node_cache = kmem_cache_create("delayed_node",
+ sizeof(struct btrfs_delayed_node),
+ 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
+ NULL);
+ if (!delayed_node_cache)
+ return -ENOMEM;
+ return 0;
+}
+
+void btrfs_delayed_inode_exit(void)
+{
+ if (delayed_node_cache)
+ kmem_cache_destroy(delayed_node_cache);
+}
+
+static inline void btrfs_init_delayed_node(
+ struct btrfs_delayed_node *delayed_node,
+ struct btrfs_root *root, u64 inode_id)
+{
+ delayed_node->root = root;
+ delayed_node->inode_id = inode_id;
+ atomic_set(&delayed_node->refs, 0);
+ delayed_node->count = 0;
+ delayed_node->in_list = 0;
+ delayed_node->inode_dirty = 0;
+ delayed_node->ins_root = RB_ROOT;
+ delayed_node->del_root = RB_ROOT;
+ mutex_init(&delayed_node->mutex);
+ delayed_node->index_cnt = 0;
+ INIT_LIST_HEAD(&delayed_node->n_list);
+ INIT_LIST_HEAD(&delayed_node->p_list);
+ delayed_node->bytes_reserved = 0;
+}
+
+static inline int btrfs_is_continuous_delayed_item(
+ struct btrfs_delayed_item *item1,
+ struct btrfs_delayed_item *item2)
+{
+ if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
+ item1->key.objectid == item2->key.objectid &&
+ item1->key.type == item2->key.type &&
+ item1->key.offset + 1 == item2->key.offset)
+ return 1;
+ return 0;
+}
+
+static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
+ struct btrfs_root *root)
+{
+ return root->fs_info->delayed_root;
+}
+
+static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
+{
+ struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
+ struct btrfs_root *root = btrfs_inode->root;
+ u64 ino = btrfs_ino(inode);
+ struct btrfs_delayed_node *node;
+
+ node = ACCESS_ONCE(btrfs_inode->delayed_node);
+ if (node) {
+ atomic_inc(&node->refs);
+ return node;
+ }
+
+ spin_lock(&root->inode_lock);
+ node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
+ if (node) {
+ if (btrfs_inode->delayed_node) {
+ atomic_inc(&node->refs); /* can be accessed */
+ BUG_ON(btrfs_inode->delayed_node != node);
+ spin_unlock(&root->inode_lock);
+ return node;
+ }
+ btrfs_inode->delayed_node = node;
+ atomic_inc(&node->refs); /* can be accessed */
+ atomic_inc(&node->refs); /* cached in the inode */
+ spin_unlock(&root->inode_lock);
+ return node;
+ }
+ spin_unlock(&root->inode_lock);
+
+ return NULL;
+}
+
+/* Will return either the node or PTR_ERR(-ENOMEM) */
+static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
+ struct inode *inode)
+{
+ struct btrfs_delayed_node *node;
+ struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
+ struct btrfs_root *root = btrfs_inode->root;
+ u64 ino = btrfs_ino(inode);
+ int ret;
+
+again:
+ node = btrfs_get_delayed_node(inode);
+ if (node)
+ return node;
+
+ node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
+ if (!node)
+ return ERR_PTR(-ENOMEM);
+ btrfs_init_delayed_node(node, root, ino);
+
+ atomic_inc(&node->refs); /* cached in the btrfs inode */
+ atomic_inc(&node->refs); /* can be accessed */
+
+ ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
+ if (ret) {
+ kmem_cache_free(delayed_node_cache, node);
+ return ERR_PTR(ret);
+ }
+
+ spin_lock(&root->inode_lock);
+ ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
+ if (ret == -EEXIST) {
+ kmem_cache_free(delayed_node_cache, node);
+ spin_unlock(&root->inode_lock);
+ radix_tree_preload_end();
+ goto again;
+ }
+ btrfs_inode->delayed_node = node;
+ spin_unlock(&root->inode_lock);
+ radix_tree_preload_end();
+
+ return node;
+}
+
+/*
+ * Call it when holding delayed_node->mutex
+ *
+ * If mod = 1, add this node into the prepared list.
+ */
+static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
+ struct btrfs_delayed_node *node,
+ int mod)
+{
+ spin_lock(&root->lock);
+ if (node->in_list) {
+ if (!list_empty(&node->p_list))
+ list_move_tail(&node->p_list, &root->prepare_list);
+ else if (mod)
+ list_add_tail(&node->p_list, &root->prepare_list);
+ } else {
+ list_add_tail(&node->n_list, &root->node_list);
+ list_add_tail(&node->p_list, &root->prepare_list);
+ atomic_inc(&node->refs); /* inserted into list */
+ root->nodes++;
+ node->in_list = 1;
+ }
+ spin_unlock(&root->lock);
+}
+
+/* Call it when holding delayed_node->mutex */
+static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
+ struct btrfs_delayed_node *node)
+{
+ spin_lock(&root->lock);
+ if (node->in_list) {
+ root->nodes--;
+ atomic_dec(&node->refs); /* not in the list */
+ list_del_init(&node->n_list);
+ if (!list_empty(&node->p_list))
+ list_del_init(&node->p_list);
+ node->in_list = 0;
+ }
+ spin_unlock(&root->lock);
+}
+
+struct btrfs_delayed_node *btrfs_first_delayed_node(
+ struct btrfs_delayed_root *delayed_root)
+{
+ struct list_head *p;
+ struct btrfs_delayed_node *node = NULL;
+
+ spin_lock(&delayed_root->lock);
+ if (list_empty(&delayed_root->node_list))
+ goto out;
+
+ p = delayed_root->node_list.next;
+ node = list_entry(p, struct btrfs_delayed_node, n_list);
+ atomic_inc(&node->refs);
+out:
+ spin_unlock(&delayed_root->lock);
+
+ return node;
+}
+
+struct btrfs_delayed_node *btrfs_next_delayed_node(
+ struct btrfs_delayed_node *node)
+{
+ struct btrfs_delayed_root *delayed_root;
+ struct list_head *p;
+ struct btrfs_delayed_node *next = NULL;
+
+ delayed_root = node->root->fs_info->delayed_root;
+ spin_lock(&delayed_root->lock);
+ if (!node->in_list) { /* not in the list */
+ if (list_empty(&delayed_root->node_list))
+ goto out;
+ p = delayed_root->node_list.next;
+ } else if (list_is_last(&node->n_list, &delayed_root->node_list))
+ goto out;
+ else
+ p = node->n_list.next;
+
+ next = list_entry(p, struct btrfs_delayed_node, n_list);
+ atomic_inc(&next->refs);
+out:
+ spin_unlock(&delayed_root->lock);
+
+ return next;
+}
+
+static void __btrfs_release_delayed_node(
+ struct btrfs_delayed_node *delayed_node,
+ int mod)
+{
+ struct btrfs_delayed_root *delayed_root;
+
+ if (!delayed_node)
+ return;
+
+ delayed_root = delayed_node->root->fs_info->delayed_root;
+
+ mutex_lock(&delayed_node->mutex);
+ if (delayed_node->count)
+ btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
+ else
+ btrfs_dequeue_delayed_node(delayed_root, delayed_node);
+ mutex_unlock(&delayed_node->mutex);
+
+ if (atomic_dec_and_test(&delayed_node->refs)) {
+ struct btrfs_root *root = delayed_node->root;
+ spin_lock(&root->inode_lock);
+ if (atomic_read(&delayed_node->refs) == 0) {
+ radix_tree_delete(&root->delayed_nodes_tree,
+ delayed_node->inode_id);
+ kmem_cache_free(delayed_node_cache, delayed_node);
+ }
+ spin_unlock(&root->inode_lock);
+ }
+}
+
+static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
+{
+ __btrfs_release_delayed_node(node, 0);
+}
+
+struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
+ struct btrfs_delayed_root *delayed_root)
+{
+ struct list_head *p;
+ struct btrfs_delayed_node *node = NULL;
+
+ spin_lock(&delayed_root->lock);
+ if (list_empty(&delayed_root->prepare_list))
+ goto out;
+
+ p = delayed_root->prepare_list.next;
+ list_del_init(p);
+ node = list_entry(p, struct btrfs_delayed_node, p_list);
+ atomic_inc(&node->refs);
+out:
+ spin_unlock(&delayed_root->lock);
+
+ return node;
+}
+
+static inline void btrfs_release_prepared_delayed_node(
+ struct btrfs_delayed_node *node)
+{
+ __btrfs_release_delayed_node(node, 1);
+}
+
+struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
+{
+ struct btrfs_delayed_item *item;
+ item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
+ if (item) {
+ item->data_len = data_len;
+ item->ins_or_del = 0;
+ item->bytes_reserved = 0;
+ item->delayed_node = NULL;
+ atomic_set(&item->refs, 1);
+ }
+ return item;
+}
+
+/*
+ * __btrfs_lookup_delayed_item - look up the delayed item by key
+ * @delayed_node: pointer to the delayed node
+ * @key: the key to look up
+ * @prev: used to store the prev item if the right item isn't found
+ * @next: used to store the next item if the right item isn't found
+ *
+ * Note: if we don't find the right item, we will return the prev item and
+ * the next item.
+ */
+static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
+ struct rb_root *root,
+ struct btrfs_key *key,
+ struct btrfs_delayed_item **prev,
+ struct btrfs_delayed_item **next)
+{
+ struct rb_node *node, *prev_node = NULL;
+ struct btrfs_delayed_item *delayed_item = NULL;
+ int ret = 0;
+
+ node = root->rb_node;
+
+ while (node) {
+ delayed_item = rb_entry(node, struct btrfs_delayed_item,
+ rb_node);
+ prev_node = node;
+ ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
+ if (ret < 0)
+ node = node->rb_right;
+ else if (ret > 0)
+ node = node->rb_left;
+ else
+ return delayed_item;
+ }
+
+ if (prev) {
+ if (!prev_node)
+ *prev = NULL;
+ else if (ret < 0)
+ *prev = delayed_item;
+ else if ((node = rb_prev(prev_node)) != NULL) {
+ *prev = rb_entry(node, struct btrfs_delayed_item,
+ rb_node);
+ } else
+ *prev = NULL;
+ }
+
+ if (next) {
+ if (!prev_node)
+ *next = NULL;
+ else if (ret > 0)
+ *next = delayed_item;
+ else if ((node = rb_next(prev_node)) != NULL) {
+ *next = rb_entry(node, struct btrfs_delayed_item,
+ rb_node);
+ } else
+ *next = NULL;
+ }
+ return NULL;
+}
+
+struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
+ struct btrfs_delayed_node *delayed_node,
+ struct btrfs_key *key)
+{
+ struct btrfs_delayed_item *item;
+
+ item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
+ NULL, NULL);
+ return item;
+}
+
+struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
+ struct btrfs_delayed_node *delayed_node,
+ struct btrfs_key *key)
+{
+ struct btrfs_delayed_item *item;
+
+ item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
+ NULL, NULL);
+ return item;
+}
+
+struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
+ struct btrfs_delayed_node *delayed_node,
+ struct btrfs_key *key)
+{
+ struct btrfs_delayed_item *item, *next;
+
+ item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
+ NULL, &next);
+ if (!item)
+ item = next;
+
+ return item;
+}
+
+struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
+ struct btrfs_delayed_node *delayed_node,
+ struct btrfs_key *key)
+{
+ struct btrfs_delayed_item *item, *next;
+
+ item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
+ NULL, &next);
+ if (!item)
+ item = next;
+
+ return item;
+}
+
+static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
+ struct btrfs_delayed_item *ins,
+ int action)
+{
+ struct rb_node **p, *node;
+ struct rb_node *parent_node = NULL;
+ struct rb_root *root;
+ struct btrfs_delayed_item *item;
+ int cmp;
+
+ if (action == BTRFS_DELAYED_INSERTION_ITEM)
+ root = &delayed_node->ins_root;
+ else if (action == BTRFS_DELAYED_DELETION_ITEM)
+ root = &delayed_node->del_root;
+ else
+ BUG();
+ p = &root->rb_node;
+ node = &ins->rb_node;
+
+ while (*p) {
+ parent_node = *p;
+ item = rb_entry(parent_node, struct btrfs_delayed_item,
+ rb_node);
+
+ cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
+ if (cmp < 0)
+ p = &(*p)->rb_right;
+ else if (cmp > 0)
+ p = &(*p)->rb_left;
+ else
+ return -EEXIST;
+ }
+
+ rb_link_node(node, parent_node, p);
+ rb_insert_color(node, root);
+ ins->delayed_node = delayed_node;
+ ins->ins_or_del = action;
+
+ if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
+ action == BTRFS_DELAYED_INSERTION_ITEM &&
+ ins->key.offset >= delayed_node->index_cnt)
+ delayed_node->index_cnt = ins->key.offset + 1;
+
+ delayed_node->count++;
+ atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
+ return 0;
+}
+
+static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
+ struct btrfs_delayed_item *item)
+{
+ return __btrfs_add_delayed_item(node, item,
+ BTRFS_DELAYED_INSERTION_ITEM);
+}
+
+static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
+ struct btrfs_delayed_item *item)
+{
+ return __btrfs_add_delayed_item(node, item,
+ BTRFS_DELAYED_DELETION_ITEM);
+}
+
+static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
+{
+ struct rb_root *root;
+ struct btrfs_delayed_root *delayed_root;
+
+ delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
+
+ BUG_ON(!delayed_root);
+ BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
+ delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
+
+ if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
+ root = &delayed_item->delayed_node->ins_root;
+ else
+ root = &delayed_item->delayed_node->del_root;
+
+ rb_erase(&delayed_item->rb_node, root);
+ delayed_item->delayed_node->count--;
+ atomic_dec(&delayed_root->items);
+ if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
+ waitqueue_active(&delayed_root->wait))
+ wake_up(&delayed_root->wait);
+}
+
+static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
+{
+ if (item) {
+ __btrfs_remove_delayed_item(item);
+ if (atomic_dec_and_test(&item->refs))
+ kfree(item);
+ }
+}
+
+struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
+ struct btrfs_delayed_node *delayed_node)
+{
+ struct rb_node *p;
+ struct btrfs_delayed_item *item = NULL;
+
+ p = rb_first(&delayed_node->ins_root);
+ if (p)
+ item = rb_entry(p, struct btrfs_delayed_item, rb_node);
+
+ return item;
+}
+
+struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
+ struct btrfs_delayed_node *delayed_node)
+{
+ struct rb_node *p;
+ struct btrfs_delayed_item *item = NULL;
+
+ p = rb_first(&delayed_node->del_root);
+ if (p)
+ item = rb_entry(p, struct btrfs_delayed_item, rb_node);
+
+ return item;
+}
+
+struct btrfs_delayed_item *__btrfs_next_delayed_item(
+ struct btrfs_delayed_item *item)
+{
+ struct rb_node *p;
+ struct btrfs_delayed_item *next = NULL;
+
+ p = rb_next(&item->rb_node);
+ if (p)
+ next = rb_entry(p, struct btrfs_delayed_item, rb_node);
+
+ return next;
+}
+
+static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
+ u64 root_id)
+{
+ struct btrfs_key root_key;
+
+ if (root->objectid == root_id)
+ return root;
+
+ root_key.objectid = root_id;
+ root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root_key.offset = (u64)-1;
+ return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
+}
+
+static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_delayed_item *item)
+{
+ struct btrfs_block_rsv *src_rsv;
+ struct btrfs_block_rsv *dst_rsv;
+ u64 num_bytes;
+ int ret;
+
+ if (!trans->bytes_reserved)
+ return 0;
+
+ src_rsv = trans->block_rsv;
+ dst_rsv = &root->fs_info->delayed_block_rsv;
+
+ num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+ ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
+ if (!ret) {
+ trace_btrfs_space_reservation(root->fs_info, "delayed_item",
+ item->key.objectid,
+ num_bytes, 1);
+ item->bytes_reserved = num_bytes;
+ }
+
+ return ret;
+}
+
+static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
+ struct btrfs_delayed_item *item)
+{
+ struct btrfs_block_rsv *rsv;
+
+ if (!item->bytes_reserved)
+ return;
+
+ rsv = &root->fs_info->delayed_block_rsv;
+ trace_btrfs_space_reservation(root->fs_info, "delayed_item",
+ item->key.objectid, item->bytes_reserved,
+ 0);
+ btrfs_block_rsv_release(root, rsv,
+ item->bytes_reserved);
+}
+
+static int btrfs_delayed_inode_reserve_metadata(
+ struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *inode,
+ struct btrfs_delayed_node *node)
+{
+ struct btrfs_block_rsv *src_rsv;
+ struct btrfs_block_rsv *dst_rsv;
+ u64 num_bytes;
+ int ret;
+ bool release = false;
+
+ src_rsv = trans->block_rsv;
+ dst_rsv = &root->fs_info->delayed_block_rsv;
+
+ num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+
+ /*
+ * btrfs_dirty_inode will update the inode under btrfs_join_transaction
+ * which doesn't reserve space for speed. This is a problem since we
+ * still need to reserve space for this update, so try to reserve the
+ * space.
+ *
+ * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
+ * we're accounted for.
+ */
+ if (!src_rsv || (!trans->bytes_reserved &&
+ src_rsv != &root->fs_info->delalloc_block_rsv)) {
+ ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
+ /*
+ * Since we're under a transaction reserve_metadata_bytes could
+ * try to commit the transaction which will make it return
+ * EAGAIN to make us stop the transaction we have, so return
+ * ENOSPC instead so that btrfs_dirty_inode knows what to do.
+ */
+ if (ret == -EAGAIN)
+ ret = -ENOSPC;
+ if (!ret) {
+ node->bytes_reserved = num_bytes;
+ trace_btrfs_space_reservation(root->fs_info,
+ "delayed_inode",
+ btrfs_ino(inode),
+ num_bytes, 1);
+ }
+ return ret;
+ } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
+ spin_lock(&BTRFS_I(inode)->lock);
+ if (BTRFS_I(inode)->delalloc_meta_reserved) {
+ BTRFS_I(inode)->delalloc_meta_reserved = 0;
+ spin_unlock(&BTRFS_I(inode)->lock);
+ release = true;
+ goto migrate;
+ }
+ spin_unlock(&BTRFS_I(inode)->lock);
+
+ /* Ok we didn't have space pre-reserved. This shouldn't happen
+ * too often but it can happen if we do delalloc to an existing
+ * inode which gets dirtied because of the time update, and then
+ * isn't touched again until after the transaction commits and
+ * then we try to write out the data. First try to be nice and
+ * reserve something strictly for us. If not be a pain and try
+ * to steal from the delalloc block rsv.
+ */
+ ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
+ if (!ret)
+ goto out;
+
+ ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
+ if (!ret)
+ goto out;
+
+ /*
+ * Ok this is a problem, let's just steal from the global rsv
+ * since this really shouldn't happen that often.
+ */
+ WARN_ON(1);
+ ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
+ dst_rsv, num_bytes);
+ goto out;
+ }
+
+migrate:
+ ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
+
+out:
+ /*
+ * Migrate only takes a reservation, it doesn't touch the size of the
+ * block_rsv. This is to simplify people who don't normally have things
+ * migrated from their block rsv. If they go to release their
+ * reservation, that will decrease the size as well, so if migrate
+ * reduced size we'd end up with a negative size. But for the
+ * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
+ * but we could in fact do this reserve/migrate dance several times
+ * between the time we did the original reservation and we'd clean it
+ * up. So to take care of this, release the space for the meta
+ * reservation here. I think it may be time for a documentation page on
+ * how block rsvs. work.
+ */
+ if (!ret) {
+ trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
+ btrfs_ino(inode), num_bytes, 1);
+ node->bytes_reserved = num_bytes;
+ }
+
+ if (release) {
+ trace_btrfs_space_reservation(root->fs_info, "delalloc",
+ btrfs_ino(inode), num_bytes, 0);
+ btrfs_block_rsv_release(root, src_rsv, num_bytes);
+ }
+
+ return ret;
+}
+
+static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
+ struct btrfs_delayed_node *node)
+{
+ struct btrfs_block_rsv *rsv;
+
+ if (!node->bytes_reserved)
+ return;
+
+ rsv = &root->fs_info->delayed_block_rsv;
+ trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
+ node->inode_id, node->bytes_reserved, 0);
+ btrfs_block_rsv_release(root, rsv,
+ node->bytes_reserved);
+ node->bytes_reserved = 0;
+}
+
+/*
+ * This helper will insert some continuous items into the same leaf according
+ * to the free space of the leaf.
+ */
+static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_delayed_item *item)
+{
+ struct btrfs_delayed_item *curr, *next;
+ int free_space;
+ int total_data_size = 0, total_size = 0;
+ struct extent_buffer *leaf;
+ char *data_ptr;
+ struct btrfs_key *keys;
+ u32 *data_size;
+ struct list_head head;
+ int slot;
+ int nitems;
+ int i;
+ int ret = 0;
+
+ BUG_ON(!path->nodes[0]);
+
+ leaf = path->nodes[0];
+ free_space = btrfs_leaf_free_space(root, leaf);
+ INIT_LIST_HEAD(&head);
+
+ next = item;
+ nitems = 0;
+
+ /*
+ * count the number of the continuous items that we can insert in batch
+ */
+ while (total_size + next->data_len + sizeof(struct btrfs_item) <=
+ free_space) {
+ total_data_size += next->data_len;
+ total_size += next->data_len + sizeof(struct btrfs_item);
+ list_add_tail(&next->tree_list, &head);
+ nitems++;
+
+ curr = next;
+ next = __btrfs_next_delayed_item(curr);
+ if (!next)
+ break;
+
+ if (!btrfs_is_continuous_delayed_item(curr, next))
+ break;
+ }
+
+ if (!nitems) {
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * we need allocate some memory space, but it might cause the task
+ * to sleep, so we set all locked nodes in the path to blocking locks
+ * first.
+ */
+ btrfs_set_path_blocking(path);
+
+ keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
+ if (!keys) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
+ if (!data_size) {
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ /* get keys of all the delayed items */
+ i = 0;
+ list_for_each_entry(next, &head, tree_list) {
+ keys[i] = next->key;
+ data_size[i] = next->data_len;
+ i++;
+ }
+
+ /* reset all the locked nodes in the patch to spinning locks. */
+ btrfs_clear_path_blocking(path, NULL, 0);
+
+ /* insert the keys of the items */
+ setup_items_for_insert(trans, root, path, keys, data_size,
+ total_data_size, total_size, nitems);
+
+ /* insert the dir index items */
+ slot = path->slots[0];
+ list_for_each_entry_safe(curr, next, &head, tree_list) {
+ data_ptr = btrfs_item_ptr(leaf, slot, char);
+ write_extent_buffer(leaf, &curr->data,
+ (unsigned long)data_ptr,
+ curr->data_len);
+ slot++;
+
+ btrfs_delayed_item_release_metadata(root, curr);
+
+ list_del(&curr->tree_list);
+ btrfs_release_delayed_item(curr);
+ }
+
+error:
+ kfree(data_size);
+ kfree(keys);
+out:
+ return ret;
+}
+
+/*
+ * This helper can just do simple insertion that needn't extend item for new
+ * data, such as directory name index insertion, inode insertion.
+ */
+static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_delayed_item *delayed_item)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_item *item;
+ char *ptr;
+ int ret;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
+ delayed_item->data_len);
+ if (ret < 0 && ret != -EEXIST)
+ return ret;
+
+ leaf = path->nodes[0];
+
+ item = btrfs_item_nr(leaf, path->slots[0]);
+ ptr = btrfs_item_ptr(leaf, path->slots[0], char);
+
+ write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
+ delayed_item->data_len);
+ btrfs_mark_buffer_dirty(leaf);
+
+ btrfs_delayed_item_release_metadata(root, delayed_item);
+ return 0;
+}
+
+/*
+ * we insert an item first, then if there are some continuous items, we try
+ * to insert those items into the same leaf.
+ */
+static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
+ struct btrfs_path *path,
+ struct btrfs_root *root,
+ struct btrfs_delayed_node *node)
+{
+ struct btrfs_delayed_item *curr, *prev;
+ int ret = 0;
+
+do_again:
+ mutex_lock(&node->mutex);
+ curr = __btrfs_first_delayed_insertion_item(node);
+ if (!curr)
+ goto insert_end;
+
+ ret = btrfs_insert_delayed_item(trans, root, path, curr);
+ if (ret < 0) {
+ btrfs_release_path(path);
+ goto insert_end;
+ }
+
+ prev = curr;
+ curr = __btrfs_next_delayed_item(prev);
+ if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
+ /* insert the continuous items into the same leaf */
+ path->slots[0]++;
+ btrfs_batch_insert_items(trans, root, path, curr);
+ }
+ btrfs_release_delayed_item(prev);
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+
+ btrfs_release_path(path);
+ mutex_unlock(&node->mutex);
+ goto do_again;
+
+insert_end:
+ mutex_unlock(&node->mutex);
+ return ret;
+}
+
+static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_delayed_item *item)
+{
+ struct btrfs_delayed_item *curr, *next;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ struct list_head head;
+ int nitems, i, last_item;
+ int ret = 0;
+
+ BUG_ON(!path->nodes[0]);
+
+ leaf = path->nodes[0];
+
+ i = path->slots[0];
+ last_item = btrfs_header_nritems(leaf) - 1;
+ if (i > last_item)
+ return -ENOENT; /* FIXME: Is errno suitable? */
+
+ next = item;
+ INIT_LIST_HEAD(&head);
+ btrfs_item_key_to_cpu(leaf, &key, i);
+ nitems = 0;
+ /*
+ * count the number of the dir index items that we can delete in batch
+ */
+ while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
+ list_add_tail(&next->tree_list, &head);
+ nitems++;
+
+ curr = next;
+ next = __btrfs_next_delayed_item(curr);
+ if (!next)
+ break;
+
+ if (!btrfs_is_continuous_delayed_item(curr, next))
+ break;
+
+ i++;
+ if (i > last_item)
+ break;
+ btrfs_item_key_to_cpu(leaf, &key, i);
+ }
+
+ if (!nitems)
+ return 0;
+
+ ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
+ if (ret)
+ goto out;
+
+ list_for_each_entry_safe(curr, next, &head, tree_list) {
+ btrfs_delayed_item_release_metadata(root, curr);
+ list_del(&curr->tree_list);
+ btrfs_release_delayed_item(curr);
+ }
+
+out:
+ return ret;
+}
+
+static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
+ struct btrfs_path *path,
+ struct btrfs_root *root,
+ struct btrfs_delayed_node *node)
+{
+ struct btrfs_delayed_item *curr, *prev;
+ int ret = 0;
+
+do_again:
+ mutex_lock(&node->mutex);
+ curr = __btrfs_first_delayed_deletion_item(node);
+ if (!curr)
+ goto delete_fail;
+
+ ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
+ if (ret < 0)
+ goto delete_fail;
+ else if (ret > 0) {
+ /*
+ * can't find the item which the node points to, so this node
+ * is invalid, just drop it.
+ */
+ prev = curr;
+ curr = __btrfs_next_delayed_item(prev);
+ btrfs_release_delayed_item(prev);
+ ret = 0;
+ btrfs_release_path(path);
+ if (curr)
+ goto do_again;
+ else
+ goto delete_fail;
+ }
+
+ btrfs_batch_delete_items(trans, root, path, curr);
+ btrfs_release_path(path);
+ mutex_unlock(&node->mutex);
+ goto do_again;
+
+delete_fail:
+ btrfs_release_path(path);
+ mutex_unlock(&node->mutex);
+ return ret;
+}
+
+static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
+{
+ struct btrfs_delayed_root *delayed_root;
+
+ if (delayed_node && delayed_node->inode_dirty) {
+ BUG_ON(!delayed_node->root);
+ delayed_node->inode_dirty = 0;
+ delayed_node->count--;
+
+ delayed_root = delayed_node->root->fs_info->delayed_root;
+ atomic_dec(&delayed_root->items);
+ if (atomic_read(&delayed_root->items) <
+ BTRFS_DELAYED_BACKGROUND &&
+ waitqueue_active(&delayed_root->wait))
+ wake_up(&delayed_root->wait);
+ }
+}
+
+static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_delayed_node *node)
+{
+ struct btrfs_key key;
+ struct btrfs_inode_item *inode_item;
+ struct extent_buffer *leaf;
+ int ret;
+
+ mutex_lock(&node->mutex);
+ if (!node->inode_dirty) {
+ mutex_unlock(&node->mutex);
+ return 0;
+ }
+
+ key.objectid = node->inode_id;
+ btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
+ key.offset = 0;
+ ret = btrfs_lookup_inode(trans, root, path, &key, 1);
+ if (ret > 0) {
+ btrfs_release_path(path);
+ mutex_unlock(&node->mutex);
+ return -ENOENT;
+ } else if (ret < 0) {
+ mutex_unlock(&node->mutex);
+ return ret;
+ }
+
+ btrfs_unlock_up_safe(path, 1);
+ leaf = path->nodes[0];
+ inode_item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_inode_item);
+ write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
+ sizeof(struct btrfs_inode_item));
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+
+ btrfs_delayed_inode_release_metadata(root, node);
+ btrfs_release_delayed_inode(node);
+ mutex_unlock(&node->mutex);
+
+ return 0;
+}
+
+/*
+ * Called when committing the transaction.
+ * Returns 0 on success.
+ * Returns < 0 on error and returns with an aborted transaction with any
+ * outstanding delayed items cleaned up.
+ */
+int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_root *curr_root = root;
+ struct btrfs_delayed_root *delayed_root;
+ struct btrfs_delayed_node *curr_node, *prev_node;
+ struct btrfs_path *path;
+ struct btrfs_block_rsv *block_rsv;
+ int ret = 0;
+
+ if (trans->aborted)
+ return -EIO;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->leave_spinning = 1;
+
+ block_rsv = trans->block_rsv;
+ trans->block_rsv = &root->fs_info->delayed_block_rsv;
+
+ delayed_root = btrfs_get_delayed_root(root);
+
+ curr_node = btrfs_first_delayed_node(delayed_root);
+ while (curr_node) {
+ curr_root = curr_node->root;
+ ret = btrfs_insert_delayed_items(trans, path, curr_root,
+ curr_node);
+ if (!ret)
+ ret = btrfs_delete_delayed_items(trans, path,
+ curr_root, curr_node);
+ if (!ret)
+ ret = btrfs_update_delayed_inode(trans, curr_root,
+ path, curr_node);
+ if (ret) {
+ btrfs_release_delayed_node(curr_node);
+ btrfs_abort_transaction(trans, root, ret);
+ break;
+ }
+
+ prev_node = curr_node;
+ curr_node = btrfs_next_delayed_node(curr_node);
+ btrfs_release_delayed_node(prev_node);
+ }
+
+ btrfs_free_path(path);
+ trans->block_rsv = block_rsv;
+
+ return ret;
+}
+
+static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
+ struct btrfs_delayed_node *node)
+{
+ struct btrfs_path *path;
+ struct btrfs_block_rsv *block_rsv;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->leave_spinning = 1;
+
+ block_rsv = trans->block_rsv;
+ trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
+
+ ret = btrfs_insert_delayed_items(trans, path, node->root, node);
+ if (!ret)
+ ret = btrfs_delete_delayed_items(trans, path, node->root, node);
+ if (!ret)
+ ret = btrfs_update_delayed_inode(trans, node->root, path, node);
+ btrfs_free_path(path);
+
+ trans->block_rsv = block_rsv;
+ return ret;
+}
+
+int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
+ struct inode *inode)
+{
+ struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
+ int ret;
+
+ if (!delayed_node)
+ return 0;
+
+ mutex_lock(&delayed_node->mutex);
+ if (!delayed_node->count) {
+ mutex_unlock(&delayed_node->mutex);
+ btrfs_release_delayed_node(delayed_node);
+ return 0;
+ }
+ mutex_unlock(&delayed_node->mutex);
+
+ ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
+ btrfs_release_delayed_node(delayed_node);
+ return ret;
+}
+
+void btrfs_remove_delayed_node(struct inode *inode)
+{
+ struct btrfs_delayed_node *delayed_node;
+
+ delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
+ if (!delayed_node)
+ return;
+
+ BTRFS_I(inode)->delayed_node = NULL;
+ btrfs_release_delayed_node(delayed_node);
+}
+
+struct btrfs_async_delayed_node {
+ struct btrfs_root *root;
+ struct btrfs_delayed_node *delayed_node;
+ struct btrfs_work work;
+};
+
+static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
+{
+ struct btrfs_async_delayed_node *async_node;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_path *path;
+ struct btrfs_delayed_node *delayed_node = NULL;
+ struct btrfs_root *root;
+ struct btrfs_block_rsv *block_rsv;
+ unsigned long nr = 0;
+ int need_requeue = 0;
+ int ret;
+
+ async_node = container_of(work, struct btrfs_async_delayed_node, work);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ goto out;
+ path->leave_spinning = 1;
+
+ delayed_node = async_node->delayed_node;
+ root = delayed_node->root;
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ goto free_path;
+
+ block_rsv = trans->block_rsv;
+ trans->block_rsv = &root->fs_info->delayed_block_rsv;
+
+ ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
+ if (!ret)
+ ret = btrfs_delete_delayed_items(trans, path, root,
+ delayed_node);
+
+ if (!ret)
+ btrfs_update_delayed_inode(trans, root, path, delayed_node);
+
+ /*
+ * Maybe new delayed items have been inserted, so we need requeue
+ * the work. Besides that, we must dequeue the empty delayed nodes
+ * to avoid the race between delayed items balance and the worker.
+ * The race like this:
+ * Task1 Worker thread
+ * count == 0, needn't requeue
+ * also needn't insert the
+ * delayed node into prepare
+ * list again.
+ * add lots of delayed items
+ * queue the delayed node
+ * already in the list,
+ * and not in the prepare
+ * list, it means the delayed
+ * node is being dealt with
+ * by the worker.
+ * do delayed items balance
+ * the delayed node is being
+ * dealt with by the worker
+ * now, just wait.
+ * the worker goto idle.
+ * Task1 will sleep until the transaction is commited.
+ */
+ mutex_lock(&delayed_node->mutex);
+ if (delayed_node->count)
+ need_requeue = 1;
+ else
+ btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
+ delayed_node);
+ mutex_unlock(&delayed_node->mutex);
+
+ nr = trans->blocks_used;
+
+ trans->block_rsv = block_rsv;
+ btrfs_end_transaction_dmeta(trans, root);
+ __btrfs_btree_balance_dirty(root, nr);
+free_path:
+ btrfs_free_path(path);
+out:
+ if (need_requeue)
+ btrfs_requeue_work(&async_node->work);
+ else {
+ btrfs_release_prepared_delayed_node(delayed_node);
+ kfree(async_node);
+ }
+}
+
+static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
+ struct btrfs_root *root, int all)
+{
+ struct btrfs_async_delayed_node *async_node;
+ struct btrfs_delayed_node *curr;
+ int count = 0;
+
+again:
+ curr = btrfs_first_prepared_delayed_node(delayed_root);
+ if (!curr)
+ return 0;
+
+ async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
+ if (!async_node) {
+ btrfs_release_prepared_delayed_node(curr);
+ return -ENOMEM;
+ }
+
+ async_node->root = root;
+ async_node->delayed_node = curr;
+
+ async_node->work.func = btrfs_async_run_delayed_node_done;
+ async_node->work.flags = 0;
+
+ btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
+ count++;
+
+ if (all || count < 4)
+ goto again;
+
+ return 0;
+}
+
+void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
+{
+ struct btrfs_delayed_root *delayed_root;
+ delayed_root = btrfs_get_delayed_root(root);
+ WARN_ON(btrfs_first_delayed_node(delayed_root));
+}
+
+void btrfs_balance_delayed_items(struct btrfs_root *root)
+{
+ struct btrfs_delayed_root *delayed_root;
+
+ delayed_root = btrfs_get_delayed_root(root);
+
+ if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
+ return;
+
+ if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
+ int ret;
+ ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
+ if (ret)
+ return;
+
+ wait_event_interruptible_timeout(
+ delayed_root->wait,
+ (atomic_read(&delayed_root->items) <
+ BTRFS_DELAYED_BACKGROUND),
+ HZ);
+ return;
+ }
+
+ btrfs_wq_run_delayed_node(delayed_root, root, 0);
+}
+
+/* Will return 0 or -ENOMEM */
+int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, const char *name,
+ int name_len, struct inode *dir,
+ struct btrfs_disk_key *disk_key, u8 type,
+ u64 index)
+{
+ struct btrfs_delayed_node *delayed_node;
+ struct btrfs_delayed_item *delayed_item;
+ struct btrfs_dir_item *dir_item;
+ int ret;
+
+ delayed_node = btrfs_get_or_create_delayed_node(dir);
+ if (IS_ERR(delayed_node))
+ return PTR_ERR(delayed_node);
+
+ delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
+ if (!delayed_item) {
+ ret = -ENOMEM;
+ goto release_node;
+ }
+
+ delayed_item->key.objectid = btrfs_ino(dir);
+ btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
+ delayed_item->key.offset = index;
+
+ dir_item = (struct btrfs_dir_item *)delayed_item->data;
+ dir_item->location = *disk_key;
+ dir_item->transid = cpu_to_le64(trans->transid);
+ dir_item->data_len = 0;
+ dir_item->name_len = cpu_to_le16(name_len);
+ dir_item->type = type;
+ memcpy((char *)(dir_item + 1), name, name_len);
+
+ ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
+ /*
+ * we have reserved enough space when we start a new transaction,
+ * so reserving metadata failure is impossible
+ */
+ BUG_ON(ret);
+
+
+ mutex_lock(&delayed_node->mutex);
+ ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
+ if (unlikely(ret)) {
+ printk(KERN_ERR "err add delayed dir index item(name: %s) into "
+ "the insertion tree of the delayed node"
+ "(root id: %llu, inode id: %llu, errno: %d)\n",
+ name,
+ (unsigned long long)delayed_node->root->objectid,
+ (unsigned long long)delayed_node->inode_id,
+ ret);
+ BUG();
+ }
+ mutex_unlock(&delayed_node->mutex);
+
+release_node:
+ btrfs_release_delayed_node(delayed_node);
+ return ret;
+}
+
+static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
+ struct btrfs_delayed_node *node,
+ struct btrfs_key *key)
+{
+ struct btrfs_delayed_item *item;
+
+ mutex_lock(&node->mutex);
+ item = __btrfs_lookup_delayed_insertion_item(node, key);
+ if (!item) {
+ mutex_unlock(&node->mutex);
+ return 1;
+ }
+
+ btrfs_delayed_item_release_metadata(root, item);
+ btrfs_release_delayed_item(item);
+ mutex_unlock(&node->mutex);
+ return 0;
+}
+
+int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *dir,
+ u64 index)
+{
+ struct btrfs_delayed_node *node;
+ struct btrfs_delayed_item *item;
+ struct btrfs_key item_key;
+ int ret;
+
+ node = btrfs_get_or_create_delayed_node(dir);
+ if (IS_ERR(node))
+ return PTR_ERR(node);
+
+ item_key.objectid = btrfs_ino(dir);
+ btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
+ item_key.offset = index;
+
+ ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
+ if (!ret)
+ goto end;
+
+ item = btrfs_alloc_delayed_item(0);
+ if (!item) {
+ ret = -ENOMEM;
+ goto end;
+ }
+
+ item->key = item_key;
+
+ ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
+ /*
+ * we have reserved enough space when we start a new transaction,
+ * so reserving metadata failure is impossible.
+ */
+ BUG_ON(ret);
+
+ mutex_lock(&node->mutex);
+ ret = __btrfs_add_delayed_deletion_item(node, item);
+ if (unlikely(ret)) {
+ printk(KERN_ERR "err add delayed dir index item(index: %llu) "
+ "into the deletion tree of the delayed node"
+ "(root id: %llu, inode id: %llu, errno: %d)\n",
+ (unsigned long long)index,
+ (unsigned long long)node->root->objectid,
+ (unsigned long long)node->inode_id,
+ ret);
+ BUG();
+ }
+ mutex_unlock(&node->mutex);
+end:
+ btrfs_release_delayed_node(node);
+ return ret;
+}
+
+int btrfs_inode_delayed_dir_index_count(struct inode *inode)
+{
+ struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
+
+ if (!delayed_node)
+ return -ENOENT;
+
+ /*
+ * Since we have held i_mutex of this directory, it is impossible that
+ * a new directory index is added into the delayed node and index_cnt
+ * is updated now. So we needn't lock the delayed node.
+ */
+ if (!delayed_node->index_cnt) {
+ btrfs_release_delayed_node(delayed_node);
+ return -EINVAL;
+ }
+
+ BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
+ btrfs_release_delayed_node(delayed_node);
+ return 0;
+}
+
+void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
+ struct list_head *del_list)
+{
+ struct btrfs_delayed_node *delayed_node;
+ struct btrfs_delayed_item *item;
+
+ delayed_node = btrfs_get_delayed_node(inode);
+ if (!delayed_node)
+ return;
+
+ mutex_lock(&delayed_node->mutex);
+ item = __btrfs_first_delayed_insertion_item(delayed_node);
+ while (item) {
+ atomic_inc(&item->refs);
+ list_add_tail(&item->readdir_list, ins_list);
+ item = __btrfs_next_delayed_item(item);
+ }
+
+ item = __btrfs_first_delayed_deletion_item(delayed_node);
+ while (item) {
+ atomic_inc(&item->refs);
+ list_add_tail(&item->readdir_list, del_list);
+ item = __btrfs_next_delayed_item(item);
+ }
+ mutex_unlock(&delayed_node->mutex);
+ /*
+ * This delayed node is still cached in the btrfs inode, so refs
+ * must be > 1 now, and we needn't check it is going to be freed
+ * or not.
+ *
+ * Besides that, this function is used to read dir, we do not
+ * insert/delete delayed items in this period. So we also needn't
+ * requeue or dequeue this delayed node.
+ */
+ atomic_dec(&delayed_node->refs);
+}
+
+void btrfs_put_delayed_items(struct list_head *ins_list,
+ struct list_head *del_list)
+{
+ struct btrfs_delayed_item *curr, *next;
+
+ list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
+ list_del(&curr->readdir_list);
+ if (atomic_dec_and_test(&curr->refs))
+ kfree(curr);
+ }
+
+ list_for_each_entry_safe(curr, next, del_list, readdir_list) {
+ list_del(&curr->readdir_list);
+ if (atomic_dec_and_test(&curr->refs))
+ kfree(curr);
+ }
+}
+
+int btrfs_should_delete_dir_index(struct list_head *del_list,
+ u64 index)
+{
+ struct btrfs_delayed_item *curr, *next;
+ int ret;
+
+ if (list_empty(del_list))
+ return 0;
+
+ list_for_each_entry_safe(curr, next, del_list, readdir_list) {
+ if (curr->key.offset > index)
+ break;
+
+ list_del(&curr->readdir_list);
+ ret = (curr->key.offset == index);
+
+ if (atomic_dec_and_test(&curr->refs))
+ kfree(curr);
+
+ if (ret)
+ return 1;
+ else
+ continue;
+ }
+ return 0;
+}
+
+/*
+ * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
+ *
+ */
+int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
+ filldir_t filldir,
+ struct list_head *ins_list)
+{
+ struct btrfs_dir_item *di;
+ struct btrfs_delayed_item *curr, *next;
+ struct btrfs_key location;
+ char *name;
+ int name_len;
+ int over = 0;
+ unsigned char d_type;
+
+ if (list_empty(ins_list))
+ return 0;
+
+ /*
+ * Changing the data of the delayed item is impossible. So
+ * we needn't lock them. And we have held i_mutex of the
+ * directory, nobody can delete any directory indexes now.
+ */
+ list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
+ list_del(&curr->readdir_list);
+
+ if (curr->key.offset < filp->f_pos) {
+ if (atomic_dec_and_test(&curr->refs))
+ kfree(curr);
+ continue;
+ }
+
+ filp->f_pos = curr->key.offset;
+
+ di = (struct btrfs_dir_item *)curr->data;
+ name = (char *)(di + 1);
+ name_len = le16_to_cpu(di->name_len);
+
+ d_type = btrfs_filetype_table[di->type];
+ btrfs_disk_key_to_cpu(&location, &di->location);
+
+ over = filldir(dirent, name, name_len, curr->key.offset,
+ location.objectid, d_type);
+
+ if (atomic_dec_and_test(&curr->refs))
+ kfree(curr);
+
+ if (over)
+ return 1;
+ }
+ return 0;
+}
+
+BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
+ generation, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
+ sequence, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
+ transid, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
+ nbytes, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
+ block_group, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
+
+BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
+BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
+
+static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
+ struct btrfs_inode_item *inode_item,
+ struct inode *inode)
+{
+ btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
+ btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
+ btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
+ btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
+ btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
+ btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
+ btrfs_set_stack_inode_generation(inode_item,
+ BTRFS_I(inode)->generation);
+ btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
+ btrfs_set_stack_inode_transid(inode_item, trans->transid);
+ btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
+ btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
+ btrfs_set_stack_inode_block_group(inode_item, 0);
+
+ btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
+ inode->i_atime.tv_sec);
+ btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
+ inode->i_atime.tv_nsec);
+
+ btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
+ inode->i_mtime.tv_sec);
+ btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
+ inode->i_mtime.tv_nsec);
+
+ btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
+ inode->i_ctime.tv_sec);
+ btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
+ inode->i_ctime.tv_nsec);
+}
+
+int btrfs_fill_inode(struct inode *inode, u32 *rdev)
+{
+ struct btrfs_delayed_node *delayed_node;
+ struct btrfs_inode_item *inode_item;
+ struct btrfs_timespec *tspec;
+
+ delayed_node = btrfs_get_delayed_node(inode);
+ if (!delayed_node)
+ return -ENOENT;
+
+ mutex_lock(&delayed_node->mutex);
+ if (!delayed_node->inode_dirty) {
+ mutex_unlock(&delayed_node->mutex);
+ btrfs_release_delayed_node(delayed_node);
+ return -ENOENT;
+ }
+
+ inode_item = &delayed_node->inode_item;
+
+ inode->i_uid = btrfs_stack_inode_uid(inode_item);
+ inode->i_gid = btrfs_stack_inode_gid(inode_item);
+ btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
+ inode->i_mode = btrfs_stack_inode_mode(inode_item);
+ set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
+ inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
+ BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
+ BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
+ inode->i_rdev = 0;
+ *rdev = btrfs_stack_inode_rdev(inode_item);
+ BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
+
+ tspec = btrfs_inode_atime(inode_item);
+ inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
+ inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
+
+ tspec = btrfs_inode_mtime(inode_item);
+ inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
+ inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
+
+ tspec = btrfs_inode_ctime(inode_item);
+ inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
+ inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
+
+ inode->i_generation = BTRFS_I(inode)->generation;
+ BTRFS_I(inode)->index_cnt = (u64)-1;
+
+ mutex_unlock(&delayed_node->mutex);
+ btrfs_release_delayed_node(delayed_node);
+ return 0;
+}
+
+int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode)
+{
+ struct btrfs_delayed_node *delayed_node;
+ int ret = 0;
+
+ delayed_node = btrfs_get_or_create_delayed_node(inode);
+ if (IS_ERR(delayed_node))
+ return PTR_ERR(delayed_node);
+
+ mutex_lock(&delayed_node->mutex);
+ if (delayed_node->inode_dirty) {
+ fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
+ goto release_node;
+ }
+
+ ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
+ delayed_node);
+ if (ret)
+ goto release_node;
+
+ fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
+ delayed_node->inode_dirty = 1;
+ delayed_node->count++;
+ atomic_inc(&root->fs_info->delayed_root->items);
+release_node:
+ mutex_unlock(&delayed_node->mutex);
+ btrfs_release_delayed_node(delayed_node);
+ return ret;
+}
+
+static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
+{
+ struct btrfs_root *root = delayed_node->root;
+ struct btrfs_delayed_item *curr_item, *prev_item;
+
+ mutex_lock(&delayed_node->mutex);
+ curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
+ while (curr_item) {
+ btrfs_delayed_item_release_metadata(root, curr_item);
+ prev_item = curr_item;
+ curr_item = __btrfs_next_delayed_item(prev_item);
+ btrfs_release_delayed_item(prev_item);
+ }
+
+ curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
+ while (curr_item) {
+ btrfs_delayed_item_release_metadata(root, curr_item);
+ prev_item = curr_item;
+ curr_item = __btrfs_next_delayed_item(prev_item);
+ btrfs_release_delayed_item(prev_item);
+ }
+
+ if (delayed_node->inode_dirty) {
+ btrfs_delayed_inode_release_metadata(root, delayed_node);
+ btrfs_release_delayed_inode(delayed_node);
+ }
+ mutex_unlock(&delayed_node->mutex);
+}
+
+void btrfs_kill_delayed_inode_items(struct inode *inode)
+{
+ struct btrfs_delayed_node *delayed_node;
+
+ delayed_node = btrfs_get_delayed_node(inode);
+ if (!delayed_node)
+ return;
+
+ __btrfs_kill_delayed_node(delayed_node);
+ btrfs_release_delayed_node(delayed_node);
+}
+
+void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
+{
+ u64 inode_id = 0;
+ struct btrfs_delayed_node *delayed_nodes[8];
+ int i, n;
+
+ while (1) {
+ spin_lock(&root->inode_lock);
+ n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
+ (void **)delayed_nodes, inode_id,
+ ARRAY_SIZE(delayed_nodes));
+ if (!n) {
+ spin_unlock(&root->inode_lock);
+ break;
+ }
+
+ inode_id = delayed_nodes[n - 1]->inode_id + 1;
+
+ for (i = 0; i < n; i++)
+ atomic_inc(&delayed_nodes[i]->refs);
+ spin_unlock(&root->inode_lock);
+
+ for (i = 0; i < n; i++) {
+ __btrfs_kill_delayed_node(delayed_nodes[i]);
+ btrfs_release_delayed_node(delayed_nodes[i]);
+ }
+ }
+}
diff --git a/fs/btrfs/delayed-inode.h b/fs/btrfs/delayed-inode.h
new file mode 100644
index 00000000..7083d08b
--- /dev/null
+++ b/fs/btrfs/delayed-inode.h
@@ -0,0 +1,145 @@
+/*
+ * Copyright (C) 2011 Fujitsu. All rights reserved.
+ * Written by Miao Xie <miaox@cn.fujitsu.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __DELAYED_TREE_OPERATION_H
+#define __DELAYED_TREE_OPERATION_H
+
+#include <linux/rbtree.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/list.h>
+#include <linux/wait.h>
+#include <linux/atomic.h>
+
+#include "ctree.h"
+
+/* types of the delayed item */
+#define BTRFS_DELAYED_INSERTION_ITEM 1
+#define BTRFS_DELAYED_DELETION_ITEM 2
+
+struct btrfs_delayed_root {
+ spinlock_t lock;
+ struct list_head node_list;
+ /*
+ * Used for delayed nodes which is waiting to be dealt with by the
+ * worker. If the delayed node is inserted into the work queue, we
+ * drop it from this list.
+ */
+ struct list_head prepare_list;
+ atomic_t items; /* for delayed items */
+ int nodes; /* for delayed nodes */
+ wait_queue_head_t wait;
+};
+
+struct btrfs_delayed_node {
+ u64 inode_id;
+ u64 bytes_reserved;
+ struct btrfs_root *root;
+ /* Used to add the node into the delayed root's node list. */
+ struct list_head n_list;
+ /*
+ * Used to add the node into the prepare list, the nodes in this list
+ * is waiting to be dealt with by the async worker.
+ */
+ struct list_head p_list;
+ struct rb_root ins_root;
+ struct rb_root del_root;
+ struct mutex mutex;
+ struct btrfs_inode_item inode_item;
+ atomic_t refs;
+ u64 index_cnt;
+ bool in_list;
+ bool inode_dirty;
+ int count;
+};
+
+struct btrfs_delayed_item {
+ struct rb_node rb_node;
+ struct btrfs_key key;
+ struct list_head tree_list; /* used for batch insert/delete items */
+ struct list_head readdir_list; /* used for readdir items */
+ u64 bytes_reserved;
+ struct btrfs_delayed_node *delayed_node;
+ atomic_t refs;
+ int ins_or_del;
+ u32 data_len;
+ char data[0];
+};
+
+static inline void btrfs_init_delayed_root(
+ struct btrfs_delayed_root *delayed_root)
+{
+ atomic_set(&delayed_root->items, 0);
+ delayed_root->nodes = 0;
+ spin_lock_init(&delayed_root->lock);
+ init_waitqueue_head(&delayed_root->wait);
+ INIT_LIST_HEAD(&delayed_root->node_list);
+ INIT_LIST_HEAD(&delayed_root->prepare_list);
+}
+
+int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, const char *name,
+ int name_len, struct inode *dir,
+ struct btrfs_disk_key *disk_key, u8 type,
+ u64 index);
+
+int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *dir,
+ u64 index);
+
+int btrfs_inode_delayed_dir_index_count(struct inode *inode);
+
+int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+
+void btrfs_balance_delayed_items(struct btrfs_root *root);
+
+int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
+ struct inode *inode);
+/* Used for evicting the inode. */
+void btrfs_remove_delayed_node(struct inode *inode);
+void btrfs_kill_delayed_inode_items(struct inode *inode);
+
+
+int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode);
+int btrfs_fill_inode(struct inode *inode, u32 *rdev);
+
+/* Used for drop dead root */
+void btrfs_kill_all_delayed_nodes(struct btrfs_root *root);
+
+/* Used for readdir() */
+void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
+ struct list_head *del_list);
+void btrfs_put_delayed_items(struct list_head *ins_list,
+ struct list_head *del_list);
+int btrfs_should_delete_dir_index(struct list_head *del_list,
+ u64 index);
+int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
+ filldir_t filldir,
+ struct list_head *ins_list);
+
+/* for init */
+int __init btrfs_delayed_inode_init(void);
+void btrfs_delayed_inode_exit(void);
+
+/* for debugging */
+void btrfs_assert_delayed_root_empty(struct btrfs_root *root);
+
+#endif
diff --git a/fs/btrfs/delayed-ref.c b/fs/btrfs/delayed-ref.c
new file mode 100644
index 00000000..69f22e3a
--- /dev/null
+++ b/fs/btrfs/delayed-ref.c
@@ -0,0 +1,759 @@
+/*
+ * Copyright (C) 2009 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/sort.h>
+#include "ctree.h"
+#include "delayed-ref.h"
+#include "transaction.h"
+
+/*
+ * delayed back reference update tracking. For subvolume trees
+ * we queue up extent allocations and backref maintenance for
+ * delayed processing. This avoids deep call chains where we
+ * add extents in the middle of btrfs_search_slot, and it allows
+ * us to buffer up frequently modified backrefs in an rb tree instead
+ * of hammering updates on the extent allocation tree.
+ */
+
+/*
+ * compare two delayed tree backrefs with same bytenr and type
+ */
+static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
+ struct btrfs_delayed_tree_ref *ref1)
+{
+ if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
+ if (ref1->root < ref2->root)
+ return -1;
+ if (ref1->root > ref2->root)
+ return 1;
+ } else {
+ if (ref1->parent < ref2->parent)
+ return -1;
+ if (ref1->parent > ref2->parent)
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * compare two delayed data backrefs with same bytenr and type
+ */
+static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
+ struct btrfs_delayed_data_ref *ref1)
+{
+ if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
+ if (ref1->root < ref2->root)
+ return -1;
+ if (ref1->root > ref2->root)
+ return 1;
+ if (ref1->objectid < ref2->objectid)
+ return -1;
+ if (ref1->objectid > ref2->objectid)
+ return 1;
+ if (ref1->offset < ref2->offset)
+ return -1;
+ if (ref1->offset > ref2->offset)
+ return 1;
+ } else {
+ if (ref1->parent < ref2->parent)
+ return -1;
+ if (ref1->parent > ref2->parent)
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * entries in the rb tree are ordered by the byte number of the extent,
+ * type of the delayed backrefs and content of delayed backrefs.
+ */
+static int comp_entry(struct btrfs_delayed_ref_node *ref2,
+ struct btrfs_delayed_ref_node *ref1)
+{
+ if (ref1->bytenr < ref2->bytenr)
+ return -1;
+ if (ref1->bytenr > ref2->bytenr)
+ return 1;
+ if (ref1->is_head && ref2->is_head)
+ return 0;
+ if (ref2->is_head)
+ return -1;
+ if (ref1->is_head)
+ return 1;
+ if (ref1->type < ref2->type)
+ return -1;
+ if (ref1->type > ref2->type)
+ return 1;
+ /* merging of sequenced refs is not allowed */
+ if (ref1->seq < ref2->seq)
+ return -1;
+ if (ref1->seq > ref2->seq)
+ return 1;
+ if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
+ ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
+ return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
+ btrfs_delayed_node_to_tree_ref(ref1));
+ } else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
+ ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
+ return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
+ btrfs_delayed_node_to_data_ref(ref1));
+ }
+ BUG();
+ return 0;
+}
+
+/*
+ * insert a new ref into the rbtree. This returns any existing refs
+ * for the same (bytenr,parent) tuple, or NULL if the new node was properly
+ * inserted.
+ */
+static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
+ struct rb_node *node)
+{
+ struct rb_node **p = &root->rb_node;
+ struct rb_node *parent_node = NULL;
+ struct btrfs_delayed_ref_node *entry;
+ struct btrfs_delayed_ref_node *ins;
+ int cmp;
+
+ ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+ while (*p) {
+ parent_node = *p;
+ entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
+ rb_node);
+
+ cmp = comp_entry(entry, ins);
+ if (cmp < 0)
+ p = &(*p)->rb_left;
+ else if (cmp > 0)
+ p = &(*p)->rb_right;
+ else
+ return entry;
+ }
+
+ rb_link_node(node, parent_node, p);
+ rb_insert_color(node, root);
+ return NULL;
+}
+
+/*
+ * find an head entry based on bytenr. This returns the delayed ref
+ * head if it was able to find one, or NULL if nothing was in that spot.
+ * If return_bigger is given, the next bigger entry is returned if no exact
+ * match is found.
+ */
+static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
+ u64 bytenr,
+ struct btrfs_delayed_ref_node **last,
+ int return_bigger)
+{
+ struct rb_node *n;
+ struct btrfs_delayed_ref_node *entry;
+ int cmp = 0;
+
+again:
+ n = root->rb_node;
+ entry = NULL;
+ while (n) {
+ entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
+ WARN_ON(!entry->in_tree);
+ if (last)
+ *last = entry;
+
+ if (bytenr < entry->bytenr)
+ cmp = -1;
+ else if (bytenr > entry->bytenr)
+ cmp = 1;
+ else if (!btrfs_delayed_ref_is_head(entry))
+ cmp = 1;
+ else
+ cmp = 0;
+
+ if (cmp < 0)
+ n = n->rb_left;
+ else if (cmp > 0)
+ n = n->rb_right;
+ else
+ return entry;
+ }
+ if (entry && return_bigger) {
+ if (cmp > 0) {
+ n = rb_next(&entry->rb_node);
+ if (!n)
+ n = rb_first(root);
+ entry = rb_entry(n, struct btrfs_delayed_ref_node,
+ rb_node);
+ bytenr = entry->bytenr;
+ return_bigger = 0;
+ goto again;
+ }
+ return entry;
+ }
+ return NULL;
+}
+
+int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
+ struct btrfs_delayed_ref_head *head)
+{
+ struct btrfs_delayed_ref_root *delayed_refs;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ assert_spin_locked(&delayed_refs->lock);
+ if (mutex_trylock(&head->mutex))
+ return 0;
+
+ atomic_inc(&head->node.refs);
+ spin_unlock(&delayed_refs->lock);
+
+ mutex_lock(&head->mutex);
+ spin_lock(&delayed_refs->lock);
+ if (!head->node.in_tree) {
+ mutex_unlock(&head->mutex);
+ btrfs_put_delayed_ref(&head->node);
+ return -EAGAIN;
+ }
+ btrfs_put_delayed_ref(&head->node);
+ return 0;
+}
+
+int btrfs_check_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
+ u64 seq)
+{
+ struct seq_list *elem;
+
+ assert_spin_locked(&delayed_refs->lock);
+ if (list_empty(&delayed_refs->seq_head))
+ return 0;
+
+ elem = list_first_entry(&delayed_refs->seq_head, struct seq_list, list);
+ if (seq >= elem->seq) {
+ pr_debug("holding back delayed_ref %llu, lowest is %llu (%p)\n",
+ seq, elem->seq, delayed_refs);
+ return 1;
+ }
+ return 0;
+}
+
+int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
+ struct list_head *cluster, u64 start)
+{
+ int count = 0;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct rb_node *node;
+ struct btrfs_delayed_ref_node *ref;
+ struct btrfs_delayed_ref_head *head;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ if (start == 0) {
+ node = rb_first(&delayed_refs->root);
+ } else {
+ ref = NULL;
+ find_ref_head(&delayed_refs->root, start + 1, &ref, 1);
+ if (ref) {
+ node = &ref->rb_node;
+ } else
+ node = rb_first(&delayed_refs->root);
+ }
+again:
+ while (node && count < 32) {
+ ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+ if (btrfs_delayed_ref_is_head(ref)) {
+ head = btrfs_delayed_node_to_head(ref);
+ if (list_empty(&head->cluster)) {
+ list_add_tail(&head->cluster, cluster);
+ delayed_refs->run_delayed_start =
+ head->node.bytenr;
+ count++;
+
+ WARN_ON(delayed_refs->num_heads_ready == 0);
+ delayed_refs->num_heads_ready--;
+ } else if (count) {
+ /* the goal of the clustering is to find extents
+ * that are likely to end up in the same extent
+ * leaf on disk. So, we don't want them spread
+ * all over the tree. Stop now if we've hit
+ * a head that was already in use
+ */
+ break;
+ }
+ }
+ node = rb_next(node);
+ }
+ if (count) {
+ return 0;
+ } else if (start) {
+ /*
+ * we've gone to the end of the rbtree without finding any
+ * clusters. start from the beginning and try again
+ */
+ start = 0;
+ node = rb_first(&delayed_refs->root);
+ goto again;
+ }
+ return 1;
+}
+
+/*
+ * helper function to update an extent delayed ref in the
+ * rbtree. existing and update must both have the same
+ * bytenr and parent
+ *
+ * This may free existing if the update cancels out whatever
+ * operation it was doing.
+ */
+static noinline void
+update_existing_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_delayed_ref_root *delayed_refs,
+ struct btrfs_delayed_ref_node *existing,
+ struct btrfs_delayed_ref_node *update)
+{
+ if (update->action != existing->action) {
+ /*
+ * this is effectively undoing either an add or a
+ * drop. We decrement the ref_mod, and if it goes
+ * down to zero we just delete the entry without
+ * every changing the extent allocation tree.
+ */
+ existing->ref_mod--;
+ if (existing->ref_mod == 0) {
+ rb_erase(&existing->rb_node,
+ &delayed_refs->root);
+ existing->in_tree = 0;
+ btrfs_put_delayed_ref(existing);
+ delayed_refs->num_entries--;
+ if (trans->delayed_ref_updates)
+ trans->delayed_ref_updates--;
+ } else {
+ WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
+ existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
+ }
+ } else {
+ WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
+ existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
+ /*
+ * the action on the existing ref matches
+ * the action on the ref we're trying to add.
+ * Bump the ref_mod by one so the backref that
+ * is eventually added/removed has the correct
+ * reference count
+ */
+ existing->ref_mod += update->ref_mod;
+ }
+}
+
+/*
+ * helper function to update the accounting in the head ref
+ * existing and update must have the same bytenr
+ */
+static noinline void
+update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
+ struct btrfs_delayed_ref_node *update)
+{
+ struct btrfs_delayed_ref_head *existing_ref;
+ struct btrfs_delayed_ref_head *ref;
+
+ existing_ref = btrfs_delayed_node_to_head(existing);
+ ref = btrfs_delayed_node_to_head(update);
+ BUG_ON(existing_ref->is_data != ref->is_data);
+
+ if (ref->must_insert_reserved) {
+ /* if the extent was freed and then
+ * reallocated before the delayed ref
+ * entries were processed, we can end up
+ * with an existing head ref without
+ * the must_insert_reserved flag set.
+ * Set it again here
+ */
+ existing_ref->must_insert_reserved = ref->must_insert_reserved;
+
+ /*
+ * update the num_bytes so we make sure the accounting
+ * is done correctly
+ */
+ existing->num_bytes = update->num_bytes;
+
+ }
+
+ if (ref->extent_op) {
+ if (!existing_ref->extent_op) {
+ existing_ref->extent_op = ref->extent_op;
+ } else {
+ if (ref->extent_op->update_key) {
+ memcpy(&existing_ref->extent_op->key,
+ &ref->extent_op->key,
+ sizeof(ref->extent_op->key));
+ existing_ref->extent_op->update_key = 1;
+ }
+ if (ref->extent_op->update_flags) {
+ existing_ref->extent_op->flags_to_set |=
+ ref->extent_op->flags_to_set;
+ existing_ref->extent_op->update_flags = 1;
+ }
+ kfree(ref->extent_op);
+ }
+ }
+ /*
+ * update the reference mod on the head to reflect this new operation
+ */
+ existing->ref_mod += update->ref_mod;
+}
+
+/*
+ * helper function to actually insert a head node into the rbtree.
+ * this does all the dirty work in terms of maintaining the correct
+ * overall modification count.
+ */
+static noinline void add_delayed_ref_head(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_delayed_ref_node *ref,
+ u64 bytenr, u64 num_bytes,
+ int action, int is_data)
+{
+ struct btrfs_delayed_ref_node *existing;
+ struct btrfs_delayed_ref_head *head_ref = NULL;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ int count_mod = 1;
+ int must_insert_reserved = 0;
+
+ /*
+ * the head node stores the sum of all the mods, so dropping a ref
+ * should drop the sum in the head node by one.
+ */
+ if (action == BTRFS_UPDATE_DELAYED_HEAD)
+ count_mod = 0;
+ else if (action == BTRFS_DROP_DELAYED_REF)
+ count_mod = -1;
+
+ /*
+ * BTRFS_ADD_DELAYED_EXTENT means that we need to update
+ * the reserved accounting when the extent is finally added, or
+ * if a later modification deletes the delayed ref without ever
+ * inserting the extent into the extent allocation tree.
+ * ref->must_insert_reserved is the flag used to record
+ * that accounting mods are required.
+ *
+ * Once we record must_insert_reserved, switch the action to
+ * BTRFS_ADD_DELAYED_REF because other special casing is not required.
+ */
+ if (action == BTRFS_ADD_DELAYED_EXTENT)
+ must_insert_reserved = 1;
+ else
+ must_insert_reserved = 0;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+
+ /* first set the basic ref node struct up */
+ atomic_set(&ref->refs, 1);
+ ref->bytenr = bytenr;
+ ref->num_bytes = num_bytes;
+ ref->ref_mod = count_mod;
+ ref->type = 0;
+ ref->action = 0;
+ ref->is_head = 1;
+ ref->in_tree = 1;
+ ref->seq = 0;
+
+ head_ref = btrfs_delayed_node_to_head(ref);
+ head_ref->must_insert_reserved = must_insert_reserved;
+ head_ref->is_data = is_data;
+
+ INIT_LIST_HEAD(&head_ref->cluster);
+ mutex_init(&head_ref->mutex);
+
+ trace_btrfs_delayed_ref_head(ref, head_ref, action);
+
+ existing = tree_insert(&delayed_refs->root, &ref->rb_node);
+
+ if (existing) {
+ update_existing_head_ref(existing, ref);
+ /*
+ * we've updated the existing ref, free the newly
+ * allocated ref
+ */
+ kfree(head_ref);
+ } else {
+ delayed_refs->num_heads++;
+ delayed_refs->num_heads_ready++;
+ delayed_refs->num_entries++;
+ trans->delayed_ref_updates++;
+ }
+}
+
+/*
+ * helper to insert a delayed tree ref into the rbtree.
+ */
+static noinline void add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_delayed_ref_node *ref,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 ref_root, int level, int action,
+ int for_cow)
+{
+ struct btrfs_delayed_ref_node *existing;
+ struct btrfs_delayed_tree_ref *full_ref;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ u64 seq = 0;
+
+ if (action == BTRFS_ADD_DELAYED_EXTENT)
+ action = BTRFS_ADD_DELAYED_REF;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+
+ /* first set the basic ref node struct up */
+ atomic_set(&ref->refs, 1);
+ ref->bytenr = bytenr;
+ ref->num_bytes = num_bytes;
+ ref->ref_mod = 1;
+ ref->action = action;
+ ref->is_head = 0;
+ ref->in_tree = 1;
+
+ if (need_ref_seq(for_cow, ref_root))
+ seq = inc_delayed_seq(delayed_refs);
+ ref->seq = seq;
+
+ full_ref = btrfs_delayed_node_to_tree_ref(ref);
+ full_ref->parent = parent;
+ full_ref->root = ref_root;
+ if (parent)
+ ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
+ else
+ ref->type = BTRFS_TREE_BLOCK_REF_KEY;
+ full_ref->level = level;
+
+ trace_btrfs_delayed_tree_ref(ref, full_ref, action);
+
+ existing = tree_insert(&delayed_refs->root, &ref->rb_node);
+
+ if (existing) {
+ update_existing_ref(trans, delayed_refs, existing, ref);
+ /*
+ * we've updated the existing ref, free the newly
+ * allocated ref
+ */
+ kfree(full_ref);
+ } else {
+ delayed_refs->num_entries++;
+ trans->delayed_ref_updates++;
+ }
+}
+
+/*
+ * helper to insert a delayed data ref into the rbtree.
+ */
+static noinline void add_delayed_data_ref(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_delayed_ref_node *ref,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 ref_root, u64 owner, u64 offset,
+ int action, int for_cow)
+{
+ struct btrfs_delayed_ref_node *existing;
+ struct btrfs_delayed_data_ref *full_ref;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ u64 seq = 0;
+
+ if (action == BTRFS_ADD_DELAYED_EXTENT)
+ action = BTRFS_ADD_DELAYED_REF;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+
+ /* first set the basic ref node struct up */
+ atomic_set(&ref->refs, 1);
+ ref->bytenr = bytenr;
+ ref->num_bytes = num_bytes;
+ ref->ref_mod = 1;
+ ref->action = action;
+ ref->is_head = 0;
+ ref->in_tree = 1;
+
+ if (need_ref_seq(for_cow, ref_root))
+ seq = inc_delayed_seq(delayed_refs);
+ ref->seq = seq;
+
+ full_ref = btrfs_delayed_node_to_data_ref(ref);
+ full_ref->parent = parent;
+ full_ref->root = ref_root;
+ if (parent)
+ ref->type = BTRFS_SHARED_DATA_REF_KEY;
+ else
+ ref->type = BTRFS_EXTENT_DATA_REF_KEY;
+
+ full_ref->objectid = owner;
+ full_ref->offset = offset;
+
+ trace_btrfs_delayed_data_ref(ref, full_ref, action);
+
+ existing = tree_insert(&delayed_refs->root, &ref->rb_node);
+
+ if (existing) {
+ update_existing_ref(trans, delayed_refs, existing, ref);
+ /*
+ * we've updated the existing ref, free the newly
+ * allocated ref
+ */
+ kfree(full_ref);
+ } else {
+ delayed_refs->num_entries++;
+ trans->delayed_ref_updates++;
+ }
+}
+
+/*
+ * add a delayed tree ref. This does all of the accounting required
+ * to make sure the delayed ref is eventually processed before this
+ * transaction commits.
+ */
+int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 ref_root, int level, int action,
+ struct btrfs_delayed_extent_op *extent_op,
+ int for_cow)
+{
+ struct btrfs_delayed_tree_ref *ref;
+ struct btrfs_delayed_ref_head *head_ref;
+ struct btrfs_delayed_ref_root *delayed_refs;
+
+ BUG_ON(extent_op && extent_op->is_data);
+ ref = kmalloc(sizeof(*ref), GFP_NOFS);
+ if (!ref)
+ return -ENOMEM;
+
+ head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
+ if (!head_ref) {
+ kfree(ref);
+ return -ENOMEM;
+ }
+
+ head_ref->extent_op = extent_op;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+
+ /*
+ * insert both the head node and the new ref without dropping
+ * the spin lock
+ */
+ add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
+ num_bytes, action, 0);
+
+ add_delayed_tree_ref(fs_info, trans, &ref->node, bytenr,
+ num_bytes, parent, ref_root, level, action,
+ for_cow);
+ if (!need_ref_seq(for_cow, ref_root) &&
+ waitqueue_active(&delayed_refs->seq_wait))
+ wake_up(&delayed_refs->seq_wait);
+ spin_unlock(&delayed_refs->lock);
+ return 0;
+}
+
+/*
+ * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
+ */
+int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ u64 bytenr, u64 num_bytes,
+ u64 parent, u64 ref_root,
+ u64 owner, u64 offset, int action,
+ struct btrfs_delayed_extent_op *extent_op,
+ int for_cow)
+{
+ struct btrfs_delayed_data_ref *ref;
+ struct btrfs_delayed_ref_head *head_ref;
+ struct btrfs_delayed_ref_root *delayed_refs;
+
+ BUG_ON(extent_op && !extent_op->is_data);
+ ref = kmalloc(sizeof(*ref), GFP_NOFS);
+ if (!ref)
+ return -ENOMEM;
+
+ head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
+ if (!head_ref) {
+ kfree(ref);
+ return -ENOMEM;
+ }
+
+ head_ref->extent_op = extent_op;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+
+ /*
+ * insert both the head node and the new ref without dropping
+ * the spin lock
+ */
+ add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
+ num_bytes, action, 1);
+
+ add_delayed_data_ref(fs_info, trans, &ref->node, bytenr,
+ num_bytes, parent, ref_root, owner, offset,
+ action, for_cow);
+ if (!need_ref_seq(for_cow, ref_root) &&
+ waitqueue_active(&delayed_refs->seq_wait))
+ wake_up(&delayed_refs->seq_wait);
+ spin_unlock(&delayed_refs->lock);
+ return 0;
+}
+
+int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ u64 bytenr, u64 num_bytes,
+ struct btrfs_delayed_extent_op *extent_op)
+{
+ struct btrfs_delayed_ref_head *head_ref;
+ struct btrfs_delayed_ref_root *delayed_refs;
+
+ head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
+ if (!head_ref)
+ return -ENOMEM;
+
+ head_ref->extent_op = extent_op;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+
+ add_delayed_ref_head(fs_info, trans, &head_ref->node, bytenr,
+ num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
+ extent_op->is_data);
+
+ if (waitqueue_active(&delayed_refs->seq_wait))
+ wake_up(&delayed_refs->seq_wait);
+ spin_unlock(&delayed_refs->lock);
+ return 0;
+}
+
+/*
+ * this does a simple search for the head node for a given extent.
+ * It must be called with the delayed ref spinlock held, and it returns
+ * the head node if any where found, or NULL if not.
+ */
+struct btrfs_delayed_ref_head *
+btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
+{
+ struct btrfs_delayed_ref_node *ref;
+ struct btrfs_delayed_ref_root *delayed_refs;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ ref = find_ref_head(&delayed_refs->root, bytenr, NULL, 0);
+ if (ref)
+ return btrfs_delayed_node_to_head(ref);
+ return NULL;
+}
diff --git a/fs/btrfs/delayed-ref.h b/fs/btrfs/delayed-ref.h
new file mode 100644
index 00000000..d8f244d9
--- /dev/null
+++ b/fs/btrfs/delayed-ref.h
@@ -0,0 +1,283 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#ifndef __DELAYED_REF__
+#define __DELAYED_REF__
+
+/* these are the possible values of struct btrfs_delayed_ref->action */
+#define BTRFS_ADD_DELAYED_REF 1 /* add one backref to the tree */
+#define BTRFS_DROP_DELAYED_REF 2 /* delete one backref from the tree */
+#define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
+#define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */
+
+struct btrfs_delayed_ref_node {
+ struct rb_node rb_node;
+
+ /* the starting bytenr of the extent */
+ u64 bytenr;
+
+ /* the size of the extent */
+ u64 num_bytes;
+
+ /* seq number to keep track of insertion order */
+ u64 seq;
+
+ /* ref count on this data structure */
+ atomic_t refs;
+
+ /*
+ * how many refs is this entry adding or deleting. For
+ * head refs, this may be a negative number because it is keeping
+ * track of the total mods done to the reference count.
+ * For individual refs, this will always be a positive number
+ *
+ * It may be more than one, since it is possible for a single
+ * parent to have more than one ref on an extent
+ */
+ int ref_mod;
+
+ unsigned int action:8;
+ unsigned int type:8;
+ /* is this node still in the rbtree? */
+ unsigned int is_head:1;
+ unsigned int in_tree:1;
+};
+
+struct btrfs_delayed_extent_op {
+ struct btrfs_disk_key key;
+ u64 flags_to_set;
+ unsigned int update_key:1;
+ unsigned int update_flags:1;
+ unsigned int is_data:1;
+};
+
+/*
+ * the head refs are used to hold a lock on a given extent, which allows us
+ * to make sure that only one process is running the delayed refs
+ * at a time for a single extent. They also store the sum of all the
+ * reference count modifications we've queued up.
+ */
+struct btrfs_delayed_ref_head {
+ struct btrfs_delayed_ref_node node;
+
+ /*
+ * the mutex is held while running the refs, and it is also
+ * held when checking the sum of reference modifications.
+ */
+ struct mutex mutex;
+
+ struct list_head cluster;
+
+ struct btrfs_delayed_extent_op *extent_op;
+ /*
+ * when a new extent is allocated, it is just reserved in memory
+ * The actual extent isn't inserted into the extent allocation tree
+ * until the delayed ref is processed. must_insert_reserved is
+ * used to flag a delayed ref so the accounting can be updated
+ * when a full insert is done.
+ *
+ * It is possible the extent will be freed before it is ever
+ * inserted into the extent allocation tree. In this case
+ * we need to update the in ram accounting to properly reflect
+ * the free has happened.
+ */
+ unsigned int must_insert_reserved:1;
+ unsigned int is_data:1;
+};
+
+struct btrfs_delayed_tree_ref {
+ struct btrfs_delayed_ref_node node;
+ u64 root;
+ u64 parent;
+ int level;
+};
+
+struct btrfs_delayed_data_ref {
+ struct btrfs_delayed_ref_node node;
+ u64 root;
+ u64 parent;
+ u64 objectid;
+ u64 offset;
+};
+
+struct btrfs_delayed_ref_root {
+ struct rb_root root;
+
+ /* this spin lock protects the rbtree and the entries inside */
+ spinlock_t lock;
+
+ /* how many delayed ref updates we've queued, used by the
+ * throttling code
+ */
+ unsigned long num_entries;
+
+ /* total number of head nodes in tree */
+ unsigned long num_heads;
+
+ /* total number of head nodes ready for processing */
+ unsigned long num_heads_ready;
+
+ /*
+ * set when the tree is flushing before a transaction commit,
+ * used by the throttling code to decide if new updates need
+ * to be run right away
+ */
+ int flushing;
+
+ u64 run_delayed_start;
+
+ /*
+ * seq number of delayed refs. We need to know if a backref was being
+ * added before the currently processed ref or afterwards.
+ */
+ u64 seq;
+
+ /*
+ * seq_list holds a list of all seq numbers that are currently being
+ * added to the list. While walking backrefs (btrfs_find_all_roots,
+ * qgroups), which might take some time, no newer ref must be processed,
+ * as it might influence the outcome of the walk.
+ */
+ struct list_head seq_head;
+
+ /*
+ * when the only refs we have in the list must not be processed, we want
+ * to wait for more refs to show up or for the end of backref walking.
+ */
+ wait_queue_head_t seq_wait;
+};
+
+static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
+{
+ WARN_ON(atomic_read(&ref->refs) == 0);
+ if (atomic_dec_and_test(&ref->refs)) {
+ WARN_ON(ref->in_tree);
+ kfree(ref);
+ }
+}
+
+int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 ref_root, int level, int action,
+ struct btrfs_delayed_extent_op *extent_op,
+ int for_cow);
+int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ u64 bytenr, u64 num_bytes,
+ u64 parent, u64 ref_root,
+ u64 owner, u64 offset, int action,
+ struct btrfs_delayed_extent_op *extent_op,
+ int for_cow);
+int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
+ struct btrfs_trans_handle *trans,
+ u64 bytenr, u64 num_bytes,
+ struct btrfs_delayed_extent_op *extent_op);
+
+struct btrfs_delayed_ref_head *
+btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr);
+int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
+ struct btrfs_delayed_ref_head *head);
+int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
+ struct list_head *cluster, u64 search_start);
+
+struct seq_list {
+ struct list_head list;
+ u64 seq;
+};
+
+static inline u64 inc_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs)
+{
+ assert_spin_locked(&delayed_refs->lock);
+ ++delayed_refs->seq;
+ return delayed_refs->seq;
+}
+
+static inline void
+btrfs_get_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
+ struct seq_list *elem)
+{
+ assert_spin_locked(&delayed_refs->lock);
+ elem->seq = delayed_refs->seq;
+ list_add_tail(&elem->list, &delayed_refs->seq_head);
+}
+
+static inline void
+btrfs_put_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
+ struct seq_list *elem)
+{
+ spin_lock(&delayed_refs->lock);
+ list_del(&elem->list);
+ wake_up(&delayed_refs->seq_wait);
+ spin_unlock(&delayed_refs->lock);
+}
+
+int btrfs_check_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
+ u64 seq);
+
+/*
+ * delayed refs with a ref_seq > 0 must be held back during backref walking.
+ * this only applies to items in one of the fs-trees. for_cow items never need
+ * to be held back, so they won't get a ref_seq number.
+ */
+static inline int need_ref_seq(int for_cow, u64 rootid)
+{
+ if (for_cow)
+ return 0;
+
+ if (rootid == BTRFS_FS_TREE_OBJECTID)
+ return 1;
+
+ if ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
+ return 1;
+
+ return 0;
+}
+
+/*
+ * a node might live in a head or a regular ref, this lets you
+ * test for the proper type to use.
+ */
+static int btrfs_delayed_ref_is_head(struct btrfs_delayed_ref_node *node)
+{
+ return node->is_head;
+}
+
+/*
+ * helper functions to cast a node into its container
+ */
+static inline struct btrfs_delayed_tree_ref *
+btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
+{
+ WARN_ON(btrfs_delayed_ref_is_head(node));
+ return container_of(node, struct btrfs_delayed_tree_ref, node);
+}
+
+static inline struct btrfs_delayed_data_ref *
+btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
+{
+ WARN_ON(btrfs_delayed_ref_is_head(node));
+ return container_of(node, struct btrfs_delayed_data_ref, node);
+}
+
+static inline struct btrfs_delayed_ref_head *
+btrfs_delayed_node_to_head(struct btrfs_delayed_ref_node *node)
+{
+ WARN_ON(!btrfs_delayed_ref_is_head(node));
+ return container_of(node, struct btrfs_delayed_ref_head, node);
+}
+#endif
diff --git a/fs/btrfs/dir-item.c b/fs/btrfs/dir-item.c
new file mode 100644
index 00000000..c1a074d0
--- /dev/null
+++ b/fs/btrfs/dir-item.c
@@ -0,0 +1,422 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include "ctree.h"
+#include "disk-io.h"
+#include "hash.h"
+#include "transaction.h"
+
+/*
+ * insert a name into a directory, doing overflow properly if there is a hash
+ * collision. data_size indicates how big the item inserted should be. On
+ * success a struct btrfs_dir_item pointer is returned, otherwise it is
+ * an ERR_PTR.
+ *
+ * The name is not copied into the dir item, you have to do that yourself.
+ */
+static struct btrfs_dir_item *insert_with_overflow(struct btrfs_trans_handle
+ *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *cpu_key,
+ u32 data_size,
+ const char *name,
+ int name_len)
+{
+ int ret;
+ char *ptr;
+ struct btrfs_item *item;
+ struct extent_buffer *leaf;
+
+ ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
+ if (ret == -EEXIST) {
+ struct btrfs_dir_item *di;
+ di = btrfs_match_dir_item_name(root, path, name, name_len);
+ if (di)
+ return ERR_PTR(-EEXIST);
+ btrfs_extend_item(trans, root, path, data_size);
+ } else if (ret < 0)
+ return ERR_PTR(ret);
+ WARN_ON(ret > 0);
+ leaf = path->nodes[0];
+ item = btrfs_item_nr(leaf, path->slots[0]);
+ ptr = btrfs_item_ptr(leaf, path->slots[0], char);
+ BUG_ON(data_size > btrfs_item_size(leaf, item));
+ ptr += btrfs_item_size(leaf, item) - data_size;
+ return (struct btrfs_dir_item *)ptr;
+}
+
+/*
+ * xattrs work a lot like directories, this inserts an xattr item
+ * into the tree
+ */
+int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 objectid,
+ const char *name, u16 name_len,
+ const void *data, u16 data_len)
+{
+ int ret = 0;
+ struct btrfs_dir_item *dir_item;
+ unsigned long name_ptr, data_ptr;
+ struct btrfs_key key, location;
+ struct btrfs_disk_key disk_key;
+ struct extent_buffer *leaf;
+ u32 data_size;
+
+ BUG_ON(name_len + data_len > BTRFS_MAX_XATTR_SIZE(root));
+
+ key.objectid = objectid;
+ btrfs_set_key_type(&key, BTRFS_XATTR_ITEM_KEY);
+ key.offset = btrfs_name_hash(name, name_len);
+
+ data_size = sizeof(*dir_item) + name_len + data_len;
+ dir_item = insert_with_overflow(trans, root, path, &key, data_size,
+ name, name_len);
+ if (IS_ERR(dir_item))
+ return PTR_ERR(dir_item);
+ memset(&location, 0, sizeof(location));
+
+ leaf = path->nodes[0];
+ btrfs_cpu_key_to_disk(&disk_key, &location);
+ btrfs_set_dir_item_key(leaf, dir_item, &disk_key);
+ btrfs_set_dir_type(leaf, dir_item, BTRFS_FT_XATTR);
+ btrfs_set_dir_name_len(leaf, dir_item, name_len);
+ btrfs_set_dir_transid(leaf, dir_item, trans->transid);
+ btrfs_set_dir_data_len(leaf, dir_item, data_len);
+ name_ptr = (unsigned long)(dir_item + 1);
+ data_ptr = (unsigned long)((char *)name_ptr + name_len);
+
+ write_extent_buffer(leaf, name, name_ptr, name_len);
+ write_extent_buffer(leaf, data, data_ptr, data_len);
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+
+ return ret;
+}
+
+/*
+ * insert a directory item in the tree, doing all the magic for
+ * both indexes. 'dir' indicates which objectid to insert it into,
+ * 'location' is the key to stuff into the directory item, 'type' is the
+ * type of the inode we're pointing to, and 'index' is the sequence number
+ * to use for the second index (if one is created).
+ * Will return 0 or -ENOMEM
+ */
+int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, const char *name, int name_len,
+ struct inode *dir, struct btrfs_key *location,
+ u8 type, u64 index)
+{
+ int ret = 0;
+ int ret2 = 0;
+ struct btrfs_path *path;
+ struct btrfs_dir_item *dir_item;
+ struct extent_buffer *leaf;
+ unsigned long name_ptr;
+ struct btrfs_key key;
+ struct btrfs_disk_key disk_key;
+ u32 data_size;
+
+ key.objectid = btrfs_ino(dir);
+ btrfs_set_key_type(&key, BTRFS_DIR_ITEM_KEY);
+ key.offset = btrfs_name_hash(name, name_len);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->leave_spinning = 1;
+
+ btrfs_cpu_key_to_disk(&disk_key, location);
+
+ data_size = sizeof(*dir_item) + name_len;
+ dir_item = insert_with_overflow(trans, root, path, &key, data_size,
+ name, name_len);
+ if (IS_ERR(dir_item)) {
+ ret = PTR_ERR(dir_item);
+ if (ret == -EEXIST)
+ goto second_insert;
+ goto out_free;
+ }
+
+ leaf = path->nodes[0];
+ btrfs_set_dir_item_key(leaf, dir_item, &disk_key);
+ btrfs_set_dir_type(leaf, dir_item, type);
+ btrfs_set_dir_data_len(leaf, dir_item, 0);
+ btrfs_set_dir_name_len(leaf, dir_item, name_len);
+ btrfs_set_dir_transid(leaf, dir_item, trans->transid);
+ name_ptr = (unsigned long)(dir_item + 1);
+
+ write_extent_buffer(leaf, name, name_ptr, name_len);
+ btrfs_mark_buffer_dirty(leaf);
+
+second_insert:
+ /* FIXME, use some real flag for selecting the extra index */
+ if (root == root->fs_info->tree_root) {
+ ret = 0;
+ goto out_free;
+ }
+ btrfs_release_path(path);
+
+ ret2 = btrfs_insert_delayed_dir_index(trans, root, name, name_len, dir,
+ &disk_key, type, index);
+out_free:
+ btrfs_free_path(path);
+ if (ret)
+ return ret;
+ if (ret2)
+ return ret2;
+ return 0;
+}
+
+/*
+ * lookup a directory item based on name. 'dir' is the objectid
+ * we're searching in, and 'mod' tells us if you plan on deleting the
+ * item (use mod < 0) or changing the options (use mod > 0)
+ */
+struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 dir,
+ const char *name, int name_len,
+ int mod)
+{
+ int ret;
+ struct btrfs_key key;
+ int ins_len = mod < 0 ? -1 : 0;
+ int cow = mod != 0;
+
+ key.objectid = dir;
+ btrfs_set_key_type(&key, BTRFS_DIR_ITEM_KEY);
+
+ key.offset = btrfs_name_hash(name, name_len);
+
+ ret = btrfs_search_slot(trans, root, &key, path, ins_len, cow);
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (ret > 0)
+ return NULL;
+
+ return btrfs_match_dir_item_name(root, path, name, name_len);
+}
+
+/*
+ * lookup a directory item based on index. 'dir' is the objectid
+ * we're searching in, and 'mod' tells us if you plan on deleting the
+ * item (use mod < 0) or changing the options (use mod > 0)
+ *
+ * The name is used to make sure the index really points to the name you were
+ * looking for.
+ */
+struct btrfs_dir_item *
+btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 dir,
+ u64 objectid, const char *name, int name_len,
+ int mod)
+{
+ int ret;
+ struct btrfs_key key;
+ int ins_len = mod < 0 ? -1 : 0;
+ int cow = mod != 0;
+
+ key.objectid = dir;
+ btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
+ key.offset = objectid;
+
+ ret = btrfs_search_slot(trans, root, &key, path, ins_len, cow);
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (ret > 0)
+ return ERR_PTR(-ENOENT);
+ return btrfs_match_dir_item_name(root, path, name, name_len);
+}
+
+struct btrfs_dir_item *
+btrfs_search_dir_index_item(struct btrfs_root *root,
+ struct btrfs_path *path, u64 dirid,
+ const char *name, int name_len)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_dir_item *di;
+ struct btrfs_key key;
+ u32 nritems;
+ int ret;
+
+ key.objectid = dirid;
+ key.type = BTRFS_DIR_INDEX_KEY;
+ key.offset = 0;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+
+ while (1) {
+ if (path->slots[0] >= nritems) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (ret > 0)
+ break;
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ continue;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.objectid != dirid || key.type != BTRFS_DIR_INDEX_KEY)
+ break;
+
+ di = btrfs_match_dir_item_name(root, path, name, name_len);
+ if (di)
+ return di;
+
+ path->slots[0]++;
+ }
+ return NULL;
+}
+
+struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 dir,
+ const char *name, u16 name_len,
+ int mod)
+{
+ int ret;
+ struct btrfs_key key;
+ int ins_len = mod < 0 ? -1 : 0;
+ int cow = mod != 0;
+
+ key.objectid = dir;
+ btrfs_set_key_type(&key, BTRFS_XATTR_ITEM_KEY);
+ key.offset = btrfs_name_hash(name, name_len);
+ ret = btrfs_search_slot(trans, root, &key, path, ins_len, cow);
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (ret > 0)
+ return NULL;
+
+ return btrfs_match_dir_item_name(root, path, name, name_len);
+}
+
+/*
+ * helper function to look at the directory item pointed to by 'path'
+ * this walks through all the entries in a dir item and finds one
+ * for a specific name.
+ */
+struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
+ struct btrfs_path *path,
+ const char *name, int name_len)
+{
+ struct btrfs_dir_item *dir_item;
+ unsigned long name_ptr;
+ u32 total_len;
+ u32 cur = 0;
+ u32 this_len;
+ struct extent_buffer *leaf;
+
+ leaf = path->nodes[0];
+ dir_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
+ if (verify_dir_item(root, leaf, dir_item))
+ return NULL;
+
+ total_len = btrfs_item_size_nr(leaf, path->slots[0]);
+ while (cur < total_len) {
+ this_len = sizeof(*dir_item) +
+ btrfs_dir_name_len(leaf, dir_item) +
+ btrfs_dir_data_len(leaf, dir_item);
+ name_ptr = (unsigned long)(dir_item + 1);
+
+ if (btrfs_dir_name_len(leaf, dir_item) == name_len &&
+ memcmp_extent_buffer(leaf, name, name_ptr, name_len) == 0)
+ return dir_item;
+
+ cur += this_len;
+ dir_item = (struct btrfs_dir_item *)((char *)dir_item +
+ this_len);
+ }
+ return NULL;
+}
+
+/*
+ * given a pointer into a directory item, delete it. This
+ * handles items that have more than one entry in them.
+ */
+int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_dir_item *di)
+{
+
+ struct extent_buffer *leaf;
+ u32 sub_item_len;
+ u32 item_len;
+ int ret = 0;
+
+ leaf = path->nodes[0];
+ sub_item_len = sizeof(*di) + btrfs_dir_name_len(leaf, di) +
+ btrfs_dir_data_len(leaf, di);
+ item_len = btrfs_item_size_nr(leaf, path->slots[0]);
+ if (sub_item_len == item_len) {
+ ret = btrfs_del_item(trans, root, path);
+ } else {
+ /* MARKER */
+ unsigned long ptr = (unsigned long)di;
+ unsigned long start;
+
+ start = btrfs_item_ptr_offset(leaf, path->slots[0]);
+ memmove_extent_buffer(leaf, ptr, ptr + sub_item_len,
+ item_len - (ptr + sub_item_len - start));
+ btrfs_truncate_item(trans, root, path,
+ item_len - sub_item_len, 1);
+ }
+ return ret;
+}
+
+int verify_dir_item(struct btrfs_root *root,
+ struct extent_buffer *leaf,
+ struct btrfs_dir_item *dir_item)
+{
+ u16 namelen = BTRFS_NAME_LEN;
+ u8 type = btrfs_dir_type(leaf, dir_item);
+
+ if (type >= BTRFS_FT_MAX) {
+ printk(KERN_CRIT "btrfs: invalid dir item type: %d\n",
+ (int)type);
+ return 1;
+ }
+
+ if (type == BTRFS_FT_XATTR)
+ namelen = XATTR_NAME_MAX;
+
+ if (btrfs_dir_name_len(leaf, dir_item) > namelen) {
+ printk(KERN_CRIT "btrfs: invalid dir item name len: %u\n",
+ (unsigned)btrfs_dir_data_len(leaf, dir_item));
+ return 1;
+ }
+
+ /* BTRFS_MAX_XATTR_SIZE is the same for all dir items */
+ if (btrfs_dir_data_len(leaf, dir_item) > BTRFS_MAX_XATTR_SIZE(root)) {
+ printk(KERN_CRIT "btrfs: invalid dir item data len: %u\n",
+ (unsigned)btrfs_dir_data_len(leaf, dir_item));
+ return 1;
+ }
+
+ return 0;
+}
diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
new file mode 100644
index 00000000..a7ffc88a
--- /dev/null
+++ b/fs/btrfs/disk-io.c
@@ -0,0 +1,3693 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/fs.h>
+#include <linux/blkdev.h>
+#include <linux/scatterlist.h>
+#include <linux/swap.h>
+#include <linux/radix-tree.h>
+#include <linux/writeback.h>
+#include <linux/buffer_head.h>
+#include <linux/workqueue.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+#include <linux/crc32c.h>
+#include <linux/slab.h>
+#include <linux/migrate.h>
+#include <linux/ratelimit.h>
+#include <asm/unaligned.h>
+#include "compat.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "print-tree.h"
+#include "async-thread.h"
+#include "locking.h"
+#include "tree-log.h"
+#include "free-space-cache.h"
+#include "inode-map.h"
+#include "check-integrity.h"
+
+static struct extent_io_ops btree_extent_io_ops;
+static void end_workqueue_fn(struct btrfs_work *work);
+static void free_fs_root(struct btrfs_root *root);
+static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
+ int read_only);
+static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
+static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
+static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
+ struct btrfs_root *root);
+static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
+static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
+static int btrfs_destroy_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages,
+ int mark);
+static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
+ struct extent_io_tree *pinned_extents);
+
+/*
+ * end_io_wq structs are used to do processing in task context when an IO is
+ * complete. This is used during reads to verify checksums, and it is used
+ * by writes to insert metadata for new file extents after IO is complete.
+ */
+struct end_io_wq {
+ struct bio *bio;
+ bio_end_io_t *end_io;
+ void *private;
+ struct btrfs_fs_info *info;
+ int error;
+ int metadata;
+ struct list_head list;
+ struct btrfs_work work;
+};
+
+/*
+ * async submit bios are used to offload expensive checksumming
+ * onto the worker threads. They checksum file and metadata bios
+ * just before they are sent down the IO stack.
+ */
+struct async_submit_bio {
+ struct inode *inode;
+ struct bio *bio;
+ struct list_head list;
+ extent_submit_bio_hook_t *submit_bio_start;
+ extent_submit_bio_hook_t *submit_bio_done;
+ int rw;
+ int mirror_num;
+ unsigned long bio_flags;
+ /*
+ * bio_offset is optional, can be used if the pages in the bio
+ * can't tell us where in the file the bio should go
+ */
+ u64 bio_offset;
+ struct btrfs_work work;
+ int error;
+};
+
+/*
+ * Lockdep class keys for extent_buffer->lock's in this root. For a given
+ * eb, the lockdep key is determined by the btrfs_root it belongs to and
+ * the level the eb occupies in the tree.
+ *
+ * Different roots are used for different purposes and may nest inside each
+ * other and they require separate keysets. As lockdep keys should be
+ * static, assign keysets according to the purpose of the root as indicated
+ * by btrfs_root->objectid. This ensures that all special purpose roots
+ * have separate keysets.
+ *
+ * Lock-nesting across peer nodes is always done with the immediate parent
+ * node locked thus preventing deadlock. As lockdep doesn't know this, use
+ * subclass to avoid triggering lockdep warning in such cases.
+ *
+ * The key is set by the readpage_end_io_hook after the buffer has passed
+ * csum validation but before the pages are unlocked. It is also set by
+ * btrfs_init_new_buffer on freshly allocated blocks.
+ *
+ * We also add a check to make sure the highest level of the tree is the
+ * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
+ * needs update as well.
+ */
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+# if BTRFS_MAX_LEVEL != 8
+# error
+# endif
+
+static struct btrfs_lockdep_keyset {
+ u64 id; /* root objectid */
+ const char *name_stem; /* lock name stem */
+ char names[BTRFS_MAX_LEVEL + 1][20];
+ struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
+} btrfs_lockdep_keysets[] = {
+ { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
+ { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
+ { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
+ { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
+ { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
+ { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
+ { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
+ { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
+ { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
+ { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
+ { .id = 0, .name_stem = "tree" },
+};
+
+void __init btrfs_init_lockdep(void)
+{
+ int i, j;
+
+ /* initialize lockdep class names */
+ for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
+ struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
+
+ for (j = 0; j < ARRAY_SIZE(ks->names); j++)
+ snprintf(ks->names[j], sizeof(ks->names[j]),
+ "btrfs-%s-%02d", ks->name_stem, j);
+ }
+}
+
+void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
+ int level)
+{
+ struct btrfs_lockdep_keyset *ks;
+
+ BUG_ON(level >= ARRAY_SIZE(ks->keys));
+
+ /* find the matching keyset, id 0 is the default entry */
+ for (ks = btrfs_lockdep_keysets; ks->id; ks++)
+ if (ks->id == objectid)
+ break;
+
+ lockdep_set_class_and_name(&eb->lock,
+ &ks->keys[level], ks->names[level]);
+}
+
+#endif
+
+/*
+ * extents on the btree inode are pretty simple, there's one extent
+ * that covers the entire device
+ */
+static struct extent_map *btree_get_extent(struct inode *inode,
+ struct page *page, size_t pg_offset, u64 start, u64 len,
+ int create)
+{
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct extent_map *em;
+ int ret;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, start, len);
+ if (em) {
+ em->bdev =
+ BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+ read_unlock(&em_tree->lock);
+ goto out;
+ }
+ read_unlock(&em_tree->lock);
+
+ em = alloc_extent_map();
+ if (!em) {
+ em = ERR_PTR(-ENOMEM);
+ goto out;
+ }
+ em->start = 0;
+ em->len = (u64)-1;
+ em->block_len = (u64)-1;
+ em->block_start = 0;
+ em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ if (ret == -EEXIST) {
+ u64 failed_start = em->start;
+ u64 failed_len = em->len;
+
+ free_extent_map(em);
+ em = lookup_extent_mapping(em_tree, start, len);
+ if (em) {
+ ret = 0;
+ } else {
+ em = lookup_extent_mapping(em_tree, failed_start,
+ failed_len);
+ ret = -EIO;
+ }
+ } else if (ret) {
+ free_extent_map(em);
+ em = NULL;
+ }
+ write_unlock(&em_tree->lock);
+
+ if (ret)
+ em = ERR_PTR(ret);
+out:
+ return em;
+}
+
+u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
+{
+ return crc32c(seed, data, len);
+}
+
+void btrfs_csum_final(u32 crc, char *result)
+{
+ put_unaligned_le32(~crc, result);
+}
+
+/*
+ * compute the csum for a btree block, and either verify it or write it
+ * into the csum field of the block.
+ */
+static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
+ int verify)
+{
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+ char *result = NULL;
+ unsigned long len;
+ unsigned long cur_len;
+ unsigned long offset = BTRFS_CSUM_SIZE;
+ char *kaddr;
+ unsigned long map_start;
+ unsigned long map_len;
+ int err;
+ u32 crc = ~(u32)0;
+ unsigned long inline_result;
+
+ len = buf->len - offset;
+ while (len > 0) {
+ err = map_private_extent_buffer(buf, offset, 32,
+ &kaddr, &map_start, &map_len);
+ if (err)
+ return 1;
+ cur_len = min(len, map_len - (offset - map_start));
+ crc = btrfs_csum_data(root, kaddr + offset - map_start,
+ crc, cur_len);
+ len -= cur_len;
+ offset += cur_len;
+ }
+ if (csum_size > sizeof(inline_result)) {
+ result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
+ if (!result)
+ return 1;
+ } else {
+ result = (char *)&inline_result;
+ }
+
+ btrfs_csum_final(crc, result);
+
+ if (verify) {
+ if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
+ u32 val;
+ u32 found = 0;
+ memcpy(&found, result, csum_size);
+
+ read_extent_buffer(buf, &val, 0, csum_size);
+ printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
+ "failed on %llu wanted %X found %X "
+ "level %d\n",
+ root->fs_info->sb->s_id,
+ (unsigned long long)buf->start, val, found,
+ btrfs_header_level(buf));
+ if (result != (char *)&inline_result)
+ kfree(result);
+ return 1;
+ }
+ } else {
+ write_extent_buffer(buf, result, 0, csum_size);
+ }
+ if (result != (char *)&inline_result)
+ kfree(result);
+ return 0;
+}
+
+/*
+ * we can't consider a given block up to date unless the transid of the
+ * block matches the transid in the parent node's pointer. This is how we
+ * detect blocks that either didn't get written at all or got written
+ * in the wrong place.
+ */
+static int verify_parent_transid(struct extent_io_tree *io_tree,
+ struct extent_buffer *eb, u64 parent_transid,
+ int atomic)
+{
+ struct extent_state *cached_state = NULL;
+ int ret;
+
+ if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
+ return 0;
+
+ if (atomic)
+ return -EAGAIN;
+
+ lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
+ 0, &cached_state);
+ if (extent_buffer_uptodate(eb) &&
+ btrfs_header_generation(eb) == parent_transid) {
+ ret = 0;
+ goto out;
+ }
+ printk_ratelimited("parent transid verify failed on %llu wanted %llu "
+ "found %llu\n",
+ (unsigned long long)eb->start,
+ (unsigned long long)parent_transid,
+ (unsigned long long)btrfs_header_generation(eb));
+ ret = 1;
+ clear_extent_buffer_uptodate(eb);
+out:
+ unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
+ &cached_state, GFP_NOFS);
+ return ret;
+}
+
+/*
+ * helper to read a given tree block, doing retries as required when
+ * the checksums don't match and we have alternate mirrors to try.
+ */
+static int btree_read_extent_buffer_pages(struct btrfs_root *root,
+ struct extent_buffer *eb,
+ u64 start, u64 parent_transid)
+{
+ struct extent_io_tree *io_tree;
+ int failed = 0;
+ int ret;
+ int num_copies = 0;
+ int mirror_num = 0;
+ int failed_mirror = 0;
+
+ clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
+ io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
+ while (1) {
+ ret = read_extent_buffer_pages(io_tree, eb, start,
+ WAIT_COMPLETE,
+ btree_get_extent, mirror_num);
+ if (!ret && !verify_parent_transid(io_tree, eb,
+ parent_transid, 0))
+ break;
+
+ /*
+ * This buffer's crc is fine, but its contents are corrupted, so
+ * there is no reason to read the other copies, they won't be
+ * any less wrong.
+ */
+ if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
+ break;
+
+ num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
+ eb->start, eb->len);
+ if (num_copies == 1)
+ break;
+
+ if (!failed_mirror) {
+ failed = 1;
+ failed_mirror = eb->read_mirror;
+ }
+
+ mirror_num++;
+ if (mirror_num == failed_mirror)
+ mirror_num++;
+
+ if (mirror_num > num_copies)
+ break;
+ }
+
+ if (failed && !ret)
+ repair_eb_io_failure(root, eb, failed_mirror);
+
+ return ret;
+}
+
+/*
+ * checksum a dirty tree block before IO. This has extra checks to make sure
+ * we only fill in the checksum field in the first page of a multi-page block
+ */
+
+static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
+{
+ struct extent_io_tree *tree;
+ u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+ u64 found_start;
+ struct extent_buffer *eb;
+
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+
+ eb = (struct extent_buffer *)page->private;
+ if (page != eb->pages[0])
+ return 0;
+ found_start = btrfs_header_bytenr(eb);
+ if (found_start != start) {
+ WARN_ON(1);
+ return 0;
+ }
+ if (eb->pages[0] != page) {
+ WARN_ON(1);
+ return 0;
+ }
+ if (!PageUptodate(page)) {
+ WARN_ON(1);
+ return 0;
+ }
+ csum_tree_block(root, eb, 0);
+ return 0;
+}
+
+static int check_tree_block_fsid(struct btrfs_root *root,
+ struct extent_buffer *eb)
+{
+ struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+ u8 fsid[BTRFS_UUID_SIZE];
+ int ret = 1;
+
+ read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
+ BTRFS_FSID_SIZE);
+ while (fs_devices) {
+ if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
+ ret = 0;
+ break;
+ }
+ fs_devices = fs_devices->seed;
+ }
+ return ret;
+}
+
+#define CORRUPT(reason, eb, root, slot) \
+ printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
+ "root=%llu, slot=%d\n", reason, \
+ (unsigned long long)btrfs_header_bytenr(eb), \
+ (unsigned long long)root->objectid, slot)
+
+static noinline int check_leaf(struct btrfs_root *root,
+ struct extent_buffer *leaf)
+{
+ struct btrfs_key key;
+ struct btrfs_key leaf_key;
+ u32 nritems = btrfs_header_nritems(leaf);
+ int slot;
+
+ if (nritems == 0)
+ return 0;
+
+ /* Check the 0 item */
+ if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
+ BTRFS_LEAF_DATA_SIZE(root)) {
+ CORRUPT("invalid item offset size pair", leaf, root, 0);
+ return -EIO;
+ }
+
+ /*
+ * Check to make sure each items keys are in the correct order and their
+ * offsets make sense. We only have to loop through nritems-1 because
+ * we check the current slot against the next slot, which verifies the
+ * next slot's offset+size makes sense and that the current's slot
+ * offset is correct.
+ */
+ for (slot = 0; slot < nritems - 1; slot++) {
+ btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
+ btrfs_item_key_to_cpu(leaf, &key, slot + 1);
+
+ /* Make sure the keys are in the right order */
+ if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
+ CORRUPT("bad key order", leaf, root, slot);
+ return -EIO;
+ }
+
+ /*
+ * Make sure the offset and ends are right, remember that the
+ * item data starts at the end of the leaf and grows towards the
+ * front.
+ */
+ if (btrfs_item_offset_nr(leaf, slot) !=
+ btrfs_item_end_nr(leaf, slot + 1)) {
+ CORRUPT("slot offset bad", leaf, root, slot);
+ return -EIO;
+ }
+
+ /*
+ * Check to make sure that we don't point outside of the leaf,
+ * just incase all the items are consistent to eachother, but
+ * all point outside of the leaf.
+ */
+ if (btrfs_item_end_nr(leaf, slot) >
+ BTRFS_LEAF_DATA_SIZE(root)) {
+ CORRUPT("slot end outside of leaf", leaf, root, slot);
+ return -EIO;
+ }
+ }
+
+ return 0;
+}
+
+struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
+ struct page *page, int max_walk)
+{
+ struct extent_buffer *eb;
+ u64 start = page_offset(page);
+ u64 target = start;
+ u64 min_start;
+
+ if (start < max_walk)
+ min_start = 0;
+ else
+ min_start = start - max_walk;
+
+ while (start >= min_start) {
+ eb = find_extent_buffer(tree, start, 0);
+ if (eb) {
+ /*
+ * we found an extent buffer and it contains our page
+ * horray!
+ */
+ if (eb->start <= target &&
+ eb->start + eb->len > target)
+ return eb;
+
+ /* we found an extent buffer that wasn't for us */
+ free_extent_buffer(eb);
+ return NULL;
+ }
+ if (start == 0)
+ break;
+ start -= PAGE_CACHE_SIZE;
+ }
+ return NULL;
+}
+
+static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
+ struct extent_state *state, int mirror)
+{
+ struct extent_io_tree *tree;
+ u64 found_start;
+ int found_level;
+ struct extent_buffer *eb;
+ struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
+ int ret = 0;
+ int reads_done;
+
+ if (!page->private)
+ goto out;
+
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+ eb = (struct extent_buffer *)page->private;
+
+ /* the pending IO might have been the only thing that kept this buffer
+ * in memory. Make sure we have a ref for all this other checks
+ */
+ extent_buffer_get(eb);
+
+ reads_done = atomic_dec_and_test(&eb->io_pages);
+ if (!reads_done)
+ goto err;
+
+ eb->read_mirror = mirror;
+ if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
+ ret = -EIO;
+ goto err;
+ }
+
+ found_start = btrfs_header_bytenr(eb);
+ if (found_start != eb->start) {
+ printk_ratelimited(KERN_INFO "btrfs bad tree block start "
+ "%llu %llu\n",
+ (unsigned long long)found_start,
+ (unsigned long long)eb->start);
+ ret = -EIO;
+ goto err;
+ }
+ if (check_tree_block_fsid(root, eb)) {
+ printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
+ (unsigned long long)eb->start);
+ ret = -EIO;
+ goto err;
+ }
+ found_level = btrfs_header_level(eb);
+
+ btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
+ eb, found_level);
+
+ ret = csum_tree_block(root, eb, 1);
+ if (ret) {
+ ret = -EIO;
+ goto err;
+ }
+
+ /*
+ * If this is a leaf block and it is corrupt, set the corrupt bit so
+ * that we don't try and read the other copies of this block, just
+ * return -EIO.
+ */
+ if (found_level == 0 && check_leaf(root, eb)) {
+ set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
+ ret = -EIO;
+ }
+
+ if (!ret)
+ set_extent_buffer_uptodate(eb);
+err:
+ if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
+ clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
+ btree_readahead_hook(root, eb, eb->start, ret);
+ }
+
+ if (ret)
+ clear_extent_buffer_uptodate(eb);
+ free_extent_buffer(eb);
+out:
+ return ret;
+}
+
+static int btree_io_failed_hook(struct page *page, int failed_mirror)
+{
+ struct extent_buffer *eb;
+ struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
+
+ eb = (struct extent_buffer *)page->private;
+ set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
+ eb->read_mirror = failed_mirror;
+ if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
+ btree_readahead_hook(root, eb, eb->start, -EIO);
+ return -EIO; /* we fixed nothing */
+}
+
+static void end_workqueue_bio(struct bio *bio, int err)
+{
+ struct end_io_wq *end_io_wq = bio->bi_private;
+ struct btrfs_fs_info *fs_info;
+
+ fs_info = end_io_wq->info;
+ end_io_wq->error = err;
+ end_io_wq->work.func = end_workqueue_fn;
+ end_io_wq->work.flags = 0;
+
+ if (bio->bi_rw & REQ_WRITE) {
+ if (end_io_wq->metadata == 1)
+ btrfs_queue_worker(&fs_info->endio_meta_write_workers,
+ &end_io_wq->work);
+ else if (end_io_wq->metadata == 2)
+ btrfs_queue_worker(&fs_info->endio_freespace_worker,
+ &end_io_wq->work);
+ else
+ btrfs_queue_worker(&fs_info->endio_write_workers,
+ &end_io_wq->work);
+ } else {
+ if (end_io_wq->metadata)
+ btrfs_queue_worker(&fs_info->endio_meta_workers,
+ &end_io_wq->work);
+ else
+ btrfs_queue_worker(&fs_info->endio_workers,
+ &end_io_wq->work);
+ }
+}
+
+/*
+ * For the metadata arg you want
+ *
+ * 0 - if data
+ * 1 - if normal metadta
+ * 2 - if writing to the free space cache area
+ */
+int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
+ int metadata)
+{
+ struct end_io_wq *end_io_wq;
+ end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
+ if (!end_io_wq)
+ return -ENOMEM;
+
+ end_io_wq->private = bio->bi_private;
+ end_io_wq->end_io = bio->bi_end_io;
+ end_io_wq->info = info;
+ end_io_wq->error = 0;
+ end_io_wq->bio = bio;
+ end_io_wq->metadata = metadata;
+
+ bio->bi_private = end_io_wq;
+ bio->bi_end_io = end_workqueue_bio;
+ return 0;
+}
+
+unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
+{
+ unsigned long limit = min_t(unsigned long,
+ info->workers.max_workers,
+ info->fs_devices->open_devices);
+ return 256 * limit;
+}
+
+static void run_one_async_start(struct btrfs_work *work)
+{
+ struct async_submit_bio *async;
+ int ret;
+
+ async = container_of(work, struct async_submit_bio, work);
+ ret = async->submit_bio_start(async->inode, async->rw, async->bio,
+ async->mirror_num, async->bio_flags,
+ async->bio_offset);
+ if (ret)
+ async->error = ret;
+}
+
+static void run_one_async_done(struct btrfs_work *work)
+{
+ struct btrfs_fs_info *fs_info;
+ struct async_submit_bio *async;
+ int limit;
+
+ async = container_of(work, struct async_submit_bio, work);
+ fs_info = BTRFS_I(async->inode)->root->fs_info;
+
+ limit = btrfs_async_submit_limit(fs_info);
+ limit = limit * 2 / 3;
+
+ atomic_dec(&fs_info->nr_async_submits);
+
+ if (atomic_read(&fs_info->nr_async_submits) < limit &&
+ waitqueue_active(&fs_info->async_submit_wait))
+ wake_up(&fs_info->async_submit_wait);
+
+ /* If an error occured we just want to clean up the bio and move on */
+ if (async->error) {
+ bio_endio(async->bio, async->error);
+ return;
+ }
+
+ async->submit_bio_done(async->inode, async->rw, async->bio,
+ async->mirror_num, async->bio_flags,
+ async->bio_offset);
+}
+
+static void run_one_async_free(struct btrfs_work *work)
+{
+ struct async_submit_bio *async;
+
+ async = container_of(work, struct async_submit_bio, work);
+ kfree(async);
+}
+
+int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
+ int rw, struct bio *bio, int mirror_num,
+ unsigned long bio_flags,
+ u64 bio_offset,
+ extent_submit_bio_hook_t *submit_bio_start,
+ extent_submit_bio_hook_t *submit_bio_done)
+{
+ struct async_submit_bio *async;
+
+ async = kmalloc(sizeof(*async), GFP_NOFS);
+ if (!async)
+ return -ENOMEM;
+
+ async->inode = inode;
+ async->rw = rw;
+ async->bio = bio;
+ async->mirror_num = mirror_num;
+ async->submit_bio_start = submit_bio_start;
+ async->submit_bio_done = submit_bio_done;
+
+ async->work.func = run_one_async_start;
+ async->work.ordered_func = run_one_async_done;
+ async->work.ordered_free = run_one_async_free;
+
+ async->work.flags = 0;
+ async->bio_flags = bio_flags;
+ async->bio_offset = bio_offset;
+
+ async->error = 0;
+
+ atomic_inc(&fs_info->nr_async_submits);
+
+ if (rw & REQ_SYNC)
+ btrfs_set_work_high_prio(&async->work);
+
+ btrfs_queue_worker(&fs_info->workers, &async->work);
+
+ while (atomic_read(&fs_info->async_submit_draining) &&
+ atomic_read(&fs_info->nr_async_submits)) {
+ wait_event(fs_info->async_submit_wait,
+ (atomic_read(&fs_info->nr_async_submits) == 0));
+ }
+
+ return 0;
+}
+
+static int btree_csum_one_bio(struct bio *bio)
+{
+ struct bio_vec *bvec = bio->bi_io_vec;
+ int bio_index = 0;
+ struct btrfs_root *root;
+ int ret = 0;
+
+ WARN_ON(bio->bi_vcnt <= 0);
+ while (bio_index < bio->bi_vcnt) {
+ root = BTRFS_I(bvec->bv_page->mapping->host)->root;
+ ret = csum_dirty_buffer(root, bvec->bv_page);
+ if (ret)
+ break;
+ bio_index++;
+ bvec++;
+ }
+ return ret;
+}
+
+static int __btree_submit_bio_start(struct inode *inode, int rw,
+ struct bio *bio, int mirror_num,
+ unsigned long bio_flags,
+ u64 bio_offset)
+{
+ /*
+ * when we're called for a write, we're already in the async
+ * submission context. Just jump into btrfs_map_bio
+ */
+ return btree_csum_one_bio(bio);
+}
+
+static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
+ int mirror_num, unsigned long bio_flags,
+ u64 bio_offset)
+{
+ /*
+ * when we're called for a write, we're already in the async
+ * submission context. Just jump into btrfs_map_bio
+ */
+ return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
+}
+
+static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
+ int mirror_num, unsigned long bio_flags,
+ u64 bio_offset)
+{
+ int ret;
+
+ if (!(rw & REQ_WRITE)) {
+
+ /*
+ * called for a read, do the setup so that checksum validation
+ * can happen in the async kernel threads
+ */
+ ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
+ bio, 1);
+ if (ret)
+ return ret;
+ return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
+ mirror_num, 0);
+ }
+
+ /*
+ * kthread helpers are used to submit writes so that checksumming
+ * can happen in parallel across all CPUs
+ */
+ return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
+ inode, rw, bio, mirror_num, 0,
+ bio_offset,
+ __btree_submit_bio_start,
+ __btree_submit_bio_done);
+}
+
+#ifdef CONFIG_MIGRATION
+static int btree_migratepage(struct address_space *mapping,
+ struct page *newpage, struct page *page,
+ enum migrate_mode mode)
+{
+ /*
+ * we can't safely write a btree page from here,
+ * we haven't done the locking hook
+ */
+ if (PageDirty(page))
+ return -EAGAIN;
+ /*
+ * Buffers may be managed in a filesystem specific way.
+ * We must have no buffers or drop them.
+ */
+ if (page_has_private(page) &&
+ !try_to_release_page(page, GFP_KERNEL))
+ return -EAGAIN;
+ return migrate_page(mapping, newpage, page, mode);
+}
+#endif
+
+
+static int btree_writepages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct extent_io_tree *tree;
+ tree = &BTRFS_I(mapping->host)->io_tree;
+ if (wbc->sync_mode == WB_SYNC_NONE) {
+ struct btrfs_root *root = BTRFS_I(mapping->host)->root;
+ u64 num_dirty;
+ unsigned long thresh = 32 * 1024 * 1024;
+
+ if (wbc->for_kupdate)
+ return 0;
+
+ /* this is a bit racy, but that's ok */
+ num_dirty = root->fs_info->dirty_metadata_bytes;
+ if (num_dirty < thresh)
+ return 0;
+ }
+ return btree_write_cache_pages(mapping, wbc);
+}
+
+static int btree_readpage(struct file *file, struct page *page)
+{
+ struct extent_io_tree *tree;
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+ return extent_read_full_page(tree, page, btree_get_extent, 0);
+}
+
+static int btree_releasepage(struct page *page, gfp_t gfp_flags)
+{
+ if (PageWriteback(page) || PageDirty(page))
+ return 0;
+ /*
+ * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
+ * slab allocation from alloc_extent_state down the callchain where
+ * it'd hit a BUG_ON as those flags are not allowed.
+ */
+ gfp_flags &= ~GFP_SLAB_BUG_MASK;
+
+ return try_release_extent_buffer(page, gfp_flags);
+}
+
+static void btree_invalidatepage(struct page *page, unsigned long offset)
+{
+ struct extent_io_tree *tree;
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+ extent_invalidatepage(tree, page, offset);
+ btree_releasepage(page, GFP_NOFS);
+ if (PagePrivate(page)) {
+ printk(KERN_WARNING "btrfs warning page private not zero "
+ "on page %llu\n", (unsigned long long)page_offset(page));
+ ClearPagePrivate(page);
+ set_page_private(page, 0);
+ page_cache_release(page);
+ }
+}
+
+static int btree_set_page_dirty(struct page *page)
+{
+ struct extent_buffer *eb;
+
+ BUG_ON(!PagePrivate(page));
+ eb = (struct extent_buffer *)page->private;
+ BUG_ON(!eb);
+ BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
+ BUG_ON(!atomic_read(&eb->refs));
+ btrfs_assert_tree_locked(eb);
+ return __set_page_dirty_nobuffers(page);
+}
+
+static const struct address_space_operations btree_aops = {
+ .readpage = btree_readpage,
+ .writepages = btree_writepages,
+ .releasepage = btree_releasepage,
+ .invalidatepage = btree_invalidatepage,
+#ifdef CONFIG_MIGRATION
+ .migratepage = btree_migratepage,
+#endif
+ .set_page_dirty = btree_set_page_dirty,
+};
+
+int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
+ u64 parent_transid)
+{
+ struct extent_buffer *buf = NULL;
+ struct inode *btree_inode = root->fs_info->btree_inode;
+ int ret = 0;
+
+ buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+ if (!buf)
+ return 0;
+ read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
+ buf, 0, WAIT_NONE, btree_get_extent, 0);
+ free_extent_buffer(buf);
+ return ret;
+}
+
+int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
+ int mirror_num, struct extent_buffer **eb)
+{
+ struct extent_buffer *buf = NULL;
+ struct inode *btree_inode = root->fs_info->btree_inode;
+ struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
+ int ret;
+
+ buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+ if (!buf)
+ return 0;
+
+ set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
+
+ ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
+ btree_get_extent, mirror_num);
+ if (ret) {
+ free_extent_buffer(buf);
+ return ret;
+ }
+
+ if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
+ free_extent_buffer(buf);
+ return -EIO;
+ } else if (extent_buffer_uptodate(buf)) {
+ *eb = buf;
+ } else {
+ free_extent_buffer(buf);
+ }
+ return 0;
+}
+
+struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
+ u64 bytenr, u32 blocksize)
+{
+ struct inode *btree_inode = root->fs_info->btree_inode;
+ struct extent_buffer *eb;
+ eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
+ bytenr, blocksize);
+ return eb;
+}
+
+struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
+ u64 bytenr, u32 blocksize)
+{
+ struct inode *btree_inode = root->fs_info->btree_inode;
+ struct extent_buffer *eb;
+
+ eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
+ bytenr, blocksize);
+ return eb;
+}
+
+
+int btrfs_write_tree_block(struct extent_buffer *buf)
+{
+ return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
+ buf->start + buf->len - 1);
+}
+
+int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
+{
+ return filemap_fdatawait_range(buf->pages[0]->mapping,
+ buf->start, buf->start + buf->len - 1);
+}
+
+struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
+ u32 blocksize, u64 parent_transid)
+{
+ struct extent_buffer *buf = NULL;
+ int ret;
+
+ buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+ if (!buf)
+ return NULL;
+
+ ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
+ return buf;
+
+}
+
+void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct extent_buffer *buf)
+{
+ if (btrfs_header_generation(buf) ==
+ root->fs_info->running_transaction->transid) {
+ btrfs_assert_tree_locked(buf);
+
+ if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
+ spin_lock(&root->fs_info->delalloc_lock);
+ if (root->fs_info->dirty_metadata_bytes >= buf->len)
+ root->fs_info->dirty_metadata_bytes -= buf->len;
+ else {
+ spin_unlock(&root->fs_info->delalloc_lock);
+ btrfs_panic(root->fs_info, -EOVERFLOW,
+ "Can't clear %lu bytes from "
+ " dirty_mdatadata_bytes (%lu)",
+ buf->len,
+ root->fs_info->dirty_metadata_bytes);
+ }
+ spin_unlock(&root->fs_info->delalloc_lock);
+ }
+
+ /* ugh, clear_extent_buffer_dirty needs to lock the page */
+ btrfs_set_lock_blocking(buf);
+ clear_extent_buffer_dirty(buf);
+ }
+}
+
+static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
+ u32 stripesize, struct btrfs_root *root,
+ struct btrfs_fs_info *fs_info,
+ u64 objectid)
+{
+ root->node = NULL;
+ root->commit_root = NULL;
+ root->sectorsize = sectorsize;
+ root->nodesize = nodesize;
+ root->leafsize = leafsize;
+ root->stripesize = stripesize;
+ root->ref_cows = 0;
+ root->track_dirty = 0;
+ root->in_radix = 0;
+ root->orphan_item_inserted = 0;
+ root->orphan_cleanup_state = 0;
+
+ root->objectid = objectid;
+ root->last_trans = 0;
+ root->highest_objectid = 0;
+ root->name = NULL;
+ root->inode_tree = RB_ROOT;
+ INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
+ root->block_rsv = NULL;
+ root->orphan_block_rsv = NULL;
+
+ INIT_LIST_HEAD(&root->dirty_list);
+ INIT_LIST_HEAD(&root->orphan_list);
+ INIT_LIST_HEAD(&root->root_list);
+ spin_lock_init(&root->orphan_lock);
+ spin_lock_init(&root->inode_lock);
+ spin_lock_init(&root->accounting_lock);
+ mutex_init(&root->objectid_mutex);
+ mutex_init(&root->log_mutex);
+ init_waitqueue_head(&root->log_writer_wait);
+ init_waitqueue_head(&root->log_commit_wait[0]);
+ init_waitqueue_head(&root->log_commit_wait[1]);
+ atomic_set(&root->log_commit[0], 0);
+ atomic_set(&root->log_commit[1], 0);
+ atomic_set(&root->log_writers, 0);
+ root->log_batch = 0;
+ root->log_transid = 0;
+ root->last_log_commit = 0;
+ extent_io_tree_init(&root->dirty_log_pages,
+ fs_info->btree_inode->i_mapping);
+
+ memset(&root->root_key, 0, sizeof(root->root_key));
+ memset(&root->root_item, 0, sizeof(root->root_item));
+ memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
+ memset(&root->root_kobj, 0, sizeof(root->root_kobj));
+ root->defrag_trans_start = fs_info->generation;
+ init_completion(&root->kobj_unregister);
+ root->defrag_running = 0;
+ root->root_key.objectid = objectid;
+ root->anon_dev = 0;
+}
+
+static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
+ struct btrfs_fs_info *fs_info,
+ u64 objectid,
+ struct btrfs_root *root)
+{
+ int ret;
+ u32 blocksize;
+ u64 generation;
+
+ __setup_root(tree_root->nodesize, tree_root->leafsize,
+ tree_root->sectorsize, tree_root->stripesize,
+ root, fs_info, objectid);
+ ret = btrfs_find_last_root(tree_root, objectid,
+ &root->root_item, &root->root_key);
+ if (ret > 0)
+ return -ENOENT;
+ else if (ret < 0)
+ return ret;
+
+ generation = btrfs_root_generation(&root->root_item);
+ blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
+ root->commit_root = NULL;
+ root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
+ blocksize, generation);
+ if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
+ free_extent_buffer(root->node);
+ root->node = NULL;
+ return -EIO;
+ }
+ root->commit_root = btrfs_root_node(root);
+ return 0;
+}
+
+static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
+ if (root)
+ root->fs_info = fs_info;
+ return root;
+}
+
+static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root;
+ struct btrfs_root *tree_root = fs_info->tree_root;
+ struct extent_buffer *leaf;
+
+ root = btrfs_alloc_root(fs_info);
+ if (!root)
+ return ERR_PTR(-ENOMEM);
+
+ __setup_root(tree_root->nodesize, tree_root->leafsize,
+ tree_root->sectorsize, tree_root->stripesize,
+ root, fs_info, BTRFS_TREE_LOG_OBJECTID);
+
+ root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
+ root->root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
+ /*
+ * log trees do not get reference counted because they go away
+ * before a real commit is actually done. They do store pointers
+ * to file data extents, and those reference counts still get
+ * updated (along with back refs to the log tree).
+ */
+ root->ref_cows = 0;
+
+ leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
+ BTRFS_TREE_LOG_OBJECTID, NULL,
+ 0, 0, 0, 0);
+ if (IS_ERR(leaf)) {
+ kfree(root);
+ return ERR_CAST(leaf);
+ }
+
+ memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
+ btrfs_set_header_bytenr(leaf, leaf->start);
+ btrfs_set_header_generation(leaf, trans->transid);
+ btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
+ btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
+ root->node = leaf;
+
+ write_extent_buffer(root->node, root->fs_info->fsid,
+ (unsigned long)btrfs_header_fsid(root->node),
+ BTRFS_FSID_SIZE);
+ btrfs_mark_buffer_dirty(root->node);
+ btrfs_tree_unlock(root->node);
+ return root;
+}
+
+int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *log_root;
+
+ log_root = alloc_log_tree(trans, fs_info);
+ if (IS_ERR(log_root))
+ return PTR_ERR(log_root);
+ WARN_ON(fs_info->log_root_tree);
+ fs_info->log_root_tree = log_root;
+ return 0;
+}
+
+int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_root *log_root;
+ struct btrfs_inode_item *inode_item;
+
+ log_root = alloc_log_tree(trans, root->fs_info);
+ if (IS_ERR(log_root))
+ return PTR_ERR(log_root);
+
+ log_root->last_trans = trans->transid;
+ log_root->root_key.offset = root->root_key.objectid;
+
+ inode_item = &log_root->root_item.inode;
+ inode_item->generation = cpu_to_le64(1);
+ inode_item->size = cpu_to_le64(3);
+ inode_item->nlink = cpu_to_le32(1);
+ inode_item->nbytes = cpu_to_le64(root->leafsize);
+ inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
+
+ btrfs_set_root_node(&log_root->root_item, log_root->node);
+
+ WARN_ON(root->log_root);
+ root->log_root = log_root;
+ root->log_transid = 0;
+ root->last_log_commit = 0;
+ return 0;
+}
+
+struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
+ struct btrfs_key *location)
+{
+ struct btrfs_root *root;
+ struct btrfs_fs_info *fs_info = tree_root->fs_info;
+ struct btrfs_path *path;
+ struct extent_buffer *l;
+ u64 generation;
+ u32 blocksize;
+ int ret = 0;
+
+ root = btrfs_alloc_root(fs_info);
+ if (!root)
+ return ERR_PTR(-ENOMEM);
+ if (location->offset == (u64)-1) {
+ ret = find_and_setup_root(tree_root, fs_info,
+ location->objectid, root);
+ if (ret) {
+ kfree(root);
+ return ERR_PTR(ret);
+ }
+ goto out;
+ }
+
+ __setup_root(tree_root->nodesize, tree_root->leafsize,
+ tree_root->sectorsize, tree_root->stripesize,
+ root, fs_info, location->objectid);
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ kfree(root);
+ return ERR_PTR(-ENOMEM);
+ }
+ ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
+ if (ret == 0) {
+ l = path->nodes[0];
+ read_extent_buffer(l, &root->root_item,
+ btrfs_item_ptr_offset(l, path->slots[0]),
+ sizeof(root->root_item));
+ memcpy(&root->root_key, location, sizeof(*location));
+ }
+ btrfs_free_path(path);
+ if (ret) {
+ kfree(root);
+ if (ret > 0)
+ ret = -ENOENT;
+ return ERR_PTR(ret);
+ }
+
+ generation = btrfs_root_generation(&root->root_item);
+ blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
+ root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
+ blocksize, generation);
+ root->commit_root = btrfs_root_node(root);
+ BUG_ON(!root->node); /* -ENOMEM */
+out:
+ if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
+ root->ref_cows = 1;
+ btrfs_check_and_init_root_item(&root->root_item);
+ }
+
+ return root;
+}
+
+struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
+ struct btrfs_key *location)
+{
+ struct btrfs_root *root;
+ int ret;
+
+ if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
+ return fs_info->tree_root;
+ if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
+ return fs_info->extent_root;
+ if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
+ return fs_info->chunk_root;
+ if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
+ return fs_info->dev_root;
+ if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
+ return fs_info->csum_root;
+again:
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ root = radix_tree_lookup(&fs_info->fs_roots_radix,
+ (unsigned long)location->objectid);
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+ if (root)
+ return root;
+
+ root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
+ if (IS_ERR(root))
+ return root;
+
+ root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
+ root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
+ GFP_NOFS);
+ if (!root->free_ino_pinned || !root->free_ino_ctl) {
+ ret = -ENOMEM;
+ goto fail;
+ }
+
+ btrfs_init_free_ino_ctl(root);
+ mutex_init(&root->fs_commit_mutex);
+ spin_lock_init(&root->cache_lock);
+ init_waitqueue_head(&root->cache_wait);
+
+ ret = get_anon_bdev(&root->anon_dev);
+ if (ret)
+ goto fail;
+
+ if (btrfs_root_refs(&root->root_item) == 0) {
+ ret = -ENOENT;
+ goto fail;
+ }
+
+ ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
+ if (ret < 0)
+ goto fail;
+ if (ret == 0)
+ root->orphan_item_inserted = 1;
+
+ ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
+ if (ret)
+ goto fail;
+
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ ret = radix_tree_insert(&fs_info->fs_roots_radix,
+ (unsigned long)root->root_key.objectid,
+ root);
+ if (ret == 0)
+ root->in_radix = 1;
+
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+ radix_tree_preload_end();
+ if (ret) {
+ if (ret == -EEXIST) {
+ free_fs_root(root);
+ goto again;
+ }
+ goto fail;
+ }
+
+ ret = btrfs_find_dead_roots(fs_info->tree_root,
+ root->root_key.objectid);
+ WARN_ON(ret);
+ return root;
+fail:
+ free_fs_root(root);
+ return ERR_PTR(ret);
+}
+
+static int btrfs_congested_fn(void *congested_data, int bdi_bits)
+{
+ struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
+ int ret = 0;
+ struct btrfs_device *device;
+ struct backing_dev_info *bdi;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
+ if (!device->bdev)
+ continue;
+ bdi = blk_get_backing_dev_info(device->bdev);
+ if (bdi && bdi_congested(bdi, bdi_bits)) {
+ ret = 1;
+ break;
+ }
+ }
+ rcu_read_unlock();
+ return ret;
+}
+
+/*
+ * If this fails, caller must call bdi_destroy() to get rid of the
+ * bdi again.
+ */
+static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
+{
+ int err;
+
+ bdi->capabilities = BDI_CAP_MAP_COPY;
+ err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
+ if (err)
+ return err;
+
+ bdi->ra_pages = default_backing_dev_info.ra_pages;
+ bdi->congested_fn = btrfs_congested_fn;
+ bdi->congested_data = info;
+ return 0;
+}
+
+/*
+ * called by the kthread helper functions to finally call the bio end_io
+ * functions. This is where read checksum verification actually happens
+ */
+static void end_workqueue_fn(struct btrfs_work *work)
+{
+ struct bio *bio;
+ struct end_io_wq *end_io_wq;
+ struct btrfs_fs_info *fs_info;
+ int error;
+
+ end_io_wq = container_of(work, struct end_io_wq, work);
+ bio = end_io_wq->bio;
+ fs_info = end_io_wq->info;
+
+ error = end_io_wq->error;
+ bio->bi_private = end_io_wq->private;
+ bio->bi_end_io = end_io_wq->end_io;
+ kfree(end_io_wq);
+ bio_endio(bio, error);
+}
+
+static int cleaner_kthread(void *arg)
+{
+ struct btrfs_root *root = arg;
+
+ do {
+ vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
+
+ if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
+ mutex_trylock(&root->fs_info->cleaner_mutex)) {
+ btrfs_run_delayed_iputs(root);
+ btrfs_clean_old_snapshots(root);
+ mutex_unlock(&root->fs_info->cleaner_mutex);
+ btrfs_run_defrag_inodes(root->fs_info);
+ }
+
+ if (!try_to_freeze()) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (!kthread_should_stop())
+ schedule();
+ __set_current_state(TASK_RUNNING);
+ }
+ } while (!kthread_should_stop());
+ return 0;
+}
+
+static int transaction_kthread(void *arg)
+{
+ struct btrfs_root *root = arg;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_transaction *cur;
+ u64 transid;
+ unsigned long now;
+ unsigned long delay;
+ bool cannot_commit;
+
+ do {
+ cannot_commit = false;
+ delay = HZ * 30;
+ vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
+ mutex_lock(&root->fs_info->transaction_kthread_mutex);
+
+ spin_lock(&root->fs_info->trans_lock);
+ cur = root->fs_info->running_transaction;
+ if (!cur) {
+ spin_unlock(&root->fs_info->trans_lock);
+ goto sleep;
+ }
+
+ now = get_seconds();
+ if (!cur->blocked &&
+ (now < cur->start_time || now - cur->start_time < 30)) {
+ spin_unlock(&root->fs_info->trans_lock);
+ delay = HZ * 5;
+ goto sleep;
+ }
+ transid = cur->transid;
+ spin_unlock(&root->fs_info->trans_lock);
+
+ /* If the file system is aborted, this will always fail. */
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ cannot_commit = true;
+ goto sleep;
+ }
+ if (transid == trans->transid) {
+ btrfs_commit_transaction(trans, root);
+ } else {
+ btrfs_end_transaction(trans, root);
+ }
+sleep:
+ wake_up_process(root->fs_info->cleaner_kthread);
+ mutex_unlock(&root->fs_info->transaction_kthread_mutex);
+
+ if (!try_to_freeze()) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (!kthread_should_stop() &&
+ (!btrfs_transaction_blocked(root->fs_info) ||
+ cannot_commit))
+ schedule_timeout(delay);
+ __set_current_state(TASK_RUNNING);
+ }
+ } while (!kthread_should_stop());
+ return 0;
+}
+
+/*
+ * this will find the highest generation in the array of
+ * root backups. The index of the highest array is returned,
+ * or -1 if we can't find anything.
+ *
+ * We check to make sure the array is valid by comparing the
+ * generation of the latest root in the array with the generation
+ * in the super block. If they don't match we pitch it.
+ */
+static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
+{
+ u64 cur;
+ int newest_index = -1;
+ struct btrfs_root_backup *root_backup;
+ int i;
+
+ for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
+ root_backup = info->super_copy->super_roots + i;
+ cur = btrfs_backup_tree_root_gen(root_backup);
+ if (cur == newest_gen)
+ newest_index = i;
+ }
+
+ /* check to see if we actually wrapped around */
+ if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
+ root_backup = info->super_copy->super_roots;
+ cur = btrfs_backup_tree_root_gen(root_backup);
+ if (cur == newest_gen)
+ newest_index = 0;
+ }
+ return newest_index;
+}
+
+
+/*
+ * find the oldest backup so we know where to store new entries
+ * in the backup array. This will set the backup_root_index
+ * field in the fs_info struct
+ */
+static void find_oldest_super_backup(struct btrfs_fs_info *info,
+ u64 newest_gen)
+{
+ int newest_index = -1;
+
+ newest_index = find_newest_super_backup(info, newest_gen);
+ /* if there was garbage in there, just move along */
+ if (newest_index == -1) {
+ info->backup_root_index = 0;
+ } else {
+ info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
+ }
+}
+
+/*
+ * copy all the root pointers into the super backup array.
+ * this will bump the backup pointer by one when it is
+ * done
+ */
+static void backup_super_roots(struct btrfs_fs_info *info)
+{
+ int next_backup;
+ struct btrfs_root_backup *root_backup;
+ int last_backup;
+
+ next_backup = info->backup_root_index;
+ last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
+ BTRFS_NUM_BACKUP_ROOTS;
+
+ /*
+ * just overwrite the last backup if we're at the same generation
+ * this happens only at umount
+ */
+ root_backup = info->super_for_commit->super_roots + last_backup;
+ if (btrfs_backup_tree_root_gen(root_backup) ==
+ btrfs_header_generation(info->tree_root->node))
+ next_backup = last_backup;
+
+ root_backup = info->super_for_commit->super_roots + next_backup;
+
+ /*
+ * make sure all of our padding and empty slots get zero filled
+ * regardless of which ones we use today
+ */
+ memset(root_backup, 0, sizeof(*root_backup));
+
+ info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
+
+ btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
+ btrfs_set_backup_tree_root_gen(root_backup,
+ btrfs_header_generation(info->tree_root->node));
+
+ btrfs_set_backup_tree_root_level(root_backup,
+ btrfs_header_level(info->tree_root->node));
+
+ btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
+ btrfs_set_backup_chunk_root_gen(root_backup,
+ btrfs_header_generation(info->chunk_root->node));
+ btrfs_set_backup_chunk_root_level(root_backup,
+ btrfs_header_level(info->chunk_root->node));
+
+ btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
+ btrfs_set_backup_extent_root_gen(root_backup,
+ btrfs_header_generation(info->extent_root->node));
+ btrfs_set_backup_extent_root_level(root_backup,
+ btrfs_header_level(info->extent_root->node));
+
+ /*
+ * we might commit during log recovery, which happens before we set
+ * the fs_root. Make sure it is valid before we fill it in.
+ */
+ if (info->fs_root && info->fs_root->node) {
+ btrfs_set_backup_fs_root(root_backup,
+ info->fs_root->node->start);
+ btrfs_set_backup_fs_root_gen(root_backup,
+ btrfs_header_generation(info->fs_root->node));
+ btrfs_set_backup_fs_root_level(root_backup,
+ btrfs_header_level(info->fs_root->node));
+ }
+
+ btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
+ btrfs_set_backup_dev_root_gen(root_backup,
+ btrfs_header_generation(info->dev_root->node));
+ btrfs_set_backup_dev_root_level(root_backup,
+ btrfs_header_level(info->dev_root->node));
+
+ btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
+ btrfs_set_backup_csum_root_gen(root_backup,
+ btrfs_header_generation(info->csum_root->node));
+ btrfs_set_backup_csum_root_level(root_backup,
+ btrfs_header_level(info->csum_root->node));
+
+ btrfs_set_backup_total_bytes(root_backup,
+ btrfs_super_total_bytes(info->super_copy));
+ btrfs_set_backup_bytes_used(root_backup,
+ btrfs_super_bytes_used(info->super_copy));
+ btrfs_set_backup_num_devices(root_backup,
+ btrfs_super_num_devices(info->super_copy));
+
+ /*
+ * if we don't copy this out to the super_copy, it won't get remembered
+ * for the next commit
+ */
+ memcpy(&info->super_copy->super_roots,
+ &info->super_for_commit->super_roots,
+ sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
+}
+
+/*
+ * this copies info out of the root backup array and back into
+ * the in-memory super block. It is meant to help iterate through
+ * the array, so you send it the number of backups you've already
+ * tried and the last backup index you used.
+ *
+ * this returns -1 when it has tried all the backups
+ */
+static noinline int next_root_backup(struct btrfs_fs_info *info,
+ struct btrfs_super_block *super,
+ int *num_backups_tried, int *backup_index)
+{
+ struct btrfs_root_backup *root_backup;
+ int newest = *backup_index;
+
+ if (*num_backups_tried == 0) {
+ u64 gen = btrfs_super_generation(super);
+
+ newest = find_newest_super_backup(info, gen);
+ if (newest == -1)
+ return -1;
+
+ *backup_index = newest;
+ *num_backups_tried = 1;
+ } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
+ /* we've tried all the backups, all done */
+ return -1;
+ } else {
+ /* jump to the next oldest backup */
+ newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
+ BTRFS_NUM_BACKUP_ROOTS;
+ *backup_index = newest;
+ *num_backups_tried += 1;
+ }
+ root_backup = super->super_roots + newest;
+
+ btrfs_set_super_generation(super,
+ btrfs_backup_tree_root_gen(root_backup));
+ btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
+ btrfs_set_super_root_level(super,
+ btrfs_backup_tree_root_level(root_backup));
+ btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
+
+ /*
+ * fixme: the total bytes and num_devices need to match or we should
+ * need a fsck
+ */
+ btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
+ btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
+ return 0;
+}
+
+/* helper to cleanup tree roots */
+static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
+{
+ free_extent_buffer(info->tree_root->node);
+ free_extent_buffer(info->tree_root->commit_root);
+ free_extent_buffer(info->dev_root->node);
+ free_extent_buffer(info->dev_root->commit_root);
+ free_extent_buffer(info->extent_root->node);
+ free_extent_buffer(info->extent_root->commit_root);
+ free_extent_buffer(info->csum_root->node);
+ free_extent_buffer(info->csum_root->commit_root);
+
+ info->tree_root->node = NULL;
+ info->tree_root->commit_root = NULL;
+ info->dev_root->node = NULL;
+ info->dev_root->commit_root = NULL;
+ info->extent_root->node = NULL;
+ info->extent_root->commit_root = NULL;
+ info->csum_root->node = NULL;
+ info->csum_root->commit_root = NULL;
+
+ if (chunk_root) {
+ free_extent_buffer(info->chunk_root->node);
+ free_extent_buffer(info->chunk_root->commit_root);
+ info->chunk_root->node = NULL;
+ info->chunk_root->commit_root = NULL;
+ }
+}
+
+
+int open_ctree(struct super_block *sb,
+ struct btrfs_fs_devices *fs_devices,
+ char *options)
+{
+ u32 sectorsize;
+ u32 nodesize;
+ u32 leafsize;
+ u32 blocksize;
+ u32 stripesize;
+ u64 generation;
+ u64 features;
+ struct btrfs_key location;
+ struct buffer_head *bh;
+ struct btrfs_super_block *disk_super;
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_root *tree_root;
+ struct btrfs_root *extent_root;
+ struct btrfs_root *csum_root;
+ struct btrfs_root *chunk_root;
+ struct btrfs_root *dev_root;
+ struct btrfs_root *log_tree_root;
+ int ret;
+ int err = -EINVAL;
+ int num_backups_tried = 0;
+ int backup_index = 0;
+
+ tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
+ extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
+ csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
+ chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
+ dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
+
+ if (!tree_root || !extent_root || !csum_root ||
+ !chunk_root || !dev_root) {
+ err = -ENOMEM;
+ goto fail;
+ }
+
+ ret = init_srcu_struct(&fs_info->subvol_srcu);
+ if (ret) {
+ err = ret;
+ goto fail;
+ }
+
+ ret = setup_bdi(fs_info, &fs_info->bdi);
+ if (ret) {
+ err = ret;
+ goto fail_srcu;
+ }
+
+ fs_info->btree_inode = new_inode(sb);
+ if (!fs_info->btree_inode) {
+ err = -ENOMEM;
+ goto fail_bdi;
+ }
+
+ mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
+
+ INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
+ INIT_LIST_HEAD(&fs_info->trans_list);
+ INIT_LIST_HEAD(&fs_info->dead_roots);
+ INIT_LIST_HEAD(&fs_info->delayed_iputs);
+ INIT_LIST_HEAD(&fs_info->hashers);
+ INIT_LIST_HEAD(&fs_info->delalloc_inodes);
+ INIT_LIST_HEAD(&fs_info->ordered_operations);
+ INIT_LIST_HEAD(&fs_info->caching_block_groups);
+ spin_lock_init(&fs_info->delalloc_lock);
+ spin_lock_init(&fs_info->trans_lock);
+ spin_lock_init(&fs_info->ref_cache_lock);
+ spin_lock_init(&fs_info->fs_roots_radix_lock);
+ spin_lock_init(&fs_info->delayed_iput_lock);
+ spin_lock_init(&fs_info->defrag_inodes_lock);
+ spin_lock_init(&fs_info->free_chunk_lock);
+ mutex_init(&fs_info->reloc_mutex);
+
+ init_completion(&fs_info->kobj_unregister);
+ INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
+ INIT_LIST_HEAD(&fs_info->space_info);
+ btrfs_mapping_init(&fs_info->mapping_tree);
+ btrfs_init_block_rsv(&fs_info->global_block_rsv);
+ btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
+ btrfs_init_block_rsv(&fs_info->trans_block_rsv);
+ btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
+ btrfs_init_block_rsv(&fs_info->empty_block_rsv);
+ btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
+ atomic_set(&fs_info->nr_async_submits, 0);
+ atomic_set(&fs_info->async_delalloc_pages, 0);
+ atomic_set(&fs_info->async_submit_draining, 0);
+ atomic_set(&fs_info->nr_async_bios, 0);
+ atomic_set(&fs_info->defrag_running, 0);
+ fs_info->sb = sb;
+ fs_info->max_inline = 8192 * 1024;
+ fs_info->metadata_ratio = 0;
+ fs_info->defrag_inodes = RB_ROOT;
+ fs_info->trans_no_join = 0;
+ fs_info->free_chunk_space = 0;
+
+ /* readahead state */
+ INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
+ spin_lock_init(&fs_info->reada_lock);
+
+ fs_info->thread_pool_size = min_t(unsigned long,
+ num_online_cpus() + 2, 8);
+
+ INIT_LIST_HEAD(&fs_info->ordered_extents);
+ spin_lock_init(&fs_info->ordered_extent_lock);
+ fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
+ GFP_NOFS);
+ if (!fs_info->delayed_root) {
+ err = -ENOMEM;
+ goto fail_iput;
+ }
+ btrfs_init_delayed_root(fs_info->delayed_root);
+
+ mutex_init(&fs_info->scrub_lock);
+ atomic_set(&fs_info->scrubs_running, 0);
+ atomic_set(&fs_info->scrub_pause_req, 0);
+ atomic_set(&fs_info->scrubs_paused, 0);
+ atomic_set(&fs_info->scrub_cancel_req, 0);
+ init_waitqueue_head(&fs_info->scrub_pause_wait);
+ init_rwsem(&fs_info->scrub_super_lock);
+ fs_info->scrub_workers_refcnt = 0;
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ fs_info->check_integrity_print_mask = 0;
+#endif
+
+ spin_lock_init(&fs_info->balance_lock);
+ mutex_init(&fs_info->balance_mutex);
+ atomic_set(&fs_info->balance_running, 0);
+ atomic_set(&fs_info->balance_pause_req, 0);
+ atomic_set(&fs_info->balance_cancel_req, 0);
+ fs_info->balance_ctl = NULL;
+ init_waitqueue_head(&fs_info->balance_wait_q);
+
+ sb->s_blocksize = 4096;
+ sb->s_blocksize_bits = blksize_bits(4096);
+ sb->s_bdi = &fs_info->bdi;
+
+ fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
+ set_nlink(fs_info->btree_inode, 1);
+ /*
+ * we set the i_size on the btree inode to the max possible int.
+ * the real end of the address space is determined by all of
+ * the devices in the system
+ */
+ fs_info->btree_inode->i_size = OFFSET_MAX;
+ fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
+ fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
+
+ RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
+ extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
+ fs_info->btree_inode->i_mapping);
+ BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
+ extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
+
+ BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
+
+ BTRFS_I(fs_info->btree_inode)->root = tree_root;
+ memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
+ sizeof(struct btrfs_key));
+ BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
+ insert_inode_hash(fs_info->btree_inode);
+
+ spin_lock_init(&fs_info->block_group_cache_lock);
+ fs_info->block_group_cache_tree = RB_ROOT;
+
+ extent_io_tree_init(&fs_info->freed_extents[0],
+ fs_info->btree_inode->i_mapping);
+ extent_io_tree_init(&fs_info->freed_extents[1],
+ fs_info->btree_inode->i_mapping);
+ fs_info->pinned_extents = &fs_info->freed_extents[0];
+ fs_info->do_barriers = 1;
+
+
+ mutex_init(&fs_info->ordered_operations_mutex);
+ mutex_init(&fs_info->tree_log_mutex);
+ mutex_init(&fs_info->chunk_mutex);
+ mutex_init(&fs_info->transaction_kthread_mutex);
+ mutex_init(&fs_info->cleaner_mutex);
+ mutex_init(&fs_info->volume_mutex);
+ init_rwsem(&fs_info->extent_commit_sem);
+ init_rwsem(&fs_info->cleanup_work_sem);
+ init_rwsem(&fs_info->subvol_sem);
+
+ btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
+ btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
+
+ init_waitqueue_head(&fs_info->transaction_throttle);
+ init_waitqueue_head(&fs_info->transaction_wait);
+ init_waitqueue_head(&fs_info->transaction_blocked_wait);
+ init_waitqueue_head(&fs_info->async_submit_wait);
+
+ __setup_root(4096, 4096, 4096, 4096, tree_root,
+ fs_info, BTRFS_ROOT_TREE_OBJECTID);
+
+ invalidate_bdev(fs_devices->latest_bdev);
+ bh = btrfs_read_dev_super(fs_devices->latest_bdev);
+ if (!bh) {
+ err = -EINVAL;
+ goto fail_alloc;
+ }
+
+ memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
+ memcpy(fs_info->super_for_commit, fs_info->super_copy,
+ sizeof(*fs_info->super_for_commit));
+ brelse(bh);
+
+ memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
+
+ disk_super = fs_info->super_copy;
+ if (!btrfs_super_root(disk_super))
+ goto fail_alloc;
+
+ /* check FS state, whether FS is broken. */
+ fs_info->fs_state |= btrfs_super_flags(disk_super);
+
+ ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
+ if (ret) {
+ printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
+ err = ret;
+ goto fail_alloc;
+ }
+
+ /*
+ * run through our array of backup supers and setup
+ * our ring pointer to the oldest one
+ */
+ generation = btrfs_super_generation(disk_super);
+ find_oldest_super_backup(fs_info, generation);
+
+ /*
+ * In the long term, we'll store the compression type in the super
+ * block, and it'll be used for per file compression control.
+ */
+ fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
+
+ ret = btrfs_parse_options(tree_root, options);
+ if (ret) {
+ err = ret;
+ goto fail_alloc;
+ }
+
+ features = btrfs_super_incompat_flags(disk_super) &
+ ~BTRFS_FEATURE_INCOMPAT_SUPP;
+ if (features) {
+ printk(KERN_ERR "BTRFS: couldn't mount because of "
+ "unsupported optional features (%Lx).\n",
+ (unsigned long long)features);
+ err = -EINVAL;
+ goto fail_alloc;
+ }
+
+ if (btrfs_super_leafsize(disk_super) !=
+ btrfs_super_nodesize(disk_super)) {
+ printk(KERN_ERR "BTRFS: couldn't mount because metadata "
+ "blocksizes don't match. node %d leaf %d\n",
+ btrfs_super_nodesize(disk_super),
+ btrfs_super_leafsize(disk_super));
+ err = -EINVAL;
+ goto fail_alloc;
+ }
+ if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
+ printk(KERN_ERR "BTRFS: couldn't mount because metadata "
+ "blocksize (%d) was too large\n",
+ btrfs_super_leafsize(disk_super));
+ err = -EINVAL;
+ goto fail_alloc;
+ }
+
+ features = btrfs_super_incompat_flags(disk_super);
+ features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
+ if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
+ features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
+
+ /*
+ * flag our filesystem as having big metadata blocks if
+ * they are bigger than the page size
+ */
+ if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
+ if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
+ printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
+ features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
+ }
+
+ nodesize = btrfs_super_nodesize(disk_super);
+ leafsize = btrfs_super_leafsize(disk_super);
+ sectorsize = btrfs_super_sectorsize(disk_super);
+ stripesize = btrfs_super_stripesize(disk_super);
+
+ /*
+ * mixed block groups end up with duplicate but slightly offset
+ * extent buffers for the same range. It leads to corruptions
+ */
+ if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
+ (sectorsize != leafsize)) {
+ printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
+ "are not allowed for mixed block groups on %s\n",
+ sb->s_id);
+ goto fail_alloc;
+ }
+
+ btrfs_set_super_incompat_flags(disk_super, features);
+
+ features = btrfs_super_compat_ro_flags(disk_super) &
+ ~BTRFS_FEATURE_COMPAT_RO_SUPP;
+ if (!(sb->s_flags & MS_RDONLY) && features) {
+ printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
+ "unsupported option features (%Lx).\n",
+ (unsigned long long)features);
+ err = -EINVAL;
+ goto fail_alloc;
+ }
+
+ btrfs_init_workers(&fs_info->generic_worker,
+ "genwork", 1, NULL);
+
+ btrfs_init_workers(&fs_info->workers, "worker",
+ fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+
+ btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
+ fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+
+ btrfs_init_workers(&fs_info->submit_workers, "submit",
+ min_t(u64, fs_devices->num_devices,
+ fs_info->thread_pool_size),
+ &fs_info->generic_worker);
+
+ btrfs_init_workers(&fs_info->caching_workers, "cache",
+ 2, &fs_info->generic_worker);
+
+ /* a higher idle thresh on the submit workers makes it much more
+ * likely that bios will be send down in a sane order to the
+ * devices
+ */
+ fs_info->submit_workers.idle_thresh = 64;
+
+ fs_info->workers.idle_thresh = 16;
+ fs_info->workers.ordered = 1;
+
+ fs_info->delalloc_workers.idle_thresh = 2;
+ fs_info->delalloc_workers.ordered = 1;
+
+ btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
+ &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->endio_workers, "endio",
+ fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
+ fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->endio_meta_write_workers,
+ "endio-meta-write", fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
+ fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
+ 1, &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
+ fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->readahead_workers, "readahead",
+ fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+
+ /*
+ * endios are largely parallel and should have a very
+ * low idle thresh
+ */
+ fs_info->endio_workers.idle_thresh = 4;
+ fs_info->endio_meta_workers.idle_thresh = 4;
+
+ fs_info->endio_write_workers.idle_thresh = 2;
+ fs_info->endio_meta_write_workers.idle_thresh = 2;
+ fs_info->readahead_workers.idle_thresh = 2;
+
+ /*
+ * btrfs_start_workers can really only fail because of ENOMEM so just
+ * return -ENOMEM if any of these fail.
+ */
+ ret = btrfs_start_workers(&fs_info->workers);
+ ret |= btrfs_start_workers(&fs_info->generic_worker);
+ ret |= btrfs_start_workers(&fs_info->submit_workers);
+ ret |= btrfs_start_workers(&fs_info->delalloc_workers);
+ ret |= btrfs_start_workers(&fs_info->fixup_workers);
+ ret |= btrfs_start_workers(&fs_info->endio_workers);
+ ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
+ ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
+ ret |= btrfs_start_workers(&fs_info->endio_write_workers);
+ ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
+ ret |= btrfs_start_workers(&fs_info->delayed_workers);
+ ret |= btrfs_start_workers(&fs_info->caching_workers);
+ ret |= btrfs_start_workers(&fs_info->readahead_workers);
+ if (ret) {
+ ret = -ENOMEM;
+ goto fail_sb_buffer;
+ }
+
+ fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
+ fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
+ 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
+
+ tree_root->nodesize = nodesize;
+ tree_root->leafsize = leafsize;
+ tree_root->sectorsize = sectorsize;
+ tree_root->stripesize = stripesize;
+
+ sb->s_blocksize = sectorsize;
+ sb->s_blocksize_bits = blksize_bits(sectorsize);
+
+ if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
+ sizeof(disk_super->magic))) {
+ printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
+ goto fail_sb_buffer;
+ }
+
+ if (sectorsize != PAGE_SIZE) {
+ printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
+ "found on %s\n", (unsigned long)sectorsize, sb->s_id);
+ goto fail_sb_buffer;
+ }
+
+ mutex_lock(&fs_info->chunk_mutex);
+ ret = btrfs_read_sys_array(tree_root);
+ mutex_unlock(&fs_info->chunk_mutex);
+ if (ret) {
+ printk(KERN_WARNING "btrfs: failed to read the system "
+ "array on %s\n", sb->s_id);
+ goto fail_sb_buffer;
+ }
+
+ blocksize = btrfs_level_size(tree_root,
+ btrfs_super_chunk_root_level(disk_super));
+ generation = btrfs_super_chunk_root_generation(disk_super);
+
+ __setup_root(nodesize, leafsize, sectorsize, stripesize,
+ chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
+
+ chunk_root->node = read_tree_block(chunk_root,
+ btrfs_super_chunk_root(disk_super),
+ blocksize, generation);
+ BUG_ON(!chunk_root->node); /* -ENOMEM */
+ if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
+ printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
+ sb->s_id);
+ goto fail_tree_roots;
+ }
+ btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
+ chunk_root->commit_root = btrfs_root_node(chunk_root);
+
+ read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
+ (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
+ BTRFS_UUID_SIZE);
+
+ ret = btrfs_read_chunk_tree(chunk_root);
+ if (ret) {
+ printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
+ sb->s_id);
+ goto fail_tree_roots;
+ }
+
+ btrfs_close_extra_devices(fs_devices);
+
+ if (!fs_devices->latest_bdev) {
+ printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
+ sb->s_id);
+ goto fail_tree_roots;
+ }
+
+retry_root_backup:
+ blocksize = btrfs_level_size(tree_root,
+ btrfs_super_root_level(disk_super));
+ generation = btrfs_super_generation(disk_super);
+
+ tree_root->node = read_tree_block(tree_root,
+ btrfs_super_root(disk_super),
+ blocksize, generation);
+ if (!tree_root->node ||
+ !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
+ printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
+ sb->s_id);
+
+ goto recovery_tree_root;
+ }
+
+ btrfs_set_root_node(&tree_root->root_item, tree_root->node);
+ tree_root->commit_root = btrfs_root_node(tree_root);
+
+ ret = find_and_setup_root(tree_root, fs_info,
+ BTRFS_EXTENT_TREE_OBJECTID, extent_root);
+ if (ret)
+ goto recovery_tree_root;
+ extent_root->track_dirty = 1;
+
+ ret = find_and_setup_root(tree_root, fs_info,
+ BTRFS_DEV_TREE_OBJECTID, dev_root);
+ if (ret)
+ goto recovery_tree_root;
+ dev_root->track_dirty = 1;
+
+ ret = find_and_setup_root(tree_root, fs_info,
+ BTRFS_CSUM_TREE_OBJECTID, csum_root);
+ if (ret)
+ goto recovery_tree_root;
+
+ csum_root->track_dirty = 1;
+
+ fs_info->generation = generation;
+ fs_info->last_trans_committed = generation;
+
+ ret = btrfs_init_space_info(fs_info);
+ if (ret) {
+ printk(KERN_ERR "Failed to initial space info: %d\n", ret);
+ goto fail_block_groups;
+ }
+
+ ret = btrfs_read_block_groups(extent_root);
+ if (ret) {
+ printk(KERN_ERR "Failed to read block groups: %d\n", ret);
+ goto fail_block_groups;
+ }
+
+ fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
+ "btrfs-cleaner");
+ if (IS_ERR(fs_info->cleaner_kthread))
+ goto fail_block_groups;
+
+ fs_info->transaction_kthread = kthread_run(transaction_kthread,
+ tree_root,
+ "btrfs-transaction");
+ if (IS_ERR(fs_info->transaction_kthread))
+ goto fail_cleaner;
+
+ if (!btrfs_test_opt(tree_root, SSD) &&
+ !btrfs_test_opt(tree_root, NOSSD) &&
+ !fs_info->fs_devices->rotating) {
+ printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
+ "mode\n");
+ btrfs_set_opt(fs_info->mount_opt, SSD);
+ }
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
+ ret = btrfsic_mount(tree_root, fs_devices,
+ btrfs_test_opt(tree_root,
+ CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
+ 1 : 0,
+ fs_info->check_integrity_print_mask);
+ if (ret)
+ printk(KERN_WARNING "btrfs: failed to initialize"
+ " integrity check module %s\n", sb->s_id);
+ }
+#endif
+
+ /* do not make disk changes in broken FS */
+ if (btrfs_super_log_root(disk_super) != 0 &&
+ !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
+ u64 bytenr = btrfs_super_log_root(disk_super);
+
+ if (fs_devices->rw_devices == 0) {
+ printk(KERN_WARNING "Btrfs log replay required "
+ "on RO media\n");
+ err = -EIO;
+ goto fail_trans_kthread;
+ }
+ blocksize =
+ btrfs_level_size(tree_root,
+ btrfs_super_log_root_level(disk_super));
+
+ log_tree_root = btrfs_alloc_root(fs_info);
+ if (!log_tree_root) {
+ err = -ENOMEM;
+ goto fail_trans_kthread;
+ }
+
+ __setup_root(nodesize, leafsize, sectorsize, stripesize,
+ log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
+
+ log_tree_root->node = read_tree_block(tree_root, bytenr,
+ blocksize,
+ generation + 1);
+ /* returns with log_tree_root freed on success */
+ ret = btrfs_recover_log_trees(log_tree_root);
+ if (ret) {
+ btrfs_error(tree_root->fs_info, ret,
+ "Failed to recover log tree");
+ free_extent_buffer(log_tree_root->node);
+ kfree(log_tree_root);
+ goto fail_trans_kthread;
+ }
+
+ if (sb->s_flags & MS_RDONLY) {
+ ret = btrfs_commit_super(tree_root);
+ if (ret)
+ goto fail_trans_kthread;
+ }
+ }
+
+ ret = btrfs_find_orphan_roots(tree_root);
+ if (ret)
+ goto fail_trans_kthread;
+
+ if (!(sb->s_flags & MS_RDONLY)) {
+ ret = btrfs_cleanup_fs_roots(fs_info);
+ if (ret) {
+ }
+
+ ret = btrfs_recover_relocation(tree_root);
+ if (ret < 0) {
+ printk(KERN_WARNING
+ "btrfs: failed to recover relocation\n");
+ err = -EINVAL;
+ goto fail_trans_kthread;
+ }
+ }
+
+ location.objectid = BTRFS_FS_TREE_OBJECTID;
+ location.type = BTRFS_ROOT_ITEM_KEY;
+ location.offset = (u64)-1;
+
+ fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
+ if (!fs_info->fs_root)
+ goto fail_trans_kthread;
+ if (IS_ERR(fs_info->fs_root)) {
+ err = PTR_ERR(fs_info->fs_root);
+ goto fail_trans_kthread;
+ }
+
+ if (!(sb->s_flags & MS_RDONLY)) {
+ down_read(&fs_info->cleanup_work_sem);
+ err = btrfs_orphan_cleanup(fs_info->fs_root);
+ if (!err)
+ err = btrfs_orphan_cleanup(fs_info->tree_root);
+ up_read(&fs_info->cleanup_work_sem);
+
+ if (!err)
+ err = btrfs_recover_balance(fs_info->tree_root);
+
+ if (err) {
+ close_ctree(tree_root);
+ return err;
+ }
+ }
+
+ return 0;
+
+fail_trans_kthread:
+ kthread_stop(fs_info->transaction_kthread);
+fail_cleaner:
+ kthread_stop(fs_info->cleaner_kthread);
+
+ /*
+ * make sure we're done with the btree inode before we stop our
+ * kthreads
+ */
+ filemap_write_and_wait(fs_info->btree_inode->i_mapping);
+ invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+
+fail_block_groups:
+ btrfs_free_block_groups(fs_info);
+
+fail_tree_roots:
+ free_root_pointers(fs_info, 1);
+
+fail_sb_buffer:
+ btrfs_stop_workers(&fs_info->generic_worker);
+ btrfs_stop_workers(&fs_info->readahead_workers);
+ btrfs_stop_workers(&fs_info->fixup_workers);
+ btrfs_stop_workers(&fs_info->delalloc_workers);
+ btrfs_stop_workers(&fs_info->workers);
+ btrfs_stop_workers(&fs_info->endio_workers);
+ btrfs_stop_workers(&fs_info->endio_meta_workers);
+ btrfs_stop_workers(&fs_info->endio_meta_write_workers);
+ btrfs_stop_workers(&fs_info->endio_write_workers);
+ btrfs_stop_workers(&fs_info->endio_freespace_worker);
+ btrfs_stop_workers(&fs_info->submit_workers);
+ btrfs_stop_workers(&fs_info->delayed_workers);
+ btrfs_stop_workers(&fs_info->caching_workers);
+fail_alloc:
+fail_iput:
+ btrfs_mapping_tree_free(&fs_info->mapping_tree);
+
+ invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+ iput(fs_info->btree_inode);
+fail_bdi:
+ bdi_destroy(&fs_info->bdi);
+fail_srcu:
+ cleanup_srcu_struct(&fs_info->subvol_srcu);
+fail:
+ btrfs_close_devices(fs_info->fs_devices);
+ return err;
+
+recovery_tree_root:
+ if (!btrfs_test_opt(tree_root, RECOVERY))
+ goto fail_tree_roots;
+
+ free_root_pointers(fs_info, 0);
+
+ /* don't use the log in recovery mode, it won't be valid */
+ btrfs_set_super_log_root(disk_super, 0);
+
+ /* we can't trust the free space cache either */
+ btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
+
+ ret = next_root_backup(fs_info, fs_info->super_copy,
+ &num_backups_tried, &backup_index);
+ if (ret == -1)
+ goto fail_block_groups;
+ goto retry_root_backup;
+}
+
+static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
+{
+ char b[BDEVNAME_SIZE];
+
+ if (uptodate) {
+ set_buffer_uptodate(bh);
+ } else {
+ printk_ratelimited(KERN_WARNING "lost page write due to "
+ "I/O error on %s\n",
+ bdevname(bh->b_bdev, b));
+ /* note, we dont' set_buffer_write_io_error because we have
+ * our own ways of dealing with the IO errors
+ */
+ clear_buffer_uptodate(bh);
+ }
+ unlock_buffer(bh);
+ put_bh(bh);
+}
+
+struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
+{
+ struct buffer_head *bh;
+ struct buffer_head *latest = NULL;
+ struct btrfs_super_block *super;
+ int i;
+ u64 transid = 0;
+ u64 bytenr;
+
+ /* we would like to check all the supers, but that would make
+ * a btrfs mount succeed after a mkfs from a different FS.
+ * So, we need to add a special mount option to scan for
+ * later supers, using BTRFS_SUPER_MIRROR_MAX instead
+ */
+ for (i = 0; i < 1; i++) {
+ bytenr = btrfs_sb_offset(i);
+ if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
+ break;
+ bh = __bread(bdev, bytenr / 4096, 4096);
+ if (!bh)
+ continue;
+
+ super = (struct btrfs_super_block *)bh->b_data;
+ if (btrfs_super_bytenr(super) != bytenr ||
+ strncmp((char *)(&super->magic), BTRFS_MAGIC,
+ sizeof(super->magic))) {
+ brelse(bh);
+ continue;
+ }
+
+ if (!latest || btrfs_super_generation(super) > transid) {
+ brelse(latest);
+ latest = bh;
+ transid = btrfs_super_generation(super);
+ } else {
+ brelse(bh);
+ }
+ }
+ return latest;
+}
+
+/*
+ * this should be called twice, once with wait == 0 and
+ * once with wait == 1. When wait == 0 is done, all the buffer heads
+ * we write are pinned.
+ *
+ * They are released when wait == 1 is done.
+ * max_mirrors must be the same for both runs, and it indicates how
+ * many supers on this one device should be written.
+ *
+ * max_mirrors == 0 means to write them all.
+ */
+static int write_dev_supers(struct btrfs_device *device,
+ struct btrfs_super_block *sb,
+ int do_barriers, int wait, int max_mirrors)
+{
+ struct buffer_head *bh;
+ int i;
+ int ret;
+ int errors = 0;
+ u32 crc;
+ u64 bytenr;
+
+ if (max_mirrors == 0)
+ max_mirrors = BTRFS_SUPER_MIRROR_MAX;
+
+ for (i = 0; i < max_mirrors; i++) {
+ bytenr = btrfs_sb_offset(i);
+ if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
+ break;
+
+ if (wait) {
+ bh = __find_get_block(device->bdev, bytenr / 4096,
+ BTRFS_SUPER_INFO_SIZE);
+ BUG_ON(!bh);
+ wait_on_buffer(bh);
+ if (!buffer_uptodate(bh))
+ errors++;
+
+ /* drop our reference */
+ brelse(bh);
+
+ /* drop the reference from the wait == 0 run */
+ brelse(bh);
+ continue;
+ } else {
+ btrfs_set_super_bytenr(sb, bytenr);
+
+ crc = ~(u32)0;
+ crc = btrfs_csum_data(NULL, (char *)sb +
+ BTRFS_CSUM_SIZE, crc,
+ BTRFS_SUPER_INFO_SIZE -
+ BTRFS_CSUM_SIZE);
+ btrfs_csum_final(crc, sb->csum);
+
+ /*
+ * one reference for us, and we leave it for the
+ * caller
+ */
+ bh = __getblk(device->bdev, bytenr / 4096,
+ BTRFS_SUPER_INFO_SIZE);
+ memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
+
+ /* one reference for submit_bh */
+ get_bh(bh);
+
+ set_buffer_uptodate(bh);
+ lock_buffer(bh);
+ bh->b_end_io = btrfs_end_buffer_write_sync;
+ }
+
+ /*
+ * we fua the first super. The others we allow
+ * to go down lazy.
+ */
+ ret = btrfsic_submit_bh(WRITE_FUA, bh);
+ if (ret)
+ errors++;
+ }
+ return errors < i ? 0 : -1;
+}
+
+/*
+ * endio for the write_dev_flush, this will wake anyone waiting
+ * for the barrier when it is done
+ */
+static void btrfs_end_empty_barrier(struct bio *bio, int err)
+{
+ if (err) {
+ if (err == -EOPNOTSUPP)
+ set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
+ clear_bit(BIO_UPTODATE, &bio->bi_flags);
+ }
+ if (bio->bi_private)
+ complete(bio->bi_private);
+ bio_put(bio);
+}
+
+/*
+ * trigger flushes for one the devices. If you pass wait == 0, the flushes are
+ * sent down. With wait == 1, it waits for the previous flush.
+ *
+ * any device where the flush fails with eopnotsupp are flagged as not-barrier
+ * capable
+ */
+static int write_dev_flush(struct btrfs_device *device, int wait)
+{
+ struct bio *bio;
+ int ret = 0;
+
+ if (device->nobarriers)
+ return 0;
+
+ if (wait) {
+ bio = device->flush_bio;
+ if (!bio)
+ return 0;
+
+ wait_for_completion(&device->flush_wait);
+
+ if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
+ printk("btrfs: disabling barriers on dev %s\n",
+ device->name);
+ device->nobarriers = 1;
+ }
+ if (!bio_flagged(bio, BIO_UPTODATE)) {
+ ret = -EIO;
+ }
+
+ /* drop the reference from the wait == 0 run */
+ bio_put(bio);
+ device->flush_bio = NULL;
+
+ return ret;
+ }
+
+ /*
+ * one reference for us, and we leave it for the
+ * caller
+ */
+ device->flush_bio = NULL;;
+ bio = bio_alloc(GFP_NOFS, 0);
+ if (!bio)
+ return -ENOMEM;
+
+ bio->bi_end_io = btrfs_end_empty_barrier;
+ bio->bi_bdev = device->bdev;
+ init_completion(&device->flush_wait);
+ bio->bi_private = &device->flush_wait;
+ device->flush_bio = bio;
+
+ bio_get(bio);
+ btrfsic_submit_bio(WRITE_FLUSH, bio);
+
+ return 0;
+}
+
+/*
+ * send an empty flush down to each device in parallel,
+ * then wait for them
+ */
+static int barrier_all_devices(struct btrfs_fs_info *info)
+{
+ struct list_head *head;
+ struct btrfs_device *dev;
+ int errors = 0;
+ int ret;
+
+ /* send down all the barriers */
+ head = &info->fs_devices->devices;
+ list_for_each_entry_rcu(dev, head, dev_list) {
+ if (!dev->bdev) {
+ errors++;
+ continue;
+ }
+ if (!dev->in_fs_metadata || !dev->writeable)
+ continue;
+
+ ret = write_dev_flush(dev, 0);
+ if (ret)
+ errors++;
+ }
+
+ /* wait for all the barriers */
+ list_for_each_entry_rcu(dev, head, dev_list) {
+ if (!dev->bdev) {
+ errors++;
+ continue;
+ }
+ if (!dev->in_fs_metadata || !dev->writeable)
+ continue;
+
+ ret = write_dev_flush(dev, 1);
+ if (ret)
+ errors++;
+ }
+ if (errors)
+ return -EIO;
+ return 0;
+}
+
+int write_all_supers(struct btrfs_root *root, int max_mirrors)
+{
+ struct list_head *head;
+ struct btrfs_device *dev;
+ struct btrfs_super_block *sb;
+ struct btrfs_dev_item *dev_item;
+ int ret;
+ int do_barriers;
+ int max_errors;
+ int total_errors = 0;
+ u64 flags;
+
+ max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
+ do_barriers = !btrfs_test_opt(root, NOBARRIER);
+ backup_super_roots(root->fs_info);
+
+ sb = root->fs_info->super_for_commit;
+ dev_item = &sb->dev_item;
+
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ head = &root->fs_info->fs_devices->devices;
+
+ if (do_barriers)
+ barrier_all_devices(root->fs_info);
+
+ list_for_each_entry_rcu(dev, head, dev_list) {
+ if (!dev->bdev) {
+ total_errors++;
+ continue;
+ }
+ if (!dev->in_fs_metadata || !dev->writeable)
+ continue;
+
+ btrfs_set_stack_device_generation(dev_item, 0);
+ btrfs_set_stack_device_type(dev_item, dev->type);
+ btrfs_set_stack_device_id(dev_item, dev->devid);
+ btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
+ btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
+ btrfs_set_stack_device_io_align(dev_item, dev->io_align);
+ btrfs_set_stack_device_io_width(dev_item, dev->io_width);
+ btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
+ memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
+ memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
+
+ flags = btrfs_super_flags(sb);
+ btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
+
+ ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
+ if (ret)
+ total_errors++;
+ }
+ if (total_errors > max_errors) {
+ printk(KERN_ERR "btrfs: %d errors while writing supers\n",
+ total_errors);
+
+ /* This shouldn't happen. FUA is masked off if unsupported */
+ BUG();
+ }
+
+ total_errors = 0;
+ list_for_each_entry_rcu(dev, head, dev_list) {
+ if (!dev->bdev)
+ continue;
+ if (!dev->in_fs_metadata || !dev->writeable)
+ continue;
+
+ ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
+ if (ret)
+ total_errors++;
+ }
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+ if (total_errors > max_errors) {
+ btrfs_error(root->fs_info, -EIO,
+ "%d errors while writing supers", total_errors);
+ return -EIO;
+ }
+ return 0;
+}
+
+int write_ctree_super(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, int max_mirrors)
+{
+ int ret;
+
+ ret = write_all_supers(root, max_mirrors);
+ return ret;
+}
+
+/* Kill all outstanding I/O */
+void btrfs_abort_devices(struct btrfs_root *root)
+{
+ struct list_head *head;
+ struct btrfs_device *dev;
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ head = &root->fs_info->fs_devices->devices;
+ list_for_each_entry_rcu(dev, head, dev_list) {
+ blk_abort_queue(dev->bdev->bd_disk->queue);
+ }
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+}
+
+void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
+{
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ radix_tree_delete(&fs_info->fs_roots_radix,
+ (unsigned long)root->root_key.objectid);
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+
+ if (btrfs_root_refs(&root->root_item) == 0)
+ synchronize_srcu(&fs_info->subvol_srcu);
+
+ __btrfs_remove_free_space_cache(root->free_ino_pinned);
+ __btrfs_remove_free_space_cache(root->free_ino_ctl);
+ free_fs_root(root);
+}
+
+static void free_fs_root(struct btrfs_root *root)
+{
+ iput(root->cache_inode);
+ WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
+ if (root->anon_dev)
+ free_anon_bdev(root->anon_dev);
+ free_extent_buffer(root->node);
+ free_extent_buffer(root->commit_root);
+ kfree(root->free_ino_ctl);
+ kfree(root->free_ino_pinned);
+ kfree(root->name);
+ kfree(root);
+}
+
+static void del_fs_roots(struct btrfs_fs_info *fs_info)
+{
+ int ret;
+ struct btrfs_root *gang[8];
+ int i;
+
+ while (!list_empty(&fs_info->dead_roots)) {
+ gang[0] = list_entry(fs_info->dead_roots.next,
+ struct btrfs_root, root_list);
+ list_del(&gang[0]->root_list);
+
+ if (gang[0]->in_radix) {
+ btrfs_free_fs_root(fs_info, gang[0]);
+ } else {
+ free_extent_buffer(gang[0]->node);
+ free_extent_buffer(gang[0]->commit_root);
+ kfree(gang[0]);
+ }
+ }
+
+ while (1) {
+ ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
+ (void **)gang, 0,
+ ARRAY_SIZE(gang));
+ if (!ret)
+ break;
+ for (i = 0; i < ret; i++)
+ btrfs_free_fs_root(fs_info, gang[i]);
+ }
+}
+
+int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
+{
+ u64 root_objectid = 0;
+ struct btrfs_root *gang[8];
+ int i;
+ int ret;
+
+ while (1) {
+ ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
+ (void **)gang, root_objectid,
+ ARRAY_SIZE(gang));
+ if (!ret)
+ break;
+
+ root_objectid = gang[ret - 1]->root_key.objectid + 1;
+ for (i = 0; i < ret; i++) {
+ int err;
+
+ root_objectid = gang[i]->root_key.objectid;
+ err = btrfs_orphan_cleanup(gang[i]);
+ if (err)
+ return err;
+ }
+ root_objectid++;
+ }
+ return 0;
+}
+
+int btrfs_commit_super(struct btrfs_root *root)
+{
+ struct btrfs_trans_handle *trans;
+ int ret;
+
+ mutex_lock(&root->fs_info->cleaner_mutex);
+ btrfs_run_delayed_iputs(root);
+ btrfs_clean_old_snapshots(root);
+ mutex_unlock(&root->fs_info->cleaner_mutex);
+
+ /* wait until ongoing cleanup work done */
+ down_write(&root->fs_info->cleanup_work_sem);
+ up_write(&root->fs_info->cleanup_work_sem);
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ ret = btrfs_commit_transaction(trans, root);
+ if (ret)
+ return ret;
+ /* run commit again to drop the original snapshot */
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ ret = btrfs_commit_transaction(trans, root);
+ if (ret)
+ return ret;
+ ret = btrfs_write_and_wait_transaction(NULL, root);
+ if (ret) {
+ btrfs_error(root->fs_info, ret,
+ "Failed to sync btree inode to disk.");
+ return ret;
+ }
+
+ ret = write_ctree_super(NULL, root, 0);
+ return ret;
+}
+
+int close_ctree(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ int ret;
+
+ fs_info->closing = 1;
+ smp_mb();
+
+ /* pause restriper - we want to resume on mount */
+ btrfs_pause_balance(root->fs_info);
+
+ btrfs_scrub_cancel(root);
+
+ /* wait for any defraggers to finish */
+ wait_event(fs_info->transaction_wait,
+ (atomic_read(&fs_info->defrag_running) == 0));
+
+ /* clear out the rbtree of defraggable inodes */
+ btrfs_run_defrag_inodes(fs_info);
+
+ /*
+ * Here come 2 situations when btrfs is broken to flip readonly:
+ *
+ * 1. when btrfs flips readonly somewhere else before
+ * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
+ * and btrfs will skip to write sb directly to keep
+ * ERROR state on disk.
+ *
+ * 2. when btrfs flips readonly just in btrfs_commit_super,
+ * and in such case, btrfs cannot write sb via btrfs_commit_super,
+ * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
+ * btrfs will cleanup all FS resources first and write sb then.
+ */
+ if (!(fs_info->sb->s_flags & MS_RDONLY)) {
+ ret = btrfs_commit_super(root);
+ if (ret)
+ printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
+ }
+
+ if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+ ret = btrfs_error_commit_super(root);
+ if (ret)
+ printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
+ }
+
+ btrfs_put_block_group_cache(fs_info);
+
+ kthread_stop(fs_info->transaction_kthread);
+ kthread_stop(fs_info->cleaner_kthread);
+
+ fs_info->closing = 2;
+ smp_mb();
+
+ if (fs_info->delalloc_bytes) {
+ printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
+ (unsigned long long)fs_info->delalloc_bytes);
+ }
+ if (fs_info->total_ref_cache_size) {
+ printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
+ (unsigned long long)fs_info->total_ref_cache_size);
+ }
+
+ free_extent_buffer(fs_info->extent_root->node);
+ free_extent_buffer(fs_info->extent_root->commit_root);
+ free_extent_buffer(fs_info->tree_root->node);
+ free_extent_buffer(fs_info->tree_root->commit_root);
+ free_extent_buffer(fs_info->chunk_root->node);
+ free_extent_buffer(fs_info->chunk_root->commit_root);
+ free_extent_buffer(fs_info->dev_root->node);
+ free_extent_buffer(fs_info->dev_root->commit_root);
+ free_extent_buffer(fs_info->csum_root->node);
+ free_extent_buffer(fs_info->csum_root->commit_root);
+
+ btrfs_free_block_groups(fs_info);
+
+ del_fs_roots(fs_info);
+
+ iput(fs_info->btree_inode);
+
+ btrfs_stop_workers(&fs_info->generic_worker);
+ btrfs_stop_workers(&fs_info->fixup_workers);
+ btrfs_stop_workers(&fs_info->delalloc_workers);
+ btrfs_stop_workers(&fs_info->workers);
+ btrfs_stop_workers(&fs_info->endio_workers);
+ btrfs_stop_workers(&fs_info->endio_meta_workers);
+ btrfs_stop_workers(&fs_info->endio_meta_write_workers);
+ btrfs_stop_workers(&fs_info->endio_write_workers);
+ btrfs_stop_workers(&fs_info->endio_freespace_worker);
+ btrfs_stop_workers(&fs_info->submit_workers);
+ btrfs_stop_workers(&fs_info->delayed_workers);
+ btrfs_stop_workers(&fs_info->caching_workers);
+ btrfs_stop_workers(&fs_info->readahead_workers);
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ if (btrfs_test_opt(root, CHECK_INTEGRITY))
+ btrfsic_unmount(root, fs_info->fs_devices);
+#endif
+
+ btrfs_close_devices(fs_info->fs_devices);
+ btrfs_mapping_tree_free(&fs_info->mapping_tree);
+
+ bdi_destroy(&fs_info->bdi);
+ cleanup_srcu_struct(&fs_info->subvol_srcu);
+
+ return 0;
+}
+
+int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
+ int atomic)
+{
+ int ret;
+ struct inode *btree_inode = buf->pages[0]->mapping->host;
+
+ ret = extent_buffer_uptodate(buf);
+ if (!ret)
+ return ret;
+
+ ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
+ parent_transid, atomic);
+ if (ret == -EAGAIN)
+ return ret;
+ return !ret;
+}
+
+int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
+{
+ return set_extent_buffer_uptodate(buf);
+}
+
+void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
+{
+ struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
+ u64 transid = btrfs_header_generation(buf);
+ int was_dirty;
+
+ btrfs_assert_tree_locked(buf);
+ if (transid != root->fs_info->generation) {
+ printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
+ "found %llu running %llu\n",
+ (unsigned long long)buf->start,
+ (unsigned long long)transid,
+ (unsigned long long)root->fs_info->generation);
+ WARN_ON(1);
+ }
+ was_dirty = set_extent_buffer_dirty(buf);
+ if (!was_dirty) {
+ spin_lock(&root->fs_info->delalloc_lock);
+ root->fs_info->dirty_metadata_bytes += buf->len;
+ spin_unlock(&root->fs_info->delalloc_lock);
+ }
+}
+
+void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
+{
+ /*
+ * looks as though older kernels can get into trouble with
+ * this code, they end up stuck in balance_dirty_pages forever
+ */
+ u64 num_dirty;
+ unsigned long thresh = 32 * 1024 * 1024;
+
+ if (current->flags & PF_MEMALLOC)
+ return;
+
+ btrfs_balance_delayed_items(root);
+
+ num_dirty = root->fs_info->dirty_metadata_bytes;
+
+ if (num_dirty > thresh) {
+ balance_dirty_pages_ratelimited_nr(
+ root->fs_info->btree_inode->i_mapping, 1);
+ }
+ return;
+}
+
+void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
+{
+ /*
+ * looks as though older kernels can get into trouble with
+ * this code, they end up stuck in balance_dirty_pages forever
+ */
+ u64 num_dirty;
+ unsigned long thresh = 32 * 1024 * 1024;
+
+ if (current->flags & PF_MEMALLOC)
+ return;
+
+ num_dirty = root->fs_info->dirty_metadata_bytes;
+
+ if (num_dirty > thresh) {
+ balance_dirty_pages_ratelimited_nr(
+ root->fs_info->btree_inode->i_mapping, 1);
+ }
+ return;
+}
+
+int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
+{
+ struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
+ return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
+}
+
+static int btree_lock_page_hook(struct page *page, void *data,
+ void (*flush_fn)(void *))
+{
+ struct inode *inode = page->mapping->host;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_buffer *eb;
+
+ /*
+ * We culled this eb but the page is still hanging out on the mapping,
+ * carry on.
+ */
+ if (!PagePrivate(page))
+ goto out;
+
+ eb = (struct extent_buffer *)page->private;
+ if (!eb) {
+ WARN_ON(1);
+ goto out;
+ }
+ if (page != eb->pages[0])
+ goto out;
+
+ if (!btrfs_try_tree_write_lock(eb)) {
+ flush_fn(data);
+ btrfs_tree_lock(eb);
+ }
+ btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
+
+ if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
+ spin_lock(&root->fs_info->delalloc_lock);
+ if (root->fs_info->dirty_metadata_bytes >= eb->len)
+ root->fs_info->dirty_metadata_bytes -= eb->len;
+ else
+ WARN_ON(1);
+ spin_unlock(&root->fs_info->delalloc_lock);
+ }
+
+ btrfs_tree_unlock(eb);
+out:
+ if (!trylock_page(page)) {
+ flush_fn(data);
+ lock_page(page);
+ }
+ return 0;
+}
+
+static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
+ int read_only)
+{
+ if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
+ printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
+ return -EINVAL;
+ }
+
+ if (read_only)
+ return 0;
+
+ if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+ printk(KERN_WARNING "warning: mount fs with errors, "
+ "running btrfsck is recommended\n");
+ }
+
+ return 0;
+}
+
+int btrfs_error_commit_super(struct btrfs_root *root)
+{
+ int ret;
+
+ mutex_lock(&root->fs_info->cleaner_mutex);
+ btrfs_run_delayed_iputs(root);
+ mutex_unlock(&root->fs_info->cleaner_mutex);
+
+ down_write(&root->fs_info->cleanup_work_sem);
+ up_write(&root->fs_info->cleanup_work_sem);
+
+ /* cleanup FS via transaction */
+ btrfs_cleanup_transaction(root);
+
+ ret = write_ctree_super(NULL, root, 0);
+
+ return ret;
+}
+
+static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
+{
+ struct btrfs_inode *btrfs_inode;
+ struct list_head splice;
+
+ INIT_LIST_HEAD(&splice);
+
+ mutex_lock(&root->fs_info->ordered_operations_mutex);
+ spin_lock(&root->fs_info->ordered_extent_lock);
+
+ list_splice_init(&root->fs_info->ordered_operations, &splice);
+ while (!list_empty(&splice)) {
+ btrfs_inode = list_entry(splice.next, struct btrfs_inode,
+ ordered_operations);
+
+ list_del_init(&btrfs_inode->ordered_operations);
+
+ btrfs_invalidate_inodes(btrfs_inode->root);
+ }
+
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+ mutex_unlock(&root->fs_info->ordered_operations_mutex);
+}
+
+static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
+{
+ struct list_head splice;
+ struct btrfs_ordered_extent *ordered;
+ struct inode *inode;
+
+ INIT_LIST_HEAD(&splice);
+
+ spin_lock(&root->fs_info->ordered_extent_lock);
+
+ list_splice_init(&root->fs_info->ordered_extents, &splice);
+ while (!list_empty(&splice)) {
+ ordered = list_entry(splice.next, struct btrfs_ordered_extent,
+ root_extent_list);
+
+ list_del_init(&ordered->root_extent_list);
+ atomic_inc(&ordered->refs);
+
+ /* the inode may be getting freed (in sys_unlink path). */
+ inode = igrab(ordered->inode);
+
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+ if (inode)
+ iput(inode);
+
+ atomic_set(&ordered->refs, 1);
+ btrfs_put_ordered_extent(ordered);
+
+ spin_lock(&root->fs_info->ordered_extent_lock);
+ }
+
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+}
+
+int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
+ struct btrfs_root *root)
+{
+ struct rb_node *node;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct btrfs_delayed_ref_node *ref;
+ int ret = 0;
+
+ delayed_refs = &trans->delayed_refs;
+
+again:
+ spin_lock(&delayed_refs->lock);
+ if (delayed_refs->num_entries == 0) {
+ spin_unlock(&delayed_refs->lock);
+ printk(KERN_INFO "delayed_refs has NO entry\n");
+ return ret;
+ }
+
+ node = rb_first(&delayed_refs->root);
+ while (node) {
+ ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+ node = rb_next(node);
+
+ ref->in_tree = 0;
+ rb_erase(&ref->rb_node, &delayed_refs->root);
+ delayed_refs->num_entries--;
+
+ atomic_set(&ref->refs, 1);
+ if (btrfs_delayed_ref_is_head(ref)) {
+ struct btrfs_delayed_ref_head *head;
+
+ head = btrfs_delayed_node_to_head(ref);
+ spin_unlock(&delayed_refs->lock);
+ mutex_lock(&head->mutex);
+ kfree(head->extent_op);
+ delayed_refs->num_heads--;
+ if (list_empty(&head->cluster))
+ delayed_refs->num_heads_ready--;
+ list_del_init(&head->cluster);
+ mutex_unlock(&head->mutex);
+ btrfs_put_delayed_ref(ref);
+ goto again;
+ }
+ spin_unlock(&delayed_refs->lock);
+ btrfs_put_delayed_ref(ref);
+
+ cond_resched();
+ spin_lock(&delayed_refs->lock);
+ }
+
+ spin_unlock(&delayed_refs->lock);
+
+ return ret;
+}
+
+static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
+{
+ struct btrfs_pending_snapshot *snapshot;
+ struct list_head splice;
+
+ INIT_LIST_HEAD(&splice);
+
+ list_splice_init(&t->pending_snapshots, &splice);
+
+ while (!list_empty(&splice)) {
+ snapshot = list_entry(splice.next,
+ struct btrfs_pending_snapshot,
+ list);
+
+ list_del_init(&snapshot->list);
+
+ kfree(snapshot);
+ }
+}
+
+static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
+{
+ struct btrfs_inode *btrfs_inode;
+ struct list_head splice;
+
+ INIT_LIST_HEAD(&splice);
+
+ spin_lock(&root->fs_info->delalloc_lock);
+ list_splice_init(&root->fs_info->delalloc_inodes, &splice);
+
+ while (!list_empty(&splice)) {
+ btrfs_inode = list_entry(splice.next, struct btrfs_inode,
+ delalloc_inodes);
+
+ list_del_init(&btrfs_inode->delalloc_inodes);
+
+ btrfs_invalidate_inodes(btrfs_inode->root);
+ }
+
+ spin_unlock(&root->fs_info->delalloc_lock);
+}
+
+static int btrfs_destroy_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages,
+ int mark)
+{
+ int ret;
+ struct page *page;
+ struct inode *btree_inode = root->fs_info->btree_inode;
+ struct extent_buffer *eb;
+ u64 start = 0;
+ u64 end;
+ u64 offset;
+ unsigned long index;
+
+ while (1) {
+ ret = find_first_extent_bit(dirty_pages, start, &start, &end,
+ mark);
+ if (ret)
+ break;
+
+ clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
+ while (start <= end) {
+ index = start >> PAGE_CACHE_SHIFT;
+ start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
+ page = find_get_page(btree_inode->i_mapping, index);
+ if (!page)
+ continue;
+ offset = page_offset(page);
+
+ spin_lock(&dirty_pages->buffer_lock);
+ eb = radix_tree_lookup(
+ &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
+ offset >> PAGE_CACHE_SHIFT);
+ spin_unlock(&dirty_pages->buffer_lock);
+ if (eb) {
+ ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
+ &eb->bflags);
+ atomic_set(&eb->refs, 1);
+ }
+ if (PageWriteback(page))
+ end_page_writeback(page);
+
+ lock_page(page);
+ if (PageDirty(page)) {
+ clear_page_dirty_for_io(page);
+ spin_lock_irq(&page->mapping->tree_lock);
+ radix_tree_tag_clear(&page->mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_DIRTY);
+ spin_unlock_irq(&page->mapping->tree_lock);
+ }
+
+ page->mapping->a_ops->invalidatepage(page, 0);
+ unlock_page(page);
+ }
+ }
+
+ return ret;
+}
+
+static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
+ struct extent_io_tree *pinned_extents)
+{
+ struct extent_io_tree *unpin;
+ u64 start;
+ u64 end;
+ int ret;
+
+ unpin = pinned_extents;
+ while (1) {
+ ret = find_first_extent_bit(unpin, 0, &start, &end,
+ EXTENT_DIRTY);
+ if (ret)
+ break;
+
+ /* opt_discard */
+ if (btrfs_test_opt(root, DISCARD))
+ ret = btrfs_error_discard_extent(root, start,
+ end + 1 - start,
+ NULL);
+
+ clear_extent_dirty(unpin, start, end, GFP_NOFS);
+ btrfs_error_unpin_extent_range(root, start, end);
+ cond_resched();
+ }
+
+ return 0;
+}
+
+void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
+ struct btrfs_root *root)
+{
+ btrfs_destroy_delayed_refs(cur_trans, root);
+ btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
+ cur_trans->dirty_pages.dirty_bytes);
+
+ /* FIXME: cleanup wait for commit */
+ cur_trans->in_commit = 1;
+ cur_trans->blocked = 1;
+ if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
+ wake_up(&root->fs_info->transaction_blocked_wait);
+
+ cur_trans->blocked = 0;
+ if (waitqueue_active(&root->fs_info->transaction_wait))
+ wake_up(&root->fs_info->transaction_wait);
+
+ cur_trans->commit_done = 1;
+ if (waitqueue_active(&cur_trans->commit_wait))
+ wake_up(&cur_trans->commit_wait);
+
+ btrfs_destroy_pending_snapshots(cur_trans);
+
+ btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
+ EXTENT_DIRTY);
+
+ /*
+ memset(cur_trans, 0, sizeof(*cur_trans));
+ kmem_cache_free(btrfs_transaction_cachep, cur_trans);
+ */
+}
+
+int btrfs_cleanup_transaction(struct btrfs_root *root)
+{
+ struct btrfs_transaction *t;
+ LIST_HEAD(list);
+
+ mutex_lock(&root->fs_info->transaction_kthread_mutex);
+
+ spin_lock(&root->fs_info->trans_lock);
+ list_splice_init(&root->fs_info->trans_list, &list);
+ root->fs_info->trans_no_join = 1;
+ spin_unlock(&root->fs_info->trans_lock);
+
+ while (!list_empty(&list)) {
+ t = list_entry(list.next, struct btrfs_transaction, list);
+ if (!t)
+ break;
+
+ btrfs_destroy_ordered_operations(root);
+
+ btrfs_destroy_ordered_extents(root);
+
+ btrfs_destroy_delayed_refs(t, root);
+
+ btrfs_block_rsv_release(root,
+ &root->fs_info->trans_block_rsv,
+ t->dirty_pages.dirty_bytes);
+
+ /* FIXME: cleanup wait for commit */
+ t->in_commit = 1;
+ t->blocked = 1;
+ if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
+ wake_up(&root->fs_info->transaction_blocked_wait);
+
+ t->blocked = 0;
+ if (waitqueue_active(&root->fs_info->transaction_wait))
+ wake_up(&root->fs_info->transaction_wait);
+
+ t->commit_done = 1;
+ if (waitqueue_active(&t->commit_wait))
+ wake_up(&t->commit_wait);
+
+ btrfs_destroy_pending_snapshots(t);
+
+ btrfs_destroy_delalloc_inodes(root);
+
+ spin_lock(&root->fs_info->trans_lock);
+ root->fs_info->running_transaction = NULL;
+ spin_unlock(&root->fs_info->trans_lock);
+
+ btrfs_destroy_marked_extents(root, &t->dirty_pages,
+ EXTENT_DIRTY);
+
+ btrfs_destroy_pinned_extent(root,
+ root->fs_info->pinned_extents);
+
+ atomic_set(&t->use_count, 0);
+ list_del_init(&t->list);
+ memset(t, 0, sizeof(*t));
+ kmem_cache_free(btrfs_transaction_cachep, t);
+ }
+
+ spin_lock(&root->fs_info->trans_lock);
+ root->fs_info->trans_no_join = 0;
+ spin_unlock(&root->fs_info->trans_lock);
+ mutex_unlock(&root->fs_info->transaction_kthread_mutex);
+
+ return 0;
+}
+
+static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
+ u64 start, u64 end,
+ struct extent_state *state)
+{
+ struct super_block *sb = page->mapping->host->i_sb;
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ btrfs_error(fs_info, -EIO,
+ "Error occured while writing out btree at %llu", start);
+ return -EIO;
+}
+
+static struct extent_io_ops btree_extent_io_ops = {
+ .write_cache_pages_lock_hook = btree_lock_page_hook,
+ .readpage_end_io_hook = btree_readpage_end_io_hook,
+ .readpage_io_failed_hook = btree_io_failed_hook,
+ .submit_bio_hook = btree_submit_bio_hook,
+ /* note we're sharing with inode.c for the merge bio hook */
+ .merge_bio_hook = btrfs_merge_bio_hook,
+ .writepage_io_failed_hook = btree_writepage_io_failed_hook,
+};
diff --git a/fs/btrfs/disk-io.h b/fs/btrfs/disk-io.h
new file mode 100644
index 00000000..ab1830aa
--- /dev/null
+++ b/fs/btrfs/disk-io.h
@@ -0,0 +1,106 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __DISKIO__
+#define __DISKIO__
+
+#define BTRFS_SUPER_INFO_OFFSET (64 * 1024)
+#define BTRFS_SUPER_INFO_SIZE 4096
+
+#define BTRFS_SUPER_MIRROR_MAX 3
+#define BTRFS_SUPER_MIRROR_SHIFT 12
+
+static inline u64 btrfs_sb_offset(int mirror)
+{
+ u64 start = 16 * 1024;
+ if (mirror)
+ return start << (BTRFS_SUPER_MIRROR_SHIFT * mirror);
+ return BTRFS_SUPER_INFO_OFFSET;
+}
+
+struct btrfs_device;
+struct btrfs_fs_devices;
+
+struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
+ u32 blocksize, u64 parent_transid);
+int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
+ u64 parent_transid);
+int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
+ int mirror_num, struct extent_buffer **eb);
+struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
+ u64 bytenr, u32 blocksize);
+void clean_tree_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *buf);
+int open_ctree(struct super_block *sb,
+ struct btrfs_fs_devices *fs_devices,
+ char *options);
+int close_ctree(struct btrfs_root *root);
+int write_ctree_super(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, int max_mirrors);
+struct buffer_head *btrfs_read_dev_super(struct block_device *bdev);
+int btrfs_commit_super(struct btrfs_root *root);
+int btrfs_error_commit_super(struct btrfs_root *root);
+struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
+ u64 bytenr, u32 blocksize);
+struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
+ struct btrfs_key *location);
+struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
+ struct btrfs_key *location);
+int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info);
+void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr);
+void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr);
+void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root);
+void btrfs_mark_buffer_dirty(struct extent_buffer *buf);
+int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
+ int atomic);
+int btrfs_set_buffer_uptodate(struct extent_buffer *buf);
+int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid);
+u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len);
+void btrfs_csum_final(u32 crc, char *result);
+int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
+ int metadata);
+int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
+ int rw, struct bio *bio, int mirror_num,
+ unsigned long bio_flags, u64 bio_offset,
+ extent_submit_bio_hook_t *submit_bio_start,
+ extent_submit_bio_hook_t *submit_bio_done);
+unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info);
+int btrfs_write_tree_block(struct extent_buffer *buf);
+int btrfs_wait_tree_block_writeback(struct extent_buffer *buf);
+int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info);
+int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_cleanup_transaction(struct btrfs_root *root);
+void btrfs_cleanup_one_transaction(struct btrfs_transaction *trans,
+ struct btrfs_root *root);
+void btrfs_abort_devices(struct btrfs_root *root);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void btrfs_init_lockdep(void);
+void btrfs_set_buffer_lockdep_class(u64 objectid,
+ struct extent_buffer *eb, int level);
+#else
+static inline void btrfs_init_lockdep(void)
+{ }
+static inline void btrfs_set_buffer_lockdep_class(u64 objectid,
+ struct extent_buffer *eb, int level)
+{
+}
+#endif
+#endif
diff --git a/fs/btrfs/export.c b/fs/btrfs/export.c
new file mode 100644
index 00000000..e887ee62
--- /dev/null
+++ b/fs/btrfs/export.c
@@ -0,0 +1,317 @@
+#include <linux/fs.h>
+#include <linux/types.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "btrfs_inode.h"
+#include "print-tree.h"
+#include "export.h"
+#include "compat.h"
+
+#define BTRFS_FID_SIZE_NON_CONNECTABLE (offsetof(struct btrfs_fid, \
+ parent_objectid) / 4)
+#define BTRFS_FID_SIZE_CONNECTABLE (offsetof(struct btrfs_fid, \
+ parent_root_objectid) / 4)
+#define BTRFS_FID_SIZE_CONNECTABLE_ROOT (sizeof(struct btrfs_fid) / 4)
+
+static int btrfs_encode_fh(struct dentry *dentry, u32 *fh, int *max_len,
+ int connectable)
+{
+ struct btrfs_fid *fid = (struct btrfs_fid *)fh;
+ struct inode *inode = dentry->d_inode;
+ int len = *max_len;
+ int type;
+
+ if (connectable && (len < BTRFS_FID_SIZE_CONNECTABLE)) {
+ *max_len = BTRFS_FID_SIZE_CONNECTABLE;
+ return 255;
+ } else if (len < BTRFS_FID_SIZE_NON_CONNECTABLE) {
+ *max_len = BTRFS_FID_SIZE_NON_CONNECTABLE;
+ return 255;
+ }
+
+ len = BTRFS_FID_SIZE_NON_CONNECTABLE;
+ type = FILEID_BTRFS_WITHOUT_PARENT;
+
+ fid->objectid = btrfs_ino(inode);
+ fid->root_objectid = BTRFS_I(inode)->root->objectid;
+ fid->gen = inode->i_generation;
+
+ if (connectable && !S_ISDIR(inode->i_mode)) {
+ struct inode *parent;
+ u64 parent_root_id;
+
+ spin_lock(&dentry->d_lock);
+
+ parent = dentry->d_parent->d_inode;
+ fid->parent_objectid = BTRFS_I(parent)->location.objectid;
+ fid->parent_gen = parent->i_generation;
+ parent_root_id = BTRFS_I(parent)->root->objectid;
+
+ spin_unlock(&dentry->d_lock);
+
+ if (parent_root_id != fid->root_objectid) {
+ fid->parent_root_objectid = parent_root_id;
+ len = BTRFS_FID_SIZE_CONNECTABLE_ROOT;
+ type = FILEID_BTRFS_WITH_PARENT_ROOT;
+ } else {
+ len = BTRFS_FID_SIZE_CONNECTABLE;
+ type = FILEID_BTRFS_WITH_PARENT;
+ }
+ }
+
+ *max_len = len;
+ return type;
+}
+
+static struct dentry *btrfs_get_dentry(struct super_block *sb, u64 objectid,
+ u64 root_objectid, u32 generation,
+ int check_generation)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_root *root;
+ struct inode *inode;
+ struct btrfs_key key;
+ int index;
+ int err = 0;
+
+ if (objectid < BTRFS_FIRST_FREE_OBJECTID)
+ return ERR_PTR(-ESTALE);
+
+ key.objectid = root_objectid;
+ btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
+ key.offset = (u64)-1;
+
+ index = srcu_read_lock(&fs_info->subvol_srcu);
+
+ root = btrfs_read_fs_root_no_name(fs_info, &key);
+ if (IS_ERR(root)) {
+ err = PTR_ERR(root);
+ goto fail;
+ }
+
+ if (btrfs_root_refs(&root->root_item) == 0) {
+ err = -ENOENT;
+ goto fail;
+ }
+
+ key.objectid = objectid;
+ btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
+ key.offset = 0;
+
+ inode = btrfs_iget(sb, &key, root, NULL);
+ if (IS_ERR(inode)) {
+ err = PTR_ERR(inode);
+ goto fail;
+ }
+
+ srcu_read_unlock(&fs_info->subvol_srcu, index);
+
+ if (check_generation && generation != inode->i_generation) {
+ iput(inode);
+ return ERR_PTR(-ESTALE);
+ }
+
+ return d_obtain_alias(inode);
+fail:
+ srcu_read_unlock(&fs_info->subvol_srcu, index);
+ return ERR_PTR(err);
+}
+
+static struct dentry *btrfs_fh_to_parent(struct super_block *sb, struct fid *fh,
+ int fh_len, int fh_type)
+{
+ struct btrfs_fid *fid = (struct btrfs_fid *) fh;
+ u64 objectid, root_objectid;
+ u32 generation;
+
+ if (fh_type == FILEID_BTRFS_WITH_PARENT) {
+ if (fh_len != BTRFS_FID_SIZE_CONNECTABLE)
+ return NULL;
+ root_objectid = fid->root_objectid;
+ } else if (fh_type == FILEID_BTRFS_WITH_PARENT_ROOT) {
+ if (fh_len != BTRFS_FID_SIZE_CONNECTABLE_ROOT)
+ return NULL;
+ root_objectid = fid->parent_root_objectid;
+ } else
+ return NULL;
+
+ objectid = fid->parent_objectid;
+ generation = fid->parent_gen;
+
+ return btrfs_get_dentry(sb, objectid, root_objectid, generation, 1);
+}
+
+static struct dentry *btrfs_fh_to_dentry(struct super_block *sb, struct fid *fh,
+ int fh_len, int fh_type)
+{
+ struct btrfs_fid *fid = (struct btrfs_fid *) fh;
+ u64 objectid, root_objectid;
+ u32 generation;
+
+ if ((fh_type != FILEID_BTRFS_WITH_PARENT ||
+ fh_len != BTRFS_FID_SIZE_CONNECTABLE) &&
+ (fh_type != FILEID_BTRFS_WITH_PARENT_ROOT ||
+ fh_len != BTRFS_FID_SIZE_CONNECTABLE_ROOT) &&
+ (fh_type != FILEID_BTRFS_WITHOUT_PARENT ||
+ fh_len != BTRFS_FID_SIZE_NON_CONNECTABLE))
+ return NULL;
+
+ objectid = fid->objectid;
+ root_objectid = fid->root_objectid;
+ generation = fid->gen;
+
+ return btrfs_get_dentry(sb, objectid, root_objectid, generation, 1);
+}
+
+static struct dentry *btrfs_get_parent(struct dentry *child)
+{
+ struct inode *dir = child->d_inode;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_root_ref *ref;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return ERR_PTR(-ENOMEM);
+
+ if (btrfs_ino(dir) == BTRFS_FIRST_FREE_OBJECTID) {
+ key.objectid = root->root_key.objectid;
+ key.type = BTRFS_ROOT_BACKREF_KEY;
+ key.offset = (u64)-1;
+ root = root->fs_info->tree_root;
+ } else {
+ key.objectid = btrfs_ino(dir);
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = (u64)-1;
+ }
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto fail;
+
+ BUG_ON(ret == 0); /* Key with offset of -1 found */
+ if (path->slots[0] == 0) {
+ ret = -ENOENT;
+ goto fail;
+ }
+
+ path->slots[0]--;
+ leaf = path->nodes[0];
+
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ if (found_key.objectid != key.objectid || found_key.type != key.type) {
+ ret = -ENOENT;
+ goto fail;
+ }
+
+ if (found_key.type == BTRFS_ROOT_BACKREF_KEY) {
+ ref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_root_ref);
+ key.objectid = btrfs_root_ref_dirid(leaf, ref);
+ } else {
+ key.objectid = found_key.offset;
+ }
+ btrfs_free_path(path);
+
+ if (found_key.type == BTRFS_ROOT_BACKREF_KEY) {
+ return btrfs_get_dentry(root->fs_info->sb, key.objectid,
+ found_key.offset, 0, 0);
+ }
+
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+ return d_obtain_alias(btrfs_iget(root->fs_info->sb, &key, root, NULL));
+fail:
+ btrfs_free_path(path);
+ return ERR_PTR(ret);
+}
+
+static int btrfs_get_name(struct dentry *parent, char *name,
+ struct dentry *child)
+{
+ struct inode *inode = child->d_inode;
+ struct inode *dir = parent->d_inode;
+ struct btrfs_path *path;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_inode_ref *iref;
+ struct btrfs_root_ref *rref;
+ struct extent_buffer *leaf;
+ unsigned long name_ptr;
+ struct btrfs_key key;
+ int name_len;
+ int ret;
+ u64 ino;
+
+ if (!dir || !inode)
+ return -EINVAL;
+
+ if (!S_ISDIR(dir->i_mode))
+ return -EINVAL;
+
+ ino = btrfs_ino(inode);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->leave_spinning = 1;
+
+ if (ino == BTRFS_FIRST_FREE_OBJECTID) {
+ key.objectid = BTRFS_I(inode)->root->root_key.objectid;
+ key.type = BTRFS_ROOT_BACKREF_KEY;
+ key.offset = (u64)-1;
+ root = root->fs_info->tree_root;
+ } else {
+ key.objectid = ino;
+ key.offset = btrfs_ino(dir);
+ key.type = BTRFS_INODE_REF_KEY;
+ }
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0) {
+ btrfs_free_path(path);
+ return ret;
+ } else if (ret > 0) {
+ if (ino == BTRFS_FIRST_FREE_OBJECTID) {
+ path->slots[0]--;
+ } else {
+ btrfs_free_path(path);
+ return -ENOENT;
+ }
+ }
+ leaf = path->nodes[0];
+
+ if (ino == BTRFS_FIRST_FREE_OBJECTID) {
+ rref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_root_ref);
+ name_ptr = (unsigned long)(rref + 1);
+ name_len = btrfs_root_ref_name_len(leaf, rref);
+ } else {
+ iref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_inode_ref);
+ name_ptr = (unsigned long)(iref + 1);
+ name_len = btrfs_inode_ref_name_len(leaf, iref);
+ }
+
+ read_extent_buffer(leaf, name, name_ptr, name_len);
+ btrfs_free_path(path);
+
+ /*
+ * have to add the null termination to make sure that reconnect_path
+ * gets the right len for strlen
+ */
+ name[name_len] = '\0';
+
+ return 0;
+}
+
+const struct export_operations btrfs_export_ops = {
+ .encode_fh = btrfs_encode_fh,
+ .fh_to_dentry = btrfs_fh_to_dentry,
+ .fh_to_parent = btrfs_fh_to_parent,
+ .get_parent = btrfs_get_parent,
+ .get_name = btrfs_get_name,
+};
diff --git a/fs/btrfs/export.h b/fs/btrfs/export.h
new file mode 100644
index 00000000..074348a9
--- /dev/null
+++ b/fs/btrfs/export.h
@@ -0,0 +1,19 @@
+#ifndef BTRFS_EXPORT_H
+#define BTRFS_EXPORT_H
+
+#include <linux/exportfs.h>
+
+extern const struct export_operations btrfs_export_ops;
+
+struct btrfs_fid {
+ u64 objectid;
+ u64 root_objectid;
+ u32 gen;
+
+ u64 parent_objectid;
+ u32 parent_gen;
+
+ u64 parent_root_objectid;
+} __attribute__ ((packed));
+
+#endif
diff --git a/fs/btrfs/extent-tree.c b/fs/btrfs/extent-tree.c
new file mode 100644
index 00000000..49fd7b66
--- /dev/null
+++ b/fs/btrfs/extent-tree.c
@@ -0,0 +1,8025 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/sort.h>
+#include <linux/rcupdate.h>
+#include <linux/kthread.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include "compat.h"
+#include "hash.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "print-tree.h"
+#include "transaction.h"
+#include "volumes.h"
+#include "locking.h"
+#include "free-space-cache.h"
+
+/*
+ * control flags for do_chunk_alloc's force field
+ * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
+ * if we really need one.
+ *
+ * CHUNK_ALLOC_LIMITED means to only try and allocate one
+ * if we have very few chunks already allocated. This is
+ * used as part of the clustering code to help make sure
+ * we have a good pool of storage to cluster in, without
+ * filling the FS with empty chunks
+ *
+ * CHUNK_ALLOC_FORCE means it must try to allocate one
+ *
+ */
+enum {
+ CHUNK_ALLOC_NO_FORCE = 0,
+ CHUNK_ALLOC_LIMITED = 1,
+ CHUNK_ALLOC_FORCE = 2,
+};
+
+/*
+ * Control how reservations are dealt with.
+ *
+ * RESERVE_FREE - freeing a reservation.
+ * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
+ * ENOSPC accounting
+ * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
+ * bytes_may_use as the ENOSPC accounting is done elsewhere
+ */
+enum {
+ RESERVE_FREE = 0,
+ RESERVE_ALLOC = 1,
+ RESERVE_ALLOC_NO_ACCOUNT = 2,
+};
+
+static int update_block_group(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, int alloc);
+static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 root_objectid, u64 owner_objectid,
+ u64 owner_offset, int refs_to_drop,
+ struct btrfs_delayed_extent_op *extra_op);
+static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
+ struct extent_buffer *leaf,
+ struct btrfs_extent_item *ei);
+static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 parent, u64 root_objectid,
+ u64 flags, u64 owner, u64 offset,
+ struct btrfs_key *ins, int ref_mod);
+static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 parent, u64 root_objectid,
+ u64 flags, struct btrfs_disk_key *key,
+ int level, struct btrfs_key *ins);
+static int do_chunk_alloc(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root, u64 alloc_bytes,
+ u64 flags, int force);
+static int find_next_key(struct btrfs_path *path, int level,
+ struct btrfs_key *key);
+static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+ int dump_block_groups);
+static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
+ u64 num_bytes, int reserve);
+
+static noinline int
+block_group_cache_done(struct btrfs_block_group_cache *cache)
+{
+ smp_mb();
+ return cache->cached == BTRFS_CACHE_FINISHED;
+}
+
+static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
+{
+ return (cache->flags & bits) == bits;
+}
+
+static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
+{
+ atomic_inc(&cache->count);
+}
+
+void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
+{
+ if (atomic_dec_and_test(&cache->count)) {
+ WARN_ON(cache->pinned > 0);
+ WARN_ON(cache->reserved > 0);
+ kfree(cache->free_space_ctl);
+ kfree(cache);
+ }
+}
+
+/*
+ * this adds the block group to the fs_info rb tree for the block group
+ * cache
+ */
+static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
+ struct btrfs_block_group_cache *block_group)
+{
+ struct rb_node **p;
+ struct rb_node *parent = NULL;
+ struct btrfs_block_group_cache *cache;
+
+ spin_lock(&info->block_group_cache_lock);
+ p = &info->block_group_cache_tree.rb_node;
+
+ while (*p) {
+ parent = *p;
+ cache = rb_entry(parent, struct btrfs_block_group_cache,
+ cache_node);
+ if (block_group->key.objectid < cache->key.objectid) {
+ p = &(*p)->rb_left;
+ } else if (block_group->key.objectid > cache->key.objectid) {
+ p = &(*p)->rb_right;
+ } else {
+ spin_unlock(&info->block_group_cache_lock);
+ return -EEXIST;
+ }
+ }
+
+ rb_link_node(&block_group->cache_node, parent, p);
+ rb_insert_color(&block_group->cache_node,
+ &info->block_group_cache_tree);
+ spin_unlock(&info->block_group_cache_lock);
+
+ return 0;
+}
+
+/*
+ * This will return the block group at or after bytenr if contains is 0, else
+ * it will return the block group that contains the bytenr
+ */
+static struct btrfs_block_group_cache *
+block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
+ int contains)
+{
+ struct btrfs_block_group_cache *cache, *ret = NULL;
+ struct rb_node *n;
+ u64 end, start;
+
+ spin_lock(&info->block_group_cache_lock);
+ n = info->block_group_cache_tree.rb_node;
+
+ while (n) {
+ cache = rb_entry(n, struct btrfs_block_group_cache,
+ cache_node);
+ end = cache->key.objectid + cache->key.offset - 1;
+ start = cache->key.objectid;
+
+ if (bytenr < start) {
+ if (!contains && (!ret || start < ret->key.objectid))
+ ret = cache;
+ n = n->rb_left;
+ } else if (bytenr > start) {
+ if (contains && bytenr <= end) {
+ ret = cache;
+ break;
+ }
+ n = n->rb_right;
+ } else {
+ ret = cache;
+ break;
+ }
+ }
+ if (ret)
+ btrfs_get_block_group(ret);
+ spin_unlock(&info->block_group_cache_lock);
+
+ return ret;
+}
+
+static int add_excluded_extent(struct btrfs_root *root,
+ u64 start, u64 num_bytes)
+{
+ u64 end = start + num_bytes - 1;
+ set_extent_bits(&root->fs_info->freed_extents[0],
+ start, end, EXTENT_UPTODATE, GFP_NOFS);
+ set_extent_bits(&root->fs_info->freed_extents[1],
+ start, end, EXTENT_UPTODATE, GFP_NOFS);
+ return 0;
+}
+
+static void free_excluded_extents(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache)
+{
+ u64 start, end;
+
+ start = cache->key.objectid;
+ end = start + cache->key.offset - 1;
+
+ clear_extent_bits(&root->fs_info->freed_extents[0],
+ start, end, EXTENT_UPTODATE, GFP_NOFS);
+ clear_extent_bits(&root->fs_info->freed_extents[1],
+ start, end, EXTENT_UPTODATE, GFP_NOFS);
+}
+
+static int exclude_super_stripes(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache)
+{
+ u64 bytenr;
+ u64 *logical;
+ int stripe_len;
+ int i, nr, ret;
+
+ if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
+ stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
+ cache->bytes_super += stripe_len;
+ ret = add_excluded_extent(root, cache->key.objectid,
+ stripe_len);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
+ bytenr = btrfs_sb_offset(i);
+ ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
+ cache->key.objectid, bytenr,
+ 0, &logical, &nr, &stripe_len);
+ BUG_ON(ret); /* -ENOMEM */
+
+ while (nr--) {
+ cache->bytes_super += stripe_len;
+ ret = add_excluded_extent(root, logical[nr],
+ stripe_len);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ kfree(logical);
+ }
+ return 0;
+}
+
+static struct btrfs_caching_control *
+get_caching_control(struct btrfs_block_group_cache *cache)
+{
+ struct btrfs_caching_control *ctl;
+
+ spin_lock(&cache->lock);
+ if (cache->cached != BTRFS_CACHE_STARTED) {
+ spin_unlock(&cache->lock);
+ return NULL;
+ }
+
+ /* We're loading it the fast way, so we don't have a caching_ctl. */
+ if (!cache->caching_ctl) {
+ spin_unlock(&cache->lock);
+ return NULL;
+ }
+
+ ctl = cache->caching_ctl;
+ atomic_inc(&ctl->count);
+ spin_unlock(&cache->lock);
+ return ctl;
+}
+
+static void put_caching_control(struct btrfs_caching_control *ctl)
+{
+ if (atomic_dec_and_test(&ctl->count))
+ kfree(ctl);
+}
+
+/*
+ * this is only called by cache_block_group, since we could have freed extents
+ * we need to check the pinned_extents for any extents that can't be used yet
+ * since their free space will be released as soon as the transaction commits.
+ */
+static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
+ struct btrfs_fs_info *info, u64 start, u64 end)
+{
+ u64 extent_start, extent_end, size, total_added = 0;
+ int ret;
+
+ while (start < end) {
+ ret = find_first_extent_bit(info->pinned_extents, start,
+ &extent_start, &extent_end,
+ EXTENT_DIRTY | EXTENT_UPTODATE);
+ if (ret)
+ break;
+
+ if (extent_start <= start) {
+ start = extent_end + 1;
+ } else if (extent_start > start && extent_start < end) {
+ size = extent_start - start;
+ total_added += size;
+ ret = btrfs_add_free_space(block_group, start,
+ size);
+ BUG_ON(ret); /* -ENOMEM or logic error */
+ start = extent_end + 1;
+ } else {
+ break;
+ }
+ }
+
+ if (start < end) {
+ size = end - start;
+ total_added += size;
+ ret = btrfs_add_free_space(block_group, start, size);
+ BUG_ON(ret); /* -ENOMEM or logic error */
+ }
+
+ return total_added;
+}
+
+static noinline void caching_thread(struct btrfs_work *work)
+{
+ struct btrfs_block_group_cache *block_group;
+ struct btrfs_fs_info *fs_info;
+ struct btrfs_caching_control *caching_ctl;
+ struct btrfs_root *extent_root;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ u64 total_found = 0;
+ u64 last = 0;
+ u32 nritems;
+ int ret = 0;
+
+ caching_ctl = container_of(work, struct btrfs_caching_control, work);
+ block_group = caching_ctl->block_group;
+ fs_info = block_group->fs_info;
+ extent_root = fs_info->extent_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ goto out;
+
+ last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
+
+ /*
+ * We don't want to deadlock with somebody trying to allocate a new
+ * extent for the extent root while also trying to search the extent
+ * root to add free space. So we skip locking and search the commit
+ * root, since its read-only
+ */
+ path->skip_locking = 1;
+ path->search_commit_root = 1;
+ path->reada = 1;
+
+ key.objectid = last;
+ key.offset = 0;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+again:
+ mutex_lock(&caching_ctl->mutex);
+ /* need to make sure the commit_root doesn't disappear */
+ down_read(&fs_info->extent_commit_sem);
+
+ ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto err;
+
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+
+ while (1) {
+ if (btrfs_fs_closing(fs_info) > 1) {
+ last = (u64)-1;
+ break;
+ }
+
+ if (path->slots[0] < nritems) {
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ } else {
+ ret = find_next_key(path, 0, &key);
+ if (ret)
+ break;
+
+ if (need_resched() ||
+ btrfs_next_leaf(extent_root, path)) {
+ caching_ctl->progress = last;
+ btrfs_release_path(path);
+ up_read(&fs_info->extent_commit_sem);
+ mutex_unlock(&caching_ctl->mutex);
+ cond_resched();
+ goto again;
+ }
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ continue;
+ }
+
+ if (key.objectid < block_group->key.objectid) {
+ path->slots[0]++;
+ continue;
+ }
+
+ if (key.objectid >= block_group->key.objectid +
+ block_group->key.offset)
+ break;
+
+ if (key.type == BTRFS_EXTENT_ITEM_KEY) {
+ total_found += add_new_free_space(block_group,
+ fs_info, last,
+ key.objectid);
+ last = key.objectid + key.offset;
+
+ if (total_found > (1024 * 1024 * 2)) {
+ total_found = 0;
+ wake_up(&caching_ctl->wait);
+ }
+ }
+ path->slots[0]++;
+ }
+ ret = 0;
+
+ total_found += add_new_free_space(block_group, fs_info, last,
+ block_group->key.objectid +
+ block_group->key.offset);
+ caching_ctl->progress = (u64)-1;
+
+ spin_lock(&block_group->lock);
+ block_group->caching_ctl = NULL;
+ block_group->cached = BTRFS_CACHE_FINISHED;
+ spin_unlock(&block_group->lock);
+
+err:
+ btrfs_free_path(path);
+ up_read(&fs_info->extent_commit_sem);
+
+ free_excluded_extents(extent_root, block_group);
+
+ mutex_unlock(&caching_ctl->mutex);
+out:
+ wake_up(&caching_ctl->wait);
+
+ put_caching_control(caching_ctl);
+ btrfs_put_block_group(block_group);
+}
+
+static int cache_block_group(struct btrfs_block_group_cache *cache,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ int load_cache_only)
+{
+ DEFINE_WAIT(wait);
+ struct btrfs_fs_info *fs_info = cache->fs_info;
+ struct btrfs_caching_control *caching_ctl;
+ int ret = 0;
+
+ caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
+ if (!caching_ctl)
+ return -ENOMEM;
+
+ INIT_LIST_HEAD(&caching_ctl->list);
+ mutex_init(&caching_ctl->mutex);
+ init_waitqueue_head(&caching_ctl->wait);
+ caching_ctl->block_group = cache;
+ caching_ctl->progress = cache->key.objectid;
+ atomic_set(&caching_ctl->count, 1);
+ caching_ctl->work.func = caching_thread;
+
+ spin_lock(&cache->lock);
+ /*
+ * This should be a rare occasion, but this could happen I think in the
+ * case where one thread starts to load the space cache info, and then
+ * some other thread starts a transaction commit which tries to do an
+ * allocation while the other thread is still loading the space cache
+ * info. The previous loop should have kept us from choosing this block
+ * group, but if we've moved to the state where we will wait on caching
+ * block groups we need to first check if we're doing a fast load here,
+ * so we can wait for it to finish, otherwise we could end up allocating
+ * from a block group who's cache gets evicted for one reason or
+ * another.
+ */
+ while (cache->cached == BTRFS_CACHE_FAST) {
+ struct btrfs_caching_control *ctl;
+
+ ctl = cache->caching_ctl;
+ atomic_inc(&ctl->count);
+ prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
+ spin_unlock(&cache->lock);
+
+ schedule();
+
+ finish_wait(&ctl->wait, &wait);
+ put_caching_control(ctl);
+ spin_lock(&cache->lock);
+ }
+
+ if (cache->cached != BTRFS_CACHE_NO) {
+ spin_unlock(&cache->lock);
+ kfree(caching_ctl);
+ return 0;
+ }
+ WARN_ON(cache->caching_ctl);
+ cache->caching_ctl = caching_ctl;
+ cache->cached = BTRFS_CACHE_FAST;
+ spin_unlock(&cache->lock);
+
+ /*
+ * We can't do the read from on-disk cache during a commit since we need
+ * to have the normal tree locking. Also if we are currently trying to
+ * allocate blocks for the tree root we can't do the fast caching since
+ * we likely hold important locks.
+ */
+ if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
+ ret = load_free_space_cache(fs_info, cache);
+
+ spin_lock(&cache->lock);
+ if (ret == 1) {
+ cache->caching_ctl = NULL;
+ cache->cached = BTRFS_CACHE_FINISHED;
+ cache->last_byte_to_unpin = (u64)-1;
+ } else {
+ if (load_cache_only) {
+ cache->caching_ctl = NULL;
+ cache->cached = BTRFS_CACHE_NO;
+ } else {
+ cache->cached = BTRFS_CACHE_STARTED;
+ }
+ }
+ spin_unlock(&cache->lock);
+ wake_up(&caching_ctl->wait);
+ if (ret == 1) {
+ put_caching_control(caching_ctl);
+ free_excluded_extents(fs_info->extent_root, cache);
+ return 0;
+ }
+ } else {
+ /*
+ * We are not going to do the fast caching, set cached to the
+ * appropriate value and wakeup any waiters.
+ */
+ spin_lock(&cache->lock);
+ if (load_cache_only) {
+ cache->caching_ctl = NULL;
+ cache->cached = BTRFS_CACHE_NO;
+ } else {
+ cache->cached = BTRFS_CACHE_STARTED;
+ }
+ spin_unlock(&cache->lock);
+ wake_up(&caching_ctl->wait);
+ }
+
+ if (load_cache_only) {
+ put_caching_control(caching_ctl);
+ return 0;
+ }
+
+ down_write(&fs_info->extent_commit_sem);
+ atomic_inc(&caching_ctl->count);
+ list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
+ up_write(&fs_info->extent_commit_sem);
+
+ btrfs_get_block_group(cache);
+
+ btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
+
+ return ret;
+}
+
+/*
+ * return the block group that starts at or after bytenr
+ */
+static struct btrfs_block_group_cache *
+btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
+{
+ struct btrfs_block_group_cache *cache;
+
+ cache = block_group_cache_tree_search(info, bytenr, 0);
+
+ return cache;
+}
+
+/*
+ * return the block group that contains the given bytenr
+ */
+struct btrfs_block_group_cache *btrfs_lookup_block_group(
+ struct btrfs_fs_info *info,
+ u64 bytenr)
+{
+ struct btrfs_block_group_cache *cache;
+
+ cache = block_group_cache_tree_search(info, bytenr, 1);
+
+ return cache;
+}
+
+static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
+ u64 flags)
+{
+ struct list_head *head = &info->space_info;
+ struct btrfs_space_info *found;
+
+ flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(found, head, list) {
+ if (found->flags & flags) {
+ rcu_read_unlock();
+ return found;
+ }
+ }
+ rcu_read_unlock();
+ return NULL;
+}
+
+/*
+ * after adding space to the filesystem, we need to clear the full flags
+ * on all the space infos.
+ */
+void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
+{
+ struct list_head *head = &info->space_info;
+ struct btrfs_space_info *found;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(found, head, list)
+ found->full = 0;
+ rcu_read_unlock();
+}
+
+static u64 div_factor(u64 num, int factor)
+{
+ if (factor == 10)
+ return num;
+ num *= factor;
+ do_div(num, 10);
+ return num;
+}
+
+static u64 div_factor_fine(u64 num, int factor)
+{
+ if (factor == 100)
+ return num;
+ num *= factor;
+ do_div(num, 100);
+ return num;
+}
+
+u64 btrfs_find_block_group(struct btrfs_root *root,
+ u64 search_start, u64 search_hint, int owner)
+{
+ struct btrfs_block_group_cache *cache;
+ u64 used;
+ u64 last = max(search_hint, search_start);
+ u64 group_start = 0;
+ int full_search = 0;
+ int factor = 9;
+ int wrapped = 0;
+again:
+ while (1) {
+ cache = btrfs_lookup_first_block_group(root->fs_info, last);
+ if (!cache)
+ break;
+
+ spin_lock(&cache->lock);
+ last = cache->key.objectid + cache->key.offset;
+ used = btrfs_block_group_used(&cache->item);
+
+ if ((full_search || !cache->ro) &&
+ block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
+ if (used + cache->pinned + cache->reserved <
+ div_factor(cache->key.offset, factor)) {
+ group_start = cache->key.objectid;
+ spin_unlock(&cache->lock);
+ btrfs_put_block_group(cache);
+ goto found;
+ }
+ }
+ spin_unlock(&cache->lock);
+ btrfs_put_block_group(cache);
+ cond_resched();
+ }
+ if (!wrapped) {
+ last = search_start;
+ wrapped = 1;
+ goto again;
+ }
+ if (!full_search && factor < 10) {
+ last = search_start;
+ full_search = 1;
+ factor = 10;
+ goto again;
+ }
+found:
+ return group_start;
+}
+
+/* simple helper to search for an existing extent at a given offset */
+int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
+{
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_path *path;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = start;
+ key.offset = len;
+ btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
+ ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
+ 0, 0);
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * helper function to lookup reference count and flags of extent.
+ *
+ * the head node for delayed ref is used to store the sum of all the
+ * reference count modifications queued up in the rbtree. the head
+ * node may also store the extent flags to set. This way you can check
+ * to see what the reference count and extent flags would be if all of
+ * the delayed refs are not processed.
+ */
+int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 bytenr,
+ u64 num_bytes, u64 *refs, u64 *flags)
+{
+ struct btrfs_delayed_ref_head *head;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct btrfs_path *path;
+ struct btrfs_extent_item *ei;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ u32 item_size;
+ u64 num_refs;
+ u64 extent_flags;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = num_bytes;
+ if (!trans) {
+ path->skip_locking = 1;
+ path->search_commit_root = 1;
+ }
+again:
+ ret = btrfs_search_slot(trans, root->fs_info->extent_root,
+ &key, path, 0, 0);
+ if (ret < 0)
+ goto out_free;
+
+ if (ret == 0) {
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ if (item_size >= sizeof(*ei)) {
+ ei = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_item);
+ num_refs = btrfs_extent_refs(leaf, ei);
+ extent_flags = btrfs_extent_flags(leaf, ei);
+ } else {
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ struct btrfs_extent_item_v0 *ei0;
+ BUG_ON(item_size != sizeof(*ei0));
+ ei0 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_item_v0);
+ num_refs = btrfs_extent_refs_v0(leaf, ei0);
+ /* FIXME: this isn't correct for data */
+ extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+#else
+ BUG();
+#endif
+ }
+ BUG_ON(num_refs == 0);
+ } else {
+ num_refs = 0;
+ extent_flags = 0;
+ ret = 0;
+ }
+
+ if (!trans)
+ goto out;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+ head = btrfs_find_delayed_ref_head(trans, bytenr);
+ if (head) {
+ if (!mutex_trylock(&head->mutex)) {
+ atomic_inc(&head->node.refs);
+ spin_unlock(&delayed_refs->lock);
+
+ btrfs_release_path(path);
+
+ /*
+ * Mutex was contended, block until it's released and try
+ * again
+ */
+ mutex_lock(&head->mutex);
+ mutex_unlock(&head->mutex);
+ btrfs_put_delayed_ref(&head->node);
+ goto again;
+ }
+ if (head->extent_op && head->extent_op->update_flags)
+ extent_flags |= head->extent_op->flags_to_set;
+ else
+ BUG_ON(num_refs == 0);
+
+ num_refs += head->node.ref_mod;
+ mutex_unlock(&head->mutex);
+ }
+ spin_unlock(&delayed_refs->lock);
+out:
+ WARN_ON(num_refs == 0);
+ if (refs)
+ *refs = num_refs;
+ if (flags)
+ *flags = extent_flags;
+out_free:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * Back reference rules. Back refs have three main goals:
+ *
+ * 1) differentiate between all holders of references to an extent so that
+ * when a reference is dropped we can make sure it was a valid reference
+ * before freeing the extent.
+ *
+ * 2) Provide enough information to quickly find the holders of an extent
+ * if we notice a given block is corrupted or bad.
+ *
+ * 3) Make it easy to migrate blocks for FS shrinking or storage pool
+ * maintenance. This is actually the same as #2, but with a slightly
+ * different use case.
+ *
+ * There are two kinds of back refs. The implicit back refs is optimized
+ * for pointers in non-shared tree blocks. For a given pointer in a block,
+ * back refs of this kind provide information about the block's owner tree
+ * and the pointer's key. These information allow us to find the block by
+ * b-tree searching. The full back refs is for pointers in tree blocks not
+ * referenced by their owner trees. The location of tree block is recorded
+ * in the back refs. Actually the full back refs is generic, and can be
+ * used in all cases the implicit back refs is used. The major shortcoming
+ * of the full back refs is its overhead. Every time a tree block gets
+ * COWed, we have to update back refs entry for all pointers in it.
+ *
+ * For a newly allocated tree block, we use implicit back refs for
+ * pointers in it. This means most tree related operations only involve
+ * implicit back refs. For a tree block created in old transaction, the
+ * only way to drop a reference to it is COW it. So we can detect the
+ * event that tree block loses its owner tree's reference and do the
+ * back refs conversion.
+ *
+ * When a tree block is COW'd through a tree, there are four cases:
+ *
+ * The reference count of the block is one and the tree is the block's
+ * owner tree. Nothing to do in this case.
+ *
+ * The reference count of the block is one and the tree is not the
+ * block's owner tree. In this case, full back refs is used for pointers
+ * in the block. Remove these full back refs, add implicit back refs for
+ * every pointers in the new block.
+ *
+ * The reference count of the block is greater than one and the tree is
+ * the block's owner tree. In this case, implicit back refs is used for
+ * pointers in the block. Add full back refs for every pointers in the
+ * block, increase lower level extents' reference counts. The original
+ * implicit back refs are entailed to the new block.
+ *
+ * The reference count of the block is greater than one and the tree is
+ * not the block's owner tree. Add implicit back refs for every pointer in
+ * the new block, increase lower level extents' reference count.
+ *
+ * Back Reference Key composing:
+ *
+ * The key objectid corresponds to the first byte in the extent,
+ * The key type is used to differentiate between types of back refs.
+ * There are different meanings of the key offset for different types
+ * of back refs.
+ *
+ * File extents can be referenced by:
+ *
+ * - multiple snapshots, subvolumes, or different generations in one subvol
+ * - different files inside a single subvolume
+ * - different offsets inside a file (bookend extents in file.c)
+ *
+ * The extent ref structure for the implicit back refs has fields for:
+ *
+ * - Objectid of the subvolume root
+ * - objectid of the file holding the reference
+ * - original offset in the file
+ * - how many bookend extents
+ *
+ * The key offset for the implicit back refs is hash of the first
+ * three fields.
+ *
+ * The extent ref structure for the full back refs has field for:
+ *
+ * - number of pointers in the tree leaf
+ *
+ * The key offset for the implicit back refs is the first byte of
+ * the tree leaf
+ *
+ * When a file extent is allocated, The implicit back refs is used.
+ * the fields are filled in:
+ *
+ * (root_key.objectid, inode objectid, offset in file, 1)
+ *
+ * When a file extent is removed file truncation, we find the
+ * corresponding implicit back refs and check the following fields:
+ *
+ * (btrfs_header_owner(leaf), inode objectid, offset in file)
+ *
+ * Btree extents can be referenced by:
+ *
+ * - Different subvolumes
+ *
+ * Both the implicit back refs and the full back refs for tree blocks
+ * only consist of key. The key offset for the implicit back refs is
+ * objectid of block's owner tree. The key offset for the full back refs
+ * is the first byte of parent block.
+ *
+ * When implicit back refs is used, information about the lowest key and
+ * level of the tree block are required. These information are stored in
+ * tree block info structure.
+ */
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 owner, u32 extra_size)
+{
+ struct btrfs_extent_item *item;
+ struct btrfs_extent_item_v0 *ei0;
+ struct btrfs_extent_ref_v0 *ref0;
+ struct btrfs_tree_block_info *bi;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ u32 new_size = sizeof(*item);
+ u64 refs;
+ int ret;
+
+ leaf = path->nodes[0];
+ BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ ei0 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_item_v0);
+ refs = btrfs_extent_refs_v0(leaf, ei0);
+
+ if (owner == (u64)-1) {
+ while (1) {
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ return ret;
+ BUG_ON(ret > 0); /* Corruption */
+ leaf = path->nodes[0];
+ }
+ btrfs_item_key_to_cpu(leaf, &found_key,
+ path->slots[0]);
+ BUG_ON(key.objectid != found_key.objectid);
+ if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
+ path->slots[0]++;
+ continue;
+ }
+ ref0 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_ref_v0);
+ owner = btrfs_ref_objectid_v0(leaf, ref0);
+ break;
+ }
+ }
+ btrfs_release_path(path);
+
+ if (owner < BTRFS_FIRST_FREE_OBJECTID)
+ new_size += sizeof(*bi);
+
+ new_size -= sizeof(*ei0);
+ ret = btrfs_search_slot(trans, root, &key, path,
+ new_size + extra_size, 1);
+ if (ret < 0)
+ return ret;
+ BUG_ON(ret); /* Corruption */
+
+ btrfs_extend_item(trans, root, path, new_size);
+
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+ btrfs_set_extent_refs(leaf, item, refs);
+ /* FIXME: get real generation */
+ btrfs_set_extent_generation(leaf, item, 0);
+ if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+ btrfs_set_extent_flags(leaf, item,
+ BTRFS_EXTENT_FLAG_TREE_BLOCK |
+ BTRFS_BLOCK_FLAG_FULL_BACKREF);
+ bi = (struct btrfs_tree_block_info *)(item + 1);
+ /* FIXME: get first key of the block */
+ memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
+ btrfs_set_tree_block_level(leaf, bi, (int)owner);
+ } else {
+ btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
+ }
+ btrfs_mark_buffer_dirty(leaf);
+ return 0;
+}
+#endif
+
+static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
+{
+ u32 high_crc = ~(u32)0;
+ u32 low_crc = ~(u32)0;
+ __le64 lenum;
+
+ lenum = cpu_to_le64(root_objectid);
+ high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
+ lenum = cpu_to_le64(owner);
+ low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
+ lenum = cpu_to_le64(offset);
+ low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
+
+ return ((u64)high_crc << 31) ^ (u64)low_crc;
+}
+
+static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
+ struct btrfs_extent_data_ref *ref)
+{
+ return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
+ btrfs_extent_data_ref_objectid(leaf, ref),
+ btrfs_extent_data_ref_offset(leaf, ref));
+}
+
+static int match_extent_data_ref(struct extent_buffer *leaf,
+ struct btrfs_extent_data_ref *ref,
+ u64 root_objectid, u64 owner, u64 offset)
+{
+ if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
+ btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
+ btrfs_extent_data_ref_offset(leaf, ref) != offset)
+ return 0;
+ return 1;
+}
+
+static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, u64 parent,
+ u64 root_objectid,
+ u64 owner, u64 offset)
+{
+ struct btrfs_key key;
+ struct btrfs_extent_data_ref *ref;
+ struct extent_buffer *leaf;
+ u32 nritems;
+ int ret;
+ int recow;
+ int err = -ENOENT;
+
+ key.objectid = bytenr;
+ if (parent) {
+ key.type = BTRFS_SHARED_DATA_REF_KEY;
+ key.offset = parent;
+ } else {
+ key.type = BTRFS_EXTENT_DATA_REF_KEY;
+ key.offset = hash_extent_data_ref(root_objectid,
+ owner, offset);
+ }
+again:
+ recow = 0;
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0) {
+ err = ret;
+ goto fail;
+ }
+
+ if (parent) {
+ if (!ret)
+ return 0;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ key.type = BTRFS_EXTENT_REF_V0_KEY;
+ btrfs_release_path(path);
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0) {
+ err = ret;
+ goto fail;
+ }
+ if (!ret)
+ return 0;
+#endif
+ goto fail;
+ }
+
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ while (1) {
+ if (path->slots[0] >= nritems) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ err = ret;
+ if (ret)
+ goto fail;
+
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ recow = 1;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.objectid != bytenr ||
+ key.type != BTRFS_EXTENT_DATA_REF_KEY)
+ goto fail;
+
+ ref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_data_ref);
+
+ if (match_extent_data_ref(leaf, ref, root_objectid,
+ owner, offset)) {
+ if (recow) {
+ btrfs_release_path(path);
+ goto again;
+ }
+ err = 0;
+ break;
+ }
+ path->slots[0]++;
+ }
+fail:
+ return err;
+}
+
+static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, u64 parent,
+ u64 root_objectid, u64 owner,
+ u64 offset, int refs_to_add)
+{
+ struct btrfs_key key;
+ struct extent_buffer *leaf;
+ u32 size;
+ u32 num_refs;
+ int ret;
+
+ key.objectid = bytenr;
+ if (parent) {
+ key.type = BTRFS_SHARED_DATA_REF_KEY;
+ key.offset = parent;
+ size = sizeof(struct btrfs_shared_data_ref);
+ } else {
+ key.type = BTRFS_EXTENT_DATA_REF_KEY;
+ key.offset = hash_extent_data_ref(root_objectid,
+ owner, offset);
+ size = sizeof(struct btrfs_extent_data_ref);
+ }
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key, size);
+ if (ret && ret != -EEXIST)
+ goto fail;
+
+ leaf = path->nodes[0];
+ if (parent) {
+ struct btrfs_shared_data_ref *ref;
+ ref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_shared_data_ref);
+ if (ret == 0) {
+ btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
+ } else {
+ num_refs = btrfs_shared_data_ref_count(leaf, ref);
+ num_refs += refs_to_add;
+ btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
+ }
+ } else {
+ struct btrfs_extent_data_ref *ref;
+ while (ret == -EEXIST) {
+ ref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_data_ref);
+ if (match_extent_data_ref(leaf, ref, root_objectid,
+ owner, offset))
+ break;
+ btrfs_release_path(path);
+ key.offset++;
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ size);
+ if (ret && ret != -EEXIST)
+ goto fail;
+
+ leaf = path->nodes[0];
+ }
+ ref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_data_ref);
+ if (ret == 0) {
+ btrfs_set_extent_data_ref_root(leaf, ref,
+ root_objectid);
+ btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
+ btrfs_set_extent_data_ref_offset(leaf, ref, offset);
+ btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
+ } else {
+ num_refs = btrfs_extent_data_ref_count(leaf, ref);
+ num_refs += refs_to_add;
+ btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
+ }
+ }
+ btrfs_mark_buffer_dirty(leaf);
+ ret = 0;
+fail:
+ btrfs_release_path(path);
+ return ret;
+}
+
+static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ int refs_to_drop)
+{
+ struct btrfs_key key;
+ struct btrfs_extent_data_ref *ref1 = NULL;
+ struct btrfs_shared_data_ref *ref2 = NULL;
+ struct extent_buffer *leaf;
+ u32 num_refs = 0;
+ int ret = 0;
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+ if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+ ref1 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_data_ref);
+ num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+ } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+ ref2 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_shared_data_ref);
+ num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
+ struct btrfs_extent_ref_v0 *ref0;
+ ref0 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_ref_v0);
+ num_refs = btrfs_ref_count_v0(leaf, ref0);
+#endif
+ } else {
+ BUG();
+ }
+
+ BUG_ON(num_refs < refs_to_drop);
+ num_refs -= refs_to_drop;
+
+ if (num_refs == 0) {
+ ret = btrfs_del_item(trans, root, path);
+ } else {
+ if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
+ btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
+ else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
+ btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ else {
+ struct btrfs_extent_ref_v0 *ref0;
+ ref0 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_ref_v0);
+ btrfs_set_ref_count_v0(leaf, ref0, num_refs);
+ }
+#endif
+ btrfs_mark_buffer_dirty(leaf);
+ }
+ return ret;
+}
+
+static noinline u32 extent_data_ref_count(struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_extent_inline_ref *iref)
+{
+ struct btrfs_key key;
+ struct extent_buffer *leaf;
+ struct btrfs_extent_data_ref *ref1;
+ struct btrfs_shared_data_ref *ref2;
+ u32 num_refs = 0;
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (iref) {
+ if (btrfs_extent_inline_ref_type(leaf, iref) ==
+ BTRFS_EXTENT_DATA_REF_KEY) {
+ ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
+ num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+ } else {
+ ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
+ num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+ }
+ } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+ ref1 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_data_ref);
+ num_refs = btrfs_extent_data_ref_count(leaf, ref1);
+ } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+ ref2 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_shared_data_ref);
+ num_refs = btrfs_shared_data_ref_count(leaf, ref2);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
+ struct btrfs_extent_ref_v0 *ref0;
+ ref0 = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_ref_v0);
+ num_refs = btrfs_ref_count_v0(leaf, ref0);
+#endif
+ } else {
+ WARN_ON(1);
+ }
+ return num_refs;
+}
+
+static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, u64 parent,
+ u64 root_objectid)
+{
+ struct btrfs_key key;
+ int ret;
+
+ key.objectid = bytenr;
+ if (parent) {
+ key.type = BTRFS_SHARED_BLOCK_REF_KEY;
+ key.offset = parent;
+ } else {
+ key.type = BTRFS_TREE_BLOCK_REF_KEY;
+ key.offset = root_objectid;
+ }
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret > 0)
+ ret = -ENOENT;
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (ret == -ENOENT && parent) {
+ btrfs_release_path(path);
+ key.type = BTRFS_EXTENT_REF_V0_KEY;
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret > 0)
+ ret = -ENOENT;
+ }
+#endif
+ return ret;
+}
+
+static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, u64 parent,
+ u64 root_objectid)
+{
+ struct btrfs_key key;
+ int ret;
+
+ key.objectid = bytenr;
+ if (parent) {
+ key.type = BTRFS_SHARED_BLOCK_REF_KEY;
+ key.offset = parent;
+ } else {
+ key.type = BTRFS_TREE_BLOCK_REF_KEY;
+ key.offset = root_objectid;
+ }
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
+ btrfs_release_path(path);
+ return ret;
+}
+
+static inline int extent_ref_type(u64 parent, u64 owner)
+{
+ int type;
+ if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+ if (parent > 0)
+ type = BTRFS_SHARED_BLOCK_REF_KEY;
+ else
+ type = BTRFS_TREE_BLOCK_REF_KEY;
+ } else {
+ if (parent > 0)
+ type = BTRFS_SHARED_DATA_REF_KEY;
+ else
+ type = BTRFS_EXTENT_DATA_REF_KEY;
+ }
+ return type;
+}
+
+static int find_next_key(struct btrfs_path *path, int level,
+ struct btrfs_key *key)
+
+{
+ for (; level < BTRFS_MAX_LEVEL; level++) {
+ if (!path->nodes[level])
+ break;
+ if (path->slots[level] + 1 >=
+ btrfs_header_nritems(path->nodes[level]))
+ continue;
+ if (level == 0)
+ btrfs_item_key_to_cpu(path->nodes[level], key,
+ path->slots[level] + 1);
+ else
+ btrfs_node_key_to_cpu(path->nodes[level], key,
+ path->slots[level] + 1);
+ return 0;
+ }
+ return 1;
+}
+
+/*
+ * look for inline back ref. if back ref is found, *ref_ret is set
+ * to the address of inline back ref, and 0 is returned.
+ *
+ * if back ref isn't found, *ref_ret is set to the address where it
+ * should be inserted, and -ENOENT is returned.
+ *
+ * if insert is true and there are too many inline back refs, the path
+ * points to the extent item, and -EAGAIN is returned.
+ *
+ * NOTE: inline back refs are ordered in the same way that back ref
+ * items in the tree are ordered.
+ */
+static noinline_for_stack
+int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_extent_inline_ref **ref_ret,
+ u64 bytenr, u64 num_bytes,
+ u64 parent, u64 root_objectid,
+ u64 owner, u64 offset, int insert)
+{
+ struct btrfs_key key;
+ struct extent_buffer *leaf;
+ struct btrfs_extent_item *ei;
+ struct btrfs_extent_inline_ref *iref;
+ u64 flags;
+ u64 item_size;
+ unsigned long ptr;
+ unsigned long end;
+ int extra_size;
+ int type;
+ int want;
+ int ret;
+ int err = 0;
+
+ key.objectid = bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = num_bytes;
+
+ want = extent_ref_type(parent, owner);
+ if (insert) {
+ extra_size = btrfs_extent_inline_ref_size(want);
+ path->keep_locks = 1;
+ } else
+ extra_size = -1;
+ ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret && !insert) {
+ err = -ENOENT;
+ goto out;
+ }
+ BUG_ON(ret); /* Corruption */
+
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (item_size < sizeof(*ei)) {
+ if (!insert) {
+ err = -ENOENT;
+ goto out;
+ }
+ ret = convert_extent_item_v0(trans, root, path, owner,
+ extra_size);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ }
+#endif
+ BUG_ON(item_size < sizeof(*ei));
+
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+ flags = btrfs_extent_flags(leaf, ei);
+
+ ptr = (unsigned long)(ei + 1);
+ end = (unsigned long)ei + item_size;
+
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ ptr += sizeof(struct btrfs_tree_block_info);
+ BUG_ON(ptr > end);
+ } else {
+ BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
+ }
+
+ err = -ENOENT;
+ while (1) {
+ if (ptr >= end) {
+ WARN_ON(ptr > end);
+ break;
+ }
+ iref = (struct btrfs_extent_inline_ref *)ptr;
+ type = btrfs_extent_inline_ref_type(leaf, iref);
+ if (want < type)
+ break;
+ if (want > type) {
+ ptr += btrfs_extent_inline_ref_size(type);
+ continue;
+ }
+
+ if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+ struct btrfs_extent_data_ref *dref;
+ dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ if (match_extent_data_ref(leaf, dref, root_objectid,
+ owner, offset)) {
+ err = 0;
+ break;
+ }
+ if (hash_extent_data_ref_item(leaf, dref) <
+ hash_extent_data_ref(root_objectid, owner, offset))
+ break;
+ } else {
+ u64 ref_offset;
+ ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
+ if (parent > 0) {
+ if (parent == ref_offset) {
+ err = 0;
+ break;
+ }
+ if (ref_offset < parent)
+ break;
+ } else {
+ if (root_objectid == ref_offset) {
+ err = 0;
+ break;
+ }
+ if (ref_offset < root_objectid)
+ break;
+ }
+ }
+ ptr += btrfs_extent_inline_ref_size(type);
+ }
+ if (err == -ENOENT && insert) {
+ if (item_size + extra_size >=
+ BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
+ err = -EAGAIN;
+ goto out;
+ }
+ /*
+ * To add new inline back ref, we have to make sure
+ * there is no corresponding back ref item.
+ * For simplicity, we just do not add new inline back
+ * ref if there is any kind of item for this block
+ */
+ if (find_next_key(path, 0, &key) == 0 &&
+ key.objectid == bytenr &&
+ key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
+ err = -EAGAIN;
+ goto out;
+ }
+ }
+ *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
+out:
+ if (insert) {
+ path->keep_locks = 0;
+ btrfs_unlock_up_safe(path, 1);
+ }
+ return err;
+}
+
+/*
+ * helper to add new inline back ref
+ */
+static noinline_for_stack
+void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_extent_inline_ref *iref,
+ u64 parent, u64 root_objectid,
+ u64 owner, u64 offset, int refs_to_add,
+ struct btrfs_delayed_extent_op *extent_op)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_extent_item *ei;
+ unsigned long ptr;
+ unsigned long end;
+ unsigned long item_offset;
+ u64 refs;
+ int size;
+ int type;
+
+ leaf = path->nodes[0];
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+ item_offset = (unsigned long)iref - (unsigned long)ei;
+
+ type = extent_ref_type(parent, owner);
+ size = btrfs_extent_inline_ref_size(type);
+
+ btrfs_extend_item(trans, root, path, size);
+
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+ refs = btrfs_extent_refs(leaf, ei);
+ refs += refs_to_add;
+ btrfs_set_extent_refs(leaf, ei, refs);
+ if (extent_op)
+ __run_delayed_extent_op(extent_op, leaf, ei);
+
+ ptr = (unsigned long)ei + item_offset;
+ end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
+ if (ptr < end - size)
+ memmove_extent_buffer(leaf, ptr + size, ptr,
+ end - size - ptr);
+
+ iref = (struct btrfs_extent_inline_ref *)ptr;
+ btrfs_set_extent_inline_ref_type(leaf, iref, type);
+ if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+ struct btrfs_extent_data_ref *dref;
+ dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
+ btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
+ btrfs_set_extent_data_ref_offset(leaf, dref, offset);
+ btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
+ } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
+ struct btrfs_shared_data_ref *sref;
+ sref = (struct btrfs_shared_data_ref *)(iref + 1);
+ btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
+ btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+ } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
+ btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+ } else {
+ btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
+ }
+ btrfs_mark_buffer_dirty(leaf);
+}
+
+static int lookup_extent_backref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_extent_inline_ref **ref_ret,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 root_objectid, u64 owner, u64 offset)
+{
+ int ret;
+
+ ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
+ bytenr, num_bytes, parent,
+ root_objectid, owner, offset, 0);
+ if (ret != -ENOENT)
+ return ret;
+
+ btrfs_release_path(path);
+ *ref_ret = NULL;
+
+ if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+ ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
+ root_objectid);
+ } else {
+ ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
+ root_objectid, owner, offset);
+ }
+ return ret;
+}
+
+/*
+ * helper to update/remove inline back ref
+ */
+static noinline_for_stack
+void update_inline_extent_backref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_extent_inline_ref *iref,
+ int refs_to_mod,
+ struct btrfs_delayed_extent_op *extent_op)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_extent_item *ei;
+ struct btrfs_extent_data_ref *dref = NULL;
+ struct btrfs_shared_data_ref *sref = NULL;
+ unsigned long ptr;
+ unsigned long end;
+ u32 item_size;
+ int size;
+ int type;
+ u64 refs;
+
+ leaf = path->nodes[0];
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+ refs = btrfs_extent_refs(leaf, ei);
+ WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
+ refs += refs_to_mod;
+ btrfs_set_extent_refs(leaf, ei, refs);
+ if (extent_op)
+ __run_delayed_extent_op(extent_op, leaf, ei);
+
+ type = btrfs_extent_inline_ref_type(leaf, iref);
+
+ if (type == BTRFS_EXTENT_DATA_REF_KEY) {
+ dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ refs = btrfs_extent_data_ref_count(leaf, dref);
+ } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
+ sref = (struct btrfs_shared_data_ref *)(iref + 1);
+ refs = btrfs_shared_data_ref_count(leaf, sref);
+ } else {
+ refs = 1;
+ BUG_ON(refs_to_mod != -1);
+ }
+
+ BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
+ refs += refs_to_mod;
+
+ if (refs > 0) {
+ if (type == BTRFS_EXTENT_DATA_REF_KEY)
+ btrfs_set_extent_data_ref_count(leaf, dref, refs);
+ else
+ btrfs_set_shared_data_ref_count(leaf, sref, refs);
+ } else {
+ size = btrfs_extent_inline_ref_size(type);
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ ptr = (unsigned long)iref;
+ end = (unsigned long)ei + item_size;
+ if (ptr + size < end)
+ memmove_extent_buffer(leaf, ptr, ptr + size,
+ end - ptr - size);
+ item_size -= size;
+ btrfs_truncate_item(trans, root, path, item_size, 1);
+ }
+ btrfs_mark_buffer_dirty(leaf);
+}
+
+static noinline_for_stack
+int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 root_objectid, u64 owner,
+ u64 offset, int refs_to_add,
+ struct btrfs_delayed_extent_op *extent_op)
+{
+ struct btrfs_extent_inline_ref *iref;
+ int ret;
+
+ ret = lookup_inline_extent_backref(trans, root, path, &iref,
+ bytenr, num_bytes, parent,
+ root_objectid, owner, offset, 1);
+ if (ret == 0) {
+ BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
+ update_inline_extent_backref(trans, root, path, iref,
+ refs_to_add, extent_op);
+ } else if (ret == -ENOENT) {
+ setup_inline_extent_backref(trans, root, path, iref, parent,
+ root_objectid, owner, offset,
+ refs_to_add, extent_op);
+ ret = 0;
+ }
+ return ret;
+}
+
+static int insert_extent_backref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, u64 parent, u64 root_objectid,
+ u64 owner, u64 offset, int refs_to_add)
+{
+ int ret;
+ if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+ BUG_ON(refs_to_add != 1);
+ ret = insert_tree_block_ref(trans, root, path, bytenr,
+ parent, root_objectid);
+ } else {
+ ret = insert_extent_data_ref(trans, root, path, bytenr,
+ parent, root_objectid,
+ owner, offset, refs_to_add);
+ }
+ return ret;
+}
+
+static int remove_extent_backref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_extent_inline_ref *iref,
+ int refs_to_drop, int is_data)
+{
+ int ret = 0;
+
+ BUG_ON(!is_data && refs_to_drop != 1);
+ if (iref) {
+ update_inline_extent_backref(trans, root, path, iref,
+ -refs_to_drop, NULL);
+ } else if (is_data) {
+ ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
+ } else {
+ ret = btrfs_del_item(trans, root, path);
+ }
+ return ret;
+}
+
+static int btrfs_issue_discard(struct block_device *bdev,
+ u64 start, u64 len)
+{
+ return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
+}
+
+static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
+ u64 num_bytes, u64 *actual_bytes)
+{
+ int ret;
+ u64 discarded_bytes = 0;
+ struct btrfs_bio *bbio = NULL;
+
+
+ /* Tell the block device(s) that the sectors can be discarded */
+ ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
+ bytenr, &num_bytes, &bbio, 0);
+ /* Error condition is -ENOMEM */
+ if (!ret) {
+ struct btrfs_bio_stripe *stripe = bbio->stripes;
+ int i;
+
+
+ for (i = 0; i < bbio->num_stripes; i++, stripe++) {
+ if (!stripe->dev->can_discard)
+ continue;
+
+ ret = btrfs_issue_discard(stripe->dev->bdev,
+ stripe->physical,
+ stripe->length);
+ if (!ret)
+ discarded_bytes += stripe->length;
+ else if (ret != -EOPNOTSUPP)
+ break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
+
+ /*
+ * Just in case we get back EOPNOTSUPP for some reason,
+ * just ignore the return value so we don't screw up
+ * people calling discard_extent.
+ */
+ ret = 0;
+ }
+ kfree(bbio);
+ }
+
+ if (actual_bytes)
+ *actual_bytes = discarded_bytes;
+
+
+ return ret;
+}
+
+/* Can return -ENOMEM */
+int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 root_objectid, u64 owner, u64 offset, int for_cow)
+{
+ int ret;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
+ root_objectid == BTRFS_TREE_LOG_OBJECTID);
+
+ if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+ ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
+ num_bytes,
+ parent, root_objectid, (int)owner,
+ BTRFS_ADD_DELAYED_REF, NULL, for_cow);
+ } else {
+ ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
+ num_bytes,
+ parent, root_objectid, owner, offset,
+ BTRFS_ADD_DELAYED_REF, NULL, for_cow);
+ }
+ return ret;
+}
+
+static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes,
+ u64 parent, u64 root_objectid,
+ u64 owner, u64 offset, int refs_to_add,
+ struct btrfs_delayed_extent_op *extent_op)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_extent_item *item;
+ u64 refs;
+ int ret;
+ int err = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->reada = 1;
+ path->leave_spinning = 1;
+ /* this will setup the path even if it fails to insert the back ref */
+ ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
+ path, bytenr, num_bytes, parent,
+ root_objectid, owner, offset,
+ refs_to_add, extent_op);
+ if (ret == 0)
+ goto out;
+
+ if (ret != -EAGAIN) {
+ err = ret;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+ refs = btrfs_extent_refs(leaf, item);
+ btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
+ if (extent_op)
+ __run_delayed_extent_op(extent_op, leaf, item);
+
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+
+ path->reada = 1;
+ path->leave_spinning = 1;
+
+ /* now insert the actual backref */
+ ret = insert_extent_backref(trans, root->fs_info->extent_root,
+ path, bytenr, parent, root_objectid,
+ owner, offset, refs_to_add);
+ if (ret)
+ btrfs_abort_transaction(trans, root, ret);
+out:
+ btrfs_free_path(path);
+ return err;
+}
+
+static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_delayed_ref_node *node,
+ struct btrfs_delayed_extent_op *extent_op,
+ int insert_reserved)
+{
+ int ret = 0;
+ struct btrfs_delayed_data_ref *ref;
+ struct btrfs_key ins;
+ u64 parent = 0;
+ u64 ref_root = 0;
+ u64 flags = 0;
+
+ ins.objectid = node->bytenr;
+ ins.offset = node->num_bytes;
+ ins.type = BTRFS_EXTENT_ITEM_KEY;
+
+ ref = btrfs_delayed_node_to_data_ref(node);
+ if (node->type == BTRFS_SHARED_DATA_REF_KEY)
+ parent = ref->parent;
+ else
+ ref_root = ref->root;
+
+ if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
+ if (extent_op) {
+ BUG_ON(extent_op->update_key);
+ flags |= extent_op->flags_to_set;
+ }
+ ret = alloc_reserved_file_extent(trans, root,
+ parent, ref_root, flags,
+ ref->objectid, ref->offset,
+ &ins, node->ref_mod);
+ } else if (node->action == BTRFS_ADD_DELAYED_REF) {
+ ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
+ node->num_bytes, parent,
+ ref_root, ref->objectid,
+ ref->offset, node->ref_mod,
+ extent_op);
+ } else if (node->action == BTRFS_DROP_DELAYED_REF) {
+ ret = __btrfs_free_extent(trans, root, node->bytenr,
+ node->num_bytes, parent,
+ ref_root, ref->objectid,
+ ref->offset, node->ref_mod,
+ extent_op);
+ } else {
+ BUG();
+ }
+ return ret;
+}
+
+static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
+ struct extent_buffer *leaf,
+ struct btrfs_extent_item *ei)
+{
+ u64 flags = btrfs_extent_flags(leaf, ei);
+ if (extent_op->update_flags) {
+ flags |= extent_op->flags_to_set;
+ btrfs_set_extent_flags(leaf, ei, flags);
+ }
+
+ if (extent_op->update_key) {
+ struct btrfs_tree_block_info *bi;
+ BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
+ bi = (struct btrfs_tree_block_info *)(ei + 1);
+ btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
+ }
+}
+
+static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_delayed_ref_node *node,
+ struct btrfs_delayed_extent_op *extent_op)
+{
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct btrfs_extent_item *ei;
+ struct extent_buffer *leaf;
+ u32 item_size;
+ int ret;
+ int err = 0;
+
+ if (trans->aborted)
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = node->bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = node->num_bytes;
+
+ path->reada = 1;
+ path->leave_spinning = 1;
+ ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
+ path, 0, 1);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret > 0) {
+ err = -EIO;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (item_size < sizeof(*ei)) {
+ ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
+ path, (u64)-1, 0);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ }
+#endif
+ BUG_ON(item_size < sizeof(*ei));
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+ __run_delayed_extent_op(extent_op, leaf, ei);
+
+ btrfs_mark_buffer_dirty(leaf);
+out:
+ btrfs_free_path(path);
+ return err;
+}
+
+static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_delayed_ref_node *node,
+ struct btrfs_delayed_extent_op *extent_op,
+ int insert_reserved)
+{
+ int ret = 0;
+ struct btrfs_delayed_tree_ref *ref;
+ struct btrfs_key ins;
+ u64 parent = 0;
+ u64 ref_root = 0;
+
+ ins.objectid = node->bytenr;
+ ins.offset = node->num_bytes;
+ ins.type = BTRFS_EXTENT_ITEM_KEY;
+
+ ref = btrfs_delayed_node_to_tree_ref(node);
+ if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
+ parent = ref->parent;
+ else
+ ref_root = ref->root;
+
+ BUG_ON(node->ref_mod != 1);
+ if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
+ BUG_ON(!extent_op || !extent_op->update_flags ||
+ !extent_op->update_key);
+ ret = alloc_reserved_tree_block(trans, root,
+ parent, ref_root,
+ extent_op->flags_to_set,
+ &extent_op->key,
+ ref->level, &ins);
+ } else if (node->action == BTRFS_ADD_DELAYED_REF) {
+ ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
+ node->num_bytes, parent, ref_root,
+ ref->level, 0, 1, extent_op);
+ } else if (node->action == BTRFS_DROP_DELAYED_REF) {
+ ret = __btrfs_free_extent(trans, root, node->bytenr,
+ node->num_bytes, parent, ref_root,
+ ref->level, 0, 1, extent_op);
+ } else {
+ BUG();
+ }
+ return ret;
+}
+
+/* helper function to actually process a single delayed ref entry */
+static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_delayed_ref_node *node,
+ struct btrfs_delayed_extent_op *extent_op,
+ int insert_reserved)
+{
+ int ret = 0;
+
+ if (trans->aborted)
+ return 0;
+
+ if (btrfs_delayed_ref_is_head(node)) {
+ struct btrfs_delayed_ref_head *head;
+ /*
+ * we've hit the end of the chain and we were supposed
+ * to insert this extent into the tree. But, it got
+ * deleted before we ever needed to insert it, so all
+ * we have to do is clean up the accounting
+ */
+ BUG_ON(extent_op);
+ head = btrfs_delayed_node_to_head(node);
+ if (insert_reserved) {
+ btrfs_pin_extent(root, node->bytenr,
+ node->num_bytes, 1);
+ if (head->is_data) {
+ ret = btrfs_del_csums(trans, root,
+ node->bytenr,
+ node->num_bytes);
+ }
+ }
+ mutex_unlock(&head->mutex);
+ return ret;
+ }
+
+ if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
+ node->type == BTRFS_SHARED_BLOCK_REF_KEY)
+ ret = run_delayed_tree_ref(trans, root, node, extent_op,
+ insert_reserved);
+ else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
+ node->type == BTRFS_SHARED_DATA_REF_KEY)
+ ret = run_delayed_data_ref(trans, root, node, extent_op,
+ insert_reserved);
+ else
+ BUG();
+ return ret;
+}
+
+static noinline struct btrfs_delayed_ref_node *
+select_delayed_ref(struct btrfs_delayed_ref_head *head)
+{
+ struct rb_node *node;
+ struct btrfs_delayed_ref_node *ref;
+ int action = BTRFS_ADD_DELAYED_REF;
+again:
+ /*
+ * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
+ * this prevents ref count from going down to zero when
+ * there still are pending delayed ref.
+ */
+ node = rb_prev(&head->node.rb_node);
+ while (1) {
+ if (!node)
+ break;
+ ref = rb_entry(node, struct btrfs_delayed_ref_node,
+ rb_node);
+ if (ref->bytenr != head->node.bytenr)
+ break;
+ if (ref->action == action)
+ return ref;
+ node = rb_prev(node);
+ }
+ if (action == BTRFS_ADD_DELAYED_REF) {
+ action = BTRFS_DROP_DELAYED_REF;
+ goto again;
+ }
+ return NULL;
+}
+
+/*
+ * Returns 0 on success or if called with an already aborted transaction.
+ * Returns -ENOMEM or -EIO on failure and will abort the transaction.
+ */
+static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct list_head *cluster)
+{
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct btrfs_delayed_ref_node *ref;
+ struct btrfs_delayed_ref_head *locked_ref = NULL;
+ struct btrfs_delayed_extent_op *extent_op;
+ int ret;
+ int count = 0;
+ int must_insert_reserved = 0;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ while (1) {
+ if (!locked_ref) {
+ /* pick a new head ref from the cluster list */
+ if (list_empty(cluster))
+ break;
+
+ locked_ref = list_entry(cluster->next,
+ struct btrfs_delayed_ref_head, cluster);
+
+ /* grab the lock that says we are going to process
+ * all the refs for this head */
+ ret = btrfs_delayed_ref_lock(trans, locked_ref);
+
+ /*
+ * we may have dropped the spin lock to get the head
+ * mutex lock, and that might have given someone else
+ * time to free the head. If that's true, it has been
+ * removed from our list and we can move on.
+ */
+ if (ret == -EAGAIN) {
+ locked_ref = NULL;
+ count++;
+ continue;
+ }
+ }
+
+ /*
+ * locked_ref is the head node, so we have to go one
+ * node back for any delayed ref updates
+ */
+ ref = select_delayed_ref(locked_ref);
+
+ if (ref && ref->seq &&
+ btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
+ /*
+ * there are still refs with lower seq numbers in the
+ * process of being added. Don't run this ref yet.
+ */
+ list_del_init(&locked_ref->cluster);
+ mutex_unlock(&locked_ref->mutex);
+ locked_ref = NULL;
+ delayed_refs->num_heads_ready++;
+ spin_unlock(&delayed_refs->lock);
+ cond_resched();
+ spin_lock(&delayed_refs->lock);
+ continue;
+ }
+
+ /*
+ * record the must insert reserved flag before we
+ * drop the spin lock.
+ */
+ must_insert_reserved = locked_ref->must_insert_reserved;
+ locked_ref->must_insert_reserved = 0;
+
+ extent_op = locked_ref->extent_op;
+ locked_ref->extent_op = NULL;
+
+ if (!ref) {
+ /* All delayed refs have been processed, Go ahead
+ * and send the head node to run_one_delayed_ref,
+ * so that any accounting fixes can happen
+ */
+ ref = &locked_ref->node;
+
+ if (extent_op && must_insert_reserved) {
+ kfree(extent_op);
+ extent_op = NULL;
+ }
+
+ if (extent_op) {
+ spin_unlock(&delayed_refs->lock);
+
+ ret = run_delayed_extent_op(trans, root,
+ ref, extent_op);
+ kfree(extent_op);
+
+ if (ret) {
+ printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
+ spin_lock(&delayed_refs->lock);
+ return ret;
+ }
+
+ goto next;
+ }
+
+ list_del_init(&locked_ref->cluster);
+ locked_ref = NULL;
+ }
+
+ ref->in_tree = 0;
+ rb_erase(&ref->rb_node, &delayed_refs->root);
+ delayed_refs->num_entries--;
+ /*
+ * we modified num_entries, but as we're currently running
+ * delayed refs, skip
+ * wake_up(&delayed_refs->seq_wait);
+ * here.
+ */
+ spin_unlock(&delayed_refs->lock);
+
+ ret = run_one_delayed_ref(trans, root, ref, extent_op,
+ must_insert_reserved);
+
+ btrfs_put_delayed_ref(ref);
+ kfree(extent_op);
+ count++;
+
+ if (ret) {
+ printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
+ spin_lock(&delayed_refs->lock);
+ return ret;
+ }
+
+next:
+ do_chunk_alloc(trans, root->fs_info->extent_root,
+ 2 * 1024 * 1024,
+ btrfs_get_alloc_profile(root, 0),
+ CHUNK_ALLOC_NO_FORCE);
+ cond_resched();
+ spin_lock(&delayed_refs->lock);
+ }
+ return count;
+}
+
+
+static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
+ unsigned long num_refs)
+{
+ struct list_head *first_seq = delayed_refs->seq_head.next;
+
+ spin_unlock(&delayed_refs->lock);
+ pr_debug("waiting for more refs (num %ld, first %p)\n",
+ num_refs, first_seq);
+ wait_event(delayed_refs->seq_wait,
+ num_refs != delayed_refs->num_entries ||
+ delayed_refs->seq_head.next != first_seq);
+ pr_debug("done waiting for more refs (num %ld, first %p)\n",
+ delayed_refs->num_entries, delayed_refs->seq_head.next);
+ spin_lock(&delayed_refs->lock);
+}
+
+/*
+ * this starts processing the delayed reference count updates and
+ * extent insertions we have queued up so far. count can be
+ * 0, which means to process everything in the tree at the start
+ * of the run (but not newly added entries), or it can be some target
+ * number you'd like to process.
+ *
+ * Returns 0 on success or if called with an aborted transaction
+ * Returns <0 on error and aborts the transaction
+ */
+int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, unsigned long count)
+{
+ struct rb_node *node;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct btrfs_delayed_ref_node *ref;
+ struct list_head cluster;
+ int ret;
+ u64 delayed_start;
+ int run_all = count == (unsigned long)-1;
+ int run_most = 0;
+ unsigned long num_refs = 0;
+ int consider_waiting;
+
+ /* We'll clean this up in btrfs_cleanup_transaction */
+ if (trans->aborted)
+ return 0;
+
+ if (root == root->fs_info->extent_root)
+ root = root->fs_info->tree_root;
+
+ do_chunk_alloc(trans, root->fs_info->extent_root,
+ 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
+ CHUNK_ALLOC_NO_FORCE);
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ INIT_LIST_HEAD(&cluster);
+again:
+ consider_waiting = 0;
+ spin_lock(&delayed_refs->lock);
+ if (count == 0) {
+ count = delayed_refs->num_entries * 2;
+ run_most = 1;
+ }
+ while (1) {
+ if (!(run_all || run_most) &&
+ delayed_refs->num_heads_ready < 64)
+ break;
+
+ /*
+ * go find something we can process in the rbtree. We start at
+ * the beginning of the tree, and then build a cluster
+ * of refs to process starting at the first one we are able to
+ * lock
+ */
+ delayed_start = delayed_refs->run_delayed_start;
+ ret = btrfs_find_ref_cluster(trans, &cluster,
+ delayed_refs->run_delayed_start);
+ if (ret)
+ break;
+
+ if (delayed_start >= delayed_refs->run_delayed_start) {
+ if (consider_waiting == 0) {
+ /*
+ * btrfs_find_ref_cluster looped. let's do one
+ * more cycle. if we don't run any delayed ref
+ * during that cycle (because we can't because
+ * all of them are blocked) and if the number of
+ * refs doesn't change, we avoid busy waiting.
+ */
+ consider_waiting = 1;
+ num_refs = delayed_refs->num_entries;
+ } else {
+ wait_for_more_refs(delayed_refs, num_refs);
+ /*
+ * after waiting, things have changed. we
+ * dropped the lock and someone else might have
+ * run some refs, built new clusters and so on.
+ * therefore, we restart staleness detection.
+ */
+ consider_waiting = 0;
+ }
+ }
+
+ ret = run_clustered_refs(trans, root, &cluster);
+ if (ret < 0) {
+ spin_unlock(&delayed_refs->lock);
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+
+ count -= min_t(unsigned long, ret, count);
+
+ if (count == 0)
+ break;
+
+ if (ret || delayed_refs->run_delayed_start == 0) {
+ /* refs were run, let's reset staleness detection */
+ consider_waiting = 0;
+ }
+ }
+
+ if (run_all) {
+ node = rb_first(&delayed_refs->root);
+ if (!node)
+ goto out;
+ count = (unsigned long)-1;
+
+ while (node) {
+ ref = rb_entry(node, struct btrfs_delayed_ref_node,
+ rb_node);
+ if (btrfs_delayed_ref_is_head(ref)) {
+ struct btrfs_delayed_ref_head *head;
+
+ head = btrfs_delayed_node_to_head(ref);
+ atomic_inc(&ref->refs);
+
+ spin_unlock(&delayed_refs->lock);
+ /*
+ * Mutex was contended, block until it's
+ * released and try again
+ */
+ mutex_lock(&head->mutex);
+ mutex_unlock(&head->mutex);
+
+ btrfs_put_delayed_ref(ref);
+ cond_resched();
+ goto again;
+ }
+ node = rb_next(node);
+ }
+ spin_unlock(&delayed_refs->lock);
+ schedule_timeout(1);
+ goto again;
+ }
+out:
+ spin_unlock(&delayed_refs->lock);
+ return 0;
+}
+
+int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 flags,
+ int is_data)
+{
+ struct btrfs_delayed_extent_op *extent_op;
+ int ret;
+
+ extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
+ if (!extent_op)
+ return -ENOMEM;
+
+ extent_op->flags_to_set = flags;
+ extent_op->update_flags = 1;
+ extent_op->update_key = 0;
+ extent_op->is_data = is_data ? 1 : 0;
+
+ ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
+ num_bytes, extent_op);
+ if (ret)
+ kfree(extent_op);
+ return ret;
+}
+
+static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 objectid, u64 offset, u64 bytenr)
+{
+ struct btrfs_delayed_ref_head *head;
+ struct btrfs_delayed_ref_node *ref;
+ struct btrfs_delayed_data_ref *data_ref;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct rb_node *node;
+ int ret = 0;
+
+ ret = -ENOENT;
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+ head = btrfs_find_delayed_ref_head(trans, bytenr);
+ if (!head)
+ goto out;
+
+ if (!mutex_trylock(&head->mutex)) {
+ atomic_inc(&head->node.refs);
+ spin_unlock(&delayed_refs->lock);
+
+ btrfs_release_path(path);
+
+ /*
+ * Mutex was contended, block until it's released and let
+ * caller try again
+ */
+ mutex_lock(&head->mutex);
+ mutex_unlock(&head->mutex);
+ btrfs_put_delayed_ref(&head->node);
+ return -EAGAIN;
+ }
+
+ node = rb_prev(&head->node.rb_node);
+ if (!node)
+ goto out_unlock;
+
+ ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+
+ if (ref->bytenr != bytenr)
+ goto out_unlock;
+
+ ret = 1;
+ if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
+ goto out_unlock;
+
+ data_ref = btrfs_delayed_node_to_data_ref(ref);
+
+ node = rb_prev(node);
+ if (node) {
+ ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+ if (ref->bytenr == bytenr)
+ goto out_unlock;
+ }
+
+ if (data_ref->root != root->root_key.objectid ||
+ data_ref->objectid != objectid || data_ref->offset != offset)
+ goto out_unlock;
+
+ ret = 0;
+out_unlock:
+ mutex_unlock(&head->mutex);
+out:
+ spin_unlock(&delayed_refs->lock);
+ return ret;
+}
+
+static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 objectid, u64 offset, u64 bytenr)
+{
+ struct btrfs_root *extent_root = root->fs_info->extent_root;
+ struct extent_buffer *leaf;
+ struct btrfs_extent_data_ref *ref;
+ struct btrfs_extent_inline_ref *iref;
+ struct btrfs_extent_item *ei;
+ struct btrfs_key key;
+ u32 item_size;
+ int ret;
+
+ key.objectid = bytenr;
+ key.offset = (u64)-1;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+
+ ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ BUG_ON(ret == 0); /* Corruption */
+
+ ret = -ENOENT;
+ if (path->slots[0] == 0)
+ goto out;
+
+ path->slots[0]--;
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+ if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
+ goto out;
+
+ ret = 1;
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (item_size < sizeof(*ei)) {
+ WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
+ goto out;
+ }
+#endif
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
+
+ if (item_size != sizeof(*ei) +
+ btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
+ goto out;
+
+ if (btrfs_extent_generation(leaf, ei) <=
+ btrfs_root_last_snapshot(&root->root_item))
+ goto out;
+
+ iref = (struct btrfs_extent_inline_ref *)(ei + 1);
+ if (btrfs_extent_inline_ref_type(leaf, iref) !=
+ BTRFS_EXTENT_DATA_REF_KEY)
+ goto out;
+
+ ref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ if (btrfs_extent_refs(leaf, ei) !=
+ btrfs_extent_data_ref_count(leaf, ref) ||
+ btrfs_extent_data_ref_root(leaf, ref) !=
+ root->root_key.objectid ||
+ btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
+ btrfs_extent_data_ref_offset(leaf, ref) != offset)
+ goto out;
+
+ ret = 0;
+out:
+ return ret;
+}
+
+int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 objectid, u64 offset, u64 bytenr)
+{
+ struct btrfs_path *path;
+ int ret;
+ int ret2;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOENT;
+
+ do {
+ ret = check_committed_ref(trans, root, path, objectid,
+ offset, bytenr);
+ if (ret && ret != -ENOENT)
+ goto out;
+
+ ret2 = check_delayed_ref(trans, root, path, objectid,
+ offset, bytenr);
+ } while (ret2 == -EAGAIN);
+
+ if (ret2 && ret2 != -ENOENT) {
+ ret = ret2;
+ goto out;
+ }
+
+ if (ret != -ENOENT || ret2 != -ENOENT)
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
+ WARN_ON(ret > 0);
+ return ret;
+}
+
+static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf,
+ int full_backref, int inc, int for_cow)
+{
+ u64 bytenr;
+ u64 num_bytes;
+ u64 parent;
+ u64 ref_root;
+ u32 nritems;
+ struct btrfs_key key;
+ struct btrfs_file_extent_item *fi;
+ int i;
+ int level;
+ int ret = 0;
+ int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
+ u64, u64, u64, u64, u64, u64, int);
+
+ ref_root = btrfs_header_owner(buf);
+ nritems = btrfs_header_nritems(buf);
+ level = btrfs_header_level(buf);
+
+ if (!root->ref_cows && level == 0)
+ return 0;
+
+ if (inc)
+ process_func = btrfs_inc_extent_ref;
+ else
+ process_func = btrfs_free_extent;
+
+ if (full_backref)
+ parent = buf->start;
+ else
+ parent = 0;
+
+ for (i = 0; i < nritems; i++) {
+ if (level == 0) {
+ btrfs_item_key_to_cpu(buf, &key, i);
+ if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
+ continue;
+ fi = btrfs_item_ptr(buf, i,
+ struct btrfs_file_extent_item);
+ if (btrfs_file_extent_type(buf, fi) ==
+ BTRFS_FILE_EXTENT_INLINE)
+ continue;
+ bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
+ if (bytenr == 0)
+ continue;
+
+ num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
+ key.offset -= btrfs_file_extent_offset(buf, fi);
+ ret = process_func(trans, root, bytenr, num_bytes,
+ parent, ref_root, key.objectid,
+ key.offset, for_cow);
+ if (ret)
+ goto fail;
+ } else {
+ bytenr = btrfs_node_blockptr(buf, i);
+ num_bytes = btrfs_level_size(root, level - 1);
+ ret = process_func(trans, root, bytenr, num_bytes,
+ parent, ref_root, level - 1, 0,
+ for_cow);
+ if (ret)
+ goto fail;
+ }
+ }
+ return 0;
+fail:
+ return ret;
+}
+
+int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct extent_buffer *buf, int full_backref, int for_cow)
+{
+ return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
+}
+
+int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct extent_buffer *buf, int full_backref, int for_cow)
+{
+ return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
+}
+
+static int write_one_cache_group(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_block_group_cache *cache)
+{
+ int ret;
+ struct btrfs_root *extent_root = root->fs_info->extent_root;
+ unsigned long bi;
+ struct extent_buffer *leaf;
+
+ ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
+ if (ret < 0)
+ goto fail;
+ BUG_ON(ret); /* Corruption */
+
+ leaf = path->nodes[0];
+ bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
+ write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+fail:
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+ return 0;
+
+}
+
+static struct btrfs_block_group_cache *
+next_block_group(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache)
+{
+ struct rb_node *node;
+ spin_lock(&root->fs_info->block_group_cache_lock);
+ node = rb_next(&cache->cache_node);
+ btrfs_put_block_group(cache);
+ if (node) {
+ cache = rb_entry(node, struct btrfs_block_group_cache,
+ cache_node);
+ btrfs_get_block_group(cache);
+ } else
+ cache = NULL;
+ spin_unlock(&root->fs_info->block_group_cache_lock);
+ return cache;
+}
+
+static int cache_save_setup(struct btrfs_block_group_cache *block_group,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path)
+{
+ struct btrfs_root *root = block_group->fs_info->tree_root;
+ struct inode *inode = NULL;
+ u64 alloc_hint = 0;
+ int dcs = BTRFS_DC_ERROR;
+ int num_pages = 0;
+ int retries = 0;
+ int ret = 0;
+
+ /*
+ * If this block group is smaller than 100 megs don't bother caching the
+ * block group.
+ */
+ if (block_group->key.offset < (100 * 1024 * 1024)) {
+ spin_lock(&block_group->lock);
+ block_group->disk_cache_state = BTRFS_DC_WRITTEN;
+ spin_unlock(&block_group->lock);
+ return 0;
+ }
+
+again:
+ inode = lookup_free_space_inode(root, block_group, path);
+ if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
+ ret = PTR_ERR(inode);
+ btrfs_release_path(path);
+ goto out;
+ }
+
+ if (IS_ERR(inode)) {
+ BUG_ON(retries);
+ retries++;
+
+ if (block_group->ro)
+ goto out_free;
+
+ ret = create_free_space_inode(root, trans, block_group, path);
+ if (ret)
+ goto out_free;
+ goto again;
+ }
+
+ /* We've already setup this transaction, go ahead and exit */
+ if (block_group->cache_generation == trans->transid &&
+ i_size_read(inode)) {
+ dcs = BTRFS_DC_SETUP;
+ goto out_put;
+ }
+
+ /*
+ * We want to set the generation to 0, that way if anything goes wrong
+ * from here on out we know not to trust this cache when we load up next
+ * time.
+ */
+ BTRFS_I(inode)->generation = 0;
+ ret = btrfs_update_inode(trans, root, inode);
+ WARN_ON(ret);
+
+ if (i_size_read(inode) > 0) {
+ ret = btrfs_truncate_free_space_cache(root, trans, path,
+ inode);
+ if (ret)
+ goto out_put;
+ }
+
+ spin_lock(&block_group->lock);
+ if (block_group->cached != BTRFS_CACHE_FINISHED) {
+ /* We're not cached, don't bother trying to write stuff out */
+ dcs = BTRFS_DC_WRITTEN;
+ spin_unlock(&block_group->lock);
+ goto out_put;
+ }
+ spin_unlock(&block_group->lock);
+
+ num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
+ if (!num_pages)
+ num_pages = 1;
+
+ /*
+ * Just to make absolutely sure we have enough space, we're going to
+ * preallocate 12 pages worth of space for each block group. In
+ * practice we ought to use at most 8, but we need extra space so we can
+ * add our header and have a terminator between the extents and the
+ * bitmaps.
+ */
+ num_pages *= 16;
+ num_pages *= PAGE_CACHE_SIZE;
+
+ ret = btrfs_check_data_free_space(inode, num_pages);
+ if (ret)
+ goto out_put;
+
+ ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
+ num_pages, num_pages,
+ &alloc_hint);
+ if (!ret)
+ dcs = BTRFS_DC_SETUP;
+ btrfs_free_reserved_data_space(inode, num_pages);
+
+out_put:
+ iput(inode);
+out_free:
+ btrfs_release_path(path);
+out:
+ spin_lock(&block_group->lock);
+ if (!ret && dcs == BTRFS_DC_SETUP)
+ block_group->cache_generation = trans->transid;
+ block_group->disk_cache_state = dcs;
+ spin_unlock(&block_group->lock);
+
+ return ret;
+}
+
+int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_block_group_cache *cache;
+ int err = 0;
+ struct btrfs_path *path;
+ u64 last = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+again:
+ while (1) {
+ cache = btrfs_lookup_first_block_group(root->fs_info, last);
+ while (cache) {
+ if (cache->disk_cache_state == BTRFS_DC_CLEAR)
+ break;
+ cache = next_block_group(root, cache);
+ }
+ if (!cache) {
+ if (last == 0)
+ break;
+ last = 0;
+ continue;
+ }
+ err = cache_save_setup(cache, trans, path);
+ last = cache->key.objectid + cache->key.offset;
+ btrfs_put_block_group(cache);
+ }
+
+ while (1) {
+ if (last == 0) {
+ err = btrfs_run_delayed_refs(trans, root,
+ (unsigned long)-1);
+ if (err) /* File system offline */
+ goto out;
+ }
+
+ cache = btrfs_lookup_first_block_group(root->fs_info, last);
+ while (cache) {
+ if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
+ btrfs_put_block_group(cache);
+ goto again;
+ }
+
+ if (cache->dirty)
+ break;
+ cache = next_block_group(root, cache);
+ }
+ if (!cache) {
+ if (last == 0)
+ break;
+ last = 0;
+ continue;
+ }
+
+ if (cache->disk_cache_state == BTRFS_DC_SETUP)
+ cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
+ cache->dirty = 0;
+ last = cache->key.objectid + cache->key.offset;
+
+ err = write_one_cache_group(trans, root, path, cache);
+ if (err) /* File system offline */
+ goto out;
+
+ btrfs_put_block_group(cache);
+ }
+
+ while (1) {
+ /*
+ * I don't think this is needed since we're just marking our
+ * preallocated extent as written, but just in case it can't
+ * hurt.
+ */
+ if (last == 0) {
+ err = btrfs_run_delayed_refs(trans, root,
+ (unsigned long)-1);
+ if (err) /* File system offline */
+ goto out;
+ }
+
+ cache = btrfs_lookup_first_block_group(root->fs_info, last);
+ while (cache) {
+ /*
+ * Really this shouldn't happen, but it could if we
+ * couldn't write the entire preallocated extent and
+ * splitting the extent resulted in a new block.
+ */
+ if (cache->dirty) {
+ btrfs_put_block_group(cache);
+ goto again;
+ }
+ if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
+ break;
+ cache = next_block_group(root, cache);
+ }
+ if (!cache) {
+ if (last == 0)
+ break;
+ last = 0;
+ continue;
+ }
+
+ err = btrfs_write_out_cache(root, trans, cache, path);
+
+ /*
+ * If we didn't have an error then the cache state is still
+ * NEED_WRITE, so we can set it to WRITTEN.
+ */
+ if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
+ cache->disk_cache_state = BTRFS_DC_WRITTEN;
+ last = cache->key.objectid + cache->key.offset;
+ btrfs_put_block_group(cache);
+ }
+out:
+
+ btrfs_free_path(path);
+ return err;
+}
+
+int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
+{
+ struct btrfs_block_group_cache *block_group;
+ int readonly = 0;
+
+ block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
+ if (!block_group || block_group->ro)
+ readonly = 1;
+ if (block_group)
+ btrfs_put_block_group(block_group);
+ return readonly;
+}
+
+static int update_space_info(struct btrfs_fs_info *info, u64 flags,
+ u64 total_bytes, u64 bytes_used,
+ struct btrfs_space_info **space_info)
+{
+ struct btrfs_space_info *found;
+ int i;
+ int factor;
+
+ if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10))
+ factor = 2;
+ else
+ factor = 1;
+
+ found = __find_space_info(info, flags);
+ if (found) {
+ spin_lock(&found->lock);
+ found->total_bytes += total_bytes;
+ found->disk_total += total_bytes * factor;
+ found->bytes_used += bytes_used;
+ found->disk_used += bytes_used * factor;
+ found->full = 0;
+ spin_unlock(&found->lock);
+ *space_info = found;
+ return 0;
+ }
+ found = kzalloc(sizeof(*found), GFP_NOFS);
+ if (!found)
+ return -ENOMEM;
+
+ for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
+ INIT_LIST_HEAD(&found->block_groups[i]);
+ init_rwsem(&found->groups_sem);
+ spin_lock_init(&found->lock);
+ found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
+ found->total_bytes = total_bytes;
+ found->disk_total = total_bytes * factor;
+ found->bytes_used = bytes_used;
+ found->disk_used = bytes_used * factor;
+ found->bytes_pinned = 0;
+ found->bytes_reserved = 0;
+ found->bytes_readonly = 0;
+ found->bytes_may_use = 0;
+ found->full = 0;
+ found->force_alloc = CHUNK_ALLOC_NO_FORCE;
+ found->chunk_alloc = 0;
+ found->flush = 0;
+ init_waitqueue_head(&found->wait);
+ *space_info = found;
+ list_add_rcu(&found->list, &info->space_info);
+ return 0;
+}
+
+static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
+{
+ u64 extra_flags = chunk_to_extended(flags) &
+ BTRFS_EXTENDED_PROFILE_MASK;
+
+ if (flags & BTRFS_BLOCK_GROUP_DATA)
+ fs_info->avail_data_alloc_bits |= extra_flags;
+ if (flags & BTRFS_BLOCK_GROUP_METADATA)
+ fs_info->avail_metadata_alloc_bits |= extra_flags;
+ if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+ fs_info->avail_system_alloc_bits |= extra_flags;
+}
+
+/*
+ * returns target flags in extended format or 0 if restripe for this
+ * chunk_type is not in progress
+ *
+ * should be called with either volume_mutex or balance_lock held
+ */
+static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
+{
+ struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+ u64 target = 0;
+
+ if (!bctl)
+ return 0;
+
+ if (flags & BTRFS_BLOCK_GROUP_DATA &&
+ bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+ target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
+ } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
+ bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+ target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
+ } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
+ bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
+ target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
+ }
+
+ return target;
+}
+
+/*
+ * @flags: available profiles in extended format (see ctree.h)
+ *
+ * Returns reduced profile in chunk format. If profile changing is in
+ * progress (either running or paused) picks the target profile (if it's
+ * already available), otherwise falls back to plain reducing.
+ */
+u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
+{
+ /*
+ * we add in the count of missing devices because we want
+ * to make sure that any RAID levels on a degraded FS
+ * continue to be honored.
+ */
+ u64 num_devices = root->fs_info->fs_devices->rw_devices +
+ root->fs_info->fs_devices->missing_devices;
+ u64 target;
+
+ /*
+ * see if restripe for this chunk_type is in progress, if so
+ * try to reduce to the target profile
+ */
+ spin_lock(&root->fs_info->balance_lock);
+ target = get_restripe_target(root->fs_info, flags);
+ if (target) {
+ /* pick target profile only if it's already available */
+ if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
+ spin_unlock(&root->fs_info->balance_lock);
+ return extended_to_chunk(target);
+ }
+ }
+ spin_unlock(&root->fs_info->balance_lock);
+
+ if (num_devices == 1)
+ flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
+ if (num_devices < 4)
+ flags &= ~BTRFS_BLOCK_GROUP_RAID10;
+
+ if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
+ (flags & (BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10))) {
+ flags &= ~BTRFS_BLOCK_GROUP_DUP;
+ }
+
+ if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
+ (flags & BTRFS_BLOCK_GROUP_RAID10)) {
+ flags &= ~BTRFS_BLOCK_GROUP_RAID1;
+ }
+
+ if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
+ ((flags & BTRFS_BLOCK_GROUP_RAID1) |
+ (flags & BTRFS_BLOCK_GROUP_RAID10) |
+ (flags & BTRFS_BLOCK_GROUP_DUP))) {
+ flags &= ~BTRFS_BLOCK_GROUP_RAID0;
+ }
+
+ return extended_to_chunk(flags);
+}
+
+static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
+{
+ if (flags & BTRFS_BLOCK_GROUP_DATA)
+ flags |= root->fs_info->avail_data_alloc_bits;
+ else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+ flags |= root->fs_info->avail_system_alloc_bits;
+ else if (flags & BTRFS_BLOCK_GROUP_METADATA)
+ flags |= root->fs_info->avail_metadata_alloc_bits;
+
+ return btrfs_reduce_alloc_profile(root, flags);
+}
+
+u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
+{
+ u64 flags;
+
+ if (data)
+ flags = BTRFS_BLOCK_GROUP_DATA;
+ else if (root == root->fs_info->chunk_root)
+ flags = BTRFS_BLOCK_GROUP_SYSTEM;
+ else
+ flags = BTRFS_BLOCK_GROUP_METADATA;
+
+ return get_alloc_profile(root, flags);
+}
+
+void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
+{
+ BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
+ BTRFS_BLOCK_GROUP_DATA);
+}
+
+/*
+ * This will check the space that the inode allocates from to make sure we have
+ * enough space for bytes.
+ */
+int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
+{
+ struct btrfs_space_info *data_sinfo;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 used;
+ int ret = 0, committed = 0, alloc_chunk = 1;
+
+ /* make sure bytes are sectorsize aligned */
+ bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
+
+ if (root == root->fs_info->tree_root ||
+ BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
+ alloc_chunk = 0;
+ committed = 1;
+ }
+
+ data_sinfo = BTRFS_I(inode)->space_info;
+ if (!data_sinfo)
+ goto alloc;
+
+again:
+ /* make sure we have enough space to handle the data first */
+ spin_lock(&data_sinfo->lock);
+ used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
+ data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
+ data_sinfo->bytes_may_use;
+
+ if (used + bytes > data_sinfo->total_bytes) {
+ struct btrfs_trans_handle *trans;
+
+ /*
+ * if we don't have enough free bytes in this space then we need
+ * to alloc a new chunk.
+ */
+ if (!data_sinfo->full && alloc_chunk) {
+ u64 alloc_target;
+
+ data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
+ spin_unlock(&data_sinfo->lock);
+alloc:
+ alloc_target = btrfs_get_alloc_profile(root, 1);
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+ bytes + 2 * 1024 * 1024,
+ alloc_target,
+ CHUNK_ALLOC_NO_FORCE);
+ btrfs_end_transaction(trans, root);
+ if (ret < 0) {
+ if (ret != -ENOSPC)
+ return ret;
+ else
+ goto commit_trans;
+ }
+
+ if (!data_sinfo) {
+ btrfs_set_inode_space_info(root, inode);
+ data_sinfo = BTRFS_I(inode)->space_info;
+ }
+ goto again;
+ }
+
+ /*
+ * If we have less pinned bytes than we want to allocate then
+ * don't bother committing the transaction, it won't help us.
+ */
+ if (data_sinfo->bytes_pinned < bytes)
+ committed = 1;
+ spin_unlock(&data_sinfo->lock);
+
+ /* commit the current transaction and try again */
+commit_trans:
+ if (!committed &&
+ !atomic_read(&root->fs_info->open_ioctl_trans)) {
+ committed = 1;
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ ret = btrfs_commit_transaction(trans, root);
+ if (ret)
+ return ret;
+ goto again;
+ }
+
+ return -ENOSPC;
+ }
+ data_sinfo->bytes_may_use += bytes;
+ trace_btrfs_space_reservation(root->fs_info, "space_info",
+ data_sinfo->flags, bytes, 1);
+ spin_unlock(&data_sinfo->lock);
+
+ return 0;
+}
+
+/*
+ * Called if we need to clear a data reservation for this inode.
+ */
+void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_space_info *data_sinfo;
+
+ /* make sure bytes are sectorsize aligned */
+ bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
+
+ data_sinfo = BTRFS_I(inode)->space_info;
+ spin_lock(&data_sinfo->lock);
+ data_sinfo->bytes_may_use -= bytes;
+ trace_btrfs_space_reservation(root->fs_info, "space_info",
+ data_sinfo->flags, bytes, 0);
+ spin_unlock(&data_sinfo->lock);
+}
+
+static void force_metadata_allocation(struct btrfs_fs_info *info)
+{
+ struct list_head *head = &info->space_info;
+ struct btrfs_space_info *found;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(found, head, list) {
+ if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
+ found->force_alloc = CHUNK_ALLOC_FORCE;
+ }
+ rcu_read_unlock();
+}
+
+static int should_alloc_chunk(struct btrfs_root *root,
+ struct btrfs_space_info *sinfo, u64 alloc_bytes,
+ int force)
+{
+ struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+ u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
+ u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
+ u64 thresh;
+
+ if (force == CHUNK_ALLOC_FORCE)
+ return 1;
+
+ /*
+ * We need to take into account the global rsv because for all intents
+ * and purposes it's used space. Don't worry about locking the
+ * global_rsv, it doesn't change except when the transaction commits.
+ */
+ num_allocated += global_rsv->size;
+
+ /*
+ * in limited mode, we want to have some free space up to
+ * about 1% of the FS size.
+ */
+ if (force == CHUNK_ALLOC_LIMITED) {
+ thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
+ thresh = max_t(u64, 64 * 1024 * 1024,
+ div_factor_fine(thresh, 1));
+
+ if (num_bytes - num_allocated < thresh)
+ return 1;
+ }
+ thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
+
+ /* 256MB or 2% of the FS */
+ thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
+ /* system chunks need a much small threshold */
+ if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
+ thresh = 32 * 1024 * 1024;
+
+ if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
+ return 0;
+ return 1;
+}
+
+static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
+{
+ u64 num_dev;
+
+ if (type & BTRFS_BLOCK_GROUP_RAID10 ||
+ type & BTRFS_BLOCK_GROUP_RAID0)
+ num_dev = root->fs_info->fs_devices->rw_devices;
+ else if (type & BTRFS_BLOCK_GROUP_RAID1)
+ num_dev = 2;
+ else
+ num_dev = 1; /* DUP or single */
+
+ /* metadata for updaing devices and chunk tree */
+ return btrfs_calc_trans_metadata_size(root, num_dev + 1);
+}
+
+static void check_system_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 type)
+{
+ struct btrfs_space_info *info;
+ u64 left;
+ u64 thresh;
+
+ info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
+ spin_lock(&info->lock);
+ left = info->total_bytes - info->bytes_used - info->bytes_pinned -
+ info->bytes_reserved - info->bytes_readonly;
+ spin_unlock(&info->lock);
+
+ thresh = get_system_chunk_thresh(root, type);
+ if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
+ printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
+ left, thresh, type);
+ dump_space_info(info, 0, 0);
+ }
+
+ if (left < thresh) {
+ u64 flags;
+
+ flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
+ btrfs_alloc_chunk(trans, root, flags);
+ }
+}
+
+static int do_chunk_alloc(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root, u64 alloc_bytes,
+ u64 flags, int force)
+{
+ struct btrfs_space_info *space_info;
+ struct btrfs_fs_info *fs_info = extent_root->fs_info;
+ int wait_for_alloc = 0;
+ int ret = 0;
+
+ space_info = __find_space_info(extent_root->fs_info, flags);
+ if (!space_info) {
+ ret = update_space_info(extent_root->fs_info, flags,
+ 0, 0, &space_info);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ BUG_ON(!space_info); /* Logic error */
+
+again:
+ spin_lock(&space_info->lock);
+ if (force < space_info->force_alloc)
+ force = space_info->force_alloc;
+ if (space_info->full) {
+ spin_unlock(&space_info->lock);
+ return 0;
+ }
+
+ if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
+ spin_unlock(&space_info->lock);
+ return 0;
+ } else if (space_info->chunk_alloc) {
+ wait_for_alloc = 1;
+ } else {
+ space_info->chunk_alloc = 1;
+ }
+
+ spin_unlock(&space_info->lock);
+
+ mutex_lock(&fs_info->chunk_mutex);
+
+ /*
+ * The chunk_mutex is held throughout the entirety of a chunk
+ * allocation, so once we've acquired the chunk_mutex we know that the
+ * other guy is done and we need to recheck and see if we should
+ * allocate.
+ */
+ if (wait_for_alloc) {
+ mutex_unlock(&fs_info->chunk_mutex);
+ wait_for_alloc = 0;
+ goto again;
+ }
+
+ /*
+ * If we have mixed data/metadata chunks we want to make sure we keep
+ * allocating mixed chunks instead of individual chunks.
+ */
+ if (btrfs_mixed_space_info(space_info))
+ flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
+
+ /*
+ * if we're doing a data chunk, go ahead and make sure that
+ * we keep a reasonable number of metadata chunks allocated in the
+ * FS as well.
+ */
+ if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
+ fs_info->data_chunk_allocations++;
+ if (!(fs_info->data_chunk_allocations %
+ fs_info->metadata_ratio))
+ force_metadata_allocation(fs_info);
+ }
+
+ /*
+ * Check if we have enough space in SYSTEM chunk because we may need
+ * to update devices.
+ */
+ check_system_chunk(trans, extent_root, flags);
+
+ ret = btrfs_alloc_chunk(trans, extent_root, flags);
+ if (ret < 0 && ret != -ENOSPC)
+ goto out;
+
+ spin_lock(&space_info->lock);
+ if (ret)
+ space_info->full = 1;
+ else
+ ret = 1;
+
+ space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
+ space_info->chunk_alloc = 0;
+ spin_unlock(&space_info->lock);
+out:
+ mutex_unlock(&extent_root->fs_info->chunk_mutex);
+ return ret;
+}
+
+/*
+ * shrink metadata reservation for delalloc
+ */
+static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
+ bool wait_ordered)
+{
+ struct btrfs_block_rsv *block_rsv;
+ struct btrfs_space_info *space_info;
+ struct btrfs_trans_handle *trans;
+ u64 reserved;
+ u64 max_reclaim;
+ u64 reclaimed = 0;
+ long time_left;
+ unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
+ int loops = 0;
+ unsigned long progress;
+
+ trans = (struct btrfs_trans_handle *)current->journal_info;
+ block_rsv = &root->fs_info->delalloc_block_rsv;
+ space_info = block_rsv->space_info;
+
+ smp_mb();
+ reserved = space_info->bytes_may_use;
+ progress = space_info->reservation_progress;
+
+ if (reserved == 0)
+ return 0;
+
+ smp_mb();
+ if (root->fs_info->delalloc_bytes == 0) {
+ if (trans)
+ return 0;
+ btrfs_wait_ordered_extents(root, 0, 0);
+ return 0;
+ }
+
+ max_reclaim = min(reserved, to_reclaim);
+ nr_pages = max_t(unsigned long, nr_pages,
+ max_reclaim >> PAGE_CACHE_SHIFT);
+ while (loops < 1024) {
+ /* have the flusher threads jump in and do some IO */
+ smp_mb();
+ nr_pages = min_t(unsigned long, nr_pages,
+ root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
+ writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
+ WB_REASON_FS_FREE_SPACE);
+
+ spin_lock(&space_info->lock);
+ if (reserved > space_info->bytes_may_use)
+ reclaimed += reserved - space_info->bytes_may_use;
+ reserved = space_info->bytes_may_use;
+ spin_unlock(&space_info->lock);
+
+ loops++;
+
+ if (reserved == 0 || reclaimed >= max_reclaim)
+ break;
+
+ if (trans && trans->transaction->blocked)
+ return -EAGAIN;
+
+ if (wait_ordered && !trans) {
+ btrfs_wait_ordered_extents(root, 0, 0);
+ } else {
+ time_left = schedule_timeout_interruptible(1);
+
+ /* We were interrupted, exit */
+ if (time_left)
+ break;
+ }
+
+ /* we've kicked the IO a few times, if anything has been freed,
+ * exit. There is no sense in looping here for a long time
+ * when we really need to commit the transaction, or there are
+ * just too many writers without enough free space
+ */
+
+ if (loops > 3) {
+ smp_mb();
+ if (progress != space_info->reservation_progress)
+ break;
+ }
+
+ }
+
+ return reclaimed >= to_reclaim;
+}
+
+/**
+ * maybe_commit_transaction - possibly commit the transaction if its ok to
+ * @root - the root we're allocating for
+ * @bytes - the number of bytes we want to reserve
+ * @force - force the commit
+ *
+ * This will check to make sure that committing the transaction will actually
+ * get us somewhere and then commit the transaction if it does. Otherwise it
+ * will return -ENOSPC.
+ */
+static int may_commit_transaction(struct btrfs_root *root,
+ struct btrfs_space_info *space_info,
+ u64 bytes, int force)
+{
+ struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
+ struct btrfs_trans_handle *trans;
+
+ trans = (struct btrfs_trans_handle *)current->journal_info;
+ if (trans)
+ return -EAGAIN;
+
+ if (force)
+ goto commit;
+
+ /* See if there is enough pinned space to make this reservation */
+ spin_lock(&space_info->lock);
+ if (space_info->bytes_pinned >= bytes) {
+ spin_unlock(&space_info->lock);
+ goto commit;
+ }
+ spin_unlock(&space_info->lock);
+
+ /*
+ * See if there is some space in the delayed insertion reservation for
+ * this reservation.
+ */
+ if (space_info != delayed_rsv->space_info)
+ return -ENOSPC;
+
+ spin_lock(&space_info->lock);
+ spin_lock(&delayed_rsv->lock);
+ if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
+ spin_unlock(&delayed_rsv->lock);
+ spin_unlock(&space_info->lock);
+ return -ENOSPC;
+ }
+ spin_unlock(&delayed_rsv->lock);
+ spin_unlock(&space_info->lock);
+
+commit:
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return -ENOSPC;
+
+ return btrfs_commit_transaction(trans, root);
+}
+
+/**
+ * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
+ * @root - the root we're allocating for
+ * @block_rsv - the block_rsv we're allocating for
+ * @orig_bytes - the number of bytes we want
+ * @flush - wether or not we can flush to make our reservation
+ *
+ * This will reserve orgi_bytes number of bytes from the space info associated
+ * with the block_rsv. If there is not enough space it will make an attempt to
+ * flush out space to make room. It will do this by flushing delalloc if
+ * possible or committing the transaction. If flush is 0 then no attempts to
+ * regain reservations will be made and this will fail if there is not enough
+ * space already.
+ */
+static int reserve_metadata_bytes(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 orig_bytes, int flush)
+{
+ struct btrfs_space_info *space_info = block_rsv->space_info;
+ u64 used;
+ u64 num_bytes = orig_bytes;
+ int retries = 0;
+ int ret = 0;
+ bool committed = false;
+ bool flushing = false;
+ bool wait_ordered = false;
+
+again:
+ ret = 0;
+ spin_lock(&space_info->lock);
+ /*
+ * We only want to wait if somebody other than us is flushing and we are
+ * actually alloed to flush.
+ */
+ while (flush && !flushing && space_info->flush) {
+ spin_unlock(&space_info->lock);
+ /*
+ * If we have a trans handle we can't wait because the flusher
+ * may have to commit the transaction, which would mean we would
+ * deadlock since we are waiting for the flusher to finish, but
+ * hold the current transaction open.
+ */
+ if (current->journal_info)
+ return -EAGAIN;
+ ret = wait_event_killable(space_info->wait, !space_info->flush);
+ /* Must have been killed, return */
+ if (ret)
+ return -EINTR;
+
+ spin_lock(&space_info->lock);
+ }
+
+ ret = -ENOSPC;
+ used = space_info->bytes_used + space_info->bytes_reserved +
+ space_info->bytes_pinned + space_info->bytes_readonly +
+ space_info->bytes_may_use;
+
+ /*
+ * The idea here is that we've not already over-reserved the block group
+ * then we can go ahead and save our reservation first and then start
+ * flushing if we need to. Otherwise if we've already overcommitted
+ * lets start flushing stuff first and then come back and try to make
+ * our reservation.
+ */
+ if (used <= space_info->total_bytes) {
+ if (used + orig_bytes <= space_info->total_bytes) {
+ space_info->bytes_may_use += orig_bytes;
+ trace_btrfs_space_reservation(root->fs_info,
+ "space_info", space_info->flags, orig_bytes, 1);
+ ret = 0;
+ } else {
+ /*
+ * Ok set num_bytes to orig_bytes since we aren't
+ * overocmmitted, this way we only try and reclaim what
+ * we need.
+ */
+ num_bytes = orig_bytes;
+ }
+ } else {
+ /*
+ * Ok we're over committed, set num_bytes to the overcommitted
+ * amount plus the amount of bytes that we need for this
+ * reservation.
+ */
+ wait_ordered = true;
+ num_bytes = used - space_info->total_bytes +
+ (orig_bytes * (retries + 1));
+ }
+
+ if (ret) {
+ u64 profile = btrfs_get_alloc_profile(root, 0);
+ u64 avail;
+
+ /*
+ * If we have a lot of space that's pinned, don't bother doing
+ * the overcommit dance yet and just commit the transaction.
+ */
+ avail = (space_info->total_bytes - space_info->bytes_used) * 8;
+ do_div(avail, 10);
+ if (space_info->bytes_pinned >= avail && flush && !committed) {
+ space_info->flush = 1;
+ flushing = true;
+ spin_unlock(&space_info->lock);
+ ret = may_commit_transaction(root, space_info,
+ orig_bytes, 1);
+ if (ret)
+ goto out;
+ committed = true;
+ goto again;
+ }
+
+ spin_lock(&root->fs_info->free_chunk_lock);
+ avail = root->fs_info->free_chunk_space;
+
+ /*
+ * If we have dup, raid1 or raid10 then only half of the free
+ * space is actually useable.
+ */
+ if (profile & (BTRFS_BLOCK_GROUP_DUP |
+ BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10))
+ avail >>= 1;
+
+ /*
+ * If we aren't flushing don't let us overcommit too much, say
+ * 1/8th of the space. If we can flush, let it overcommit up to
+ * 1/2 of the space.
+ */
+ if (flush)
+ avail >>= 3;
+ else
+ avail >>= 1;
+ spin_unlock(&root->fs_info->free_chunk_lock);
+
+ if (used + num_bytes < space_info->total_bytes + avail) {
+ space_info->bytes_may_use += orig_bytes;
+ trace_btrfs_space_reservation(root->fs_info,
+ "space_info", space_info->flags, orig_bytes, 1);
+ ret = 0;
+ } else {
+ wait_ordered = true;
+ }
+ }
+
+ /*
+ * Couldn't make our reservation, save our place so while we're trying
+ * to reclaim space we can actually use it instead of somebody else
+ * stealing it from us.
+ */
+ if (ret && flush) {
+ flushing = true;
+ space_info->flush = 1;
+ }
+
+ spin_unlock(&space_info->lock);
+
+ if (!ret || !flush)
+ goto out;
+
+ /*
+ * We do synchronous shrinking since we don't actually unreserve
+ * metadata until after the IO is completed.
+ */
+ ret = shrink_delalloc(root, num_bytes, wait_ordered);
+ if (ret < 0)
+ goto out;
+
+ ret = 0;
+
+ /*
+ * So if we were overcommitted it's possible that somebody else flushed
+ * out enough space and we simply didn't have enough space to reclaim,
+ * so go back around and try again.
+ */
+ if (retries < 2) {
+ wait_ordered = true;
+ retries++;
+ goto again;
+ }
+
+ ret = -ENOSPC;
+ if (committed)
+ goto out;
+
+ ret = may_commit_transaction(root, space_info, orig_bytes, 0);
+ if (!ret) {
+ committed = true;
+ goto again;
+ }
+
+out:
+ if (flushing) {
+ spin_lock(&space_info->lock);
+ space_info->flush = 0;
+ wake_up_all(&space_info->wait);
+ spin_unlock(&space_info->lock);
+ }
+ return ret;
+}
+
+static struct btrfs_block_rsv *get_block_rsv(
+ const struct btrfs_trans_handle *trans,
+ const struct btrfs_root *root)
+{
+ struct btrfs_block_rsv *block_rsv = NULL;
+
+ if (root->ref_cows || root == root->fs_info->csum_root)
+ block_rsv = trans->block_rsv;
+
+ if (!block_rsv)
+ block_rsv = root->block_rsv;
+
+ if (!block_rsv)
+ block_rsv = &root->fs_info->empty_block_rsv;
+
+ return block_rsv;
+}
+
+static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes)
+{
+ int ret = -ENOSPC;
+ spin_lock(&block_rsv->lock);
+ if (block_rsv->reserved >= num_bytes) {
+ block_rsv->reserved -= num_bytes;
+ if (block_rsv->reserved < block_rsv->size)
+ block_rsv->full = 0;
+ ret = 0;
+ }
+ spin_unlock(&block_rsv->lock);
+ return ret;
+}
+
+static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes, int update_size)
+{
+ spin_lock(&block_rsv->lock);
+ block_rsv->reserved += num_bytes;
+ if (update_size)
+ block_rsv->size += num_bytes;
+ else if (block_rsv->reserved >= block_rsv->size)
+ block_rsv->full = 1;
+ spin_unlock(&block_rsv->lock);
+}
+
+static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *block_rsv,
+ struct btrfs_block_rsv *dest, u64 num_bytes)
+{
+ struct btrfs_space_info *space_info = block_rsv->space_info;
+
+ spin_lock(&block_rsv->lock);
+ if (num_bytes == (u64)-1)
+ num_bytes = block_rsv->size;
+ block_rsv->size -= num_bytes;
+ if (block_rsv->reserved >= block_rsv->size) {
+ num_bytes = block_rsv->reserved - block_rsv->size;
+ block_rsv->reserved = block_rsv->size;
+ block_rsv->full = 1;
+ } else {
+ num_bytes = 0;
+ }
+ spin_unlock(&block_rsv->lock);
+
+ if (num_bytes > 0) {
+ if (dest) {
+ spin_lock(&dest->lock);
+ if (!dest->full) {
+ u64 bytes_to_add;
+
+ bytes_to_add = dest->size - dest->reserved;
+ bytes_to_add = min(num_bytes, bytes_to_add);
+ dest->reserved += bytes_to_add;
+ if (dest->reserved >= dest->size)
+ dest->full = 1;
+ num_bytes -= bytes_to_add;
+ }
+ spin_unlock(&dest->lock);
+ }
+ if (num_bytes) {
+ spin_lock(&space_info->lock);
+ space_info->bytes_may_use -= num_bytes;
+ trace_btrfs_space_reservation(fs_info, "space_info",
+ space_info->flags, num_bytes, 0);
+ space_info->reservation_progress++;
+ spin_unlock(&space_info->lock);
+ }
+ }
+}
+
+static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
+ struct btrfs_block_rsv *dst, u64 num_bytes)
+{
+ int ret;
+
+ ret = block_rsv_use_bytes(src, num_bytes);
+ if (ret)
+ return ret;
+
+ block_rsv_add_bytes(dst, num_bytes, 1);
+ return 0;
+}
+
+void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
+{
+ memset(rsv, 0, sizeof(*rsv));
+ spin_lock_init(&rsv->lock);
+}
+
+struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
+{
+ struct btrfs_block_rsv *block_rsv;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
+ if (!block_rsv)
+ return NULL;
+
+ btrfs_init_block_rsv(block_rsv);
+ block_rsv->space_info = __find_space_info(fs_info,
+ BTRFS_BLOCK_GROUP_METADATA);
+ return block_rsv;
+}
+
+void btrfs_free_block_rsv(struct btrfs_root *root,
+ struct btrfs_block_rsv *rsv)
+{
+ btrfs_block_rsv_release(root, rsv, (u64)-1);
+ kfree(rsv);
+}
+
+static inline int __block_rsv_add(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes, int flush)
+{
+ int ret;
+
+ if (num_bytes == 0)
+ return 0;
+
+ ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
+ if (!ret) {
+ block_rsv_add_bytes(block_rsv, num_bytes, 1);
+ return 0;
+ }
+
+ return ret;
+}
+
+int btrfs_block_rsv_add(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes)
+{
+ return __block_rsv_add(root, block_rsv, num_bytes, 1);
+}
+
+int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes)
+{
+ return __block_rsv_add(root, block_rsv, num_bytes, 0);
+}
+
+int btrfs_block_rsv_check(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv, int min_factor)
+{
+ u64 num_bytes = 0;
+ int ret = -ENOSPC;
+
+ if (!block_rsv)
+ return 0;
+
+ spin_lock(&block_rsv->lock);
+ num_bytes = div_factor(block_rsv->size, min_factor);
+ if (block_rsv->reserved >= num_bytes)
+ ret = 0;
+ spin_unlock(&block_rsv->lock);
+
+ return ret;
+}
+
+static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 min_reserved, int flush)
+{
+ u64 num_bytes = 0;
+ int ret = -ENOSPC;
+
+ if (!block_rsv)
+ return 0;
+
+ spin_lock(&block_rsv->lock);
+ num_bytes = min_reserved;
+ if (block_rsv->reserved >= num_bytes)
+ ret = 0;
+ else
+ num_bytes -= block_rsv->reserved;
+ spin_unlock(&block_rsv->lock);
+
+ if (!ret)
+ return 0;
+
+ ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
+ if (!ret) {
+ block_rsv_add_bytes(block_rsv, num_bytes, 0);
+ return 0;
+ }
+
+ return ret;
+}
+
+int btrfs_block_rsv_refill(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 min_reserved)
+{
+ return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
+}
+
+int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 min_reserved)
+{
+ return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
+}
+
+int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
+ struct btrfs_block_rsv *dst_rsv,
+ u64 num_bytes)
+{
+ return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+void btrfs_block_rsv_release(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv,
+ u64 num_bytes)
+{
+ struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+ if (global_rsv->full || global_rsv == block_rsv ||
+ block_rsv->space_info != global_rsv->space_info)
+ global_rsv = NULL;
+ block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
+ num_bytes);
+}
+
+/*
+ * helper to calculate size of global block reservation.
+ * the desired value is sum of space used by extent tree,
+ * checksum tree and root tree
+ */
+static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_space_info *sinfo;
+ u64 num_bytes;
+ u64 meta_used;
+ u64 data_used;
+ int csum_size = btrfs_super_csum_size(fs_info->super_copy);
+
+ sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
+ spin_lock(&sinfo->lock);
+ data_used = sinfo->bytes_used;
+ spin_unlock(&sinfo->lock);
+
+ sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+ spin_lock(&sinfo->lock);
+ if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
+ data_used = 0;
+ meta_used = sinfo->bytes_used;
+ spin_unlock(&sinfo->lock);
+
+ num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
+ csum_size * 2;
+ num_bytes += div64_u64(data_used + meta_used, 50);
+
+ if (num_bytes * 3 > meta_used)
+ num_bytes = div64_u64(meta_used, 3);
+
+ return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
+}
+
+static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
+ struct btrfs_space_info *sinfo = block_rsv->space_info;
+ u64 num_bytes;
+
+ num_bytes = calc_global_metadata_size(fs_info);
+
+ spin_lock(&sinfo->lock);
+ spin_lock(&block_rsv->lock);
+
+ block_rsv->size = num_bytes;
+
+ num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
+ sinfo->bytes_reserved + sinfo->bytes_readonly +
+ sinfo->bytes_may_use;
+
+ if (sinfo->total_bytes > num_bytes) {
+ num_bytes = sinfo->total_bytes - num_bytes;
+ block_rsv->reserved += num_bytes;
+ sinfo->bytes_may_use += num_bytes;
+ trace_btrfs_space_reservation(fs_info, "space_info",
+ sinfo->flags, num_bytes, 1);
+ }
+
+ if (block_rsv->reserved >= block_rsv->size) {
+ num_bytes = block_rsv->reserved - block_rsv->size;
+ sinfo->bytes_may_use -= num_bytes;
+ trace_btrfs_space_reservation(fs_info, "space_info",
+ sinfo->flags, num_bytes, 0);
+ sinfo->reservation_progress++;
+ block_rsv->reserved = block_rsv->size;
+ block_rsv->full = 1;
+ }
+
+ spin_unlock(&block_rsv->lock);
+ spin_unlock(&sinfo->lock);
+}
+
+static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_space_info *space_info;
+
+ space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
+ fs_info->chunk_block_rsv.space_info = space_info;
+
+ space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
+ fs_info->global_block_rsv.space_info = space_info;
+ fs_info->delalloc_block_rsv.space_info = space_info;
+ fs_info->trans_block_rsv.space_info = space_info;
+ fs_info->empty_block_rsv.space_info = space_info;
+ fs_info->delayed_block_rsv.space_info = space_info;
+
+ fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
+ fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
+ fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
+ fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
+ fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
+
+ update_global_block_rsv(fs_info);
+}
+
+static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
+{
+ block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
+ (u64)-1);
+ WARN_ON(fs_info->delalloc_block_rsv.size > 0);
+ WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
+ WARN_ON(fs_info->trans_block_rsv.size > 0);
+ WARN_ON(fs_info->trans_block_rsv.reserved > 0);
+ WARN_ON(fs_info->chunk_block_rsv.size > 0);
+ WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
+ WARN_ON(fs_info->delayed_block_rsv.size > 0);
+ WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
+}
+
+void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ if (!trans->bytes_reserved)
+ return;
+
+ trace_btrfs_space_reservation(root->fs_info, "transaction",
+ trans->transid, trans->bytes_reserved, 0);
+ btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
+ trans->bytes_reserved = 0;
+}
+
+/* Can only return 0 or -ENOSPC */
+int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
+ struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
+ struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
+
+ /*
+ * We need to hold space in order to delete our orphan item once we've
+ * added it, so this takes the reservation so we can release it later
+ * when we are truly done with the orphan item.
+ */
+ u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+ trace_btrfs_space_reservation(root->fs_info, "orphan",
+ btrfs_ino(inode), num_bytes, 1);
+ return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+void btrfs_orphan_release_metadata(struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
+ trace_btrfs_space_reservation(root->fs_info, "orphan",
+ btrfs_ino(inode), num_bytes, 0);
+ btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
+}
+
+int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
+ struct btrfs_pending_snapshot *pending)
+{
+ struct btrfs_root *root = pending->root;
+ struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
+ struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
+ /*
+ * two for root back/forward refs, two for directory entries
+ * and one for root of the snapshot.
+ */
+ u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
+ dst_rsv->space_info = src_rsv->space_info;
+ return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
+}
+
+/**
+ * drop_outstanding_extent - drop an outstanding extent
+ * @inode: the inode we're dropping the extent for
+ *
+ * This is called when we are freeing up an outstanding extent, either called
+ * after an error or after an extent is written. This will return the number of
+ * reserved extents that need to be freed. This must be called with
+ * BTRFS_I(inode)->lock held.
+ */
+static unsigned drop_outstanding_extent(struct inode *inode)
+{
+ unsigned drop_inode_space = 0;
+ unsigned dropped_extents = 0;
+
+ BUG_ON(!BTRFS_I(inode)->outstanding_extents);
+ BTRFS_I(inode)->outstanding_extents--;
+
+ if (BTRFS_I(inode)->outstanding_extents == 0 &&
+ BTRFS_I(inode)->delalloc_meta_reserved) {
+ drop_inode_space = 1;
+ BTRFS_I(inode)->delalloc_meta_reserved = 0;
+ }
+
+ /*
+ * If we have more or the same amount of outsanding extents than we have
+ * reserved then we need to leave the reserved extents count alone.
+ */
+ if (BTRFS_I(inode)->outstanding_extents >=
+ BTRFS_I(inode)->reserved_extents)
+ return drop_inode_space;
+
+ dropped_extents = BTRFS_I(inode)->reserved_extents -
+ BTRFS_I(inode)->outstanding_extents;
+ BTRFS_I(inode)->reserved_extents -= dropped_extents;
+ return dropped_extents + drop_inode_space;
+}
+
+/**
+ * calc_csum_metadata_size - return the amount of metada space that must be
+ * reserved/free'd for the given bytes.
+ * @inode: the inode we're manipulating
+ * @num_bytes: the number of bytes in question
+ * @reserve: 1 if we are reserving space, 0 if we are freeing space
+ *
+ * This adjusts the number of csum_bytes in the inode and then returns the
+ * correct amount of metadata that must either be reserved or freed. We
+ * calculate how many checksums we can fit into one leaf and then divide the
+ * number of bytes that will need to be checksumed by this value to figure out
+ * how many checksums will be required. If we are adding bytes then the number
+ * may go up and we will return the number of additional bytes that must be
+ * reserved. If it is going down we will return the number of bytes that must
+ * be freed.
+ *
+ * This must be called with BTRFS_I(inode)->lock held.
+ */
+static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
+ int reserve)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 csum_size;
+ int num_csums_per_leaf;
+ int num_csums;
+ int old_csums;
+
+ if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
+ BTRFS_I(inode)->csum_bytes == 0)
+ return 0;
+
+ old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
+ if (reserve)
+ BTRFS_I(inode)->csum_bytes += num_bytes;
+ else
+ BTRFS_I(inode)->csum_bytes -= num_bytes;
+ csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
+ num_csums_per_leaf = (int)div64_u64(csum_size,
+ sizeof(struct btrfs_csum_item) +
+ sizeof(struct btrfs_disk_key));
+ num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
+ num_csums = num_csums + num_csums_per_leaf - 1;
+ num_csums = num_csums / num_csums_per_leaf;
+
+ old_csums = old_csums + num_csums_per_leaf - 1;
+ old_csums = old_csums / num_csums_per_leaf;
+
+ /* No change, no need to reserve more */
+ if (old_csums == num_csums)
+ return 0;
+
+ if (reserve)
+ return btrfs_calc_trans_metadata_size(root,
+ num_csums - old_csums);
+
+ return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
+}
+
+int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
+ u64 to_reserve = 0;
+ u64 csum_bytes;
+ unsigned nr_extents = 0;
+ int extra_reserve = 0;
+ int flush = 1;
+ int ret;
+
+ /* Need to be holding the i_mutex here if we aren't free space cache */
+ if (btrfs_is_free_space_inode(root, inode))
+ flush = 0;
+
+ if (flush && btrfs_transaction_in_commit(root->fs_info))
+ schedule_timeout(1);
+
+ mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
+ num_bytes = ALIGN(num_bytes, root->sectorsize);
+
+ spin_lock(&BTRFS_I(inode)->lock);
+ BTRFS_I(inode)->outstanding_extents++;
+
+ if (BTRFS_I(inode)->outstanding_extents >
+ BTRFS_I(inode)->reserved_extents)
+ nr_extents = BTRFS_I(inode)->outstanding_extents -
+ BTRFS_I(inode)->reserved_extents;
+
+ /*
+ * Add an item to reserve for updating the inode when we complete the
+ * delalloc io.
+ */
+ if (!BTRFS_I(inode)->delalloc_meta_reserved) {
+ nr_extents++;
+ extra_reserve = 1;
+ }
+
+ to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
+ to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
+ csum_bytes = BTRFS_I(inode)->csum_bytes;
+ spin_unlock(&BTRFS_I(inode)->lock);
+
+ ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
+ if (ret) {
+ u64 to_free = 0;
+ unsigned dropped;
+
+ spin_lock(&BTRFS_I(inode)->lock);
+ dropped = drop_outstanding_extent(inode);
+ /*
+ * If the inodes csum_bytes is the same as the original
+ * csum_bytes then we know we haven't raced with any free()ers
+ * so we can just reduce our inodes csum bytes and carry on.
+ * Otherwise we have to do the normal free thing to account for
+ * the case that the free side didn't free up its reserve
+ * because of this outstanding reservation.
+ */
+ if (BTRFS_I(inode)->csum_bytes == csum_bytes)
+ calc_csum_metadata_size(inode, num_bytes, 0);
+ else
+ to_free = calc_csum_metadata_size(inode, num_bytes, 0);
+ spin_unlock(&BTRFS_I(inode)->lock);
+ if (dropped)
+ to_free += btrfs_calc_trans_metadata_size(root, dropped);
+
+ if (to_free) {
+ btrfs_block_rsv_release(root, block_rsv, to_free);
+ trace_btrfs_space_reservation(root->fs_info,
+ "delalloc",
+ btrfs_ino(inode),
+ to_free, 0);
+ }
+ mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
+ return ret;
+ }
+
+ spin_lock(&BTRFS_I(inode)->lock);
+ if (extra_reserve) {
+ BTRFS_I(inode)->delalloc_meta_reserved = 1;
+ nr_extents--;
+ }
+ BTRFS_I(inode)->reserved_extents += nr_extents;
+ spin_unlock(&BTRFS_I(inode)->lock);
+ mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
+
+ if (to_reserve)
+ trace_btrfs_space_reservation(root->fs_info,"delalloc",
+ btrfs_ino(inode), to_reserve, 1);
+ block_rsv_add_bytes(block_rsv, to_reserve, 1);
+
+ return 0;
+}
+
+/**
+ * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
+ * @inode: the inode to release the reservation for
+ * @num_bytes: the number of bytes we're releasing
+ *
+ * This will release the metadata reservation for an inode. This can be called
+ * once we complete IO for a given set of bytes to release their metadata
+ * reservations.
+ */
+void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 to_free = 0;
+ unsigned dropped;
+
+ num_bytes = ALIGN(num_bytes, root->sectorsize);
+ spin_lock(&BTRFS_I(inode)->lock);
+ dropped = drop_outstanding_extent(inode);
+
+ to_free = calc_csum_metadata_size(inode, num_bytes, 0);
+ spin_unlock(&BTRFS_I(inode)->lock);
+ if (dropped > 0)
+ to_free += btrfs_calc_trans_metadata_size(root, dropped);
+
+ trace_btrfs_space_reservation(root->fs_info, "delalloc",
+ btrfs_ino(inode), to_free, 0);
+ btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
+ to_free);
+}
+
+/**
+ * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
+ * @inode: inode we're writing to
+ * @num_bytes: the number of bytes we want to allocate
+ *
+ * This will do the following things
+ *
+ * o reserve space in the data space info for num_bytes
+ * o reserve space in the metadata space info based on number of outstanding
+ * extents and how much csums will be needed
+ * o add to the inodes ->delalloc_bytes
+ * o add it to the fs_info's delalloc inodes list.
+ *
+ * This will return 0 for success and -ENOSPC if there is no space left.
+ */
+int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
+{
+ int ret;
+
+ ret = btrfs_check_data_free_space(inode, num_bytes);
+ if (ret)
+ return ret;
+
+ ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
+ if (ret) {
+ btrfs_free_reserved_data_space(inode, num_bytes);
+ return ret;
+ }
+
+ return 0;
+}
+
+/**
+ * btrfs_delalloc_release_space - release data and metadata space for delalloc
+ * @inode: inode we're releasing space for
+ * @num_bytes: the number of bytes we want to free up
+ *
+ * This must be matched with a call to btrfs_delalloc_reserve_space. This is
+ * called in the case that we don't need the metadata AND data reservations
+ * anymore. So if there is an error or we insert an inline extent.
+ *
+ * This function will release the metadata space that was not used and will
+ * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
+ * list if there are no delalloc bytes left.
+ */
+void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
+{
+ btrfs_delalloc_release_metadata(inode, num_bytes);
+ btrfs_free_reserved_data_space(inode, num_bytes);
+}
+
+static int update_block_group(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, int alloc)
+{
+ struct btrfs_block_group_cache *cache = NULL;
+ struct btrfs_fs_info *info = root->fs_info;
+ u64 total = num_bytes;
+ u64 old_val;
+ u64 byte_in_group;
+ int factor;
+
+ /* block accounting for super block */
+ spin_lock(&info->delalloc_lock);
+ old_val = btrfs_super_bytes_used(info->super_copy);
+ if (alloc)
+ old_val += num_bytes;
+ else
+ old_val -= num_bytes;
+ btrfs_set_super_bytes_used(info->super_copy, old_val);
+ spin_unlock(&info->delalloc_lock);
+
+ while (total) {
+ cache = btrfs_lookup_block_group(info, bytenr);
+ if (!cache)
+ return -ENOENT;
+ if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
+ BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10))
+ factor = 2;
+ else
+ factor = 1;
+ /*
+ * If this block group has free space cache written out, we
+ * need to make sure to load it if we are removing space. This
+ * is because we need the unpinning stage to actually add the
+ * space back to the block group, otherwise we will leak space.
+ */
+ if (!alloc && cache->cached == BTRFS_CACHE_NO)
+ cache_block_group(cache, trans, NULL, 1);
+
+ byte_in_group = bytenr - cache->key.objectid;
+ WARN_ON(byte_in_group > cache->key.offset);
+
+ spin_lock(&cache->space_info->lock);
+ spin_lock(&cache->lock);
+
+ if (btrfs_test_opt(root, SPACE_CACHE) &&
+ cache->disk_cache_state < BTRFS_DC_CLEAR)
+ cache->disk_cache_state = BTRFS_DC_CLEAR;
+
+ cache->dirty = 1;
+ old_val = btrfs_block_group_used(&cache->item);
+ num_bytes = min(total, cache->key.offset - byte_in_group);
+ if (alloc) {
+ old_val += num_bytes;
+ btrfs_set_block_group_used(&cache->item, old_val);
+ cache->reserved -= num_bytes;
+ cache->space_info->bytes_reserved -= num_bytes;
+ cache->space_info->bytes_used += num_bytes;
+ cache->space_info->disk_used += num_bytes * factor;
+ spin_unlock(&cache->lock);
+ spin_unlock(&cache->space_info->lock);
+ } else {
+ old_val -= num_bytes;
+ btrfs_set_block_group_used(&cache->item, old_val);
+ cache->pinned += num_bytes;
+ cache->space_info->bytes_pinned += num_bytes;
+ cache->space_info->bytes_used -= num_bytes;
+ cache->space_info->disk_used -= num_bytes * factor;
+ spin_unlock(&cache->lock);
+ spin_unlock(&cache->space_info->lock);
+
+ set_extent_dirty(info->pinned_extents,
+ bytenr, bytenr + num_bytes - 1,
+ GFP_NOFS | __GFP_NOFAIL);
+ }
+ btrfs_put_block_group(cache);
+ total -= num_bytes;
+ bytenr += num_bytes;
+ }
+ return 0;
+}
+
+static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
+{
+ struct btrfs_block_group_cache *cache;
+ u64 bytenr;
+
+ cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
+ if (!cache)
+ return 0;
+
+ bytenr = cache->key.objectid;
+ btrfs_put_block_group(cache);
+
+ return bytenr;
+}
+
+static int pin_down_extent(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache,
+ u64 bytenr, u64 num_bytes, int reserved)
+{
+ spin_lock(&cache->space_info->lock);
+ spin_lock(&cache->lock);
+ cache->pinned += num_bytes;
+ cache->space_info->bytes_pinned += num_bytes;
+ if (reserved) {
+ cache->reserved -= num_bytes;
+ cache->space_info->bytes_reserved -= num_bytes;
+ }
+ spin_unlock(&cache->lock);
+ spin_unlock(&cache->space_info->lock);
+
+ set_extent_dirty(root->fs_info->pinned_extents, bytenr,
+ bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
+ return 0;
+}
+
+/*
+ * this function must be called within transaction
+ */
+int btrfs_pin_extent(struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, int reserved)
+{
+ struct btrfs_block_group_cache *cache;
+
+ cache = btrfs_lookup_block_group(root->fs_info, bytenr);
+ BUG_ON(!cache); /* Logic error */
+
+ pin_down_extent(root, cache, bytenr, num_bytes, reserved);
+
+ btrfs_put_block_group(cache);
+ return 0;
+}
+
+/*
+ * this function must be called within transaction
+ */
+int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes)
+{
+ struct btrfs_block_group_cache *cache;
+
+ cache = btrfs_lookup_block_group(root->fs_info, bytenr);
+ BUG_ON(!cache); /* Logic error */
+
+ /*
+ * pull in the free space cache (if any) so that our pin
+ * removes the free space from the cache. We have load_only set
+ * to one because the slow code to read in the free extents does check
+ * the pinned extents.
+ */
+ cache_block_group(cache, trans, root, 1);
+
+ pin_down_extent(root, cache, bytenr, num_bytes, 0);
+
+ /* remove us from the free space cache (if we're there at all) */
+ btrfs_remove_free_space(cache, bytenr, num_bytes);
+ btrfs_put_block_group(cache);
+ return 0;
+}
+
+/**
+ * btrfs_update_reserved_bytes - update the block_group and space info counters
+ * @cache: The cache we are manipulating
+ * @num_bytes: The number of bytes in question
+ * @reserve: One of the reservation enums
+ *
+ * This is called by the allocator when it reserves space, or by somebody who is
+ * freeing space that was never actually used on disk. For example if you
+ * reserve some space for a new leaf in transaction A and before transaction A
+ * commits you free that leaf, you call this with reserve set to 0 in order to
+ * clear the reservation.
+ *
+ * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
+ * ENOSPC accounting. For data we handle the reservation through clearing the
+ * delalloc bits in the io_tree. We have to do this since we could end up
+ * allocating less disk space for the amount of data we have reserved in the
+ * case of compression.
+ *
+ * If this is a reservation and the block group has become read only we cannot
+ * make the reservation and return -EAGAIN, otherwise this function always
+ * succeeds.
+ */
+static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
+ u64 num_bytes, int reserve)
+{
+ struct btrfs_space_info *space_info = cache->space_info;
+ int ret = 0;
+
+ spin_lock(&space_info->lock);
+ spin_lock(&cache->lock);
+ if (reserve != RESERVE_FREE) {
+ if (cache->ro) {
+ ret = -EAGAIN;
+ } else {
+ cache->reserved += num_bytes;
+ space_info->bytes_reserved += num_bytes;
+ if (reserve == RESERVE_ALLOC) {
+ trace_btrfs_space_reservation(cache->fs_info,
+ "space_info", space_info->flags,
+ num_bytes, 0);
+ space_info->bytes_may_use -= num_bytes;
+ }
+ }
+ } else {
+ if (cache->ro)
+ space_info->bytes_readonly += num_bytes;
+ cache->reserved -= num_bytes;
+ space_info->bytes_reserved -= num_bytes;
+ space_info->reservation_progress++;
+ }
+ spin_unlock(&cache->lock);
+ spin_unlock(&space_info->lock);
+ return ret;
+}
+
+void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_caching_control *next;
+ struct btrfs_caching_control *caching_ctl;
+ struct btrfs_block_group_cache *cache;
+
+ down_write(&fs_info->extent_commit_sem);
+
+ list_for_each_entry_safe(caching_ctl, next,
+ &fs_info->caching_block_groups, list) {
+ cache = caching_ctl->block_group;
+ if (block_group_cache_done(cache)) {
+ cache->last_byte_to_unpin = (u64)-1;
+ list_del_init(&caching_ctl->list);
+ put_caching_control(caching_ctl);
+ } else {
+ cache->last_byte_to_unpin = caching_ctl->progress;
+ }
+ }
+
+ if (fs_info->pinned_extents == &fs_info->freed_extents[0])
+ fs_info->pinned_extents = &fs_info->freed_extents[1];
+ else
+ fs_info->pinned_extents = &fs_info->freed_extents[0];
+
+ up_write(&fs_info->extent_commit_sem);
+
+ update_global_block_rsv(fs_info);
+}
+
+static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_block_group_cache *cache = NULL;
+ u64 len;
+
+ while (start <= end) {
+ if (!cache ||
+ start >= cache->key.objectid + cache->key.offset) {
+ if (cache)
+ btrfs_put_block_group(cache);
+ cache = btrfs_lookup_block_group(fs_info, start);
+ BUG_ON(!cache); /* Logic error */
+ }
+
+ len = cache->key.objectid + cache->key.offset - start;
+ len = min(len, end + 1 - start);
+
+ if (start < cache->last_byte_to_unpin) {
+ len = min(len, cache->last_byte_to_unpin - start);
+ btrfs_add_free_space(cache, start, len);
+ }
+
+ start += len;
+
+ spin_lock(&cache->space_info->lock);
+ spin_lock(&cache->lock);
+ cache->pinned -= len;
+ cache->space_info->bytes_pinned -= len;
+ if (cache->ro)
+ cache->space_info->bytes_readonly += len;
+ spin_unlock(&cache->lock);
+ spin_unlock(&cache->space_info->lock);
+ }
+
+ if (cache)
+ btrfs_put_block_group(cache);
+ return 0;
+}
+
+int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct extent_io_tree *unpin;
+ u64 start;
+ u64 end;
+ int ret;
+
+ if (trans->aborted)
+ return 0;
+
+ if (fs_info->pinned_extents == &fs_info->freed_extents[0])
+ unpin = &fs_info->freed_extents[1];
+ else
+ unpin = &fs_info->freed_extents[0];
+
+ while (1) {
+ ret = find_first_extent_bit(unpin, 0, &start, &end,
+ EXTENT_DIRTY);
+ if (ret)
+ break;
+
+ if (btrfs_test_opt(root, DISCARD))
+ ret = btrfs_discard_extent(root, start,
+ end + 1 - start, NULL);
+
+ clear_extent_dirty(unpin, start, end, GFP_NOFS);
+ unpin_extent_range(root, start, end);
+ cond_resched();
+ }
+
+ return 0;
+}
+
+static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 parent,
+ u64 root_objectid, u64 owner_objectid,
+ u64 owner_offset, int refs_to_drop,
+ struct btrfs_delayed_extent_op *extent_op)
+{
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct btrfs_fs_info *info = root->fs_info;
+ struct btrfs_root *extent_root = info->extent_root;
+ struct extent_buffer *leaf;
+ struct btrfs_extent_item *ei;
+ struct btrfs_extent_inline_ref *iref;
+ int ret;
+ int is_data;
+ int extent_slot = 0;
+ int found_extent = 0;
+ int num_to_del = 1;
+ u32 item_size;
+ u64 refs;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->reada = 1;
+ path->leave_spinning = 1;
+
+ is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
+ BUG_ON(!is_data && refs_to_drop != 1);
+
+ ret = lookup_extent_backref(trans, extent_root, path, &iref,
+ bytenr, num_bytes, parent,
+ root_objectid, owner_objectid,
+ owner_offset);
+ if (ret == 0) {
+ extent_slot = path->slots[0];
+ while (extent_slot >= 0) {
+ btrfs_item_key_to_cpu(path->nodes[0], &key,
+ extent_slot);
+ if (key.objectid != bytenr)
+ break;
+ if (key.type == BTRFS_EXTENT_ITEM_KEY &&
+ key.offset == num_bytes) {
+ found_extent = 1;
+ break;
+ }
+ if (path->slots[0] - extent_slot > 5)
+ break;
+ extent_slot--;
+ }
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
+ if (found_extent && item_size < sizeof(*ei))
+ found_extent = 0;
+#endif
+ if (!found_extent) {
+ BUG_ON(iref);
+ ret = remove_extent_backref(trans, extent_root, path,
+ NULL, refs_to_drop,
+ is_data);
+ if (ret)
+ goto abort;
+ btrfs_release_path(path);
+ path->leave_spinning = 1;
+
+ key.objectid = bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = num_bytes;
+
+ ret = btrfs_search_slot(trans, extent_root,
+ &key, path, -1, 1);
+ if (ret) {
+ printk(KERN_ERR "umm, got %d back from search"
+ ", was looking for %llu\n", ret,
+ (unsigned long long)bytenr);
+ if (ret > 0)
+ btrfs_print_leaf(extent_root,
+ path->nodes[0]);
+ }
+ if (ret < 0)
+ goto abort;
+ extent_slot = path->slots[0];
+ }
+ } else if (ret == -ENOENT) {
+ btrfs_print_leaf(extent_root, path->nodes[0]);
+ WARN_ON(1);
+ printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
+ "parent %llu root %llu owner %llu offset %llu\n",
+ (unsigned long long)bytenr,
+ (unsigned long long)parent,
+ (unsigned long long)root_objectid,
+ (unsigned long long)owner_objectid,
+ (unsigned long long)owner_offset);
+ } else {
+ goto abort;
+ }
+
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, extent_slot);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (item_size < sizeof(*ei)) {
+ BUG_ON(found_extent || extent_slot != path->slots[0]);
+ ret = convert_extent_item_v0(trans, extent_root, path,
+ owner_objectid, 0);
+ if (ret < 0)
+ goto abort;
+
+ btrfs_release_path(path);
+ path->leave_spinning = 1;
+
+ key.objectid = bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = num_bytes;
+
+ ret = btrfs_search_slot(trans, extent_root, &key, path,
+ -1, 1);
+ if (ret) {
+ printk(KERN_ERR "umm, got %d back from search"
+ ", was looking for %llu\n", ret,
+ (unsigned long long)bytenr);
+ btrfs_print_leaf(extent_root, path->nodes[0]);
+ }
+ if (ret < 0)
+ goto abort;
+ extent_slot = path->slots[0];
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, extent_slot);
+ }
+#endif
+ BUG_ON(item_size < sizeof(*ei));
+ ei = btrfs_item_ptr(leaf, extent_slot,
+ struct btrfs_extent_item);
+ if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
+ struct btrfs_tree_block_info *bi;
+ BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
+ bi = (struct btrfs_tree_block_info *)(ei + 1);
+ WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
+ }
+
+ refs = btrfs_extent_refs(leaf, ei);
+ BUG_ON(refs < refs_to_drop);
+ refs -= refs_to_drop;
+
+ if (refs > 0) {
+ if (extent_op)
+ __run_delayed_extent_op(extent_op, leaf, ei);
+ /*
+ * In the case of inline back ref, reference count will
+ * be updated by remove_extent_backref
+ */
+ if (iref) {
+ BUG_ON(!found_extent);
+ } else {
+ btrfs_set_extent_refs(leaf, ei, refs);
+ btrfs_mark_buffer_dirty(leaf);
+ }
+ if (found_extent) {
+ ret = remove_extent_backref(trans, extent_root, path,
+ iref, refs_to_drop,
+ is_data);
+ if (ret)
+ goto abort;
+ }
+ } else {
+ if (found_extent) {
+ BUG_ON(is_data && refs_to_drop !=
+ extent_data_ref_count(root, path, iref));
+ if (iref) {
+ BUG_ON(path->slots[0] != extent_slot);
+ } else {
+ BUG_ON(path->slots[0] != extent_slot + 1);
+ path->slots[0] = extent_slot;
+ num_to_del = 2;
+ }
+ }
+
+ ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
+ num_to_del);
+ if (ret)
+ goto abort;
+ btrfs_release_path(path);
+
+ if (is_data) {
+ ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
+ if (ret)
+ goto abort;
+ }
+
+ ret = update_block_group(trans, root, bytenr, num_bytes, 0);
+ if (ret)
+ goto abort;
+ }
+out:
+ btrfs_free_path(path);
+ return ret;
+
+abort:
+ btrfs_abort_transaction(trans, extent_root, ret);
+ goto out;
+}
+
+/*
+ * when we free an block, it is possible (and likely) that we free the last
+ * delayed ref for that extent as well. This searches the delayed ref tree for
+ * a given extent, and if there are no other delayed refs to be processed, it
+ * removes it from the tree.
+ */
+static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 bytenr)
+{
+ struct btrfs_delayed_ref_head *head;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct btrfs_delayed_ref_node *ref;
+ struct rb_node *node;
+ int ret = 0;
+
+ delayed_refs = &trans->transaction->delayed_refs;
+ spin_lock(&delayed_refs->lock);
+ head = btrfs_find_delayed_ref_head(trans, bytenr);
+ if (!head)
+ goto out;
+
+ node = rb_prev(&head->node.rb_node);
+ if (!node)
+ goto out;
+
+ ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+
+ /* there are still entries for this ref, we can't drop it */
+ if (ref->bytenr == bytenr)
+ goto out;
+
+ if (head->extent_op) {
+ if (!head->must_insert_reserved)
+ goto out;
+ kfree(head->extent_op);
+ head->extent_op = NULL;
+ }
+
+ /*
+ * waiting for the lock here would deadlock. If someone else has it
+ * locked they are already in the process of dropping it anyway
+ */
+ if (!mutex_trylock(&head->mutex))
+ goto out;
+
+ /*
+ * at this point we have a head with no other entries. Go
+ * ahead and process it.
+ */
+ head->node.in_tree = 0;
+ rb_erase(&head->node.rb_node, &delayed_refs->root);
+
+ delayed_refs->num_entries--;
+ if (waitqueue_active(&delayed_refs->seq_wait))
+ wake_up(&delayed_refs->seq_wait);
+
+ /*
+ * we don't take a ref on the node because we're removing it from the
+ * tree, so we just steal the ref the tree was holding.
+ */
+ delayed_refs->num_heads--;
+ if (list_empty(&head->cluster))
+ delayed_refs->num_heads_ready--;
+
+ list_del_init(&head->cluster);
+ spin_unlock(&delayed_refs->lock);
+
+ BUG_ON(head->extent_op);
+ if (head->must_insert_reserved)
+ ret = 1;
+
+ mutex_unlock(&head->mutex);
+ btrfs_put_delayed_ref(&head->node);
+ return ret;
+out:
+ spin_unlock(&delayed_refs->lock);
+ return 0;
+}
+
+void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *buf,
+ u64 parent, int last_ref, int for_cow)
+{
+ struct btrfs_block_group_cache *cache = NULL;
+ int ret;
+
+ if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
+ ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
+ buf->start, buf->len,
+ parent, root->root_key.objectid,
+ btrfs_header_level(buf),
+ BTRFS_DROP_DELAYED_REF, NULL, for_cow);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ if (!last_ref)
+ return;
+
+ cache = btrfs_lookup_block_group(root->fs_info, buf->start);
+
+ if (btrfs_header_generation(buf) == trans->transid) {
+ if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
+ ret = check_ref_cleanup(trans, root, buf->start);
+ if (!ret)
+ goto out;
+ }
+
+ if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
+ pin_down_extent(root, cache, buf->start, buf->len, 1);
+ goto out;
+ }
+
+ WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
+
+ btrfs_add_free_space(cache, buf->start, buf->len);
+ btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
+ }
+out:
+ /*
+ * Deleting the buffer, clear the corrupt flag since it doesn't matter
+ * anymore.
+ */
+ clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
+ btrfs_put_block_group(cache);
+}
+
+/* Can return -ENOMEM */
+int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
+ u64 owner, u64 offset, int for_cow)
+{
+ int ret;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ /*
+ * tree log blocks never actually go into the extent allocation
+ * tree, just update pinning info and exit early.
+ */
+ if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
+ WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
+ /* unlocks the pinned mutex */
+ btrfs_pin_extent(root, bytenr, num_bytes, 1);
+ ret = 0;
+ } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
+ ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
+ num_bytes,
+ parent, root_objectid, (int)owner,
+ BTRFS_DROP_DELAYED_REF, NULL, for_cow);
+ } else {
+ ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
+ num_bytes,
+ parent, root_objectid, owner,
+ offset, BTRFS_DROP_DELAYED_REF,
+ NULL, for_cow);
+ }
+ return ret;
+}
+
+static u64 stripe_align(struct btrfs_root *root, u64 val)
+{
+ u64 mask = ((u64)root->stripesize - 1);
+ u64 ret = (val + mask) & ~mask;
+ return ret;
+}
+
+/*
+ * when we wait for progress in the block group caching, its because
+ * our allocation attempt failed at least once. So, we must sleep
+ * and let some progress happen before we try again.
+ *
+ * This function will sleep at least once waiting for new free space to
+ * show up, and then it will check the block group free space numbers
+ * for our min num_bytes. Another option is to have it go ahead
+ * and look in the rbtree for a free extent of a given size, but this
+ * is a good start.
+ */
+static noinline int
+wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
+ u64 num_bytes)
+{
+ struct btrfs_caching_control *caching_ctl;
+ DEFINE_WAIT(wait);
+
+ caching_ctl = get_caching_control(cache);
+ if (!caching_ctl)
+ return 0;
+
+ wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
+ (cache->free_space_ctl->free_space >= num_bytes));
+
+ put_caching_control(caching_ctl);
+ return 0;
+}
+
+static noinline int
+wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
+{
+ struct btrfs_caching_control *caching_ctl;
+ DEFINE_WAIT(wait);
+
+ caching_ctl = get_caching_control(cache);
+ if (!caching_ctl)
+ return 0;
+
+ wait_event(caching_ctl->wait, block_group_cache_done(cache));
+
+ put_caching_control(caching_ctl);
+ return 0;
+}
+
+static int __get_block_group_index(u64 flags)
+{
+ int index;
+
+ if (flags & BTRFS_BLOCK_GROUP_RAID10)
+ index = 0;
+ else if (flags & BTRFS_BLOCK_GROUP_RAID1)
+ index = 1;
+ else if (flags & BTRFS_BLOCK_GROUP_DUP)
+ index = 2;
+ else if (flags & BTRFS_BLOCK_GROUP_RAID0)
+ index = 3;
+ else
+ index = 4;
+
+ return index;
+}
+
+static int get_block_group_index(struct btrfs_block_group_cache *cache)
+{
+ return __get_block_group_index(cache->flags);
+}
+
+enum btrfs_loop_type {
+ LOOP_CACHING_NOWAIT = 0,
+ LOOP_CACHING_WAIT = 1,
+ LOOP_ALLOC_CHUNK = 2,
+ LOOP_NO_EMPTY_SIZE = 3,
+};
+
+/*
+ * walks the btree of allocated extents and find a hole of a given size.
+ * The key ins is changed to record the hole:
+ * ins->objectid == block start
+ * ins->flags = BTRFS_EXTENT_ITEM_KEY
+ * ins->offset == number of blocks
+ * Any available blocks before search_start are skipped.
+ */
+static noinline int find_free_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *orig_root,
+ u64 num_bytes, u64 empty_size,
+ u64 hint_byte, struct btrfs_key *ins,
+ u64 data)
+{
+ int ret = 0;
+ struct btrfs_root *root = orig_root->fs_info->extent_root;
+ struct btrfs_free_cluster *last_ptr = NULL;
+ struct btrfs_block_group_cache *block_group = NULL;
+ struct btrfs_block_group_cache *used_block_group;
+ u64 search_start = 0;
+ int empty_cluster = 2 * 1024 * 1024;
+ int allowed_chunk_alloc = 0;
+ int done_chunk_alloc = 0;
+ struct btrfs_space_info *space_info;
+ int loop = 0;
+ int index = 0;
+ int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
+ RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
+ bool found_uncached_bg = false;
+ bool failed_cluster_refill = false;
+ bool failed_alloc = false;
+ bool use_cluster = true;
+ bool have_caching_bg = false;
+
+ WARN_ON(num_bytes < root->sectorsize);
+ btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
+ ins->objectid = 0;
+ ins->offset = 0;
+
+ trace_find_free_extent(orig_root, num_bytes, empty_size, data);
+
+ space_info = __find_space_info(root->fs_info, data);
+ if (!space_info) {
+ printk(KERN_ERR "No space info for %llu\n", data);
+ return -ENOSPC;
+ }
+
+ /*
+ * If the space info is for both data and metadata it means we have a
+ * small filesystem and we can't use the clustering stuff.
+ */
+ if (btrfs_mixed_space_info(space_info))
+ use_cluster = false;
+
+ if (orig_root->ref_cows || empty_size)
+ allowed_chunk_alloc = 1;
+
+ if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
+ last_ptr = &root->fs_info->meta_alloc_cluster;
+ if (!btrfs_test_opt(root, SSD))
+ empty_cluster = 64 * 1024;
+ }
+
+ if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
+ btrfs_test_opt(root, SSD)) {
+ last_ptr = &root->fs_info->data_alloc_cluster;
+ }
+
+ if (last_ptr) {
+ spin_lock(&last_ptr->lock);
+ if (last_ptr->block_group)
+ hint_byte = last_ptr->window_start;
+ spin_unlock(&last_ptr->lock);
+ }
+
+ search_start = max(search_start, first_logical_byte(root, 0));
+ search_start = max(search_start, hint_byte);
+
+ if (!last_ptr)
+ empty_cluster = 0;
+
+ if (search_start == hint_byte) {
+ block_group = btrfs_lookup_block_group(root->fs_info,
+ search_start);
+ used_block_group = block_group;
+ /*
+ * we don't want to use the block group if it doesn't match our
+ * allocation bits, or if its not cached.
+ *
+ * However if we are re-searching with an ideal block group
+ * picked out then we don't care that the block group is cached.
+ */
+ if (block_group && block_group_bits(block_group, data) &&
+ block_group->cached != BTRFS_CACHE_NO) {
+ down_read(&space_info->groups_sem);
+ if (list_empty(&block_group->list) ||
+ block_group->ro) {
+ /*
+ * someone is removing this block group,
+ * we can't jump into the have_block_group
+ * target because our list pointers are not
+ * valid
+ */
+ btrfs_put_block_group(block_group);
+ up_read(&space_info->groups_sem);
+ } else {
+ index = get_block_group_index(block_group);
+ goto have_block_group;
+ }
+ } else if (block_group) {
+ btrfs_put_block_group(block_group);
+ }
+ }
+search:
+ have_caching_bg = false;
+ down_read(&space_info->groups_sem);
+ list_for_each_entry(block_group, &space_info->block_groups[index],
+ list) {
+ u64 offset;
+ int cached;
+
+ used_block_group = block_group;
+ btrfs_get_block_group(block_group);
+ search_start = block_group->key.objectid;
+
+ /*
+ * this can happen if we end up cycling through all the
+ * raid types, but we want to make sure we only allocate
+ * for the proper type.
+ */
+ if (!block_group_bits(block_group, data)) {
+ u64 extra = BTRFS_BLOCK_GROUP_DUP |
+ BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10;
+
+ /*
+ * if they asked for extra copies and this block group
+ * doesn't provide them, bail. This does allow us to
+ * fill raid0 from raid1.
+ */
+ if ((data & extra) && !(block_group->flags & extra))
+ goto loop;
+ }
+
+have_block_group:
+ cached = block_group_cache_done(block_group);
+ if (unlikely(!cached)) {
+ found_uncached_bg = true;
+ ret = cache_block_group(block_group, trans,
+ orig_root, 0);
+ BUG_ON(ret < 0);
+ ret = 0;
+ }
+
+ if (unlikely(block_group->ro))
+ goto loop;
+
+ /*
+ * Ok we want to try and use the cluster allocator, so
+ * lets look there
+ */
+ if (last_ptr) {
+ /*
+ * the refill lock keeps out other
+ * people trying to start a new cluster
+ */
+ spin_lock(&last_ptr->refill_lock);
+ used_block_group = last_ptr->block_group;
+ if (used_block_group != block_group &&
+ (!used_block_group ||
+ used_block_group->ro ||
+ !block_group_bits(used_block_group, data))) {
+ used_block_group = block_group;
+ goto refill_cluster;
+ }
+
+ if (used_block_group != block_group)
+ btrfs_get_block_group(used_block_group);
+
+ offset = btrfs_alloc_from_cluster(used_block_group,
+ last_ptr, num_bytes, used_block_group->key.objectid);
+ if (offset) {
+ /* we have a block, we're done */
+ spin_unlock(&last_ptr->refill_lock);
+ trace_btrfs_reserve_extent_cluster(root,
+ block_group, search_start, num_bytes);
+ goto checks;
+ }
+
+ WARN_ON(last_ptr->block_group != used_block_group);
+ if (used_block_group != block_group) {
+ btrfs_put_block_group(used_block_group);
+ used_block_group = block_group;
+ }
+refill_cluster:
+ BUG_ON(used_block_group != block_group);
+ /* If we are on LOOP_NO_EMPTY_SIZE, we can't
+ * set up a new clusters, so lets just skip it
+ * and let the allocator find whatever block
+ * it can find. If we reach this point, we
+ * will have tried the cluster allocator
+ * plenty of times and not have found
+ * anything, so we are likely way too
+ * fragmented for the clustering stuff to find
+ * anything.
+ *
+ * However, if the cluster is taken from the
+ * current block group, release the cluster
+ * first, so that we stand a better chance of
+ * succeeding in the unclustered
+ * allocation. */
+ if (loop >= LOOP_NO_EMPTY_SIZE &&
+ last_ptr->block_group != block_group) {
+ spin_unlock(&last_ptr->refill_lock);
+ goto unclustered_alloc;
+ }
+
+ /*
+ * this cluster didn't work out, free it and
+ * start over
+ */
+ btrfs_return_cluster_to_free_space(NULL, last_ptr);
+
+ if (loop >= LOOP_NO_EMPTY_SIZE) {
+ spin_unlock(&last_ptr->refill_lock);
+ goto unclustered_alloc;
+ }
+
+ /* allocate a cluster in this block group */
+ ret = btrfs_find_space_cluster(trans, root,
+ block_group, last_ptr,
+ search_start, num_bytes,
+ empty_cluster + empty_size);
+ if (ret == 0) {
+ /*
+ * now pull our allocation out of this
+ * cluster
+ */
+ offset = btrfs_alloc_from_cluster(block_group,
+ last_ptr, num_bytes,
+ search_start);
+ if (offset) {
+ /* we found one, proceed */
+ spin_unlock(&last_ptr->refill_lock);
+ trace_btrfs_reserve_extent_cluster(root,
+ block_group, search_start,
+ num_bytes);
+ goto checks;
+ }
+ } else if (!cached && loop > LOOP_CACHING_NOWAIT
+ && !failed_cluster_refill) {
+ spin_unlock(&last_ptr->refill_lock);
+
+ failed_cluster_refill = true;
+ wait_block_group_cache_progress(block_group,
+ num_bytes + empty_cluster + empty_size);
+ goto have_block_group;
+ }
+
+ /*
+ * at this point we either didn't find a cluster
+ * or we weren't able to allocate a block from our
+ * cluster. Free the cluster we've been trying
+ * to use, and go to the next block group
+ */
+ btrfs_return_cluster_to_free_space(NULL, last_ptr);
+ spin_unlock(&last_ptr->refill_lock);
+ goto loop;
+ }
+
+unclustered_alloc:
+ spin_lock(&block_group->free_space_ctl->tree_lock);
+ if (cached &&
+ block_group->free_space_ctl->free_space <
+ num_bytes + empty_cluster + empty_size) {
+ spin_unlock(&block_group->free_space_ctl->tree_lock);
+ goto loop;
+ }
+ spin_unlock(&block_group->free_space_ctl->tree_lock);
+
+ offset = btrfs_find_space_for_alloc(block_group, search_start,
+ num_bytes, empty_size);
+ /*
+ * If we didn't find a chunk, and we haven't failed on this
+ * block group before, and this block group is in the middle of
+ * caching and we are ok with waiting, then go ahead and wait
+ * for progress to be made, and set failed_alloc to true.
+ *
+ * If failed_alloc is true then we've already waited on this
+ * block group once and should move on to the next block group.
+ */
+ if (!offset && !failed_alloc && !cached &&
+ loop > LOOP_CACHING_NOWAIT) {
+ wait_block_group_cache_progress(block_group,
+ num_bytes + empty_size);
+ failed_alloc = true;
+ goto have_block_group;
+ } else if (!offset) {
+ if (!cached)
+ have_caching_bg = true;
+ goto loop;
+ }
+checks:
+ search_start = stripe_align(root, offset);
+
+ /* move on to the next group */
+ if (search_start + num_bytes >
+ used_block_group->key.objectid + used_block_group->key.offset) {
+ btrfs_add_free_space(used_block_group, offset, num_bytes);
+ goto loop;
+ }
+
+ if (offset < search_start)
+ btrfs_add_free_space(used_block_group, offset,
+ search_start - offset);
+ BUG_ON(offset > search_start);
+
+ ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
+ alloc_type);
+ if (ret == -EAGAIN) {
+ btrfs_add_free_space(used_block_group, offset, num_bytes);
+ goto loop;
+ }
+
+ /* we are all good, lets return */
+ ins->objectid = search_start;
+ ins->offset = num_bytes;
+
+ trace_btrfs_reserve_extent(orig_root, block_group,
+ search_start, num_bytes);
+ if (offset < search_start)
+ btrfs_add_free_space(used_block_group, offset,
+ search_start - offset);
+ BUG_ON(offset > search_start);
+ if (used_block_group != block_group)
+ btrfs_put_block_group(used_block_group);
+ btrfs_put_block_group(block_group);
+ break;
+loop:
+ failed_cluster_refill = false;
+ failed_alloc = false;
+ BUG_ON(index != get_block_group_index(block_group));
+ if (used_block_group != block_group)
+ btrfs_put_block_group(used_block_group);
+ btrfs_put_block_group(block_group);
+ }
+ up_read(&space_info->groups_sem);
+
+ if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
+ goto search;
+
+ if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
+ goto search;
+
+ /*
+ * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
+ * caching kthreads as we move along
+ * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
+ * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
+ * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
+ * again
+ */
+ if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
+ index = 0;
+ loop++;
+ if (loop == LOOP_ALLOC_CHUNK) {
+ if (allowed_chunk_alloc) {
+ ret = do_chunk_alloc(trans, root, num_bytes +
+ 2 * 1024 * 1024, data,
+ CHUNK_ALLOC_LIMITED);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans,
+ root, ret);
+ goto out;
+ }
+ allowed_chunk_alloc = 0;
+ if (ret == 1)
+ done_chunk_alloc = 1;
+ } else if (!done_chunk_alloc &&
+ space_info->force_alloc ==
+ CHUNK_ALLOC_NO_FORCE) {
+ space_info->force_alloc = CHUNK_ALLOC_LIMITED;
+ }
+
+ /*
+ * We didn't allocate a chunk, go ahead and drop the
+ * empty size and loop again.
+ */
+ if (!done_chunk_alloc)
+ loop = LOOP_NO_EMPTY_SIZE;
+ }
+
+ if (loop == LOOP_NO_EMPTY_SIZE) {
+ empty_size = 0;
+ empty_cluster = 0;
+ }
+
+ goto search;
+ } else if (!ins->objectid) {
+ ret = -ENOSPC;
+ } else if (ins->objectid) {
+ ret = 0;
+ }
+out:
+
+ return ret;
+}
+
+static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
+ int dump_block_groups)
+{
+ struct btrfs_block_group_cache *cache;
+ int index = 0;
+
+ spin_lock(&info->lock);
+ printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
+ (unsigned long long)info->flags,
+ (unsigned long long)(info->total_bytes - info->bytes_used -
+ info->bytes_pinned - info->bytes_reserved -
+ info->bytes_readonly),
+ (info->full) ? "" : "not ");
+ printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
+ "reserved=%llu, may_use=%llu, readonly=%llu\n",
+ (unsigned long long)info->total_bytes,
+ (unsigned long long)info->bytes_used,
+ (unsigned long long)info->bytes_pinned,
+ (unsigned long long)info->bytes_reserved,
+ (unsigned long long)info->bytes_may_use,
+ (unsigned long long)info->bytes_readonly);
+ spin_unlock(&info->lock);
+
+ if (!dump_block_groups)
+ return;
+
+ down_read(&info->groups_sem);
+again:
+ list_for_each_entry(cache, &info->block_groups[index], list) {
+ spin_lock(&cache->lock);
+ printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
+ "%llu pinned %llu reserved\n",
+ (unsigned long long)cache->key.objectid,
+ (unsigned long long)cache->key.offset,
+ (unsigned long long)btrfs_block_group_used(&cache->item),
+ (unsigned long long)cache->pinned,
+ (unsigned long long)cache->reserved);
+ btrfs_dump_free_space(cache, bytes);
+ spin_unlock(&cache->lock);
+ }
+ if (++index < BTRFS_NR_RAID_TYPES)
+ goto again;
+ up_read(&info->groups_sem);
+}
+
+int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 num_bytes, u64 min_alloc_size,
+ u64 empty_size, u64 hint_byte,
+ struct btrfs_key *ins, u64 data)
+{
+ bool final_tried = false;
+ int ret;
+
+ data = btrfs_get_alloc_profile(root, data);
+again:
+ /*
+ * the only place that sets empty_size is btrfs_realloc_node, which
+ * is not called recursively on allocations
+ */
+ if (empty_size || root->ref_cows) {
+ ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+ num_bytes + 2 * 1024 * 1024, data,
+ CHUNK_ALLOC_NO_FORCE);
+ if (ret < 0 && ret != -ENOSPC) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+ }
+
+ WARN_ON(num_bytes < root->sectorsize);
+ ret = find_free_extent(trans, root, num_bytes, empty_size,
+ hint_byte, ins, data);
+
+ if (ret == -ENOSPC) {
+ if (!final_tried) {
+ num_bytes = num_bytes >> 1;
+ num_bytes = num_bytes & ~(root->sectorsize - 1);
+ num_bytes = max(num_bytes, min_alloc_size);
+ ret = do_chunk_alloc(trans, root->fs_info->extent_root,
+ num_bytes, data, CHUNK_ALLOC_FORCE);
+ if (ret < 0 && ret != -ENOSPC) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+ if (num_bytes == min_alloc_size)
+ final_tried = true;
+ goto again;
+ } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
+ struct btrfs_space_info *sinfo;
+
+ sinfo = __find_space_info(root->fs_info, data);
+ printk(KERN_ERR "btrfs allocation failed flags %llu, "
+ "wanted %llu\n", (unsigned long long)data,
+ (unsigned long long)num_bytes);
+ if (sinfo)
+ dump_space_info(sinfo, num_bytes, 1);
+ }
+ }
+
+ trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
+
+ return ret;
+}
+
+static int __btrfs_free_reserved_extent(struct btrfs_root *root,
+ u64 start, u64 len, int pin)
+{
+ struct btrfs_block_group_cache *cache;
+ int ret = 0;
+
+ cache = btrfs_lookup_block_group(root->fs_info, start);
+ if (!cache) {
+ printk(KERN_ERR "Unable to find block group for %llu\n",
+ (unsigned long long)start);
+ return -ENOSPC;
+ }
+
+ if (btrfs_test_opt(root, DISCARD))
+ ret = btrfs_discard_extent(root, start, len, NULL);
+
+ if (pin)
+ pin_down_extent(root, cache, start, len, 1);
+ else {
+ btrfs_add_free_space(cache, start, len);
+ btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
+ }
+ btrfs_put_block_group(cache);
+
+ trace_btrfs_reserved_extent_free(root, start, len);
+
+ return ret;
+}
+
+int btrfs_free_reserved_extent(struct btrfs_root *root,
+ u64 start, u64 len)
+{
+ return __btrfs_free_reserved_extent(root, start, len, 0);
+}
+
+int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
+ u64 start, u64 len)
+{
+ return __btrfs_free_reserved_extent(root, start, len, 1);
+}
+
+static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 parent, u64 root_objectid,
+ u64 flags, u64 owner, u64 offset,
+ struct btrfs_key *ins, int ref_mod)
+{
+ int ret;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_extent_item *extent_item;
+ struct btrfs_extent_inline_ref *iref;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ int type;
+ u32 size;
+
+ if (parent > 0)
+ type = BTRFS_SHARED_DATA_REF_KEY;
+ else
+ type = BTRFS_EXTENT_DATA_REF_KEY;
+
+ size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->leave_spinning = 1;
+ ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
+ ins, size);
+ if (ret) {
+ btrfs_free_path(path);
+ return ret;
+ }
+
+ leaf = path->nodes[0];
+ extent_item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_item);
+ btrfs_set_extent_refs(leaf, extent_item, ref_mod);
+ btrfs_set_extent_generation(leaf, extent_item, trans->transid);
+ btrfs_set_extent_flags(leaf, extent_item,
+ flags | BTRFS_EXTENT_FLAG_DATA);
+
+ iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
+ btrfs_set_extent_inline_ref_type(leaf, iref, type);
+ if (parent > 0) {
+ struct btrfs_shared_data_ref *ref;
+ ref = (struct btrfs_shared_data_ref *)(iref + 1);
+ btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+ btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
+ } else {
+ struct btrfs_extent_data_ref *ref;
+ ref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
+ btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
+ btrfs_set_extent_data_ref_offset(leaf, ref, offset);
+ btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
+ }
+
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+ btrfs_free_path(path);
+
+ ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
+ if (ret) { /* -ENOENT, logic error */
+ printk(KERN_ERR "btrfs update block group failed for %llu "
+ "%llu\n", (unsigned long long)ins->objectid,
+ (unsigned long long)ins->offset);
+ BUG();
+ }
+ return ret;
+}
+
+static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 parent, u64 root_objectid,
+ u64 flags, struct btrfs_disk_key *key,
+ int level, struct btrfs_key *ins)
+{
+ int ret;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_extent_item *extent_item;
+ struct btrfs_tree_block_info *block_info;
+ struct btrfs_extent_inline_ref *iref;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->leave_spinning = 1;
+ ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
+ ins, size);
+ if (ret) {
+ btrfs_free_path(path);
+ return ret;
+ }
+
+ leaf = path->nodes[0];
+ extent_item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_extent_item);
+ btrfs_set_extent_refs(leaf, extent_item, 1);
+ btrfs_set_extent_generation(leaf, extent_item, trans->transid);
+ btrfs_set_extent_flags(leaf, extent_item,
+ flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
+ block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
+
+ btrfs_set_tree_block_key(leaf, block_info, key);
+ btrfs_set_tree_block_level(leaf, block_info, level);
+
+ iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
+ if (parent > 0) {
+ BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
+ btrfs_set_extent_inline_ref_type(leaf, iref,
+ BTRFS_SHARED_BLOCK_REF_KEY);
+ btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
+ } else {
+ btrfs_set_extent_inline_ref_type(leaf, iref,
+ BTRFS_TREE_BLOCK_REF_KEY);
+ btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
+ }
+
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_free_path(path);
+
+ ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
+ if (ret) { /* -ENOENT, logic error */
+ printk(KERN_ERR "btrfs update block group failed for %llu "
+ "%llu\n", (unsigned long long)ins->objectid,
+ (unsigned long long)ins->offset);
+ BUG();
+ }
+ return ret;
+}
+
+int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 root_objectid, u64 owner,
+ u64 offset, struct btrfs_key *ins)
+{
+ int ret;
+
+ BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
+
+ ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
+ ins->offset, 0,
+ root_objectid, owner, offset,
+ BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
+ return ret;
+}
+
+/*
+ * this is used by the tree logging recovery code. It records that
+ * an extent has been allocated and makes sure to clear the free
+ * space cache bits as well
+ */
+int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 root_objectid, u64 owner, u64 offset,
+ struct btrfs_key *ins)
+{
+ int ret;
+ struct btrfs_block_group_cache *block_group;
+ struct btrfs_caching_control *caching_ctl;
+ u64 start = ins->objectid;
+ u64 num_bytes = ins->offset;
+
+ block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
+ cache_block_group(block_group, trans, NULL, 0);
+ caching_ctl = get_caching_control(block_group);
+
+ if (!caching_ctl) {
+ BUG_ON(!block_group_cache_done(block_group));
+ ret = btrfs_remove_free_space(block_group, start, num_bytes);
+ BUG_ON(ret); /* -ENOMEM */
+ } else {
+ mutex_lock(&caching_ctl->mutex);
+
+ if (start >= caching_ctl->progress) {
+ ret = add_excluded_extent(root, start, num_bytes);
+ BUG_ON(ret); /* -ENOMEM */
+ } else if (start + num_bytes <= caching_ctl->progress) {
+ ret = btrfs_remove_free_space(block_group,
+ start, num_bytes);
+ BUG_ON(ret); /* -ENOMEM */
+ } else {
+ num_bytes = caching_ctl->progress - start;
+ ret = btrfs_remove_free_space(block_group,
+ start, num_bytes);
+ BUG_ON(ret); /* -ENOMEM */
+
+ start = caching_ctl->progress;
+ num_bytes = ins->objectid + ins->offset -
+ caching_ctl->progress;
+ ret = add_excluded_extent(root, start, num_bytes);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ mutex_unlock(&caching_ctl->mutex);
+ put_caching_control(caching_ctl);
+ }
+
+ ret = btrfs_update_reserved_bytes(block_group, ins->offset,
+ RESERVE_ALLOC_NO_ACCOUNT);
+ BUG_ON(ret); /* logic error */
+ btrfs_put_block_group(block_group);
+ ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
+ 0, owner, offset, ins, 1);
+ return ret;
+}
+
+struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 bytenr, u32 blocksize,
+ int level)
+{
+ struct extent_buffer *buf;
+
+ buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+ if (!buf)
+ return ERR_PTR(-ENOMEM);
+ btrfs_set_header_generation(buf, trans->transid);
+ btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
+ btrfs_tree_lock(buf);
+ clean_tree_block(trans, root, buf);
+ clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
+
+ btrfs_set_lock_blocking(buf);
+ btrfs_set_buffer_uptodate(buf);
+
+ if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
+ /*
+ * we allow two log transactions at a time, use different
+ * EXENT bit to differentiate dirty pages.
+ */
+ if (root->log_transid % 2 == 0)
+ set_extent_dirty(&root->dirty_log_pages, buf->start,
+ buf->start + buf->len - 1, GFP_NOFS);
+ else
+ set_extent_new(&root->dirty_log_pages, buf->start,
+ buf->start + buf->len - 1, GFP_NOFS);
+ } else {
+ set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
+ buf->start + buf->len - 1, GFP_NOFS);
+ }
+ trans->blocks_used++;
+ /* this returns a buffer locked for blocking */
+ return buf;
+}
+
+static struct btrfs_block_rsv *
+use_block_rsv(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u32 blocksize)
+{
+ struct btrfs_block_rsv *block_rsv;
+ struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
+ int ret;
+
+ block_rsv = get_block_rsv(trans, root);
+
+ if (block_rsv->size == 0) {
+ ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
+ /*
+ * If we couldn't reserve metadata bytes try and use some from
+ * the global reserve.
+ */
+ if (ret && block_rsv != global_rsv) {
+ ret = block_rsv_use_bytes(global_rsv, blocksize);
+ if (!ret)
+ return global_rsv;
+ return ERR_PTR(ret);
+ } else if (ret) {
+ return ERR_PTR(ret);
+ }
+ return block_rsv;
+ }
+
+ ret = block_rsv_use_bytes(block_rsv, blocksize);
+ if (!ret)
+ return block_rsv;
+ if (ret) {
+ static DEFINE_RATELIMIT_STATE(_rs,
+ DEFAULT_RATELIMIT_INTERVAL,
+ /*DEFAULT_RATELIMIT_BURST*/ 2);
+ if (__ratelimit(&_rs)) {
+ printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
+ WARN_ON(1);
+ }
+ ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
+ if (!ret) {
+ return block_rsv;
+ } else if (ret && block_rsv != global_rsv) {
+ ret = block_rsv_use_bytes(global_rsv, blocksize);
+ if (!ret)
+ return global_rsv;
+ }
+ }
+
+ return ERR_PTR(-ENOSPC);
+}
+
+static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_rsv *block_rsv, u32 blocksize)
+{
+ block_rsv_add_bytes(block_rsv, blocksize, 0);
+ block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
+}
+
+/*
+ * finds a free extent and does all the dirty work required for allocation
+ * returns the key for the extent through ins, and a tree buffer for
+ * the first block of the extent through buf.
+ *
+ * returns the tree buffer or NULL.
+ */
+struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u32 blocksize,
+ u64 parent, u64 root_objectid,
+ struct btrfs_disk_key *key, int level,
+ u64 hint, u64 empty_size, int for_cow)
+{
+ struct btrfs_key ins;
+ struct btrfs_block_rsv *block_rsv;
+ struct extent_buffer *buf;
+ u64 flags = 0;
+ int ret;
+
+
+ block_rsv = use_block_rsv(trans, root, blocksize);
+ if (IS_ERR(block_rsv))
+ return ERR_CAST(block_rsv);
+
+ ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
+ empty_size, hint, &ins, 0);
+ if (ret) {
+ unuse_block_rsv(root->fs_info, block_rsv, blocksize);
+ return ERR_PTR(ret);
+ }
+
+ buf = btrfs_init_new_buffer(trans, root, ins.objectid,
+ blocksize, level);
+ BUG_ON(IS_ERR(buf)); /* -ENOMEM */
+
+ if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
+ if (parent == 0)
+ parent = ins.objectid;
+ flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
+ } else
+ BUG_ON(parent > 0);
+
+ if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
+ struct btrfs_delayed_extent_op *extent_op;
+ extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
+ BUG_ON(!extent_op); /* -ENOMEM */
+ if (key)
+ memcpy(&extent_op->key, key, sizeof(extent_op->key));
+ else
+ memset(&extent_op->key, 0, sizeof(extent_op->key));
+ extent_op->flags_to_set = flags;
+ extent_op->update_key = 1;
+ extent_op->update_flags = 1;
+ extent_op->is_data = 0;
+
+ ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
+ ins.objectid,
+ ins.offset, parent, root_objectid,
+ level, BTRFS_ADD_DELAYED_EXTENT,
+ extent_op, for_cow);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ return buf;
+}
+
+struct walk_control {
+ u64 refs[BTRFS_MAX_LEVEL];
+ u64 flags[BTRFS_MAX_LEVEL];
+ struct btrfs_key update_progress;
+ int stage;
+ int level;
+ int shared_level;
+ int update_ref;
+ int keep_locks;
+ int reada_slot;
+ int reada_count;
+ int for_reloc;
+};
+
+#define DROP_REFERENCE 1
+#define UPDATE_BACKREF 2
+
+static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct walk_control *wc,
+ struct btrfs_path *path)
+{
+ u64 bytenr;
+ u64 generation;
+ u64 refs;
+ u64 flags;
+ u32 nritems;
+ u32 blocksize;
+ struct btrfs_key key;
+ struct extent_buffer *eb;
+ int ret;
+ int slot;
+ int nread = 0;
+
+ if (path->slots[wc->level] < wc->reada_slot) {
+ wc->reada_count = wc->reada_count * 2 / 3;
+ wc->reada_count = max(wc->reada_count, 2);
+ } else {
+ wc->reada_count = wc->reada_count * 3 / 2;
+ wc->reada_count = min_t(int, wc->reada_count,
+ BTRFS_NODEPTRS_PER_BLOCK(root));
+ }
+
+ eb = path->nodes[wc->level];
+ nritems = btrfs_header_nritems(eb);
+ blocksize = btrfs_level_size(root, wc->level - 1);
+
+ for (slot = path->slots[wc->level]; slot < nritems; slot++) {
+ if (nread >= wc->reada_count)
+ break;
+
+ cond_resched();
+ bytenr = btrfs_node_blockptr(eb, slot);
+ generation = btrfs_node_ptr_generation(eb, slot);
+
+ if (slot == path->slots[wc->level])
+ goto reada;
+
+ if (wc->stage == UPDATE_BACKREF &&
+ generation <= root->root_key.offset)
+ continue;
+
+ /* We don't lock the tree block, it's OK to be racy here */
+ ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
+ &refs, &flags);
+ /* We don't care about errors in readahead. */
+ if (ret < 0)
+ continue;
+ BUG_ON(refs == 0);
+
+ if (wc->stage == DROP_REFERENCE) {
+ if (refs == 1)
+ goto reada;
+
+ if (wc->level == 1 &&
+ (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+ continue;
+ if (!wc->update_ref ||
+ generation <= root->root_key.offset)
+ continue;
+ btrfs_node_key_to_cpu(eb, &key, slot);
+ ret = btrfs_comp_cpu_keys(&key,
+ &wc->update_progress);
+ if (ret < 0)
+ continue;
+ } else {
+ if (wc->level == 1 &&
+ (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+ continue;
+ }
+reada:
+ ret = readahead_tree_block(root, bytenr, blocksize,
+ generation);
+ if (ret)
+ break;
+ nread++;
+ }
+ wc->reada_slot = slot;
+}
+
+/*
+ * hepler to process tree block while walking down the tree.
+ *
+ * when wc->stage == UPDATE_BACKREF, this function updates
+ * back refs for pointers in the block.
+ *
+ * NOTE: return value 1 means we should stop walking down.
+ */
+static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct walk_control *wc, int lookup_info)
+{
+ int level = wc->level;
+ struct extent_buffer *eb = path->nodes[level];
+ u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+ int ret;
+
+ if (wc->stage == UPDATE_BACKREF &&
+ btrfs_header_owner(eb) != root->root_key.objectid)
+ return 1;
+
+ /*
+ * when reference count of tree block is 1, it won't increase
+ * again. once full backref flag is set, we never clear it.
+ */
+ if (lookup_info &&
+ ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
+ (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
+ BUG_ON(!path->locks[level]);
+ ret = btrfs_lookup_extent_info(trans, root,
+ eb->start, eb->len,
+ &wc->refs[level],
+ &wc->flags[level]);
+ BUG_ON(ret == -ENOMEM);
+ if (ret)
+ return ret;
+ BUG_ON(wc->refs[level] == 0);
+ }
+
+ if (wc->stage == DROP_REFERENCE) {
+ if (wc->refs[level] > 1)
+ return 1;
+
+ if (path->locks[level] && !wc->keep_locks) {
+ btrfs_tree_unlock_rw(eb, path->locks[level]);
+ path->locks[level] = 0;
+ }
+ return 0;
+ }
+
+ /* wc->stage == UPDATE_BACKREF */
+ if (!(wc->flags[level] & flag)) {
+ BUG_ON(!path->locks[level]);
+ ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
+ BUG_ON(ret); /* -ENOMEM */
+ ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
+ BUG_ON(ret); /* -ENOMEM */
+ ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
+ eb->len, flag, 0);
+ BUG_ON(ret); /* -ENOMEM */
+ wc->flags[level] |= flag;
+ }
+
+ /*
+ * the block is shared by multiple trees, so it's not good to
+ * keep the tree lock
+ */
+ if (path->locks[level] && level > 0) {
+ btrfs_tree_unlock_rw(eb, path->locks[level]);
+ path->locks[level] = 0;
+ }
+ return 0;
+}
+
+/*
+ * hepler to process tree block pointer.
+ *
+ * when wc->stage == DROP_REFERENCE, this function checks
+ * reference count of the block pointed to. if the block
+ * is shared and we need update back refs for the subtree
+ * rooted at the block, this function changes wc->stage to
+ * UPDATE_BACKREF. if the block is shared and there is no
+ * need to update back, this function drops the reference
+ * to the block.
+ *
+ * NOTE: return value 1 means we should stop walking down.
+ */
+static noinline int do_walk_down(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct walk_control *wc, int *lookup_info)
+{
+ u64 bytenr;
+ u64 generation;
+ u64 parent;
+ u32 blocksize;
+ struct btrfs_key key;
+ struct extent_buffer *next;
+ int level = wc->level;
+ int reada = 0;
+ int ret = 0;
+
+ generation = btrfs_node_ptr_generation(path->nodes[level],
+ path->slots[level]);
+ /*
+ * if the lower level block was created before the snapshot
+ * was created, we know there is no need to update back refs
+ * for the subtree
+ */
+ if (wc->stage == UPDATE_BACKREF &&
+ generation <= root->root_key.offset) {
+ *lookup_info = 1;
+ return 1;
+ }
+
+ bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
+ blocksize = btrfs_level_size(root, level - 1);
+
+ next = btrfs_find_tree_block(root, bytenr, blocksize);
+ if (!next) {
+ next = btrfs_find_create_tree_block(root, bytenr, blocksize);
+ if (!next)
+ return -ENOMEM;
+ reada = 1;
+ }
+ btrfs_tree_lock(next);
+ btrfs_set_lock_blocking(next);
+
+ ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
+ &wc->refs[level - 1],
+ &wc->flags[level - 1]);
+ if (ret < 0) {
+ btrfs_tree_unlock(next);
+ return ret;
+ }
+
+ BUG_ON(wc->refs[level - 1] == 0);
+ *lookup_info = 0;
+
+ if (wc->stage == DROP_REFERENCE) {
+ if (wc->refs[level - 1] > 1) {
+ if (level == 1 &&
+ (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+ goto skip;
+
+ if (!wc->update_ref ||
+ generation <= root->root_key.offset)
+ goto skip;
+
+ btrfs_node_key_to_cpu(path->nodes[level], &key,
+ path->slots[level]);
+ ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
+ if (ret < 0)
+ goto skip;
+
+ wc->stage = UPDATE_BACKREF;
+ wc->shared_level = level - 1;
+ }
+ } else {
+ if (level == 1 &&
+ (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+ goto skip;
+ }
+
+ if (!btrfs_buffer_uptodate(next, generation, 0)) {
+ btrfs_tree_unlock(next);
+ free_extent_buffer(next);
+ next = NULL;
+ *lookup_info = 1;
+ }
+
+ if (!next) {
+ if (reada && level == 1)
+ reada_walk_down(trans, root, wc, path);
+ next = read_tree_block(root, bytenr, blocksize, generation);
+ if (!next)
+ return -EIO;
+ btrfs_tree_lock(next);
+ btrfs_set_lock_blocking(next);
+ }
+
+ level--;
+ BUG_ON(level != btrfs_header_level(next));
+ path->nodes[level] = next;
+ path->slots[level] = 0;
+ path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+ wc->level = level;
+ if (wc->level == 1)
+ wc->reada_slot = 0;
+ return 0;
+skip:
+ wc->refs[level - 1] = 0;
+ wc->flags[level - 1] = 0;
+ if (wc->stage == DROP_REFERENCE) {
+ if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
+ parent = path->nodes[level]->start;
+ } else {
+ BUG_ON(root->root_key.objectid !=
+ btrfs_header_owner(path->nodes[level]));
+ parent = 0;
+ }
+
+ ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
+ root->root_key.objectid, level - 1, 0, 0);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ btrfs_tree_unlock(next);
+ free_extent_buffer(next);
+ *lookup_info = 1;
+ return 1;
+}
+
+/*
+ * hepler to process tree block while walking up the tree.
+ *
+ * when wc->stage == DROP_REFERENCE, this function drops
+ * reference count on the block.
+ *
+ * when wc->stage == UPDATE_BACKREF, this function changes
+ * wc->stage back to DROP_REFERENCE if we changed wc->stage
+ * to UPDATE_BACKREF previously while processing the block.
+ *
+ * NOTE: return value 1 means we should stop walking up.
+ */
+static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct walk_control *wc)
+{
+ int ret;
+ int level = wc->level;
+ struct extent_buffer *eb = path->nodes[level];
+ u64 parent = 0;
+
+ if (wc->stage == UPDATE_BACKREF) {
+ BUG_ON(wc->shared_level < level);
+ if (level < wc->shared_level)
+ goto out;
+
+ ret = find_next_key(path, level + 1, &wc->update_progress);
+ if (ret > 0)
+ wc->update_ref = 0;
+
+ wc->stage = DROP_REFERENCE;
+ wc->shared_level = -1;
+ path->slots[level] = 0;
+
+ /*
+ * check reference count again if the block isn't locked.
+ * we should start walking down the tree again if reference
+ * count is one.
+ */
+ if (!path->locks[level]) {
+ BUG_ON(level == 0);
+ btrfs_tree_lock(eb);
+ btrfs_set_lock_blocking(eb);
+ path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+ ret = btrfs_lookup_extent_info(trans, root,
+ eb->start, eb->len,
+ &wc->refs[level],
+ &wc->flags[level]);
+ if (ret < 0) {
+ btrfs_tree_unlock_rw(eb, path->locks[level]);
+ return ret;
+ }
+ BUG_ON(wc->refs[level] == 0);
+ if (wc->refs[level] == 1) {
+ btrfs_tree_unlock_rw(eb, path->locks[level]);
+ return 1;
+ }
+ }
+ }
+
+ /* wc->stage == DROP_REFERENCE */
+ BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
+
+ if (wc->refs[level] == 1) {
+ if (level == 0) {
+ if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+ ret = btrfs_dec_ref(trans, root, eb, 1,
+ wc->for_reloc);
+ else
+ ret = btrfs_dec_ref(trans, root, eb, 0,
+ wc->for_reloc);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ /* make block locked assertion in clean_tree_block happy */
+ if (!path->locks[level] &&
+ btrfs_header_generation(eb) == trans->transid) {
+ btrfs_tree_lock(eb);
+ btrfs_set_lock_blocking(eb);
+ path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+ }
+ clean_tree_block(trans, root, eb);
+ }
+
+ if (eb == root->node) {
+ if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+ parent = eb->start;
+ else
+ BUG_ON(root->root_key.objectid !=
+ btrfs_header_owner(eb));
+ } else {
+ if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+ parent = path->nodes[level + 1]->start;
+ else
+ BUG_ON(root->root_key.objectid !=
+ btrfs_header_owner(path->nodes[level + 1]));
+ }
+
+ btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
+out:
+ wc->refs[level] = 0;
+ wc->flags[level] = 0;
+ return 0;
+}
+
+static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct walk_control *wc)
+{
+ int level = wc->level;
+ int lookup_info = 1;
+ int ret;
+
+ while (level >= 0) {
+ ret = walk_down_proc(trans, root, path, wc, lookup_info);
+ if (ret > 0)
+ break;
+
+ if (level == 0)
+ break;
+
+ if (path->slots[level] >=
+ btrfs_header_nritems(path->nodes[level]))
+ break;
+
+ ret = do_walk_down(trans, root, path, wc, &lookup_info);
+ if (ret > 0) {
+ path->slots[level]++;
+ continue;
+ } else if (ret < 0)
+ return ret;
+ level = wc->level;
+ }
+ return 0;
+}
+
+static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct walk_control *wc, int max_level)
+{
+ int level = wc->level;
+ int ret;
+
+ path->slots[level] = btrfs_header_nritems(path->nodes[level]);
+ while (level < max_level && path->nodes[level]) {
+ wc->level = level;
+ if (path->slots[level] + 1 <
+ btrfs_header_nritems(path->nodes[level])) {
+ path->slots[level]++;
+ return 0;
+ } else {
+ ret = walk_up_proc(trans, root, path, wc);
+ if (ret > 0)
+ return 0;
+
+ if (path->locks[level]) {
+ btrfs_tree_unlock_rw(path->nodes[level],
+ path->locks[level]);
+ path->locks[level] = 0;
+ }
+ free_extent_buffer(path->nodes[level]);
+ path->nodes[level] = NULL;
+ level++;
+ }
+ }
+ return 1;
+}
+
+/*
+ * drop a subvolume tree.
+ *
+ * this function traverses the tree freeing any blocks that only
+ * referenced by the tree.
+ *
+ * when a shared tree block is found. this function decreases its
+ * reference count by one. if update_ref is true, this function
+ * also make sure backrefs for the shared block and all lower level
+ * blocks are properly updated.
+ */
+int btrfs_drop_snapshot(struct btrfs_root *root,
+ struct btrfs_block_rsv *block_rsv, int update_ref,
+ int for_reloc)
+{
+ struct btrfs_path *path;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *tree_root = root->fs_info->tree_root;
+ struct btrfs_root_item *root_item = &root->root_item;
+ struct walk_control *wc;
+ struct btrfs_key key;
+ int err = 0;
+ int ret;
+ int level;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ wc = kzalloc(sizeof(*wc), GFP_NOFS);
+ if (!wc) {
+ btrfs_free_path(path);
+ err = -ENOMEM;
+ goto out;
+ }
+
+ trans = btrfs_start_transaction(tree_root, 0);
+ if (IS_ERR(trans)) {
+ err = PTR_ERR(trans);
+ goto out_free;
+ }
+
+ if (block_rsv)
+ trans->block_rsv = block_rsv;
+
+ if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
+ level = btrfs_header_level(root->node);
+ path->nodes[level] = btrfs_lock_root_node(root);
+ btrfs_set_lock_blocking(path->nodes[level]);
+ path->slots[level] = 0;
+ path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+ memset(&wc->update_progress, 0,
+ sizeof(wc->update_progress));
+ } else {
+ btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
+ memcpy(&wc->update_progress, &key,
+ sizeof(wc->update_progress));
+
+ level = root_item->drop_level;
+ BUG_ON(level == 0);
+ path->lowest_level = level;
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ path->lowest_level = 0;
+ if (ret < 0) {
+ err = ret;
+ goto out_end_trans;
+ }
+ WARN_ON(ret > 0);
+
+ /*
+ * unlock our path, this is safe because only this
+ * function is allowed to delete this snapshot
+ */
+ btrfs_unlock_up_safe(path, 0);
+
+ level = btrfs_header_level(root->node);
+ while (1) {
+ btrfs_tree_lock(path->nodes[level]);
+ btrfs_set_lock_blocking(path->nodes[level]);
+
+ ret = btrfs_lookup_extent_info(trans, root,
+ path->nodes[level]->start,
+ path->nodes[level]->len,
+ &wc->refs[level],
+ &wc->flags[level]);
+ if (ret < 0) {
+ err = ret;
+ goto out_end_trans;
+ }
+ BUG_ON(wc->refs[level] == 0);
+
+ if (level == root_item->drop_level)
+ break;
+
+ btrfs_tree_unlock(path->nodes[level]);
+ WARN_ON(wc->refs[level] != 1);
+ level--;
+ }
+ }
+
+ wc->level = level;
+ wc->shared_level = -1;
+ wc->stage = DROP_REFERENCE;
+ wc->update_ref = update_ref;
+ wc->keep_locks = 0;
+ wc->for_reloc = for_reloc;
+ wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
+
+ while (1) {
+ ret = walk_down_tree(trans, root, path, wc);
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+
+ ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+
+ if (ret > 0) {
+ BUG_ON(wc->stage != DROP_REFERENCE);
+ break;
+ }
+
+ if (wc->stage == DROP_REFERENCE) {
+ level = wc->level;
+ btrfs_node_key(path->nodes[level],
+ &root_item->drop_progress,
+ path->slots[level]);
+ root_item->drop_level = level;
+ }
+
+ BUG_ON(wc->level == 0);
+ if (btrfs_should_end_transaction(trans, tree_root)) {
+ ret = btrfs_update_root(trans, tree_root,
+ &root->root_key,
+ root_item);
+ if (ret) {
+ btrfs_abort_transaction(trans, tree_root, ret);
+ err = ret;
+ goto out_end_trans;
+ }
+
+ btrfs_end_transaction_throttle(trans, tree_root);
+ trans = btrfs_start_transaction(tree_root, 0);
+ if (IS_ERR(trans)) {
+ err = PTR_ERR(trans);
+ goto out_free;
+ }
+ if (block_rsv)
+ trans->block_rsv = block_rsv;
+ }
+ }
+ btrfs_release_path(path);
+ if (err)
+ goto out_end_trans;
+
+ ret = btrfs_del_root(trans, tree_root, &root->root_key);
+ if (ret) {
+ btrfs_abort_transaction(trans, tree_root, ret);
+ goto out_end_trans;
+ }
+
+ if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
+ ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
+ NULL, NULL);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, tree_root, ret);
+ err = ret;
+ goto out_end_trans;
+ } else if (ret > 0) {
+ /* if we fail to delete the orphan item this time
+ * around, it'll get picked up the next time.
+ *
+ * The most common failure here is just -ENOENT.
+ */
+ btrfs_del_orphan_item(trans, tree_root,
+ root->root_key.objectid);
+ }
+ }
+
+ if (root->in_radix) {
+ btrfs_free_fs_root(tree_root->fs_info, root);
+ } else {
+ free_extent_buffer(root->node);
+ free_extent_buffer(root->commit_root);
+ kfree(root);
+ }
+out_end_trans:
+ btrfs_end_transaction_throttle(trans, tree_root);
+out_free:
+ kfree(wc);
+ btrfs_free_path(path);
+out:
+ if (err)
+ btrfs_std_error(root->fs_info, err);
+ return err;
+}
+
+/*
+ * drop subtree rooted at tree block 'node'.
+ *
+ * NOTE: this function will unlock and release tree block 'node'
+ * only used by relocation code
+ */
+int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct extent_buffer *node,
+ struct extent_buffer *parent)
+{
+ struct btrfs_path *path;
+ struct walk_control *wc;
+ int level;
+ int parent_level;
+ int ret = 0;
+ int wret;
+
+ BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ wc = kzalloc(sizeof(*wc), GFP_NOFS);
+ if (!wc) {
+ btrfs_free_path(path);
+ return -ENOMEM;
+ }
+
+ btrfs_assert_tree_locked(parent);
+ parent_level = btrfs_header_level(parent);
+ extent_buffer_get(parent);
+ path->nodes[parent_level] = parent;
+ path->slots[parent_level] = btrfs_header_nritems(parent);
+
+ btrfs_assert_tree_locked(node);
+ level = btrfs_header_level(node);
+ path->nodes[level] = node;
+ path->slots[level] = 0;
+ path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
+
+ wc->refs[parent_level] = 1;
+ wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
+ wc->level = level;
+ wc->shared_level = -1;
+ wc->stage = DROP_REFERENCE;
+ wc->update_ref = 0;
+ wc->keep_locks = 1;
+ wc->for_reloc = 1;
+ wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
+
+ while (1) {
+ wret = walk_down_tree(trans, root, path, wc);
+ if (wret < 0) {
+ ret = wret;
+ break;
+ }
+
+ wret = walk_up_tree(trans, root, path, wc, parent_level);
+ if (wret < 0)
+ ret = wret;
+ if (wret != 0)
+ break;
+ }
+
+ kfree(wc);
+ btrfs_free_path(path);
+ return ret;
+}
+
+static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
+{
+ u64 num_devices;
+ u64 stripped;
+
+ /*
+ * if restripe for this chunk_type is on pick target profile and
+ * return, otherwise do the usual balance
+ */
+ stripped = get_restripe_target(root->fs_info, flags);
+ if (stripped)
+ return extended_to_chunk(stripped);
+
+ /*
+ * we add in the count of missing devices because we want
+ * to make sure that any RAID levels on a degraded FS
+ * continue to be honored.
+ */
+ num_devices = root->fs_info->fs_devices->rw_devices +
+ root->fs_info->fs_devices->missing_devices;
+
+ stripped = BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
+
+ if (num_devices == 1) {
+ stripped |= BTRFS_BLOCK_GROUP_DUP;
+ stripped = flags & ~stripped;
+
+ /* turn raid0 into single device chunks */
+ if (flags & BTRFS_BLOCK_GROUP_RAID0)
+ return stripped;
+
+ /* turn mirroring into duplication */
+ if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10))
+ return stripped | BTRFS_BLOCK_GROUP_DUP;
+ } else {
+ /* they already had raid on here, just return */
+ if (flags & stripped)
+ return flags;
+
+ stripped |= BTRFS_BLOCK_GROUP_DUP;
+ stripped = flags & ~stripped;
+
+ /* switch duplicated blocks with raid1 */
+ if (flags & BTRFS_BLOCK_GROUP_DUP)
+ return stripped | BTRFS_BLOCK_GROUP_RAID1;
+
+ /* this is drive concat, leave it alone */
+ }
+
+ return flags;
+}
+
+static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
+{
+ struct btrfs_space_info *sinfo = cache->space_info;
+ u64 num_bytes;
+ u64 min_allocable_bytes;
+ int ret = -ENOSPC;
+
+
+ /*
+ * We need some metadata space and system metadata space for
+ * allocating chunks in some corner cases until we force to set
+ * it to be readonly.
+ */
+ if ((sinfo->flags &
+ (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
+ !force)
+ min_allocable_bytes = 1 * 1024 * 1024;
+ else
+ min_allocable_bytes = 0;
+
+ spin_lock(&sinfo->lock);
+ spin_lock(&cache->lock);
+
+ if (cache->ro) {
+ ret = 0;
+ goto out;
+ }
+
+ num_bytes = cache->key.offset - cache->reserved - cache->pinned -
+ cache->bytes_super - btrfs_block_group_used(&cache->item);
+
+ if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
+ sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
+ min_allocable_bytes <= sinfo->total_bytes) {
+ sinfo->bytes_readonly += num_bytes;
+ cache->ro = 1;
+ ret = 0;
+ }
+out:
+ spin_unlock(&cache->lock);
+ spin_unlock(&sinfo->lock);
+ return ret;
+}
+
+int btrfs_set_block_group_ro(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache)
+
+{
+ struct btrfs_trans_handle *trans;
+ u64 alloc_flags;
+ int ret;
+
+ BUG_ON(cache->ro);
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ alloc_flags = update_block_group_flags(root, cache->flags);
+ if (alloc_flags != cache->flags) {
+ ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
+ CHUNK_ALLOC_FORCE);
+ if (ret < 0)
+ goto out;
+ }
+
+ ret = set_block_group_ro(cache, 0);
+ if (!ret)
+ goto out;
+ alloc_flags = get_alloc_profile(root, cache->space_info->flags);
+ ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
+ CHUNK_ALLOC_FORCE);
+ if (ret < 0)
+ goto out;
+ ret = set_block_group_ro(cache, 0);
+out:
+ btrfs_end_transaction(trans, root);
+ return ret;
+}
+
+int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 type)
+{
+ u64 alloc_flags = get_alloc_profile(root, type);
+ return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
+ CHUNK_ALLOC_FORCE);
+}
+
+/*
+ * helper to account the unused space of all the readonly block group in the
+ * list. takes mirrors into account.
+ */
+static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
+{
+ struct btrfs_block_group_cache *block_group;
+ u64 free_bytes = 0;
+ int factor;
+
+ list_for_each_entry(block_group, groups_list, list) {
+ spin_lock(&block_group->lock);
+
+ if (!block_group->ro) {
+ spin_unlock(&block_group->lock);
+ continue;
+ }
+
+ if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_DUP))
+ factor = 2;
+ else
+ factor = 1;
+
+ free_bytes += (block_group->key.offset -
+ btrfs_block_group_used(&block_group->item)) *
+ factor;
+
+ spin_unlock(&block_group->lock);
+ }
+
+ return free_bytes;
+}
+
+/*
+ * helper to account the unused space of all the readonly block group in the
+ * space_info. takes mirrors into account.
+ */
+u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
+{
+ int i;
+ u64 free_bytes = 0;
+
+ spin_lock(&sinfo->lock);
+
+ for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
+ if (!list_empty(&sinfo->block_groups[i]))
+ free_bytes += __btrfs_get_ro_block_group_free_space(
+ &sinfo->block_groups[i]);
+
+ spin_unlock(&sinfo->lock);
+
+ return free_bytes;
+}
+
+void btrfs_set_block_group_rw(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache)
+{
+ struct btrfs_space_info *sinfo = cache->space_info;
+ u64 num_bytes;
+
+ BUG_ON(!cache->ro);
+
+ spin_lock(&sinfo->lock);
+ spin_lock(&cache->lock);
+ num_bytes = cache->key.offset - cache->reserved - cache->pinned -
+ cache->bytes_super - btrfs_block_group_used(&cache->item);
+ sinfo->bytes_readonly -= num_bytes;
+ cache->ro = 0;
+ spin_unlock(&cache->lock);
+ spin_unlock(&sinfo->lock);
+}
+
+/*
+ * checks to see if its even possible to relocate this block group.
+ *
+ * @return - -1 if it's not a good idea to relocate this block group, 0 if its
+ * ok to go ahead and try.
+ */
+int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
+{
+ struct btrfs_block_group_cache *block_group;
+ struct btrfs_space_info *space_info;
+ struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+ struct btrfs_device *device;
+ u64 min_free;
+ u64 dev_min = 1;
+ u64 dev_nr = 0;
+ u64 target;
+ int index;
+ int full = 0;
+ int ret = 0;
+
+ block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
+
+ /* odd, couldn't find the block group, leave it alone */
+ if (!block_group)
+ return -1;
+
+ min_free = btrfs_block_group_used(&block_group->item);
+
+ /* no bytes used, we're good */
+ if (!min_free)
+ goto out;
+
+ space_info = block_group->space_info;
+ spin_lock(&space_info->lock);
+
+ full = space_info->full;
+
+ /*
+ * if this is the last block group we have in this space, we can't
+ * relocate it unless we're able to allocate a new chunk below.
+ *
+ * Otherwise, we need to make sure we have room in the space to handle
+ * all of the extents from this block group. If we can, we're good
+ */
+ if ((space_info->total_bytes != block_group->key.offset) &&
+ (space_info->bytes_used + space_info->bytes_reserved +
+ space_info->bytes_pinned + space_info->bytes_readonly +
+ min_free < space_info->total_bytes)) {
+ spin_unlock(&space_info->lock);
+ goto out;
+ }
+ spin_unlock(&space_info->lock);
+
+ /*
+ * ok we don't have enough space, but maybe we have free space on our
+ * devices to allocate new chunks for relocation, so loop through our
+ * alloc devices and guess if we have enough space. if this block
+ * group is going to be restriped, run checks against the target
+ * profile instead of the current one.
+ */
+ ret = -1;
+
+ /*
+ * index:
+ * 0: raid10
+ * 1: raid1
+ * 2: dup
+ * 3: raid0
+ * 4: single
+ */
+ target = get_restripe_target(root->fs_info, block_group->flags);
+ if (target) {
+ index = __get_block_group_index(extended_to_chunk(target));
+ } else {
+ /*
+ * this is just a balance, so if we were marked as full
+ * we know there is no space for a new chunk
+ */
+ if (full)
+ goto out;
+
+ index = get_block_group_index(block_group);
+ }
+
+ if (index == 0) {
+ dev_min = 4;
+ /* Divide by 2 */
+ min_free >>= 1;
+ } else if (index == 1) {
+ dev_min = 2;
+ } else if (index == 2) {
+ /* Multiply by 2 */
+ min_free <<= 1;
+ } else if (index == 3) {
+ dev_min = fs_devices->rw_devices;
+ do_div(min_free, dev_min);
+ }
+
+ mutex_lock(&root->fs_info->chunk_mutex);
+ list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
+ u64 dev_offset;
+
+ /*
+ * check to make sure we can actually find a chunk with enough
+ * space to fit our block group in.
+ */
+ if (device->total_bytes > device->bytes_used + min_free) {
+ ret = find_free_dev_extent(device, min_free,
+ &dev_offset, NULL);
+ if (!ret)
+ dev_nr++;
+
+ if (dev_nr >= dev_min)
+ break;
+
+ ret = -1;
+ }
+ }
+ mutex_unlock(&root->fs_info->chunk_mutex);
+out:
+ btrfs_put_block_group(block_group);
+ return ret;
+}
+
+static int find_first_block_group(struct btrfs_root *root,
+ struct btrfs_path *path, struct btrfs_key *key)
+{
+ int ret = 0;
+ struct btrfs_key found_key;
+ struct extent_buffer *leaf;
+ int slot;
+
+ ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+
+ while (1) {
+ slot = path->slots[0];
+ leaf = path->nodes[0];
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto out;
+ break;
+ }
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+ if (found_key.objectid >= key->objectid &&
+ found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
+ ret = 0;
+ goto out;
+ }
+ path->slots[0]++;
+ }
+out:
+ return ret;
+}
+
+void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
+{
+ struct btrfs_block_group_cache *block_group;
+ u64 last = 0;
+
+ while (1) {
+ struct inode *inode;
+
+ block_group = btrfs_lookup_first_block_group(info, last);
+ while (block_group) {
+ spin_lock(&block_group->lock);
+ if (block_group->iref)
+ break;
+ spin_unlock(&block_group->lock);
+ block_group = next_block_group(info->tree_root,
+ block_group);
+ }
+ if (!block_group) {
+ if (last == 0)
+ break;
+ last = 0;
+ continue;
+ }
+
+ inode = block_group->inode;
+ block_group->iref = 0;
+ block_group->inode = NULL;
+ spin_unlock(&block_group->lock);
+ iput(inode);
+ last = block_group->key.objectid + block_group->key.offset;
+ btrfs_put_block_group(block_group);
+ }
+}
+
+int btrfs_free_block_groups(struct btrfs_fs_info *info)
+{
+ struct btrfs_block_group_cache *block_group;
+ struct btrfs_space_info *space_info;
+ struct btrfs_caching_control *caching_ctl;
+ struct rb_node *n;
+
+ down_write(&info->extent_commit_sem);
+ while (!list_empty(&info->caching_block_groups)) {
+ caching_ctl = list_entry(info->caching_block_groups.next,
+ struct btrfs_caching_control, list);
+ list_del(&caching_ctl->list);
+ put_caching_control(caching_ctl);
+ }
+ up_write(&info->extent_commit_sem);
+
+ spin_lock(&info->block_group_cache_lock);
+ while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
+ block_group = rb_entry(n, struct btrfs_block_group_cache,
+ cache_node);
+ rb_erase(&block_group->cache_node,
+ &info->block_group_cache_tree);
+ spin_unlock(&info->block_group_cache_lock);
+
+ down_write(&block_group->space_info->groups_sem);
+ list_del(&block_group->list);
+ up_write(&block_group->space_info->groups_sem);
+
+ if (block_group->cached == BTRFS_CACHE_STARTED)
+ wait_block_group_cache_done(block_group);
+
+ /*
+ * We haven't cached this block group, which means we could
+ * possibly have excluded extents on this block group.
+ */
+ if (block_group->cached == BTRFS_CACHE_NO)
+ free_excluded_extents(info->extent_root, block_group);
+
+ btrfs_remove_free_space_cache(block_group);
+ btrfs_put_block_group(block_group);
+
+ spin_lock(&info->block_group_cache_lock);
+ }
+ spin_unlock(&info->block_group_cache_lock);
+
+ /* now that all the block groups are freed, go through and
+ * free all the space_info structs. This is only called during
+ * the final stages of unmount, and so we know nobody is
+ * using them. We call synchronize_rcu() once before we start,
+ * just to be on the safe side.
+ */
+ synchronize_rcu();
+
+ release_global_block_rsv(info);
+
+ while(!list_empty(&info->space_info)) {
+ space_info = list_entry(info->space_info.next,
+ struct btrfs_space_info,
+ list);
+ if (space_info->bytes_pinned > 0 ||
+ space_info->bytes_reserved > 0 ||
+ space_info->bytes_may_use > 0) {
+ WARN_ON(1);
+ dump_space_info(space_info, 0, 0);
+ }
+ list_del(&space_info->list);
+ kfree(space_info);
+ }
+ return 0;
+}
+
+static void __link_block_group(struct btrfs_space_info *space_info,
+ struct btrfs_block_group_cache *cache)
+{
+ int index = get_block_group_index(cache);
+
+ down_write(&space_info->groups_sem);
+ list_add_tail(&cache->list, &space_info->block_groups[index]);
+ up_write(&space_info->groups_sem);
+}
+
+int btrfs_read_block_groups(struct btrfs_root *root)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct btrfs_block_group_cache *cache;
+ struct btrfs_fs_info *info = root->fs_info;
+ struct btrfs_space_info *space_info;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct extent_buffer *leaf;
+ int need_clear = 0;
+ u64 cache_gen;
+
+ root = info->extent_root;
+ key.objectid = 0;
+ key.offset = 0;
+ btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = 1;
+
+ cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
+ if (btrfs_test_opt(root, SPACE_CACHE) &&
+ btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
+ need_clear = 1;
+ if (btrfs_test_opt(root, CLEAR_CACHE))
+ need_clear = 1;
+
+ while (1) {
+ ret = find_first_block_group(root, path, &key);
+ if (ret > 0)
+ break;
+ if (ret != 0)
+ goto error;
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ cache = kzalloc(sizeof(*cache), GFP_NOFS);
+ if (!cache) {
+ ret = -ENOMEM;
+ goto error;
+ }
+ cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
+ GFP_NOFS);
+ if (!cache->free_space_ctl) {
+ kfree(cache);
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ atomic_set(&cache->count, 1);
+ spin_lock_init(&cache->lock);
+ cache->fs_info = info;
+ INIT_LIST_HEAD(&cache->list);
+ INIT_LIST_HEAD(&cache->cluster_list);
+
+ if (need_clear)
+ cache->disk_cache_state = BTRFS_DC_CLEAR;
+
+ read_extent_buffer(leaf, &cache->item,
+ btrfs_item_ptr_offset(leaf, path->slots[0]),
+ sizeof(cache->item));
+ memcpy(&cache->key, &found_key, sizeof(found_key));
+
+ key.objectid = found_key.objectid + found_key.offset;
+ btrfs_release_path(path);
+ cache->flags = btrfs_block_group_flags(&cache->item);
+ cache->sectorsize = root->sectorsize;
+
+ btrfs_init_free_space_ctl(cache);
+
+ /*
+ * We need to exclude the super stripes now so that the space
+ * info has super bytes accounted for, otherwise we'll think
+ * we have more space than we actually do.
+ */
+ exclude_super_stripes(root, cache);
+
+ /*
+ * check for two cases, either we are full, and therefore
+ * don't need to bother with the caching work since we won't
+ * find any space, or we are empty, and we can just add all
+ * the space in and be done with it. This saves us _alot_ of
+ * time, particularly in the full case.
+ */
+ if (found_key.offset == btrfs_block_group_used(&cache->item)) {
+ cache->last_byte_to_unpin = (u64)-1;
+ cache->cached = BTRFS_CACHE_FINISHED;
+ free_excluded_extents(root, cache);
+ } else if (btrfs_block_group_used(&cache->item) == 0) {
+ cache->last_byte_to_unpin = (u64)-1;
+ cache->cached = BTRFS_CACHE_FINISHED;
+ add_new_free_space(cache, root->fs_info,
+ found_key.objectid,
+ found_key.objectid +
+ found_key.offset);
+ free_excluded_extents(root, cache);
+ }
+
+ ret = update_space_info(info, cache->flags, found_key.offset,
+ btrfs_block_group_used(&cache->item),
+ &space_info);
+ BUG_ON(ret); /* -ENOMEM */
+ cache->space_info = space_info;
+ spin_lock(&cache->space_info->lock);
+ cache->space_info->bytes_readonly += cache->bytes_super;
+ spin_unlock(&cache->space_info->lock);
+
+ __link_block_group(space_info, cache);
+
+ ret = btrfs_add_block_group_cache(root->fs_info, cache);
+ BUG_ON(ret); /* Logic error */
+
+ set_avail_alloc_bits(root->fs_info, cache->flags);
+ if (btrfs_chunk_readonly(root, cache->key.objectid))
+ set_block_group_ro(cache, 1);
+ }
+
+ list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
+ if (!(get_alloc_profile(root, space_info->flags) &
+ (BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_DUP)))
+ continue;
+ /*
+ * avoid allocating from un-mirrored block group if there are
+ * mirrored block groups.
+ */
+ list_for_each_entry(cache, &space_info->block_groups[3], list)
+ set_block_group_ro(cache, 1);
+ list_for_each_entry(cache, &space_info->block_groups[4], list)
+ set_block_group_ro(cache, 1);
+ }
+
+ init_global_block_rsv(info);
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_make_block_group(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 bytes_used,
+ u64 type, u64 chunk_objectid, u64 chunk_offset,
+ u64 size)
+{
+ int ret;
+ struct btrfs_root *extent_root;
+ struct btrfs_block_group_cache *cache;
+
+ extent_root = root->fs_info->extent_root;
+
+ root->fs_info->last_trans_log_full_commit = trans->transid;
+
+ cache = kzalloc(sizeof(*cache), GFP_NOFS);
+ if (!cache)
+ return -ENOMEM;
+ cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
+ GFP_NOFS);
+ if (!cache->free_space_ctl) {
+ kfree(cache);
+ return -ENOMEM;
+ }
+
+ cache->key.objectid = chunk_offset;
+ cache->key.offset = size;
+ cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
+ cache->sectorsize = root->sectorsize;
+ cache->fs_info = root->fs_info;
+
+ atomic_set(&cache->count, 1);
+ spin_lock_init(&cache->lock);
+ INIT_LIST_HEAD(&cache->list);
+ INIT_LIST_HEAD(&cache->cluster_list);
+
+ btrfs_init_free_space_ctl(cache);
+
+ btrfs_set_block_group_used(&cache->item, bytes_used);
+ btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
+ cache->flags = type;
+ btrfs_set_block_group_flags(&cache->item, type);
+
+ cache->last_byte_to_unpin = (u64)-1;
+ cache->cached = BTRFS_CACHE_FINISHED;
+ exclude_super_stripes(root, cache);
+
+ add_new_free_space(cache, root->fs_info, chunk_offset,
+ chunk_offset + size);
+
+ free_excluded_extents(root, cache);
+
+ ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
+ &cache->space_info);
+ BUG_ON(ret); /* -ENOMEM */
+ update_global_block_rsv(root->fs_info);
+
+ spin_lock(&cache->space_info->lock);
+ cache->space_info->bytes_readonly += cache->bytes_super;
+ spin_unlock(&cache->space_info->lock);
+
+ __link_block_group(cache->space_info, cache);
+
+ ret = btrfs_add_block_group_cache(root->fs_info, cache);
+ BUG_ON(ret); /* Logic error */
+
+ ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
+ sizeof(cache->item));
+ if (ret) {
+ btrfs_abort_transaction(trans, extent_root, ret);
+ return ret;
+ }
+
+ set_avail_alloc_bits(extent_root->fs_info, type);
+
+ return 0;
+}
+
+static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
+{
+ u64 extra_flags = chunk_to_extended(flags) &
+ BTRFS_EXTENDED_PROFILE_MASK;
+
+ if (flags & BTRFS_BLOCK_GROUP_DATA)
+ fs_info->avail_data_alloc_bits &= ~extra_flags;
+ if (flags & BTRFS_BLOCK_GROUP_METADATA)
+ fs_info->avail_metadata_alloc_bits &= ~extra_flags;
+ if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
+ fs_info->avail_system_alloc_bits &= ~extra_flags;
+}
+
+int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 group_start)
+{
+ struct btrfs_path *path;
+ struct btrfs_block_group_cache *block_group;
+ struct btrfs_free_cluster *cluster;
+ struct btrfs_root *tree_root = root->fs_info->tree_root;
+ struct btrfs_key key;
+ struct inode *inode;
+ int ret;
+ int index;
+ int factor;
+
+ root = root->fs_info->extent_root;
+
+ block_group = btrfs_lookup_block_group(root->fs_info, group_start);
+ BUG_ON(!block_group);
+ BUG_ON(!block_group->ro);
+
+ /*
+ * Free the reserved super bytes from this block group before
+ * remove it.
+ */
+ free_excluded_extents(root, block_group);
+
+ memcpy(&key, &block_group->key, sizeof(key));
+ index = get_block_group_index(block_group);
+ if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
+ BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10))
+ factor = 2;
+ else
+ factor = 1;
+
+ /* make sure this block group isn't part of an allocation cluster */
+ cluster = &root->fs_info->data_alloc_cluster;
+ spin_lock(&cluster->refill_lock);
+ btrfs_return_cluster_to_free_space(block_group, cluster);
+ spin_unlock(&cluster->refill_lock);
+
+ /*
+ * make sure this block group isn't part of a metadata
+ * allocation cluster
+ */
+ cluster = &root->fs_info->meta_alloc_cluster;
+ spin_lock(&cluster->refill_lock);
+ btrfs_return_cluster_to_free_space(block_group, cluster);
+ spin_unlock(&cluster->refill_lock);
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ inode = lookup_free_space_inode(tree_root, block_group, path);
+ if (!IS_ERR(inode)) {
+ ret = btrfs_orphan_add(trans, inode);
+ if (ret) {
+ btrfs_add_delayed_iput(inode);
+ goto out;
+ }
+ clear_nlink(inode);
+ /* One for the block groups ref */
+ spin_lock(&block_group->lock);
+ if (block_group->iref) {
+ block_group->iref = 0;
+ block_group->inode = NULL;
+ spin_unlock(&block_group->lock);
+ iput(inode);
+ } else {
+ spin_unlock(&block_group->lock);
+ }
+ /* One for our lookup ref */
+ btrfs_add_delayed_iput(inode);
+ }
+
+ key.objectid = BTRFS_FREE_SPACE_OBJECTID;
+ key.offset = block_group->key.objectid;
+ key.type = 0;
+
+ ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
+ if (ret < 0)
+ goto out;
+ if (ret > 0)
+ btrfs_release_path(path);
+ if (ret == 0) {
+ ret = btrfs_del_item(trans, tree_root, path);
+ if (ret)
+ goto out;
+ btrfs_release_path(path);
+ }
+
+ spin_lock(&root->fs_info->block_group_cache_lock);
+ rb_erase(&block_group->cache_node,
+ &root->fs_info->block_group_cache_tree);
+ spin_unlock(&root->fs_info->block_group_cache_lock);
+
+ down_write(&block_group->space_info->groups_sem);
+ /*
+ * we must use list_del_init so people can check to see if they
+ * are still on the list after taking the semaphore
+ */
+ list_del_init(&block_group->list);
+ if (list_empty(&block_group->space_info->block_groups[index]))
+ clear_avail_alloc_bits(root->fs_info, block_group->flags);
+ up_write(&block_group->space_info->groups_sem);
+
+ if (block_group->cached == BTRFS_CACHE_STARTED)
+ wait_block_group_cache_done(block_group);
+
+ btrfs_remove_free_space_cache(block_group);
+
+ spin_lock(&block_group->space_info->lock);
+ block_group->space_info->total_bytes -= block_group->key.offset;
+ block_group->space_info->bytes_readonly -= block_group->key.offset;
+ block_group->space_info->disk_total -= block_group->key.offset * factor;
+ spin_unlock(&block_group->space_info->lock);
+
+ memcpy(&key, &block_group->key, sizeof(key));
+
+ btrfs_clear_space_info_full(root->fs_info);
+
+ btrfs_put_block_group(block_group);
+ btrfs_put_block_group(block_group);
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret > 0)
+ ret = -EIO;
+ if (ret < 0)
+ goto out;
+
+ ret = btrfs_del_item(trans, root, path);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_space_info *space_info;
+ struct btrfs_super_block *disk_super;
+ u64 features;
+ u64 flags;
+ int mixed = 0;
+ int ret;
+
+ disk_super = fs_info->super_copy;
+ if (!btrfs_super_root(disk_super))
+ return 1;
+
+ features = btrfs_super_incompat_flags(disk_super);
+ if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
+ mixed = 1;
+
+ flags = BTRFS_BLOCK_GROUP_SYSTEM;
+ ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+ if (ret)
+ goto out;
+
+ if (mixed) {
+ flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
+ ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+ } else {
+ flags = BTRFS_BLOCK_GROUP_METADATA;
+ ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+ if (ret)
+ goto out;
+
+ flags = BTRFS_BLOCK_GROUP_DATA;
+ ret = update_space_info(fs_info, flags, 0, 0, &space_info);
+ }
+out:
+ return ret;
+}
+
+int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
+{
+ return unpin_extent_range(root, start, end);
+}
+
+int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
+ u64 num_bytes, u64 *actual_bytes)
+{
+ return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
+}
+
+int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_block_group_cache *cache = NULL;
+ u64 group_trimmed;
+ u64 start;
+ u64 end;
+ u64 trimmed = 0;
+ u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
+ int ret = 0;
+
+ /*
+ * try to trim all FS space, our block group may start from non-zero.
+ */
+ if (range->len == total_bytes)
+ cache = btrfs_lookup_first_block_group(fs_info, range->start);
+ else
+ cache = btrfs_lookup_block_group(fs_info, range->start);
+
+ while (cache) {
+ if (cache->key.objectid >= (range->start + range->len)) {
+ btrfs_put_block_group(cache);
+ break;
+ }
+
+ start = max(range->start, cache->key.objectid);
+ end = min(range->start + range->len,
+ cache->key.objectid + cache->key.offset);
+
+ if (end - start >= range->minlen) {
+ if (!block_group_cache_done(cache)) {
+ ret = cache_block_group(cache, NULL, root, 0);
+ if (!ret)
+ wait_block_group_cache_done(cache);
+ }
+ ret = btrfs_trim_block_group(cache,
+ &group_trimmed,
+ start,
+ end,
+ range->minlen);
+
+ trimmed += group_trimmed;
+ if (ret) {
+ btrfs_put_block_group(cache);
+ break;
+ }
+ }
+
+ cache = next_block_group(fs_info->tree_root, cache);
+ }
+
+ range->len = trimmed;
+ return ret;
+}
diff --git a/fs/btrfs/extent_io.c b/fs/btrfs/extent_io.c
new file mode 100644
index 00000000..c9018a05
--- /dev/null
+++ b/fs/btrfs/extent_io.c
@@ -0,0 +1,4891 @@
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/bio.h>
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/page-flags.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/blkdev.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/pagevec.h>
+#include <linux/prefetch.h>
+#include <linux/cleancache.h>
+#include "extent_io.h"
+#include "extent_map.h"
+#include "compat.h"
+#include "ctree.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "check-integrity.h"
+#include "locking.h"
+
+static struct kmem_cache *extent_state_cache;
+static struct kmem_cache *extent_buffer_cache;
+
+static LIST_HEAD(buffers);
+static LIST_HEAD(states);
+
+#define LEAK_DEBUG 0
+#if LEAK_DEBUG
+static DEFINE_SPINLOCK(leak_lock);
+#endif
+
+#define BUFFER_LRU_MAX 64
+
+struct tree_entry {
+ u64 start;
+ u64 end;
+ struct rb_node rb_node;
+};
+
+struct extent_page_data {
+ struct bio *bio;
+ struct extent_io_tree *tree;
+ get_extent_t *get_extent;
+
+ /* tells writepage not to lock the state bits for this range
+ * it still does the unlocking
+ */
+ unsigned int extent_locked:1;
+
+ /* tells the submit_bio code to use a WRITE_SYNC */
+ unsigned int sync_io:1;
+};
+
+static noinline void flush_write_bio(void *data);
+static inline struct btrfs_fs_info *
+tree_fs_info(struct extent_io_tree *tree)
+{
+ return btrfs_sb(tree->mapping->host->i_sb);
+}
+
+int __init extent_io_init(void)
+{
+ extent_state_cache = kmem_cache_create("extent_state",
+ sizeof(struct extent_state), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+ if (!extent_state_cache)
+ return -ENOMEM;
+
+ extent_buffer_cache = kmem_cache_create("extent_buffers",
+ sizeof(struct extent_buffer), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+ if (!extent_buffer_cache)
+ goto free_state_cache;
+ return 0;
+
+free_state_cache:
+ kmem_cache_destroy(extent_state_cache);
+ return -ENOMEM;
+}
+
+void extent_io_exit(void)
+{
+ struct extent_state *state;
+ struct extent_buffer *eb;
+
+ while (!list_empty(&states)) {
+ state = list_entry(states.next, struct extent_state, leak_list);
+ printk(KERN_ERR "btrfs state leak: start %llu end %llu "
+ "state %lu in tree %p refs %d\n",
+ (unsigned long long)state->start,
+ (unsigned long long)state->end,
+ state->state, state->tree, atomic_read(&state->refs));
+ list_del(&state->leak_list);
+ kmem_cache_free(extent_state_cache, state);
+
+ }
+
+ while (!list_empty(&buffers)) {
+ eb = list_entry(buffers.next, struct extent_buffer, leak_list);
+ printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
+ "refs %d\n", (unsigned long long)eb->start,
+ eb->len, atomic_read(&eb->refs));
+ list_del(&eb->leak_list);
+ kmem_cache_free(extent_buffer_cache, eb);
+ }
+ if (extent_state_cache)
+ kmem_cache_destroy(extent_state_cache);
+ if (extent_buffer_cache)
+ kmem_cache_destroy(extent_buffer_cache);
+}
+
+void extent_io_tree_init(struct extent_io_tree *tree,
+ struct address_space *mapping)
+{
+ tree->state = RB_ROOT;
+ INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
+ tree->ops = NULL;
+ tree->dirty_bytes = 0;
+ spin_lock_init(&tree->lock);
+ spin_lock_init(&tree->buffer_lock);
+ tree->mapping = mapping;
+}
+
+static struct extent_state *alloc_extent_state(gfp_t mask)
+{
+ struct extent_state *state;
+#if LEAK_DEBUG
+ unsigned long flags;
+#endif
+
+ state = kmem_cache_alloc(extent_state_cache, mask);
+ if (!state)
+ return state;
+ state->state = 0;
+ state->private = 0;
+ state->tree = NULL;
+#if LEAK_DEBUG
+ spin_lock_irqsave(&leak_lock, flags);
+ list_add(&state->leak_list, &states);
+ spin_unlock_irqrestore(&leak_lock, flags);
+#endif
+ atomic_set(&state->refs, 1);
+ init_waitqueue_head(&state->wq);
+ trace_alloc_extent_state(state, mask, _RET_IP_);
+ return state;
+}
+
+void free_extent_state(struct extent_state *state)
+{
+ if (!state)
+ return;
+ if (atomic_dec_and_test(&state->refs)) {
+#if LEAK_DEBUG
+ unsigned long flags;
+#endif
+ WARN_ON(state->tree);
+#if LEAK_DEBUG
+ spin_lock_irqsave(&leak_lock, flags);
+ list_del(&state->leak_list);
+ spin_unlock_irqrestore(&leak_lock, flags);
+#endif
+ trace_free_extent_state(state, _RET_IP_);
+ kmem_cache_free(extent_state_cache, state);
+ }
+}
+
+static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
+ struct rb_node *node)
+{
+ struct rb_node **p = &root->rb_node;
+ struct rb_node *parent = NULL;
+ struct tree_entry *entry;
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct tree_entry, rb_node);
+
+ if (offset < entry->start)
+ p = &(*p)->rb_left;
+ else if (offset > entry->end)
+ p = &(*p)->rb_right;
+ else
+ return parent;
+ }
+
+ entry = rb_entry(node, struct tree_entry, rb_node);
+ rb_link_node(node, parent, p);
+ rb_insert_color(node, root);
+ return NULL;
+}
+
+static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
+ struct rb_node **prev_ret,
+ struct rb_node **next_ret)
+{
+ struct rb_root *root = &tree->state;
+ struct rb_node *n = root->rb_node;
+ struct rb_node *prev = NULL;
+ struct rb_node *orig_prev = NULL;
+ struct tree_entry *entry;
+ struct tree_entry *prev_entry = NULL;
+
+ while (n) {
+ entry = rb_entry(n, struct tree_entry, rb_node);
+ prev = n;
+ prev_entry = entry;
+
+ if (offset < entry->start)
+ n = n->rb_left;
+ else if (offset > entry->end)
+ n = n->rb_right;
+ else
+ return n;
+ }
+
+ if (prev_ret) {
+ orig_prev = prev;
+ while (prev && offset > prev_entry->end) {
+ prev = rb_next(prev);
+ prev_entry = rb_entry(prev, struct tree_entry, rb_node);
+ }
+ *prev_ret = prev;
+ prev = orig_prev;
+ }
+
+ if (next_ret) {
+ prev_entry = rb_entry(prev, struct tree_entry, rb_node);
+ while (prev && offset < prev_entry->start) {
+ prev = rb_prev(prev);
+ prev_entry = rb_entry(prev, struct tree_entry, rb_node);
+ }
+ *next_ret = prev;
+ }
+ return NULL;
+}
+
+static inline struct rb_node *tree_search(struct extent_io_tree *tree,
+ u64 offset)
+{
+ struct rb_node *prev = NULL;
+ struct rb_node *ret;
+
+ ret = __etree_search(tree, offset, &prev, NULL);
+ if (!ret)
+ return prev;
+ return ret;
+}
+
+static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
+ struct extent_state *other)
+{
+ if (tree->ops && tree->ops->merge_extent_hook)
+ tree->ops->merge_extent_hook(tree->mapping->host, new,
+ other);
+}
+
+/*
+ * utility function to look for merge candidates inside a given range.
+ * Any extents with matching state are merged together into a single
+ * extent in the tree. Extents with EXTENT_IO in their state field
+ * are not merged because the end_io handlers need to be able to do
+ * operations on them without sleeping (or doing allocations/splits).
+ *
+ * This should be called with the tree lock held.
+ */
+static void merge_state(struct extent_io_tree *tree,
+ struct extent_state *state)
+{
+ struct extent_state *other;
+ struct rb_node *other_node;
+
+ if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
+ return;
+
+ other_node = rb_prev(&state->rb_node);
+ if (other_node) {
+ other = rb_entry(other_node, struct extent_state, rb_node);
+ if (other->end == state->start - 1 &&
+ other->state == state->state) {
+ merge_cb(tree, state, other);
+ state->start = other->start;
+ other->tree = NULL;
+ rb_erase(&other->rb_node, &tree->state);
+ free_extent_state(other);
+ }
+ }
+ other_node = rb_next(&state->rb_node);
+ if (other_node) {
+ other = rb_entry(other_node, struct extent_state, rb_node);
+ if (other->start == state->end + 1 &&
+ other->state == state->state) {
+ merge_cb(tree, state, other);
+ state->end = other->end;
+ other->tree = NULL;
+ rb_erase(&other->rb_node, &tree->state);
+ free_extent_state(other);
+ }
+ }
+}
+
+static void set_state_cb(struct extent_io_tree *tree,
+ struct extent_state *state, int *bits)
+{
+ if (tree->ops && tree->ops->set_bit_hook)
+ tree->ops->set_bit_hook(tree->mapping->host, state, bits);
+}
+
+static void clear_state_cb(struct extent_io_tree *tree,
+ struct extent_state *state, int *bits)
+{
+ if (tree->ops && tree->ops->clear_bit_hook)
+ tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
+}
+
+static void set_state_bits(struct extent_io_tree *tree,
+ struct extent_state *state, int *bits);
+
+/*
+ * insert an extent_state struct into the tree. 'bits' are set on the
+ * struct before it is inserted.
+ *
+ * This may return -EEXIST if the extent is already there, in which case the
+ * state struct is freed.
+ *
+ * The tree lock is not taken internally. This is a utility function and
+ * probably isn't what you want to call (see set/clear_extent_bit).
+ */
+static int insert_state(struct extent_io_tree *tree,
+ struct extent_state *state, u64 start, u64 end,
+ int *bits)
+{
+ struct rb_node *node;
+
+ if (end < start) {
+ printk(KERN_ERR "btrfs end < start %llu %llu\n",
+ (unsigned long long)end,
+ (unsigned long long)start);
+ WARN_ON(1);
+ }
+ state->start = start;
+ state->end = end;
+
+ set_state_bits(tree, state, bits);
+
+ node = tree_insert(&tree->state, end, &state->rb_node);
+ if (node) {
+ struct extent_state *found;
+ found = rb_entry(node, struct extent_state, rb_node);
+ printk(KERN_ERR "btrfs found node %llu %llu on insert of "
+ "%llu %llu\n", (unsigned long long)found->start,
+ (unsigned long long)found->end,
+ (unsigned long long)start, (unsigned long long)end);
+ return -EEXIST;
+ }
+ state->tree = tree;
+ merge_state(tree, state);
+ return 0;
+}
+
+static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
+ u64 split)
+{
+ if (tree->ops && tree->ops->split_extent_hook)
+ tree->ops->split_extent_hook(tree->mapping->host, orig, split);
+}
+
+/*
+ * split a given extent state struct in two, inserting the preallocated
+ * struct 'prealloc' as the newly created second half. 'split' indicates an
+ * offset inside 'orig' where it should be split.
+ *
+ * Before calling,
+ * the tree has 'orig' at [orig->start, orig->end]. After calling, there
+ * are two extent state structs in the tree:
+ * prealloc: [orig->start, split - 1]
+ * orig: [ split, orig->end ]
+ *
+ * The tree locks are not taken by this function. They need to be held
+ * by the caller.
+ */
+static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
+ struct extent_state *prealloc, u64 split)
+{
+ struct rb_node *node;
+
+ split_cb(tree, orig, split);
+
+ prealloc->start = orig->start;
+ prealloc->end = split - 1;
+ prealloc->state = orig->state;
+ orig->start = split;
+
+ node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
+ if (node) {
+ free_extent_state(prealloc);
+ return -EEXIST;
+ }
+ prealloc->tree = tree;
+ return 0;
+}
+
+static struct extent_state *next_state(struct extent_state *state)
+{
+ struct rb_node *next = rb_next(&state->rb_node);
+ if (next)
+ return rb_entry(next, struct extent_state, rb_node);
+ else
+ return NULL;
+}
+
+/*
+ * utility function to clear some bits in an extent state struct.
+ * it will optionally wake up any one waiting on this state (wake == 1)
+ *
+ * If no bits are set on the state struct after clearing things, the
+ * struct is freed and removed from the tree
+ */
+static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
+ struct extent_state *state,
+ int *bits, int wake)
+{
+ struct extent_state *next;
+ int bits_to_clear = *bits & ~EXTENT_CTLBITS;
+
+ if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
+ u64 range = state->end - state->start + 1;
+ WARN_ON(range > tree->dirty_bytes);
+ tree->dirty_bytes -= range;
+ }
+ clear_state_cb(tree, state, bits);
+ state->state &= ~bits_to_clear;
+ if (wake)
+ wake_up(&state->wq);
+ if (state->state == 0) {
+ next = next_state(state);
+ if (state->tree) {
+ rb_erase(&state->rb_node, &tree->state);
+ state->tree = NULL;
+ free_extent_state(state);
+ } else {
+ WARN_ON(1);
+ }
+ } else {
+ merge_state(tree, state);
+ next = next_state(state);
+ }
+ return next;
+}
+
+static struct extent_state *
+alloc_extent_state_atomic(struct extent_state *prealloc)
+{
+ if (!prealloc)
+ prealloc = alloc_extent_state(GFP_ATOMIC);
+
+ return prealloc;
+}
+
+void extent_io_tree_panic(struct extent_io_tree *tree, int err)
+{
+ btrfs_panic(tree_fs_info(tree), err, "Locking error: "
+ "Extent tree was modified by another "
+ "thread while locked.");
+}
+
+/*
+ * clear some bits on a range in the tree. This may require splitting
+ * or inserting elements in the tree, so the gfp mask is used to
+ * indicate which allocations or sleeping are allowed.
+ *
+ * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
+ * the given range from the tree regardless of state (ie for truncate).
+ *
+ * the range [start, end] is inclusive.
+ *
+ * This takes the tree lock, and returns 0 on success and < 0 on error.
+ */
+int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, int wake, int delete,
+ struct extent_state **cached_state,
+ gfp_t mask)
+{
+ struct extent_state *state;
+ struct extent_state *cached;
+ struct extent_state *prealloc = NULL;
+ struct rb_node *node;
+ u64 last_end;
+ int err;
+ int clear = 0;
+
+ if (delete)
+ bits |= ~EXTENT_CTLBITS;
+ bits |= EXTENT_FIRST_DELALLOC;
+
+ if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
+ clear = 1;
+again:
+ if (!prealloc && (mask & __GFP_WAIT)) {
+ prealloc = alloc_extent_state(mask);
+ if (!prealloc)
+ return -ENOMEM;
+ }
+
+ spin_lock(&tree->lock);
+ if (cached_state) {
+ cached = *cached_state;
+
+ if (clear) {
+ *cached_state = NULL;
+ cached_state = NULL;
+ }
+
+ if (cached && cached->tree && cached->start <= start &&
+ cached->end > start) {
+ if (clear)
+ atomic_dec(&cached->refs);
+ state = cached;
+ goto hit_next;
+ }
+ if (clear)
+ free_extent_state(cached);
+ }
+ /*
+ * this search will find the extents that end after
+ * our range starts
+ */
+ node = tree_search(tree, start);
+ if (!node)
+ goto out;
+ state = rb_entry(node, struct extent_state, rb_node);
+hit_next:
+ if (state->start > end)
+ goto out;
+ WARN_ON(state->end < start);
+ last_end = state->end;
+
+ /* the state doesn't have the wanted bits, go ahead */
+ if (!(state->state & bits)) {
+ state = next_state(state);
+ goto next;
+ }
+
+ /*
+ * | ---- desired range ---- |
+ * | state | or
+ * | ------------- state -------------- |
+ *
+ * We need to split the extent we found, and may flip
+ * bits on second half.
+ *
+ * If the extent we found extends past our range, we
+ * just split and search again. It'll get split again
+ * the next time though.
+ *
+ * If the extent we found is inside our range, we clear
+ * the desired bit on it.
+ */
+
+ if (state->start < start) {
+ prealloc = alloc_extent_state_atomic(prealloc);
+ BUG_ON(!prealloc);
+ err = split_state(tree, state, prealloc, start);
+ if (err)
+ extent_io_tree_panic(tree, err);
+
+ prealloc = NULL;
+ if (err)
+ goto out;
+ if (state->end <= end) {
+ clear_state_bit(tree, state, &bits, wake);
+ if (last_end == (u64)-1)
+ goto out;
+ start = last_end + 1;
+ }
+ goto search_again;
+ }
+ /*
+ * | ---- desired range ---- |
+ * | state |
+ * We need to split the extent, and clear the bit
+ * on the first half
+ */
+ if (state->start <= end && state->end > end) {
+ prealloc = alloc_extent_state_atomic(prealloc);
+ BUG_ON(!prealloc);
+ err = split_state(tree, state, prealloc, end + 1);
+ if (err)
+ extent_io_tree_panic(tree, err);
+
+ if (wake)
+ wake_up(&state->wq);
+
+ clear_state_bit(tree, prealloc, &bits, wake);
+
+ prealloc = NULL;
+ goto out;
+ }
+
+ state = clear_state_bit(tree, state, &bits, wake);
+next:
+ if (last_end == (u64)-1)
+ goto out;
+ start = last_end + 1;
+ if (start <= end && state && !need_resched())
+ goto hit_next;
+ goto search_again;
+
+out:
+ spin_unlock(&tree->lock);
+ if (prealloc)
+ free_extent_state(prealloc);
+
+ return 0;
+
+search_again:
+ if (start > end)
+ goto out;
+ spin_unlock(&tree->lock);
+ if (mask & __GFP_WAIT)
+ cond_resched();
+ goto again;
+}
+
+static void wait_on_state(struct extent_io_tree *tree,
+ struct extent_state *state)
+ __releases(tree->lock)
+ __acquires(tree->lock)
+{
+ DEFINE_WAIT(wait);
+ prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
+ spin_unlock(&tree->lock);
+ schedule();
+ spin_lock(&tree->lock);
+ finish_wait(&state->wq, &wait);
+}
+
+/*
+ * waits for one or more bits to clear on a range in the state tree.
+ * The range [start, end] is inclusive.
+ * The tree lock is taken by this function
+ */
+void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
+{
+ struct extent_state *state;
+ struct rb_node *node;
+
+ spin_lock(&tree->lock);
+again:
+ while (1) {
+ /*
+ * this search will find all the extents that end after
+ * our range starts
+ */
+ node = tree_search(tree, start);
+ if (!node)
+ break;
+
+ state = rb_entry(node, struct extent_state, rb_node);
+
+ if (state->start > end)
+ goto out;
+
+ if (state->state & bits) {
+ start = state->start;
+ atomic_inc(&state->refs);
+ wait_on_state(tree, state);
+ free_extent_state(state);
+ goto again;
+ }
+ start = state->end + 1;
+
+ if (start > end)
+ break;
+
+ cond_resched_lock(&tree->lock);
+ }
+out:
+ spin_unlock(&tree->lock);
+}
+
+static void set_state_bits(struct extent_io_tree *tree,
+ struct extent_state *state,
+ int *bits)
+{
+ int bits_to_set = *bits & ~EXTENT_CTLBITS;
+
+ set_state_cb(tree, state, bits);
+ if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
+ u64 range = state->end - state->start + 1;
+ tree->dirty_bytes += range;
+ }
+ state->state |= bits_to_set;
+}
+
+static void cache_state(struct extent_state *state,
+ struct extent_state **cached_ptr)
+{
+ if (cached_ptr && !(*cached_ptr)) {
+ if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
+ *cached_ptr = state;
+ atomic_inc(&state->refs);
+ }
+ }
+}
+
+static void uncache_state(struct extent_state **cached_ptr)
+{
+ if (cached_ptr && (*cached_ptr)) {
+ struct extent_state *state = *cached_ptr;
+ *cached_ptr = NULL;
+ free_extent_state(state);
+ }
+}
+
+/*
+ * set some bits on a range in the tree. This may require allocations or
+ * sleeping, so the gfp mask is used to indicate what is allowed.
+ *
+ * If any of the exclusive bits are set, this will fail with -EEXIST if some
+ * part of the range already has the desired bits set. The start of the
+ * existing range is returned in failed_start in this case.
+ *
+ * [start, end] is inclusive This takes the tree lock.
+ */
+
+static int __must_check
+__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, int exclusive_bits, u64 *failed_start,
+ struct extent_state **cached_state, gfp_t mask)
+{
+ struct extent_state *state;
+ struct extent_state *prealloc = NULL;
+ struct rb_node *node;
+ int err = 0;
+ u64 last_start;
+ u64 last_end;
+
+ bits |= EXTENT_FIRST_DELALLOC;
+again:
+ if (!prealloc && (mask & __GFP_WAIT)) {
+ prealloc = alloc_extent_state(mask);
+ BUG_ON(!prealloc);
+ }
+
+ spin_lock(&tree->lock);
+ if (cached_state && *cached_state) {
+ state = *cached_state;
+ if (state->start <= start && state->end > start &&
+ state->tree) {
+ node = &state->rb_node;
+ goto hit_next;
+ }
+ }
+ /*
+ * this search will find all the extents that end after
+ * our range starts.
+ */
+ node = tree_search(tree, start);
+ if (!node) {
+ prealloc = alloc_extent_state_atomic(prealloc);
+ BUG_ON(!prealloc);
+ err = insert_state(tree, prealloc, start, end, &bits);
+ if (err)
+ extent_io_tree_panic(tree, err);
+
+ prealloc = NULL;
+ goto out;
+ }
+ state = rb_entry(node, struct extent_state, rb_node);
+hit_next:
+ last_start = state->start;
+ last_end = state->end;
+
+ /*
+ * | ---- desired range ---- |
+ * | state |
+ *
+ * Just lock what we found and keep going
+ */
+ if (state->start == start && state->end <= end) {
+ struct rb_node *next_node;
+ if (state->state & exclusive_bits) {
+ *failed_start = state->start;
+ err = -EEXIST;
+ goto out;
+ }
+
+ set_state_bits(tree, state, &bits);
+
+ cache_state(state, cached_state);
+ merge_state(tree, state);
+ if (last_end == (u64)-1)
+ goto out;
+
+ start = last_end + 1;
+ next_node = rb_next(&state->rb_node);
+ if (next_node && start < end && prealloc && !need_resched()) {
+ state = rb_entry(next_node, struct extent_state,
+ rb_node);
+ if (state->start == start)
+ goto hit_next;
+ }
+ goto search_again;
+ }
+
+ /*
+ * | ---- desired range ---- |
+ * | state |
+ * or
+ * | ------------- state -------------- |
+ *
+ * We need to split the extent we found, and may flip bits on
+ * second half.
+ *
+ * If the extent we found extends past our
+ * range, we just split and search again. It'll get split
+ * again the next time though.
+ *
+ * If the extent we found is inside our range, we set the
+ * desired bit on it.
+ */
+ if (state->start < start) {
+ if (state->state & exclusive_bits) {
+ *failed_start = start;
+ err = -EEXIST;
+ goto out;
+ }
+
+ prealloc = alloc_extent_state_atomic(prealloc);
+ BUG_ON(!prealloc);
+ err = split_state(tree, state, prealloc, start);
+ if (err)
+ extent_io_tree_panic(tree, err);
+
+ prealloc = NULL;
+ if (err)
+ goto out;
+ if (state->end <= end) {
+ set_state_bits(tree, state, &bits);
+ cache_state(state, cached_state);
+ merge_state(tree, state);
+ if (last_end == (u64)-1)
+ goto out;
+ start = last_end + 1;
+ }
+ goto search_again;
+ }
+ /*
+ * | ---- desired range ---- |
+ * | state | or | state |
+ *
+ * There's a hole, we need to insert something in it and
+ * ignore the extent we found.
+ */
+ if (state->start > start) {
+ u64 this_end;
+ if (end < last_start)
+ this_end = end;
+ else
+ this_end = last_start - 1;
+
+ prealloc = alloc_extent_state_atomic(prealloc);
+ BUG_ON(!prealloc);
+
+ /*
+ * Avoid to free 'prealloc' if it can be merged with
+ * the later extent.
+ */
+ err = insert_state(tree, prealloc, start, this_end,
+ &bits);
+ if (err)
+ extent_io_tree_panic(tree, err);
+
+ cache_state(prealloc, cached_state);
+ prealloc = NULL;
+ start = this_end + 1;
+ goto search_again;
+ }
+ /*
+ * | ---- desired range ---- |
+ * | state |
+ * We need to split the extent, and set the bit
+ * on the first half
+ */
+ if (state->start <= end && state->end > end) {
+ if (state->state & exclusive_bits) {
+ *failed_start = start;
+ err = -EEXIST;
+ goto out;
+ }
+
+ prealloc = alloc_extent_state_atomic(prealloc);
+ BUG_ON(!prealloc);
+ err = split_state(tree, state, prealloc, end + 1);
+ if (err)
+ extent_io_tree_panic(tree, err);
+
+ set_state_bits(tree, prealloc, &bits);
+ cache_state(prealloc, cached_state);
+ merge_state(tree, prealloc);
+ prealloc = NULL;
+ goto out;
+ }
+
+ goto search_again;
+
+out:
+ spin_unlock(&tree->lock);
+ if (prealloc)
+ free_extent_state(prealloc);
+
+ return err;
+
+search_again:
+ if (start > end)
+ goto out;
+ spin_unlock(&tree->lock);
+ if (mask & __GFP_WAIT)
+ cond_resched();
+ goto again;
+}
+
+int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
+ u64 *failed_start, struct extent_state **cached_state,
+ gfp_t mask)
+{
+ return __set_extent_bit(tree, start, end, bits, 0, failed_start,
+ cached_state, mask);
+}
+
+
+/**
+ * convert_extent - convert all bits in a given range from one bit to another
+ * @tree: the io tree to search
+ * @start: the start offset in bytes
+ * @end: the end offset in bytes (inclusive)
+ * @bits: the bits to set in this range
+ * @clear_bits: the bits to clear in this range
+ * @mask: the allocation mask
+ *
+ * This will go through and set bits for the given range. If any states exist
+ * already in this range they are set with the given bit and cleared of the
+ * clear_bits. This is only meant to be used by things that are mergeable, ie
+ * converting from say DELALLOC to DIRTY. This is not meant to be used with
+ * boundary bits like LOCK.
+ */
+int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, int clear_bits, gfp_t mask)
+{
+ struct extent_state *state;
+ struct extent_state *prealloc = NULL;
+ struct rb_node *node;
+ int err = 0;
+ u64 last_start;
+ u64 last_end;
+
+again:
+ if (!prealloc && (mask & __GFP_WAIT)) {
+ prealloc = alloc_extent_state(mask);
+ if (!prealloc)
+ return -ENOMEM;
+ }
+
+ spin_lock(&tree->lock);
+ /*
+ * this search will find all the extents that end after
+ * our range starts.
+ */
+ node = tree_search(tree, start);
+ if (!node) {
+ prealloc = alloc_extent_state_atomic(prealloc);
+ if (!prealloc) {
+ err = -ENOMEM;
+ goto out;
+ }
+ err = insert_state(tree, prealloc, start, end, &bits);
+ prealloc = NULL;
+ if (err)
+ extent_io_tree_panic(tree, err);
+ goto out;
+ }
+ state = rb_entry(node, struct extent_state, rb_node);
+hit_next:
+ last_start = state->start;
+ last_end = state->end;
+
+ /*
+ * | ---- desired range ---- |
+ * | state |
+ *
+ * Just lock what we found and keep going
+ */
+ if (state->start == start && state->end <= end) {
+ struct rb_node *next_node;
+
+ set_state_bits(tree, state, &bits);
+ clear_state_bit(tree, state, &clear_bits, 0);
+ if (last_end == (u64)-1)
+ goto out;
+
+ start = last_end + 1;
+ next_node = rb_next(&state->rb_node);
+ if (next_node && start < end && prealloc && !need_resched()) {
+ state = rb_entry(next_node, struct extent_state,
+ rb_node);
+ if (state->start == start)
+ goto hit_next;
+ }
+ goto search_again;
+ }
+
+ /*
+ * | ---- desired range ---- |
+ * | state |
+ * or
+ * | ------------- state -------------- |
+ *
+ * We need to split the extent we found, and may flip bits on
+ * second half.
+ *
+ * If the extent we found extends past our
+ * range, we just split and search again. It'll get split
+ * again the next time though.
+ *
+ * If the extent we found is inside our range, we set the
+ * desired bit on it.
+ */
+ if (state->start < start) {
+ prealloc = alloc_extent_state_atomic(prealloc);
+ if (!prealloc) {
+ err = -ENOMEM;
+ goto out;
+ }
+ err = split_state(tree, state, prealloc, start);
+ if (err)
+ extent_io_tree_panic(tree, err);
+ prealloc = NULL;
+ if (err)
+ goto out;
+ if (state->end <= end) {
+ set_state_bits(tree, state, &bits);
+ clear_state_bit(tree, state, &clear_bits, 0);
+ if (last_end == (u64)-1)
+ goto out;
+ start = last_end + 1;
+ }
+ goto search_again;
+ }
+ /*
+ * | ---- desired range ---- |
+ * | state | or | state |
+ *
+ * There's a hole, we need to insert something in it and
+ * ignore the extent we found.
+ */
+ if (state->start > start) {
+ u64 this_end;
+ if (end < last_start)
+ this_end = end;
+ else
+ this_end = last_start - 1;
+
+ prealloc = alloc_extent_state_atomic(prealloc);
+ if (!prealloc) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /*
+ * Avoid to free 'prealloc' if it can be merged with
+ * the later extent.
+ */
+ err = insert_state(tree, prealloc, start, this_end,
+ &bits);
+ if (err)
+ extent_io_tree_panic(tree, err);
+ prealloc = NULL;
+ start = this_end + 1;
+ goto search_again;
+ }
+ /*
+ * | ---- desired range ---- |
+ * | state |
+ * We need to split the extent, and set the bit
+ * on the first half
+ */
+ if (state->start <= end && state->end > end) {
+ prealloc = alloc_extent_state_atomic(prealloc);
+ if (!prealloc) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = split_state(tree, state, prealloc, end + 1);
+ if (err)
+ extent_io_tree_panic(tree, err);
+
+ set_state_bits(tree, prealloc, &bits);
+ clear_state_bit(tree, prealloc, &clear_bits, 0);
+ prealloc = NULL;
+ goto out;
+ }
+
+ goto search_again;
+
+out:
+ spin_unlock(&tree->lock);
+ if (prealloc)
+ free_extent_state(prealloc);
+
+ return err;
+
+search_again:
+ if (start > end)
+ goto out;
+ spin_unlock(&tree->lock);
+ if (mask & __GFP_WAIT)
+ cond_resched();
+ goto again;
+}
+
+/* wrappers around set/clear extent bit */
+int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
+ gfp_t mask)
+{
+ return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
+ NULL, mask);
+}
+
+int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, gfp_t mask)
+{
+ return set_extent_bit(tree, start, end, bits, NULL,
+ NULL, mask);
+}
+
+int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, gfp_t mask)
+{
+ return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
+}
+
+int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
+ struct extent_state **cached_state, gfp_t mask)
+{
+ return set_extent_bit(tree, start, end,
+ EXTENT_DELALLOC | EXTENT_UPTODATE,
+ NULL, cached_state, mask);
+}
+
+int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
+ gfp_t mask)
+{
+ return clear_extent_bit(tree, start, end,
+ EXTENT_DIRTY | EXTENT_DELALLOC |
+ EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
+}
+
+int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
+ gfp_t mask)
+{
+ return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
+ NULL, mask);
+}
+
+int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
+ struct extent_state **cached_state, gfp_t mask)
+{
+ return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
+ cached_state, mask);
+}
+
+static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
+ u64 end, struct extent_state **cached_state,
+ gfp_t mask)
+{
+ return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
+ cached_state, mask);
+}
+
+/*
+ * either insert or lock state struct between start and end use mask to tell
+ * us if waiting is desired.
+ */
+int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, struct extent_state **cached_state)
+{
+ int err;
+ u64 failed_start;
+ while (1) {
+ err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
+ EXTENT_LOCKED, &failed_start,
+ cached_state, GFP_NOFS);
+ if (err == -EEXIST) {
+ wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
+ start = failed_start;
+ } else
+ break;
+ WARN_ON(start > end);
+ }
+ return err;
+}
+
+int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
+{
+ return lock_extent_bits(tree, start, end, 0, NULL);
+}
+
+int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
+{
+ int err;
+ u64 failed_start;
+
+ err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
+ &failed_start, NULL, GFP_NOFS);
+ if (err == -EEXIST) {
+ if (failed_start > start)
+ clear_extent_bit(tree, start, failed_start - 1,
+ EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
+ return 0;
+ }
+ return 1;
+}
+
+int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
+ struct extent_state **cached, gfp_t mask)
+{
+ return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
+ mask);
+}
+
+int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
+{
+ return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
+ GFP_NOFS);
+}
+
+/*
+ * helper function to set both pages and extents in the tree writeback
+ */
+static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
+{
+ unsigned long index = start >> PAGE_CACHE_SHIFT;
+ unsigned long end_index = end >> PAGE_CACHE_SHIFT;
+ struct page *page;
+
+ while (index <= end_index) {
+ page = find_get_page(tree->mapping, index);
+ BUG_ON(!page); /* Pages should be in the extent_io_tree */
+ set_page_writeback(page);
+ page_cache_release(page);
+ index++;
+ }
+ return 0;
+}
+
+/* find the first state struct with 'bits' set after 'start', and
+ * return it. tree->lock must be held. NULL will returned if
+ * nothing was found after 'start'
+ */
+struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
+ u64 start, int bits)
+{
+ struct rb_node *node;
+ struct extent_state *state;
+
+ /*
+ * this search will find all the extents that end after
+ * our range starts.
+ */
+ node = tree_search(tree, start);
+ if (!node)
+ goto out;
+
+ while (1) {
+ state = rb_entry(node, struct extent_state, rb_node);
+ if (state->end >= start && (state->state & bits))
+ return state;
+
+ node = rb_next(node);
+ if (!node)
+ break;
+ }
+out:
+ return NULL;
+}
+
+/*
+ * find the first offset in the io tree with 'bits' set. zero is
+ * returned if we find something, and *start_ret and *end_ret are
+ * set to reflect the state struct that was found.
+ *
+ * If nothing was found, 1 is returned, < 0 on error
+ */
+int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
+ u64 *start_ret, u64 *end_ret, int bits)
+{
+ struct extent_state *state;
+ int ret = 1;
+
+ spin_lock(&tree->lock);
+ state = find_first_extent_bit_state(tree, start, bits);
+ if (state) {
+ *start_ret = state->start;
+ *end_ret = state->end;
+ ret = 0;
+ }
+ spin_unlock(&tree->lock);
+ return ret;
+}
+
+/*
+ * find a contiguous range of bytes in the file marked as delalloc, not
+ * more than 'max_bytes'. start and end are used to return the range,
+ *
+ * 1 is returned if we find something, 0 if nothing was in the tree
+ */
+static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
+ u64 *start, u64 *end, u64 max_bytes,
+ struct extent_state **cached_state)
+{
+ struct rb_node *node;
+ struct extent_state *state;
+ u64 cur_start = *start;
+ u64 found = 0;
+ u64 total_bytes = 0;
+
+ spin_lock(&tree->lock);
+
+ /*
+ * this search will find all the extents that end after
+ * our range starts.
+ */
+ node = tree_search(tree, cur_start);
+ if (!node) {
+ if (!found)
+ *end = (u64)-1;
+ goto out;
+ }
+
+ while (1) {
+ state = rb_entry(node, struct extent_state, rb_node);
+ if (found && (state->start != cur_start ||
+ (state->state & EXTENT_BOUNDARY))) {
+ goto out;
+ }
+ if (!(state->state & EXTENT_DELALLOC)) {
+ if (!found)
+ *end = state->end;
+ goto out;
+ }
+ if (!found) {
+ *start = state->start;
+ *cached_state = state;
+ atomic_inc(&state->refs);
+ }
+ found++;
+ *end = state->end;
+ cur_start = state->end + 1;
+ node = rb_next(node);
+ if (!node)
+ break;
+ total_bytes += state->end - state->start + 1;
+ if (total_bytes >= max_bytes)
+ break;
+ }
+out:
+ spin_unlock(&tree->lock);
+ return found;
+}
+
+static noinline void __unlock_for_delalloc(struct inode *inode,
+ struct page *locked_page,
+ u64 start, u64 end)
+{
+ int ret;
+ struct page *pages[16];
+ unsigned long index = start >> PAGE_CACHE_SHIFT;
+ unsigned long end_index = end >> PAGE_CACHE_SHIFT;
+ unsigned long nr_pages = end_index - index + 1;
+ int i;
+
+ if (index == locked_page->index && end_index == index)
+ return;
+
+ while (nr_pages > 0) {
+ ret = find_get_pages_contig(inode->i_mapping, index,
+ min_t(unsigned long, nr_pages,
+ ARRAY_SIZE(pages)), pages);
+ for (i = 0; i < ret; i++) {
+ if (pages[i] != locked_page)
+ unlock_page(pages[i]);
+ page_cache_release(pages[i]);
+ }
+ nr_pages -= ret;
+ index += ret;
+ cond_resched();
+ }
+}
+
+static noinline int lock_delalloc_pages(struct inode *inode,
+ struct page *locked_page,
+ u64 delalloc_start,
+ u64 delalloc_end)
+{
+ unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
+ unsigned long start_index = index;
+ unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
+ unsigned long pages_locked = 0;
+ struct page *pages[16];
+ unsigned long nrpages;
+ int ret;
+ int i;
+
+ /* the caller is responsible for locking the start index */
+ if (index == locked_page->index && index == end_index)
+ return 0;
+
+ /* skip the page at the start index */
+ nrpages = end_index - index + 1;
+ while (nrpages > 0) {
+ ret = find_get_pages_contig(inode->i_mapping, index,
+ min_t(unsigned long,
+ nrpages, ARRAY_SIZE(pages)), pages);
+ if (ret == 0) {
+ ret = -EAGAIN;
+ goto done;
+ }
+ /* now we have an array of pages, lock them all */
+ for (i = 0; i < ret; i++) {
+ /*
+ * the caller is taking responsibility for
+ * locked_page
+ */
+ if (pages[i] != locked_page) {
+ lock_page(pages[i]);
+ if (!PageDirty(pages[i]) ||
+ pages[i]->mapping != inode->i_mapping) {
+ ret = -EAGAIN;
+ unlock_page(pages[i]);
+ page_cache_release(pages[i]);
+ goto done;
+ }
+ }
+ page_cache_release(pages[i]);
+ pages_locked++;
+ }
+ nrpages -= ret;
+ index += ret;
+ cond_resched();
+ }
+ ret = 0;
+done:
+ if (ret && pages_locked) {
+ __unlock_for_delalloc(inode, locked_page,
+ delalloc_start,
+ ((u64)(start_index + pages_locked - 1)) <<
+ PAGE_CACHE_SHIFT);
+ }
+ return ret;
+}
+
+/*
+ * find a contiguous range of bytes in the file marked as delalloc, not
+ * more than 'max_bytes'. start and end are used to return the range,
+ *
+ * 1 is returned if we find something, 0 if nothing was in the tree
+ */
+static noinline u64 find_lock_delalloc_range(struct inode *inode,
+ struct extent_io_tree *tree,
+ struct page *locked_page,
+ u64 *start, u64 *end,
+ u64 max_bytes)
+{
+ u64 delalloc_start;
+ u64 delalloc_end;
+ u64 found;
+ struct extent_state *cached_state = NULL;
+ int ret;
+ int loops = 0;
+
+again:
+ /* step one, find a bunch of delalloc bytes starting at start */
+ delalloc_start = *start;
+ delalloc_end = 0;
+ found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
+ max_bytes, &cached_state);
+ if (!found || delalloc_end <= *start) {
+ *start = delalloc_start;
+ *end = delalloc_end;
+ free_extent_state(cached_state);
+ return found;
+ }
+
+ /*
+ * start comes from the offset of locked_page. We have to lock
+ * pages in order, so we can't process delalloc bytes before
+ * locked_page
+ */
+ if (delalloc_start < *start)
+ delalloc_start = *start;
+
+ /*
+ * make sure to limit the number of pages we try to lock down
+ * if we're looping.
+ */
+ if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
+ delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
+
+ /* step two, lock all the pages after the page that has start */
+ ret = lock_delalloc_pages(inode, locked_page,
+ delalloc_start, delalloc_end);
+ if (ret == -EAGAIN) {
+ /* some of the pages are gone, lets avoid looping by
+ * shortening the size of the delalloc range we're searching
+ */
+ free_extent_state(cached_state);
+ if (!loops) {
+ unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
+ max_bytes = PAGE_CACHE_SIZE - offset;
+ loops = 1;
+ goto again;
+ } else {
+ found = 0;
+ goto out_failed;
+ }
+ }
+ BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
+
+ /* step three, lock the state bits for the whole range */
+ lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
+
+ /* then test to make sure it is all still delalloc */
+ ret = test_range_bit(tree, delalloc_start, delalloc_end,
+ EXTENT_DELALLOC, 1, cached_state);
+ if (!ret) {
+ unlock_extent_cached(tree, delalloc_start, delalloc_end,
+ &cached_state, GFP_NOFS);
+ __unlock_for_delalloc(inode, locked_page,
+ delalloc_start, delalloc_end);
+ cond_resched();
+ goto again;
+ }
+ free_extent_state(cached_state);
+ *start = delalloc_start;
+ *end = delalloc_end;
+out_failed:
+ return found;
+}
+
+int extent_clear_unlock_delalloc(struct inode *inode,
+ struct extent_io_tree *tree,
+ u64 start, u64 end, struct page *locked_page,
+ unsigned long op)
+{
+ int ret;
+ struct page *pages[16];
+ unsigned long index = start >> PAGE_CACHE_SHIFT;
+ unsigned long end_index = end >> PAGE_CACHE_SHIFT;
+ unsigned long nr_pages = end_index - index + 1;
+ int i;
+ int clear_bits = 0;
+
+ if (op & EXTENT_CLEAR_UNLOCK)
+ clear_bits |= EXTENT_LOCKED;
+ if (op & EXTENT_CLEAR_DIRTY)
+ clear_bits |= EXTENT_DIRTY;
+
+ if (op & EXTENT_CLEAR_DELALLOC)
+ clear_bits |= EXTENT_DELALLOC;
+
+ clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
+ if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
+ EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
+ EXTENT_SET_PRIVATE2)))
+ return 0;
+
+ while (nr_pages > 0) {
+ ret = find_get_pages_contig(inode->i_mapping, index,
+ min_t(unsigned long,
+ nr_pages, ARRAY_SIZE(pages)), pages);
+ for (i = 0; i < ret; i++) {
+
+ if (op & EXTENT_SET_PRIVATE2)
+ SetPagePrivate2(pages[i]);
+
+ if (pages[i] == locked_page) {
+ page_cache_release(pages[i]);
+ continue;
+ }
+ if (op & EXTENT_CLEAR_DIRTY)
+ clear_page_dirty_for_io(pages[i]);
+ if (op & EXTENT_SET_WRITEBACK)
+ set_page_writeback(pages[i]);
+ if (op & EXTENT_END_WRITEBACK)
+ end_page_writeback(pages[i]);
+ if (op & EXTENT_CLEAR_UNLOCK_PAGE)
+ unlock_page(pages[i]);
+ page_cache_release(pages[i]);
+ }
+ nr_pages -= ret;
+ index += ret;
+ cond_resched();
+ }
+ return 0;
+}
+
+/*
+ * count the number of bytes in the tree that have a given bit(s)
+ * set. This can be fairly slow, except for EXTENT_DIRTY which is
+ * cached. The total number found is returned.
+ */
+u64 count_range_bits(struct extent_io_tree *tree,
+ u64 *start, u64 search_end, u64 max_bytes,
+ unsigned long bits, int contig)
+{
+ struct rb_node *node;
+ struct extent_state *state;
+ u64 cur_start = *start;
+ u64 total_bytes = 0;
+ u64 last = 0;
+ int found = 0;
+
+ if (search_end <= cur_start) {
+ WARN_ON(1);
+ return 0;
+ }
+
+ spin_lock(&tree->lock);
+ if (cur_start == 0 && bits == EXTENT_DIRTY) {
+ total_bytes = tree->dirty_bytes;
+ goto out;
+ }
+ /*
+ * this search will find all the extents that end after
+ * our range starts.
+ */
+ node = tree_search(tree, cur_start);
+ if (!node)
+ goto out;
+
+ while (1) {
+ state = rb_entry(node, struct extent_state, rb_node);
+ if (state->start > search_end)
+ break;
+ if (contig && found && state->start > last + 1)
+ break;
+ if (state->end >= cur_start && (state->state & bits) == bits) {
+ total_bytes += min(search_end, state->end) + 1 -
+ max(cur_start, state->start);
+ if (total_bytes >= max_bytes)
+ break;
+ if (!found) {
+ *start = max(cur_start, state->start);
+ found = 1;
+ }
+ last = state->end;
+ } else if (contig && found) {
+ break;
+ }
+ node = rb_next(node);
+ if (!node)
+ break;
+ }
+out:
+ spin_unlock(&tree->lock);
+ return total_bytes;
+}
+
+/*
+ * set the private field for a given byte offset in the tree. If there isn't
+ * an extent_state there already, this does nothing.
+ */
+int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
+{
+ struct rb_node *node;
+ struct extent_state *state;
+ int ret = 0;
+
+ spin_lock(&tree->lock);
+ /*
+ * this search will find all the extents that end after
+ * our range starts.
+ */
+ node = tree_search(tree, start);
+ if (!node) {
+ ret = -ENOENT;
+ goto out;
+ }
+ state = rb_entry(node, struct extent_state, rb_node);
+ if (state->start != start) {
+ ret = -ENOENT;
+ goto out;
+ }
+ state->private = private;
+out:
+ spin_unlock(&tree->lock);
+ return ret;
+}
+
+int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
+{
+ struct rb_node *node;
+ struct extent_state *state;
+ int ret = 0;
+
+ spin_lock(&tree->lock);
+ /*
+ * this search will find all the extents that end after
+ * our range starts.
+ */
+ node = tree_search(tree, start);
+ if (!node) {
+ ret = -ENOENT;
+ goto out;
+ }
+ state = rb_entry(node, struct extent_state, rb_node);
+ if (state->start != start) {
+ ret = -ENOENT;
+ goto out;
+ }
+ *private = state->private;
+out:
+ spin_unlock(&tree->lock);
+ return ret;
+}
+
+/*
+ * searches a range in the state tree for a given mask.
+ * If 'filled' == 1, this returns 1 only if every extent in the tree
+ * has the bits set. Otherwise, 1 is returned if any bit in the
+ * range is found set.
+ */
+int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, int filled, struct extent_state *cached)
+{
+ struct extent_state *state = NULL;
+ struct rb_node *node;
+ int bitset = 0;
+
+ spin_lock(&tree->lock);
+ if (cached && cached->tree && cached->start <= start &&
+ cached->end > start)
+ node = &cached->rb_node;
+ else
+ node = tree_search(tree, start);
+ while (node && start <= end) {
+ state = rb_entry(node, struct extent_state, rb_node);
+
+ if (filled && state->start > start) {
+ bitset = 0;
+ break;
+ }
+
+ if (state->start > end)
+ break;
+
+ if (state->state & bits) {
+ bitset = 1;
+ if (!filled)
+ break;
+ } else if (filled) {
+ bitset = 0;
+ break;
+ }
+
+ if (state->end == (u64)-1)
+ break;
+
+ start = state->end + 1;
+ if (start > end)
+ break;
+ node = rb_next(node);
+ if (!node) {
+ if (filled)
+ bitset = 0;
+ break;
+ }
+ }
+ spin_unlock(&tree->lock);
+ return bitset;
+}
+
+/*
+ * helper function to set a given page up to date if all the
+ * extents in the tree for that page are up to date
+ */
+static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
+{
+ u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+ u64 end = start + PAGE_CACHE_SIZE - 1;
+ if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
+ SetPageUptodate(page);
+}
+
+/*
+ * helper function to unlock a page if all the extents in the tree
+ * for that page are unlocked
+ */
+static void check_page_locked(struct extent_io_tree *tree, struct page *page)
+{
+ u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+ u64 end = start + PAGE_CACHE_SIZE - 1;
+ if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
+ unlock_page(page);
+}
+
+/*
+ * helper function to end page writeback if all the extents
+ * in the tree for that page are done with writeback
+ */
+static void check_page_writeback(struct extent_io_tree *tree,
+ struct page *page)
+{
+ end_page_writeback(page);
+}
+
+/*
+ * When IO fails, either with EIO or csum verification fails, we
+ * try other mirrors that might have a good copy of the data. This
+ * io_failure_record is used to record state as we go through all the
+ * mirrors. If another mirror has good data, the page is set up to date
+ * and things continue. If a good mirror can't be found, the original
+ * bio end_io callback is called to indicate things have failed.
+ */
+struct io_failure_record {
+ struct page *page;
+ u64 start;
+ u64 len;
+ u64 logical;
+ unsigned long bio_flags;
+ int this_mirror;
+ int failed_mirror;
+ int in_validation;
+};
+
+static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
+ int did_repair)
+{
+ int ret;
+ int err = 0;
+ struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
+
+ set_state_private(failure_tree, rec->start, 0);
+ ret = clear_extent_bits(failure_tree, rec->start,
+ rec->start + rec->len - 1,
+ EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
+ if (ret)
+ err = ret;
+
+ if (did_repair) {
+ ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
+ rec->start + rec->len - 1,
+ EXTENT_DAMAGED, GFP_NOFS);
+ if (ret && !err)
+ err = ret;
+ }
+
+ kfree(rec);
+ return err;
+}
+
+static void repair_io_failure_callback(struct bio *bio, int err)
+{
+ complete(bio->bi_private);
+}
+
+/*
+ * this bypasses the standard btrfs submit functions deliberately, as
+ * the standard behavior is to write all copies in a raid setup. here we only
+ * want to write the one bad copy. so we do the mapping for ourselves and issue
+ * submit_bio directly.
+ * to avoid any synchonization issues, wait for the data after writing, which
+ * actually prevents the read that triggered the error from finishing.
+ * currently, there can be no more than two copies of every data bit. thus,
+ * exactly one rewrite is required.
+ */
+int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
+ u64 length, u64 logical, struct page *page,
+ int mirror_num)
+{
+ struct bio *bio;
+ struct btrfs_device *dev;
+ DECLARE_COMPLETION_ONSTACK(compl);
+ u64 map_length = 0;
+ u64 sector;
+ struct btrfs_bio *bbio = NULL;
+ int ret;
+
+ BUG_ON(!mirror_num);
+
+ bio = bio_alloc(GFP_NOFS, 1);
+ if (!bio)
+ return -EIO;
+ bio->bi_private = &compl;
+ bio->bi_end_io = repair_io_failure_callback;
+ bio->bi_size = 0;
+ map_length = length;
+
+ ret = btrfs_map_block(map_tree, WRITE, logical,
+ &map_length, &bbio, mirror_num);
+ if (ret) {
+ bio_put(bio);
+ return -EIO;
+ }
+ BUG_ON(mirror_num != bbio->mirror_num);
+ sector = bbio->stripes[mirror_num-1].physical >> 9;
+ bio->bi_sector = sector;
+ dev = bbio->stripes[mirror_num-1].dev;
+ kfree(bbio);
+ if (!dev || !dev->bdev || !dev->writeable) {
+ bio_put(bio);
+ return -EIO;
+ }
+ bio->bi_bdev = dev->bdev;
+ bio_add_page(bio, page, length, start-page_offset(page));
+ btrfsic_submit_bio(WRITE_SYNC, bio);
+ wait_for_completion(&compl);
+
+ if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
+ /* try to remap that extent elsewhere? */
+ bio_put(bio);
+ return -EIO;
+ }
+
+ printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
+ "sector %llu)\n", page->mapping->host->i_ino, start,
+ dev->name, sector);
+
+ bio_put(bio);
+ return 0;
+}
+
+int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
+ int mirror_num)
+{
+ struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+ u64 start = eb->start;
+ unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
+ int ret = 0;
+
+ for (i = 0; i < num_pages; i++) {
+ struct page *p = extent_buffer_page(eb, i);
+ ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
+ start, p, mirror_num);
+ if (ret)
+ break;
+ start += PAGE_CACHE_SIZE;
+ }
+
+ return ret;
+}
+
+/*
+ * each time an IO finishes, we do a fast check in the IO failure tree
+ * to see if we need to process or clean up an io_failure_record
+ */
+static int clean_io_failure(u64 start, struct page *page)
+{
+ u64 private;
+ u64 private_failure;
+ struct io_failure_record *failrec;
+ struct btrfs_mapping_tree *map_tree;
+ struct extent_state *state;
+ int num_copies;
+ int did_repair = 0;
+ int ret;
+ struct inode *inode = page->mapping->host;
+
+ private = 0;
+ ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
+ (u64)-1, 1, EXTENT_DIRTY, 0);
+ if (!ret)
+ return 0;
+
+ ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
+ &private_failure);
+ if (ret)
+ return 0;
+
+ failrec = (struct io_failure_record *)(unsigned long) private_failure;
+ BUG_ON(!failrec->this_mirror);
+
+ if (failrec->in_validation) {
+ /* there was no real error, just free the record */
+ pr_debug("clean_io_failure: freeing dummy error at %llu\n",
+ failrec->start);
+ did_repair = 1;
+ goto out;
+ }
+
+ spin_lock(&BTRFS_I(inode)->io_tree.lock);
+ state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
+ failrec->start,
+ EXTENT_LOCKED);
+ spin_unlock(&BTRFS_I(inode)->io_tree.lock);
+
+ if (state && state->start == failrec->start) {
+ map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
+ num_copies = btrfs_num_copies(map_tree, failrec->logical,
+ failrec->len);
+ if (num_copies > 1) {
+ ret = repair_io_failure(map_tree, start, failrec->len,
+ failrec->logical, page,
+ failrec->failed_mirror);
+ did_repair = !ret;
+ }
+ }
+
+out:
+ if (!ret)
+ ret = free_io_failure(inode, failrec, did_repair);
+
+ return ret;
+}
+
+/*
+ * this is a generic handler for readpage errors (default
+ * readpage_io_failed_hook). if other copies exist, read those and write back
+ * good data to the failed position. does not investigate in remapping the
+ * failed extent elsewhere, hoping the device will be smart enough to do this as
+ * needed
+ */
+
+static int bio_readpage_error(struct bio *failed_bio, struct page *page,
+ u64 start, u64 end, int failed_mirror,
+ struct extent_state *state)
+{
+ struct io_failure_record *failrec = NULL;
+ u64 private;
+ struct extent_map *em;
+ struct inode *inode = page->mapping->host;
+ struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
+ struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct bio *bio;
+ int num_copies;
+ int ret;
+ int read_mode;
+ u64 logical;
+
+ BUG_ON(failed_bio->bi_rw & REQ_WRITE);
+
+ ret = get_state_private(failure_tree, start, &private);
+ if (ret) {
+ failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
+ if (!failrec)
+ return -ENOMEM;
+ failrec->start = start;
+ failrec->len = end - start + 1;
+ failrec->this_mirror = 0;
+ failrec->bio_flags = 0;
+ failrec->in_validation = 0;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, start, failrec->len);
+ if (!em) {
+ read_unlock(&em_tree->lock);
+ kfree(failrec);
+ return -EIO;
+ }
+
+ if (em->start > start || em->start + em->len < start) {
+ free_extent_map(em);
+ em = NULL;
+ }
+ read_unlock(&em_tree->lock);
+
+ if (!em || IS_ERR(em)) {
+ kfree(failrec);
+ return -EIO;
+ }
+ logical = start - em->start;
+ logical = em->block_start + logical;
+ if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
+ logical = em->block_start;
+ failrec->bio_flags = EXTENT_BIO_COMPRESSED;
+ extent_set_compress_type(&failrec->bio_flags,
+ em->compress_type);
+ }
+ pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
+ "len=%llu\n", logical, start, failrec->len);
+ failrec->logical = logical;
+ free_extent_map(em);
+
+ /* set the bits in the private failure tree */
+ ret = set_extent_bits(failure_tree, start, end,
+ EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
+ if (ret >= 0)
+ ret = set_state_private(failure_tree, start,
+ (u64)(unsigned long)failrec);
+ /* set the bits in the inode's tree */
+ if (ret >= 0)
+ ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
+ GFP_NOFS);
+ if (ret < 0) {
+ kfree(failrec);
+ return ret;
+ }
+ } else {
+ failrec = (struct io_failure_record *)(unsigned long)private;
+ pr_debug("bio_readpage_error: (found) logical=%llu, "
+ "start=%llu, len=%llu, validation=%d\n",
+ failrec->logical, failrec->start, failrec->len,
+ failrec->in_validation);
+ /*
+ * when data can be on disk more than twice, add to failrec here
+ * (e.g. with a list for failed_mirror) to make
+ * clean_io_failure() clean all those errors at once.
+ */
+ }
+ num_copies = btrfs_num_copies(
+ &BTRFS_I(inode)->root->fs_info->mapping_tree,
+ failrec->logical, failrec->len);
+ if (num_copies == 1) {
+ /*
+ * we only have a single copy of the data, so don't bother with
+ * all the retry and error correction code that follows. no
+ * matter what the error is, it is very likely to persist.
+ */
+ pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
+ "state=%p, num_copies=%d, next_mirror %d, "
+ "failed_mirror %d\n", state, num_copies,
+ failrec->this_mirror, failed_mirror);
+ free_io_failure(inode, failrec, 0);
+ return -EIO;
+ }
+
+ if (!state) {
+ spin_lock(&tree->lock);
+ state = find_first_extent_bit_state(tree, failrec->start,
+ EXTENT_LOCKED);
+ if (state && state->start != failrec->start)
+ state = NULL;
+ spin_unlock(&tree->lock);
+ }
+
+ /*
+ * there are two premises:
+ * a) deliver good data to the caller
+ * b) correct the bad sectors on disk
+ */
+ if (failed_bio->bi_vcnt > 1) {
+ /*
+ * to fulfill b), we need to know the exact failing sectors, as
+ * we don't want to rewrite any more than the failed ones. thus,
+ * we need separate read requests for the failed bio
+ *
+ * if the following BUG_ON triggers, our validation request got
+ * merged. we need separate requests for our algorithm to work.
+ */
+ BUG_ON(failrec->in_validation);
+ failrec->in_validation = 1;
+ failrec->this_mirror = failed_mirror;
+ read_mode = READ_SYNC | REQ_FAILFAST_DEV;
+ } else {
+ /*
+ * we're ready to fulfill a) and b) alongside. get a good copy
+ * of the failed sector and if we succeed, we have setup
+ * everything for repair_io_failure to do the rest for us.
+ */
+ if (failrec->in_validation) {
+ BUG_ON(failrec->this_mirror != failed_mirror);
+ failrec->in_validation = 0;
+ failrec->this_mirror = 0;
+ }
+ failrec->failed_mirror = failed_mirror;
+ failrec->this_mirror++;
+ if (failrec->this_mirror == failed_mirror)
+ failrec->this_mirror++;
+ read_mode = READ_SYNC;
+ }
+
+ if (!state || failrec->this_mirror > num_copies) {
+ pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
+ "next_mirror %d, failed_mirror %d\n", state,
+ num_copies, failrec->this_mirror, failed_mirror);
+ free_io_failure(inode, failrec, 0);
+ return -EIO;
+ }
+
+ bio = bio_alloc(GFP_NOFS, 1);
+ if (!bio) {
+ free_io_failure(inode, failrec, 0);
+ return -EIO;
+ }
+ bio->bi_private = state;
+ bio->bi_end_io = failed_bio->bi_end_io;
+ bio->bi_sector = failrec->logical >> 9;
+ bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+ bio->bi_size = 0;
+
+ bio_add_page(bio, page, failrec->len, start - page_offset(page));
+
+ pr_debug("bio_readpage_error: submitting new read[%#x] to "
+ "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
+ failrec->this_mirror, num_copies, failrec->in_validation);
+
+ ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
+ failrec->this_mirror,
+ failrec->bio_flags, 0);
+ return ret;
+}
+
+/* lots and lots of room for performance fixes in the end_bio funcs */
+
+int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
+{
+ int uptodate = (err == 0);
+ struct extent_io_tree *tree;
+ int ret;
+
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+
+ if (tree->ops && tree->ops->writepage_end_io_hook) {
+ ret = tree->ops->writepage_end_io_hook(page, start,
+ end, NULL, uptodate);
+ if (ret)
+ uptodate = 0;
+ }
+
+ if (!uptodate && tree->ops &&
+ tree->ops->writepage_io_failed_hook) {
+ ret = tree->ops->writepage_io_failed_hook(NULL, page,
+ start, end, NULL);
+ /* Writeback already completed */
+ if (ret == 0)
+ return 1;
+ }
+
+ if (!uptodate) {
+ clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
+ ClearPageUptodate(page);
+ SetPageError(page);
+ }
+ return 0;
+}
+
+/*
+ * after a writepage IO is done, we need to:
+ * clear the uptodate bits on error
+ * clear the writeback bits in the extent tree for this IO
+ * end_page_writeback if the page has no more pending IO
+ *
+ * Scheduling is not allowed, so the extent state tree is expected
+ * to have one and only one object corresponding to this IO.
+ */
+static void end_bio_extent_writepage(struct bio *bio, int err)
+{
+ struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
+ struct extent_io_tree *tree;
+ u64 start;
+ u64 end;
+ int whole_page;
+
+ do {
+ struct page *page = bvec->bv_page;
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+
+ start = ((u64)page->index << PAGE_CACHE_SHIFT) +
+ bvec->bv_offset;
+ end = start + bvec->bv_len - 1;
+
+ if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
+ whole_page = 1;
+ else
+ whole_page = 0;
+
+ if (--bvec >= bio->bi_io_vec)
+ prefetchw(&bvec->bv_page->flags);
+
+ if (end_extent_writepage(page, err, start, end))
+ continue;
+
+ if (whole_page)
+ end_page_writeback(page);
+ else
+ check_page_writeback(tree, page);
+ } while (bvec >= bio->bi_io_vec);
+
+ bio_put(bio);
+}
+
+/*
+ * after a readpage IO is done, we need to:
+ * clear the uptodate bits on error
+ * set the uptodate bits if things worked
+ * set the page up to date if all extents in the tree are uptodate
+ * clear the lock bit in the extent tree
+ * unlock the page if there are no other extents locked for it
+ *
+ * Scheduling is not allowed, so the extent state tree is expected
+ * to have one and only one object corresponding to this IO.
+ */
+static void end_bio_extent_readpage(struct bio *bio, int err)
+{
+ int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+ struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
+ struct bio_vec *bvec = bio->bi_io_vec;
+ struct extent_io_tree *tree;
+ u64 start;
+ u64 end;
+ int whole_page;
+ int mirror;
+ int ret;
+
+ if (err)
+ uptodate = 0;
+
+ do {
+ struct page *page = bvec->bv_page;
+ struct extent_state *cached = NULL;
+ struct extent_state *state;
+
+ pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
+ "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
+ (long int)bio->bi_bdev);
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+
+ start = ((u64)page->index << PAGE_CACHE_SHIFT) +
+ bvec->bv_offset;
+ end = start + bvec->bv_len - 1;
+
+ if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
+ whole_page = 1;
+ else
+ whole_page = 0;
+
+ if (++bvec <= bvec_end)
+ prefetchw(&bvec->bv_page->flags);
+
+ spin_lock(&tree->lock);
+ state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
+ if (state && state->start == start) {
+ /*
+ * take a reference on the state, unlock will drop
+ * the ref
+ */
+ cache_state(state, &cached);
+ }
+ spin_unlock(&tree->lock);
+
+ mirror = (int)(unsigned long)bio->bi_bdev;
+ if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
+ ret = tree->ops->readpage_end_io_hook(page, start, end,
+ state, mirror);
+ if (ret)
+ uptodate = 0;
+ else
+ clean_io_failure(start, page);
+ }
+
+ if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
+ ret = tree->ops->readpage_io_failed_hook(page, mirror);
+ if (!ret && !err &&
+ test_bit(BIO_UPTODATE, &bio->bi_flags))
+ uptodate = 1;
+ } else if (!uptodate) {
+ /*
+ * The generic bio_readpage_error handles errors the
+ * following way: If possible, new read requests are
+ * created and submitted and will end up in
+ * end_bio_extent_readpage as well (if we're lucky, not
+ * in the !uptodate case). In that case it returns 0 and
+ * we just go on with the next page in our bio. If it
+ * can't handle the error it will return -EIO and we
+ * remain responsible for that page.
+ */
+ ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
+ if (ret == 0) {
+ uptodate =
+ test_bit(BIO_UPTODATE, &bio->bi_flags);
+ if (err)
+ uptodate = 0;
+ uncache_state(&cached);
+ continue;
+ }
+ }
+
+ if (uptodate && tree->track_uptodate) {
+ set_extent_uptodate(tree, start, end, &cached,
+ GFP_ATOMIC);
+ }
+ unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
+
+ if (whole_page) {
+ if (uptodate) {
+ SetPageUptodate(page);
+ } else {
+ ClearPageUptodate(page);
+ SetPageError(page);
+ }
+ unlock_page(page);
+ } else {
+ if (uptodate) {
+ check_page_uptodate(tree, page);
+ } else {
+ ClearPageUptodate(page);
+ SetPageError(page);
+ }
+ check_page_locked(tree, page);
+ }
+ } while (bvec <= bvec_end);
+
+ bio_put(bio);
+}
+
+struct bio *
+btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
+ gfp_t gfp_flags)
+{
+ struct bio *bio;
+
+ bio = bio_alloc(gfp_flags, nr_vecs);
+
+ if (bio == NULL && (current->flags & PF_MEMALLOC)) {
+ while (!bio && (nr_vecs /= 2))
+ bio = bio_alloc(gfp_flags, nr_vecs);
+ }
+
+ if (bio) {
+ bio->bi_size = 0;
+ bio->bi_bdev = bdev;
+ bio->bi_sector = first_sector;
+ }
+ return bio;
+}
+
+/*
+ * Since writes are async, they will only return -ENOMEM.
+ * Reads can return the full range of I/O error conditions.
+ */
+static int __must_check submit_one_bio(int rw, struct bio *bio,
+ int mirror_num, unsigned long bio_flags)
+{
+ int ret = 0;
+ struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
+ struct page *page = bvec->bv_page;
+ struct extent_io_tree *tree = bio->bi_private;
+ u64 start;
+
+ start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
+
+ bio->bi_private = NULL;
+
+ bio_get(bio);
+
+ if (tree->ops && tree->ops->submit_bio_hook)
+ ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
+ mirror_num, bio_flags, start);
+ else
+ btrfsic_submit_bio(rw, bio);
+
+ if (bio_flagged(bio, BIO_EOPNOTSUPP))
+ ret = -EOPNOTSUPP;
+ bio_put(bio);
+ return ret;
+}
+
+static int merge_bio(struct extent_io_tree *tree, struct page *page,
+ unsigned long offset, size_t size, struct bio *bio,
+ unsigned long bio_flags)
+{
+ int ret = 0;
+ if (tree->ops && tree->ops->merge_bio_hook)
+ ret = tree->ops->merge_bio_hook(page, offset, size, bio,
+ bio_flags);
+ BUG_ON(ret < 0);
+ return ret;
+
+}
+
+static int submit_extent_page(int rw, struct extent_io_tree *tree,
+ struct page *page, sector_t sector,
+ size_t size, unsigned long offset,
+ struct block_device *bdev,
+ struct bio **bio_ret,
+ unsigned long max_pages,
+ bio_end_io_t end_io_func,
+ int mirror_num,
+ unsigned long prev_bio_flags,
+ unsigned long bio_flags)
+{
+ int ret = 0;
+ struct bio *bio;
+ int nr;
+ int contig = 0;
+ int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
+ int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
+ size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
+
+ if (bio_ret && *bio_ret) {
+ bio = *bio_ret;
+ if (old_compressed)
+ contig = bio->bi_sector == sector;
+ else
+ contig = bio->bi_sector + (bio->bi_size >> 9) ==
+ sector;
+
+ if (prev_bio_flags != bio_flags || !contig ||
+ merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
+ bio_add_page(bio, page, page_size, offset) < page_size) {
+ ret = submit_one_bio(rw, bio, mirror_num,
+ prev_bio_flags);
+ if (ret < 0)
+ return ret;
+ bio = NULL;
+ } else {
+ return 0;
+ }
+ }
+ if (this_compressed)
+ nr = BIO_MAX_PAGES;
+ else
+ nr = bio_get_nr_vecs(bdev);
+
+ bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
+ if (!bio)
+ return -ENOMEM;
+
+ bio_add_page(bio, page, page_size, offset);
+ bio->bi_end_io = end_io_func;
+ bio->bi_private = tree;
+
+ if (bio_ret)
+ *bio_ret = bio;
+ else
+ ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
+
+ return ret;
+}
+
+void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
+{
+ if (!PagePrivate(page)) {
+ SetPagePrivate(page);
+ page_cache_get(page);
+ set_page_private(page, (unsigned long)eb);
+ } else {
+ WARN_ON(page->private != (unsigned long)eb);
+ }
+}
+
+void set_page_extent_mapped(struct page *page)
+{
+ if (!PagePrivate(page)) {
+ SetPagePrivate(page);
+ page_cache_get(page);
+ set_page_private(page, EXTENT_PAGE_PRIVATE);
+ }
+}
+
+/*
+ * basic readpage implementation. Locked extent state structs are inserted
+ * into the tree that are removed when the IO is done (by the end_io
+ * handlers)
+ * XXX JDM: This needs looking at to ensure proper page locking
+ */
+static int __extent_read_full_page(struct extent_io_tree *tree,
+ struct page *page,
+ get_extent_t *get_extent,
+ struct bio **bio, int mirror_num,
+ unsigned long *bio_flags)
+{
+ struct inode *inode = page->mapping->host;
+ u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+ u64 page_end = start + PAGE_CACHE_SIZE - 1;
+ u64 end;
+ u64 cur = start;
+ u64 extent_offset;
+ u64 last_byte = i_size_read(inode);
+ u64 block_start;
+ u64 cur_end;
+ sector_t sector;
+ struct extent_map *em;
+ struct block_device *bdev;
+ struct btrfs_ordered_extent *ordered;
+ int ret;
+ int nr = 0;
+ size_t pg_offset = 0;
+ size_t iosize;
+ size_t disk_io_size;
+ size_t blocksize = inode->i_sb->s_blocksize;
+ unsigned long this_bio_flag = 0;
+
+ set_page_extent_mapped(page);
+
+ if (!PageUptodate(page)) {
+ if (cleancache_get_page(page) == 0) {
+ BUG_ON(blocksize != PAGE_SIZE);
+ goto out;
+ }
+ }
+
+ end = page_end;
+ while (1) {
+ lock_extent(tree, start, end);
+ ordered = btrfs_lookup_ordered_extent(inode, start);
+ if (!ordered)
+ break;
+ unlock_extent(tree, start, end);
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ }
+
+ if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
+ char *userpage;
+ size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
+
+ if (zero_offset) {
+ iosize = PAGE_CACHE_SIZE - zero_offset;
+ userpage = kmap_atomic(page);
+ memset(userpage + zero_offset, 0, iosize);
+ flush_dcache_page(page);
+ kunmap_atomic(userpage);
+ }
+ }
+ while (cur <= end) {
+ if (cur >= last_byte) {
+ char *userpage;
+ struct extent_state *cached = NULL;
+
+ iosize = PAGE_CACHE_SIZE - pg_offset;
+ userpage = kmap_atomic(page);
+ memset(userpage + pg_offset, 0, iosize);
+ flush_dcache_page(page);
+ kunmap_atomic(userpage);
+ set_extent_uptodate(tree, cur, cur + iosize - 1,
+ &cached, GFP_NOFS);
+ unlock_extent_cached(tree, cur, cur + iosize - 1,
+ &cached, GFP_NOFS);
+ break;
+ }
+ em = get_extent(inode, page, pg_offset, cur,
+ end - cur + 1, 0);
+ if (IS_ERR_OR_NULL(em)) {
+ SetPageError(page);
+ unlock_extent(tree, cur, end);
+ break;
+ }
+ extent_offset = cur - em->start;
+ BUG_ON(extent_map_end(em) <= cur);
+ BUG_ON(end < cur);
+
+ if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
+ this_bio_flag = EXTENT_BIO_COMPRESSED;
+ extent_set_compress_type(&this_bio_flag,
+ em->compress_type);
+ }
+
+ iosize = min(extent_map_end(em) - cur, end - cur + 1);
+ cur_end = min(extent_map_end(em) - 1, end);
+ iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
+ if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
+ disk_io_size = em->block_len;
+ sector = em->block_start >> 9;
+ } else {
+ sector = (em->block_start + extent_offset) >> 9;
+ disk_io_size = iosize;
+ }
+ bdev = em->bdev;
+ block_start = em->block_start;
+ if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
+ block_start = EXTENT_MAP_HOLE;
+ free_extent_map(em);
+ em = NULL;
+
+ /* we've found a hole, just zero and go on */
+ if (block_start == EXTENT_MAP_HOLE) {
+ char *userpage;
+ struct extent_state *cached = NULL;
+
+ userpage = kmap_atomic(page);
+ memset(userpage + pg_offset, 0, iosize);
+ flush_dcache_page(page);
+ kunmap_atomic(userpage);
+
+ set_extent_uptodate(tree, cur, cur + iosize - 1,
+ &cached, GFP_NOFS);
+ unlock_extent_cached(tree, cur, cur + iosize - 1,
+ &cached, GFP_NOFS);
+ cur = cur + iosize;
+ pg_offset += iosize;
+ continue;
+ }
+ /* the get_extent function already copied into the page */
+ if (test_range_bit(tree, cur, cur_end,
+ EXTENT_UPTODATE, 1, NULL)) {
+ check_page_uptodate(tree, page);
+ unlock_extent(tree, cur, cur + iosize - 1);
+ cur = cur + iosize;
+ pg_offset += iosize;
+ continue;
+ }
+ /* we have an inline extent but it didn't get marked up
+ * to date. Error out
+ */
+ if (block_start == EXTENT_MAP_INLINE) {
+ SetPageError(page);
+ unlock_extent(tree, cur, cur + iosize - 1);
+ cur = cur + iosize;
+ pg_offset += iosize;
+ continue;
+ }
+
+ ret = 0;
+ if (tree->ops && tree->ops->readpage_io_hook) {
+ ret = tree->ops->readpage_io_hook(page, cur,
+ cur + iosize - 1);
+ }
+ if (!ret) {
+ unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
+ pnr -= page->index;
+ ret = submit_extent_page(READ, tree, page,
+ sector, disk_io_size, pg_offset,
+ bdev, bio, pnr,
+ end_bio_extent_readpage, mirror_num,
+ *bio_flags,
+ this_bio_flag);
+ BUG_ON(ret == -ENOMEM);
+ nr++;
+ *bio_flags = this_bio_flag;
+ }
+ if (ret)
+ SetPageError(page);
+ cur = cur + iosize;
+ pg_offset += iosize;
+ }
+out:
+ if (!nr) {
+ if (!PageError(page))
+ SetPageUptodate(page);
+ unlock_page(page);
+ }
+ return 0;
+}
+
+int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
+ get_extent_t *get_extent, int mirror_num)
+{
+ struct bio *bio = NULL;
+ unsigned long bio_flags = 0;
+ int ret;
+
+ ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
+ &bio_flags);
+ if (bio)
+ ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
+ return ret;
+}
+
+static noinline void update_nr_written(struct page *page,
+ struct writeback_control *wbc,
+ unsigned long nr_written)
+{
+ wbc->nr_to_write -= nr_written;
+ if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
+ wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
+ page->mapping->writeback_index = page->index + nr_written;
+}
+
+/*
+ * the writepage semantics are similar to regular writepage. extent
+ * records are inserted to lock ranges in the tree, and as dirty areas
+ * are found, they are marked writeback. Then the lock bits are removed
+ * and the end_io handler clears the writeback ranges
+ */
+static int __extent_writepage(struct page *page, struct writeback_control *wbc,
+ void *data)
+{
+ struct inode *inode = page->mapping->host;
+ struct extent_page_data *epd = data;
+ struct extent_io_tree *tree = epd->tree;
+ u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+ u64 delalloc_start;
+ u64 page_end = start + PAGE_CACHE_SIZE - 1;
+ u64 end;
+ u64 cur = start;
+ u64 extent_offset;
+ u64 last_byte = i_size_read(inode);
+ u64 block_start;
+ u64 iosize;
+ sector_t sector;
+ struct extent_state *cached_state = NULL;
+ struct extent_map *em;
+ struct block_device *bdev;
+ int ret;
+ int nr = 0;
+ size_t pg_offset = 0;
+ size_t blocksize;
+ loff_t i_size = i_size_read(inode);
+ unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
+ u64 nr_delalloc;
+ u64 delalloc_end;
+ int page_started;
+ int compressed;
+ int write_flags;
+ unsigned long nr_written = 0;
+ bool fill_delalloc = true;
+
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ write_flags = WRITE_SYNC;
+ else
+ write_flags = WRITE;
+
+ trace___extent_writepage(page, inode, wbc);
+
+ WARN_ON(!PageLocked(page));
+
+ ClearPageError(page);
+
+ pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
+ if (page->index > end_index ||
+ (page->index == end_index && !pg_offset)) {
+ page->mapping->a_ops->invalidatepage(page, 0);
+ unlock_page(page);
+ return 0;
+ }
+
+ if (page->index == end_index) {
+ char *userpage;
+
+ userpage = kmap_atomic(page);
+ memset(userpage + pg_offset, 0,
+ PAGE_CACHE_SIZE - pg_offset);
+ kunmap_atomic(userpage);
+ flush_dcache_page(page);
+ }
+ pg_offset = 0;
+
+ set_page_extent_mapped(page);
+
+ if (!tree->ops || !tree->ops->fill_delalloc)
+ fill_delalloc = false;
+
+ delalloc_start = start;
+ delalloc_end = 0;
+ page_started = 0;
+ if (!epd->extent_locked && fill_delalloc) {
+ u64 delalloc_to_write = 0;
+ /*
+ * make sure the wbc mapping index is at least updated
+ * to this page.
+ */
+ update_nr_written(page, wbc, 0);
+
+ while (delalloc_end < page_end) {
+ nr_delalloc = find_lock_delalloc_range(inode, tree,
+ page,
+ &delalloc_start,
+ &delalloc_end,
+ 128 * 1024 * 1024);
+ if (nr_delalloc == 0) {
+ delalloc_start = delalloc_end + 1;
+ continue;
+ }
+ ret = tree->ops->fill_delalloc(inode, page,
+ delalloc_start,
+ delalloc_end,
+ &page_started,
+ &nr_written);
+ /* File system has been set read-only */
+ if (ret) {
+ SetPageError(page);
+ goto done;
+ }
+ /*
+ * delalloc_end is already one less than the total
+ * length, so we don't subtract one from
+ * PAGE_CACHE_SIZE
+ */
+ delalloc_to_write += (delalloc_end - delalloc_start +
+ PAGE_CACHE_SIZE) >>
+ PAGE_CACHE_SHIFT;
+ delalloc_start = delalloc_end + 1;
+ }
+ if (wbc->nr_to_write < delalloc_to_write) {
+ int thresh = 8192;
+
+ if (delalloc_to_write < thresh * 2)
+ thresh = delalloc_to_write;
+ wbc->nr_to_write = min_t(u64, delalloc_to_write,
+ thresh);
+ }
+
+ /* did the fill delalloc function already unlock and start
+ * the IO?
+ */
+ if (page_started) {
+ ret = 0;
+ /*
+ * we've unlocked the page, so we can't update
+ * the mapping's writeback index, just update
+ * nr_to_write.
+ */
+ wbc->nr_to_write -= nr_written;
+ goto done_unlocked;
+ }
+ }
+ if (tree->ops && tree->ops->writepage_start_hook) {
+ ret = tree->ops->writepage_start_hook(page, start,
+ page_end);
+ if (ret) {
+ /* Fixup worker will requeue */
+ if (ret == -EBUSY)
+ wbc->pages_skipped++;
+ else
+ redirty_page_for_writepage(wbc, page);
+ update_nr_written(page, wbc, nr_written);
+ unlock_page(page);
+ ret = 0;
+ goto done_unlocked;
+ }
+ }
+
+ /*
+ * we don't want to touch the inode after unlocking the page,
+ * so we update the mapping writeback index now
+ */
+ update_nr_written(page, wbc, nr_written + 1);
+
+ end = page_end;
+ if (last_byte <= start) {
+ if (tree->ops && tree->ops->writepage_end_io_hook)
+ tree->ops->writepage_end_io_hook(page, start,
+ page_end, NULL, 1);
+ goto done;
+ }
+
+ blocksize = inode->i_sb->s_blocksize;
+
+ while (cur <= end) {
+ if (cur >= last_byte) {
+ if (tree->ops && tree->ops->writepage_end_io_hook)
+ tree->ops->writepage_end_io_hook(page, cur,
+ page_end, NULL, 1);
+ break;
+ }
+ em = epd->get_extent(inode, page, pg_offset, cur,
+ end - cur + 1, 1);
+ if (IS_ERR_OR_NULL(em)) {
+ SetPageError(page);
+ break;
+ }
+
+ extent_offset = cur - em->start;
+ BUG_ON(extent_map_end(em) <= cur);
+ BUG_ON(end < cur);
+ iosize = min(extent_map_end(em) - cur, end - cur + 1);
+ iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
+ sector = (em->block_start + extent_offset) >> 9;
+ bdev = em->bdev;
+ block_start = em->block_start;
+ compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+ free_extent_map(em);
+ em = NULL;
+
+ /*
+ * compressed and inline extents are written through other
+ * paths in the FS
+ */
+ if (compressed || block_start == EXTENT_MAP_HOLE ||
+ block_start == EXTENT_MAP_INLINE) {
+ /*
+ * end_io notification does not happen here for
+ * compressed extents
+ */
+ if (!compressed && tree->ops &&
+ tree->ops->writepage_end_io_hook)
+ tree->ops->writepage_end_io_hook(page, cur,
+ cur + iosize - 1,
+ NULL, 1);
+ else if (compressed) {
+ /* we don't want to end_page_writeback on
+ * a compressed extent. this happens
+ * elsewhere
+ */
+ nr++;
+ }
+
+ cur += iosize;
+ pg_offset += iosize;
+ continue;
+ }
+ /* leave this out until we have a page_mkwrite call */
+ if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
+ EXTENT_DIRTY, 0, NULL)) {
+ cur = cur + iosize;
+ pg_offset += iosize;
+ continue;
+ }
+
+ if (tree->ops && tree->ops->writepage_io_hook) {
+ ret = tree->ops->writepage_io_hook(page, cur,
+ cur + iosize - 1);
+ } else {
+ ret = 0;
+ }
+ if (ret) {
+ SetPageError(page);
+ } else {
+ unsigned long max_nr = end_index + 1;
+
+ set_range_writeback(tree, cur, cur + iosize - 1);
+ if (!PageWriteback(page)) {
+ printk(KERN_ERR "btrfs warning page %lu not "
+ "writeback, cur %llu end %llu\n",
+ page->index, (unsigned long long)cur,
+ (unsigned long long)end);
+ }
+
+ ret = submit_extent_page(write_flags, tree, page,
+ sector, iosize, pg_offset,
+ bdev, &epd->bio, max_nr,
+ end_bio_extent_writepage,
+ 0, 0, 0);
+ if (ret)
+ SetPageError(page);
+ }
+ cur = cur + iosize;
+ pg_offset += iosize;
+ nr++;
+ }
+done:
+ if (nr == 0) {
+ /* make sure the mapping tag for page dirty gets cleared */
+ set_page_writeback(page);
+ end_page_writeback(page);
+ }
+ unlock_page(page);
+
+done_unlocked:
+
+ /* drop our reference on any cached states */
+ free_extent_state(cached_state);
+ return 0;
+}
+
+static int eb_wait(void *word)
+{
+ io_schedule();
+ return 0;
+}
+
+static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
+{
+ wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
+ TASK_UNINTERRUPTIBLE);
+}
+
+static int lock_extent_buffer_for_io(struct extent_buffer *eb,
+ struct btrfs_fs_info *fs_info,
+ struct extent_page_data *epd)
+{
+ unsigned long i, num_pages;
+ int flush = 0;
+ int ret = 0;
+
+ if (!btrfs_try_tree_write_lock(eb)) {
+ flush = 1;
+ flush_write_bio(epd);
+ btrfs_tree_lock(eb);
+ }
+
+ if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
+ btrfs_tree_unlock(eb);
+ if (!epd->sync_io)
+ return 0;
+ if (!flush) {
+ flush_write_bio(epd);
+ flush = 1;
+ }
+ while (1) {
+ wait_on_extent_buffer_writeback(eb);
+ btrfs_tree_lock(eb);
+ if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
+ break;
+ btrfs_tree_unlock(eb);
+ }
+ }
+
+ if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
+ set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
+ btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
+ spin_lock(&fs_info->delalloc_lock);
+ if (fs_info->dirty_metadata_bytes >= eb->len)
+ fs_info->dirty_metadata_bytes -= eb->len;
+ else
+ WARN_ON(1);
+ spin_unlock(&fs_info->delalloc_lock);
+ ret = 1;
+ }
+
+ btrfs_tree_unlock(eb);
+
+ if (!ret)
+ return ret;
+
+ num_pages = num_extent_pages(eb->start, eb->len);
+ for (i = 0; i < num_pages; i++) {
+ struct page *p = extent_buffer_page(eb, i);
+
+ if (!trylock_page(p)) {
+ if (!flush) {
+ flush_write_bio(epd);
+ flush = 1;
+ }
+ lock_page(p);
+ }
+ }
+
+ return ret;
+}
+
+static void end_extent_buffer_writeback(struct extent_buffer *eb)
+{
+ clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
+ smp_mb__after_clear_bit();
+ wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
+}
+
+static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
+{
+ int uptodate = err == 0;
+ struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
+ struct extent_buffer *eb;
+ int done;
+
+ do {
+ struct page *page = bvec->bv_page;
+
+ bvec--;
+ eb = (struct extent_buffer *)page->private;
+ BUG_ON(!eb);
+ done = atomic_dec_and_test(&eb->io_pages);
+
+ if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
+ set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
+ ClearPageUptodate(page);
+ SetPageError(page);
+ }
+
+ end_page_writeback(page);
+
+ if (!done)
+ continue;
+
+ end_extent_buffer_writeback(eb);
+ } while (bvec >= bio->bi_io_vec);
+
+ bio_put(bio);
+
+}
+
+static int write_one_eb(struct extent_buffer *eb,
+ struct btrfs_fs_info *fs_info,
+ struct writeback_control *wbc,
+ struct extent_page_data *epd)
+{
+ struct block_device *bdev = fs_info->fs_devices->latest_bdev;
+ u64 offset = eb->start;
+ unsigned long i, num_pages;
+ int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
+ int ret;
+
+ clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
+ num_pages = num_extent_pages(eb->start, eb->len);
+ atomic_set(&eb->io_pages, num_pages);
+ for (i = 0; i < num_pages; i++) {
+ struct page *p = extent_buffer_page(eb, i);
+
+ clear_page_dirty_for_io(p);
+ set_page_writeback(p);
+ ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
+ PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
+ -1, end_bio_extent_buffer_writepage,
+ 0, 0, 0);
+ if (ret) {
+ set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
+ SetPageError(p);
+ if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
+ end_extent_buffer_writeback(eb);
+ ret = -EIO;
+ break;
+ }
+ offset += PAGE_CACHE_SIZE;
+ update_nr_written(p, wbc, 1);
+ unlock_page(p);
+ }
+
+ if (unlikely(ret)) {
+ for (; i < num_pages; i++) {
+ struct page *p = extent_buffer_page(eb, i);
+ unlock_page(p);
+ }
+ }
+
+ return ret;
+}
+
+int btree_write_cache_pages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
+ struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
+ struct extent_buffer *eb, *prev_eb = NULL;
+ struct extent_page_data epd = {
+ .bio = NULL,
+ .tree = tree,
+ .extent_locked = 0,
+ .sync_io = wbc->sync_mode == WB_SYNC_ALL,
+ };
+ int ret = 0;
+ int done = 0;
+ int nr_to_write_done = 0;
+ struct pagevec pvec;
+ int nr_pages;
+ pgoff_t index;
+ pgoff_t end; /* Inclusive */
+ int scanned = 0;
+ int tag;
+
+ pagevec_init(&pvec, 0);
+ if (wbc->range_cyclic) {
+ index = mapping->writeback_index; /* Start from prev offset */
+ end = -1;
+ } else {
+ index = wbc->range_start >> PAGE_CACHE_SHIFT;
+ end = wbc->range_end >> PAGE_CACHE_SHIFT;
+ scanned = 1;
+ }
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ tag = PAGECACHE_TAG_TOWRITE;
+ else
+ tag = PAGECACHE_TAG_DIRTY;
+retry:
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ tag_pages_for_writeback(mapping, index, end);
+ while (!done && !nr_to_write_done && (index <= end) &&
+ (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
+ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
+ unsigned i;
+
+ scanned = 1;
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+
+ if (!PagePrivate(page))
+ continue;
+
+ if (!wbc->range_cyclic && page->index > end) {
+ done = 1;
+ break;
+ }
+
+ eb = (struct extent_buffer *)page->private;
+ if (!eb) {
+ WARN_ON(1);
+ continue;
+ }
+
+ if (eb == prev_eb)
+ continue;
+
+ if (!atomic_inc_not_zero(&eb->refs)) {
+ WARN_ON(1);
+ continue;
+ }
+
+ prev_eb = eb;
+ ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
+ if (!ret) {
+ free_extent_buffer(eb);
+ continue;
+ }
+
+ ret = write_one_eb(eb, fs_info, wbc, &epd);
+ if (ret) {
+ done = 1;
+ free_extent_buffer(eb);
+ break;
+ }
+ free_extent_buffer(eb);
+
+ /*
+ * the filesystem may choose to bump up nr_to_write.
+ * We have to make sure to honor the new nr_to_write
+ * at any time
+ */
+ nr_to_write_done = wbc->nr_to_write <= 0;
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+ }
+ if (!scanned && !done) {
+ /*
+ * We hit the last page and there is more work to be done: wrap
+ * back to the start of the file
+ */
+ scanned = 1;
+ index = 0;
+ goto retry;
+ }
+ flush_write_bio(&epd);
+ return ret;
+}
+
+/**
+ * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
+ * @mapping: address space structure to write
+ * @wbc: subtract the number of written pages from *@wbc->nr_to_write
+ * @writepage: function called for each page
+ * @data: data passed to writepage function
+ *
+ * If a page is already under I/O, write_cache_pages() skips it, even
+ * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
+ * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
+ * and msync() need to guarantee that all the data which was dirty at the time
+ * the call was made get new I/O started against them. If wbc->sync_mode is
+ * WB_SYNC_ALL then we were called for data integrity and we must wait for
+ * existing IO to complete.
+ */
+static int extent_write_cache_pages(struct extent_io_tree *tree,
+ struct address_space *mapping,
+ struct writeback_control *wbc,
+ writepage_t writepage, void *data,
+ void (*flush_fn)(void *))
+{
+ int ret = 0;
+ int done = 0;
+ int nr_to_write_done = 0;
+ struct pagevec pvec;
+ int nr_pages;
+ pgoff_t index;
+ pgoff_t end; /* Inclusive */
+ int scanned = 0;
+ int tag;
+
+ pagevec_init(&pvec, 0);
+ if (wbc->range_cyclic) {
+ index = mapping->writeback_index; /* Start from prev offset */
+ end = -1;
+ } else {
+ index = wbc->range_start >> PAGE_CACHE_SHIFT;
+ end = wbc->range_end >> PAGE_CACHE_SHIFT;
+ scanned = 1;
+ }
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ tag = PAGECACHE_TAG_TOWRITE;
+ else
+ tag = PAGECACHE_TAG_DIRTY;
+retry:
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ tag_pages_for_writeback(mapping, index, end);
+ while (!done && !nr_to_write_done && (index <= end) &&
+ (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
+ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
+ unsigned i;
+
+ scanned = 1;
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+
+ /*
+ * At this point we hold neither mapping->tree_lock nor
+ * lock on the page itself: the page may be truncated or
+ * invalidated (changing page->mapping to NULL), or even
+ * swizzled back from swapper_space to tmpfs file
+ * mapping
+ */
+ if (tree->ops &&
+ tree->ops->write_cache_pages_lock_hook) {
+ tree->ops->write_cache_pages_lock_hook(page,
+ data, flush_fn);
+ } else {
+ if (!trylock_page(page)) {
+ flush_fn(data);
+ lock_page(page);
+ }
+ }
+
+ if (unlikely(page->mapping != mapping)) {
+ unlock_page(page);
+ continue;
+ }
+
+ if (!wbc->range_cyclic && page->index > end) {
+ done = 1;
+ unlock_page(page);
+ continue;
+ }
+
+ if (wbc->sync_mode != WB_SYNC_NONE) {
+ if (PageWriteback(page))
+ flush_fn(data);
+ wait_on_page_writeback(page);
+ }
+
+ if (PageWriteback(page) ||
+ !clear_page_dirty_for_io(page)) {
+ unlock_page(page);
+ continue;
+ }
+
+ ret = (*writepage)(page, wbc, data);
+
+ if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
+ unlock_page(page);
+ ret = 0;
+ }
+ if (ret)
+ done = 1;
+
+ /*
+ * the filesystem may choose to bump up nr_to_write.
+ * We have to make sure to honor the new nr_to_write
+ * at any time
+ */
+ nr_to_write_done = wbc->nr_to_write <= 0;
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+ }
+ if (!scanned && !done) {
+ /*
+ * We hit the last page and there is more work to be done: wrap
+ * back to the start of the file
+ */
+ scanned = 1;
+ index = 0;
+ goto retry;
+ }
+ return ret;
+}
+
+static void flush_epd_write_bio(struct extent_page_data *epd)
+{
+ if (epd->bio) {
+ int rw = WRITE;
+ int ret;
+
+ if (epd->sync_io)
+ rw = WRITE_SYNC;
+
+ ret = submit_one_bio(rw, epd->bio, 0, 0);
+ BUG_ON(ret < 0); /* -ENOMEM */
+ epd->bio = NULL;
+ }
+}
+
+static noinline void flush_write_bio(void *data)
+{
+ struct extent_page_data *epd = data;
+ flush_epd_write_bio(epd);
+}
+
+int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
+ get_extent_t *get_extent,
+ struct writeback_control *wbc)
+{
+ int ret;
+ struct extent_page_data epd = {
+ .bio = NULL,
+ .tree = tree,
+ .get_extent = get_extent,
+ .extent_locked = 0,
+ .sync_io = wbc->sync_mode == WB_SYNC_ALL,
+ };
+
+ ret = __extent_writepage(page, wbc, &epd);
+
+ flush_epd_write_bio(&epd);
+ return ret;
+}
+
+int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
+ u64 start, u64 end, get_extent_t *get_extent,
+ int mode)
+{
+ int ret = 0;
+ struct address_space *mapping = inode->i_mapping;
+ struct page *page;
+ unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
+ PAGE_CACHE_SHIFT;
+
+ struct extent_page_data epd = {
+ .bio = NULL,
+ .tree = tree,
+ .get_extent = get_extent,
+ .extent_locked = 1,
+ .sync_io = mode == WB_SYNC_ALL,
+ };
+ struct writeback_control wbc_writepages = {
+ .sync_mode = mode,
+ .nr_to_write = nr_pages * 2,
+ .range_start = start,
+ .range_end = end + 1,
+ };
+
+ while (start <= end) {
+ page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
+ if (clear_page_dirty_for_io(page))
+ ret = __extent_writepage(page, &wbc_writepages, &epd);
+ else {
+ if (tree->ops && tree->ops->writepage_end_io_hook)
+ tree->ops->writepage_end_io_hook(page, start,
+ start + PAGE_CACHE_SIZE - 1,
+ NULL, 1);
+ unlock_page(page);
+ }
+ page_cache_release(page);
+ start += PAGE_CACHE_SIZE;
+ }
+
+ flush_epd_write_bio(&epd);
+ return ret;
+}
+
+int extent_writepages(struct extent_io_tree *tree,
+ struct address_space *mapping,
+ get_extent_t *get_extent,
+ struct writeback_control *wbc)
+{
+ int ret = 0;
+ struct extent_page_data epd = {
+ .bio = NULL,
+ .tree = tree,
+ .get_extent = get_extent,
+ .extent_locked = 0,
+ .sync_io = wbc->sync_mode == WB_SYNC_ALL,
+ };
+
+ ret = extent_write_cache_pages(tree, mapping, wbc,
+ __extent_writepage, &epd,
+ flush_write_bio);
+ flush_epd_write_bio(&epd);
+ return ret;
+}
+
+int extent_readpages(struct extent_io_tree *tree,
+ struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages,
+ get_extent_t get_extent)
+{
+ struct bio *bio = NULL;
+ unsigned page_idx;
+ unsigned long bio_flags = 0;
+
+ for (page_idx = 0; page_idx < nr_pages; page_idx++) {
+ struct page *page = list_entry(pages->prev, struct page, lru);
+
+ prefetchw(&page->flags);
+ list_del(&page->lru);
+ if (!add_to_page_cache_lru(page, mapping,
+ page->index, GFP_NOFS)) {
+ __extent_read_full_page(tree, page, get_extent,
+ &bio, 0, &bio_flags);
+ }
+ page_cache_release(page);
+ }
+ BUG_ON(!list_empty(pages));
+ if (bio)
+ return submit_one_bio(READ, bio, 0, bio_flags);
+ return 0;
+}
+
+/*
+ * basic invalidatepage code, this waits on any locked or writeback
+ * ranges corresponding to the page, and then deletes any extent state
+ * records from the tree
+ */
+int extent_invalidatepage(struct extent_io_tree *tree,
+ struct page *page, unsigned long offset)
+{
+ struct extent_state *cached_state = NULL;
+ u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
+ u64 end = start + PAGE_CACHE_SIZE - 1;
+ size_t blocksize = page->mapping->host->i_sb->s_blocksize;
+
+ start += (offset + blocksize - 1) & ~(blocksize - 1);
+ if (start > end)
+ return 0;
+
+ lock_extent_bits(tree, start, end, 0, &cached_state);
+ wait_on_page_writeback(page);
+ clear_extent_bit(tree, start, end,
+ EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
+ EXTENT_DO_ACCOUNTING,
+ 1, 1, &cached_state, GFP_NOFS);
+ return 0;
+}
+
+/*
+ * a helper for releasepage, this tests for areas of the page that
+ * are locked or under IO and drops the related state bits if it is safe
+ * to drop the page.
+ */
+int try_release_extent_state(struct extent_map_tree *map,
+ struct extent_io_tree *tree, struct page *page,
+ gfp_t mask)
+{
+ u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+ u64 end = start + PAGE_CACHE_SIZE - 1;
+ int ret = 1;
+
+ if (test_range_bit(tree, start, end,
+ EXTENT_IOBITS, 0, NULL))
+ ret = 0;
+ else {
+ if ((mask & GFP_NOFS) == GFP_NOFS)
+ mask = GFP_NOFS;
+ /*
+ * at this point we can safely clear everything except the
+ * locked bit and the nodatasum bit
+ */
+ ret = clear_extent_bit(tree, start, end,
+ ~(EXTENT_LOCKED | EXTENT_NODATASUM),
+ 0, 0, NULL, mask);
+
+ /* if clear_extent_bit failed for enomem reasons,
+ * we can't allow the release to continue.
+ */
+ if (ret < 0)
+ ret = 0;
+ else
+ ret = 1;
+ }
+ return ret;
+}
+
+/*
+ * a helper for releasepage. As long as there are no locked extents
+ * in the range corresponding to the page, both state records and extent
+ * map records are removed
+ */
+int try_release_extent_mapping(struct extent_map_tree *map,
+ struct extent_io_tree *tree, struct page *page,
+ gfp_t mask)
+{
+ struct extent_map *em;
+ u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+ u64 end = start + PAGE_CACHE_SIZE - 1;
+
+ if ((mask & __GFP_WAIT) &&
+ page->mapping->host->i_size > 16 * 1024 * 1024) {
+ u64 len;
+ while (start <= end) {
+ len = end - start + 1;
+ write_lock(&map->lock);
+ em = lookup_extent_mapping(map, start, len);
+ if (!em) {
+ write_unlock(&map->lock);
+ break;
+ }
+ if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
+ em->start != start) {
+ write_unlock(&map->lock);
+ free_extent_map(em);
+ break;
+ }
+ if (!test_range_bit(tree, em->start,
+ extent_map_end(em) - 1,
+ EXTENT_LOCKED | EXTENT_WRITEBACK,
+ 0, NULL)) {
+ remove_extent_mapping(map, em);
+ /* once for the rb tree */
+ free_extent_map(em);
+ }
+ start = extent_map_end(em);
+ write_unlock(&map->lock);
+
+ /* once for us */
+ free_extent_map(em);
+ }
+ }
+ return try_release_extent_state(map, tree, page, mask);
+}
+
+/*
+ * helper function for fiemap, which doesn't want to see any holes.
+ * This maps until we find something past 'last'
+ */
+static struct extent_map *get_extent_skip_holes(struct inode *inode,
+ u64 offset,
+ u64 last,
+ get_extent_t *get_extent)
+{
+ u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
+ struct extent_map *em;
+ u64 len;
+
+ if (offset >= last)
+ return NULL;
+
+ while(1) {
+ len = last - offset;
+ if (len == 0)
+ break;
+ len = (len + sectorsize - 1) & ~(sectorsize - 1);
+ em = get_extent(inode, NULL, 0, offset, len, 0);
+ if (IS_ERR_OR_NULL(em))
+ return em;
+
+ /* if this isn't a hole return it */
+ if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
+ em->block_start != EXTENT_MAP_HOLE) {
+ return em;
+ }
+
+ /* this is a hole, advance to the next extent */
+ offset = extent_map_end(em);
+ free_extent_map(em);
+ if (offset >= last)
+ break;
+ }
+ return NULL;
+}
+
+int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
+ __u64 start, __u64 len, get_extent_t *get_extent)
+{
+ int ret = 0;
+ u64 off = start;
+ u64 max = start + len;
+ u32 flags = 0;
+ u32 found_type;
+ u64 last;
+ u64 last_for_get_extent = 0;
+ u64 disko = 0;
+ u64 isize = i_size_read(inode);
+ struct btrfs_key found_key;
+ struct extent_map *em = NULL;
+ struct extent_state *cached_state = NULL;
+ struct btrfs_path *path;
+ struct btrfs_file_extent_item *item;
+ int end = 0;
+ u64 em_start = 0;
+ u64 em_len = 0;
+ u64 em_end = 0;
+ unsigned long emflags;
+
+ if (len == 0)
+ return -EINVAL;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->leave_spinning = 1;
+
+ start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
+ len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
+
+ /*
+ * lookup the last file extent. We're not using i_size here
+ * because there might be preallocation past i_size
+ */
+ ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
+ path, btrfs_ino(inode), -1, 0);
+ if (ret < 0) {
+ btrfs_free_path(path);
+ return ret;
+ }
+ WARN_ON(!ret);
+ path->slots[0]--;
+ item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
+ found_type = btrfs_key_type(&found_key);
+
+ /* No extents, but there might be delalloc bits */
+ if (found_key.objectid != btrfs_ino(inode) ||
+ found_type != BTRFS_EXTENT_DATA_KEY) {
+ /* have to trust i_size as the end */
+ last = (u64)-1;
+ last_for_get_extent = isize;
+ } else {
+ /*
+ * remember the start of the last extent. There are a
+ * bunch of different factors that go into the length of the
+ * extent, so its much less complex to remember where it started
+ */
+ last = found_key.offset;
+ last_for_get_extent = last + 1;
+ }
+ btrfs_free_path(path);
+
+ /*
+ * we might have some extents allocated but more delalloc past those
+ * extents. so, we trust isize unless the start of the last extent is
+ * beyond isize
+ */
+ if (last < isize) {
+ last = (u64)-1;
+ last_for_get_extent = isize;
+ }
+
+ lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
+ &cached_state);
+
+ em = get_extent_skip_holes(inode, start, last_for_get_extent,
+ get_extent);
+ if (!em)
+ goto out;
+ if (IS_ERR(em)) {
+ ret = PTR_ERR(em);
+ goto out;
+ }
+
+ while (!end) {
+ u64 offset_in_extent;
+
+ /* break if the extent we found is outside the range */
+ if (em->start >= max || extent_map_end(em) < off)
+ break;
+
+ /*
+ * get_extent may return an extent that starts before our
+ * requested range. We have to make sure the ranges
+ * we return to fiemap always move forward and don't
+ * overlap, so adjust the offsets here
+ */
+ em_start = max(em->start, off);
+
+ /*
+ * record the offset from the start of the extent
+ * for adjusting the disk offset below
+ */
+ offset_in_extent = em_start - em->start;
+ em_end = extent_map_end(em);
+ em_len = em_end - em_start;
+ emflags = em->flags;
+ disko = 0;
+ flags = 0;
+
+ /*
+ * bump off for our next call to get_extent
+ */
+ off = extent_map_end(em);
+ if (off >= max)
+ end = 1;
+
+ if (em->block_start == EXTENT_MAP_LAST_BYTE) {
+ end = 1;
+ flags |= FIEMAP_EXTENT_LAST;
+ } else if (em->block_start == EXTENT_MAP_INLINE) {
+ flags |= (FIEMAP_EXTENT_DATA_INLINE |
+ FIEMAP_EXTENT_NOT_ALIGNED);
+ } else if (em->block_start == EXTENT_MAP_DELALLOC) {
+ flags |= (FIEMAP_EXTENT_DELALLOC |
+ FIEMAP_EXTENT_UNKNOWN);
+ } else {
+ disko = em->block_start + offset_in_extent;
+ }
+ if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
+ flags |= FIEMAP_EXTENT_ENCODED;
+
+ free_extent_map(em);
+ em = NULL;
+ if ((em_start >= last) || em_len == (u64)-1 ||
+ (last == (u64)-1 && isize <= em_end)) {
+ flags |= FIEMAP_EXTENT_LAST;
+ end = 1;
+ }
+
+ /* now scan forward to see if this is really the last extent. */
+ em = get_extent_skip_holes(inode, off, last_for_get_extent,
+ get_extent);
+ if (IS_ERR(em)) {
+ ret = PTR_ERR(em);
+ goto out;
+ }
+ if (!em) {
+ flags |= FIEMAP_EXTENT_LAST;
+ end = 1;
+ }
+ ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
+ em_len, flags);
+ if (ret)
+ goto out_free;
+ }
+out_free:
+ free_extent_map(em);
+out:
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
+ &cached_state, GFP_NOFS);
+ return ret;
+}
+
+inline struct page *extent_buffer_page(struct extent_buffer *eb,
+ unsigned long i)
+{
+ return eb->pages[i];
+}
+
+inline unsigned long num_extent_pages(u64 start, u64 len)
+{
+ return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
+ (start >> PAGE_CACHE_SHIFT);
+}
+
+static void __free_extent_buffer(struct extent_buffer *eb)
+{
+#if LEAK_DEBUG
+ unsigned long flags;
+ spin_lock_irqsave(&leak_lock, flags);
+ list_del(&eb->leak_list);
+ spin_unlock_irqrestore(&leak_lock, flags);
+#endif
+ if (eb->pages && eb->pages != eb->inline_pages)
+ kfree(eb->pages);
+ kmem_cache_free(extent_buffer_cache, eb);
+}
+
+static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
+ u64 start,
+ unsigned long len,
+ gfp_t mask)
+{
+ struct extent_buffer *eb = NULL;
+#if LEAK_DEBUG
+ unsigned long flags;
+#endif
+
+ eb = kmem_cache_zalloc(extent_buffer_cache, mask);
+ if (eb == NULL)
+ return NULL;
+ eb->start = start;
+ eb->len = len;
+ eb->tree = tree;
+ rwlock_init(&eb->lock);
+ atomic_set(&eb->write_locks, 0);
+ atomic_set(&eb->read_locks, 0);
+ atomic_set(&eb->blocking_readers, 0);
+ atomic_set(&eb->blocking_writers, 0);
+ atomic_set(&eb->spinning_readers, 0);
+ atomic_set(&eb->spinning_writers, 0);
+ eb->lock_nested = 0;
+ init_waitqueue_head(&eb->write_lock_wq);
+ init_waitqueue_head(&eb->read_lock_wq);
+
+#if LEAK_DEBUG
+ spin_lock_irqsave(&leak_lock, flags);
+ list_add(&eb->leak_list, &buffers);
+ spin_unlock_irqrestore(&leak_lock, flags);
+#endif
+ spin_lock_init(&eb->refs_lock);
+ atomic_set(&eb->refs, 1);
+ atomic_set(&eb->io_pages, 0);
+
+ if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
+ struct page **pages;
+ int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
+ PAGE_CACHE_SHIFT;
+ pages = kzalloc(num_pages, mask);
+ if (!pages) {
+ __free_extent_buffer(eb);
+ return NULL;
+ }
+ eb->pages = pages;
+ } else {
+ eb->pages = eb->inline_pages;
+ }
+
+ return eb;
+}
+
+static int extent_buffer_under_io(struct extent_buffer *eb)
+{
+ return (atomic_read(&eb->io_pages) ||
+ test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
+ test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
+}
+
+/*
+ * Helper for releasing extent buffer page.
+ */
+static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
+ unsigned long start_idx)
+{
+ unsigned long index;
+ struct page *page;
+
+ BUG_ON(extent_buffer_under_io(eb));
+
+ index = num_extent_pages(eb->start, eb->len);
+ if (start_idx >= index)
+ return;
+
+ do {
+ index--;
+ page = extent_buffer_page(eb, index);
+ if (page) {
+ spin_lock(&page->mapping->private_lock);
+ /*
+ * We do this since we'll remove the pages after we've
+ * removed the eb from the radix tree, so we could race
+ * and have this page now attached to the new eb. So
+ * only clear page_private if it's still connected to
+ * this eb.
+ */
+ if (PagePrivate(page) &&
+ page->private == (unsigned long)eb) {
+ BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
+ BUG_ON(PageDirty(page));
+ BUG_ON(PageWriteback(page));
+ /*
+ * We need to make sure we haven't be attached
+ * to a new eb.
+ */
+ ClearPagePrivate(page);
+ set_page_private(page, 0);
+ /* One for the page private */
+ page_cache_release(page);
+ }
+ spin_unlock(&page->mapping->private_lock);
+
+ /* One for when we alloced the page */
+ page_cache_release(page);
+ }
+ } while (index != start_idx);
+}
+
+/*
+ * Helper for releasing the extent buffer.
+ */
+static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
+{
+ btrfs_release_extent_buffer_page(eb, 0);
+ __free_extent_buffer(eb);
+}
+
+static void check_buffer_tree_ref(struct extent_buffer *eb)
+{
+ /* the ref bit is tricky. We have to make sure it is set
+ * if we have the buffer dirty. Otherwise the
+ * code to free a buffer can end up dropping a dirty
+ * page
+ *
+ * Once the ref bit is set, it won't go away while the
+ * buffer is dirty or in writeback, and it also won't
+ * go away while we have the reference count on the
+ * eb bumped.
+ *
+ * We can't just set the ref bit without bumping the
+ * ref on the eb because free_extent_buffer might
+ * see the ref bit and try to clear it. If this happens
+ * free_extent_buffer might end up dropping our original
+ * ref by mistake and freeing the page before we are able
+ * to add one more ref.
+ *
+ * So bump the ref count first, then set the bit. If someone
+ * beat us to it, drop the ref we added.
+ */
+ if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
+ atomic_inc(&eb->refs);
+ if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
+ atomic_dec(&eb->refs);
+ }
+}
+
+static void mark_extent_buffer_accessed(struct extent_buffer *eb)
+{
+ unsigned long num_pages, i;
+
+ check_buffer_tree_ref(eb);
+
+ num_pages = num_extent_pages(eb->start, eb->len);
+ for (i = 0; i < num_pages; i++) {
+ struct page *p = extent_buffer_page(eb, i);
+ mark_page_accessed(p);
+ }
+}
+
+struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
+ u64 start, unsigned long len)
+{
+ unsigned long num_pages = num_extent_pages(start, len);
+ unsigned long i;
+ unsigned long index = start >> PAGE_CACHE_SHIFT;
+ struct extent_buffer *eb;
+ struct extent_buffer *exists = NULL;
+ struct page *p;
+ struct address_space *mapping = tree->mapping;
+ int uptodate = 1;
+ int ret;
+
+ rcu_read_lock();
+ eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
+ if (eb && atomic_inc_not_zero(&eb->refs)) {
+ rcu_read_unlock();
+ mark_extent_buffer_accessed(eb);
+ return eb;
+ }
+ rcu_read_unlock();
+
+ eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
+ if (!eb)
+ return NULL;
+
+ for (i = 0; i < num_pages; i++, index++) {
+ p = find_or_create_page(mapping, index, GFP_NOFS);
+ if (!p) {
+ WARN_ON(1);
+ goto free_eb;
+ }
+
+ spin_lock(&mapping->private_lock);
+ if (PagePrivate(p)) {
+ /*
+ * We could have already allocated an eb for this page
+ * and attached one so lets see if we can get a ref on
+ * the existing eb, and if we can we know it's good and
+ * we can just return that one, else we know we can just
+ * overwrite page->private.
+ */
+ exists = (struct extent_buffer *)p->private;
+ if (atomic_inc_not_zero(&exists->refs)) {
+ spin_unlock(&mapping->private_lock);
+ unlock_page(p);
+ page_cache_release(p);
+ mark_extent_buffer_accessed(exists);
+ goto free_eb;
+ }
+
+ /*
+ * Do this so attach doesn't complain and we need to
+ * drop the ref the old guy had.
+ */
+ ClearPagePrivate(p);
+ WARN_ON(PageDirty(p));
+ page_cache_release(p);
+ }
+ attach_extent_buffer_page(eb, p);
+ spin_unlock(&mapping->private_lock);
+ WARN_ON(PageDirty(p));
+ mark_page_accessed(p);
+ eb->pages[i] = p;
+ if (!PageUptodate(p))
+ uptodate = 0;
+
+ /*
+ * see below about how we avoid a nasty race with release page
+ * and why we unlock later
+ */
+ }
+ if (uptodate)
+ set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
+again:
+ ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
+ if (ret)
+ goto free_eb;
+
+ spin_lock(&tree->buffer_lock);
+ ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
+ if (ret == -EEXIST) {
+ exists = radix_tree_lookup(&tree->buffer,
+ start >> PAGE_CACHE_SHIFT);
+ if (!atomic_inc_not_zero(&exists->refs)) {
+ spin_unlock(&tree->buffer_lock);
+ radix_tree_preload_end();
+ exists = NULL;
+ goto again;
+ }
+ spin_unlock(&tree->buffer_lock);
+ radix_tree_preload_end();
+ mark_extent_buffer_accessed(exists);
+ goto free_eb;
+ }
+ /* add one reference for the tree */
+ spin_lock(&eb->refs_lock);
+ check_buffer_tree_ref(eb);
+ spin_unlock(&eb->refs_lock);
+ spin_unlock(&tree->buffer_lock);
+ radix_tree_preload_end();
+
+ /*
+ * there is a race where release page may have
+ * tried to find this extent buffer in the radix
+ * but failed. It will tell the VM it is safe to
+ * reclaim the, and it will clear the page private bit.
+ * We must make sure to set the page private bit properly
+ * after the extent buffer is in the radix tree so
+ * it doesn't get lost
+ */
+ SetPageChecked(eb->pages[0]);
+ for (i = 1; i < num_pages; i++) {
+ p = extent_buffer_page(eb, i);
+ ClearPageChecked(p);
+ unlock_page(p);
+ }
+ unlock_page(eb->pages[0]);
+ return eb;
+
+free_eb:
+ for (i = 0; i < num_pages; i++) {
+ if (eb->pages[i])
+ unlock_page(eb->pages[i]);
+ }
+
+ WARN_ON(!atomic_dec_and_test(&eb->refs));
+ btrfs_release_extent_buffer(eb);
+ return exists;
+}
+
+struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
+ u64 start, unsigned long len)
+{
+ struct extent_buffer *eb;
+
+ rcu_read_lock();
+ eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
+ if (eb && atomic_inc_not_zero(&eb->refs)) {
+ rcu_read_unlock();
+ mark_extent_buffer_accessed(eb);
+ return eb;
+ }
+ rcu_read_unlock();
+
+ return NULL;
+}
+
+static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
+{
+ struct extent_buffer *eb =
+ container_of(head, struct extent_buffer, rcu_head);
+
+ __free_extent_buffer(eb);
+}
+
+/* Expects to have eb->eb_lock already held */
+static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
+{
+ WARN_ON(atomic_read(&eb->refs) == 0);
+ if (atomic_dec_and_test(&eb->refs)) {
+ struct extent_io_tree *tree = eb->tree;
+
+ spin_unlock(&eb->refs_lock);
+
+ spin_lock(&tree->buffer_lock);
+ radix_tree_delete(&tree->buffer,
+ eb->start >> PAGE_CACHE_SHIFT);
+ spin_unlock(&tree->buffer_lock);
+
+ /* Should be safe to release our pages at this point */
+ btrfs_release_extent_buffer_page(eb, 0);
+
+ call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
+ return;
+ }
+ spin_unlock(&eb->refs_lock);
+}
+
+void free_extent_buffer(struct extent_buffer *eb)
+{
+ if (!eb)
+ return;
+
+ spin_lock(&eb->refs_lock);
+ if (atomic_read(&eb->refs) == 2 &&
+ test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
+ !extent_buffer_under_io(eb) &&
+ test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
+ atomic_dec(&eb->refs);
+
+ /*
+ * I know this is terrible, but it's temporary until we stop tracking
+ * the uptodate bits and such for the extent buffers.
+ */
+ release_extent_buffer(eb, GFP_ATOMIC);
+}
+
+void free_extent_buffer_stale(struct extent_buffer *eb)
+{
+ if (!eb)
+ return;
+
+ spin_lock(&eb->refs_lock);
+ set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
+
+ if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
+ test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
+ atomic_dec(&eb->refs);
+ release_extent_buffer(eb, GFP_NOFS);
+}
+
+void clear_extent_buffer_dirty(struct extent_buffer *eb)
+{
+ unsigned long i;
+ unsigned long num_pages;
+ struct page *page;
+
+ num_pages = num_extent_pages(eb->start, eb->len);
+
+ for (i = 0; i < num_pages; i++) {
+ page = extent_buffer_page(eb, i);
+ if (!PageDirty(page))
+ continue;
+
+ lock_page(page);
+ WARN_ON(!PagePrivate(page));
+
+ clear_page_dirty_for_io(page);
+ spin_lock_irq(&page->mapping->tree_lock);
+ if (!PageDirty(page)) {
+ radix_tree_tag_clear(&page->mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_DIRTY);
+ }
+ spin_unlock_irq(&page->mapping->tree_lock);
+ ClearPageError(page);
+ unlock_page(page);
+ }
+ WARN_ON(atomic_read(&eb->refs) == 0);
+}
+
+int set_extent_buffer_dirty(struct extent_buffer *eb)
+{
+ unsigned long i;
+ unsigned long num_pages;
+ int was_dirty = 0;
+
+ check_buffer_tree_ref(eb);
+
+ was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
+
+ num_pages = num_extent_pages(eb->start, eb->len);
+ WARN_ON(atomic_read(&eb->refs) == 0);
+ WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
+
+ for (i = 0; i < num_pages; i++)
+ set_page_dirty(extent_buffer_page(eb, i));
+ return was_dirty;
+}
+
+static int range_straddles_pages(u64 start, u64 len)
+{
+ if (len < PAGE_CACHE_SIZE)
+ return 1;
+ if (start & (PAGE_CACHE_SIZE - 1))
+ return 1;
+ if ((start + len) & (PAGE_CACHE_SIZE - 1))
+ return 1;
+ return 0;
+}
+
+int clear_extent_buffer_uptodate(struct extent_buffer *eb)
+{
+ unsigned long i;
+ struct page *page;
+ unsigned long num_pages;
+
+ clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
+ num_pages = num_extent_pages(eb->start, eb->len);
+ for (i = 0; i < num_pages; i++) {
+ page = extent_buffer_page(eb, i);
+ if (page)
+ ClearPageUptodate(page);
+ }
+ return 0;
+}
+
+int set_extent_buffer_uptodate(struct extent_buffer *eb)
+{
+ unsigned long i;
+ struct page *page;
+ unsigned long num_pages;
+
+ set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
+ num_pages = num_extent_pages(eb->start, eb->len);
+ for (i = 0; i < num_pages; i++) {
+ page = extent_buffer_page(eb, i);
+ SetPageUptodate(page);
+ }
+ return 0;
+}
+
+int extent_range_uptodate(struct extent_io_tree *tree,
+ u64 start, u64 end)
+{
+ struct page *page;
+ int ret;
+ int pg_uptodate = 1;
+ int uptodate;
+ unsigned long index;
+
+ if (range_straddles_pages(start, end - start + 1)) {
+ ret = test_range_bit(tree, start, end,
+ EXTENT_UPTODATE, 1, NULL);
+ if (ret)
+ return 1;
+ }
+ while (start <= end) {
+ index = start >> PAGE_CACHE_SHIFT;
+ page = find_get_page(tree->mapping, index);
+ if (!page)
+ return 1;
+ uptodate = PageUptodate(page);
+ page_cache_release(page);
+ if (!uptodate) {
+ pg_uptodate = 0;
+ break;
+ }
+ start += PAGE_CACHE_SIZE;
+ }
+ return pg_uptodate;
+}
+
+int extent_buffer_uptodate(struct extent_buffer *eb)
+{
+ return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
+}
+
+int read_extent_buffer_pages(struct extent_io_tree *tree,
+ struct extent_buffer *eb, u64 start, int wait,
+ get_extent_t *get_extent, int mirror_num)
+{
+ unsigned long i;
+ unsigned long start_i;
+ struct page *page;
+ int err;
+ int ret = 0;
+ int locked_pages = 0;
+ int all_uptodate = 1;
+ unsigned long num_pages;
+ unsigned long num_reads = 0;
+ struct bio *bio = NULL;
+ unsigned long bio_flags = 0;
+
+ if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
+ return 0;
+
+ if (start) {
+ WARN_ON(start < eb->start);
+ start_i = (start >> PAGE_CACHE_SHIFT) -
+ (eb->start >> PAGE_CACHE_SHIFT);
+ } else {
+ start_i = 0;
+ }
+
+ num_pages = num_extent_pages(eb->start, eb->len);
+ for (i = start_i; i < num_pages; i++) {
+ page = extent_buffer_page(eb, i);
+ if (wait == WAIT_NONE) {
+ if (!trylock_page(page))
+ goto unlock_exit;
+ } else {
+ lock_page(page);
+ }
+ locked_pages++;
+ if (!PageUptodate(page)) {
+ num_reads++;
+ all_uptodate = 0;
+ }
+ }
+ if (all_uptodate) {
+ if (start_i == 0)
+ set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
+ goto unlock_exit;
+ }
+
+ clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
+ eb->read_mirror = 0;
+ atomic_set(&eb->io_pages, num_reads);
+ for (i = start_i; i < num_pages; i++) {
+ page = extent_buffer_page(eb, i);
+ if (!PageUptodate(page)) {
+ ClearPageError(page);
+ err = __extent_read_full_page(tree, page,
+ get_extent, &bio,
+ mirror_num, &bio_flags);
+ if (err)
+ ret = err;
+ } else {
+ unlock_page(page);
+ }
+ }
+
+ if (bio) {
+ err = submit_one_bio(READ, bio, mirror_num, bio_flags);
+ if (err)
+ return err;
+ }
+
+ if (ret || wait != WAIT_COMPLETE)
+ return ret;
+
+ for (i = start_i; i < num_pages; i++) {
+ page = extent_buffer_page(eb, i);
+ wait_on_page_locked(page);
+ if (!PageUptodate(page))
+ ret = -EIO;
+ }
+
+ return ret;
+
+unlock_exit:
+ i = start_i;
+ while (locked_pages > 0) {
+ page = extent_buffer_page(eb, i);
+ i++;
+ unlock_page(page);
+ locked_pages--;
+ }
+ return ret;
+}
+
+void read_extent_buffer(struct extent_buffer *eb, void *dstv,
+ unsigned long start,
+ unsigned long len)
+{
+ size_t cur;
+ size_t offset;
+ struct page *page;
+ char *kaddr;
+ char *dst = (char *)dstv;
+ size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
+
+ WARN_ON(start > eb->len);
+ WARN_ON(start + len > eb->start + eb->len);
+
+ offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
+
+ while (len > 0) {
+ page = extent_buffer_page(eb, i);
+
+ cur = min(len, (PAGE_CACHE_SIZE - offset));
+ kaddr = page_address(page);
+ memcpy(dst, kaddr + offset, cur);
+
+ dst += cur;
+ len -= cur;
+ offset = 0;
+ i++;
+ }
+}
+
+int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
+ unsigned long min_len, char **map,
+ unsigned long *map_start,
+ unsigned long *map_len)
+{
+ size_t offset = start & (PAGE_CACHE_SIZE - 1);
+ char *kaddr;
+ struct page *p;
+ size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
+ unsigned long end_i = (start_offset + start + min_len - 1) >>
+ PAGE_CACHE_SHIFT;
+
+ if (i != end_i)
+ return -EINVAL;
+
+ if (i == 0) {
+ offset = start_offset;
+ *map_start = 0;
+ } else {
+ offset = 0;
+ *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
+ }
+
+ if (start + min_len > eb->len) {
+ printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
+ "wanted %lu %lu\n", (unsigned long long)eb->start,
+ eb->len, start, min_len);
+ WARN_ON(1);
+ return -EINVAL;
+ }
+
+ p = extent_buffer_page(eb, i);
+ kaddr = page_address(p);
+ *map = kaddr + offset;
+ *map_len = PAGE_CACHE_SIZE - offset;
+ return 0;
+}
+
+int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
+ unsigned long start,
+ unsigned long len)
+{
+ size_t cur;
+ size_t offset;
+ struct page *page;
+ char *kaddr;
+ char *ptr = (char *)ptrv;
+ size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
+ int ret = 0;
+
+ WARN_ON(start > eb->len);
+ WARN_ON(start + len > eb->start + eb->len);
+
+ offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
+
+ while (len > 0) {
+ page = extent_buffer_page(eb, i);
+
+ cur = min(len, (PAGE_CACHE_SIZE - offset));
+
+ kaddr = page_address(page);
+ ret = memcmp(ptr, kaddr + offset, cur);
+ if (ret)
+ break;
+
+ ptr += cur;
+ len -= cur;
+ offset = 0;
+ i++;
+ }
+ return ret;
+}
+
+void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
+ unsigned long start, unsigned long len)
+{
+ size_t cur;
+ size_t offset;
+ struct page *page;
+ char *kaddr;
+ char *src = (char *)srcv;
+ size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
+
+ WARN_ON(start > eb->len);
+ WARN_ON(start + len > eb->start + eb->len);
+
+ offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
+
+ while (len > 0) {
+ page = extent_buffer_page(eb, i);
+ WARN_ON(!PageUptodate(page));
+
+ cur = min(len, PAGE_CACHE_SIZE - offset);
+ kaddr = page_address(page);
+ memcpy(kaddr + offset, src, cur);
+
+ src += cur;
+ len -= cur;
+ offset = 0;
+ i++;
+ }
+}
+
+void memset_extent_buffer(struct extent_buffer *eb, char c,
+ unsigned long start, unsigned long len)
+{
+ size_t cur;
+ size_t offset;
+ struct page *page;
+ char *kaddr;
+ size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
+
+ WARN_ON(start > eb->len);
+ WARN_ON(start + len > eb->start + eb->len);
+
+ offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
+
+ while (len > 0) {
+ page = extent_buffer_page(eb, i);
+ WARN_ON(!PageUptodate(page));
+
+ cur = min(len, PAGE_CACHE_SIZE - offset);
+ kaddr = page_address(page);
+ memset(kaddr + offset, c, cur);
+
+ len -= cur;
+ offset = 0;
+ i++;
+ }
+}
+
+void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
+ unsigned long dst_offset, unsigned long src_offset,
+ unsigned long len)
+{
+ u64 dst_len = dst->len;
+ size_t cur;
+ size_t offset;
+ struct page *page;
+ char *kaddr;
+ size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
+
+ WARN_ON(src->len != dst_len);
+
+ offset = (start_offset + dst_offset) &
+ ((unsigned long)PAGE_CACHE_SIZE - 1);
+
+ while (len > 0) {
+ page = extent_buffer_page(dst, i);
+ WARN_ON(!PageUptodate(page));
+
+ cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
+
+ kaddr = page_address(page);
+ read_extent_buffer(src, kaddr + offset, src_offset, cur);
+
+ src_offset += cur;
+ len -= cur;
+ offset = 0;
+ i++;
+ }
+}
+
+static void move_pages(struct page *dst_page, struct page *src_page,
+ unsigned long dst_off, unsigned long src_off,
+ unsigned long len)
+{
+ char *dst_kaddr = page_address(dst_page);
+ if (dst_page == src_page) {
+ memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
+ } else {
+ char *src_kaddr = page_address(src_page);
+ char *p = dst_kaddr + dst_off + len;
+ char *s = src_kaddr + src_off + len;
+
+ while (len--)
+ *--p = *--s;
+ }
+}
+
+static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
+{
+ unsigned long distance = (src > dst) ? src - dst : dst - src;
+ return distance < len;
+}
+
+static void copy_pages(struct page *dst_page, struct page *src_page,
+ unsigned long dst_off, unsigned long src_off,
+ unsigned long len)
+{
+ char *dst_kaddr = page_address(dst_page);
+ char *src_kaddr;
+ int must_memmove = 0;
+
+ if (dst_page != src_page) {
+ src_kaddr = page_address(src_page);
+ } else {
+ src_kaddr = dst_kaddr;
+ if (areas_overlap(src_off, dst_off, len))
+ must_memmove = 1;
+ }
+
+ if (must_memmove)
+ memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
+ else
+ memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
+}
+
+void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
+ unsigned long src_offset, unsigned long len)
+{
+ size_t cur;
+ size_t dst_off_in_page;
+ size_t src_off_in_page;
+ size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long dst_i;
+ unsigned long src_i;
+
+ if (src_offset + len > dst->len) {
+ printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
+ "len %lu dst len %lu\n", src_offset, len, dst->len);
+ BUG_ON(1);
+ }
+ if (dst_offset + len > dst->len) {
+ printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
+ "len %lu dst len %lu\n", dst_offset, len, dst->len);
+ BUG_ON(1);
+ }
+
+ while (len > 0) {
+ dst_off_in_page = (start_offset + dst_offset) &
+ ((unsigned long)PAGE_CACHE_SIZE - 1);
+ src_off_in_page = (start_offset + src_offset) &
+ ((unsigned long)PAGE_CACHE_SIZE - 1);
+
+ dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
+ src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
+
+ cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
+ src_off_in_page));
+ cur = min_t(unsigned long, cur,
+ (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
+
+ copy_pages(extent_buffer_page(dst, dst_i),
+ extent_buffer_page(dst, src_i),
+ dst_off_in_page, src_off_in_page, cur);
+
+ src_offset += cur;
+ dst_offset += cur;
+ len -= cur;
+ }
+}
+
+void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
+ unsigned long src_offset, unsigned long len)
+{
+ size_t cur;
+ size_t dst_off_in_page;
+ size_t src_off_in_page;
+ unsigned long dst_end = dst_offset + len - 1;
+ unsigned long src_end = src_offset + len - 1;
+ size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
+ unsigned long dst_i;
+ unsigned long src_i;
+
+ if (src_offset + len > dst->len) {
+ printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
+ "len %lu len %lu\n", src_offset, len, dst->len);
+ BUG_ON(1);
+ }
+ if (dst_offset + len > dst->len) {
+ printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
+ "len %lu len %lu\n", dst_offset, len, dst->len);
+ BUG_ON(1);
+ }
+ if (dst_offset < src_offset) {
+ memcpy_extent_buffer(dst, dst_offset, src_offset, len);
+ return;
+ }
+ while (len > 0) {
+ dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
+ src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
+
+ dst_off_in_page = (start_offset + dst_end) &
+ ((unsigned long)PAGE_CACHE_SIZE - 1);
+ src_off_in_page = (start_offset + src_end) &
+ ((unsigned long)PAGE_CACHE_SIZE - 1);
+
+ cur = min_t(unsigned long, len, src_off_in_page + 1);
+ cur = min(cur, dst_off_in_page + 1);
+ move_pages(extent_buffer_page(dst, dst_i),
+ extent_buffer_page(dst, src_i),
+ dst_off_in_page - cur + 1,
+ src_off_in_page - cur + 1, cur);
+
+ dst_end -= cur;
+ src_end -= cur;
+ len -= cur;
+ }
+}
+
+int try_release_extent_buffer(struct page *page, gfp_t mask)
+{
+ struct extent_buffer *eb;
+
+ /*
+ * We need to make sure noboody is attaching this page to an eb right
+ * now.
+ */
+ spin_lock(&page->mapping->private_lock);
+ if (!PagePrivate(page)) {
+ spin_unlock(&page->mapping->private_lock);
+ return 1;
+ }
+
+ eb = (struct extent_buffer *)page->private;
+ BUG_ON(!eb);
+
+ /*
+ * This is a little awful but should be ok, we need to make sure that
+ * the eb doesn't disappear out from under us while we're looking at
+ * this page.
+ */
+ spin_lock(&eb->refs_lock);
+ if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
+ spin_unlock(&eb->refs_lock);
+ spin_unlock(&page->mapping->private_lock);
+ return 0;
+ }
+ spin_unlock(&page->mapping->private_lock);
+
+ if ((mask & GFP_NOFS) == GFP_NOFS)
+ mask = GFP_NOFS;
+
+ /*
+ * If tree ref isn't set then we know the ref on this eb is a real ref,
+ * so just return, this page will likely be freed soon anyway.
+ */
+ if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
+ spin_unlock(&eb->refs_lock);
+ return 0;
+ }
+ release_extent_buffer(eb, mask);
+
+ return 1;
+}
diff --git a/fs/btrfs/extent_io.h b/fs/btrfs/extent_io.h
new file mode 100644
index 00000000..b516c3b8
--- /dev/null
+++ b/fs/btrfs/extent_io.h
@@ -0,0 +1,331 @@
+#ifndef __EXTENTIO__
+#define __EXTENTIO__
+
+#include <linux/rbtree.h>
+
+/* bits for the extent state */
+#define EXTENT_DIRTY 1
+#define EXTENT_WRITEBACK (1 << 1)
+#define EXTENT_UPTODATE (1 << 2)
+#define EXTENT_LOCKED (1 << 3)
+#define EXTENT_NEW (1 << 4)
+#define EXTENT_DELALLOC (1 << 5)
+#define EXTENT_DEFRAG (1 << 6)
+#define EXTENT_DEFRAG_DONE (1 << 7)
+#define EXTENT_BUFFER_FILLED (1 << 8)
+#define EXTENT_BOUNDARY (1 << 9)
+#define EXTENT_NODATASUM (1 << 10)
+#define EXTENT_DO_ACCOUNTING (1 << 11)
+#define EXTENT_FIRST_DELALLOC (1 << 12)
+#define EXTENT_NEED_WAIT (1 << 13)
+#define EXTENT_DAMAGED (1 << 14)
+#define EXTENT_IOBITS (EXTENT_LOCKED | EXTENT_WRITEBACK)
+#define EXTENT_CTLBITS (EXTENT_DO_ACCOUNTING | EXTENT_FIRST_DELALLOC)
+
+/*
+ * flags for bio submission. The high bits indicate the compression
+ * type for this bio
+ */
+#define EXTENT_BIO_COMPRESSED 1
+#define EXTENT_BIO_FLAG_SHIFT 16
+
+/* these are bit numbers for test/set bit */
+#define EXTENT_BUFFER_UPTODATE 0
+#define EXTENT_BUFFER_BLOCKING 1
+#define EXTENT_BUFFER_DIRTY 2
+#define EXTENT_BUFFER_CORRUPT 3
+#define EXTENT_BUFFER_READAHEAD 4 /* this got triggered by readahead */
+#define EXTENT_BUFFER_TREE_REF 5
+#define EXTENT_BUFFER_STALE 6
+#define EXTENT_BUFFER_WRITEBACK 7
+#define EXTENT_BUFFER_IOERR 8
+
+/* these are flags for extent_clear_unlock_delalloc */
+#define EXTENT_CLEAR_UNLOCK_PAGE 0x1
+#define EXTENT_CLEAR_UNLOCK 0x2
+#define EXTENT_CLEAR_DELALLOC 0x4
+#define EXTENT_CLEAR_DIRTY 0x8
+#define EXTENT_SET_WRITEBACK 0x10
+#define EXTENT_END_WRITEBACK 0x20
+#define EXTENT_SET_PRIVATE2 0x40
+#define EXTENT_CLEAR_ACCOUNTING 0x80
+
+/*
+ * page->private values. Every page that is controlled by the extent
+ * map has page->private set to one.
+ */
+#define EXTENT_PAGE_PRIVATE 1
+#define EXTENT_PAGE_PRIVATE_FIRST_PAGE 3
+
+struct extent_state;
+struct btrfs_root;
+
+typedef int (extent_submit_bio_hook_t)(struct inode *inode, int rw,
+ struct bio *bio, int mirror_num,
+ unsigned long bio_flags, u64 bio_offset);
+struct extent_io_ops {
+ int (*fill_delalloc)(struct inode *inode, struct page *locked_page,
+ u64 start, u64 end, int *page_started,
+ unsigned long *nr_written);
+ int (*writepage_start_hook)(struct page *page, u64 start, u64 end);
+ int (*writepage_io_hook)(struct page *page, u64 start, u64 end);
+ extent_submit_bio_hook_t *submit_bio_hook;
+ int (*merge_bio_hook)(struct page *page, unsigned long offset,
+ size_t size, struct bio *bio,
+ unsigned long bio_flags);
+ int (*readpage_io_hook)(struct page *page, u64 start, u64 end);
+ int (*readpage_io_failed_hook)(struct page *page, int failed_mirror);
+ int (*writepage_io_failed_hook)(struct bio *bio, struct page *page,
+ u64 start, u64 end,
+ struct extent_state *state);
+ int (*readpage_end_io_hook)(struct page *page, u64 start, u64 end,
+ struct extent_state *state, int mirror);
+ int (*writepage_end_io_hook)(struct page *page, u64 start, u64 end,
+ struct extent_state *state, int uptodate);
+ void (*set_bit_hook)(struct inode *inode, struct extent_state *state,
+ int *bits);
+ void (*clear_bit_hook)(struct inode *inode, struct extent_state *state,
+ int *bits);
+ void (*merge_extent_hook)(struct inode *inode,
+ struct extent_state *new,
+ struct extent_state *other);
+ void (*split_extent_hook)(struct inode *inode,
+ struct extent_state *orig, u64 split);
+ int (*write_cache_pages_lock_hook)(struct page *page, void *data,
+ void (*flush_fn)(void *));
+};
+
+struct extent_io_tree {
+ struct rb_root state;
+ struct radix_tree_root buffer;
+ struct address_space *mapping;
+ u64 dirty_bytes;
+ int track_uptodate;
+ spinlock_t lock;
+ spinlock_t buffer_lock;
+ struct extent_io_ops *ops;
+};
+
+struct extent_state {
+ u64 start;
+ u64 end; /* inclusive */
+ struct rb_node rb_node;
+
+ /* ADD NEW ELEMENTS AFTER THIS */
+ struct extent_io_tree *tree;
+ wait_queue_head_t wq;
+ atomic_t refs;
+ unsigned long state;
+
+ /* for use by the FS */
+ u64 private;
+
+ struct list_head leak_list;
+};
+
+#define INLINE_EXTENT_BUFFER_PAGES 16
+#define MAX_INLINE_EXTENT_BUFFER_SIZE (INLINE_EXTENT_BUFFER_PAGES * PAGE_CACHE_SIZE)
+struct extent_buffer {
+ u64 start;
+ unsigned long len;
+ unsigned long map_start;
+ unsigned long map_len;
+ unsigned long bflags;
+ struct extent_io_tree *tree;
+ spinlock_t refs_lock;
+ atomic_t refs;
+ atomic_t io_pages;
+ int read_mirror;
+ struct list_head leak_list;
+ struct rcu_head rcu_head;
+ pid_t lock_owner;
+
+ /* count of read lock holders on the extent buffer */
+ atomic_t write_locks;
+ atomic_t read_locks;
+ atomic_t blocking_writers;
+ atomic_t blocking_readers;
+ atomic_t spinning_readers;
+ atomic_t spinning_writers;
+ int lock_nested;
+
+ /* protects write locks */
+ rwlock_t lock;
+
+ /* readers use lock_wq while they wait for the write
+ * lock holders to unlock
+ */
+ wait_queue_head_t write_lock_wq;
+
+ /* writers use read_lock_wq while they wait for readers
+ * to unlock
+ */
+ wait_queue_head_t read_lock_wq;
+ wait_queue_head_t lock_wq;
+ struct page *inline_pages[INLINE_EXTENT_BUFFER_PAGES];
+ struct page **pages;
+};
+
+static inline void extent_set_compress_type(unsigned long *bio_flags,
+ int compress_type)
+{
+ *bio_flags |= compress_type << EXTENT_BIO_FLAG_SHIFT;
+}
+
+static inline int extent_compress_type(unsigned long bio_flags)
+{
+ return bio_flags >> EXTENT_BIO_FLAG_SHIFT;
+}
+
+struct extent_map_tree;
+
+typedef struct extent_map *(get_extent_t)(struct inode *inode,
+ struct page *page,
+ size_t pg_offset,
+ u64 start, u64 len,
+ int create);
+
+void extent_io_tree_init(struct extent_io_tree *tree,
+ struct address_space *mapping);
+int try_release_extent_mapping(struct extent_map_tree *map,
+ struct extent_io_tree *tree, struct page *page,
+ gfp_t mask);
+int try_release_extent_buffer(struct page *page, gfp_t mask);
+int try_release_extent_state(struct extent_map_tree *map,
+ struct extent_io_tree *tree, struct page *page,
+ gfp_t mask);
+int lock_extent(struct extent_io_tree *tree, u64 start, u64 end);
+int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, struct extent_state **cached);
+int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end);
+int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
+ struct extent_state **cached, gfp_t mask);
+int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end);
+int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
+ get_extent_t *get_extent, int mirror_num);
+int __init extent_io_init(void);
+void extent_io_exit(void);
+
+u64 count_range_bits(struct extent_io_tree *tree,
+ u64 *start, u64 search_end,
+ u64 max_bytes, unsigned long bits, int contig);
+
+void free_extent_state(struct extent_state *state);
+int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, int filled, struct extent_state *cached_state);
+int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, gfp_t mask);
+int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, int wake, int delete, struct extent_state **cached,
+ gfp_t mask);
+int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, gfp_t mask);
+int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, u64 *failed_start,
+ struct extent_state **cached_state, gfp_t mask);
+int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
+ struct extent_state **cached_state, gfp_t mask);
+int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
+ gfp_t mask);
+int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
+ gfp_t mask);
+int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
+ gfp_t mask);
+int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
+ int bits, int clear_bits, gfp_t mask);
+int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
+ struct extent_state **cached_state, gfp_t mask);
+int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
+ u64 *start_ret, u64 *end_ret, int bits);
+struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
+ u64 start, int bits);
+int extent_invalidatepage(struct extent_io_tree *tree,
+ struct page *page, unsigned long offset);
+int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
+ get_extent_t *get_extent,
+ struct writeback_control *wbc);
+int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
+ u64 start, u64 end, get_extent_t *get_extent,
+ int mode);
+int extent_writepages(struct extent_io_tree *tree,
+ struct address_space *mapping,
+ get_extent_t *get_extent,
+ struct writeback_control *wbc);
+int btree_write_cache_pages(struct address_space *mapping,
+ struct writeback_control *wbc);
+int extent_readpages(struct extent_io_tree *tree,
+ struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages,
+ get_extent_t get_extent);
+int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
+ __u64 start, __u64 len, get_extent_t *get_extent);
+int set_state_private(struct extent_io_tree *tree, u64 start, u64 private);
+int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private);
+void set_page_extent_mapped(struct page *page);
+
+struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
+ u64 start, unsigned long len);
+struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
+ u64 start, unsigned long len);
+void free_extent_buffer(struct extent_buffer *eb);
+void free_extent_buffer_stale(struct extent_buffer *eb);
+#define WAIT_NONE 0
+#define WAIT_COMPLETE 1
+#define WAIT_PAGE_LOCK 2
+int read_extent_buffer_pages(struct extent_io_tree *tree,
+ struct extent_buffer *eb, u64 start, int wait,
+ get_extent_t *get_extent, int mirror_num);
+unsigned long num_extent_pages(u64 start, u64 len);
+struct page *extent_buffer_page(struct extent_buffer *eb, unsigned long i);
+
+static inline void extent_buffer_get(struct extent_buffer *eb)
+{
+ atomic_inc(&eb->refs);
+}
+
+int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
+ unsigned long start,
+ unsigned long len);
+void read_extent_buffer(struct extent_buffer *eb, void *dst,
+ unsigned long start,
+ unsigned long len);
+void write_extent_buffer(struct extent_buffer *eb, const void *src,
+ unsigned long start, unsigned long len);
+void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
+ unsigned long dst_offset, unsigned long src_offset,
+ unsigned long len);
+void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
+ unsigned long src_offset, unsigned long len);
+void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
+ unsigned long src_offset, unsigned long len);
+void memset_extent_buffer(struct extent_buffer *eb, char c,
+ unsigned long start, unsigned long len);
+void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits);
+void clear_extent_buffer_dirty(struct extent_buffer *eb);
+int set_extent_buffer_dirty(struct extent_buffer *eb);
+int set_extent_buffer_uptodate(struct extent_buffer *eb);
+int clear_extent_buffer_uptodate(struct extent_buffer *eb);
+int extent_buffer_uptodate(struct extent_buffer *eb);
+int map_private_extent_buffer(struct extent_buffer *eb, unsigned long offset,
+ unsigned long min_len, char **map,
+ unsigned long *map_start,
+ unsigned long *map_len);
+int extent_range_uptodate(struct extent_io_tree *tree,
+ u64 start, u64 end);
+int extent_clear_unlock_delalloc(struct inode *inode,
+ struct extent_io_tree *tree,
+ u64 start, u64 end, struct page *locked_page,
+ unsigned long op);
+struct bio *
+btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
+ gfp_t gfp_flags);
+
+struct btrfs_mapping_tree;
+
+int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
+ u64 length, u64 logical, struct page *page,
+ int mirror_num);
+int end_extent_writepage(struct page *page, int err, u64 start, u64 end);
+int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
+ int mirror_num);
+#endif
diff --git a/fs/btrfs/extent_map.c b/fs/btrfs/extent_map.c
new file mode 100644
index 00000000..7c97b330
--- /dev/null
+++ b/fs/btrfs/extent_map.c
@@ -0,0 +1,363 @@
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/hardirq.h>
+#include "ctree.h"
+#include "extent_map.h"
+
+
+static struct kmem_cache *extent_map_cache;
+
+int __init extent_map_init(void)
+{
+ extent_map_cache = kmem_cache_create("extent_map",
+ sizeof(struct extent_map), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+ if (!extent_map_cache)
+ return -ENOMEM;
+ return 0;
+}
+
+void extent_map_exit(void)
+{
+ if (extent_map_cache)
+ kmem_cache_destroy(extent_map_cache);
+}
+
+/**
+ * extent_map_tree_init - initialize extent map tree
+ * @tree: tree to initialize
+ *
+ * Initialize the extent tree @tree. Should be called for each new inode
+ * or other user of the extent_map interface.
+ */
+void extent_map_tree_init(struct extent_map_tree *tree)
+{
+ tree->map = RB_ROOT;
+ rwlock_init(&tree->lock);
+}
+
+/**
+ * alloc_extent_map - allocate new extent map structure
+ *
+ * Allocate a new extent_map structure. The new structure is
+ * returned with a reference count of one and needs to be
+ * freed using free_extent_map()
+ */
+struct extent_map *alloc_extent_map(void)
+{
+ struct extent_map *em;
+ em = kmem_cache_alloc(extent_map_cache, GFP_NOFS);
+ if (!em)
+ return NULL;
+ em->in_tree = 0;
+ em->flags = 0;
+ em->compress_type = BTRFS_COMPRESS_NONE;
+ atomic_set(&em->refs, 1);
+ return em;
+}
+
+/**
+ * free_extent_map - drop reference count of an extent_map
+ * @em: extent map beeing releasead
+ *
+ * Drops the reference out on @em by one and free the structure
+ * if the reference count hits zero.
+ */
+void free_extent_map(struct extent_map *em)
+{
+ if (!em)
+ return;
+ WARN_ON(atomic_read(&em->refs) == 0);
+ if (atomic_dec_and_test(&em->refs)) {
+ WARN_ON(em->in_tree);
+ kmem_cache_free(extent_map_cache, em);
+ }
+}
+
+static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
+ struct rb_node *node)
+{
+ struct rb_node **p = &root->rb_node;
+ struct rb_node *parent = NULL;
+ struct extent_map *entry;
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct extent_map, rb_node);
+
+ WARN_ON(!entry->in_tree);
+
+ if (offset < entry->start)
+ p = &(*p)->rb_left;
+ else if (offset >= extent_map_end(entry))
+ p = &(*p)->rb_right;
+ else
+ return parent;
+ }
+
+ entry = rb_entry(node, struct extent_map, rb_node);
+ entry->in_tree = 1;
+ rb_link_node(node, parent, p);
+ rb_insert_color(node, root);
+ return NULL;
+}
+
+/*
+ * search through the tree for an extent_map with a given offset. If
+ * it can't be found, try to find some neighboring extents
+ */
+static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
+ struct rb_node **prev_ret,
+ struct rb_node **next_ret)
+{
+ struct rb_node *n = root->rb_node;
+ struct rb_node *prev = NULL;
+ struct rb_node *orig_prev = NULL;
+ struct extent_map *entry;
+ struct extent_map *prev_entry = NULL;
+
+ while (n) {
+ entry = rb_entry(n, struct extent_map, rb_node);
+ prev = n;
+ prev_entry = entry;
+
+ WARN_ON(!entry->in_tree);
+
+ if (offset < entry->start)
+ n = n->rb_left;
+ else if (offset >= extent_map_end(entry))
+ n = n->rb_right;
+ else
+ return n;
+ }
+
+ if (prev_ret) {
+ orig_prev = prev;
+ while (prev && offset >= extent_map_end(prev_entry)) {
+ prev = rb_next(prev);
+ prev_entry = rb_entry(prev, struct extent_map, rb_node);
+ }
+ *prev_ret = prev;
+ prev = orig_prev;
+ }
+
+ if (next_ret) {
+ prev_entry = rb_entry(prev, struct extent_map, rb_node);
+ while (prev && offset < prev_entry->start) {
+ prev = rb_prev(prev);
+ prev_entry = rb_entry(prev, struct extent_map, rb_node);
+ }
+ *next_ret = prev;
+ }
+ return NULL;
+}
+
+/* check to see if two extent_map structs are adjacent and safe to merge */
+static int mergable_maps(struct extent_map *prev, struct extent_map *next)
+{
+ if (test_bit(EXTENT_FLAG_PINNED, &prev->flags))
+ return 0;
+
+ /*
+ * don't merge compressed extents, we need to know their
+ * actual size
+ */
+ if (test_bit(EXTENT_FLAG_COMPRESSED, &prev->flags))
+ return 0;
+
+ if (extent_map_end(prev) == next->start &&
+ prev->flags == next->flags &&
+ prev->bdev == next->bdev &&
+ ((next->block_start == EXTENT_MAP_HOLE &&
+ prev->block_start == EXTENT_MAP_HOLE) ||
+ (next->block_start == EXTENT_MAP_INLINE &&
+ prev->block_start == EXTENT_MAP_INLINE) ||
+ (next->block_start == EXTENT_MAP_DELALLOC &&
+ prev->block_start == EXTENT_MAP_DELALLOC) ||
+ (next->block_start < EXTENT_MAP_LAST_BYTE - 1 &&
+ next->block_start == extent_map_block_end(prev)))) {
+ return 1;
+ }
+ return 0;
+}
+
+static void try_merge_map(struct extent_map_tree *tree, struct extent_map *em)
+{
+ struct extent_map *merge = NULL;
+ struct rb_node *rb;
+
+ if (em->start != 0) {
+ rb = rb_prev(&em->rb_node);
+ if (rb)
+ merge = rb_entry(rb, struct extent_map, rb_node);
+ if (rb && mergable_maps(merge, em)) {
+ em->start = merge->start;
+ em->len += merge->len;
+ em->block_len += merge->block_len;
+ em->block_start = merge->block_start;
+ merge->in_tree = 0;
+ rb_erase(&merge->rb_node, &tree->map);
+ free_extent_map(merge);
+ }
+ }
+
+ rb = rb_next(&em->rb_node);
+ if (rb)
+ merge = rb_entry(rb, struct extent_map, rb_node);
+ if (rb && mergable_maps(em, merge)) {
+ em->len += merge->len;
+ em->block_len += merge->len;
+ rb_erase(&merge->rb_node, &tree->map);
+ merge->in_tree = 0;
+ free_extent_map(merge);
+ }
+}
+
+int unpin_extent_cache(struct extent_map_tree *tree, u64 start, u64 len)
+{
+ int ret = 0;
+ struct extent_map *em;
+
+ write_lock(&tree->lock);
+ em = lookup_extent_mapping(tree, start, len);
+
+ WARN_ON(!em || em->start != start);
+
+ if (!em)
+ goto out;
+
+ clear_bit(EXTENT_FLAG_PINNED, &em->flags);
+
+ try_merge_map(tree, em);
+
+ free_extent_map(em);
+out:
+ write_unlock(&tree->lock);
+ return ret;
+
+}
+
+/**
+ * add_extent_mapping - add new extent map to the extent tree
+ * @tree: tree to insert new map in
+ * @em: map to insert
+ *
+ * Insert @em into @tree or perform a simple forward/backward merge with
+ * existing mappings. The extent_map struct passed in will be inserted
+ * into the tree directly, with an additional reference taken, or a
+ * reference dropped if the merge attempt was successful.
+ */
+int add_extent_mapping(struct extent_map_tree *tree,
+ struct extent_map *em)
+{
+ int ret = 0;
+ struct rb_node *rb;
+ struct extent_map *exist;
+
+ exist = lookup_extent_mapping(tree, em->start, em->len);
+ if (exist) {
+ free_extent_map(exist);
+ ret = -EEXIST;
+ goto out;
+ }
+ rb = tree_insert(&tree->map, em->start, &em->rb_node);
+ if (rb) {
+ ret = -EEXIST;
+ goto out;
+ }
+ atomic_inc(&em->refs);
+
+ try_merge_map(tree, em);
+out:
+ return ret;
+}
+
+/* simple helper to do math around the end of an extent, handling wrap */
+static u64 range_end(u64 start, u64 len)
+{
+ if (start + len < start)
+ return (u64)-1;
+ return start + len;
+}
+
+struct extent_map *__lookup_extent_mapping(struct extent_map_tree *tree,
+ u64 start, u64 len, int strict)
+{
+ struct extent_map *em;
+ struct rb_node *rb_node;
+ struct rb_node *prev = NULL;
+ struct rb_node *next = NULL;
+ u64 end = range_end(start, len);
+
+ rb_node = __tree_search(&tree->map, start, &prev, &next);
+ if (!rb_node) {
+ if (prev)
+ rb_node = prev;
+ else if (next)
+ rb_node = next;
+ else
+ return NULL;
+ }
+
+ em = rb_entry(rb_node, struct extent_map, rb_node);
+
+ if (strict && !(end > em->start && start < extent_map_end(em)))
+ return NULL;
+
+ atomic_inc(&em->refs);
+ return em;
+}
+
+/**
+ * lookup_extent_mapping - lookup extent_map
+ * @tree: tree to lookup in
+ * @start: byte offset to start the search
+ * @len: length of the lookup range
+ *
+ * Find and return the first extent_map struct in @tree that intersects the
+ * [start, len] range. There may be additional objects in the tree that
+ * intersect, so check the object returned carefully to make sure that no
+ * additional lookups are needed.
+ */
+struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
+ u64 start, u64 len)
+{
+ return __lookup_extent_mapping(tree, start, len, 1);
+}
+
+/**
+ * search_extent_mapping - find a nearby extent map
+ * @tree: tree to lookup in
+ * @start: byte offset to start the search
+ * @len: length of the lookup range
+ *
+ * Find and return the first extent_map struct in @tree that intersects the
+ * [start, len] range.
+ *
+ * If one can't be found, any nearby extent may be returned
+ */
+struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
+ u64 start, u64 len)
+{
+ return __lookup_extent_mapping(tree, start, len, 0);
+}
+
+/**
+ * remove_extent_mapping - removes an extent_map from the extent tree
+ * @tree: extent tree to remove from
+ * @em: extent map beeing removed
+ *
+ * Removes @em from @tree. No reference counts are dropped, and no checks
+ * are done to see if the range is in use
+ */
+int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
+{
+ int ret = 0;
+
+ WARN_ON(test_bit(EXTENT_FLAG_PINNED, &em->flags));
+ rb_erase(&em->rb_node, &tree->map);
+ em->in_tree = 0;
+ return ret;
+}
diff --git a/fs/btrfs/extent_map.h b/fs/btrfs/extent_map.h
new file mode 100644
index 00000000..1195f097
--- /dev/null
+++ b/fs/btrfs/extent_map.h
@@ -0,0 +1,66 @@
+#ifndef __EXTENTMAP__
+#define __EXTENTMAP__
+
+#include <linux/rbtree.h>
+
+#define EXTENT_MAP_LAST_BYTE (u64)-4
+#define EXTENT_MAP_HOLE (u64)-3
+#define EXTENT_MAP_INLINE (u64)-2
+#define EXTENT_MAP_DELALLOC (u64)-1
+
+/* bits for the flags field */
+#define EXTENT_FLAG_PINNED 0 /* this entry not yet on disk, don't free it */
+#define EXTENT_FLAG_COMPRESSED 1
+#define EXTENT_FLAG_VACANCY 2 /* no file extent item found */
+#define EXTENT_FLAG_PREALLOC 3 /* pre-allocated extent */
+
+struct extent_map {
+ struct rb_node rb_node;
+
+ /* all of these are in bytes */
+ u64 start;
+ u64 len;
+ u64 orig_start;
+ u64 block_start;
+ u64 block_len;
+ unsigned long flags;
+ struct block_device *bdev;
+ atomic_t refs;
+ unsigned int in_tree;
+ unsigned int compress_type;
+};
+
+struct extent_map_tree {
+ struct rb_root map;
+ rwlock_t lock;
+};
+
+static inline u64 extent_map_end(struct extent_map *em)
+{
+ if (em->start + em->len < em->start)
+ return (u64)-1;
+ return em->start + em->len;
+}
+
+static inline u64 extent_map_block_end(struct extent_map *em)
+{
+ if (em->block_start + em->block_len < em->block_start)
+ return (u64)-1;
+ return em->block_start + em->block_len;
+}
+
+void extent_map_tree_init(struct extent_map_tree *tree);
+struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
+ u64 start, u64 len);
+int add_extent_mapping(struct extent_map_tree *tree,
+ struct extent_map *em);
+int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em);
+
+struct extent_map *alloc_extent_map(void);
+void free_extent_map(struct extent_map *em);
+int __init extent_map_init(void);
+void extent_map_exit(void);
+int unpin_extent_cache(struct extent_map_tree *tree, u64 start, u64 len);
+struct extent_map *search_extent_mapping(struct extent_map_tree *tree,
+ u64 start, u64 len);
+#endif
diff --git a/fs/btrfs/file-item.c b/fs/btrfs/file-item.c
new file mode 100644
index 00000000..5d158d32
--- /dev/null
+++ b/fs/btrfs/file-item.c
@@ -0,0 +1,861 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+
+#define __MAX_CSUM_ITEMS(r, size) ((((BTRFS_LEAF_DATA_SIZE(r) - \
+ sizeof(struct btrfs_item) * 2) / \
+ size) - 1))
+
+#define MAX_CSUM_ITEMS(r, size) (min(__MAX_CSUM_ITEMS(r, size), PAGE_CACHE_SIZE))
+
+#define MAX_ORDERED_SUM_BYTES(r) ((PAGE_SIZE - \
+ sizeof(struct btrfs_ordered_sum)) / \
+ sizeof(struct btrfs_sector_sum) * \
+ (r)->sectorsize - (r)->sectorsize)
+
+int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 objectid, u64 pos,
+ u64 disk_offset, u64 disk_num_bytes,
+ u64 num_bytes, u64 offset, u64 ram_bytes,
+ u8 compression, u8 encryption, u16 other_encoding)
+{
+ int ret = 0;
+ struct btrfs_file_extent_item *item;
+ struct btrfs_key file_key;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ file_key.objectid = objectid;
+ file_key.offset = pos;
+ btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
+
+ path->leave_spinning = 1;
+ ret = btrfs_insert_empty_item(trans, root, path, &file_key,
+ sizeof(*item));
+ if (ret < 0)
+ goto out;
+ BUG_ON(ret); /* Can't happen */
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
+ btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
+ btrfs_set_file_extent_offset(leaf, item, offset);
+ btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
+ btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
+ btrfs_set_file_extent_generation(leaf, item, trans->transid);
+ btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
+ btrfs_set_file_extent_compression(leaf, item, compression);
+ btrfs_set_file_extent_encryption(leaf, item, encryption);
+ btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
+
+ btrfs_mark_buffer_dirty(leaf);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 bytenr, int cow)
+{
+ int ret;
+ struct btrfs_key file_key;
+ struct btrfs_key found_key;
+ struct btrfs_csum_item *item;
+ struct extent_buffer *leaf;
+ u64 csum_offset = 0;
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+ int csums_in_item;
+
+ file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+ file_key.offset = bytenr;
+ btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
+ ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
+ if (ret < 0)
+ goto fail;
+ leaf = path->nodes[0];
+ if (ret > 0) {
+ ret = 1;
+ if (path->slots[0] == 0)
+ goto fail;
+ path->slots[0]--;
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY)
+ goto fail;
+
+ csum_offset = (bytenr - found_key.offset) >>
+ root->fs_info->sb->s_blocksize_bits;
+ csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
+ csums_in_item /= csum_size;
+
+ if (csum_offset >= csums_in_item) {
+ ret = -EFBIG;
+ goto fail;
+ }
+ }
+ item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
+ item = (struct btrfs_csum_item *)((unsigned char *)item +
+ csum_offset * csum_size);
+ return item;
+fail:
+ if (ret > 0)
+ ret = -ENOENT;
+ return ERR_PTR(ret);
+}
+
+
+int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 objectid,
+ u64 offset, int mod)
+{
+ int ret;
+ struct btrfs_key file_key;
+ int ins_len = mod < 0 ? -1 : 0;
+ int cow = mod != 0;
+
+ file_key.objectid = objectid;
+ file_key.offset = offset;
+ btrfs_set_key_type(&file_key, BTRFS_EXTENT_DATA_KEY);
+ ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
+ return ret;
+}
+
+
+static int __btrfs_lookup_bio_sums(struct btrfs_root *root,
+ struct inode *inode, struct bio *bio,
+ u64 logical_offset, u32 *dst, int dio)
+{
+ u32 sum;
+ struct bio_vec *bvec = bio->bi_io_vec;
+ int bio_index = 0;
+ u64 offset = 0;
+ u64 item_start_offset = 0;
+ u64 item_last_offset = 0;
+ u64 disk_bytenr;
+ u32 diff;
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_csum_item *item = NULL;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ if (bio->bi_size > PAGE_CACHE_SIZE * 8)
+ path->reada = 2;
+
+ WARN_ON(bio->bi_vcnt <= 0);
+
+ /*
+ * the free space stuff is only read when it hasn't been
+ * updated in the current transaction. So, we can safely
+ * read from the commit root and sidestep a nasty deadlock
+ * between reading the free space cache and updating the csum tree.
+ */
+ if (btrfs_is_free_space_inode(root, inode)) {
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+ }
+
+ disk_bytenr = (u64)bio->bi_sector << 9;
+ if (dio)
+ offset = logical_offset;
+ while (bio_index < bio->bi_vcnt) {
+ if (!dio)
+ offset = page_offset(bvec->bv_page) + bvec->bv_offset;
+ ret = btrfs_find_ordered_sum(inode, offset, disk_bytenr, &sum);
+ if (ret == 0)
+ goto found;
+
+ if (!item || disk_bytenr < item_start_offset ||
+ disk_bytenr >= item_last_offset) {
+ struct btrfs_key found_key;
+ u32 item_size;
+
+ if (item)
+ btrfs_release_path(path);
+ item = btrfs_lookup_csum(NULL, root->fs_info->csum_root,
+ path, disk_bytenr, 0);
+ if (IS_ERR(item)) {
+ ret = PTR_ERR(item);
+ if (ret == -ENOENT || ret == -EFBIG)
+ ret = 0;
+ sum = 0;
+ if (BTRFS_I(inode)->root->root_key.objectid ==
+ BTRFS_DATA_RELOC_TREE_OBJECTID) {
+ set_extent_bits(io_tree, offset,
+ offset + bvec->bv_len - 1,
+ EXTENT_NODATASUM, GFP_NOFS);
+ } else {
+ printk(KERN_INFO "btrfs no csum found "
+ "for inode %llu start %llu\n",
+ (unsigned long long)
+ btrfs_ino(inode),
+ (unsigned long long)offset);
+ }
+ item = NULL;
+ btrfs_release_path(path);
+ goto found;
+ }
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+
+ item_start_offset = found_key.offset;
+ item_size = btrfs_item_size_nr(path->nodes[0],
+ path->slots[0]);
+ item_last_offset = item_start_offset +
+ (item_size / csum_size) *
+ root->sectorsize;
+ item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_csum_item);
+ }
+ /*
+ * this byte range must be able to fit inside
+ * a single leaf so it will also fit inside a u32
+ */
+ diff = disk_bytenr - item_start_offset;
+ diff = diff / root->sectorsize;
+ diff = diff * csum_size;
+
+ read_extent_buffer(path->nodes[0], &sum,
+ ((unsigned long)item) + diff,
+ csum_size);
+found:
+ if (dst)
+ *dst++ = sum;
+ else
+ set_state_private(io_tree, offset, sum);
+ disk_bytenr += bvec->bv_len;
+ offset += bvec->bv_len;
+ bio_index++;
+ bvec++;
+ }
+ btrfs_free_path(path);
+ return 0;
+}
+
+int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
+ struct bio *bio, u32 *dst)
+{
+ return __btrfs_lookup_bio_sums(root, inode, bio, 0, dst, 0);
+}
+
+int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
+ struct bio *bio, u64 offset, u32 *dst)
+{
+ return __btrfs_lookup_bio_sums(root, inode, bio, offset, dst, 1);
+}
+
+int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
+ struct list_head *list, int search_commit)
+{
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_ordered_sum *sums;
+ struct btrfs_sector_sum *sector_sum;
+ struct btrfs_csum_item *item;
+ LIST_HEAD(tmplist);
+ unsigned long offset;
+ int ret;
+ size_t size;
+ u64 csum_end;
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ if (search_commit) {
+ path->skip_locking = 1;
+ path->reada = 2;
+ path->search_commit_root = 1;
+ }
+
+ key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+ key.offset = start;
+ key.type = BTRFS_EXTENT_CSUM_KEY;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto fail;
+ if (ret > 0 && path->slots[0] > 0) {
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
+ if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
+ key.type == BTRFS_EXTENT_CSUM_KEY) {
+ offset = (start - key.offset) >>
+ root->fs_info->sb->s_blocksize_bits;
+ if (offset * csum_size <
+ btrfs_item_size_nr(leaf, path->slots[0] - 1))
+ path->slots[0]--;
+ }
+ }
+
+ while (start <= end) {
+ leaf = path->nodes[0];
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ goto fail;
+ if (ret > 0)
+ break;
+ leaf = path->nodes[0];
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
+ key.type != BTRFS_EXTENT_CSUM_KEY)
+ break;
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.offset > end)
+ break;
+
+ if (key.offset > start)
+ start = key.offset;
+
+ size = btrfs_item_size_nr(leaf, path->slots[0]);
+ csum_end = key.offset + (size / csum_size) * root->sectorsize;
+ if (csum_end <= start) {
+ path->slots[0]++;
+ continue;
+ }
+
+ csum_end = min(csum_end, end + 1);
+ item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_csum_item);
+ while (start < csum_end) {
+ size = min_t(size_t, csum_end - start,
+ MAX_ORDERED_SUM_BYTES(root));
+ sums = kzalloc(btrfs_ordered_sum_size(root, size),
+ GFP_NOFS);
+ if (!sums) {
+ ret = -ENOMEM;
+ goto fail;
+ }
+
+ sector_sum = sums->sums;
+ sums->bytenr = start;
+ sums->len = size;
+
+ offset = (start - key.offset) >>
+ root->fs_info->sb->s_blocksize_bits;
+ offset *= csum_size;
+
+ while (size > 0) {
+ read_extent_buffer(path->nodes[0],
+ &sector_sum->sum,
+ ((unsigned long)item) +
+ offset, csum_size);
+ sector_sum->bytenr = start;
+
+ size -= root->sectorsize;
+ start += root->sectorsize;
+ offset += csum_size;
+ sector_sum++;
+ }
+ list_add_tail(&sums->list, &tmplist);
+ }
+ path->slots[0]++;
+ }
+ ret = 0;
+fail:
+ while (ret < 0 && !list_empty(&tmplist)) {
+ sums = list_entry(&tmplist, struct btrfs_ordered_sum, list);
+ list_del(&sums->list);
+ kfree(sums);
+ }
+ list_splice_tail(&tmplist, list);
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
+ struct bio *bio, u64 file_start, int contig)
+{
+ struct btrfs_ordered_sum *sums;
+ struct btrfs_sector_sum *sector_sum;
+ struct btrfs_ordered_extent *ordered;
+ char *data;
+ struct bio_vec *bvec = bio->bi_io_vec;
+ int bio_index = 0;
+ unsigned long total_bytes = 0;
+ unsigned long this_sum_bytes = 0;
+ u64 offset;
+ u64 disk_bytenr;
+
+ WARN_ON(bio->bi_vcnt <= 0);
+ sums = kzalloc(btrfs_ordered_sum_size(root, bio->bi_size), GFP_NOFS);
+ if (!sums)
+ return -ENOMEM;
+
+ sector_sum = sums->sums;
+ disk_bytenr = (u64)bio->bi_sector << 9;
+ sums->len = bio->bi_size;
+ INIT_LIST_HEAD(&sums->list);
+
+ if (contig)
+ offset = file_start;
+ else
+ offset = page_offset(bvec->bv_page) + bvec->bv_offset;
+
+ ordered = btrfs_lookup_ordered_extent(inode, offset);
+ BUG_ON(!ordered); /* Logic error */
+ sums->bytenr = ordered->start;
+
+ while (bio_index < bio->bi_vcnt) {
+ if (!contig)
+ offset = page_offset(bvec->bv_page) + bvec->bv_offset;
+
+ if (!contig && (offset >= ordered->file_offset + ordered->len ||
+ offset < ordered->file_offset)) {
+ unsigned long bytes_left;
+ sums->len = this_sum_bytes;
+ this_sum_bytes = 0;
+ btrfs_add_ordered_sum(inode, ordered, sums);
+ btrfs_put_ordered_extent(ordered);
+
+ bytes_left = bio->bi_size - total_bytes;
+
+ sums = kzalloc(btrfs_ordered_sum_size(root, bytes_left),
+ GFP_NOFS);
+ BUG_ON(!sums); /* -ENOMEM */
+ sector_sum = sums->sums;
+ sums->len = bytes_left;
+ ordered = btrfs_lookup_ordered_extent(inode, offset);
+ BUG_ON(!ordered); /* Logic error */
+ sums->bytenr = ordered->start;
+ }
+
+ data = kmap_atomic(bvec->bv_page);
+ sector_sum->sum = ~(u32)0;
+ sector_sum->sum = btrfs_csum_data(root,
+ data + bvec->bv_offset,
+ sector_sum->sum,
+ bvec->bv_len);
+ kunmap_atomic(data);
+ btrfs_csum_final(sector_sum->sum,
+ (char *)&sector_sum->sum);
+ sector_sum->bytenr = disk_bytenr;
+
+ sector_sum++;
+ bio_index++;
+ total_bytes += bvec->bv_len;
+ this_sum_bytes += bvec->bv_len;
+ disk_bytenr += bvec->bv_len;
+ offset += bvec->bv_len;
+ bvec++;
+ }
+ this_sum_bytes = 0;
+ btrfs_add_ordered_sum(inode, ordered, sums);
+ btrfs_put_ordered_extent(ordered);
+ return 0;
+}
+
+/*
+ * helper function for csum removal, this expects the
+ * key to describe the csum pointed to by the path, and it expects
+ * the csum to overlap the range [bytenr, len]
+ *
+ * The csum should not be entirely contained in the range and the
+ * range should not be entirely contained in the csum.
+ *
+ * This calls btrfs_truncate_item with the correct args based on the
+ * overlap, and fixes up the key as required.
+ */
+static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *key,
+ u64 bytenr, u64 len)
+{
+ struct extent_buffer *leaf;
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+ u64 csum_end;
+ u64 end_byte = bytenr + len;
+ u32 blocksize_bits = root->fs_info->sb->s_blocksize_bits;
+
+ leaf = path->nodes[0];
+ csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
+ csum_end <<= root->fs_info->sb->s_blocksize_bits;
+ csum_end += key->offset;
+
+ if (key->offset < bytenr && csum_end <= end_byte) {
+ /*
+ * [ bytenr - len ]
+ * [ ]
+ * [csum ]
+ * A simple truncate off the end of the item
+ */
+ u32 new_size = (bytenr - key->offset) >> blocksize_bits;
+ new_size *= csum_size;
+ btrfs_truncate_item(trans, root, path, new_size, 1);
+ } else if (key->offset >= bytenr && csum_end > end_byte &&
+ end_byte > key->offset) {
+ /*
+ * [ bytenr - len ]
+ * [ ]
+ * [csum ]
+ * we need to truncate from the beginning of the csum
+ */
+ u32 new_size = (csum_end - end_byte) >> blocksize_bits;
+ new_size *= csum_size;
+
+ btrfs_truncate_item(trans, root, path, new_size, 0);
+
+ key->offset = end_byte;
+ btrfs_set_item_key_safe(trans, root, path, key);
+ } else {
+ BUG();
+ }
+}
+
+/*
+ * deletes the csum items from the csum tree for a given
+ * range of bytes.
+ */
+int btrfs_del_csums(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 bytenr, u64 len)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ u64 end_byte = bytenr + len;
+ u64 csum_end;
+ struct extent_buffer *leaf;
+ int ret;
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+ int blocksize_bits = root->fs_info->sb->s_blocksize_bits;
+
+ root = root->fs_info->csum_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ while (1) {
+ key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+ key.offset = end_byte - 1;
+ key.type = BTRFS_EXTENT_CSUM_KEY;
+
+ path->leave_spinning = 1;
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret > 0) {
+ if (path->slots[0] == 0)
+ break;
+ path->slots[0]--;
+ } else if (ret < 0) {
+ break;
+ }
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+
+ if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
+ key.type != BTRFS_EXTENT_CSUM_KEY) {
+ break;
+ }
+
+ if (key.offset >= end_byte)
+ break;
+
+ csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
+ csum_end <<= blocksize_bits;
+ csum_end += key.offset;
+
+ /* this csum ends before we start, we're done */
+ if (csum_end <= bytenr)
+ break;
+
+ /* delete the entire item, it is inside our range */
+ if (key.offset >= bytenr && csum_end <= end_byte) {
+ ret = btrfs_del_item(trans, root, path);
+ if (ret)
+ goto out;
+ if (key.offset == bytenr)
+ break;
+ } else if (key.offset < bytenr && csum_end > end_byte) {
+ unsigned long offset;
+ unsigned long shift_len;
+ unsigned long item_offset;
+ /*
+ * [ bytenr - len ]
+ * [csum ]
+ *
+ * Our bytes are in the middle of the csum,
+ * we need to split this item and insert a new one.
+ *
+ * But we can't drop the path because the
+ * csum could change, get removed, extended etc.
+ *
+ * The trick here is the max size of a csum item leaves
+ * enough room in the tree block for a single
+ * item header. So, we split the item in place,
+ * adding a new header pointing to the existing
+ * bytes. Then we loop around again and we have
+ * a nicely formed csum item that we can neatly
+ * truncate.
+ */
+ offset = (bytenr - key.offset) >> blocksize_bits;
+ offset *= csum_size;
+
+ shift_len = (len >> blocksize_bits) * csum_size;
+
+ item_offset = btrfs_item_ptr_offset(leaf,
+ path->slots[0]);
+
+ memset_extent_buffer(leaf, 0, item_offset + offset,
+ shift_len);
+ key.offset = bytenr;
+
+ /*
+ * btrfs_split_item returns -EAGAIN when the
+ * item changed size or key
+ */
+ ret = btrfs_split_item(trans, root, path, &key, offset);
+ if (ret && ret != -EAGAIN) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+
+ key.offset = end_byte - 1;
+ } else {
+ truncate_one_csum(trans, root, path, &key, bytenr, len);
+ if (key.offset < bytenr)
+ break;
+ }
+ btrfs_release_path(path);
+ }
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_ordered_sum *sums)
+{
+ u64 bytenr;
+ int ret;
+ struct btrfs_key file_key;
+ struct btrfs_key found_key;
+ u64 next_offset;
+ u64 total_bytes = 0;
+ int found_next;
+ struct btrfs_path *path;
+ struct btrfs_csum_item *item;
+ struct btrfs_csum_item *item_end;
+ struct extent_buffer *leaf = NULL;
+ u64 csum_offset;
+ struct btrfs_sector_sum *sector_sum;
+ u32 nritems;
+ u32 ins_size;
+ u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ sector_sum = sums->sums;
+again:
+ next_offset = (u64)-1;
+ found_next = 0;
+ file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+ file_key.offset = sector_sum->bytenr;
+ bytenr = sector_sum->bytenr;
+ btrfs_set_key_type(&file_key, BTRFS_EXTENT_CSUM_KEY);
+
+ item = btrfs_lookup_csum(trans, root, path, sector_sum->bytenr, 1);
+ if (!IS_ERR(item)) {
+ leaf = path->nodes[0];
+ ret = 0;
+ goto found;
+ }
+ ret = PTR_ERR(item);
+ if (ret != -EFBIG && ret != -ENOENT)
+ goto fail_unlock;
+
+ if (ret == -EFBIG) {
+ u32 item_size;
+ /* we found one, but it isn't big enough yet */
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ if ((item_size / csum_size) >=
+ MAX_CSUM_ITEMS(root, csum_size)) {
+ /* already at max size, make a new one */
+ goto insert;
+ }
+ } else {
+ int slot = path->slots[0] + 1;
+ /* we didn't find a csum item, insert one */
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ if (path->slots[0] >= nritems - 1) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 1)
+ found_next = 1;
+ if (ret != 0)
+ goto insert;
+ slot = 0;
+ }
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
+ if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
+ found_key.type != BTRFS_EXTENT_CSUM_KEY) {
+ found_next = 1;
+ goto insert;
+ }
+ next_offset = found_key.offset;
+ found_next = 1;
+ goto insert;
+ }
+
+ /*
+ * at this point, we know the tree has an item, but it isn't big
+ * enough yet to put our csum in. Grow it
+ */
+ btrfs_release_path(path);
+ ret = btrfs_search_slot(trans, root, &file_key, path,
+ csum_size, 1);
+ if (ret < 0)
+ goto fail_unlock;
+
+ if (ret > 0) {
+ if (path->slots[0] == 0)
+ goto insert;
+ path->slots[0]--;
+ }
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ csum_offset = (bytenr - found_key.offset) >>
+ root->fs_info->sb->s_blocksize_bits;
+
+ if (btrfs_key_type(&found_key) != BTRFS_EXTENT_CSUM_KEY ||
+ found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
+ csum_offset >= MAX_CSUM_ITEMS(root, csum_size)) {
+ goto insert;
+ }
+
+ if (csum_offset >= btrfs_item_size_nr(leaf, path->slots[0]) /
+ csum_size) {
+ u32 diff = (csum_offset + 1) * csum_size;
+
+ /*
+ * is the item big enough already? we dropped our lock
+ * before and need to recheck
+ */
+ if (diff < btrfs_item_size_nr(leaf, path->slots[0]))
+ goto csum;
+
+ diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
+ if (diff != csum_size)
+ goto insert;
+
+ btrfs_extend_item(trans, root, path, diff);
+ goto csum;
+ }
+
+insert:
+ btrfs_release_path(path);
+ csum_offset = 0;
+ if (found_next) {
+ u64 tmp = total_bytes + root->sectorsize;
+ u64 next_sector = sector_sum->bytenr;
+ struct btrfs_sector_sum *next = sector_sum + 1;
+
+ while (tmp < sums->len) {
+ if (next_sector + root->sectorsize != next->bytenr)
+ break;
+ tmp += root->sectorsize;
+ next_sector = next->bytenr;
+ next++;
+ }
+ tmp = min(tmp, next_offset - file_key.offset);
+ tmp >>= root->fs_info->sb->s_blocksize_bits;
+ tmp = max((u64)1, tmp);
+ tmp = min(tmp, (u64)MAX_CSUM_ITEMS(root, csum_size));
+ ins_size = csum_size * tmp;
+ } else {
+ ins_size = csum_size;
+ }
+ path->leave_spinning = 1;
+ ret = btrfs_insert_empty_item(trans, root, path, &file_key,
+ ins_size);
+ path->leave_spinning = 0;
+ if (ret < 0)
+ goto fail_unlock;
+ if (ret != 0) {
+ WARN_ON(1);
+ goto fail_unlock;
+ }
+csum:
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
+ ret = 0;
+ item = (struct btrfs_csum_item *)((unsigned char *)item +
+ csum_offset * csum_size);
+found:
+ item_end = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
+ item_end = (struct btrfs_csum_item *)((unsigned char *)item_end +
+ btrfs_item_size_nr(leaf, path->slots[0]));
+next_sector:
+
+ write_extent_buffer(leaf, &sector_sum->sum, (unsigned long)item, csum_size);
+
+ total_bytes += root->sectorsize;
+ sector_sum++;
+ if (total_bytes < sums->len) {
+ item = (struct btrfs_csum_item *)((char *)item +
+ csum_size);
+ if (item < item_end && bytenr + PAGE_CACHE_SIZE ==
+ sector_sum->bytenr) {
+ bytenr = sector_sum->bytenr;
+ goto next_sector;
+ }
+ }
+
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+ if (total_bytes < sums->len) {
+ btrfs_release_path(path);
+ cond_resched();
+ goto again;
+ }
+out:
+ btrfs_free_path(path);
+ return ret;
+
+fail_unlock:
+ goto out;
+}
diff --git a/fs/btrfs/file.c b/fs/btrfs/file.c
new file mode 100644
index 00000000..53bf2d76
--- /dev/null
+++ b/fs/btrfs/file.c
@@ -0,0 +1,1908 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mpage.h>
+#include <linux/falloc.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/statfs.h>
+#include <linux/compat.h>
+#include <linux/slab.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "ioctl.h"
+#include "print-tree.h"
+#include "tree-log.h"
+#include "locking.h"
+#include "compat.h"
+
+/*
+ * when auto defrag is enabled we
+ * queue up these defrag structs to remember which
+ * inodes need defragging passes
+ */
+struct inode_defrag {
+ struct rb_node rb_node;
+ /* objectid */
+ u64 ino;
+ /*
+ * transid where the defrag was added, we search for
+ * extents newer than this
+ */
+ u64 transid;
+
+ /* root objectid */
+ u64 root;
+
+ /* last offset we were able to defrag */
+ u64 last_offset;
+
+ /* if we've wrapped around back to zero once already */
+ int cycled;
+};
+
+/* pop a record for an inode into the defrag tree. The lock
+ * must be held already
+ *
+ * If you're inserting a record for an older transid than an
+ * existing record, the transid already in the tree is lowered
+ *
+ * If an existing record is found the defrag item you
+ * pass in is freed
+ */
+static void __btrfs_add_inode_defrag(struct inode *inode,
+ struct inode_defrag *defrag)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct inode_defrag *entry;
+ struct rb_node **p;
+ struct rb_node *parent = NULL;
+
+ p = &root->fs_info->defrag_inodes.rb_node;
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct inode_defrag, rb_node);
+
+ if (defrag->ino < entry->ino)
+ p = &parent->rb_left;
+ else if (defrag->ino > entry->ino)
+ p = &parent->rb_right;
+ else {
+ /* if we're reinserting an entry for
+ * an old defrag run, make sure to
+ * lower the transid of our existing record
+ */
+ if (defrag->transid < entry->transid)
+ entry->transid = defrag->transid;
+ if (defrag->last_offset > entry->last_offset)
+ entry->last_offset = defrag->last_offset;
+ goto exists;
+ }
+ }
+ BTRFS_I(inode)->in_defrag = 1;
+ rb_link_node(&defrag->rb_node, parent, p);
+ rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
+ return;
+
+exists:
+ kfree(defrag);
+ return;
+
+}
+
+/*
+ * insert a defrag record for this inode if auto defrag is
+ * enabled
+ */
+int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
+ struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct inode_defrag *defrag;
+ u64 transid;
+
+ if (!btrfs_test_opt(root, AUTO_DEFRAG))
+ return 0;
+
+ if (btrfs_fs_closing(root->fs_info))
+ return 0;
+
+ if (BTRFS_I(inode)->in_defrag)
+ return 0;
+
+ if (trans)
+ transid = trans->transid;
+ else
+ transid = BTRFS_I(inode)->root->last_trans;
+
+ defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
+ if (!defrag)
+ return -ENOMEM;
+
+ defrag->ino = btrfs_ino(inode);
+ defrag->transid = transid;
+ defrag->root = root->root_key.objectid;
+
+ spin_lock(&root->fs_info->defrag_inodes_lock);
+ if (!BTRFS_I(inode)->in_defrag)
+ __btrfs_add_inode_defrag(inode, defrag);
+ else
+ kfree(defrag);
+ spin_unlock(&root->fs_info->defrag_inodes_lock);
+ return 0;
+}
+
+/*
+ * must be called with the defrag_inodes lock held
+ */
+struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
+ struct rb_node **next)
+{
+ struct inode_defrag *entry = NULL;
+ struct rb_node *p;
+ struct rb_node *parent = NULL;
+
+ p = info->defrag_inodes.rb_node;
+ while (p) {
+ parent = p;
+ entry = rb_entry(parent, struct inode_defrag, rb_node);
+
+ if (ino < entry->ino)
+ p = parent->rb_left;
+ else if (ino > entry->ino)
+ p = parent->rb_right;
+ else
+ return entry;
+ }
+
+ if (next) {
+ while (parent && ino > entry->ino) {
+ parent = rb_next(parent);
+ entry = rb_entry(parent, struct inode_defrag, rb_node);
+ }
+ *next = parent;
+ }
+ return NULL;
+}
+
+/*
+ * run through the list of inodes in the FS that need
+ * defragging
+ */
+int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
+{
+ struct inode_defrag *defrag;
+ struct btrfs_root *inode_root;
+ struct inode *inode;
+ struct rb_node *n;
+ struct btrfs_key key;
+ struct btrfs_ioctl_defrag_range_args range;
+ u64 first_ino = 0;
+ int num_defrag;
+ int defrag_batch = 1024;
+
+ memset(&range, 0, sizeof(range));
+ range.len = (u64)-1;
+
+ atomic_inc(&fs_info->defrag_running);
+ spin_lock(&fs_info->defrag_inodes_lock);
+ while(1) {
+ n = NULL;
+
+ /* find an inode to defrag */
+ defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
+ if (!defrag) {
+ if (n)
+ defrag = rb_entry(n, struct inode_defrag, rb_node);
+ else if (first_ino) {
+ first_ino = 0;
+ continue;
+ } else {
+ break;
+ }
+ }
+
+ /* remove it from the rbtree */
+ first_ino = defrag->ino + 1;
+ rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
+
+ if (btrfs_fs_closing(fs_info))
+ goto next_free;
+
+ spin_unlock(&fs_info->defrag_inodes_lock);
+
+ /* get the inode */
+ key.objectid = defrag->root;
+ btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
+ key.offset = (u64)-1;
+ inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
+ if (IS_ERR(inode_root))
+ goto next;
+
+ key.objectid = defrag->ino;
+ btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
+ key.offset = 0;
+
+ inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
+ if (IS_ERR(inode))
+ goto next;
+
+ /* do a chunk of defrag */
+ BTRFS_I(inode)->in_defrag = 0;
+ range.start = defrag->last_offset;
+ num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
+ defrag_batch);
+ /*
+ * if we filled the whole defrag batch, there
+ * must be more work to do. Queue this defrag
+ * again
+ */
+ if (num_defrag == defrag_batch) {
+ defrag->last_offset = range.start;
+ __btrfs_add_inode_defrag(inode, defrag);
+ /*
+ * we don't want to kfree defrag, we added it back to
+ * the rbtree
+ */
+ defrag = NULL;
+ } else if (defrag->last_offset && !defrag->cycled) {
+ /*
+ * we didn't fill our defrag batch, but
+ * we didn't start at zero. Make sure we loop
+ * around to the start of the file.
+ */
+ defrag->last_offset = 0;
+ defrag->cycled = 1;
+ __btrfs_add_inode_defrag(inode, defrag);
+ defrag = NULL;
+ }
+
+ iput(inode);
+next:
+ spin_lock(&fs_info->defrag_inodes_lock);
+next_free:
+ kfree(defrag);
+ }
+ spin_unlock(&fs_info->defrag_inodes_lock);
+
+ atomic_dec(&fs_info->defrag_running);
+
+ /*
+ * during unmount, we use the transaction_wait queue to
+ * wait for the defragger to stop
+ */
+ wake_up(&fs_info->transaction_wait);
+ return 0;
+}
+
+/* simple helper to fault in pages and copy. This should go away
+ * and be replaced with calls into generic code.
+ */
+static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
+ size_t write_bytes,
+ struct page **prepared_pages,
+ struct iov_iter *i)
+{
+ size_t copied = 0;
+ size_t total_copied = 0;
+ int pg = 0;
+ int offset = pos & (PAGE_CACHE_SIZE - 1);
+
+ while (write_bytes > 0) {
+ size_t count = min_t(size_t,
+ PAGE_CACHE_SIZE - offset, write_bytes);
+ struct page *page = prepared_pages[pg];
+ /*
+ * Copy data from userspace to the current page
+ *
+ * Disable pagefault to avoid recursive lock since
+ * the pages are already locked
+ */
+ pagefault_disable();
+ copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
+ pagefault_enable();
+
+ /* Flush processor's dcache for this page */
+ flush_dcache_page(page);
+
+ /*
+ * if we get a partial write, we can end up with
+ * partially up to date pages. These add
+ * a lot of complexity, so make sure they don't
+ * happen by forcing this copy to be retried.
+ *
+ * The rest of the btrfs_file_write code will fall
+ * back to page at a time copies after we return 0.
+ */
+ if (!PageUptodate(page) && copied < count)
+ copied = 0;
+
+ iov_iter_advance(i, copied);
+ write_bytes -= copied;
+ total_copied += copied;
+
+ /* Return to btrfs_file_aio_write to fault page */
+ if (unlikely(copied == 0))
+ break;
+
+ if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
+ offset += copied;
+ } else {
+ pg++;
+ offset = 0;
+ }
+ }
+ return total_copied;
+}
+
+/*
+ * unlocks pages after btrfs_file_write is done with them
+ */
+void btrfs_drop_pages(struct page **pages, size_t num_pages)
+{
+ size_t i;
+ for (i = 0; i < num_pages; i++) {
+ /* page checked is some magic around finding pages that
+ * have been modified without going through btrfs_set_page_dirty
+ * clear it here
+ */
+ ClearPageChecked(pages[i]);
+ unlock_page(pages[i]);
+ mark_page_accessed(pages[i]);
+ page_cache_release(pages[i]);
+ }
+}
+
+/*
+ * after copy_from_user, pages need to be dirtied and we need to make
+ * sure holes are created between the current EOF and the start of
+ * any next extents (if required).
+ *
+ * this also makes the decision about creating an inline extent vs
+ * doing real data extents, marking pages dirty and delalloc as required.
+ */
+int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
+ struct page **pages, size_t num_pages,
+ loff_t pos, size_t write_bytes,
+ struct extent_state **cached)
+{
+ int err = 0;
+ int i;
+ u64 num_bytes;
+ u64 start_pos;
+ u64 end_of_last_block;
+ u64 end_pos = pos + write_bytes;
+ loff_t isize = i_size_read(inode);
+
+ start_pos = pos & ~((u64)root->sectorsize - 1);
+ num_bytes = (write_bytes + pos - start_pos +
+ root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
+
+ end_of_last_block = start_pos + num_bytes - 1;
+ err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
+ cached);
+ if (err)
+ return err;
+
+ for (i = 0; i < num_pages; i++) {
+ struct page *p = pages[i];
+ SetPageUptodate(p);
+ ClearPageChecked(p);
+ set_page_dirty(p);
+ }
+
+ /*
+ * we've only changed i_size in ram, and we haven't updated
+ * the disk i_size. There is no need to log the inode
+ * at this time.
+ */
+ if (end_pos > isize)
+ i_size_write(inode, end_pos);
+ return 0;
+}
+
+/*
+ * this drops all the extents in the cache that intersect the range
+ * [start, end]. Existing extents are split as required.
+ */
+int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
+ int skip_pinned)
+{
+ struct extent_map *em;
+ struct extent_map *split = NULL;
+ struct extent_map *split2 = NULL;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ u64 len = end - start + 1;
+ int ret;
+ int testend = 1;
+ unsigned long flags;
+ int compressed = 0;
+
+ WARN_ON(end < start);
+ if (end == (u64)-1) {
+ len = (u64)-1;
+ testend = 0;
+ }
+ while (1) {
+ if (!split)
+ split = alloc_extent_map();
+ if (!split2)
+ split2 = alloc_extent_map();
+ BUG_ON(!split || !split2); /* -ENOMEM */
+
+ write_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, start, len);
+ if (!em) {
+ write_unlock(&em_tree->lock);
+ break;
+ }
+ flags = em->flags;
+ if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
+ if (testend && em->start + em->len >= start + len) {
+ free_extent_map(em);
+ write_unlock(&em_tree->lock);
+ break;
+ }
+ start = em->start + em->len;
+ if (testend)
+ len = start + len - (em->start + em->len);
+ free_extent_map(em);
+ write_unlock(&em_tree->lock);
+ continue;
+ }
+ compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+ clear_bit(EXTENT_FLAG_PINNED, &em->flags);
+ remove_extent_mapping(em_tree, em);
+
+ if (em->block_start < EXTENT_MAP_LAST_BYTE &&
+ em->start < start) {
+ split->start = em->start;
+ split->len = start - em->start;
+ split->orig_start = em->orig_start;
+ split->block_start = em->block_start;
+
+ if (compressed)
+ split->block_len = em->block_len;
+ else
+ split->block_len = split->len;
+
+ split->bdev = em->bdev;
+ split->flags = flags;
+ split->compress_type = em->compress_type;
+ ret = add_extent_mapping(em_tree, split);
+ BUG_ON(ret); /* Logic error */
+ free_extent_map(split);
+ split = split2;
+ split2 = NULL;
+ }
+ if (em->block_start < EXTENT_MAP_LAST_BYTE &&
+ testend && em->start + em->len > start + len) {
+ u64 diff = start + len - em->start;
+
+ split->start = start + len;
+ split->len = em->start + em->len - (start + len);
+ split->bdev = em->bdev;
+ split->flags = flags;
+ split->compress_type = em->compress_type;
+
+ if (compressed) {
+ split->block_len = em->block_len;
+ split->block_start = em->block_start;
+ split->orig_start = em->orig_start;
+ } else {
+ split->block_len = split->len;
+ split->block_start = em->block_start + diff;
+ split->orig_start = split->start;
+ }
+
+ ret = add_extent_mapping(em_tree, split);
+ BUG_ON(ret); /* Logic error */
+ free_extent_map(split);
+ split = NULL;
+ }
+ write_unlock(&em_tree->lock);
+
+ /* once for us */
+ free_extent_map(em);
+ /* once for the tree*/
+ free_extent_map(em);
+ }
+ if (split)
+ free_extent_map(split);
+ if (split2)
+ free_extent_map(split2);
+ return 0;
+}
+
+/*
+ * this is very complex, but the basic idea is to drop all extents
+ * in the range start - end. hint_block is filled in with a block number
+ * that would be a good hint to the block allocator for this file.
+ *
+ * If an extent intersects the range but is not entirely inside the range
+ * it is either truncated or split. Anything entirely inside the range
+ * is deleted from the tree.
+ */
+int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
+ u64 start, u64 end, u64 *hint_byte, int drop_cache)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_buffer *leaf;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key new_key;
+ u64 ino = btrfs_ino(inode);
+ u64 search_start = start;
+ u64 disk_bytenr = 0;
+ u64 num_bytes = 0;
+ u64 extent_offset = 0;
+ u64 extent_end = 0;
+ int del_nr = 0;
+ int del_slot = 0;
+ int extent_type;
+ int recow;
+ int ret;
+ int modify_tree = -1;
+
+ if (drop_cache)
+ btrfs_drop_extent_cache(inode, start, end - 1, 0);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ if (start >= BTRFS_I(inode)->disk_i_size)
+ modify_tree = 0;
+
+ while (1) {
+ recow = 0;
+ ret = btrfs_lookup_file_extent(trans, root, path, ino,
+ search_start, modify_tree);
+ if (ret < 0)
+ break;
+ if (ret > 0 && path->slots[0] > 0 && search_start == start) {
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
+ if (key.objectid == ino &&
+ key.type == BTRFS_EXTENT_DATA_KEY)
+ path->slots[0]--;
+ }
+ ret = 0;
+next_slot:
+ leaf = path->nodes[0];
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ BUG_ON(del_nr > 0);
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ break;
+ if (ret > 0) {
+ ret = 0;
+ break;
+ }
+ leaf = path->nodes[0];
+ recow = 1;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.objectid > ino ||
+ key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
+ break;
+
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ extent_type = btrfs_file_extent_type(leaf, fi);
+
+ if (extent_type == BTRFS_FILE_EXTENT_REG ||
+ extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
+ disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+ num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
+ extent_offset = btrfs_file_extent_offset(leaf, fi);
+ extent_end = key.offset +
+ btrfs_file_extent_num_bytes(leaf, fi);
+ } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+ extent_end = key.offset +
+ btrfs_file_extent_inline_len(leaf, fi);
+ } else {
+ WARN_ON(1);
+ extent_end = search_start;
+ }
+
+ if (extent_end <= search_start) {
+ path->slots[0]++;
+ goto next_slot;
+ }
+
+ search_start = max(key.offset, start);
+ if (recow || !modify_tree) {
+ modify_tree = -1;
+ btrfs_release_path(path);
+ continue;
+ }
+
+ /*
+ * | - range to drop - |
+ * | -------- extent -------- |
+ */
+ if (start > key.offset && end < extent_end) {
+ BUG_ON(del_nr > 0);
+ BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
+
+ memcpy(&new_key, &key, sizeof(new_key));
+ new_key.offset = start;
+ ret = btrfs_duplicate_item(trans, root, path,
+ &new_key);
+ if (ret == -EAGAIN) {
+ btrfs_release_path(path);
+ continue;
+ }
+ if (ret < 0)
+ break;
+
+ leaf = path->nodes[0];
+ fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ start - key.offset);
+
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+
+ extent_offset += start - key.offset;
+ btrfs_set_file_extent_offset(leaf, fi, extent_offset);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ extent_end - start);
+ btrfs_mark_buffer_dirty(leaf);
+
+ if (disk_bytenr > 0) {
+ ret = btrfs_inc_extent_ref(trans, root,
+ disk_bytenr, num_bytes, 0,
+ root->root_key.objectid,
+ new_key.objectid,
+ start - extent_offset, 0);
+ BUG_ON(ret); /* -ENOMEM */
+ *hint_byte = disk_bytenr;
+ }
+ key.offset = start;
+ }
+ /*
+ * | ---- range to drop ----- |
+ * | -------- extent -------- |
+ */
+ if (start <= key.offset && end < extent_end) {
+ BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
+
+ memcpy(&new_key, &key, sizeof(new_key));
+ new_key.offset = end;
+ btrfs_set_item_key_safe(trans, root, path, &new_key);
+
+ extent_offset += end - key.offset;
+ btrfs_set_file_extent_offset(leaf, fi, extent_offset);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ extent_end - end);
+ btrfs_mark_buffer_dirty(leaf);
+ if (disk_bytenr > 0) {
+ inode_sub_bytes(inode, end - key.offset);
+ *hint_byte = disk_bytenr;
+ }
+ break;
+ }
+
+ search_start = extent_end;
+ /*
+ * | ---- range to drop ----- |
+ * | -------- extent -------- |
+ */
+ if (start > key.offset && end >= extent_end) {
+ BUG_ON(del_nr > 0);
+ BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
+
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ start - key.offset);
+ btrfs_mark_buffer_dirty(leaf);
+ if (disk_bytenr > 0) {
+ inode_sub_bytes(inode, extent_end - start);
+ *hint_byte = disk_bytenr;
+ }
+ if (end == extent_end)
+ break;
+
+ path->slots[0]++;
+ goto next_slot;
+ }
+
+ /*
+ * | ---- range to drop ----- |
+ * | ------ extent ------ |
+ */
+ if (start <= key.offset && end >= extent_end) {
+ if (del_nr == 0) {
+ del_slot = path->slots[0];
+ del_nr = 1;
+ } else {
+ BUG_ON(del_slot + del_nr != path->slots[0]);
+ del_nr++;
+ }
+
+ if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+ inode_sub_bytes(inode,
+ extent_end - key.offset);
+ extent_end = ALIGN(extent_end,
+ root->sectorsize);
+ } else if (disk_bytenr > 0) {
+ ret = btrfs_free_extent(trans, root,
+ disk_bytenr, num_bytes, 0,
+ root->root_key.objectid,
+ key.objectid, key.offset -
+ extent_offset, 0);
+ BUG_ON(ret); /* -ENOMEM */
+ inode_sub_bytes(inode,
+ extent_end - key.offset);
+ *hint_byte = disk_bytenr;
+ }
+
+ if (end == extent_end)
+ break;
+
+ if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
+ path->slots[0]++;
+ goto next_slot;
+ }
+
+ ret = btrfs_del_items(trans, root, path, del_slot,
+ del_nr);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+
+ del_nr = 0;
+ del_slot = 0;
+
+ btrfs_release_path(path);
+ continue;
+ }
+
+ BUG_ON(1);
+ }
+
+ if (!ret && del_nr > 0) {
+ ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
+ if (ret)
+ btrfs_abort_transaction(trans, root, ret);
+ }
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int extent_mergeable(struct extent_buffer *leaf, int slot,
+ u64 objectid, u64 bytenr, u64 orig_offset,
+ u64 *start, u64 *end)
+{
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_key key;
+ u64 extent_end;
+
+ if (slot < 0 || slot >= btrfs_header_nritems(leaf))
+ return 0;
+
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+ if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
+ return 0;
+
+ fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
+ if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
+ btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
+ btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
+ btrfs_file_extent_compression(leaf, fi) ||
+ btrfs_file_extent_encryption(leaf, fi) ||
+ btrfs_file_extent_other_encoding(leaf, fi))
+ return 0;
+
+ extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
+ if ((*start && *start != key.offset) || (*end && *end != extent_end))
+ return 0;
+
+ *start = key.offset;
+ *end = extent_end;
+ return 1;
+}
+
+/*
+ * Mark extent in the range start - end as written.
+ *
+ * This changes extent type from 'pre-allocated' to 'regular'. If only
+ * part of extent is marked as written, the extent will be split into
+ * two or three.
+ */
+int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
+ struct inode *inode, u64 start, u64 end)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_buffer *leaf;
+ struct btrfs_path *path;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_key key;
+ struct btrfs_key new_key;
+ u64 bytenr;
+ u64 num_bytes;
+ u64 extent_end;
+ u64 orig_offset;
+ u64 other_start;
+ u64 other_end;
+ u64 split;
+ int del_nr = 0;
+ int del_slot = 0;
+ int recow;
+ int ret;
+ u64 ino = btrfs_ino(inode);
+
+ btrfs_drop_extent_cache(inode, start, end - 1, 0);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+again:
+ recow = 0;
+ split = start;
+ key.objectid = ino;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = split;
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0)
+ goto out;
+ if (ret > 0 && path->slots[0] > 0)
+ path->slots[0]--;
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ BUG_ON(btrfs_file_extent_type(leaf, fi) !=
+ BTRFS_FILE_EXTENT_PREALLOC);
+ extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
+ BUG_ON(key.offset > start || extent_end < end);
+
+ bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+ num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
+ orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
+ memcpy(&new_key, &key, sizeof(new_key));
+
+ if (start == key.offset && end < extent_end) {
+ other_start = 0;
+ other_end = start;
+ if (extent_mergeable(leaf, path->slots[0] - 1,
+ ino, bytenr, orig_offset,
+ &other_start, &other_end)) {
+ new_key.offset = end;
+ btrfs_set_item_key_safe(trans, root, path, &new_key);
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ extent_end - end);
+ btrfs_set_file_extent_offset(leaf, fi,
+ end - orig_offset);
+ fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ end - other_start);
+ btrfs_mark_buffer_dirty(leaf);
+ goto out;
+ }
+ }
+
+ if (start > key.offset && end == extent_end) {
+ other_start = end;
+ other_end = 0;
+ if (extent_mergeable(leaf, path->slots[0] + 1,
+ ino, bytenr, orig_offset,
+ &other_start, &other_end)) {
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ start - key.offset);
+ path->slots[0]++;
+ new_key.offset = start;
+ btrfs_set_item_key_safe(trans, root, path, &new_key);
+
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ other_end - start);
+ btrfs_set_file_extent_offset(leaf, fi,
+ start - orig_offset);
+ btrfs_mark_buffer_dirty(leaf);
+ goto out;
+ }
+ }
+
+ while (start > key.offset || end < extent_end) {
+ if (key.offset == start)
+ split = end;
+
+ new_key.offset = split;
+ ret = btrfs_duplicate_item(trans, root, path, &new_key);
+ if (ret == -EAGAIN) {
+ btrfs_release_path(path);
+ goto again;
+ }
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ split - key.offset);
+
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+
+ btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ extent_end - split);
+ btrfs_mark_buffer_dirty(leaf);
+
+ ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
+ root->root_key.objectid,
+ ino, orig_offset, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ if (split == start) {
+ key.offset = start;
+ } else {
+ BUG_ON(start != key.offset);
+ path->slots[0]--;
+ extent_end = end;
+ }
+ recow = 1;
+ }
+
+ other_start = end;
+ other_end = 0;
+ if (extent_mergeable(leaf, path->slots[0] + 1,
+ ino, bytenr, orig_offset,
+ &other_start, &other_end)) {
+ if (recow) {
+ btrfs_release_path(path);
+ goto again;
+ }
+ extent_end = other_end;
+ del_slot = path->slots[0] + 1;
+ del_nr++;
+ ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
+ 0, root->root_key.objectid,
+ ino, orig_offset, 0);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ other_start = 0;
+ other_end = start;
+ if (extent_mergeable(leaf, path->slots[0] - 1,
+ ino, bytenr, orig_offset,
+ &other_start, &other_end)) {
+ if (recow) {
+ btrfs_release_path(path);
+ goto again;
+ }
+ key.offset = other_start;
+ del_slot = path->slots[0];
+ del_nr++;
+ ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
+ 0, root->root_key.objectid,
+ ino, orig_offset, 0);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+ if (del_nr == 0) {
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_type(leaf, fi,
+ BTRFS_FILE_EXTENT_REG);
+ btrfs_mark_buffer_dirty(leaf);
+ } else {
+ fi = btrfs_item_ptr(leaf, del_slot - 1,
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_type(leaf, fi,
+ BTRFS_FILE_EXTENT_REG);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ extent_end - key.offset);
+ btrfs_mark_buffer_dirty(leaf);
+
+ ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+ }
+out:
+ btrfs_free_path(path);
+ return 0;
+}
+
+/*
+ * on error we return an unlocked page and the error value
+ * on success we return a locked page and 0
+ */
+static int prepare_uptodate_page(struct page *page, u64 pos,
+ bool force_uptodate)
+{
+ int ret = 0;
+
+ if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
+ !PageUptodate(page)) {
+ ret = btrfs_readpage(NULL, page);
+ if (ret)
+ return ret;
+ lock_page(page);
+ if (!PageUptodate(page)) {
+ unlock_page(page);
+ return -EIO;
+ }
+ }
+ return 0;
+}
+
+/*
+ * this gets pages into the page cache and locks them down, it also properly
+ * waits for data=ordered extents to finish before allowing the pages to be
+ * modified.
+ */
+static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
+ struct page **pages, size_t num_pages,
+ loff_t pos, unsigned long first_index,
+ size_t write_bytes, bool force_uptodate)
+{
+ struct extent_state *cached_state = NULL;
+ int i;
+ unsigned long index = pos >> PAGE_CACHE_SHIFT;
+ struct inode *inode = fdentry(file)->d_inode;
+ gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
+ int err = 0;
+ int faili = 0;
+ u64 start_pos;
+ u64 last_pos;
+
+ start_pos = pos & ~((u64)root->sectorsize - 1);
+ last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
+
+again:
+ for (i = 0; i < num_pages; i++) {
+ pages[i] = find_or_create_page(inode->i_mapping, index + i,
+ mask | __GFP_WRITE);
+ if (!pages[i]) {
+ faili = i - 1;
+ err = -ENOMEM;
+ goto fail;
+ }
+
+ if (i == 0)
+ err = prepare_uptodate_page(pages[i], pos,
+ force_uptodate);
+ if (i == num_pages - 1)
+ err = prepare_uptodate_page(pages[i],
+ pos + write_bytes, false);
+ if (err) {
+ page_cache_release(pages[i]);
+ faili = i - 1;
+ goto fail;
+ }
+ wait_on_page_writeback(pages[i]);
+ }
+ err = 0;
+ if (start_pos < inode->i_size) {
+ struct btrfs_ordered_extent *ordered;
+ lock_extent_bits(&BTRFS_I(inode)->io_tree,
+ start_pos, last_pos - 1, 0, &cached_state);
+ ordered = btrfs_lookup_first_ordered_extent(inode,
+ last_pos - 1);
+ if (ordered &&
+ ordered->file_offset + ordered->len > start_pos &&
+ ordered->file_offset < last_pos) {
+ btrfs_put_ordered_extent(ordered);
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree,
+ start_pos, last_pos - 1,
+ &cached_state, GFP_NOFS);
+ for (i = 0; i < num_pages; i++) {
+ unlock_page(pages[i]);
+ page_cache_release(pages[i]);
+ }
+ btrfs_wait_ordered_range(inode, start_pos,
+ last_pos - start_pos);
+ goto again;
+ }
+ if (ordered)
+ btrfs_put_ordered_extent(ordered);
+
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
+ last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
+ EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
+ GFP_NOFS);
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree,
+ start_pos, last_pos - 1, &cached_state,
+ GFP_NOFS);
+ }
+ for (i = 0; i < num_pages; i++) {
+ if (clear_page_dirty_for_io(pages[i]))
+ account_page_redirty(pages[i]);
+ set_page_extent_mapped(pages[i]);
+ WARN_ON(!PageLocked(pages[i]));
+ }
+ return 0;
+fail:
+ while (faili >= 0) {
+ unlock_page(pages[faili]);
+ page_cache_release(pages[faili]);
+ faili--;
+ }
+ return err;
+
+}
+
+static noinline ssize_t __btrfs_buffered_write(struct file *file,
+ struct iov_iter *i,
+ loff_t pos)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct page **pages = NULL;
+ unsigned long first_index;
+ size_t num_written = 0;
+ int nrptrs;
+ int ret = 0;
+ bool force_page_uptodate = false;
+
+ nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
+ PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
+ (sizeof(struct page *)));
+ nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
+ nrptrs = max(nrptrs, 8);
+ pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
+ if (!pages)
+ return -ENOMEM;
+
+ first_index = pos >> PAGE_CACHE_SHIFT;
+
+ while (iov_iter_count(i) > 0) {
+ size_t offset = pos & (PAGE_CACHE_SIZE - 1);
+ size_t write_bytes = min(iov_iter_count(i),
+ nrptrs * (size_t)PAGE_CACHE_SIZE -
+ offset);
+ size_t num_pages = (write_bytes + offset +
+ PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ size_t dirty_pages;
+ size_t copied;
+
+ WARN_ON(num_pages > nrptrs);
+
+ /*
+ * Fault pages before locking them in prepare_pages
+ * to avoid recursive lock
+ */
+ if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
+ ret = -EFAULT;
+ break;
+ }
+
+ ret = btrfs_delalloc_reserve_space(inode,
+ num_pages << PAGE_CACHE_SHIFT);
+ if (ret)
+ break;
+
+ /*
+ * This is going to setup the pages array with the number of
+ * pages we want, so we don't really need to worry about the
+ * contents of pages from loop to loop
+ */
+ ret = prepare_pages(root, file, pages, num_pages,
+ pos, first_index, write_bytes,
+ force_page_uptodate);
+ if (ret) {
+ btrfs_delalloc_release_space(inode,
+ num_pages << PAGE_CACHE_SHIFT);
+ break;
+ }
+
+ copied = btrfs_copy_from_user(pos, num_pages,
+ write_bytes, pages, i);
+
+ /*
+ * if we have trouble faulting in the pages, fall
+ * back to one page at a time
+ */
+ if (copied < write_bytes)
+ nrptrs = 1;
+
+ if (copied == 0) {
+ force_page_uptodate = true;
+ dirty_pages = 0;
+ } else {
+ force_page_uptodate = false;
+ dirty_pages = (copied + offset +
+ PAGE_CACHE_SIZE - 1) >>
+ PAGE_CACHE_SHIFT;
+ }
+
+ /*
+ * If we had a short copy we need to release the excess delaloc
+ * bytes we reserved. We need to increment outstanding_extents
+ * because btrfs_delalloc_release_space will decrement it, but
+ * we still have an outstanding extent for the chunk we actually
+ * managed to copy.
+ */
+ if (num_pages > dirty_pages) {
+ if (copied > 0) {
+ spin_lock(&BTRFS_I(inode)->lock);
+ BTRFS_I(inode)->outstanding_extents++;
+ spin_unlock(&BTRFS_I(inode)->lock);
+ }
+ btrfs_delalloc_release_space(inode,
+ (num_pages - dirty_pages) <<
+ PAGE_CACHE_SHIFT);
+ }
+
+ if (copied > 0) {
+ ret = btrfs_dirty_pages(root, inode, pages,
+ dirty_pages, pos, copied,
+ NULL);
+ if (ret) {
+ btrfs_delalloc_release_space(inode,
+ dirty_pages << PAGE_CACHE_SHIFT);
+ btrfs_drop_pages(pages, num_pages);
+ break;
+ }
+ }
+
+ btrfs_drop_pages(pages, num_pages);
+
+ cond_resched();
+
+ balance_dirty_pages_ratelimited_nr(inode->i_mapping,
+ dirty_pages);
+ if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
+ btrfs_btree_balance_dirty(root, 1);
+
+ pos += copied;
+ num_written += copied;
+ }
+
+ kfree(pages);
+
+ return num_written ? num_written : ret;
+}
+
+static ssize_t __btrfs_direct_write(struct kiocb *iocb,
+ const struct iovec *iov,
+ unsigned long nr_segs, loff_t pos,
+ loff_t *ppos, size_t count, size_t ocount)
+{
+ struct file *file = iocb->ki_filp;
+ struct inode *inode = fdentry(file)->d_inode;
+ struct iov_iter i;
+ ssize_t written;
+ ssize_t written_buffered;
+ loff_t endbyte;
+ int err;
+
+ written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
+ count, ocount);
+
+ /*
+ * the generic O_DIRECT will update in-memory i_size after the
+ * DIOs are done. But our endio handlers that update the on
+ * disk i_size never update past the in memory i_size. So we
+ * need one more update here to catch any additions to the
+ * file
+ */
+ if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
+ btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
+ mark_inode_dirty(inode);
+ }
+
+ if (written < 0 || written == count)
+ return written;
+
+ pos += written;
+ count -= written;
+ iov_iter_init(&i, iov, nr_segs, count, written);
+ written_buffered = __btrfs_buffered_write(file, &i, pos);
+ if (written_buffered < 0) {
+ err = written_buffered;
+ goto out;
+ }
+ endbyte = pos + written_buffered - 1;
+ err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
+ if (err)
+ goto out;
+ written += written_buffered;
+ *ppos = pos + written_buffered;
+ invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
+ endbyte >> PAGE_CACHE_SHIFT);
+out:
+ return written ? written : err;
+}
+
+static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
+ const struct iovec *iov,
+ unsigned long nr_segs, loff_t pos)
+{
+ struct file *file = iocb->ki_filp;
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ loff_t *ppos = &iocb->ki_pos;
+ u64 start_pos;
+ ssize_t num_written = 0;
+ ssize_t err = 0;
+ size_t count, ocount;
+
+ vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
+
+ mutex_lock(&inode->i_mutex);
+
+ err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
+ if (err) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+ count = ocount;
+
+ current->backing_dev_info = inode->i_mapping->backing_dev_info;
+ err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
+ if (err) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+
+ if (count == 0) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+
+ err = file_remove_suid(file);
+ if (err) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+
+ /*
+ * If BTRFS flips readonly due to some impossible error
+ * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
+ * although we have opened a file as writable, we have
+ * to stop this write operation to ensure FS consistency.
+ */
+ if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+ mutex_unlock(&inode->i_mutex);
+ err = -EROFS;
+ goto out;
+ }
+
+ err = btrfs_update_time(file);
+ if (err) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+ BTRFS_I(inode)->sequence++;
+
+ start_pos = round_down(pos, root->sectorsize);
+ if (start_pos > i_size_read(inode)) {
+ err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
+ if (err) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+ }
+
+ if (unlikely(file->f_flags & O_DIRECT)) {
+ num_written = __btrfs_direct_write(iocb, iov, nr_segs,
+ pos, ppos, count, ocount);
+ } else {
+ struct iov_iter i;
+
+ iov_iter_init(&i, iov, nr_segs, count, num_written);
+
+ num_written = __btrfs_buffered_write(file, &i, pos);
+ if (num_written > 0)
+ *ppos = pos + num_written;
+ }
+
+ mutex_unlock(&inode->i_mutex);
+
+ /*
+ * we want to make sure fsync finds this change
+ * but we haven't joined a transaction running right now.
+ *
+ * Later on, someone is sure to update the inode and get the
+ * real transid recorded.
+ *
+ * We set last_trans now to the fs_info generation + 1,
+ * this will either be one more than the running transaction
+ * or the generation used for the next transaction if there isn't
+ * one running right now.
+ */
+ BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
+ if (num_written > 0 || num_written == -EIOCBQUEUED) {
+ err = generic_write_sync(file, pos, num_written);
+ if (err < 0 && num_written > 0)
+ num_written = err;
+ }
+out:
+ current->backing_dev_info = NULL;
+ return num_written ? num_written : err;
+}
+
+int btrfs_release_file(struct inode *inode, struct file *filp)
+{
+ /*
+ * ordered_data_close is set by settattr when we are about to truncate
+ * a file from a non-zero size to a zero size. This tries to
+ * flush down new bytes that may have been written if the
+ * application were using truncate to replace a file in place.
+ */
+ if (BTRFS_I(inode)->ordered_data_close) {
+ BTRFS_I(inode)->ordered_data_close = 0;
+ btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
+ if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
+ filemap_flush(inode->i_mapping);
+ }
+ if (filp->private_data)
+ btrfs_ioctl_trans_end(filp);
+ return 0;
+}
+
+/*
+ * fsync call for both files and directories. This logs the inode into
+ * the tree log instead of forcing full commits whenever possible.
+ *
+ * It needs to call filemap_fdatawait so that all ordered extent updates are
+ * in the metadata btree are up to date for copying to the log.
+ *
+ * It drops the inode mutex before doing the tree log commit. This is an
+ * important optimization for directories because holding the mutex prevents
+ * new operations on the dir while we write to disk.
+ */
+int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
+{
+ struct dentry *dentry = file->f_path.dentry;
+ struct inode *inode = dentry->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int ret = 0;
+ struct btrfs_trans_handle *trans;
+
+ trace_btrfs_sync_file(file, datasync);
+
+ ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
+ if (ret)
+ return ret;
+ mutex_lock(&inode->i_mutex);
+
+ /* we wait first, since the writeback may change the inode */
+ root->log_batch++;
+ btrfs_wait_ordered_range(inode, 0, (u64)-1);
+ root->log_batch++;
+
+ /*
+ * check the transaction that last modified this inode
+ * and see if its already been committed
+ */
+ if (!BTRFS_I(inode)->last_trans) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+
+ /*
+ * if the last transaction that changed this file was before
+ * the current transaction, we can bail out now without any
+ * syncing
+ */
+ smp_mb();
+ if (BTRFS_I(inode)->last_trans <=
+ root->fs_info->last_trans_committed) {
+ BTRFS_I(inode)->last_trans = 0;
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+
+ /*
+ * ok we haven't committed the transaction yet, lets do a commit
+ */
+ if (file->private_data)
+ btrfs_ioctl_trans_end(file);
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+
+ ret = btrfs_log_dentry_safe(trans, root, dentry);
+ if (ret < 0) {
+ mutex_unlock(&inode->i_mutex);
+ goto out;
+ }
+
+ /* we've logged all the items and now have a consistent
+ * version of the file in the log. It is possible that
+ * someone will come in and modify the file, but that's
+ * fine because the log is consistent on disk, and we
+ * have references to all of the file's extents
+ *
+ * It is possible that someone will come in and log the
+ * file again, but that will end up using the synchronization
+ * inside btrfs_sync_log to keep things safe.
+ */
+ mutex_unlock(&inode->i_mutex);
+
+ if (ret != BTRFS_NO_LOG_SYNC) {
+ if (ret > 0) {
+ ret = btrfs_commit_transaction(trans, root);
+ } else {
+ ret = btrfs_sync_log(trans, root);
+ if (ret == 0)
+ ret = btrfs_end_transaction(trans, root);
+ else
+ ret = btrfs_commit_transaction(trans, root);
+ }
+ } else {
+ ret = btrfs_end_transaction(trans, root);
+ }
+out:
+ return ret > 0 ? -EIO : ret;
+}
+
+static const struct vm_operations_struct btrfs_file_vm_ops = {
+ .fault = filemap_fault,
+ .page_mkwrite = btrfs_page_mkwrite,
+};
+
+static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
+{
+ struct address_space *mapping = filp->f_mapping;
+
+ if (!mapping->a_ops->readpage)
+ return -ENOEXEC;
+
+ file_accessed(filp);
+ vma->vm_ops = &btrfs_file_vm_ops;
+ vma->vm_flags |= VM_CAN_NONLINEAR;
+
+ return 0;
+}
+
+static long btrfs_fallocate(struct file *file, int mode,
+ loff_t offset, loff_t len)
+{
+ struct inode *inode = file->f_path.dentry->d_inode;
+ struct extent_state *cached_state = NULL;
+ u64 cur_offset;
+ u64 last_byte;
+ u64 alloc_start;
+ u64 alloc_end;
+ u64 alloc_hint = 0;
+ u64 locked_end;
+ u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
+ struct extent_map *em;
+ int ret;
+
+ alloc_start = offset & ~mask;
+ alloc_end = (offset + len + mask) & ~mask;
+
+ /* We only support the FALLOC_FL_KEEP_SIZE mode */
+ if (mode & ~FALLOC_FL_KEEP_SIZE)
+ return -EOPNOTSUPP;
+
+ /*
+ * Make sure we have enough space before we do the
+ * allocation.
+ */
+ ret = btrfs_check_data_free_space(inode, len);
+ if (ret)
+ return ret;
+
+ /*
+ * wait for ordered IO before we have any locks. We'll loop again
+ * below with the locks held.
+ */
+ btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
+
+ mutex_lock(&inode->i_mutex);
+ ret = inode_newsize_ok(inode, alloc_end);
+ if (ret)
+ goto out;
+
+ if (alloc_start > inode->i_size) {
+ ret = btrfs_cont_expand(inode, i_size_read(inode),
+ alloc_start);
+ if (ret)
+ goto out;
+ }
+
+ locked_end = alloc_end - 1;
+ while (1) {
+ struct btrfs_ordered_extent *ordered;
+
+ /* the extent lock is ordered inside the running
+ * transaction
+ */
+ lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
+ locked_end, 0, &cached_state);
+ ordered = btrfs_lookup_first_ordered_extent(inode,
+ alloc_end - 1);
+ if (ordered &&
+ ordered->file_offset + ordered->len > alloc_start &&
+ ordered->file_offset < alloc_end) {
+ btrfs_put_ordered_extent(ordered);
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree,
+ alloc_start, locked_end,
+ &cached_state, GFP_NOFS);
+ /*
+ * we can't wait on the range with the transaction
+ * running or with the extent lock held
+ */
+ btrfs_wait_ordered_range(inode, alloc_start,
+ alloc_end - alloc_start);
+ } else {
+ if (ordered)
+ btrfs_put_ordered_extent(ordered);
+ break;
+ }
+ }
+
+ cur_offset = alloc_start;
+ while (1) {
+ u64 actual_end;
+
+ em = btrfs_get_extent(inode, NULL, 0, cur_offset,
+ alloc_end - cur_offset, 0);
+ if (IS_ERR_OR_NULL(em)) {
+ if (!em)
+ ret = -ENOMEM;
+ else
+ ret = PTR_ERR(em);
+ break;
+ }
+ last_byte = min(extent_map_end(em), alloc_end);
+ actual_end = min_t(u64, extent_map_end(em), offset + len);
+ last_byte = (last_byte + mask) & ~mask;
+
+ if (em->block_start == EXTENT_MAP_HOLE ||
+ (cur_offset >= inode->i_size &&
+ !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
+ ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
+ last_byte - cur_offset,
+ 1 << inode->i_blkbits,
+ offset + len,
+ &alloc_hint);
+
+ if (ret < 0) {
+ free_extent_map(em);
+ break;
+ }
+ } else if (actual_end > inode->i_size &&
+ !(mode & FALLOC_FL_KEEP_SIZE)) {
+ /*
+ * We didn't need to allocate any more space, but we
+ * still extended the size of the file so we need to
+ * update i_size.
+ */
+ inode->i_ctime = CURRENT_TIME;
+ i_size_write(inode, actual_end);
+ btrfs_ordered_update_i_size(inode, actual_end, NULL);
+ }
+ free_extent_map(em);
+
+ cur_offset = last_byte;
+ if (cur_offset >= alloc_end) {
+ ret = 0;
+ break;
+ }
+ }
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
+ &cached_state, GFP_NOFS);
+out:
+ mutex_unlock(&inode->i_mutex);
+ /* Let go of our reservation. */
+ btrfs_free_reserved_data_space(inode, len);
+ return ret;
+}
+
+static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_map *em;
+ struct extent_state *cached_state = NULL;
+ u64 lockstart = *offset;
+ u64 lockend = i_size_read(inode);
+ u64 start = *offset;
+ u64 orig_start = *offset;
+ u64 len = i_size_read(inode);
+ u64 last_end = 0;
+ int ret = 0;
+
+ lockend = max_t(u64, root->sectorsize, lockend);
+ if (lockend <= lockstart)
+ lockend = lockstart + root->sectorsize;
+
+ len = lockend - lockstart + 1;
+
+ len = max_t(u64, len, root->sectorsize);
+ if (inode->i_size == 0)
+ return -ENXIO;
+
+ lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
+ &cached_state);
+
+ /*
+ * Delalloc is such a pain. If we have a hole and we have pending
+ * delalloc for a portion of the hole we will get back a hole that
+ * exists for the entire range since it hasn't been actually written
+ * yet. So to take care of this case we need to look for an extent just
+ * before the position we want in case there is outstanding delalloc
+ * going on here.
+ */
+ if (origin == SEEK_HOLE && start != 0) {
+ if (start <= root->sectorsize)
+ em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
+ root->sectorsize, 0);
+ else
+ em = btrfs_get_extent_fiemap(inode, NULL, 0,
+ start - root->sectorsize,
+ root->sectorsize, 0);
+ if (IS_ERR(em)) {
+ ret = PTR_ERR(em);
+ goto out;
+ }
+ last_end = em->start + em->len;
+ if (em->block_start == EXTENT_MAP_DELALLOC)
+ last_end = min_t(u64, last_end, inode->i_size);
+ free_extent_map(em);
+ }
+
+ while (1) {
+ em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
+ if (IS_ERR(em)) {
+ ret = PTR_ERR(em);
+ break;
+ }
+
+ if (em->block_start == EXTENT_MAP_HOLE) {
+ if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
+ if (last_end <= orig_start) {
+ free_extent_map(em);
+ ret = -ENXIO;
+ break;
+ }
+ }
+
+ if (origin == SEEK_HOLE) {
+ *offset = start;
+ free_extent_map(em);
+ break;
+ }
+ } else {
+ if (origin == SEEK_DATA) {
+ if (em->block_start == EXTENT_MAP_DELALLOC) {
+ if (start >= inode->i_size) {
+ free_extent_map(em);
+ ret = -ENXIO;
+ break;
+ }
+ }
+
+ *offset = start;
+ free_extent_map(em);
+ break;
+ }
+ }
+
+ start = em->start + em->len;
+ last_end = em->start + em->len;
+
+ if (em->block_start == EXTENT_MAP_DELALLOC)
+ last_end = min_t(u64, last_end, inode->i_size);
+
+ if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
+ free_extent_map(em);
+ ret = -ENXIO;
+ break;
+ }
+ free_extent_map(em);
+ cond_resched();
+ }
+ if (!ret)
+ *offset = min(*offset, inode->i_size);
+out:
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
+ &cached_state, GFP_NOFS);
+ return ret;
+}
+
+static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
+{
+ struct inode *inode = file->f_mapping->host;
+ int ret;
+
+ mutex_lock(&inode->i_mutex);
+ switch (origin) {
+ case SEEK_END:
+ case SEEK_CUR:
+ offset = generic_file_llseek(file, offset, origin);
+ goto out;
+ case SEEK_DATA:
+ case SEEK_HOLE:
+ if (offset >= i_size_read(inode)) {
+ mutex_unlock(&inode->i_mutex);
+ return -ENXIO;
+ }
+
+ ret = find_desired_extent(inode, &offset, origin);
+ if (ret) {
+ mutex_unlock(&inode->i_mutex);
+ return ret;
+ }
+ }
+
+ if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
+ offset = -EINVAL;
+ goto out;
+ }
+ if (offset > inode->i_sb->s_maxbytes) {
+ offset = -EINVAL;
+ goto out;
+ }
+
+ /* Special lock needed here? */
+ if (offset != file->f_pos) {
+ file->f_pos = offset;
+ file->f_version = 0;
+ }
+out:
+ mutex_unlock(&inode->i_mutex);
+ return offset;
+}
+
+const struct file_operations btrfs_file_operations = {
+ .llseek = btrfs_file_llseek,
+ .read = do_sync_read,
+ .write = do_sync_write,
+ .aio_read = generic_file_aio_read,
+ .splice_read = generic_file_splice_read,
+ .aio_write = btrfs_file_aio_write,
+ .mmap = btrfs_file_mmap,
+ .open = generic_file_open,
+ .release = btrfs_release_file,
+ .fsync = btrfs_sync_file,
+ .fallocate = btrfs_fallocate,
+ .unlocked_ioctl = btrfs_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = btrfs_ioctl,
+#endif
+};
diff --git a/fs/btrfs/free-space-cache.c b/fs/btrfs/free-space-cache.c
new file mode 100644
index 00000000..202008ec
--- /dev/null
+++ b/fs/btrfs/free-space-cache.c
@@ -0,0 +1,2943 @@
+/*
+ * Copyright (C) 2008 Red Hat. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/math64.h>
+#include <linux/ratelimit.h>
+#include "ctree.h"
+#include "free-space-cache.h"
+#include "transaction.h"
+#include "disk-io.h"
+#include "extent_io.h"
+#include "inode-map.h"
+
+#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
+#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
+
+static int link_free_space(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info);
+
+static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 offset)
+{
+ struct btrfs_key key;
+ struct btrfs_key location;
+ struct btrfs_disk_key disk_key;
+ struct btrfs_free_space_header *header;
+ struct extent_buffer *leaf;
+ struct inode *inode = NULL;
+ int ret;
+
+ key.objectid = BTRFS_FREE_SPACE_OBJECTID;
+ key.offset = offset;
+ key.type = 0;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (ret > 0) {
+ btrfs_release_path(path);
+ return ERR_PTR(-ENOENT);
+ }
+
+ leaf = path->nodes[0];
+ header = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_free_space_header);
+ btrfs_free_space_key(leaf, header, &disk_key);
+ btrfs_disk_key_to_cpu(&location, &disk_key);
+ btrfs_release_path(path);
+
+ inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
+ if (!inode)
+ return ERR_PTR(-ENOENT);
+ if (IS_ERR(inode))
+ return inode;
+ if (is_bad_inode(inode)) {
+ iput(inode);
+ return ERR_PTR(-ENOENT);
+ }
+
+ inode->i_mapping->flags &= ~__GFP_FS;
+
+ return inode;
+}
+
+struct inode *lookup_free_space_inode(struct btrfs_root *root,
+ struct btrfs_block_group_cache
+ *block_group, struct btrfs_path *path)
+{
+ struct inode *inode = NULL;
+ u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
+
+ spin_lock(&block_group->lock);
+ if (block_group->inode)
+ inode = igrab(block_group->inode);
+ spin_unlock(&block_group->lock);
+ if (inode)
+ return inode;
+
+ inode = __lookup_free_space_inode(root, path,
+ block_group->key.objectid);
+ if (IS_ERR(inode))
+ return inode;
+
+ spin_lock(&block_group->lock);
+ if (!((BTRFS_I(inode)->flags & flags) == flags)) {
+ printk(KERN_INFO "Old style space inode found, converting.\n");
+ BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
+ BTRFS_INODE_NODATACOW;
+ block_group->disk_cache_state = BTRFS_DC_CLEAR;
+ }
+
+ if (!block_group->iref) {
+ block_group->inode = igrab(inode);
+ block_group->iref = 1;
+ }
+ spin_unlock(&block_group->lock);
+
+ return inode;
+}
+
+int __create_free_space_inode(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path, u64 ino, u64 offset)
+{
+ struct btrfs_key key;
+ struct btrfs_disk_key disk_key;
+ struct btrfs_free_space_header *header;
+ struct btrfs_inode_item *inode_item;
+ struct extent_buffer *leaf;
+ u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
+ int ret;
+
+ ret = btrfs_insert_empty_inode(trans, root, path, ino);
+ if (ret)
+ return ret;
+
+ /* We inline crc's for the free disk space cache */
+ if (ino != BTRFS_FREE_INO_OBJECTID)
+ flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
+
+ leaf = path->nodes[0];
+ inode_item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_inode_item);
+ btrfs_item_key(leaf, &disk_key, path->slots[0]);
+ memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
+ sizeof(*inode_item));
+ btrfs_set_inode_generation(leaf, inode_item, trans->transid);
+ btrfs_set_inode_size(leaf, inode_item, 0);
+ btrfs_set_inode_nbytes(leaf, inode_item, 0);
+ btrfs_set_inode_uid(leaf, inode_item, 0);
+ btrfs_set_inode_gid(leaf, inode_item, 0);
+ btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
+ btrfs_set_inode_flags(leaf, inode_item, flags);
+ btrfs_set_inode_nlink(leaf, inode_item, 1);
+ btrfs_set_inode_transid(leaf, inode_item, trans->transid);
+ btrfs_set_inode_block_group(leaf, inode_item, offset);
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+
+ key.objectid = BTRFS_FREE_SPACE_OBJECTID;
+ key.offset = offset;
+ key.type = 0;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ sizeof(struct btrfs_free_space_header));
+ if (ret < 0) {
+ btrfs_release_path(path);
+ return ret;
+ }
+ leaf = path->nodes[0];
+ header = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_free_space_header);
+ memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
+ btrfs_set_free_space_key(leaf, header, &disk_key);
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+
+ return 0;
+}
+
+int create_free_space_inode(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_path *path)
+{
+ int ret;
+ u64 ino;
+
+ ret = btrfs_find_free_objectid(root, &ino);
+ if (ret < 0)
+ return ret;
+
+ return __create_free_space_inode(root, trans, path, ino,
+ block_group->key.objectid);
+}
+
+int btrfs_truncate_free_space_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path,
+ struct inode *inode)
+{
+ struct btrfs_block_rsv *rsv;
+ u64 needed_bytes;
+ loff_t oldsize;
+ int ret = 0;
+
+ rsv = trans->block_rsv;
+ trans->block_rsv = &root->fs_info->global_block_rsv;
+
+ /* 1 for slack space, 1 for updating the inode */
+ needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
+ btrfs_calc_trans_metadata_size(root, 1);
+
+ spin_lock(&trans->block_rsv->lock);
+ if (trans->block_rsv->reserved < needed_bytes) {
+ spin_unlock(&trans->block_rsv->lock);
+ trans->block_rsv = rsv;
+ return -ENOSPC;
+ }
+ spin_unlock(&trans->block_rsv->lock);
+
+ oldsize = i_size_read(inode);
+ btrfs_i_size_write(inode, 0);
+ truncate_pagecache(inode, oldsize, 0);
+
+ /*
+ * We don't need an orphan item because truncating the free space cache
+ * will never be split across transactions.
+ */
+ ret = btrfs_truncate_inode_items(trans, root, inode,
+ 0, BTRFS_EXTENT_DATA_KEY);
+
+ if (ret) {
+ trans->block_rsv = rsv;
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+
+ ret = btrfs_update_inode(trans, root, inode);
+ if (ret)
+ btrfs_abort_transaction(trans, root, ret);
+ trans->block_rsv = rsv;
+
+ return ret;
+}
+
+static int readahead_cache(struct inode *inode)
+{
+ struct file_ra_state *ra;
+ unsigned long last_index;
+
+ ra = kzalloc(sizeof(*ra), GFP_NOFS);
+ if (!ra)
+ return -ENOMEM;
+
+ file_ra_state_init(ra, inode->i_mapping);
+ last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
+
+ page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
+
+ kfree(ra);
+
+ return 0;
+}
+
+struct io_ctl {
+ void *cur, *orig;
+ struct page *page;
+ struct page **pages;
+ struct btrfs_root *root;
+ unsigned long size;
+ int index;
+ int num_pages;
+ unsigned check_crcs:1;
+};
+
+static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
+ struct btrfs_root *root)
+{
+ memset(io_ctl, 0, sizeof(struct io_ctl));
+ io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
+ PAGE_CACHE_SHIFT;
+ io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
+ GFP_NOFS);
+ if (!io_ctl->pages)
+ return -ENOMEM;
+ io_ctl->root = root;
+ if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
+ io_ctl->check_crcs = 1;
+ return 0;
+}
+
+static void io_ctl_free(struct io_ctl *io_ctl)
+{
+ kfree(io_ctl->pages);
+}
+
+static void io_ctl_unmap_page(struct io_ctl *io_ctl)
+{
+ if (io_ctl->cur) {
+ kunmap(io_ctl->page);
+ io_ctl->cur = NULL;
+ io_ctl->orig = NULL;
+ }
+}
+
+static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
+{
+ WARN_ON(io_ctl->cur);
+ BUG_ON(io_ctl->index >= io_ctl->num_pages);
+ io_ctl->page = io_ctl->pages[io_ctl->index++];
+ io_ctl->cur = kmap(io_ctl->page);
+ io_ctl->orig = io_ctl->cur;
+ io_ctl->size = PAGE_CACHE_SIZE;
+ if (clear)
+ memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
+}
+
+static void io_ctl_drop_pages(struct io_ctl *io_ctl)
+{
+ int i;
+
+ io_ctl_unmap_page(io_ctl);
+
+ for (i = 0; i < io_ctl->num_pages; i++) {
+ if (io_ctl->pages[i]) {
+ ClearPageChecked(io_ctl->pages[i]);
+ unlock_page(io_ctl->pages[i]);
+ page_cache_release(io_ctl->pages[i]);
+ }
+ }
+}
+
+static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
+ int uptodate)
+{
+ struct page *page;
+ gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
+ int i;
+
+ for (i = 0; i < io_ctl->num_pages; i++) {
+ page = find_or_create_page(inode->i_mapping, i, mask);
+ if (!page) {
+ io_ctl_drop_pages(io_ctl);
+ return -ENOMEM;
+ }
+ io_ctl->pages[i] = page;
+ if (uptodate && !PageUptodate(page)) {
+ btrfs_readpage(NULL, page);
+ lock_page(page);
+ if (!PageUptodate(page)) {
+ printk(KERN_ERR "btrfs: error reading free "
+ "space cache\n");
+ io_ctl_drop_pages(io_ctl);
+ return -EIO;
+ }
+ }
+ }
+
+ for (i = 0; i < io_ctl->num_pages; i++) {
+ clear_page_dirty_for_io(io_ctl->pages[i]);
+ set_page_extent_mapped(io_ctl->pages[i]);
+ }
+
+ return 0;
+}
+
+static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
+{
+ u64 *val;
+
+ io_ctl_map_page(io_ctl, 1);
+
+ /*
+ * Skip the csum areas. If we don't check crcs then we just have a
+ * 64bit chunk at the front of the first page.
+ */
+ if (io_ctl->check_crcs) {
+ io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
+ io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
+ } else {
+ io_ctl->cur += sizeof(u64);
+ io_ctl->size -= sizeof(u64) * 2;
+ }
+
+ val = io_ctl->cur;
+ *val = cpu_to_le64(generation);
+ io_ctl->cur += sizeof(u64);
+}
+
+static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
+{
+ u64 *gen;
+
+ /*
+ * Skip the crc area. If we don't check crcs then we just have a 64bit
+ * chunk at the front of the first page.
+ */
+ if (io_ctl->check_crcs) {
+ io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
+ io_ctl->size -= sizeof(u64) +
+ (sizeof(u32) * io_ctl->num_pages);
+ } else {
+ io_ctl->cur += sizeof(u64);
+ io_ctl->size -= sizeof(u64) * 2;
+ }
+
+ gen = io_ctl->cur;
+ if (le64_to_cpu(*gen) != generation) {
+ printk_ratelimited(KERN_ERR "btrfs: space cache generation "
+ "(%Lu) does not match inode (%Lu)\n", *gen,
+ generation);
+ io_ctl_unmap_page(io_ctl);
+ return -EIO;
+ }
+ io_ctl->cur += sizeof(u64);
+ return 0;
+}
+
+static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
+{
+ u32 *tmp;
+ u32 crc = ~(u32)0;
+ unsigned offset = 0;
+
+ if (!io_ctl->check_crcs) {
+ io_ctl_unmap_page(io_ctl);
+ return;
+ }
+
+ if (index == 0)
+ offset = sizeof(u32) * io_ctl->num_pages;
+
+ crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
+ PAGE_CACHE_SIZE - offset);
+ btrfs_csum_final(crc, (char *)&crc);
+ io_ctl_unmap_page(io_ctl);
+ tmp = kmap(io_ctl->pages[0]);
+ tmp += index;
+ *tmp = crc;
+ kunmap(io_ctl->pages[0]);
+}
+
+static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
+{
+ u32 *tmp, val;
+ u32 crc = ~(u32)0;
+ unsigned offset = 0;
+
+ if (!io_ctl->check_crcs) {
+ io_ctl_map_page(io_ctl, 0);
+ return 0;
+ }
+
+ if (index == 0)
+ offset = sizeof(u32) * io_ctl->num_pages;
+
+ tmp = kmap(io_ctl->pages[0]);
+ tmp += index;
+ val = *tmp;
+ kunmap(io_ctl->pages[0]);
+
+ io_ctl_map_page(io_ctl, 0);
+ crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
+ PAGE_CACHE_SIZE - offset);
+ btrfs_csum_final(crc, (char *)&crc);
+ if (val != crc) {
+ printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
+ "space cache\n");
+ io_ctl_unmap_page(io_ctl);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
+ void *bitmap)
+{
+ struct btrfs_free_space_entry *entry;
+
+ if (!io_ctl->cur)
+ return -ENOSPC;
+
+ entry = io_ctl->cur;
+ entry->offset = cpu_to_le64(offset);
+ entry->bytes = cpu_to_le64(bytes);
+ entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
+ BTRFS_FREE_SPACE_EXTENT;
+ io_ctl->cur += sizeof(struct btrfs_free_space_entry);
+ io_ctl->size -= sizeof(struct btrfs_free_space_entry);
+
+ if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
+ return 0;
+
+ io_ctl_set_crc(io_ctl, io_ctl->index - 1);
+
+ /* No more pages to map */
+ if (io_ctl->index >= io_ctl->num_pages)
+ return 0;
+
+ /* map the next page */
+ io_ctl_map_page(io_ctl, 1);
+ return 0;
+}
+
+static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
+{
+ if (!io_ctl->cur)
+ return -ENOSPC;
+
+ /*
+ * If we aren't at the start of the current page, unmap this one and
+ * map the next one if there is any left.
+ */
+ if (io_ctl->cur != io_ctl->orig) {
+ io_ctl_set_crc(io_ctl, io_ctl->index - 1);
+ if (io_ctl->index >= io_ctl->num_pages)
+ return -ENOSPC;
+ io_ctl_map_page(io_ctl, 0);
+ }
+
+ memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
+ io_ctl_set_crc(io_ctl, io_ctl->index - 1);
+ if (io_ctl->index < io_ctl->num_pages)
+ io_ctl_map_page(io_ctl, 0);
+ return 0;
+}
+
+static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
+{
+ /*
+ * If we're not on the boundary we know we've modified the page and we
+ * need to crc the page.
+ */
+ if (io_ctl->cur != io_ctl->orig)
+ io_ctl_set_crc(io_ctl, io_ctl->index - 1);
+ else
+ io_ctl_unmap_page(io_ctl);
+
+ while (io_ctl->index < io_ctl->num_pages) {
+ io_ctl_map_page(io_ctl, 1);
+ io_ctl_set_crc(io_ctl, io_ctl->index - 1);
+ }
+}
+
+static int io_ctl_read_entry(struct io_ctl *io_ctl,
+ struct btrfs_free_space *entry, u8 *type)
+{
+ struct btrfs_free_space_entry *e;
+ int ret;
+
+ if (!io_ctl->cur) {
+ ret = io_ctl_check_crc(io_ctl, io_ctl->index);
+ if (ret)
+ return ret;
+ }
+
+ e = io_ctl->cur;
+ entry->offset = le64_to_cpu(e->offset);
+ entry->bytes = le64_to_cpu(e->bytes);
+ *type = e->type;
+ io_ctl->cur += sizeof(struct btrfs_free_space_entry);
+ io_ctl->size -= sizeof(struct btrfs_free_space_entry);
+
+ if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
+ return 0;
+
+ io_ctl_unmap_page(io_ctl);
+
+ return 0;
+}
+
+static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
+ struct btrfs_free_space *entry)
+{
+ int ret;
+
+ ret = io_ctl_check_crc(io_ctl, io_ctl->index);
+ if (ret)
+ return ret;
+
+ memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
+ io_ctl_unmap_page(io_ctl);
+
+ return 0;
+}
+
+int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
+ struct btrfs_free_space_ctl *ctl,
+ struct btrfs_path *path, u64 offset)
+{
+ struct btrfs_free_space_header *header;
+ struct extent_buffer *leaf;
+ struct io_ctl io_ctl;
+ struct btrfs_key key;
+ struct btrfs_free_space *e, *n;
+ struct list_head bitmaps;
+ u64 num_entries;
+ u64 num_bitmaps;
+ u64 generation;
+ u8 type;
+ int ret = 0;
+
+ INIT_LIST_HEAD(&bitmaps);
+
+ /* Nothing in the space cache, goodbye */
+ if (!i_size_read(inode))
+ return 0;
+
+ key.objectid = BTRFS_FREE_SPACE_OBJECTID;
+ key.offset = offset;
+ key.type = 0;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ return 0;
+ else if (ret > 0) {
+ btrfs_release_path(path);
+ return 0;
+ }
+
+ ret = -1;
+
+ leaf = path->nodes[0];
+ header = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_free_space_header);
+ num_entries = btrfs_free_space_entries(leaf, header);
+ num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
+ generation = btrfs_free_space_generation(leaf, header);
+ btrfs_release_path(path);
+
+ if (BTRFS_I(inode)->generation != generation) {
+ printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
+ " not match free space cache generation (%llu)\n",
+ (unsigned long long)BTRFS_I(inode)->generation,
+ (unsigned long long)generation);
+ return 0;
+ }
+
+ if (!num_entries)
+ return 0;
+
+ ret = io_ctl_init(&io_ctl, inode, root);
+ if (ret)
+ return ret;
+
+ ret = readahead_cache(inode);
+ if (ret)
+ goto out;
+
+ ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
+ if (ret)
+ goto out;
+
+ ret = io_ctl_check_crc(&io_ctl, 0);
+ if (ret)
+ goto free_cache;
+
+ ret = io_ctl_check_generation(&io_ctl, generation);
+ if (ret)
+ goto free_cache;
+
+ while (num_entries) {
+ e = kmem_cache_zalloc(btrfs_free_space_cachep,
+ GFP_NOFS);
+ if (!e)
+ goto free_cache;
+
+ ret = io_ctl_read_entry(&io_ctl, e, &type);
+ if (ret) {
+ kmem_cache_free(btrfs_free_space_cachep, e);
+ goto free_cache;
+ }
+
+ if (!e->bytes) {
+ kmem_cache_free(btrfs_free_space_cachep, e);
+ goto free_cache;
+ }
+
+ if (type == BTRFS_FREE_SPACE_EXTENT) {
+ spin_lock(&ctl->tree_lock);
+ ret = link_free_space(ctl, e);
+ spin_unlock(&ctl->tree_lock);
+ if (ret) {
+ printk(KERN_ERR "Duplicate entries in "
+ "free space cache, dumping\n");
+ kmem_cache_free(btrfs_free_space_cachep, e);
+ goto free_cache;
+ }
+ } else {
+ BUG_ON(!num_bitmaps);
+ num_bitmaps--;
+ e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
+ if (!e->bitmap) {
+ kmem_cache_free(
+ btrfs_free_space_cachep, e);
+ goto free_cache;
+ }
+ spin_lock(&ctl->tree_lock);
+ ret = link_free_space(ctl, e);
+ ctl->total_bitmaps++;
+ ctl->op->recalc_thresholds(ctl);
+ spin_unlock(&ctl->tree_lock);
+ if (ret) {
+ printk(KERN_ERR "Duplicate entries in "
+ "free space cache, dumping\n");
+ kmem_cache_free(btrfs_free_space_cachep, e);
+ goto free_cache;
+ }
+ list_add_tail(&e->list, &bitmaps);
+ }
+
+ num_entries--;
+ }
+
+ io_ctl_unmap_page(&io_ctl);
+
+ /*
+ * We add the bitmaps at the end of the entries in order that
+ * the bitmap entries are added to the cache.
+ */
+ list_for_each_entry_safe(e, n, &bitmaps, list) {
+ list_del_init(&e->list);
+ ret = io_ctl_read_bitmap(&io_ctl, e);
+ if (ret)
+ goto free_cache;
+ }
+
+ io_ctl_drop_pages(&io_ctl);
+ ret = 1;
+out:
+ io_ctl_free(&io_ctl);
+ return ret;
+free_cache:
+ io_ctl_drop_pages(&io_ctl);
+ __btrfs_remove_free_space_cache(ctl);
+ goto out;
+}
+
+int load_free_space_cache(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_group_cache *block_group)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_root *root = fs_info->tree_root;
+ struct inode *inode;
+ struct btrfs_path *path;
+ int ret = 0;
+ bool matched;
+ u64 used = btrfs_block_group_used(&block_group->item);
+
+ /*
+ * If this block group has been marked to be cleared for one reason or
+ * another then we can't trust the on disk cache, so just return.
+ */
+ spin_lock(&block_group->lock);
+ if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
+ spin_unlock(&block_group->lock);
+ return 0;
+ }
+ spin_unlock(&block_group->lock);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return 0;
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+
+ inode = lookup_free_space_inode(root, block_group, path);
+ if (IS_ERR(inode)) {
+ btrfs_free_path(path);
+ return 0;
+ }
+
+ /* We may have converted the inode and made the cache invalid. */
+ spin_lock(&block_group->lock);
+ if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
+ spin_unlock(&block_group->lock);
+ btrfs_free_path(path);
+ goto out;
+ }
+ spin_unlock(&block_group->lock);
+
+ ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
+ path, block_group->key.objectid);
+ btrfs_free_path(path);
+ if (ret <= 0)
+ goto out;
+
+ spin_lock(&ctl->tree_lock);
+ matched = (ctl->free_space == (block_group->key.offset - used -
+ block_group->bytes_super));
+ spin_unlock(&ctl->tree_lock);
+
+ if (!matched) {
+ __btrfs_remove_free_space_cache(ctl);
+ printk(KERN_ERR "block group %llu has an wrong amount of free "
+ "space\n", block_group->key.objectid);
+ ret = -1;
+ }
+out:
+ if (ret < 0) {
+ /* This cache is bogus, make sure it gets cleared */
+ spin_lock(&block_group->lock);
+ block_group->disk_cache_state = BTRFS_DC_CLEAR;
+ spin_unlock(&block_group->lock);
+ ret = 0;
+
+ printk(KERN_ERR "btrfs: failed to load free space cache "
+ "for block group %llu\n", block_group->key.objectid);
+ }
+
+ iput(inode);
+ return ret;
+}
+
+/**
+ * __btrfs_write_out_cache - write out cached info to an inode
+ * @root - the root the inode belongs to
+ * @ctl - the free space cache we are going to write out
+ * @block_group - the block_group for this cache if it belongs to a block_group
+ * @trans - the trans handle
+ * @path - the path to use
+ * @offset - the offset for the key we'll insert
+ *
+ * This function writes out a free space cache struct to disk for quick recovery
+ * on mount. This will return 0 if it was successfull in writing the cache out,
+ * and -1 if it was not.
+ */
+int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
+ struct btrfs_free_space_ctl *ctl,
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path, u64 offset)
+{
+ struct btrfs_free_space_header *header;
+ struct extent_buffer *leaf;
+ struct rb_node *node;
+ struct list_head *pos, *n;
+ struct extent_state *cached_state = NULL;
+ struct btrfs_free_cluster *cluster = NULL;
+ struct extent_io_tree *unpin = NULL;
+ struct io_ctl io_ctl;
+ struct list_head bitmap_list;
+ struct btrfs_key key;
+ u64 start, extent_start, extent_end, len;
+ int entries = 0;
+ int bitmaps = 0;
+ int ret;
+ int err = -1;
+
+ INIT_LIST_HEAD(&bitmap_list);
+
+ if (!i_size_read(inode))
+ return -1;
+
+ ret = io_ctl_init(&io_ctl, inode, root);
+ if (ret)
+ return -1;
+
+ /* Get the cluster for this block_group if it exists */
+ if (block_group && !list_empty(&block_group->cluster_list))
+ cluster = list_entry(block_group->cluster_list.next,
+ struct btrfs_free_cluster,
+ block_group_list);
+
+ /* Lock all pages first so we can lock the extent safely. */
+ io_ctl_prepare_pages(&io_ctl, inode, 0);
+
+ lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
+ 0, &cached_state);
+
+ node = rb_first(&ctl->free_space_offset);
+ if (!node && cluster) {
+ node = rb_first(&cluster->root);
+ cluster = NULL;
+ }
+
+ /* Make sure we can fit our crcs into the first page */
+ if (io_ctl.check_crcs &&
+ (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
+ WARN_ON(1);
+ goto out_nospc;
+ }
+
+ io_ctl_set_generation(&io_ctl, trans->transid);
+
+ /* Write out the extent entries */
+ while (node) {
+ struct btrfs_free_space *e;
+
+ e = rb_entry(node, struct btrfs_free_space, offset_index);
+ entries++;
+
+ ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
+ e->bitmap);
+ if (ret)
+ goto out_nospc;
+
+ if (e->bitmap) {
+ list_add_tail(&e->list, &bitmap_list);
+ bitmaps++;
+ }
+ node = rb_next(node);
+ if (!node && cluster) {
+ node = rb_first(&cluster->root);
+ cluster = NULL;
+ }
+ }
+
+ /*
+ * We want to add any pinned extents to our free space cache
+ * so we don't leak the space
+ */
+
+ /*
+ * We shouldn't have switched the pinned extents yet so this is the
+ * right one
+ */
+ unpin = root->fs_info->pinned_extents;
+
+ if (block_group)
+ start = block_group->key.objectid;
+
+ while (block_group && (start < block_group->key.objectid +
+ block_group->key.offset)) {
+ ret = find_first_extent_bit(unpin, start,
+ &extent_start, &extent_end,
+ EXTENT_DIRTY);
+ if (ret) {
+ ret = 0;
+ break;
+ }
+
+ /* This pinned extent is out of our range */
+ if (extent_start >= block_group->key.objectid +
+ block_group->key.offset)
+ break;
+
+ extent_start = max(extent_start, start);
+ extent_end = min(block_group->key.objectid +
+ block_group->key.offset, extent_end + 1);
+ len = extent_end - extent_start;
+
+ entries++;
+ ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
+ if (ret)
+ goto out_nospc;
+
+ start = extent_end;
+ }
+
+ /* Write out the bitmaps */
+ list_for_each_safe(pos, n, &bitmap_list) {
+ struct btrfs_free_space *entry =
+ list_entry(pos, struct btrfs_free_space, list);
+
+ ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
+ if (ret)
+ goto out_nospc;
+ list_del_init(&entry->list);
+ }
+
+ /* Zero out the rest of the pages just to make sure */
+ io_ctl_zero_remaining_pages(&io_ctl);
+
+ ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
+ 0, i_size_read(inode), &cached_state);
+ io_ctl_drop_pages(&io_ctl);
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
+ i_size_read(inode) - 1, &cached_state, GFP_NOFS);
+
+ if (ret)
+ goto out;
+
+
+ ret = filemap_write_and_wait(inode->i_mapping);
+ if (ret)
+ goto out;
+
+ key.objectid = BTRFS_FREE_SPACE_OBJECTID;
+ key.offset = offset;
+ key.type = 0;
+
+ ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+ if (ret < 0) {
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
+ EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
+ GFP_NOFS);
+ goto out;
+ }
+ leaf = path->nodes[0];
+ if (ret > 0) {
+ struct btrfs_key found_key;
+ BUG_ON(!path->slots[0]);
+ path->slots[0]--;
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
+ found_key.offset != offset) {
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
+ inode->i_size - 1,
+ EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
+ NULL, GFP_NOFS);
+ btrfs_release_path(path);
+ goto out;
+ }
+ }
+
+ BTRFS_I(inode)->generation = trans->transid;
+ header = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_free_space_header);
+ btrfs_set_free_space_entries(leaf, header, entries);
+ btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
+ btrfs_set_free_space_generation(leaf, header, trans->transid);
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+
+ err = 0;
+out:
+ io_ctl_free(&io_ctl);
+ if (err) {
+ invalidate_inode_pages2(inode->i_mapping);
+ BTRFS_I(inode)->generation = 0;
+ }
+ btrfs_update_inode(trans, root, inode);
+ return err;
+
+out_nospc:
+ list_for_each_safe(pos, n, &bitmap_list) {
+ struct btrfs_free_space *entry =
+ list_entry(pos, struct btrfs_free_space, list);
+ list_del_init(&entry->list);
+ }
+ io_ctl_drop_pages(&io_ctl);
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
+ i_size_read(inode) - 1, &cached_state, GFP_NOFS);
+ goto out;
+}
+
+int btrfs_write_out_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_path *path)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct inode *inode;
+ int ret = 0;
+
+ root = root->fs_info->tree_root;
+
+ spin_lock(&block_group->lock);
+ if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
+ spin_unlock(&block_group->lock);
+ return 0;
+ }
+ spin_unlock(&block_group->lock);
+
+ inode = lookup_free_space_inode(root, block_group, path);
+ if (IS_ERR(inode))
+ return 0;
+
+ ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
+ path, block_group->key.objectid);
+ if (ret) {
+ spin_lock(&block_group->lock);
+ block_group->disk_cache_state = BTRFS_DC_ERROR;
+ spin_unlock(&block_group->lock);
+ ret = 0;
+#ifdef DEBUG
+ printk(KERN_ERR "btrfs: failed to write free space cache "
+ "for block group %llu\n", block_group->key.objectid);
+#endif
+ }
+
+ iput(inode);
+ return ret;
+}
+
+static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
+ u64 offset)
+{
+ BUG_ON(offset < bitmap_start);
+ offset -= bitmap_start;
+ return (unsigned long)(div_u64(offset, unit));
+}
+
+static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
+{
+ return (unsigned long)(div_u64(bytes, unit));
+}
+
+static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
+ u64 offset)
+{
+ u64 bitmap_start;
+ u64 bytes_per_bitmap;
+
+ bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
+ bitmap_start = offset - ctl->start;
+ bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
+ bitmap_start *= bytes_per_bitmap;
+ bitmap_start += ctl->start;
+
+ return bitmap_start;
+}
+
+static int tree_insert_offset(struct rb_root *root, u64 offset,
+ struct rb_node *node, int bitmap)
+{
+ struct rb_node **p = &root->rb_node;
+ struct rb_node *parent = NULL;
+ struct btrfs_free_space *info;
+
+ while (*p) {
+ parent = *p;
+ info = rb_entry(parent, struct btrfs_free_space, offset_index);
+
+ if (offset < info->offset) {
+ p = &(*p)->rb_left;
+ } else if (offset > info->offset) {
+ p = &(*p)->rb_right;
+ } else {
+ /*
+ * we could have a bitmap entry and an extent entry
+ * share the same offset. If this is the case, we want
+ * the extent entry to always be found first if we do a
+ * linear search through the tree, since we want to have
+ * the quickest allocation time, and allocating from an
+ * extent is faster than allocating from a bitmap. So
+ * if we're inserting a bitmap and we find an entry at
+ * this offset, we want to go right, or after this entry
+ * logically. If we are inserting an extent and we've
+ * found a bitmap, we want to go left, or before
+ * logically.
+ */
+ if (bitmap) {
+ if (info->bitmap) {
+ WARN_ON_ONCE(1);
+ return -EEXIST;
+ }
+ p = &(*p)->rb_right;
+ } else {
+ if (!info->bitmap) {
+ WARN_ON_ONCE(1);
+ return -EEXIST;
+ }
+ p = &(*p)->rb_left;
+ }
+ }
+ }
+
+ rb_link_node(node, parent, p);
+ rb_insert_color(node, root);
+
+ return 0;
+}
+
+/*
+ * searches the tree for the given offset.
+ *
+ * fuzzy - If this is set, then we are trying to make an allocation, and we just
+ * want a section that has at least bytes size and comes at or after the given
+ * offset.
+ */
+static struct btrfs_free_space *
+tree_search_offset(struct btrfs_free_space_ctl *ctl,
+ u64 offset, int bitmap_only, int fuzzy)
+{
+ struct rb_node *n = ctl->free_space_offset.rb_node;
+ struct btrfs_free_space *entry, *prev = NULL;
+
+ /* find entry that is closest to the 'offset' */
+ while (1) {
+ if (!n) {
+ entry = NULL;
+ break;
+ }
+
+ entry = rb_entry(n, struct btrfs_free_space, offset_index);
+ prev = entry;
+
+ if (offset < entry->offset)
+ n = n->rb_left;
+ else if (offset > entry->offset)
+ n = n->rb_right;
+ else
+ break;
+ }
+
+ if (bitmap_only) {
+ if (!entry)
+ return NULL;
+ if (entry->bitmap)
+ return entry;
+
+ /*
+ * bitmap entry and extent entry may share same offset,
+ * in that case, bitmap entry comes after extent entry.
+ */
+ n = rb_next(n);
+ if (!n)
+ return NULL;
+ entry = rb_entry(n, struct btrfs_free_space, offset_index);
+ if (entry->offset != offset)
+ return NULL;
+
+ WARN_ON(!entry->bitmap);
+ return entry;
+ } else if (entry) {
+ if (entry->bitmap) {
+ /*
+ * if previous extent entry covers the offset,
+ * we should return it instead of the bitmap entry
+ */
+ n = &entry->offset_index;
+ while (1) {
+ n = rb_prev(n);
+ if (!n)
+ break;
+ prev = rb_entry(n, struct btrfs_free_space,
+ offset_index);
+ if (!prev->bitmap) {
+ if (prev->offset + prev->bytes > offset)
+ entry = prev;
+ break;
+ }
+ }
+ }
+ return entry;
+ }
+
+ if (!prev)
+ return NULL;
+
+ /* find last entry before the 'offset' */
+ entry = prev;
+ if (entry->offset > offset) {
+ n = rb_prev(&entry->offset_index);
+ if (n) {
+ entry = rb_entry(n, struct btrfs_free_space,
+ offset_index);
+ BUG_ON(entry->offset > offset);
+ } else {
+ if (fuzzy)
+ return entry;
+ else
+ return NULL;
+ }
+ }
+
+ if (entry->bitmap) {
+ n = &entry->offset_index;
+ while (1) {
+ n = rb_prev(n);
+ if (!n)
+ break;
+ prev = rb_entry(n, struct btrfs_free_space,
+ offset_index);
+ if (!prev->bitmap) {
+ if (prev->offset + prev->bytes > offset)
+ return prev;
+ break;
+ }
+ }
+ if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
+ return entry;
+ } else if (entry->offset + entry->bytes > offset)
+ return entry;
+
+ if (!fuzzy)
+ return NULL;
+
+ while (1) {
+ if (entry->bitmap) {
+ if (entry->offset + BITS_PER_BITMAP *
+ ctl->unit > offset)
+ break;
+ } else {
+ if (entry->offset + entry->bytes > offset)
+ break;
+ }
+
+ n = rb_next(&entry->offset_index);
+ if (!n)
+ return NULL;
+ entry = rb_entry(n, struct btrfs_free_space, offset_index);
+ }
+ return entry;
+}
+
+static inline void
+__unlink_free_space(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info)
+{
+ rb_erase(&info->offset_index, &ctl->free_space_offset);
+ ctl->free_extents--;
+}
+
+static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info)
+{
+ __unlink_free_space(ctl, info);
+ ctl->free_space -= info->bytes;
+}
+
+static int link_free_space(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info)
+{
+ int ret = 0;
+
+ BUG_ON(!info->bitmap && !info->bytes);
+ ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
+ &info->offset_index, (info->bitmap != NULL));
+ if (ret)
+ return ret;
+
+ ctl->free_space += info->bytes;
+ ctl->free_extents++;
+ return ret;
+}
+
+static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
+{
+ struct btrfs_block_group_cache *block_group = ctl->private;
+ u64 max_bytes;
+ u64 bitmap_bytes;
+ u64 extent_bytes;
+ u64 size = block_group->key.offset;
+ u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
+ int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
+
+ BUG_ON(ctl->total_bitmaps > max_bitmaps);
+
+ /*
+ * The goal is to keep the total amount of memory used per 1gb of space
+ * at or below 32k, so we need to adjust how much memory we allow to be
+ * used by extent based free space tracking
+ */
+ if (size < 1024 * 1024 * 1024)
+ max_bytes = MAX_CACHE_BYTES_PER_GIG;
+ else
+ max_bytes = MAX_CACHE_BYTES_PER_GIG *
+ div64_u64(size, 1024 * 1024 * 1024);
+
+ /*
+ * we want to account for 1 more bitmap than what we have so we can make
+ * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
+ * we add more bitmaps.
+ */
+ bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
+
+ if (bitmap_bytes >= max_bytes) {
+ ctl->extents_thresh = 0;
+ return;
+ }
+
+ /*
+ * we want the extent entry threshold to always be at most 1/2 the maxw
+ * bytes we can have, or whatever is less than that.
+ */
+ extent_bytes = max_bytes - bitmap_bytes;
+ extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
+
+ ctl->extents_thresh =
+ div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
+}
+
+static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info,
+ u64 offset, u64 bytes)
+{
+ unsigned long start, count;
+
+ start = offset_to_bit(info->offset, ctl->unit, offset);
+ count = bytes_to_bits(bytes, ctl->unit);
+ BUG_ON(start + count > BITS_PER_BITMAP);
+
+ bitmap_clear(info->bitmap, start, count);
+
+ info->bytes -= bytes;
+}
+
+static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info, u64 offset,
+ u64 bytes)
+{
+ __bitmap_clear_bits(ctl, info, offset, bytes);
+ ctl->free_space -= bytes;
+}
+
+static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info, u64 offset,
+ u64 bytes)
+{
+ unsigned long start, count;
+
+ start = offset_to_bit(info->offset, ctl->unit, offset);
+ count = bytes_to_bits(bytes, ctl->unit);
+ BUG_ON(start + count > BITS_PER_BITMAP);
+
+ bitmap_set(info->bitmap, start, count);
+
+ info->bytes += bytes;
+ ctl->free_space += bytes;
+}
+
+static int search_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *bitmap_info, u64 *offset,
+ u64 *bytes)
+{
+ unsigned long found_bits = 0;
+ unsigned long bits, i;
+ unsigned long next_zero;
+
+ i = offset_to_bit(bitmap_info->offset, ctl->unit,
+ max_t(u64, *offset, bitmap_info->offset));
+ bits = bytes_to_bits(*bytes, ctl->unit);
+
+ for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
+ i < BITS_PER_BITMAP;
+ i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
+ next_zero = find_next_zero_bit(bitmap_info->bitmap,
+ BITS_PER_BITMAP, i);
+ if ((next_zero - i) >= bits) {
+ found_bits = next_zero - i;
+ break;
+ }
+ i = next_zero;
+ }
+
+ if (found_bits) {
+ *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
+ *bytes = (u64)(found_bits) * ctl->unit;
+ return 0;
+ }
+
+ return -1;
+}
+
+static struct btrfs_free_space *
+find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
+{
+ struct btrfs_free_space *entry;
+ struct rb_node *node;
+ int ret;
+
+ if (!ctl->free_space_offset.rb_node)
+ return NULL;
+
+ entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
+ if (!entry)
+ return NULL;
+
+ for (node = &entry->offset_index; node; node = rb_next(node)) {
+ entry = rb_entry(node, struct btrfs_free_space, offset_index);
+ if (entry->bytes < *bytes)
+ continue;
+
+ if (entry->bitmap) {
+ ret = search_bitmap(ctl, entry, offset, bytes);
+ if (!ret)
+ return entry;
+ continue;
+ }
+
+ *offset = entry->offset;
+ *bytes = entry->bytes;
+ return entry;
+ }
+
+ return NULL;
+}
+
+static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info, u64 offset)
+{
+ info->offset = offset_to_bitmap(ctl, offset);
+ info->bytes = 0;
+ INIT_LIST_HEAD(&info->list);
+ link_free_space(ctl, info);
+ ctl->total_bitmaps++;
+
+ ctl->op->recalc_thresholds(ctl);
+}
+
+static void free_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *bitmap_info)
+{
+ unlink_free_space(ctl, bitmap_info);
+ kfree(bitmap_info->bitmap);
+ kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
+ ctl->total_bitmaps--;
+ ctl->op->recalc_thresholds(ctl);
+}
+
+static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *bitmap_info,
+ u64 *offset, u64 *bytes)
+{
+ u64 end;
+ u64 search_start, search_bytes;
+ int ret;
+
+again:
+ end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
+
+ /*
+ * XXX - this can go away after a few releases.
+ *
+ * since the only user of btrfs_remove_free_space is the tree logging
+ * stuff, and the only way to test that is under crash conditions, we
+ * want to have this debug stuff here just in case somethings not
+ * working. Search the bitmap for the space we are trying to use to
+ * make sure its actually there. If its not there then we need to stop
+ * because something has gone wrong.
+ */
+ search_start = *offset;
+ search_bytes = *bytes;
+ search_bytes = min(search_bytes, end - search_start + 1);
+ ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
+ BUG_ON(ret < 0 || search_start != *offset);
+
+ if (*offset > bitmap_info->offset && *offset + *bytes > end) {
+ bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
+ *bytes -= end - *offset + 1;
+ *offset = end + 1;
+ } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
+ bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
+ *bytes = 0;
+ }
+
+ if (*bytes) {
+ struct rb_node *next = rb_next(&bitmap_info->offset_index);
+ if (!bitmap_info->bytes)
+ free_bitmap(ctl, bitmap_info);
+
+ /*
+ * no entry after this bitmap, but we still have bytes to
+ * remove, so something has gone wrong.
+ */
+ if (!next)
+ return -EINVAL;
+
+ bitmap_info = rb_entry(next, struct btrfs_free_space,
+ offset_index);
+
+ /*
+ * if the next entry isn't a bitmap we need to return to let the
+ * extent stuff do its work.
+ */
+ if (!bitmap_info->bitmap)
+ return -EAGAIN;
+
+ /*
+ * Ok the next item is a bitmap, but it may not actually hold
+ * the information for the rest of this free space stuff, so
+ * look for it, and if we don't find it return so we can try
+ * everything over again.
+ */
+ search_start = *offset;
+ search_bytes = *bytes;
+ ret = search_bitmap(ctl, bitmap_info, &search_start,
+ &search_bytes);
+ if (ret < 0 || search_start != *offset)
+ return -EAGAIN;
+
+ goto again;
+ } else if (!bitmap_info->bytes)
+ free_bitmap(ctl, bitmap_info);
+
+ return 0;
+}
+
+static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info, u64 offset,
+ u64 bytes)
+{
+ u64 bytes_to_set = 0;
+ u64 end;
+
+ end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
+
+ bytes_to_set = min(end - offset, bytes);
+
+ bitmap_set_bits(ctl, info, offset, bytes_to_set);
+
+ return bytes_to_set;
+
+}
+
+static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info)
+{
+ struct btrfs_block_group_cache *block_group = ctl->private;
+
+ /*
+ * If we are below the extents threshold then we can add this as an
+ * extent, and don't have to deal with the bitmap
+ */
+ if (ctl->free_extents < ctl->extents_thresh) {
+ /*
+ * If this block group has some small extents we don't want to
+ * use up all of our free slots in the cache with them, we want
+ * to reserve them to larger extents, however if we have plent
+ * of cache left then go ahead an dadd them, no sense in adding
+ * the overhead of a bitmap if we don't have to.
+ */
+ if (info->bytes <= block_group->sectorsize * 4) {
+ if (ctl->free_extents * 2 <= ctl->extents_thresh)
+ return false;
+ } else {
+ return false;
+ }
+ }
+
+ /*
+ * some block groups are so tiny they can't be enveloped by a bitmap, so
+ * don't even bother to create a bitmap for this
+ */
+ if (BITS_PER_BITMAP * block_group->sectorsize >
+ block_group->key.offset)
+ return false;
+
+ return true;
+}
+
+static struct btrfs_free_space_op free_space_op = {
+ .recalc_thresholds = recalculate_thresholds,
+ .use_bitmap = use_bitmap,
+};
+
+static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info)
+{
+ struct btrfs_free_space *bitmap_info;
+ struct btrfs_block_group_cache *block_group = NULL;
+ int added = 0;
+ u64 bytes, offset, bytes_added;
+ int ret;
+
+ bytes = info->bytes;
+ offset = info->offset;
+
+ if (!ctl->op->use_bitmap(ctl, info))
+ return 0;
+
+ if (ctl->op == &free_space_op)
+ block_group = ctl->private;
+again:
+ /*
+ * Since we link bitmaps right into the cluster we need to see if we
+ * have a cluster here, and if so and it has our bitmap we need to add
+ * the free space to that bitmap.
+ */
+ if (block_group && !list_empty(&block_group->cluster_list)) {
+ struct btrfs_free_cluster *cluster;
+ struct rb_node *node;
+ struct btrfs_free_space *entry;
+
+ cluster = list_entry(block_group->cluster_list.next,
+ struct btrfs_free_cluster,
+ block_group_list);
+ spin_lock(&cluster->lock);
+ node = rb_first(&cluster->root);
+ if (!node) {
+ spin_unlock(&cluster->lock);
+ goto no_cluster_bitmap;
+ }
+
+ entry = rb_entry(node, struct btrfs_free_space, offset_index);
+ if (!entry->bitmap) {
+ spin_unlock(&cluster->lock);
+ goto no_cluster_bitmap;
+ }
+
+ if (entry->offset == offset_to_bitmap(ctl, offset)) {
+ bytes_added = add_bytes_to_bitmap(ctl, entry,
+ offset, bytes);
+ bytes -= bytes_added;
+ offset += bytes_added;
+ }
+ spin_unlock(&cluster->lock);
+ if (!bytes) {
+ ret = 1;
+ goto out;
+ }
+ }
+
+no_cluster_bitmap:
+ bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
+ 1, 0);
+ if (!bitmap_info) {
+ BUG_ON(added);
+ goto new_bitmap;
+ }
+
+ bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
+ bytes -= bytes_added;
+ offset += bytes_added;
+ added = 0;
+
+ if (!bytes) {
+ ret = 1;
+ goto out;
+ } else
+ goto again;
+
+new_bitmap:
+ if (info && info->bitmap) {
+ add_new_bitmap(ctl, info, offset);
+ added = 1;
+ info = NULL;
+ goto again;
+ } else {
+ spin_unlock(&ctl->tree_lock);
+
+ /* no pre-allocated info, allocate a new one */
+ if (!info) {
+ info = kmem_cache_zalloc(btrfs_free_space_cachep,
+ GFP_NOFS);
+ if (!info) {
+ spin_lock(&ctl->tree_lock);
+ ret = -ENOMEM;
+ goto out;
+ }
+ }
+
+ /* allocate the bitmap */
+ info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
+ spin_lock(&ctl->tree_lock);
+ if (!info->bitmap) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ goto again;
+ }
+
+out:
+ if (info) {
+ if (info->bitmap)
+ kfree(info->bitmap);
+ kmem_cache_free(btrfs_free_space_cachep, info);
+ }
+
+ return ret;
+}
+
+static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info, bool update_stat)
+{
+ struct btrfs_free_space *left_info;
+ struct btrfs_free_space *right_info;
+ bool merged = false;
+ u64 offset = info->offset;
+ u64 bytes = info->bytes;
+
+ /*
+ * first we want to see if there is free space adjacent to the range we
+ * are adding, if there is remove that struct and add a new one to
+ * cover the entire range
+ */
+ right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
+ if (right_info && rb_prev(&right_info->offset_index))
+ left_info = rb_entry(rb_prev(&right_info->offset_index),
+ struct btrfs_free_space, offset_index);
+ else
+ left_info = tree_search_offset(ctl, offset - 1, 0, 0);
+
+ if (right_info && !right_info->bitmap) {
+ if (update_stat)
+ unlink_free_space(ctl, right_info);
+ else
+ __unlink_free_space(ctl, right_info);
+ info->bytes += right_info->bytes;
+ kmem_cache_free(btrfs_free_space_cachep, right_info);
+ merged = true;
+ }
+
+ if (left_info && !left_info->bitmap &&
+ left_info->offset + left_info->bytes == offset) {
+ if (update_stat)
+ unlink_free_space(ctl, left_info);
+ else
+ __unlink_free_space(ctl, left_info);
+ info->offset = left_info->offset;
+ info->bytes += left_info->bytes;
+ kmem_cache_free(btrfs_free_space_cachep, left_info);
+ merged = true;
+ }
+
+ return merged;
+}
+
+int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
+ u64 offset, u64 bytes)
+{
+ struct btrfs_free_space *info;
+ int ret = 0;
+
+ info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
+ if (!info)
+ return -ENOMEM;
+
+ info->offset = offset;
+ info->bytes = bytes;
+
+ spin_lock(&ctl->tree_lock);
+
+ if (try_merge_free_space(ctl, info, true))
+ goto link;
+
+ /*
+ * There was no extent directly to the left or right of this new
+ * extent then we know we're going to have to allocate a new extent, so
+ * before we do that see if we need to drop this into a bitmap
+ */
+ ret = insert_into_bitmap(ctl, info);
+ if (ret < 0) {
+ goto out;
+ } else if (ret) {
+ ret = 0;
+ goto out;
+ }
+link:
+ ret = link_free_space(ctl, info);
+ if (ret)
+ kmem_cache_free(btrfs_free_space_cachep, info);
+out:
+ spin_unlock(&ctl->tree_lock);
+
+ if (ret) {
+ printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
+ BUG_ON(ret == -EEXIST);
+ }
+
+ return ret;
+}
+
+int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
+ u64 offset, u64 bytes)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *info;
+ struct btrfs_free_space *next_info = NULL;
+ int ret = 0;
+
+ spin_lock(&ctl->tree_lock);
+
+again:
+ info = tree_search_offset(ctl, offset, 0, 0);
+ if (!info) {
+ /*
+ * oops didn't find an extent that matched the space we wanted
+ * to remove, look for a bitmap instead
+ */
+ info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
+ 1, 0);
+ if (!info) {
+ /* the tree logging code might be calling us before we
+ * have fully loaded the free space rbtree for this
+ * block group. So it is possible the entry won't
+ * be in the rbtree yet at all. The caching code
+ * will make sure not to put it in the rbtree if
+ * the logging code has pinned it.
+ */
+ goto out_lock;
+ }
+ }
+
+ if (info->bytes < bytes && rb_next(&info->offset_index)) {
+ u64 end;
+ next_info = rb_entry(rb_next(&info->offset_index),
+ struct btrfs_free_space,
+ offset_index);
+
+ if (next_info->bitmap)
+ end = next_info->offset +
+ BITS_PER_BITMAP * ctl->unit - 1;
+ else
+ end = next_info->offset + next_info->bytes;
+
+ if (next_info->bytes < bytes ||
+ next_info->offset > offset || offset > end) {
+ printk(KERN_CRIT "Found free space at %llu, size %llu,"
+ " trying to use %llu\n",
+ (unsigned long long)info->offset,
+ (unsigned long long)info->bytes,
+ (unsigned long long)bytes);
+ WARN_ON(1);
+ ret = -EINVAL;
+ goto out_lock;
+ }
+
+ info = next_info;
+ }
+
+ if (info->bytes == bytes) {
+ unlink_free_space(ctl, info);
+ if (info->bitmap) {
+ kfree(info->bitmap);
+ ctl->total_bitmaps--;
+ }
+ kmem_cache_free(btrfs_free_space_cachep, info);
+ ret = 0;
+ goto out_lock;
+ }
+
+ if (!info->bitmap && info->offset == offset) {
+ unlink_free_space(ctl, info);
+ info->offset += bytes;
+ info->bytes -= bytes;
+ ret = link_free_space(ctl, info);
+ WARN_ON(ret);
+ goto out_lock;
+ }
+
+ if (!info->bitmap && info->offset <= offset &&
+ info->offset + info->bytes >= offset + bytes) {
+ u64 old_start = info->offset;
+ /*
+ * we're freeing space in the middle of the info,
+ * this can happen during tree log replay
+ *
+ * first unlink the old info and then
+ * insert it again after the hole we're creating
+ */
+ unlink_free_space(ctl, info);
+ if (offset + bytes < info->offset + info->bytes) {
+ u64 old_end = info->offset + info->bytes;
+
+ info->offset = offset + bytes;
+ info->bytes = old_end - info->offset;
+ ret = link_free_space(ctl, info);
+ WARN_ON(ret);
+ if (ret)
+ goto out_lock;
+ } else {
+ /* the hole we're creating ends at the end
+ * of the info struct, just free the info
+ */
+ kmem_cache_free(btrfs_free_space_cachep, info);
+ }
+ spin_unlock(&ctl->tree_lock);
+
+ /* step two, insert a new info struct to cover
+ * anything before the hole
+ */
+ ret = btrfs_add_free_space(block_group, old_start,
+ offset - old_start);
+ WARN_ON(ret); /* -ENOMEM */
+ goto out;
+ }
+
+ ret = remove_from_bitmap(ctl, info, &offset, &bytes);
+ if (ret == -EAGAIN)
+ goto again;
+ BUG_ON(ret); /* logic error */
+out_lock:
+ spin_unlock(&ctl->tree_lock);
+out:
+ return ret;
+}
+
+void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
+ u64 bytes)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *info;
+ struct rb_node *n;
+ int count = 0;
+
+ for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
+ info = rb_entry(n, struct btrfs_free_space, offset_index);
+ if (info->bytes >= bytes)
+ count++;
+ printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
+ (unsigned long long)info->offset,
+ (unsigned long long)info->bytes,
+ (info->bitmap) ? "yes" : "no");
+ }
+ printk(KERN_INFO "block group has cluster?: %s\n",
+ list_empty(&block_group->cluster_list) ? "no" : "yes");
+ printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
+ "\n", count);
+}
+
+void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+
+ spin_lock_init(&ctl->tree_lock);
+ ctl->unit = block_group->sectorsize;
+ ctl->start = block_group->key.objectid;
+ ctl->private = block_group;
+ ctl->op = &free_space_op;
+
+ /*
+ * we only want to have 32k of ram per block group for keeping
+ * track of free space, and if we pass 1/2 of that we want to
+ * start converting things over to using bitmaps
+ */
+ ctl->extents_thresh = ((1024 * 32) / 2) /
+ sizeof(struct btrfs_free_space);
+}
+
+/*
+ * for a given cluster, put all of its extents back into the free
+ * space cache. If the block group passed doesn't match the block group
+ * pointed to by the cluster, someone else raced in and freed the
+ * cluster already. In that case, we just return without changing anything
+ */
+static int
+__btrfs_return_cluster_to_free_space(
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *entry;
+ struct rb_node *node;
+
+ spin_lock(&cluster->lock);
+ if (cluster->block_group != block_group)
+ goto out;
+
+ cluster->block_group = NULL;
+ cluster->window_start = 0;
+ list_del_init(&cluster->block_group_list);
+
+ node = rb_first(&cluster->root);
+ while (node) {
+ bool bitmap;
+
+ entry = rb_entry(node, struct btrfs_free_space, offset_index);
+ node = rb_next(&entry->offset_index);
+ rb_erase(&entry->offset_index, &cluster->root);
+
+ bitmap = (entry->bitmap != NULL);
+ if (!bitmap)
+ try_merge_free_space(ctl, entry, false);
+ tree_insert_offset(&ctl->free_space_offset,
+ entry->offset, &entry->offset_index, bitmap);
+ }
+ cluster->root = RB_ROOT;
+
+out:
+ spin_unlock(&cluster->lock);
+ btrfs_put_block_group(block_group);
+ return 0;
+}
+
+void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
+{
+ struct btrfs_free_space *info;
+ struct rb_node *node;
+
+ while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
+ info = rb_entry(node, struct btrfs_free_space, offset_index);
+ if (!info->bitmap) {
+ unlink_free_space(ctl, info);
+ kmem_cache_free(btrfs_free_space_cachep, info);
+ } else {
+ free_bitmap(ctl, info);
+ }
+ if (need_resched()) {
+ spin_unlock(&ctl->tree_lock);
+ cond_resched();
+ spin_lock(&ctl->tree_lock);
+ }
+ }
+}
+
+void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
+{
+ spin_lock(&ctl->tree_lock);
+ __btrfs_remove_free_space_cache_locked(ctl);
+ spin_unlock(&ctl->tree_lock);
+}
+
+void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_cluster *cluster;
+ struct list_head *head;
+
+ spin_lock(&ctl->tree_lock);
+ while ((head = block_group->cluster_list.next) !=
+ &block_group->cluster_list) {
+ cluster = list_entry(head, struct btrfs_free_cluster,
+ block_group_list);
+
+ WARN_ON(cluster->block_group != block_group);
+ __btrfs_return_cluster_to_free_space(block_group, cluster);
+ if (need_resched()) {
+ spin_unlock(&ctl->tree_lock);
+ cond_resched();
+ spin_lock(&ctl->tree_lock);
+ }
+ }
+ __btrfs_remove_free_space_cache_locked(ctl);
+ spin_unlock(&ctl->tree_lock);
+
+}
+
+u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
+ u64 offset, u64 bytes, u64 empty_size)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *entry = NULL;
+ u64 bytes_search = bytes + empty_size;
+ u64 ret = 0;
+
+ spin_lock(&ctl->tree_lock);
+ entry = find_free_space(ctl, &offset, &bytes_search);
+ if (!entry)
+ goto out;
+
+ ret = offset;
+ if (entry->bitmap) {
+ bitmap_clear_bits(ctl, entry, offset, bytes);
+ if (!entry->bytes)
+ free_bitmap(ctl, entry);
+ } else {
+ unlink_free_space(ctl, entry);
+ entry->offset += bytes;
+ entry->bytes -= bytes;
+ if (!entry->bytes)
+ kmem_cache_free(btrfs_free_space_cachep, entry);
+ else
+ link_free_space(ctl, entry);
+ }
+
+out:
+ spin_unlock(&ctl->tree_lock);
+
+ return ret;
+}
+
+/*
+ * given a cluster, put all of its extents back into the free space
+ * cache. If a block group is passed, this function will only free
+ * a cluster that belongs to the passed block group.
+ *
+ * Otherwise, it'll get a reference on the block group pointed to by the
+ * cluster and remove the cluster from it.
+ */
+int btrfs_return_cluster_to_free_space(
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster)
+{
+ struct btrfs_free_space_ctl *ctl;
+ int ret;
+
+ /* first, get a safe pointer to the block group */
+ spin_lock(&cluster->lock);
+ if (!block_group) {
+ block_group = cluster->block_group;
+ if (!block_group) {
+ spin_unlock(&cluster->lock);
+ return 0;
+ }
+ } else if (cluster->block_group != block_group) {
+ /* someone else has already freed it don't redo their work */
+ spin_unlock(&cluster->lock);
+ return 0;
+ }
+ atomic_inc(&block_group->count);
+ spin_unlock(&cluster->lock);
+
+ ctl = block_group->free_space_ctl;
+
+ /* now return any extents the cluster had on it */
+ spin_lock(&ctl->tree_lock);
+ ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
+ spin_unlock(&ctl->tree_lock);
+
+ /* finally drop our ref */
+ btrfs_put_block_group(block_group);
+ return ret;
+}
+
+static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster,
+ struct btrfs_free_space *entry,
+ u64 bytes, u64 min_start)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ int err;
+ u64 search_start = cluster->window_start;
+ u64 search_bytes = bytes;
+ u64 ret = 0;
+
+ search_start = min_start;
+ search_bytes = bytes;
+
+ err = search_bitmap(ctl, entry, &search_start, &search_bytes);
+ if (err)
+ return 0;
+
+ ret = search_start;
+ __bitmap_clear_bits(ctl, entry, ret, bytes);
+
+ return ret;
+}
+
+/*
+ * given a cluster, try to allocate 'bytes' from it, returns 0
+ * if it couldn't find anything suitably large, or a logical disk offset
+ * if things worked out
+ */
+u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster, u64 bytes,
+ u64 min_start)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *entry = NULL;
+ struct rb_node *node;
+ u64 ret = 0;
+
+ spin_lock(&cluster->lock);
+ if (bytes > cluster->max_size)
+ goto out;
+
+ if (cluster->block_group != block_group)
+ goto out;
+
+ node = rb_first(&cluster->root);
+ if (!node)
+ goto out;
+
+ entry = rb_entry(node, struct btrfs_free_space, offset_index);
+ while(1) {
+ if (entry->bytes < bytes ||
+ (!entry->bitmap && entry->offset < min_start)) {
+ node = rb_next(&entry->offset_index);
+ if (!node)
+ break;
+ entry = rb_entry(node, struct btrfs_free_space,
+ offset_index);
+ continue;
+ }
+
+ if (entry->bitmap) {
+ ret = btrfs_alloc_from_bitmap(block_group,
+ cluster, entry, bytes,
+ cluster->window_start);
+ if (ret == 0) {
+ node = rb_next(&entry->offset_index);
+ if (!node)
+ break;
+ entry = rb_entry(node, struct btrfs_free_space,
+ offset_index);
+ continue;
+ }
+ cluster->window_start += bytes;
+ } else {
+ ret = entry->offset;
+
+ entry->offset += bytes;
+ entry->bytes -= bytes;
+ }
+
+ if (entry->bytes == 0)
+ rb_erase(&entry->offset_index, &cluster->root);
+ break;
+ }
+out:
+ spin_unlock(&cluster->lock);
+
+ if (!ret)
+ return 0;
+
+ spin_lock(&ctl->tree_lock);
+
+ ctl->free_space -= bytes;
+ if (entry->bytes == 0) {
+ ctl->free_extents--;
+ if (entry->bitmap) {
+ kfree(entry->bitmap);
+ ctl->total_bitmaps--;
+ ctl->op->recalc_thresholds(ctl);
+ }
+ kmem_cache_free(btrfs_free_space_cachep, entry);
+ }
+
+ spin_unlock(&ctl->tree_lock);
+
+ return ret;
+}
+
+static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_space *entry,
+ struct btrfs_free_cluster *cluster,
+ u64 offset, u64 bytes,
+ u64 cont1_bytes, u64 min_bytes)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ unsigned long next_zero;
+ unsigned long i;
+ unsigned long want_bits;
+ unsigned long min_bits;
+ unsigned long found_bits;
+ unsigned long start = 0;
+ unsigned long total_found = 0;
+ int ret;
+
+ i = offset_to_bit(entry->offset, block_group->sectorsize,
+ max_t(u64, offset, entry->offset));
+ want_bits = bytes_to_bits(bytes, block_group->sectorsize);
+ min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
+
+again:
+ found_bits = 0;
+ for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
+ i < BITS_PER_BITMAP;
+ i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
+ next_zero = find_next_zero_bit(entry->bitmap,
+ BITS_PER_BITMAP, i);
+ if (next_zero - i >= min_bits) {
+ found_bits = next_zero - i;
+ break;
+ }
+ i = next_zero;
+ }
+
+ if (!found_bits)
+ return -ENOSPC;
+
+ if (!total_found) {
+ start = i;
+ cluster->max_size = 0;
+ }
+
+ total_found += found_bits;
+
+ if (cluster->max_size < found_bits * block_group->sectorsize)
+ cluster->max_size = found_bits * block_group->sectorsize;
+
+ if (total_found < want_bits || cluster->max_size < cont1_bytes) {
+ i = next_zero + 1;
+ goto again;
+ }
+
+ cluster->window_start = start * block_group->sectorsize +
+ entry->offset;
+ rb_erase(&entry->offset_index, &ctl->free_space_offset);
+ ret = tree_insert_offset(&cluster->root, entry->offset,
+ &entry->offset_index, 1);
+ BUG_ON(ret); /* -EEXIST; Logic error */
+
+ trace_btrfs_setup_cluster(block_group, cluster,
+ total_found * block_group->sectorsize, 1);
+ return 0;
+}
+
+/*
+ * This searches the block group for just extents to fill the cluster with.
+ * Try to find a cluster with at least bytes total bytes, at least one
+ * extent of cont1_bytes, and other clusters of at least min_bytes.
+ */
+static noinline int
+setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster,
+ struct list_head *bitmaps, u64 offset, u64 bytes,
+ u64 cont1_bytes, u64 min_bytes)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *first = NULL;
+ struct btrfs_free_space *entry = NULL;
+ struct btrfs_free_space *last;
+ struct rb_node *node;
+ u64 window_start;
+ u64 window_free;
+ u64 max_extent;
+ u64 total_size = 0;
+
+ entry = tree_search_offset(ctl, offset, 0, 1);
+ if (!entry)
+ return -ENOSPC;
+
+ /*
+ * We don't want bitmaps, so just move along until we find a normal
+ * extent entry.
+ */
+ while (entry->bitmap || entry->bytes < min_bytes) {
+ if (entry->bitmap && list_empty(&entry->list))
+ list_add_tail(&entry->list, bitmaps);
+ node = rb_next(&entry->offset_index);
+ if (!node)
+ return -ENOSPC;
+ entry = rb_entry(node, struct btrfs_free_space, offset_index);
+ }
+
+ window_start = entry->offset;
+ window_free = entry->bytes;
+ max_extent = entry->bytes;
+ first = entry;
+ last = entry;
+
+ for (node = rb_next(&entry->offset_index); node;
+ node = rb_next(&entry->offset_index)) {
+ entry = rb_entry(node, struct btrfs_free_space, offset_index);
+
+ if (entry->bitmap) {
+ if (list_empty(&entry->list))
+ list_add_tail(&entry->list, bitmaps);
+ continue;
+ }
+
+ if (entry->bytes < min_bytes)
+ continue;
+
+ last = entry;
+ window_free += entry->bytes;
+ if (entry->bytes > max_extent)
+ max_extent = entry->bytes;
+ }
+
+ if (window_free < bytes || max_extent < cont1_bytes)
+ return -ENOSPC;
+
+ cluster->window_start = first->offset;
+
+ node = &first->offset_index;
+
+ /*
+ * now we've found our entries, pull them out of the free space
+ * cache and put them into the cluster rbtree
+ */
+ do {
+ int ret;
+
+ entry = rb_entry(node, struct btrfs_free_space, offset_index);
+ node = rb_next(&entry->offset_index);
+ if (entry->bitmap || entry->bytes < min_bytes)
+ continue;
+
+ rb_erase(&entry->offset_index, &ctl->free_space_offset);
+ ret = tree_insert_offset(&cluster->root, entry->offset,
+ &entry->offset_index, 0);
+ total_size += entry->bytes;
+ BUG_ON(ret); /* -EEXIST; Logic error */
+ } while (node && entry != last);
+
+ cluster->max_size = max_extent;
+ trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
+ return 0;
+}
+
+/*
+ * This specifically looks for bitmaps that may work in the cluster, we assume
+ * that we have already failed to find extents that will work.
+ */
+static noinline int
+setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster,
+ struct list_head *bitmaps, u64 offset, u64 bytes,
+ u64 cont1_bytes, u64 min_bytes)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *entry;
+ int ret = -ENOSPC;
+ u64 bitmap_offset = offset_to_bitmap(ctl, offset);
+
+ if (ctl->total_bitmaps == 0)
+ return -ENOSPC;
+
+ /*
+ * The bitmap that covers offset won't be in the list unless offset
+ * is just its start offset.
+ */
+ entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
+ if (entry->offset != bitmap_offset) {
+ entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
+ if (entry && list_empty(&entry->list))
+ list_add(&entry->list, bitmaps);
+ }
+
+ list_for_each_entry(entry, bitmaps, list) {
+ if (entry->bytes < bytes)
+ continue;
+ ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
+ bytes, cont1_bytes, min_bytes);
+ if (!ret)
+ return 0;
+ }
+
+ /*
+ * The bitmaps list has all the bitmaps that record free space
+ * starting after offset, so no more search is required.
+ */
+ return -ENOSPC;
+}
+
+/*
+ * here we try to find a cluster of blocks in a block group. The goal
+ * is to find at least bytes+empty_size.
+ * We might not find them all in one contiguous area.
+ *
+ * returns zero and sets up cluster if things worked out, otherwise
+ * it returns -enospc
+ */
+int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster,
+ u64 offset, u64 bytes, u64 empty_size)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *entry, *tmp;
+ LIST_HEAD(bitmaps);
+ u64 min_bytes;
+ u64 cont1_bytes;
+ int ret;
+
+ /*
+ * Choose the minimum extent size we'll require for this
+ * cluster. For SSD_SPREAD, don't allow any fragmentation.
+ * For metadata, allow allocates with smaller extents. For
+ * data, keep it dense.
+ */
+ if (btrfs_test_opt(root, SSD_SPREAD)) {
+ cont1_bytes = min_bytes = bytes + empty_size;
+ } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
+ cont1_bytes = bytes;
+ min_bytes = block_group->sectorsize;
+ } else {
+ cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
+ min_bytes = block_group->sectorsize;
+ }
+
+ spin_lock(&ctl->tree_lock);
+
+ /*
+ * If we know we don't have enough space to make a cluster don't even
+ * bother doing all the work to try and find one.
+ */
+ if (ctl->free_space < bytes) {
+ spin_unlock(&ctl->tree_lock);
+ return -ENOSPC;
+ }
+
+ spin_lock(&cluster->lock);
+
+ /* someone already found a cluster, hooray */
+ if (cluster->block_group) {
+ ret = 0;
+ goto out;
+ }
+
+ trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
+ min_bytes);
+
+ INIT_LIST_HEAD(&bitmaps);
+ ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
+ bytes + empty_size,
+ cont1_bytes, min_bytes);
+ if (ret)
+ ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
+ offset, bytes + empty_size,
+ cont1_bytes, min_bytes);
+
+ /* Clear our temporary list */
+ list_for_each_entry_safe(entry, tmp, &bitmaps, list)
+ list_del_init(&entry->list);
+
+ if (!ret) {
+ atomic_inc(&block_group->count);
+ list_add_tail(&cluster->block_group_list,
+ &block_group->cluster_list);
+ cluster->block_group = block_group;
+ } else {
+ trace_btrfs_failed_cluster_setup(block_group);
+ }
+out:
+ spin_unlock(&cluster->lock);
+ spin_unlock(&ctl->tree_lock);
+
+ return ret;
+}
+
+/*
+ * simple code to zero out a cluster
+ */
+void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
+{
+ spin_lock_init(&cluster->lock);
+ spin_lock_init(&cluster->refill_lock);
+ cluster->root = RB_ROOT;
+ cluster->max_size = 0;
+ INIT_LIST_HEAD(&cluster->block_group_list);
+ cluster->block_group = NULL;
+}
+
+static int do_trimming(struct btrfs_block_group_cache *block_group,
+ u64 *total_trimmed, u64 start, u64 bytes,
+ u64 reserved_start, u64 reserved_bytes)
+{
+ struct btrfs_space_info *space_info = block_group->space_info;
+ struct btrfs_fs_info *fs_info = block_group->fs_info;
+ int ret;
+ int update = 0;
+ u64 trimmed = 0;
+
+ spin_lock(&space_info->lock);
+ spin_lock(&block_group->lock);
+ if (!block_group->ro) {
+ block_group->reserved += reserved_bytes;
+ space_info->bytes_reserved += reserved_bytes;
+ update = 1;
+ }
+ spin_unlock(&block_group->lock);
+ spin_unlock(&space_info->lock);
+
+ ret = btrfs_error_discard_extent(fs_info->extent_root,
+ start, bytes, &trimmed);
+ if (!ret)
+ *total_trimmed += trimmed;
+
+ btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
+
+ if (update) {
+ spin_lock(&space_info->lock);
+ spin_lock(&block_group->lock);
+ if (block_group->ro)
+ space_info->bytes_readonly += reserved_bytes;
+ block_group->reserved -= reserved_bytes;
+ space_info->bytes_reserved -= reserved_bytes;
+ spin_unlock(&space_info->lock);
+ spin_unlock(&block_group->lock);
+ }
+
+ return ret;
+}
+
+static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
+ u64 *total_trimmed, u64 start, u64 end, u64 minlen)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *entry;
+ struct rb_node *node;
+ int ret = 0;
+ u64 extent_start;
+ u64 extent_bytes;
+ u64 bytes;
+
+ while (start < end) {
+ spin_lock(&ctl->tree_lock);
+
+ if (ctl->free_space < minlen) {
+ spin_unlock(&ctl->tree_lock);
+ break;
+ }
+
+ entry = tree_search_offset(ctl, start, 0, 1);
+ if (!entry) {
+ spin_unlock(&ctl->tree_lock);
+ break;
+ }
+
+ /* skip bitmaps */
+ while (entry->bitmap) {
+ node = rb_next(&entry->offset_index);
+ if (!node) {
+ spin_unlock(&ctl->tree_lock);
+ goto out;
+ }
+ entry = rb_entry(node, struct btrfs_free_space,
+ offset_index);
+ }
+
+ if (entry->offset >= end) {
+ spin_unlock(&ctl->tree_lock);
+ break;
+ }
+
+ extent_start = entry->offset;
+ extent_bytes = entry->bytes;
+ start = max(start, extent_start);
+ bytes = min(extent_start + extent_bytes, end) - start;
+ if (bytes < minlen) {
+ spin_unlock(&ctl->tree_lock);
+ goto next;
+ }
+
+ unlink_free_space(ctl, entry);
+ kmem_cache_free(btrfs_free_space_cachep, entry);
+
+ spin_unlock(&ctl->tree_lock);
+
+ ret = do_trimming(block_group, total_trimmed, start, bytes,
+ extent_start, extent_bytes);
+ if (ret)
+ break;
+next:
+ start += bytes;
+
+ if (fatal_signal_pending(current)) {
+ ret = -ERESTARTSYS;
+ break;
+ }
+
+ cond_resched();
+ }
+out:
+ return ret;
+}
+
+static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
+ u64 *total_trimmed, u64 start, u64 end, u64 minlen)
+{
+ struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
+ struct btrfs_free_space *entry;
+ int ret = 0;
+ int ret2;
+ u64 bytes;
+ u64 offset = offset_to_bitmap(ctl, start);
+
+ while (offset < end) {
+ bool next_bitmap = false;
+
+ spin_lock(&ctl->tree_lock);
+
+ if (ctl->free_space < minlen) {
+ spin_unlock(&ctl->tree_lock);
+ break;
+ }
+
+ entry = tree_search_offset(ctl, offset, 1, 0);
+ if (!entry) {
+ spin_unlock(&ctl->tree_lock);
+ next_bitmap = true;
+ goto next;
+ }
+
+ bytes = minlen;
+ ret2 = search_bitmap(ctl, entry, &start, &bytes);
+ if (ret2 || start >= end) {
+ spin_unlock(&ctl->tree_lock);
+ next_bitmap = true;
+ goto next;
+ }
+
+ bytes = min(bytes, end - start);
+ if (bytes < minlen) {
+ spin_unlock(&ctl->tree_lock);
+ goto next;
+ }
+
+ bitmap_clear_bits(ctl, entry, start, bytes);
+ if (entry->bytes == 0)
+ free_bitmap(ctl, entry);
+
+ spin_unlock(&ctl->tree_lock);
+
+ ret = do_trimming(block_group, total_trimmed, start, bytes,
+ start, bytes);
+ if (ret)
+ break;
+next:
+ if (next_bitmap) {
+ offset += BITS_PER_BITMAP * ctl->unit;
+ } else {
+ start += bytes;
+ if (start >= offset + BITS_PER_BITMAP * ctl->unit)
+ offset += BITS_PER_BITMAP * ctl->unit;
+ }
+
+ if (fatal_signal_pending(current)) {
+ ret = -ERESTARTSYS;
+ break;
+ }
+
+ cond_resched();
+ }
+
+ return ret;
+}
+
+int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
+ u64 *trimmed, u64 start, u64 end, u64 minlen)
+{
+ int ret;
+
+ *trimmed = 0;
+
+ ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
+ if (ret)
+ return ret;
+
+ ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
+
+ return ret;
+}
+
+/*
+ * Find the left-most item in the cache tree, and then return the
+ * smallest inode number in the item.
+ *
+ * Note: the returned inode number may not be the smallest one in
+ * the tree, if the left-most item is a bitmap.
+ */
+u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
+{
+ struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
+ struct btrfs_free_space *entry = NULL;
+ u64 ino = 0;
+
+ spin_lock(&ctl->tree_lock);
+
+ if (RB_EMPTY_ROOT(&ctl->free_space_offset))
+ goto out;
+
+ entry = rb_entry(rb_first(&ctl->free_space_offset),
+ struct btrfs_free_space, offset_index);
+
+ if (!entry->bitmap) {
+ ino = entry->offset;
+
+ unlink_free_space(ctl, entry);
+ entry->offset++;
+ entry->bytes--;
+ if (!entry->bytes)
+ kmem_cache_free(btrfs_free_space_cachep, entry);
+ else
+ link_free_space(ctl, entry);
+ } else {
+ u64 offset = 0;
+ u64 count = 1;
+ int ret;
+
+ ret = search_bitmap(ctl, entry, &offset, &count);
+ /* Logic error; Should be empty if it can't find anything */
+ BUG_ON(ret);
+
+ ino = offset;
+ bitmap_clear_bits(ctl, entry, offset, 1);
+ if (entry->bytes == 0)
+ free_bitmap(ctl, entry);
+ }
+out:
+ spin_unlock(&ctl->tree_lock);
+
+ return ino;
+}
+
+struct inode *lookup_free_ino_inode(struct btrfs_root *root,
+ struct btrfs_path *path)
+{
+ struct inode *inode = NULL;
+
+ spin_lock(&root->cache_lock);
+ if (root->cache_inode)
+ inode = igrab(root->cache_inode);
+ spin_unlock(&root->cache_lock);
+ if (inode)
+ return inode;
+
+ inode = __lookup_free_space_inode(root, path, 0);
+ if (IS_ERR(inode))
+ return inode;
+
+ spin_lock(&root->cache_lock);
+ if (!btrfs_fs_closing(root->fs_info))
+ root->cache_inode = igrab(inode);
+ spin_unlock(&root->cache_lock);
+
+ return inode;
+}
+
+int create_free_ino_inode(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path)
+{
+ return __create_free_space_inode(root, trans, path,
+ BTRFS_FREE_INO_OBJECTID, 0);
+}
+
+int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
+{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct btrfs_path *path;
+ struct inode *inode;
+ int ret = 0;
+ u64 root_gen = btrfs_root_generation(&root->root_item);
+
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return 0;
+
+ /*
+ * If we're unmounting then just return, since this does a search on the
+ * normal root and not the commit root and we could deadlock.
+ */
+ if (btrfs_fs_closing(fs_info))
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return 0;
+
+ inode = lookup_free_ino_inode(root, path);
+ if (IS_ERR(inode))
+ goto out;
+
+ if (root_gen != BTRFS_I(inode)->generation)
+ goto out_put;
+
+ ret = __load_free_space_cache(root, inode, ctl, path, 0);
+
+ if (ret < 0)
+ printk(KERN_ERR "btrfs: failed to load free ino cache for "
+ "root %llu\n", root->root_key.objectid);
+out_put:
+ iput(inode);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_write_out_ino_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path)
+{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct inode *inode;
+ int ret;
+
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return 0;
+
+ inode = lookup_free_ino_inode(root, path);
+ if (IS_ERR(inode))
+ return 0;
+
+ ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
+ if (ret) {
+ btrfs_delalloc_release_metadata(inode, inode->i_size);
+#ifdef DEBUG
+ printk(KERN_ERR "btrfs: failed to write free ino cache "
+ "for root %llu\n", root->root_key.objectid);
+#endif
+ }
+
+ iput(inode);
+ return ret;
+}
diff --git a/fs/btrfs/free-space-cache.h b/fs/btrfs/free-space-cache.h
new file mode 100644
index 00000000..8f2613f7
--- /dev/null
+++ b/fs/btrfs/free-space-cache.h
@@ -0,0 +1,113 @@
+/*
+ * Copyright (C) 2009 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_FREE_SPACE_CACHE
+#define __BTRFS_FREE_SPACE_CACHE
+
+struct btrfs_free_space {
+ struct rb_node offset_index;
+ u64 offset;
+ u64 bytes;
+ unsigned long *bitmap;
+ struct list_head list;
+};
+
+struct btrfs_free_space_ctl {
+ spinlock_t tree_lock;
+ struct rb_root free_space_offset;
+ u64 free_space;
+ int extents_thresh;
+ int free_extents;
+ int total_bitmaps;
+ int unit;
+ u64 start;
+ struct btrfs_free_space_op *op;
+ void *private;
+};
+
+struct btrfs_free_space_op {
+ void (*recalc_thresholds)(struct btrfs_free_space_ctl *ctl);
+ bool (*use_bitmap)(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info);
+};
+
+struct inode *lookup_free_space_inode(struct btrfs_root *root,
+ struct btrfs_block_group_cache
+ *block_group, struct btrfs_path *path);
+int create_free_space_inode(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_path *path);
+
+int btrfs_truncate_free_space_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path,
+ struct inode *inode);
+int load_free_space_cache(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_group_cache *block_group);
+int btrfs_write_out_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_path *path);
+
+struct inode *lookup_free_ino_inode(struct btrfs_root *root,
+ struct btrfs_path *path);
+int create_free_ino_inode(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path);
+int load_free_ino_cache(struct btrfs_fs_info *fs_info,
+ struct btrfs_root *root);
+int btrfs_write_out_ino_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans,
+ struct btrfs_path *path);
+
+void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group);
+int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
+ u64 bytenr, u64 size);
+static inline int
+btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
+ u64 bytenr, u64 size)
+{
+ return __btrfs_add_free_space(block_group->free_space_ctl,
+ bytenr, size);
+}
+int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
+ u64 bytenr, u64 size);
+void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl);
+void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
+ *block_group);
+u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
+ u64 offset, u64 bytes, u64 empty_size);
+u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root);
+void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
+ u64 bytes);
+int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster,
+ u64 offset, u64 bytes, u64 empty_size);
+void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster);
+u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster, u64 bytes,
+ u64 min_start);
+int btrfs_return_cluster_to_free_space(
+ struct btrfs_block_group_cache *block_group,
+ struct btrfs_free_cluster *cluster);
+int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
+ u64 *trimmed, u64 start, u64 end, u64 minlen);
+#endif
diff --git a/fs/btrfs/hash.h b/fs/btrfs/hash.h
new file mode 100644
index 00000000..db2ff977
--- /dev/null
+++ b/fs/btrfs/hash.h
@@ -0,0 +1,27 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __HASH__
+#define __HASH__
+
+#include <linux/crc32c.h>
+static inline u64 btrfs_name_hash(const char *name, int len)
+{
+ return crc32c((u32)~1, name, len);
+}
+#endif
diff --git a/fs/btrfs/inode-item.c b/fs/btrfs/inode-item.c
new file mode 100644
index 00000000..a13cf1a9
--- /dev/null
+++ b/fs/btrfs/inode-item.c
@@ -0,0 +1,236 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+
+static int find_name_in_backref(struct btrfs_path *path, const char *name,
+ int name_len, struct btrfs_inode_ref **ref_ret)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_inode_ref *ref;
+ unsigned long ptr;
+ unsigned long name_ptr;
+ u32 item_size;
+ u32 cur_offset = 0;
+ int len;
+
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+ ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
+ while (cur_offset < item_size) {
+ ref = (struct btrfs_inode_ref *)(ptr + cur_offset);
+ len = btrfs_inode_ref_name_len(leaf, ref);
+ name_ptr = (unsigned long)(ref + 1);
+ cur_offset += len + sizeof(*ref);
+ if (len != name_len)
+ continue;
+ if (memcmp_extent_buffer(leaf, name, name_ptr, name_len) == 0) {
+ *ref_ret = ref;
+ return 1;
+ }
+ }
+ return 0;
+}
+
+struct btrfs_inode_ref *
+btrfs_lookup_inode_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ const char *name, int name_len,
+ u64 inode_objectid, u64 ref_objectid, int mod)
+{
+ struct btrfs_key key;
+ struct btrfs_inode_ref *ref;
+ int ins_len = mod < 0 ? -1 : 0;
+ int cow = mod != 0;
+ int ret;
+
+ key.objectid = inode_objectid;
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = ref_objectid;
+
+ ret = btrfs_search_slot(trans, root, &key, path, ins_len, cow);
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (ret > 0)
+ return NULL;
+ if (!find_name_in_backref(path, name, name_len, &ref))
+ return NULL;
+ return ref;
+}
+
+int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ u64 inode_objectid, u64 ref_objectid, u64 *index)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_inode_ref *ref;
+ struct extent_buffer *leaf;
+ unsigned long ptr;
+ unsigned long item_start;
+ u32 item_size;
+ u32 sub_item_len;
+ int ret;
+ int del_len = name_len + sizeof(*ref);
+
+ key.objectid = inode_objectid;
+ key.offset = ref_objectid;
+ btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->leave_spinning = 1;
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret > 0) {
+ ret = -ENOENT;
+ goto out;
+ } else if (ret < 0) {
+ goto out;
+ }
+ if (!find_name_in_backref(path, name, name_len, &ref)) {
+ ret = -ENOENT;
+ goto out;
+ }
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size_nr(leaf, path->slots[0]);
+
+ if (index)
+ *index = btrfs_inode_ref_index(leaf, ref);
+
+ if (del_len == item_size) {
+ ret = btrfs_del_item(trans, root, path);
+ goto out;
+ }
+ ptr = (unsigned long)ref;
+ sub_item_len = name_len + sizeof(*ref);
+ item_start = btrfs_item_ptr_offset(leaf, path->slots[0]);
+ memmove_extent_buffer(leaf, ptr, ptr + sub_item_len,
+ item_size - (ptr + sub_item_len - item_start));
+ btrfs_truncate_item(trans, root, path,
+ item_size - sub_item_len, 1);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/* Will return 0, -ENOMEM, -EMLINK, or -EEXIST or anything from the CoW path */
+int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ u64 inode_objectid, u64 ref_objectid, u64 index)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_inode_ref *ref;
+ unsigned long ptr;
+ int ret;
+ int ins_len = name_len + sizeof(*ref);
+
+ key.objectid = inode_objectid;
+ key.offset = ref_objectid;
+ btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->leave_spinning = 1;
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ ins_len);
+ if (ret == -EEXIST) {
+ u32 old_size;
+
+ if (find_name_in_backref(path, name, name_len, &ref))
+ goto out;
+
+ old_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
+ btrfs_extend_item(trans, root, path, ins_len);
+ ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_inode_ref);
+ ref = (struct btrfs_inode_ref *)((unsigned long)ref + old_size);
+ btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
+ btrfs_set_inode_ref_index(path->nodes[0], ref, index);
+ ptr = (unsigned long)(ref + 1);
+ ret = 0;
+ } else if (ret < 0) {
+ if (ret == -EOVERFLOW)
+ ret = -EMLINK;
+ goto out;
+ } else {
+ ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_inode_ref);
+ btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
+ btrfs_set_inode_ref_index(path->nodes[0], ref, index);
+ ptr = (unsigned long)(ref + 1);
+ }
+ write_extent_buffer(path->nodes[0], name, ptr, name_len);
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 objectid)
+{
+ struct btrfs_key key;
+ int ret;
+ key.objectid = objectid;
+ btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
+ key.offset = 0;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ sizeof(struct btrfs_inode_item));
+ return ret;
+}
+
+int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_path *path,
+ struct btrfs_key *location, int mod)
+{
+ int ins_len = mod < 0 ? -1 : 0;
+ int cow = mod != 0;
+ int ret;
+ int slot;
+ struct extent_buffer *leaf;
+ struct btrfs_key found_key;
+
+ ret = btrfs_search_slot(trans, root, location, path, ins_len, cow);
+ if (ret > 0 && btrfs_key_type(location) == BTRFS_ROOT_ITEM_KEY &&
+ location->offset == (u64)-1 && path->slots[0] != 0) {
+ slot = path->slots[0] - 1;
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+ if (found_key.objectid == location->objectid &&
+ btrfs_key_type(&found_key) == btrfs_key_type(location)) {
+ path->slots[0]--;
+ return 0;
+ }
+ }
+ return ret;
+}
diff --git a/fs/btrfs/inode-map.c b/fs/btrfs/inode-map.c
new file mode 100644
index 00000000..b1a1c929
--- /dev/null
+++ b/fs/btrfs/inode-map.c
@@ -0,0 +1,576 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/pagemap.h>
+
+#include "ctree.h"
+#include "disk-io.h"
+#include "free-space-cache.h"
+#include "inode-map.h"
+#include "transaction.h"
+
+static int caching_kthread(void *data)
+{
+ struct btrfs_root *root = data;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ u64 last = (u64)-1;
+ int slot;
+ int ret;
+
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ /* Since the commit root is read-only, we can safely skip locking. */
+ path->skip_locking = 1;
+ path->search_commit_root = 1;
+ path->reada = 2;
+
+ key.objectid = BTRFS_FIRST_FREE_OBJECTID;
+ key.offset = 0;
+ key.type = BTRFS_INODE_ITEM_KEY;
+again:
+ /* need to make sure the commit_root doesn't disappear */
+ mutex_lock(&root->fs_commit_mutex);
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+
+ while (1) {
+ if (btrfs_fs_closing(fs_info))
+ goto out;
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ goto out;
+ else if (ret > 0)
+ break;
+
+ if (need_resched() ||
+ btrfs_transaction_in_commit(fs_info)) {
+ leaf = path->nodes[0];
+
+ if (btrfs_header_nritems(leaf) == 0) {
+ WARN_ON(1);
+ break;
+ }
+
+ /*
+ * Save the key so we can advances forward
+ * in the next search.
+ */
+ btrfs_item_key_to_cpu(leaf, &key, 0);
+ btrfs_release_path(path);
+ root->cache_progress = last;
+ mutex_unlock(&root->fs_commit_mutex);
+ schedule_timeout(1);
+ goto again;
+ } else
+ continue;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+
+ if (key.type != BTRFS_INODE_ITEM_KEY)
+ goto next;
+
+ if (key.objectid >= root->highest_objectid)
+ break;
+
+ if (last != (u64)-1 && last + 1 != key.objectid) {
+ __btrfs_add_free_space(ctl, last + 1,
+ key.objectid - last - 1);
+ wake_up(&root->cache_wait);
+ }
+
+ last = key.objectid;
+next:
+ path->slots[0]++;
+ }
+
+ if (last < root->highest_objectid - 1) {
+ __btrfs_add_free_space(ctl, last + 1,
+ root->highest_objectid - last - 1);
+ }
+
+ spin_lock(&root->cache_lock);
+ root->cached = BTRFS_CACHE_FINISHED;
+ spin_unlock(&root->cache_lock);
+
+ root->cache_progress = (u64)-1;
+ btrfs_unpin_free_ino(root);
+out:
+ wake_up(&root->cache_wait);
+ mutex_unlock(&root->fs_commit_mutex);
+
+ btrfs_free_path(path);
+
+ return ret;
+}
+
+static void start_caching(struct btrfs_root *root)
+{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct task_struct *tsk;
+ int ret;
+ u64 objectid;
+
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return;
+
+ spin_lock(&root->cache_lock);
+ if (root->cached != BTRFS_CACHE_NO) {
+ spin_unlock(&root->cache_lock);
+ return;
+ }
+
+ root->cached = BTRFS_CACHE_STARTED;
+ spin_unlock(&root->cache_lock);
+
+ ret = load_free_ino_cache(root->fs_info, root);
+ if (ret == 1) {
+ spin_lock(&root->cache_lock);
+ root->cached = BTRFS_CACHE_FINISHED;
+ spin_unlock(&root->cache_lock);
+ return;
+ }
+
+ /*
+ * It can be quite time-consuming to fill the cache by searching
+ * through the extent tree, and this can keep ino allocation path
+ * waiting. Therefore at start we quickly find out the highest
+ * inode number and we know we can use inode numbers which fall in
+ * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
+ */
+ ret = btrfs_find_free_objectid(root, &objectid);
+ if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
+ __btrfs_add_free_space(ctl, objectid,
+ BTRFS_LAST_FREE_OBJECTID - objectid + 1);
+ }
+
+ tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu\n",
+ root->root_key.objectid);
+ BUG_ON(IS_ERR(tsk)); /* -ENOMEM */
+}
+
+int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
+{
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return btrfs_find_free_objectid(root, objectid);
+
+again:
+ *objectid = btrfs_find_ino_for_alloc(root);
+
+ if (*objectid != 0)
+ return 0;
+
+ start_caching(root);
+
+ wait_event(root->cache_wait,
+ root->cached == BTRFS_CACHE_FINISHED ||
+ root->free_ino_ctl->free_space > 0);
+
+ if (root->cached == BTRFS_CACHE_FINISHED &&
+ root->free_ino_ctl->free_space == 0)
+ return -ENOSPC;
+ else
+ goto again;
+}
+
+void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
+{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
+
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return;
+
+again:
+ if (root->cached == BTRFS_CACHE_FINISHED) {
+ __btrfs_add_free_space(ctl, objectid, 1);
+ } else {
+ /*
+ * If we are in the process of caching free ino chunks,
+ * to avoid adding the same inode number to the free_ino
+ * tree twice due to cross transaction, we'll leave it
+ * in the pinned tree until a transaction is committed
+ * or the caching work is done.
+ */
+
+ mutex_lock(&root->fs_commit_mutex);
+ spin_lock(&root->cache_lock);
+ if (root->cached == BTRFS_CACHE_FINISHED) {
+ spin_unlock(&root->cache_lock);
+ mutex_unlock(&root->fs_commit_mutex);
+ goto again;
+ }
+ spin_unlock(&root->cache_lock);
+
+ start_caching(root);
+
+ if (objectid <= root->cache_progress ||
+ objectid > root->highest_objectid)
+ __btrfs_add_free_space(ctl, objectid, 1);
+ else
+ __btrfs_add_free_space(pinned, objectid, 1);
+
+ mutex_unlock(&root->fs_commit_mutex);
+ }
+}
+
+/*
+ * When a transaction is committed, we'll move those inode numbers which
+ * are smaller than root->cache_progress from pinned tree to free_ino tree,
+ * and others will just be dropped, because the commit root we were
+ * searching has changed.
+ *
+ * Must be called with root->fs_commit_mutex held
+ */
+void btrfs_unpin_free_ino(struct btrfs_root *root)
+{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
+ struct btrfs_free_space *info;
+ struct rb_node *n;
+ u64 count;
+
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return;
+
+ while (1) {
+ n = rb_first(rbroot);
+ if (!n)
+ break;
+
+ info = rb_entry(n, struct btrfs_free_space, offset_index);
+ BUG_ON(info->bitmap); /* Logic error */
+
+ if (info->offset > root->cache_progress)
+ goto free;
+ else if (info->offset + info->bytes > root->cache_progress)
+ count = root->cache_progress - info->offset + 1;
+ else
+ count = info->bytes;
+
+ __btrfs_add_free_space(ctl, info->offset, count);
+free:
+ rb_erase(&info->offset_index, rbroot);
+ kfree(info);
+ }
+}
+
+#define INIT_THRESHOLD (((1024 * 32) / 2) / sizeof(struct btrfs_free_space))
+#define INODES_PER_BITMAP (PAGE_CACHE_SIZE * 8)
+
+/*
+ * The goal is to keep the memory used by the free_ino tree won't
+ * exceed the memory if we use bitmaps only.
+ */
+static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
+{
+ struct btrfs_free_space *info;
+ struct rb_node *n;
+ int max_ino;
+ int max_bitmaps;
+
+ n = rb_last(&ctl->free_space_offset);
+ if (!n) {
+ ctl->extents_thresh = INIT_THRESHOLD;
+ return;
+ }
+ info = rb_entry(n, struct btrfs_free_space, offset_index);
+
+ /*
+ * Find the maximum inode number in the filesystem. Note we
+ * ignore the fact that this can be a bitmap, because we are
+ * not doing precise calculation.
+ */
+ max_ino = info->bytes - 1;
+
+ max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
+ if (max_bitmaps <= ctl->total_bitmaps) {
+ ctl->extents_thresh = 0;
+ return;
+ }
+
+ ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
+ PAGE_CACHE_SIZE / sizeof(*info);
+}
+
+/*
+ * We don't fall back to bitmap, if we are below the extents threshold
+ * or this chunk of inode numbers is a big one.
+ */
+static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info)
+{
+ if (ctl->free_extents < ctl->extents_thresh ||
+ info->bytes > INODES_PER_BITMAP / 10)
+ return false;
+
+ return true;
+}
+
+static struct btrfs_free_space_op free_ino_op = {
+ .recalc_thresholds = recalculate_thresholds,
+ .use_bitmap = use_bitmap,
+};
+
+static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
+{
+}
+
+static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
+ struct btrfs_free_space *info)
+{
+ /*
+ * We always use extents for two reasons:
+ *
+ * - The pinned tree is only used during the process of caching
+ * work.
+ * - Make code simpler. See btrfs_unpin_free_ino().
+ */
+ return false;
+}
+
+static struct btrfs_free_space_op pinned_free_ino_op = {
+ .recalc_thresholds = pinned_recalc_thresholds,
+ .use_bitmap = pinned_use_bitmap,
+};
+
+void btrfs_init_free_ino_ctl(struct btrfs_root *root)
+{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
+
+ spin_lock_init(&ctl->tree_lock);
+ ctl->unit = 1;
+ ctl->start = 0;
+ ctl->private = NULL;
+ ctl->op = &free_ino_op;
+
+ /*
+ * Initially we allow to use 16K of ram to cache chunks of
+ * inode numbers before we resort to bitmaps. This is somewhat
+ * arbitrary, but it will be adjusted in runtime.
+ */
+ ctl->extents_thresh = INIT_THRESHOLD;
+
+ spin_lock_init(&pinned->tree_lock);
+ pinned->unit = 1;
+ pinned->start = 0;
+ pinned->private = NULL;
+ pinned->extents_thresh = 0;
+ pinned->op = &pinned_free_ino_op;
+}
+
+int btrfs_save_ino_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans)
+{
+ struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
+ struct btrfs_path *path;
+ struct inode *inode;
+ struct btrfs_block_rsv *rsv;
+ u64 num_bytes;
+ u64 alloc_hint = 0;
+ int ret;
+ int prealloc;
+ bool retry = false;
+
+ /* only fs tree and subvol/snap needs ino cache */
+ if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
+ (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
+ root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
+ return 0;
+
+ /* Don't save inode cache if we are deleting this root */
+ if (btrfs_root_refs(&root->root_item) == 0 &&
+ root != root->fs_info->tree_root)
+ return 0;
+
+ if (!btrfs_test_opt(root, INODE_MAP_CACHE))
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ rsv = trans->block_rsv;
+ trans->block_rsv = &root->fs_info->trans_block_rsv;
+
+ num_bytes = trans->bytes_reserved;
+ /*
+ * 1 item for inode item insertion if need
+ * 3 items for inode item update (in the worst case)
+ * 1 item for free space object
+ * 3 items for pre-allocation
+ */
+ trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 8);
+ ret = btrfs_block_rsv_add_noflush(root, trans->block_rsv,
+ trans->bytes_reserved);
+ if (ret)
+ goto out;
+ trace_btrfs_space_reservation(root->fs_info, "ino_cache",
+ trans->transid, trans->bytes_reserved, 1);
+again:
+ inode = lookup_free_ino_inode(root, path);
+ if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
+ ret = PTR_ERR(inode);
+ goto out_release;
+ }
+
+ if (IS_ERR(inode)) {
+ BUG_ON(retry); /* Logic error */
+ retry = true;
+
+ ret = create_free_ino_inode(root, trans, path);
+ if (ret)
+ goto out_release;
+ goto again;
+ }
+
+ BTRFS_I(inode)->generation = 0;
+ ret = btrfs_update_inode(trans, root, inode);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_put;
+ }
+
+ if (i_size_read(inode) > 0) {
+ ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_put;
+ }
+ }
+
+ spin_lock(&root->cache_lock);
+ if (root->cached != BTRFS_CACHE_FINISHED) {
+ ret = -1;
+ spin_unlock(&root->cache_lock);
+ goto out_put;
+ }
+ spin_unlock(&root->cache_lock);
+
+ spin_lock(&ctl->tree_lock);
+ prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
+ prealloc = ALIGN(prealloc, PAGE_CACHE_SIZE);
+ prealloc += ctl->total_bitmaps * PAGE_CACHE_SIZE;
+ spin_unlock(&ctl->tree_lock);
+
+ /* Just to make sure we have enough space */
+ prealloc += 8 * PAGE_CACHE_SIZE;
+
+ ret = btrfs_delalloc_reserve_space(inode, prealloc);
+ if (ret)
+ goto out_put;
+
+ ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
+ prealloc, prealloc, &alloc_hint);
+ if (ret) {
+ btrfs_delalloc_release_space(inode, prealloc);
+ goto out_put;
+ }
+ btrfs_free_reserved_data_space(inode, prealloc);
+
+ ret = btrfs_write_out_ino_cache(root, trans, path);
+out_put:
+ iput(inode);
+out_release:
+ trace_btrfs_space_reservation(root->fs_info, "ino_cache",
+ trans->transid, trans->bytes_reserved, 0);
+ btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
+out:
+ trans->block_rsv = rsv;
+ trans->bytes_reserved = num_bytes;
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct extent_buffer *l;
+ struct btrfs_key search_key;
+ struct btrfs_key found_key;
+ int slot;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
+ search_key.type = -1;
+ search_key.offset = (u64)-1;
+ ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+ BUG_ON(ret == 0); /* Corruption */
+ if (path->slots[0] > 0) {
+ slot = path->slots[0] - 1;
+ l = path->nodes[0];
+ btrfs_item_key_to_cpu(l, &found_key, slot);
+ *objectid = max_t(u64, found_key.objectid,
+ BTRFS_FIRST_FREE_OBJECTID - 1);
+ } else {
+ *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
+ }
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
+{
+ int ret;
+ mutex_lock(&root->objectid_mutex);
+
+ if (unlikely(root->highest_objectid < BTRFS_FIRST_FREE_OBJECTID)) {
+ ret = btrfs_find_highest_objectid(root,
+ &root->highest_objectid);
+ if (ret)
+ goto out;
+ }
+
+ if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
+ ret = -ENOSPC;
+ goto out;
+ }
+
+ *objectid = ++root->highest_objectid;
+ ret = 0;
+out:
+ mutex_unlock(&root->objectid_mutex);
+ return ret;
+}
diff --git a/fs/btrfs/inode-map.h b/fs/btrfs/inode-map.h
new file mode 100644
index 00000000..ddb347bf
--- /dev/null
+++ b/fs/btrfs/inode-map.h
@@ -0,0 +1,13 @@
+#ifndef __BTRFS_INODE_MAP
+#define __BTRFS_INODE_MAP
+
+void btrfs_init_free_ino_ctl(struct btrfs_root *root);
+void btrfs_unpin_free_ino(struct btrfs_root *root);
+void btrfs_return_ino(struct btrfs_root *root, u64 objectid);
+int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid);
+int btrfs_save_ino_cache(struct btrfs_root *root,
+ struct btrfs_trans_handle *trans);
+
+int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid);
+
+#endif
diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c
new file mode 100644
index 00000000..0df0d1fd
--- /dev/null
+++ b/fs/btrfs/inode.c
@@ -0,0 +1,7681 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/buffer_head.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/statfs.h>
+#include <linux/compat.h>
+#include <linux/bit_spinlock.h>
+#include <linux/xattr.h>
+#include <linux/posix_acl.h>
+#include <linux/falloc.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include <linux/mount.h>
+#include "compat.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "ioctl.h"
+#include "print-tree.h"
+#include "ordered-data.h"
+#include "xattr.h"
+#include "tree-log.h"
+#include "volumes.h"
+#include "compression.h"
+#include "locking.h"
+#include "free-space-cache.h"
+#include "inode-map.h"
+
+struct btrfs_iget_args {
+ u64 ino;
+ struct btrfs_root *root;
+};
+
+static const struct inode_operations btrfs_dir_inode_operations;
+static const struct inode_operations btrfs_symlink_inode_operations;
+static const struct inode_operations btrfs_dir_ro_inode_operations;
+static const struct inode_operations btrfs_special_inode_operations;
+static const struct inode_operations btrfs_file_inode_operations;
+static const struct address_space_operations btrfs_aops;
+static const struct address_space_operations btrfs_symlink_aops;
+static const struct file_operations btrfs_dir_file_operations;
+static struct extent_io_ops btrfs_extent_io_ops;
+
+static struct kmem_cache *btrfs_inode_cachep;
+struct kmem_cache *btrfs_trans_handle_cachep;
+struct kmem_cache *btrfs_transaction_cachep;
+struct kmem_cache *btrfs_path_cachep;
+struct kmem_cache *btrfs_free_space_cachep;
+
+#define S_SHIFT 12
+static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
+ [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
+ [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
+ [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
+ [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
+ [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
+ [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
+ [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
+};
+
+static int btrfs_setsize(struct inode *inode, loff_t newsize);
+static int btrfs_truncate(struct inode *inode);
+static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
+static noinline int cow_file_range(struct inode *inode,
+ struct page *locked_page,
+ u64 start, u64 end, int *page_started,
+ unsigned long *nr_written, int unlock);
+static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode);
+
+static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *dir,
+ const struct qstr *qstr)
+{
+ int err;
+
+ err = btrfs_init_acl(trans, inode, dir);
+ if (!err)
+ err = btrfs_xattr_security_init(trans, inode, dir, qstr);
+ return err;
+}
+
+/*
+ * this does all the hard work for inserting an inline extent into
+ * the btree. The caller should have done a btrfs_drop_extents so that
+ * no overlapping inline items exist in the btree
+ */
+static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode,
+ u64 start, size_t size, size_t compressed_size,
+ int compress_type,
+ struct page **compressed_pages)
+{
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct page *page = NULL;
+ char *kaddr;
+ unsigned long ptr;
+ struct btrfs_file_extent_item *ei;
+ int err = 0;
+ int ret;
+ size_t cur_size = size;
+ size_t datasize;
+ unsigned long offset;
+
+ if (compressed_size && compressed_pages)
+ cur_size = compressed_size;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->leave_spinning = 1;
+
+ key.objectid = btrfs_ino(inode);
+ key.offset = start;
+ btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
+ datasize = btrfs_file_extent_calc_inline_size(cur_size);
+
+ inode_add_bytes(inode, size);
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ datasize);
+ if (ret) {
+ err = ret;
+ goto fail;
+ }
+ leaf = path->nodes[0];
+ ei = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_generation(leaf, ei, trans->transid);
+ btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
+ btrfs_set_file_extent_encryption(leaf, ei, 0);
+ btrfs_set_file_extent_other_encoding(leaf, ei, 0);
+ btrfs_set_file_extent_ram_bytes(leaf, ei, size);
+ ptr = btrfs_file_extent_inline_start(ei);
+
+ if (compress_type != BTRFS_COMPRESS_NONE) {
+ struct page *cpage;
+ int i = 0;
+ while (compressed_size > 0) {
+ cpage = compressed_pages[i];
+ cur_size = min_t(unsigned long, compressed_size,
+ PAGE_CACHE_SIZE);
+
+ kaddr = kmap_atomic(cpage);
+ write_extent_buffer(leaf, kaddr, ptr, cur_size);
+ kunmap_atomic(kaddr);
+
+ i++;
+ ptr += cur_size;
+ compressed_size -= cur_size;
+ }
+ btrfs_set_file_extent_compression(leaf, ei,
+ compress_type);
+ } else {
+ page = find_get_page(inode->i_mapping,
+ start >> PAGE_CACHE_SHIFT);
+ btrfs_set_file_extent_compression(leaf, ei, 0);
+ kaddr = kmap_atomic(page);
+ offset = start & (PAGE_CACHE_SIZE - 1);
+ write_extent_buffer(leaf, kaddr + offset, ptr, size);
+ kunmap_atomic(kaddr);
+ page_cache_release(page);
+ }
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_free_path(path);
+
+ /*
+ * we're an inline extent, so nobody can
+ * extend the file past i_size without locking
+ * a page we already have locked.
+ *
+ * We must do any isize and inode updates
+ * before we unlock the pages. Otherwise we
+ * could end up racing with unlink.
+ */
+ BTRFS_I(inode)->disk_i_size = inode->i_size;
+ ret = btrfs_update_inode(trans, root, inode);
+
+ return ret;
+fail:
+ btrfs_free_path(path);
+ return err;
+}
+
+
+/*
+ * conditionally insert an inline extent into the file. This
+ * does the checks required to make sure the data is small enough
+ * to fit as an inline extent.
+ */
+static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *inode, u64 start, u64 end,
+ size_t compressed_size, int compress_type,
+ struct page **compressed_pages)
+{
+ u64 isize = i_size_read(inode);
+ u64 actual_end = min(end + 1, isize);
+ u64 inline_len = actual_end - start;
+ u64 aligned_end = (end + root->sectorsize - 1) &
+ ~((u64)root->sectorsize - 1);
+ u64 hint_byte;
+ u64 data_len = inline_len;
+ int ret;
+
+ if (compressed_size)
+ data_len = compressed_size;
+
+ if (start > 0 ||
+ actual_end >= PAGE_CACHE_SIZE ||
+ data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
+ (!compressed_size &&
+ (actual_end & (root->sectorsize - 1)) == 0) ||
+ end + 1 < isize ||
+ data_len > root->fs_info->max_inline) {
+ return 1;
+ }
+
+ ret = btrfs_drop_extents(trans, inode, start, aligned_end,
+ &hint_byte, 1);
+ if (ret)
+ return ret;
+
+ if (isize > actual_end)
+ inline_len = min_t(u64, isize, actual_end);
+ ret = insert_inline_extent(trans, root, inode, start,
+ inline_len, compressed_size,
+ compress_type, compressed_pages);
+ if (ret && ret != -ENOSPC) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ } else if (ret == -ENOSPC) {
+ return 1;
+ }
+
+ btrfs_delalloc_release_metadata(inode, end + 1 - start);
+ btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
+ return 0;
+}
+
+struct async_extent {
+ u64 start;
+ u64 ram_size;
+ u64 compressed_size;
+ struct page **pages;
+ unsigned long nr_pages;
+ int compress_type;
+ struct list_head list;
+};
+
+struct async_cow {
+ struct inode *inode;
+ struct btrfs_root *root;
+ struct page *locked_page;
+ u64 start;
+ u64 end;
+ struct list_head extents;
+ struct btrfs_work work;
+};
+
+static noinline int add_async_extent(struct async_cow *cow,
+ u64 start, u64 ram_size,
+ u64 compressed_size,
+ struct page **pages,
+ unsigned long nr_pages,
+ int compress_type)
+{
+ struct async_extent *async_extent;
+
+ async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
+ BUG_ON(!async_extent); /* -ENOMEM */
+ async_extent->start = start;
+ async_extent->ram_size = ram_size;
+ async_extent->compressed_size = compressed_size;
+ async_extent->pages = pages;
+ async_extent->nr_pages = nr_pages;
+ async_extent->compress_type = compress_type;
+ list_add_tail(&async_extent->list, &cow->extents);
+ return 0;
+}
+
+/*
+ * we create compressed extents in two phases. The first
+ * phase compresses a range of pages that have already been
+ * locked (both pages and state bits are locked).
+ *
+ * This is done inside an ordered work queue, and the compression
+ * is spread across many cpus. The actual IO submission is step
+ * two, and the ordered work queue takes care of making sure that
+ * happens in the same order things were put onto the queue by
+ * writepages and friends.
+ *
+ * If this code finds it can't get good compression, it puts an
+ * entry onto the work queue to write the uncompressed bytes. This
+ * makes sure that both compressed inodes and uncompressed inodes
+ * are written in the same order that pdflush sent them down.
+ */
+static noinline int compress_file_range(struct inode *inode,
+ struct page *locked_page,
+ u64 start, u64 end,
+ struct async_cow *async_cow,
+ int *num_added)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ u64 num_bytes;
+ u64 blocksize = root->sectorsize;
+ u64 actual_end;
+ u64 isize = i_size_read(inode);
+ int ret = 0;
+ struct page **pages = NULL;
+ unsigned long nr_pages;
+ unsigned long nr_pages_ret = 0;
+ unsigned long total_compressed = 0;
+ unsigned long total_in = 0;
+ unsigned long max_compressed = 128 * 1024;
+ unsigned long max_uncompressed = 128 * 1024;
+ int i;
+ int will_compress;
+ int compress_type = root->fs_info->compress_type;
+
+ /* if this is a small write inside eof, kick off a defrag */
+ if ((end - start + 1) < 16 * 1024 &&
+ (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
+ btrfs_add_inode_defrag(NULL, inode);
+
+ actual_end = min_t(u64, isize, end + 1);
+again:
+ will_compress = 0;
+ nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
+ nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
+
+ /*
+ * we don't want to send crud past the end of i_size through
+ * compression, that's just a waste of CPU time. So, if the
+ * end of the file is before the start of our current
+ * requested range of bytes, we bail out to the uncompressed
+ * cleanup code that can deal with all of this.
+ *
+ * It isn't really the fastest way to fix things, but this is a
+ * very uncommon corner.
+ */
+ if (actual_end <= start)
+ goto cleanup_and_bail_uncompressed;
+
+ total_compressed = actual_end - start;
+
+ /* we want to make sure that amount of ram required to uncompress
+ * an extent is reasonable, so we limit the total size in ram
+ * of a compressed extent to 128k. This is a crucial number
+ * because it also controls how easily we can spread reads across
+ * cpus for decompression.
+ *
+ * We also want to make sure the amount of IO required to do
+ * a random read is reasonably small, so we limit the size of
+ * a compressed extent to 128k.
+ */
+ total_compressed = min(total_compressed, max_uncompressed);
+ num_bytes = (end - start + blocksize) & ~(blocksize - 1);
+ num_bytes = max(blocksize, num_bytes);
+ total_in = 0;
+ ret = 0;
+
+ /*
+ * we do compression for mount -o compress and when the
+ * inode has not been flagged as nocompress. This flag can
+ * change at any time if we discover bad compression ratios.
+ */
+ if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
+ (btrfs_test_opt(root, COMPRESS) ||
+ (BTRFS_I(inode)->force_compress) ||
+ (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
+ WARN_ON(pages);
+ pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
+ if (!pages) {
+ /* just bail out to the uncompressed code */
+ goto cont;
+ }
+
+ if (BTRFS_I(inode)->force_compress)
+ compress_type = BTRFS_I(inode)->force_compress;
+
+ ret = btrfs_compress_pages(compress_type,
+ inode->i_mapping, start,
+ total_compressed, pages,
+ nr_pages, &nr_pages_ret,
+ &total_in,
+ &total_compressed,
+ max_compressed);
+
+ if (!ret) {
+ unsigned long offset = total_compressed &
+ (PAGE_CACHE_SIZE - 1);
+ struct page *page = pages[nr_pages_ret - 1];
+ char *kaddr;
+
+ /* zero the tail end of the last page, we might be
+ * sending it down to disk
+ */
+ if (offset) {
+ kaddr = kmap_atomic(page);
+ memset(kaddr + offset, 0,
+ PAGE_CACHE_SIZE - offset);
+ kunmap_atomic(kaddr);
+ }
+ will_compress = 1;
+ }
+ }
+cont:
+ if (start == 0) {
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ trans = NULL;
+ goto cleanup_and_out;
+ }
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+ /* lets try to make an inline extent */
+ if (ret || total_in < (actual_end - start)) {
+ /* we didn't compress the entire range, try
+ * to make an uncompressed inline extent.
+ */
+ ret = cow_file_range_inline(trans, root, inode,
+ start, end, 0, 0, NULL);
+ } else {
+ /* try making a compressed inline extent */
+ ret = cow_file_range_inline(trans, root, inode,
+ start, end,
+ total_compressed,
+ compress_type, pages);
+ }
+ if (ret <= 0) {
+ /*
+ * inline extent creation worked or returned error,
+ * we don't need to create any more async work items.
+ * Unlock and free up our temp pages.
+ */
+ extent_clear_unlock_delalloc(inode,
+ &BTRFS_I(inode)->io_tree,
+ start, end, NULL,
+ EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
+ EXTENT_CLEAR_DELALLOC |
+ EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
+
+ btrfs_end_transaction(trans, root);
+ goto free_pages_out;
+ }
+ btrfs_end_transaction(trans, root);
+ }
+
+ if (will_compress) {
+ /*
+ * we aren't doing an inline extent round the compressed size
+ * up to a block size boundary so the allocator does sane
+ * things
+ */
+ total_compressed = (total_compressed + blocksize - 1) &
+ ~(blocksize - 1);
+
+ /*
+ * one last check to make sure the compression is really a
+ * win, compare the page count read with the blocks on disk
+ */
+ total_in = (total_in + PAGE_CACHE_SIZE - 1) &
+ ~(PAGE_CACHE_SIZE - 1);
+ if (total_compressed >= total_in) {
+ will_compress = 0;
+ } else {
+ num_bytes = total_in;
+ }
+ }
+ if (!will_compress && pages) {
+ /*
+ * the compression code ran but failed to make things smaller,
+ * free any pages it allocated and our page pointer array
+ */
+ for (i = 0; i < nr_pages_ret; i++) {
+ WARN_ON(pages[i]->mapping);
+ page_cache_release(pages[i]);
+ }
+ kfree(pages);
+ pages = NULL;
+ total_compressed = 0;
+ nr_pages_ret = 0;
+
+ /* flag the file so we don't compress in the future */
+ if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
+ !(BTRFS_I(inode)->force_compress)) {
+ BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
+ }
+ }
+ if (will_compress) {
+ *num_added += 1;
+
+ /* the async work queues will take care of doing actual
+ * allocation on disk for these compressed pages,
+ * and will submit them to the elevator.
+ */
+ add_async_extent(async_cow, start, num_bytes,
+ total_compressed, pages, nr_pages_ret,
+ compress_type);
+
+ if (start + num_bytes < end) {
+ start += num_bytes;
+ pages = NULL;
+ cond_resched();
+ goto again;
+ }
+ } else {
+cleanup_and_bail_uncompressed:
+ /*
+ * No compression, but we still need to write the pages in
+ * the file we've been given so far. redirty the locked
+ * page if it corresponds to our extent and set things up
+ * for the async work queue to run cow_file_range to do
+ * the normal delalloc dance
+ */
+ if (page_offset(locked_page) >= start &&
+ page_offset(locked_page) <= end) {
+ __set_page_dirty_nobuffers(locked_page);
+ /* unlocked later on in the async handlers */
+ }
+ add_async_extent(async_cow, start, end - start + 1,
+ 0, NULL, 0, BTRFS_COMPRESS_NONE);
+ *num_added += 1;
+ }
+
+out:
+ return ret;
+
+free_pages_out:
+ for (i = 0; i < nr_pages_ret; i++) {
+ WARN_ON(pages[i]->mapping);
+ page_cache_release(pages[i]);
+ }
+ kfree(pages);
+
+ goto out;
+
+cleanup_and_out:
+ extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
+ start, end, NULL,
+ EXTENT_CLEAR_UNLOCK_PAGE |
+ EXTENT_CLEAR_DIRTY |
+ EXTENT_CLEAR_DELALLOC |
+ EXTENT_SET_WRITEBACK |
+ EXTENT_END_WRITEBACK);
+ if (!trans || IS_ERR(trans))
+ btrfs_error(root->fs_info, ret, "Failed to join transaction");
+ else
+ btrfs_abort_transaction(trans, root, ret);
+ goto free_pages_out;
+}
+
+/*
+ * phase two of compressed writeback. This is the ordered portion
+ * of the code, which only gets called in the order the work was
+ * queued. We walk all the async extents created by compress_file_range
+ * and send them down to the disk.
+ */
+static noinline int submit_compressed_extents(struct inode *inode,
+ struct async_cow *async_cow)
+{
+ struct async_extent *async_extent;
+ u64 alloc_hint = 0;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_key ins;
+ struct extent_map *em;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct extent_io_tree *io_tree;
+ int ret = 0;
+
+ if (list_empty(&async_cow->extents))
+ return 0;
+
+
+ while (!list_empty(&async_cow->extents)) {
+ async_extent = list_entry(async_cow->extents.next,
+ struct async_extent, list);
+ list_del(&async_extent->list);
+
+ io_tree = &BTRFS_I(inode)->io_tree;
+
+retry:
+ /* did the compression code fall back to uncompressed IO? */
+ if (!async_extent->pages) {
+ int page_started = 0;
+ unsigned long nr_written = 0;
+
+ lock_extent(io_tree, async_extent->start,
+ async_extent->start +
+ async_extent->ram_size - 1);
+
+ /* allocate blocks */
+ ret = cow_file_range(inode, async_cow->locked_page,
+ async_extent->start,
+ async_extent->start +
+ async_extent->ram_size - 1,
+ &page_started, &nr_written, 0);
+
+ /* JDM XXX */
+
+ /*
+ * if page_started, cow_file_range inserted an
+ * inline extent and took care of all the unlocking
+ * and IO for us. Otherwise, we need to submit
+ * all those pages down to the drive.
+ */
+ if (!page_started && !ret)
+ extent_write_locked_range(io_tree,
+ inode, async_extent->start,
+ async_extent->start +
+ async_extent->ram_size - 1,
+ btrfs_get_extent,
+ WB_SYNC_ALL);
+ kfree(async_extent);
+ cond_resched();
+ continue;
+ }
+
+ lock_extent(io_tree, async_extent->start,
+ async_extent->start + async_extent->ram_size - 1);
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ } else {
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+ ret = btrfs_reserve_extent(trans, root,
+ async_extent->compressed_size,
+ async_extent->compressed_size,
+ 0, alloc_hint, &ins, 1);
+ if (ret)
+ btrfs_abort_transaction(trans, root, ret);
+ btrfs_end_transaction(trans, root);
+ }
+
+ if (ret) {
+ int i;
+ for (i = 0; i < async_extent->nr_pages; i++) {
+ WARN_ON(async_extent->pages[i]->mapping);
+ page_cache_release(async_extent->pages[i]);
+ }
+ kfree(async_extent->pages);
+ async_extent->nr_pages = 0;
+ async_extent->pages = NULL;
+ unlock_extent(io_tree, async_extent->start,
+ async_extent->start +
+ async_extent->ram_size - 1);
+ if (ret == -ENOSPC)
+ goto retry;
+ goto out_free; /* JDM: Requeue? */
+ }
+
+ /*
+ * here we're doing allocation and writeback of the
+ * compressed pages
+ */
+ btrfs_drop_extent_cache(inode, async_extent->start,
+ async_extent->start +
+ async_extent->ram_size - 1, 0);
+
+ em = alloc_extent_map();
+ BUG_ON(!em); /* -ENOMEM */
+ em->start = async_extent->start;
+ em->len = async_extent->ram_size;
+ em->orig_start = em->start;
+
+ em->block_start = ins.objectid;
+ em->block_len = ins.offset;
+ em->bdev = root->fs_info->fs_devices->latest_bdev;
+ em->compress_type = async_extent->compress_type;
+ set_bit(EXTENT_FLAG_PINNED, &em->flags);
+ set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+
+ while (1) {
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ write_unlock(&em_tree->lock);
+ if (ret != -EEXIST) {
+ free_extent_map(em);
+ break;
+ }
+ btrfs_drop_extent_cache(inode, async_extent->start,
+ async_extent->start +
+ async_extent->ram_size - 1, 0);
+ }
+
+ ret = btrfs_add_ordered_extent_compress(inode,
+ async_extent->start,
+ ins.objectid,
+ async_extent->ram_size,
+ ins.offset,
+ BTRFS_ORDERED_COMPRESSED,
+ async_extent->compress_type);
+ BUG_ON(ret); /* -ENOMEM */
+
+ /*
+ * clear dirty, set writeback and unlock the pages.
+ */
+ extent_clear_unlock_delalloc(inode,
+ &BTRFS_I(inode)->io_tree,
+ async_extent->start,
+ async_extent->start +
+ async_extent->ram_size - 1,
+ NULL, EXTENT_CLEAR_UNLOCK_PAGE |
+ EXTENT_CLEAR_UNLOCK |
+ EXTENT_CLEAR_DELALLOC |
+ EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
+
+ ret = btrfs_submit_compressed_write(inode,
+ async_extent->start,
+ async_extent->ram_size,
+ ins.objectid,
+ ins.offset, async_extent->pages,
+ async_extent->nr_pages);
+
+ BUG_ON(ret); /* -ENOMEM */
+ alloc_hint = ins.objectid + ins.offset;
+ kfree(async_extent);
+ cond_resched();
+ }
+ ret = 0;
+out:
+ return ret;
+out_free:
+ kfree(async_extent);
+ goto out;
+}
+
+static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
+ u64 num_bytes)
+{
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct extent_map *em;
+ u64 alloc_hint = 0;
+
+ read_lock(&em_tree->lock);
+ em = search_extent_mapping(em_tree, start, num_bytes);
+ if (em) {
+ /*
+ * if block start isn't an actual block number then find the
+ * first block in this inode and use that as a hint. If that
+ * block is also bogus then just don't worry about it.
+ */
+ if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
+ free_extent_map(em);
+ em = search_extent_mapping(em_tree, 0, 0);
+ if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
+ alloc_hint = em->block_start;
+ if (em)
+ free_extent_map(em);
+ } else {
+ alloc_hint = em->block_start;
+ free_extent_map(em);
+ }
+ }
+ read_unlock(&em_tree->lock);
+
+ return alloc_hint;
+}
+
+/*
+ * when extent_io.c finds a delayed allocation range in the file,
+ * the call backs end up in this code. The basic idea is to
+ * allocate extents on disk for the range, and create ordered data structs
+ * in ram to track those extents.
+ *
+ * locked_page is the page that writepage had locked already. We use
+ * it to make sure we don't do extra locks or unlocks.
+ *
+ * *page_started is set to one if we unlock locked_page and do everything
+ * required to start IO on it. It may be clean and already done with
+ * IO when we return.
+ */
+static noinline int cow_file_range(struct inode *inode,
+ struct page *locked_page,
+ u64 start, u64 end, int *page_started,
+ unsigned long *nr_written,
+ int unlock)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ u64 alloc_hint = 0;
+ u64 num_bytes;
+ unsigned long ram_size;
+ u64 disk_num_bytes;
+ u64 cur_alloc_size;
+ u64 blocksize = root->sectorsize;
+ struct btrfs_key ins;
+ struct extent_map *em;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ int ret = 0;
+
+ BUG_ON(btrfs_is_free_space_inode(root, inode));
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ extent_clear_unlock_delalloc(inode,
+ &BTRFS_I(inode)->io_tree,
+ start, end, NULL,
+ EXTENT_CLEAR_UNLOCK_PAGE |
+ EXTENT_CLEAR_UNLOCK |
+ EXTENT_CLEAR_DELALLOC |
+ EXTENT_CLEAR_DIRTY |
+ EXTENT_SET_WRITEBACK |
+ EXTENT_END_WRITEBACK);
+ return PTR_ERR(trans);
+ }
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+ num_bytes = (end - start + blocksize) & ~(blocksize - 1);
+ num_bytes = max(blocksize, num_bytes);
+ disk_num_bytes = num_bytes;
+ ret = 0;
+
+ /* if this is a small write inside eof, kick off defrag */
+ if (num_bytes < 64 * 1024 &&
+ (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
+ btrfs_add_inode_defrag(trans, inode);
+
+ if (start == 0) {
+ /* lets try to make an inline extent */
+ ret = cow_file_range_inline(trans, root, inode,
+ start, end, 0, 0, NULL);
+ if (ret == 0) {
+ extent_clear_unlock_delalloc(inode,
+ &BTRFS_I(inode)->io_tree,
+ start, end, NULL,
+ EXTENT_CLEAR_UNLOCK_PAGE |
+ EXTENT_CLEAR_UNLOCK |
+ EXTENT_CLEAR_DELALLOC |
+ EXTENT_CLEAR_DIRTY |
+ EXTENT_SET_WRITEBACK |
+ EXTENT_END_WRITEBACK);
+
+ *nr_written = *nr_written +
+ (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
+ *page_started = 1;
+ goto out;
+ } else if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_unlock;
+ }
+ }
+
+ BUG_ON(disk_num_bytes >
+ btrfs_super_total_bytes(root->fs_info->super_copy));
+
+ alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
+ btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
+
+ while (disk_num_bytes > 0) {
+ unsigned long op;
+
+ cur_alloc_size = disk_num_bytes;
+ ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
+ root->sectorsize, 0, alloc_hint,
+ &ins, 1);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_unlock;
+ }
+
+ em = alloc_extent_map();
+ BUG_ON(!em); /* -ENOMEM */
+ em->start = start;
+ em->orig_start = em->start;
+ ram_size = ins.offset;
+ em->len = ins.offset;
+
+ em->block_start = ins.objectid;
+ em->block_len = ins.offset;
+ em->bdev = root->fs_info->fs_devices->latest_bdev;
+ set_bit(EXTENT_FLAG_PINNED, &em->flags);
+
+ while (1) {
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ write_unlock(&em_tree->lock);
+ if (ret != -EEXIST) {
+ free_extent_map(em);
+ break;
+ }
+ btrfs_drop_extent_cache(inode, start,
+ start + ram_size - 1, 0);
+ }
+
+ cur_alloc_size = ins.offset;
+ ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
+ ram_size, cur_alloc_size, 0);
+ BUG_ON(ret); /* -ENOMEM */
+
+ if (root->root_key.objectid ==
+ BTRFS_DATA_RELOC_TREE_OBJECTID) {
+ ret = btrfs_reloc_clone_csums(inode, start,
+ cur_alloc_size);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_unlock;
+ }
+ }
+
+ if (disk_num_bytes < cur_alloc_size)
+ break;
+
+ /* we're not doing compressed IO, don't unlock the first
+ * page (which the caller expects to stay locked), don't
+ * clear any dirty bits and don't set any writeback bits
+ *
+ * Do set the Private2 bit so we know this page was properly
+ * setup for writepage
+ */
+ op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
+ op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
+ EXTENT_SET_PRIVATE2;
+
+ extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
+ start, start + ram_size - 1,
+ locked_page, op);
+ disk_num_bytes -= cur_alloc_size;
+ num_bytes -= cur_alloc_size;
+ alloc_hint = ins.objectid + ins.offset;
+ start += cur_alloc_size;
+ }
+ ret = 0;
+out:
+ btrfs_end_transaction(trans, root);
+
+ return ret;
+out_unlock:
+ extent_clear_unlock_delalloc(inode,
+ &BTRFS_I(inode)->io_tree,
+ start, end, NULL,
+ EXTENT_CLEAR_UNLOCK_PAGE |
+ EXTENT_CLEAR_UNLOCK |
+ EXTENT_CLEAR_DELALLOC |
+ EXTENT_CLEAR_DIRTY |
+ EXTENT_SET_WRITEBACK |
+ EXTENT_END_WRITEBACK);
+
+ goto out;
+}
+
+/*
+ * work queue call back to started compression on a file and pages
+ */
+static noinline void async_cow_start(struct btrfs_work *work)
+{
+ struct async_cow *async_cow;
+ int num_added = 0;
+ async_cow = container_of(work, struct async_cow, work);
+
+ compress_file_range(async_cow->inode, async_cow->locked_page,
+ async_cow->start, async_cow->end, async_cow,
+ &num_added);
+ if (num_added == 0)
+ async_cow->inode = NULL;
+}
+
+/*
+ * work queue call back to submit previously compressed pages
+ */
+static noinline void async_cow_submit(struct btrfs_work *work)
+{
+ struct async_cow *async_cow;
+ struct btrfs_root *root;
+ unsigned long nr_pages;
+
+ async_cow = container_of(work, struct async_cow, work);
+
+ root = async_cow->root;
+ nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
+ PAGE_CACHE_SHIFT;
+
+ atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
+
+ if (atomic_read(&root->fs_info->async_delalloc_pages) <
+ 5 * 1042 * 1024 &&
+ waitqueue_active(&root->fs_info->async_submit_wait))
+ wake_up(&root->fs_info->async_submit_wait);
+
+ if (async_cow->inode)
+ submit_compressed_extents(async_cow->inode, async_cow);
+}
+
+static noinline void async_cow_free(struct btrfs_work *work)
+{
+ struct async_cow *async_cow;
+ async_cow = container_of(work, struct async_cow, work);
+ kfree(async_cow);
+}
+
+static int cow_file_range_async(struct inode *inode, struct page *locked_page,
+ u64 start, u64 end, int *page_started,
+ unsigned long *nr_written)
+{
+ struct async_cow *async_cow;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ unsigned long nr_pages;
+ u64 cur_end;
+ int limit = 10 * 1024 * 1042;
+
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
+ 1, 0, NULL, GFP_NOFS);
+ while (start < end) {
+ async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
+ BUG_ON(!async_cow); /* -ENOMEM */
+ async_cow->inode = inode;
+ async_cow->root = root;
+ async_cow->locked_page = locked_page;
+ async_cow->start = start;
+
+ if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
+ cur_end = end;
+ else
+ cur_end = min(end, start + 512 * 1024 - 1);
+
+ async_cow->end = cur_end;
+ INIT_LIST_HEAD(&async_cow->extents);
+
+ async_cow->work.func = async_cow_start;
+ async_cow->work.ordered_func = async_cow_submit;
+ async_cow->work.ordered_free = async_cow_free;
+ async_cow->work.flags = 0;
+
+ nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
+ PAGE_CACHE_SHIFT;
+ atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
+
+ btrfs_queue_worker(&root->fs_info->delalloc_workers,
+ &async_cow->work);
+
+ if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
+ wait_event(root->fs_info->async_submit_wait,
+ (atomic_read(&root->fs_info->async_delalloc_pages) <
+ limit));
+ }
+
+ while (atomic_read(&root->fs_info->async_submit_draining) &&
+ atomic_read(&root->fs_info->async_delalloc_pages)) {
+ wait_event(root->fs_info->async_submit_wait,
+ (atomic_read(&root->fs_info->async_delalloc_pages) ==
+ 0));
+ }
+
+ *nr_written += nr_pages;
+ start = cur_end + 1;
+ }
+ *page_started = 1;
+ return 0;
+}
+
+static noinline int csum_exist_in_range(struct btrfs_root *root,
+ u64 bytenr, u64 num_bytes)
+{
+ int ret;
+ struct btrfs_ordered_sum *sums;
+ LIST_HEAD(list);
+
+ ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
+ bytenr + num_bytes - 1, &list, 0);
+ if (ret == 0 && list_empty(&list))
+ return 0;
+
+ while (!list_empty(&list)) {
+ sums = list_entry(list.next, struct btrfs_ordered_sum, list);
+ list_del(&sums->list);
+ kfree(sums);
+ }
+ return 1;
+}
+
+/*
+ * when nowcow writeback call back. This checks for snapshots or COW copies
+ * of the extents that exist in the file, and COWs the file as required.
+ *
+ * If no cow copies or snapshots exist, we write directly to the existing
+ * blocks on disk
+ */
+static noinline int run_delalloc_nocow(struct inode *inode,
+ struct page *locked_page,
+ u64 start, u64 end, int *page_started, int force,
+ unsigned long *nr_written)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ struct extent_buffer *leaf;
+ struct btrfs_path *path;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_key found_key;
+ u64 cow_start;
+ u64 cur_offset;
+ u64 extent_end;
+ u64 extent_offset;
+ u64 disk_bytenr;
+ u64 num_bytes;
+ int extent_type;
+ int ret, err;
+ int type;
+ int nocow;
+ int check_prev = 1;
+ bool nolock;
+ u64 ino = btrfs_ino(inode);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ nolock = btrfs_is_free_space_inode(root, inode);
+
+ if (nolock)
+ trans = btrfs_join_transaction_nolock(root);
+ else
+ trans = btrfs_join_transaction(root);
+
+ if (IS_ERR(trans)) {
+ btrfs_free_path(path);
+ return PTR_ERR(trans);
+ }
+
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+ cow_start = (u64)-1;
+ cur_offset = start;
+ while (1) {
+ ret = btrfs_lookup_file_extent(trans, root, path, ino,
+ cur_offset, 0);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto error;
+ }
+ if (ret > 0 && path->slots[0] > 0 && check_prev) {
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key,
+ path->slots[0] - 1);
+ if (found_key.objectid == ino &&
+ found_key.type == BTRFS_EXTENT_DATA_KEY)
+ path->slots[0]--;
+ }
+ check_prev = 0;
+next_slot:
+ leaf = path->nodes[0];
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto error;
+ }
+ if (ret > 0)
+ break;
+ leaf = path->nodes[0];
+ }
+
+ nocow = 0;
+ disk_bytenr = 0;
+ num_bytes = 0;
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+ if (found_key.objectid > ino ||
+ found_key.type > BTRFS_EXTENT_DATA_KEY ||
+ found_key.offset > end)
+ break;
+
+ if (found_key.offset > cur_offset) {
+ extent_end = found_key.offset;
+ extent_type = 0;
+ goto out_check;
+ }
+
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ extent_type = btrfs_file_extent_type(leaf, fi);
+
+ if (extent_type == BTRFS_FILE_EXTENT_REG ||
+ extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
+ disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+ extent_offset = btrfs_file_extent_offset(leaf, fi);
+ extent_end = found_key.offset +
+ btrfs_file_extent_num_bytes(leaf, fi);
+ if (extent_end <= start) {
+ path->slots[0]++;
+ goto next_slot;
+ }
+ if (disk_bytenr == 0)
+ goto out_check;
+ if (btrfs_file_extent_compression(leaf, fi) ||
+ btrfs_file_extent_encryption(leaf, fi) ||
+ btrfs_file_extent_other_encoding(leaf, fi))
+ goto out_check;
+ if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
+ goto out_check;
+ if (btrfs_extent_readonly(root, disk_bytenr))
+ goto out_check;
+ if (btrfs_cross_ref_exist(trans, root, ino,
+ found_key.offset -
+ extent_offset, disk_bytenr))
+ goto out_check;
+ disk_bytenr += extent_offset;
+ disk_bytenr += cur_offset - found_key.offset;
+ num_bytes = min(end + 1, extent_end) - cur_offset;
+ /*
+ * force cow if csum exists in the range.
+ * this ensure that csum for a given extent are
+ * either valid or do not exist.
+ */
+ if (csum_exist_in_range(root, disk_bytenr, num_bytes))
+ goto out_check;
+ nocow = 1;
+ } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+ extent_end = found_key.offset +
+ btrfs_file_extent_inline_len(leaf, fi);
+ extent_end = ALIGN(extent_end, root->sectorsize);
+ } else {
+ BUG_ON(1);
+ }
+out_check:
+ if (extent_end <= start) {
+ path->slots[0]++;
+ goto next_slot;
+ }
+ if (!nocow) {
+ if (cow_start == (u64)-1)
+ cow_start = cur_offset;
+ cur_offset = extent_end;
+ if (cur_offset > end)
+ break;
+ path->slots[0]++;
+ goto next_slot;
+ }
+
+ btrfs_release_path(path);
+ if (cow_start != (u64)-1) {
+ ret = cow_file_range(inode, locked_page, cow_start,
+ found_key.offset - 1, page_started,
+ nr_written, 1);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto error;
+ }
+ cow_start = (u64)-1;
+ }
+
+ if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
+ struct extent_map *em;
+ struct extent_map_tree *em_tree;
+ em_tree = &BTRFS_I(inode)->extent_tree;
+ em = alloc_extent_map();
+ BUG_ON(!em); /* -ENOMEM */
+ em->start = cur_offset;
+ em->orig_start = em->start;
+ em->len = num_bytes;
+ em->block_len = num_bytes;
+ em->block_start = disk_bytenr;
+ em->bdev = root->fs_info->fs_devices->latest_bdev;
+ set_bit(EXTENT_FLAG_PINNED, &em->flags);
+ while (1) {
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ write_unlock(&em_tree->lock);
+ if (ret != -EEXIST) {
+ free_extent_map(em);
+ break;
+ }
+ btrfs_drop_extent_cache(inode, em->start,
+ em->start + em->len - 1, 0);
+ }
+ type = BTRFS_ORDERED_PREALLOC;
+ } else {
+ type = BTRFS_ORDERED_NOCOW;
+ }
+
+ ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
+ num_bytes, num_bytes, type);
+ BUG_ON(ret); /* -ENOMEM */
+
+ if (root->root_key.objectid ==
+ BTRFS_DATA_RELOC_TREE_OBJECTID) {
+ ret = btrfs_reloc_clone_csums(inode, cur_offset,
+ num_bytes);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto error;
+ }
+ }
+
+ extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
+ cur_offset, cur_offset + num_bytes - 1,
+ locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
+ EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
+ EXTENT_SET_PRIVATE2);
+ cur_offset = extent_end;
+ if (cur_offset > end)
+ break;
+ }
+ btrfs_release_path(path);
+
+ if (cur_offset <= end && cow_start == (u64)-1)
+ cow_start = cur_offset;
+ if (cow_start != (u64)-1) {
+ ret = cow_file_range(inode, locked_page, cow_start, end,
+ page_started, nr_written, 1);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto error;
+ }
+ }
+
+error:
+ if (nolock) {
+ err = btrfs_end_transaction_nolock(trans, root);
+ } else {
+ err = btrfs_end_transaction(trans, root);
+ }
+ if (!ret)
+ ret = err;
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * extent_io.c call back to do delayed allocation processing
+ */
+static int run_delalloc_range(struct inode *inode, struct page *locked_page,
+ u64 start, u64 end, int *page_started,
+ unsigned long *nr_written)
+{
+ int ret;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+
+ if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
+ ret = run_delalloc_nocow(inode, locked_page, start, end,
+ page_started, 1, nr_written);
+ else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
+ ret = run_delalloc_nocow(inode, locked_page, start, end,
+ page_started, 0, nr_written);
+ else if (!btrfs_test_opt(root, COMPRESS) &&
+ !(BTRFS_I(inode)->force_compress) &&
+ !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
+ ret = cow_file_range(inode, locked_page, start, end,
+ page_started, nr_written, 1);
+ else
+ ret = cow_file_range_async(inode, locked_page, start, end,
+ page_started, nr_written);
+ return ret;
+}
+
+static void btrfs_split_extent_hook(struct inode *inode,
+ struct extent_state *orig, u64 split)
+{
+ /* not delalloc, ignore it */
+ if (!(orig->state & EXTENT_DELALLOC))
+ return;
+
+ spin_lock(&BTRFS_I(inode)->lock);
+ BTRFS_I(inode)->outstanding_extents++;
+ spin_unlock(&BTRFS_I(inode)->lock);
+}
+
+/*
+ * extent_io.c merge_extent_hook, used to track merged delayed allocation
+ * extents so we can keep track of new extents that are just merged onto old
+ * extents, such as when we are doing sequential writes, so we can properly
+ * account for the metadata space we'll need.
+ */
+static void btrfs_merge_extent_hook(struct inode *inode,
+ struct extent_state *new,
+ struct extent_state *other)
+{
+ /* not delalloc, ignore it */
+ if (!(other->state & EXTENT_DELALLOC))
+ return;
+
+ spin_lock(&BTRFS_I(inode)->lock);
+ BTRFS_I(inode)->outstanding_extents--;
+ spin_unlock(&BTRFS_I(inode)->lock);
+}
+
+/*
+ * extent_io.c set_bit_hook, used to track delayed allocation
+ * bytes in this file, and to maintain the list of inodes that
+ * have pending delalloc work to be done.
+ */
+static void btrfs_set_bit_hook(struct inode *inode,
+ struct extent_state *state, int *bits)
+{
+
+ /*
+ * set_bit and clear bit hooks normally require _irqsave/restore
+ * but in this case, we are only testing for the DELALLOC
+ * bit, which is only set or cleared with irqs on
+ */
+ if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 len = state->end + 1 - state->start;
+ bool do_list = !btrfs_is_free_space_inode(root, inode);
+
+ if (*bits & EXTENT_FIRST_DELALLOC) {
+ *bits &= ~EXTENT_FIRST_DELALLOC;
+ } else {
+ spin_lock(&BTRFS_I(inode)->lock);
+ BTRFS_I(inode)->outstanding_extents++;
+ spin_unlock(&BTRFS_I(inode)->lock);
+ }
+
+ spin_lock(&root->fs_info->delalloc_lock);
+ BTRFS_I(inode)->delalloc_bytes += len;
+ root->fs_info->delalloc_bytes += len;
+ if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
+ list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
+ &root->fs_info->delalloc_inodes);
+ }
+ spin_unlock(&root->fs_info->delalloc_lock);
+ }
+}
+
+/*
+ * extent_io.c clear_bit_hook, see set_bit_hook for why
+ */
+static void btrfs_clear_bit_hook(struct inode *inode,
+ struct extent_state *state, int *bits)
+{
+ /*
+ * set_bit and clear bit hooks normally require _irqsave/restore
+ * but in this case, we are only testing for the DELALLOC
+ * bit, which is only set or cleared with irqs on
+ */
+ if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 len = state->end + 1 - state->start;
+ bool do_list = !btrfs_is_free_space_inode(root, inode);
+
+ if (*bits & EXTENT_FIRST_DELALLOC) {
+ *bits &= ~EXTENT_FIRST_DELALLOC;
+ } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
+ spin_lock(&BTRFS_I(inode)->lock);
+ BTRFS_I(inode)->outstanding_extents--;
+ spin_unlock(&BTRFS_I(inode)->lock);
+ }
+
+ if (*bits & EXTENT_DO_ACCOUNTING)
+ btrfs_delalloc_release_metadata(inode, len);
+
+ if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
+ && do_list)
+ btrfs_free_reserved_data_space(inode, len);
+
+ spin_lock(&root->fs_info->delalloc_lock);
+ root->fs_info->delalloc_bytes -= len;
+ BTRFS_I(inode)->delalloc_bytes -= len;
+
+ if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
+ !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
+ list_del_init(&BTRFS_I(inode)->delalloc_inodes);
+ }
+ spin_unlock(&root->fs_info->delalloc_lock);
+ }
+}
+
+/*
+ * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
+ * we don't create bios that span stripes or chunks
+ */
+int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
+ size_t size, struct bio *bio,
+ unsigned long bio_flags)
+{
+ struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
+ struct btrfs_mapping_tree *map_tree;
+ u64 logical = (u64)bio->bi_sector << 9;
+ u64 length = 0;
+ u64 map_length;
+ int ret;
+
+ if (bio_flags & EXTENT_BIO_COMPRESSED)
+ return 0;
+
+ length = bio->bi_size;
+ map_tree = &root->fs_info->mapping_tree;
+ map_length = length;
+ ret = btrfs_map_block(map_tree, READ, logical,
+ &map_length, NULL, 0);
+ /* Will always return 0 or 1 with map_multi == NULL */
+ BUG_ON(ret < 0);
+ if (map_length < length + size)
+ return 1;
+ return 0;
+}
+
+/*
+ * in order to insert checksums into the metadata in large chunks,
+ * we wait until bio submission time. All the pages in the bio are
+ * checksummed and sums are attached onto the ordered extent record.
+ *
+ * At IO completion time the cums attached on the ordered extent record
+ * are inserted into the btree
+ */
+static int __btrfs_submit_bio_start(struct inode *inode, int rw,
+ struct bio *bio, int mirror_num,
+ unsigned long bio_flags,
+ u64 bio_offset)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int ret = 0;
+
+ ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
+ BUG_ON(ret); /* -ENOMEM */
+ return 0;
+}
+
+/*
+ * in order to insert checksums into the metadata in large chunks,
+ * we wait until bio submission time. All the pages in the bio are
+ * checksummed and sums are attached onto the ordered extent record.
+ *
+ * At IO completion time the cums attached on the ordered extent record
+ * are inserted into the btree
+ */
+static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
+ int mirror_num, unsigned long bio_flags,
+ u64 bio_offset)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ return btrfs_map_bio(root, rw, bio, mirror_num, 1);
+}
+
+/*
+ * extent_io.c submission hook. This does the right thing for csum calculation
+ * on write, or reading the csums from the tree before a read
+ */
+static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
+ int mirror_num, unsigned long bio_flags,
+ u64 bio_offset)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int ret = 0;
+ int skip_sum;
+ int metadata = 0;
+
+ skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+ if (btrfs_is_free_space_inode(root, inode))
+ metadata = 2;
+
+ ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
+ if (ret)
+ return ret;
+
+ if (!(rw & REQ_WRITE)) {
+ if (bio_flags & EXTENT_BIO_COMPRESSED) {
+ return btrfs_submit_compressed_read(inode, bio,
+ mirror_num, bio_flags);
+ } else if (!skip_sum) {
+ ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
+ if (ret)
+ return ret;
+ }
+ goto mapit;
+ } else if (!skip_sum) {
+ /* csum items have already been cloned */
+ if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
+ goto mapit;
+ /* we're doing a write, do the async checksumming */
+ return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
+ inode, rw, bio, mirror_num,
+ bio_flags, bio_offset,
+ __btrfs_submit_bio_start,
+ __btrfs_submit_bio_done);
+ }
+
+mapit:
+ return btrfs_map_bio(root, rw, bio, mirror_num, 0);
+}
+
+/*
+ * given a list of ordered sums record them in the inode. This happens
+ * at IO completion time based on sums calculated at bio submission time.
+ */
+static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
+ struct inode *inode, u64 file_offset,
+ struct list_head *list)
+{
+ struct btrfs_ordered_sum *sum;
+
+ list_for_each_entry(sum, list, list) {
+ btrfs_csum_file_blocks(trans,
+ BTRFS_I(inode)->root->fs_info->csum_root, sum);
+ }
+ return 0;
+}
+
+int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
+ struct extent_state **cached_state)
+{
+ if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
+ WARN_ON(1);
+ return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
+ cached_state, GFP_NOFS);
+}
+
+/* see btrfs_writepage_start_hook for details on why this is required */
+struct btrfs_writepage_fixup {
+ struct page *page;
+ struct btrfs_work work;
+};
+
+static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
+{
+ struct btrfs_writepage_fixup *fixup;
+ struct btrfs_ordered_extent *ordered;
+ struct extent_state *cached_state = NULL;
+ struct page *page;
+ struct inode *inode;
+ u64 page_start;
+ u64 page_end;
+ int ret;
+
+ fixup = container_of(work, struct btrfs_writepage_fixup, work);
+ page = fixup->page;
+again:
+ lock_page(page);
+ if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
+ ClearPageChecked(page);
+ goto out_page;
+ }
+
+ inode = page->mapping->host;
+ page_start = page_offset(page);
+ page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
+
+ lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
+ &cached_state);
+
+ /* already ordered? We're done */
+ if (PagePrivate2(page))
+ goto out;
+
+ ordered = btrfs_lookup_ordered_extent(inode, page_start);
+ if (ordered) {
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
+ page_end, &cached_state, GFP_NOFS);
+ unlock_page(page);
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ goto again;
+ }
+
+ ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
+ if (ret) {
+ mapping_set_error(page->mapping, ret);
+ end_extent_writepage(page, ret, page_start, page_end);
+ ClearPageChecked(page);
+ goto out;
+ }
+
+ btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
+ ClearPageChecked(page);
+ set_page_dirty(page);
+out:
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
+ &cached_state, GFP_NOFS);
+out_page:
+ unlock_page(page);
+ page_cache_release(page);
+ kfree(fixup);
+}
+
+/*
+ * There are a few paths in the higher layers of the kernel that directly
+ * set the page dirty bit without asking the filesystem if it is a
+ * good idea. This causes problems because we want to make sure COW
+ * properly happens and the data=ordered rules are followed.
+ *
+ * In our case any range that doesn't have the ORDERED bit set
+ * hasn't been properly setup for IO. We kick off an async process
+ * to fix it up. The async helper will wait for ordered extents, set
+ * the delalloc bit and make it safe to write the page.
+ */
+static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
+{
+ struct inode *inode = page->mapping->host;
+ struct btrfs_writepage_fixup *fixup;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+
+ /* this page is properly in the ordered list */
+ if (TestClearPagePrivate2(page))
+ return 0;
+
+ if (PageChecked(page))
+ return -EAGAIN;
+
+ fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
+ if (!fixup)
+ return -EAGAIN;
+
+ SetPageChecked(page);
+ page_cache_get(page);
+ fixup->work.func = btrfs_writepage_fixup_worker;
+ fixup->page = page;
+ btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
+ return -EBUSY;
+}
+
+static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
+ struct inode *inode, u64 file_pos,
+ u64 disk_bytenr, u64 disk_num_bytes,
+ u64 num_bytes, u64 ram_bytes,
+ u8 compression, u8 encryption,
+ u16 other_encoding, int extent_type)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_key ins;
+ u64 hint;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->leave_spinning = 1;
+
+ /*
+ * we may be replacing one extent in the tree with another.
+ * The new extent is pinned in the extent map, and we don't want
+ * to drop it from the cache until it is completely in the btree.
+ *
+ * So, tell btrfs_drop_extents to leave this extent in the cache.
+ * the caller is expected to unpin it and allow it to be merged
+ * with the others.
+ */
+ ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
+ &hint, 0);
+ if (ret)
+ goto out;
+
+ ins.objectid = btrfs_ino(inode);
+ ins.offset = file_pos;
+ ins.type = BTRFS_EXTENT_DATA_KEY;
+ ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
+ if (ret)
+ goto out;
+ leaf = path->nodes[0];
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_generation(leaf, fi, trans->transid);
+ btrfs_set_file_extent_type(leaf, fi, extent_type);
+ btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
+ btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
+ btrfs_set_file_extent_offset(leaf, fi, 0);
+ btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
+ btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
+ btrfs_set_file_extent_compression(leaf, fi, compression);
+ btrfs_set_file_extent_encryption(leaf, fi, encryption);
+ btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
+
+ btrfs_unlock_up_safe(path, 1);
+ btrfs_set_lock_blocking(leaf);
+
+ btrfs_mark_buffer_dirty(leaf);
+
+ inode_add_bytes(inode, num_bytes);
+
+ ins.objectid = disk_bytenr;
+ ins.offset = disk_num_bytes;
+ ins.type = BTRFS_EXTENT_ITEM_KEY;
+ ret = btrfs_alloc_reserved_file_extent(trans, root,
+ root->root_key.objectid,
+ btrfs_ino(inode), file_pos, &ins);
+out:
+ btrfs_free_path(path);
+
+ return ret;
+}
+
+/*
+ * helper function for btrfs_finish_ordered_io, this
+ * just reads in some of the csum leaves to prime them into ram
+ * before we start the transaction. It limits the amount of btree
+ * reads required while inside the transaction.
+ */
+/* as ordered data IO finishes, this gets called so we can finish
+ * an ordered extent if the range of bytes in the file it covers are
+ * fully written.
+ */
+static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans = NULL;
+ struct btrfs_ordered_extent *ordered_extent = NULL;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct extent_state *cached_state = NULL;
+ int compress_type = 0;
+ int ret;
+ bool nolock;
+
+ ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
+ end - start + 1);
+ if (!ret)
+ return 0;
+ BUG_ON(!ordered_extent); /* Logic error */
+
+ nolock = btrfs_is_free_space_inode(root, inode);
+
+ if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
+ BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
+ ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
+ if (!ret) {
+ if (nolock)
+ trans = btrfs_join_transaction_nolock(root);
+ else
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+ ret = btrfs_update_inode_fallback(trans, root, inode);
+ if (ret) /* -ENOMEM or corruption */
+ btrfs_abort_transaction(trans, root, ret);
+ }
+ goto out;
+ }
+
+ lock_extent_bits(io_tree, ordered_extent->file_offset,
+ ordered_extent->file_offset + ordered_extent->len - 1,
+ 0, &cached_state);
+
+ if (nolock)
+ trans = btrfs_join_transaction_nolock(root);
+ else
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ trans = NULL;
+ goto out_unlock;
+ }
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+ if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
+ compress_type = ordered_extent->compress_type;
+ if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
+ BUG_ON(compress_type);
+ ret = btrfs_mark_extent_written(trans, inode,
+ ordered_extent->file_offset,
+ ordered_extent->file_offset +
+ ordered_extent->len);
+ } else {
+ BUG_ON(root == root->fs_info->tree_root);
+ ret = insert_reserved_file_extent(trans, inode,
+ ordered_extent->file_offset,
+ ordered_extent->start,
+ ordered_extent->disk_len,
+ ordered_extent->len,
+ ordered_extent->len,
+ compress_type, 0, 0,
+ BTRFS_FILE_EXTENT_REG);
+ unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
+ ordered_extent->file_offset,
+ ordered_extent->len);
+ }
+ unlock_extent_cached(io_tree, ordered_extent->file_offset,
+ ordered_extent->file_offset +
+ ordered_extent->len - 1, &cached_state, GFP_NOFS);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+
+ add_pending_csums(trans, inode, ordered_extent->file_offset,
+ &ordered_extent->list);
+
+ ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
+ if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
+ ret = btrfs_update_inode_fallback(trans, root, inode);
+ if (ret) { /* -ENOMEM or corruption */
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+ }
+ ret = 0;
+out:
+ if (root != root->fs_info->tree_root)
+ btrfs_delalloc_release_metadata(inode, ordered_extent->len);
+ if (trans) {
+ if (nolock)
+ btrfs_end_transaction_nolock(trans, root);
+ else
+ btrfs_end_transaction(trans, root);
+ }
+
+ /* once for us */
+ btrfs_put_ordered_extent(ordered_extent);
+ /* once for the tree */
+ btrfs_put_ordered_extent(ordered_extent);
+
+ return 0;
+out_unlock:
+ unlock_extent_cached(io_tree, ordered_extent->file_offset,
+ ordered_extent->file_offset +
+ ordered_extent->len - 1, &cached_state, GFP_NOFS);
+ goto out;
+}
+
+static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
+ struct extent_state *state, int uptodate)
+{
+ trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
+
+ ClearPagePrivate2(page);
+ return btrfs_finish_ordered_io(page->mapping->host, start, end);
+}
+
+/*
+ * when reads are done, we need to check csums to verify the data is correct
+ * if there's a match, we allow the bio to finish. If not, the code in
+ * extent_io.c will try to find good copies for us.
+ */
+static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
+ struct extent_state *state, int mirror)
+{
+ size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
+ struct inode *inode = page->mapping->host;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ char *kaddr;
+ u64 private = ~(u32)0;
+ int ret;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u32 csum = ~(u32)0;
+
+ if (PageChecked(page)) {
+ ClearPageChecked(page);
+ goto good;
+ }
+
+ if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
+ goto good;
+
+ if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
+ test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
+ clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
+ GFP_NOFS);
+ return 0;
+ }
+
+ if (state && state->start == start) {
+ private = state->private;
+ ret = 0;
+ } else {
+ ret = get_state_private(io_tree, start, &private);
+ }
+ kaddr = kmap_atomic(page);
+ if (ret)
+ goto zeroit;
+
+ csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
+ btrfs_csum_final(csum, (char *)&csum);
+ if (csum != private)
+ goto zeroit;
+
+ kunmap_atomic(kaddr);
+good:
+ return 0;
+
+zeroit:
+ printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
+ "private %llu\n",
+ (unsigned long long)btrfs_ino(page->mapping->host),
+ (unsigned long long)start, csum,
+ (unsigned long long)private);
+ memset(kaddr + offset, 1, end - start + 1);
+ flush_dcache_page(page);
+ kunmap_atomic(kaddr);
+ if (private == 0)
+ return 0;
+ return -EIO;
+}
+
+struct delayed_iput {
+ struct list_head list;
+ struct inode *inode;
+};
+
+/* JDM: If this is fs-wide, why can't we add a pointer to
+ * btrfs_inode instead and avoid the allocation? */
+void btrfs_add_delayed_iput(struct inode *inode)
+{
+ struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
+ struct delayed_iput *delayed;
+
+ if (atomic_add_unless(&inode->i_count, -1, 1))
+ return;
+
+ delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
+ delayed->inode = inode;
+
+ spin_lock(&fs_info->delayed_iput_lock);
+ list_add_tail(&delayed->list, &fs_info->delayed_iputs);
+ spin_unlock(&fs_info->delayed_iput_lock);
+}
+
+void btrfs_run_delayed_iputs(struct btrfs_root *root)
+{
+ LIST_HEAD(list);
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct delayed_iput *delayed;
+ int empty;
+
+ spin_lock(&fs_info->delayed_iput_lock);
+ empty = list_empty(&fs_info->delayed_iputs);
+ spin_unlock(&fs_info->delayed_iput_lock);
+ if (empty)
+ return;
+
+ down_read(&root->fs_info->cleanup_work_sem);
+ spin_lock(&fs_info->delayed_iput_lock);
+ list_splice_init(&fs_info->delayed_iputs, &list);
+ spin_unlock(&fs_info->delayed_iput_lock);
+
+ while (!list_empty(&list)) {
+ delayed = list_entry(list.next, struct delayed_iput, list);
+ list_del(&delayed->list);
+ iput(delayed->inode);
+ kfree(delayed);
+ }
+ up_read(&root->fs_info->cleanup_work_sem);
+}
+
+enum btrfs_orphan_cleanup_state {
+ ORPHAN_CLEANUP_STARTED = 1,
+ ORPHAN_CLEANUP_DONE = 2,
+};
+
+/*
+ * This is called in transaction commit time. If there are no orphan
+ * files in the subvolume, it removes orphan item and frees block_rsv
+ * structure.
+ */
+void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_block_rsv *block_rsv;
+ int ret;
+
+ if (!list_empty(&root->orphan_list) ||
+ root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
+ return;
+
+ spin_lock(&root->orphan_lock);
+ if (!list_empty(&root->orphan_list)) {
+ spin_unlock(&root->orphan_lock);
+ return;
+ }
+
+ if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
+ spin_unlock(&root->orphan_lock);
+ return;
+ }
+
+ block_rsv = root->orphan_block_rsv;
+ root->orphan_block_rsv = NULL;
+ spin_unlock(&root->orphan_lock);
+
+ if (root->orphan_item_inserted &&
+ btrfs_root_refs(&root->root_item) > 0) {
+ ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
+ root->root_key.objectid);
+ BUG_ON(ret);
+ root->orphan_item_inserted = 0;
+ }
+
+ if (block_rsv) {
+ WARN_ON(block_rsv->size > 0);
+ btrfs_free_block_rsv(root, block_rsv);
+ }
+}
+
+/*
+ * This creates an orphan entry for the given inode in case something goes
+ * wrong in the middle of an unlink/truncate.
+ *
+ * NOTE: caller of this function should reserve 5 units of metadata for
+ * this function.
+ */
+int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_block_rsv *block_rsv = NULL;
+ int reserve = 0;
+ int insert = 0;
+ int ret;
+
+ if (!root->orphan_block_rsv) {
+ block_rsv = btrfs_alloc_block_rsv(root);
+ if (!block_rsv)
+ return -ENOMEM;
+ }
+
+ spin_lock(&root->orphan_lock);
+ if (!root->orphan_block_rsv) {
+ root->orphan_block_rsv = block_rsv;
+ } else if (block_rsv) {
+ btrfs_free_block_rsv(root, block_rsv);
+ block_rsv = NULL;
+ }
+
+ if (list_empty(&BTRFS_I(inode)->i_orphan)) {
+ list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
+#if 0
+ /*
+ * For proper ENOSPC handling, we should do orphan
+ * cleanup when mounting. But this introduces backward
+ * compatibility issue.
+ */
+ if (!xchg(&root->orphan_item_inserted, 1))
+ insert = 2;
+ else
+ insert = 1;
+#endif
+ insert = 1;
+ }
+
+ if (!BTRFS_I(inode)->orphan_meta_reserved) {
+ BTRFS_I(inode)->orphan_meta_reserved = 1;
+ reserve = 1;
+ }
+ spin_unlock(&root->orphan_lock);
+
+ /* grab metadata reservation from transaction handle */
+ if (reserve) {
+ ret = btrfs_orphan_reserve_metadata(trans, inode);
+ BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
+ }
+
+ /* insert an orphan item to track this unlinked/truncated file */
+ if (insert >= 1) {
+ ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
+ if (ret && ret != -EEXIST) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+ ret = 0;
+ }
+
+ /* insert an orphan item to track subvolume contains orphan files */
+ if (insert >= 2) {
+ ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
+ root->root_key.objectid);
+ if (ret && ret != -EEXIST) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+ }
+ return 0;
+}
+
+/*
+ * We have done the truncate/delete so we can go ahead and remove the orphan
+ * item for this particular inode.
+ */
+int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int delete_item = 0;
+ int release_rsv = 0;
+ int ret = 0;
+
+ spin_lock(&root->orphan_lock);
+ if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
+ list_del_init(&BTRFS_I(inode)->i_orphan);
+ delete_item = 1;
+ }
+
+ if (BTRFS_I(inode)->orphan_meta_reserved) {
+ BTRFS_I(inode)->orphan_meta_reserved = 0;
+ release_rsv = 1;
+ }
+ spin_unlock(&root->orphan_lock);
+
+ if (trans && delete_item) {
+ ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
+ BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
+ }
+
+ if (release_rsv)
+ btrfs_orphan_release_metadata(inode);
+
+ return 0;
+}
+
+/*
+ * this cleans up any orphans that may be left on the list from the last use
+ * of this root.
+ */
+int btrfs_orphan_cleanup(struct btrfs_root *root)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_key key, found_key;
+ struct btrfs_trans_handle *trans;
+ struct inode *inode;
+ u64 last_objectid = 0;
+ int ret = 0, nr_unlink = 0, nr_truncate = 0;
+
+ if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ path->reada = -1;
+
+ key.objectid = BTRFS_ORPHAN_OBJECTID;
+ btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
+ key.offset = (u64)-1;
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+
+ /*
+ * if ret == 0 means we found what we were searching for, which
+ * is weird, but possible, so only screw with path if we didn't
+ * find the key and see if we have stuff that matches
+ */
+ if (ret > 0) {
+ ret = 0;
+ if (path->slots[0] == 0)
+ break;
+ path->slots[0]--;
+ }
+
+ /* pull out the item */
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+ /* make sure the item matches what we want */
+ if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
+ break;
+ if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
+ break;
+
+ /* release the path since we're done with it */
+ btrfs_release_path(path);
+
+ /*
+ * this is where we are basically btrfs_lookup, without the
+ * crossing root thing. we store the inode number in the
+ * offset of the orphan item.
+ */
+
+ if (found_key.offset == last_objectid) {
+ printk(KERN_ERR "btrfs: Error removing orphan entry, "
+ "stopping orphan cleanup\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ last_objectid = found_key.offset;
+
+ found_key.objectid = found_key.offset;
+ found_key.type = BTRFS_INODE_ITEM_KEY;
+ found_key.offset = 0;
+ inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
+ ret = PTR_RET(inode);
+ if (ret && ret != -ESTALE)
+ goto out;
+
+ if (ret == -ESTALE && root == root->fs_info->tree_root) {
+ struct btrfs_root *dead_root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ int is_dead_root = 0;
+
+ /*
+ * this is an orphan in the tree root. Currently these
+ * could come from 2 sources:
+ * a) a snapshot deletion in progress
+ * b) a free space cache inode
+ * We need to distinguish those two, as the snapshot
+ * orphan must not get deleted.
+ * find_dead_roots already ran before us, so if this
+ * is a snapshot deletion, we should find the root
+ * in the dead_roots list
+ */
+ spin_lock(&fs_info->trans_lock);
+ list_for_each_entry(dead_root, &fs_info->dead_roots,
+ root_list) {
+ if (dead_root->root_key.objectid ==
+ found_key.objectid) {
+ is_dead_root = 1;
+ break;
+ }
+ }
+ spin_unlock(&fs_info->trans_lock);
+ if (is_dead_root) {
+ /* prevent this orphan from being found again */
+ key.offset = found_key.objectid - 1;
+ continue;
+ }
+ }
+ /*
+ * Inode is already gone but the orphan item is still there,
+ * kill the orphan item.
+ */
+ if (ret == -ESTALE) {
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto out;
+ }
+ ret = btrfs_del_orphan_item(trans, root,
+ found_key.objectid);
+ BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
+ btrfs_end_transaction(trans, root);
+ continue;
+ }
+
+ /*
+ * add this inode to the orphan list so btrfs_orphan_del does
+ * the proper thing when we hit it
+ */
+ spin_lock(&root->orphan_lock);
+ list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
+ spin_unlock(&root->orphan_lock);
+
+ /* if we have links, this was a truncate, lets do that */
+ if (inode->i_nlink) {
+ if (!S_ISREG(inode->i_mode)) {
+ WARN_ON(1);
+ iput(inode);
+ continue;
+ }
+ nr_truncate++;
+ ret = btrfs_truncate(inode);
+ } else {
+ nr_unlink++;
+ }
+
+ /* this will do delete_inode and everything for us */
+ iput(inode);
+ if (ret)
+ goto out;
+ }
+ /* release the path since we're done with it */
+ btrfs_release_path(path);
+
+ root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
+
+ if (root->orphan_block_rsv)
+ btrfs_block_rsv_release(root, root->orphan_block_rsv,
+ (u64)-1);
+
+ if (root->orphan_block_rsv || root->orphan_item_inserted) {
+ trans = btrfs_join_transaction(root);
+ if (!IS_ERR(trans))
+ btrfs_end_transaction(trans, root);
+ }
+
+ if (nr_unlink)
+ printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
+ if (nr_truncate)
+ printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
+
+out:
+ if (ret)
+ printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * very simple check to peek ahead in the leaf looking for xattrs. If we
+ * don't find any xattrs, we know there can't be any acls.
+ *
+ * slot is the slot the inode is in, objectid is the objectid of the inode
+ */
+static noinline int acls_after_inode_item(struct extent_buffer *leaf,
+ int slot, u64 objectid)
+{
+ u32 nritems = btrfs_header_nritems(leaf);
+ struct btrfs_key found_key;
+ int scanned = 0;
+
+ slot++;
+ while (slot < nritems) {
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+ /* we found a different objectid, there must not be acls */
+ if (found_key.objectid != objectid)
+ return 0;
+
+ /* we found an xattr, assume we've got an acl */
+ if (found_key.type == BTRFS_XATTR_ITEM_KEY)
+ return 1;
+
+ /*
+ * we found a key greater than an xattr key, there can't
+ * be any acls later on
+ */
+ if (found_key.type > BTRFS_XATTR_ITEM_KEY)
+ return 0;
+
+ slot++;
+ scanned++;
+
+ /*
+ * it goes inode, inode backrefs, xattrs, extents,
+ * so if there are a ton of hard links to an inode there can
+ * be a lot of backrefs. Don't waste time searching too hard,
+ * this is just an optimization
+ */
+ if (scanned >= 8)
+ break;
+ }
+ /* we hit the end of the leaf before we found an xattr or
+ * something larger than an xattr. We have to assume the inode
+ * has acls
+ */
+ return 1;
+}
+
+/*
+ * read an inode from the btree into the in-memory inode
+ */
+static void btrfs_read_locked_inode(struct inode *inode)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_inode_item *inode_item;
+ struct btrfs_timespec *tspec;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_key location;
+ int maybe_acls;
+ u32 rdev;
+ int ret;
+ bool filled = false;
+
+ ret = btrfs_fill_inode(inode, &rdev);
+ if (!ret)
+ filled = true;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ goto make_bad;
+
+ path->leave_spinning = 1;
+ memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
+
+ ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
+ if (ret)
+ goto make_bad;
+
+ leaf = path->nodes[0];
+
+ if (filled)
+ goto cache_acl;
+
+ inode_item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_inode_item);
+ inode->i_mode = btrfs_inode_mode(leaf, inode_item);
+ set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
+ inode->i_uid = btrfs_inode_uid(leaf, inode_item);
+ inode->i_gid = btrfs_inode_gid(leaf, inode_item);
+ btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
+
+ tspec = btrfs_inode_atime(inode_item);
+ inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
+ inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
+
+ tspec = btrfs_inode_mtime(inode_item);
+ inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
+ inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
+
+ tspec = btrfs_inode_ctime(inode_item);
+ inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
+ inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
+
+ inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
+ BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
+ BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
+ inode->i_generation = BTRFS_I(inode)->generation;
+ inode->i_rdev = 0;
+ rdev = btrfs_inode_rdev(leaf, inode_item);
+
+ BTRFS_I(inode)->index_cnt = (u64)-1;
+ BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
+cache_acl:
+ /*
+ * try to precache a NULL acl entry for files that don't have
+ * any xattrs or acls
+ */
+ maybe_acls = acls_after_inode_item(leaf, path->slots[0],
+ btrfs_ino(inode));
+ if (!maybe_acls)
+ cache_no_acl(inode);
+
+ btrfs_free_path(path);
+
+ switch (inode->i_mode & S_IFMT) {
+ case S_IFREG:
+ inode->i_mapping->a_ops = &btrfs_aops;
+ inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+ BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
+ inode->i_fop = &btrfs_file_operations;
+ inode->i_op = &btrfs_file_inode_operations;
+ break;
+ case S_IFDIR:
+ inode->i_fop = &btrfs_dir_file_operations;
+ if (root == root->fs_info->tree_root)
+ inode->i_op = &btrfs_dir_ro_inode_operations;
+ else
+ inode->i_op = &btrfs_dir_inode_operations;
+ break;
+ case S_IFLNK:
+ inode->i_op = &btrfs_symlink_inode_operations;
+ inode->i_mapping->a_ops = &btrfs_symlink_aops;
+ inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+ break;
+ default:
+ inode->i_op = &btrfs_special_inode_operations;
+ init_special_inode(inode, inode->i_mode, rdev);
+ break;
+ }
+
+ btrfs_update_iflags(inode);
+ return;
+
+make_bad:
+ btrfs_free_path(path);
+ make_bad_inode(inode);
+}
+
+/*
+ * given a leaf and an inode, copy the inode fields into the leaf
+ */
+static void fill_inode_item(struct btrfs_trans_handle *trans,
+ struct extent_buffer *leaf,
+ struct btrfs_inode_item *item,
+ struct inode *inode)
+{
+ btrfs_set_inode_uid(leaf, item, inode->i_uid);
+ btrfs_set_inode_gid(leaf, item, inode->i_gid);
+ btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
+ btrfs_set_inode_mode(leaf, item, inode->i_mode);
+ btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
+
+ btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
+ inode->i_atime.tv_sec);
+ btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
+ inode->i_atime.tv_nsec);
+
+ btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
+ inode->i_mtime.tv_sec);
+ btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
+ inode->i_mtime.tv_nsec);
+
+ btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
+ inode->i_ctime.tv_sec);
+ btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
+ inode->i_ctime.tv_nsec);
+
+ btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
+ btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
+ btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
+ btrfs_set_inode_transid(leaf, item, trans->transid);
+ btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
+ btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
+ btrfs_set_inode_block_group(leaf, item, 0);
+}
+
+/*
+ * copy everything in the in-memory inode into the btree.
+ */
+static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode)
+{
+ struct btrfs_inode_item *inode_item;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->leave_spinning = 1;
+ ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
+ 1);
+ if (ret) {
+ if (ret > 0)
+ ret = -ENOENT;
+ goto failed;
+ }
+
+ btrfs_unlock_up_safe(path, 1);
+ leaf = path->nodes[0];
+ inode_item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_inode_item);
+
+ fill_inode_item(trans, leaf, inode_item, inode);
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_set_inode_last_trans(trans, inode);
+ ret = 0;
+failed:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * copy everything in the in-memory inode into the btree.
+ */
+noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode)
+{
+ int ret;
+
+ /*
+ * If the inode is a free space inode, we can deadlock during commit
+ * if we put it into the delayed code.
+ *
+ * The data relocation inode should also be directly updated
+ * without delay
+ */
+ if (!btrfs_is_free_space_inode(root, inode)
+ && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
+ ret = btrfs_delayed_update_inode(trans, root, inode);
+ if (!ret)
+ btrfs_set_inode_last_trans(trans, inode);
+ return ret;
+ }
+
+ return btrfs_update_inode_item(trans, root, inode);
+}
+
+static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode)
+{
+ int ret;
+
+ ret = btrfs_update_inode(trans, root, inode);
+ if (ret == -ENOSPC)
+ return btrfs_update_inode_item(trans, root, inode);
+ return ret;
+}
+
+/*
+ * unlink helper that gets used here in inode.c and in the tree logging
+ * recovery code. It remove a link in a directory with a given name, and
+ * also drops the back refs in the inode to the directory
+ */
+static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *dir, struct inode *inode,
+ const char *name, int name_len)
+{
+ struct btrfs_path *path;
+ int ret = 0;
+ struct extent_buffer *leaf;
+ struct btrfs_dir_item *di;
+ struct btrfs_key key;
+ u64 index;
+ u64 ino = btrfs_ino(inode);
+ u64 dir_ino = btrfs_ino(dir);
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ path->leave_spinning = 1;
+ di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
+ name, name_len, -1);
+ if (IS_ERR(di)) {
+ ret = PTR_ERR(di);
+ goto err;
+ }
+ if (!di) {
+ ret = -ENOENT;
+ goto err;
+ }
+ leaf = path->nodes[0];
+ btrfs_dir_item_key_to_cpu(leaf, di, &key);
+ ret = btrfs_delete_one_dir_name(trans, root, path, di);
+ if (ret)
+ goto err;
+ btrfs_release_path(path);
+
+ ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
+ dir_ino, &index);
+ if (ret) {
+ printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
+ "inode %llu parent %llu\n", name_len, name,
+ (unsigned long long)ino, (unsigned long long)dir_ino);
+ btrfs_abort_transaction(trans, root, ret);
+ goto err;
+ }
+
+ ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto err;
+ }
+
+ ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
+ inode, dir_ino);
+ if (ret != 0 && ret != -ENOENT) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto err;
+ }
+
+ ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
+ dir, index);
+ if (ret == -ENOENT)
+ ret = 0;
+err:
+ btrfs_free_path(path);
+ if (ret)
+ goto out;
+
+ btrfs_i_size_write(dir, dir->i_size - name_len * 2);
+ inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
+ btrfs_update_inode(trans, root, dir);
+out:
+ return ret;
+}
+
+int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *dir, struct inode *inode,
+ const char *name, int name_len)
+{
+ int ret;
+ ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
+ if (!ret) {
+ btrfs_drop_nlink(inode);
+ ret = btrfs_update_inode(trans, root, inode);
+ }
+ return ret;
+}
+
+
+/* helper to check if there is any shared block in the path */
+static int check_path_shared(struct btrfs_root *root,
+ struct btrfs_path *path)
+{
+ struct extent_buffer *eb;
+ int level;
+ u64 refs = 1;
+
+ for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
+ int ret;
+
+ if (!path->nodes[level])
+ break;
+ eb = path->nodes[level];
+ if (!btrfs_block_can_be_shared(root, eb))
+ continue;
+ ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
+ &refs, NULL);
+ if (refs > 1)
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * helper to start transaction for unlink and rmdir.
+ *
+ * unlink and rmdir are special in btrfs, they do not always free space.
+ * so in enospc case, we should make sure they will free space before
+ * allowing them to use the global metadata reservation.
+ */
+static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
+ struct dentry *dentry)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_path *path;
+ struct btrfs_inode_ref *ref;
+ struct btrfs_dir_item *di;
+ struct inode *inode = dentry->d_inode;
+ u64 index;
+ int check_link = 1;
+ int err = -ENOSPC;
+ int ret;
+ u64 ino = btrfs_ino(inode);
+ u64 dir_ino = btrfs_ino(dir);
+
+ /*
+ * 1 for the possible orphan item
+ * 1 for the dir item
+ * 1 for the dir index
+ * 1 for the inode ref
+ * 1 for the inode ref in the tree log
+ * 2 for the dir entries in the log
+ * 1 for the inode
+ */
+ trans = btrfs_start_transaction(root, 8);
+ if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
+ return trans;
+
+ if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
+ return ERR_PTR(-ENOSPC);
+
+ /* check if there is someone else holds reference */
+ if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
+ return ERR_PTR(-ENOSPC);
+
+ if (atomic_read(&inode->i_count) > 2)
+ return ERR_PTR(-ENOSPC);
+
+ if (xchg(&root->fs_info->enospc_unlink, 1))
+ return ERR_PTR(-ENOSPC);
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ root->fs_info->enospc_unlink = 0;
+ return ERR_PTR(-ENOMEM);
+ }
+
+ /* 1 for the orphan item */
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans)) {
+ btrfs_free_path(path);
+ root->fs_info->enospc_unlink = 0;
+ return trans;
+ }
+
+ path->skip_locking = 1;
+ path->search_commit_root = 1;
+
+ ret = btrfs_lookup_inode(trans, root, path,
+ &BTRFS_I(dir)->location, 0);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret == 0) {
+ if (check_path_shared(root, path))
+ goto out;
+ } else {
+ check_link = 0;
+ }
+ btrfs_release_path(path);
+
+ ret = btrfs_lookup_inode(trans, root, path,
+ &BTRFS_I(inode)->location, 0);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret == 0) {
+ if (check_path_shared(root, path))
+ goto out;
+ } else {
+ check_link = 0;
+ }
+ btrfs_release_path(path);
+
+ if (ret == 0 && S_ISREG(inode->i_mode)) {
+ ret = btrfs_lookup_file_extent(trans, root, path,
+ ino, (u64)-1, 0);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ BUG_ON(ret == 0); /* Corruption */
+ if (check_path_shared(root, path))
+ goto out;
+ btrfs_release_path(path);
+ }
+
+ if (!check_link) {
+ err = 0;
+ goto out;
+ }
+
+ di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
+ dentry->d_name.name, dentry->d_name.len, 0);
+ if (IS_ERR(di)) {
+ err = PTR_ERR(di);
+ goto out;
+ }
+ if (di) {
+ if (check_path_shared(root, path))
+ goto out;
+ } else {
+ err = 0;
+ goto out;
+ }
+ btrfs_release_path(path);
+
+ ref = btrfs_lookup_inode_ref(trans, root, path,
+ dentry->d_name.name, dentry->d_name.len,
+ ino, dir_ino, 0);
+ if (IS_ERR(ref)) {
+ err = PTR_ERR(ref);
+ goto out;
+ }
+ BUG_ON(!ref); /* Logic error */
+ if (check_path_shared(root, path))
+ goto out;
+ index = btrfs_inode_ref_index(path->nodes[0], ref);
+ btrfs_release_path(path);
+
+ /*
+ * This is a commit root search, if we can lookup inode item and other
+ * relative items in the commit root, it means the transaction of
+ * dir/file creation has been committed, and the dir index item that we
+ * delay to insert has also been inserted into the commit root. So
+ * we needn't worry about the delayed insertion of the dir index item
+ * here.
+ */
+ di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
+ dentry->d_name.name, dentry->d_name.len, 0);
+ if (IS_ERR(di)) {
+ err = PTR_ERR(di);
+ goto out;
+ }
+ BUG_ON(ret == -ENOENT);
+ if (check_path_shared(root, path))
+ goto out;
+
+ err = 0;
+out:
+ btrfs_free_path(path);
+ /* Migrate the orphan reservation over */
+ if (!err)
+ err = btrfs_block_rsv_migrate(trans->block_rsv,
+ &root->fs_info->global_block_rsv,
+ trans->bytes_reserved);
+
+ if (err) {
+ btrfs_end_transaction(trans, root);
+ root->fs_info->enospc_unlink = 0;
+ return ERR_PTR(err);
+ }
+
+ trans->block_rsv = &root->fs_info->global_block_rsv;
+ return trans;
+}
+
+static void __unlink_end_trans(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ if (trans->block_rsv == &root->fs_info->global_block_rsv) {
+ btrfs_block_rsv_release(root, trans->block_rsv,
+ trans->bytes_reserved);
+ trans->block_rsv = &root->fs_info->trans_block_rsv;
+ BUG_ON(!root->fs_info->enospc_unlink);
+ root->fs_info->enospc_unlink = 0;
+ }
+ btrfs_end_transaction(trans, root);
+}
+
+static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
+{
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_trans_handle *trans;
+ struct inode *inode = dentry->d_inode;
+ int ret;
+ unsigned long nr = 0;
+
+ trans = __unlink_start_trans(dir, dentry);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
+
+ ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
+ dentry->d_name.name, dentry->d_name.len);
+ if (ret)
+ goto out;
+
+ if (inode->i_nlink == 0) {
+ ret = btrfs_orphan_add(trans, inode);
+ if (ret)
+ goto out;
+ }
+
+out:
+ nr = trans->blocks_used;
+ __unlink_end_trans(trans, root);
+ btrfs_btree_balance_dirty(root, nr);
+ return ret;
+}
+
+int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *dir, u64 objectid,
+ const char *name, int name_len)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_dir_item *di;
+ struct btrfs_key key;
+ u64 index;
+ int ret;
+ u64 dir_ino = btrfs_ino(dir);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
+ name, name_len, -1);
+ if (IS_ERR_OR_NULL(di)) {
+ if (!di)
+ ret = -ENOENT;
+ else
+ ret = PTR_ERR(di);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ btrfs_dir_item_key_to_cpu(leaf, di, &key);
+ WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
+ ret = btrfs_delete_one_dir_name(trans, root, path, di);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+ btrfs_release_path(path);
+
+ ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
+ objectid, root->root_key.objectid,
+ dir_ino, &index, name, name_len);
+ if (ret < 0) {
+ if (ret != -ENOENT) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+ di = btrfs_search_dir_index_item(root, path, dir_ino,
+ name, name_len);
+ if (IS_ERR_OR_NULL(di)) {
+ if (!di)
+ ret = -ENOENT;
+ else
+ ret = PTR_ERR(di);
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ btrfs_release_path(path);
+ index = key.offset;
+ }
+ btrfs_release_path(path);
+
+ ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+
+ btrfs_i_size_write(dir, dir->i_size - name_len * 2);
+ dir->i_mtime = dir->i_ctime = CURRENT_TIME;
+ ret = btrfs_update_inode(trans, root, dir);
+ if (ret)
+ btrfs_abort_transaction(trans, root, ret);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
+{
+ struct inode *inode = dentry->d_inode;
+ int err = 0;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_trans_handle *trans;
+ unsigned long nr = 0;
+
+ if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
+ btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
+ return -ENOTEMPTY;
+
+ trans = __unlink_start_trans(dir, dentry);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
+ err = btrfs_unlink_subvol(trans, root, dir,
+ BTRFS_I(inode)->location.objectid,
+ dentry->d_name.name,
+ dentry->d_name.len);
+ goto out;
+ }
+
+ err = btrfs_orphan_add(trans, inode);
+ if (err)
+ goto out;
+
+ /* now the directory is empty */
+ err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
+ dentry->d_name.name, dentry->d_name.len);
+ if (!err)
+ btrfs_i_size_write(inode, 0);
+out:
+ nr = trans->blocks_used;
+ __unlink_end_trans(trans, root);
+ btrfs_btree_balance_dirty(root, nr);
+
+ return err;
+}
+
+/*
+ * this can truncate away extent items, csum items and directory items.
+ * It starts at a high offset and removes keys until it can't find
+ * any higher than new_size
+ *
+ * csum items that cross the new i_size are truncated to the new size
+ * as well.
+ *
+ * min_type is the minimum key type to truncate down to. If set to 0, this
+ * will kill all the items on this inode, including the INODE_ITEM_KEY.
+ */
+int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *inode,
+ u64 new_size, u32 min_type)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ u64 extent_start = 0;
+ u64 extent_num_bytes = 0;
+ u64 extent_offset = 0;
+ u64 item_end = 0;
+ u64 mask = root->sectorsize - 1;
+ u32 found_type = (u8)-1;
+ int found_extent;
+ int del_item;
+ int pending_del_nr = 0;
+ int pending_del_slot = 0;
+ int extent_type = -1;
+ int ret;
+ int err = 0;
+ u64 ino = btrfs_ino(inode);
+
+ BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = -1;
+
+ if (root->ref_cows || root == root->fs_info->tree_root)
+ btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
+
+ /*
+ * This function is also used to drop the items in the log tree before
+ * we relog the inode, so if root != BTRFS_I(inode)->root, it means
+ * it is used to drop the loged items. So we shouldn't kill the delayed
+ * items.
+ */
+ if (min_type == 0 && root == BTRFS_I(inode)->root)
+ btrfs_kill_delayed_inode_items(inode);
+
+ key.objectid = ino;
+ key.offset = (u64)-1;
+ key.type = (u8)-1;
+
+search_again:
+ path->leave_spinning = 1;
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+
+ if (ret > 0) {
+ /* there are no items in the tree for us to truncate, we're
+ * done
+ */
+ if (path->slots[0] == 0)
+ goto out;
+ path->slots[0]--;
+ }
+
+ while (1) {
+ fi = NULL;
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ found_type = btrfs_key_type(&found_key);
+
+ if (found_key.objectid != ino)
+ break;
+
+ if (found_type < min_type)
+ break;
+
+ item_end = found_key.offset;
+ if (found_type == BTRFS_EXTENT_DATA_KEY) {
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ extent_type = btrfs_file_extent_type(leaf, fi);
+ if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
+ item_end +=
+ btrfs_file_extent_num_bytes(leaf, fi);
+ } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+ item_end += btrfs_file_extent_inline_len(leaf,
+ fi);
+ }
+ item_end--;
+ }
+ if (found_type > min_type) {
+ del_item = 1;
+ } else {
+ if (item_end < new_size)
+ break;
+ if (found_key.offset >= new_size)
+ del_item = 1;
+ else
+ del_item = 0;
+ }
+ found_extent = 0;
+ /* FIXME, shrink the extent if the ref count is only 1 */
+ if (found_type != BTRFS_EXTENT_DATA_KEY)
+ goto delete;
+
+ if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
+ u64 num_dec;
+ extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
+ if (!del_item) {
+ u64 orig_num_bytes =
+ btrfs_file_extent_num_bytes(leaf, fi);
+ extent_num_bytes = new_size -
+ found_key.offset + root->sectorsize - 1;
+ extent_num_bytes = extent_num_bytes &
+ ~((u64)root->sectorsize - 1);
+ btrfs_set_file_extent_num_bytes(leaf, fi,
+ extent_num_bytes);
+ num_dec = (orig_num_bytes -
+ extent_num_bytes);
+ if (root->ref_cows && extent_start != 0)
+ inode_sub_bytes(inode, num_dec);
+ btrfs_mark_buffer_dirty(leaf);
+ } else {
+ extent_num_bytes =
+ btrfs_file_extent_disk_num_bytes(leaf,
+ fi);
+ extent_offset = found_key.offset -
+ btrfs_file_extent_offset(leaf, fi);
+
+ /* FIXME blocksize != 4096 */
+ num_dec = btrfs_file_extent_num_bytes(leaf, fi);
+ if (extent_start != 0) {
+ found_extent = 1;
+ if (root->ref_cows)
+ inode_sub_bytes(inode, num_dec);
+ }
+ }
+ } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+ /*
+ * we can't truncate inline items that have had
+ * special encodings
+ */
+ if (!del_item &&
+ btrfs_file_extent_compression(leaf, fi) == 0 &&
+ btrfs_file_extent_encryption(leaf, fi) == 0 &&
+ btrfs_file_extent_other_encoding(leaf, fi) == 0) {
+ u32 size = new_size - found_key.offset;
+
+ if (root->ref_cows) {
+ inode_sub_bytes(inode, item_end + 1 -
+ new_size);
+ }
+ size =
+ btrfs_file_extent_calc_inline_size(size);
+ btrfs_truncate_item(trans, root, path,
+ size, 1);
+ } else if (root->ref_cows) {
+ inode_sub_bytes(inode, item_end + 1 -
+ found_key.offset);
+ }
+ }
+delete:
+ if (del_item) {
+ if (!pending_del_nr) {
+ /* no pending yet, add ourselves */
+ pending_del_slot = path->slots[0];
+ pending_del_nr = 1;
+ } else if (pending_del_nr &&
+ path->slots[0] + 1 == pending_del_slot) {
+ /* hop on the pending chunk */
+ pending_del_nr++;
+ pending_del_slot = path->slots[0];
+ } else {
+ BUG();
+ }
+ } else {
+ break;
+ }
+ if (found_extent && (root->ref_cows ||
+ root == root->fs_info->tree_root)) {
+ btrfs_set_path_blocking(path);
+ ret = btrfs_free_extent(trans, root, extent_start,
+ extent_num_bytes, 0,
+ btrfs_header_owner(leaf),
+ ino, extent_offset, 0);
+ BUG_ON(ret);
+ }
+
+ if (found_type == BTRFS_INODE_ITEM_KEY)
+ break;
+
+ if (path->slots[0] == 0 ||
+ path->slots[0] != pending_del_slot) {
+ if (root->ref_cows &&
+ BTRFS_I(inode)->location.objectid !=
+ BTRFS_FREE_INO_OBJECTID) {
+ err = -EAGAIN;
+ goto out;
+ }
+ if (pending_del_nr) {
+ ret = btrfs_del_items(trans, root, path,
+ pending_del_slot,
+ pending_del_nr);
+ if (ret) {
+ btrfs_abort_transaction(trans,
+ root, ret);
+ goto error;
+ }
+ pending_del_nr = 0;
+ }
+ btrfs_release_path(path);
+ goto search_again;
+ } else {
+ path->slots[0]--;
+ }
+ }
+out:
+ if (pending_del_nr) {
+ ret = btrfs_del_items(trans, root, path, pending_del_slot,
+ pending_del_nr);
+ if (ret)
+ btrfs_abort_transaction(trans, root, ret);
+ }
+error:
+ btrfs_free_path(path);
+ return err;
+}
+
+/*
+ * taken from block_truncate_page, but does cow as it zeros out
+ * any bytes left in the last page in the file.
+ */
+static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
+{
+ struct inode *inode = mapping->host;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct btrfs_ordered_extent *ordered;
+ struct extent_state *cached_state = NULL;
+ char *kaddr;
+ u32 blocksize = root->sectorsize;
+ pgoff_t index = from >> PAGE_CACHE_SHIFT;
+ unsigned offset = from & (PAGE_CACHE_SIZE-1);
+ struct page *page;
+ gfp_t mask = btrfs_alloc_write_mask(mapping);
+ int ret = 0;
+ u64 page_start;
+ u64 page_end;
+
+ if ((offset & (blocksize - 1)) == 0)
+ goto out;
+ ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
+ if (ret)
+ goto out;
+
+ ret = -ENOMEM;
+again:
+ page = find_or_create_page(mapping, index, mask);
+ if (!page) {
+ btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
+ goto out;
+ }
+
+ page_start = page_offset(page);
+ page_end = page_start + PAGE_CACHE_SIZE - 1;
+
+ if (!PageUptodate(page)) {
+ ret = btrfs_readpage(NULL, page);
+ lock_page(page);
+ if (page->mapping != mapping) {
+ unlock_page(page);
+ page_cache_release(page);
+ goto again;
+ }
+ if (!PageUptodate(page)) {
+ ret = -EIO;
+ goto out_unlock;
+ }
+ }
+ wait_on_page_writeback(page);
+
+ lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
+ set_page_extent_mapped(page);
+
+ ordered = btrfs_lookup_ordered_extent(inode, page_start);
+ if (ordered) {
+ unlock_extent_cached(io_tree, page_start, page_end,
+ &cached_state, GFP_NOFS);
+ unlock_page(page);
+ page_cache_release(page);
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ goto again;
+ }
+
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
+ EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
+ 0, 0, &cached_state, GFP_NOFS);
+
+ ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
+ &cached_state);
+ if (ret) {
+ unlock_extent_cached(io_tree, page_start, page_end,
+ &cached_state, GFP_NOFS);
+ goto out_unlock;
+ }
+
+ ret = 0;
+ if (offset != PAGE_CACHE_SIZE) {
+ kaddr = kmap(page);
+ memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
+ flush_dcache_page(page);
+ kunmap(page);
+ }
+ ClearPageChecked(page);
+ set_page_dirty(page);
+ unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
+ GFP_NOFS);
+
+out_unlock:
+ if (ret)
+ btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
+ unlock_page(page);
+ page_cache_release(page);
+out:
+ return ret;
+}
+
+/*
+ * This function puts in dummy file extents for the area we're creating a hole
+ * for. So if we are truncating this file to a larger size we need to insert
+ * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
+ * the range between oldsize and size
+ */
+int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct extent_map *em = NULL;
+ struct extent_state *cached_state = NULL;
+ u64 mask = root->sectorsize - 1;
+ u64 hole_start = (oldsize + mask) & ~mask;
+ u64 block_end = (size + mask) & ~mask;
+ u64 last_byte;
+ u64 cur_offset;
+ u64 hole_size;
+ int err = 0;
+
+ if (size <= hole_start)
+ return 0;
+
+ while (1) {
+ struct btrfs_ordered_extent *ordered;
+ btrfs_wait_ordered_range(inode, hole_start,
+ block_end - hole_start);
+ lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
+ &cached_state);
+ ordered = btrfs_lookup_ordered_extent(inode, hole_start);
+ if (!ordered)
+ break;
+ unlock_extent_cached(io_tree, hole_start, block_end - 1,
+ &cached_state, GFP_NOFS);
+ btrfs_put_ordered_extent(ordered);
+ }
+
+ cur_offset = hole_start;
+ while (1) {
+ em = btrfs_get_extent(inode, NULL, 0, cur_offset,
+ block_end - cur_offset, 0);
+ if (IS_ERR(em)) {
+ err = PTR_ERR(em);
+ break;
+ }
+ last_byte = min(extent_map_end(em), block_end);
+ last_byte = (last_byte + mask) & ~mask;
+ if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
+ u64 hint_byte = 0;
+ hole_size = last_byte - cur_offset;
+
+ trans = btrfs_start_transaction(root, 3);
+ if (IS_ERR(trans)) {
+ err = PTR_ERR(trans);
+ break;
+ }
+
+ err = btrfs_drop_extents(trans, inode, cur_offset,
+ cur_offset + hole_size,
+ &hint_byte, 1);
+ if (err) {
+ btrfs_abort_transaction(trans, root, err);
+ btrfs_end_transaction(trans, root);
+ break;
+ }
+
+ err = btrfs_insert_file_extent(trans, root,
+ btrfs_ino(inode), cur_offset, 0,
+ 0, hole_size, 0, hole_size,
+ 0, 0, 0);
+ if (err) {
+ btrfs_abort_transaction(trans, root, err);
+ btrfs_end_transaction(trans, root);
+ break;
+ }
+
+ btrfs_drop_extent_cache(inode, hole_start,
+ last_byte - 1, 0);
+
+ btrfs_update_inode(trans, root, inode);
+ btrfs_end_transaction(trans, root);
+ }
+ free_extent_map(em);
+ em = NULL;
+ cur_offset = last_byte;
+ if (cur_offset >= block_end)
+ break;
+ }
+
+ free_extent_map(em);
+ unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
+ GFP_NOFS);
+ return err;
+}
+
+static int btrfs_setsize(struct inode *inode, loff_t newsize)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ loff_t oldsize = i_size_read(inode);
+ int ret;
+
+ if (newsize == oldsize)
+ return 0;
+
+ if (newsize > oldsize) {
+ truncate_pagecache(inode, oldsize, newsize);
+ ret = btrfs_cont_expand(inode, oldsize, newsize);
+ if (ret)
+ return ret;
+
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ i_size_write(inode, newsize);
+ btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
+ ret = btrfs_update_inode(trans, root, inode);
+ btrfs_end_transaction(trans, root);
+ } else {
+
+ /*
+ * We're truncating a file that used to have good data down to
+ * zero. Make sure it gets into the ordered flush list so that
+ * any new writes get down to disk quickly.
+ */
+ if (newsize == 0)
+ BTRFS_I(inode)->ordered_data_close = 1;
+
+ /* we don't support swapfiles, so vmtruncate shouldn't fail */
+ truncate_setsize(inode, newsize);
+ ret = btrfs_truncate(inode);
+ }
+
+ return ret;
+}
+
+static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
+{
+ struct inode *inode = dentry->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int err;
+
+ if (btrfs_root_readonly(root))
+ return -EROFS;
+
+ err = inode_change_ok(inode, attr);
+ if (err)
+ return err;
+
+ if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
+ err = btrfs_setsize(inode, attr->ia_size);
+ if (err)
+ return err;
+ }
+
+ if (attr->ia_valid) {
+ setattr_copy(inode, attr);
+ err = btrfs_dirty_inode(inode);
+
+ if (!err && attr->ia_valid & ATTR_MODE)
+ err = btrfs_acl_chmod(inode);
+ }
+
+ return err;
+}
+
+void btrfs_evict_inode(struct inode *inode)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_block_rsv *rsv, *global_rsv;
+ u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
+ unsigned long nr;
+ int ret;
+
+ trace_btrfs_inode_evict(inode);
+
+ truncate_inode_pages(&inode->i_data, 0);
+ if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
+ btrfs_is_free_space_inode(root, inode)))
+ goto no_delete;
+
+ if (is_bad_inode(inode)) {
+ btrfs_orphan_del(NULL, inode);
+ goto no_delete;
+ }
+ /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
+ btrfs_wait_ordered_range(inode, 0, (u64)-1);
+
+ if (root->fs_info->log_root_recovering) {
+ BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
+ goto no_delete;
+ }
+
+ if (inode->i_nlink > 0) {
+ BUG_ON(btrfs_root_refs(&root->root_item) != 0);
+ goto no_delete;
+ }
+
+ rsv = btrfs_alloc_block_rsv(root);
+ if (!rsv) {
+ btrfs_orphan_del(NULL, inode);
+ goto no_delete;
+ }
+ rsv->size = min_size;
+ global_rsv = &root->fs_info->global_block_rsv;
+
+ btrfs_i_size_write(inode, 0);
+
+ /*
+ * This is a bit simpler than btrfs_truncate since
+ *
+ * 1) We've already reserved our space for our orphan item in the
+ * unlink.
+ * 2) We're going to delete the inode item, so we don't need to update
+ * it at all.
+ *
+ * So we just need to reserve some slack space in case we add bytes when
+ * doing the truncate.
+ */
+ while (1) {
+ ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
+
+ /*
+ * Try and steal from the global reserve since we will
+ * likely not use this space anyway, we want to try as
+ * hard as possible to get this to work.
+ */
+ if (ret)
+ ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
+
+ if (ret) {
+ printk(KERN_WARNING "Could not get space for a "
+ "delete, will truncate on mount %d\n", ret);
+ btrfs_orphan_del(NULL, inode);
+ btrfs_free_block_rsv(root, rsv);
+ goto no_delete;
+ }
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ btrfs_orphan_del(NULL, inode);
+ btrfs_free_block_rsv(root, rsv);
+ goto no_delete;
+ }
+
+ trans->block_rsv = rsv;
+
+ ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
+ if (ret != -EAGAIN)
+ break;
+
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ trans = NULL;
+ btrfs_btree_balance_dirty(root, nr);
+ }
+
+ btrfs_free_block_rsv(root, rsv);
+
+ if (ret == 0) {
+ trans->block_rsv = root->orphan_block_rsv;
+ ret = btrfs_orphan_del(trans, inode);
+ BUG_ON(ret);
+ }
+
+ trans->block_rsv = &root->fs_info->trans_block_rsv;
+ if (!(root == root->fs_info->tree_root ||
+ root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
+ btrfs_return_ino(root, btrfs_ino(inode));
+
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ btrfs_btree_balance_dirty(root, nr);
+no_delete:
+ end_writeback(inode);
+ return;
+}
+
+/*
+ * this returns the key found in the dir entry in the location pointer.
+ * If no dir entries were found, location->objectid is 0.
+ */
+static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
+ struct btrfs_key *location)
+{
+ const char *name = dentry->d_name.name;
+ int namelen = dentry->d_name.len;
+ struct btrfs_dir_item *di;
+ struct btrfs_path *path;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ int ret = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
+ namelen, 0);
+ if (IS_ERR(di))
+ ret = PTR_ERR(di);
+
+ if (IS_ERR_OR_NULL(di))
+ goto out_err;
+
+ btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
+out:
+ btrfs_free_path(path);
+ return ret;
+out_err:
+ location->objectid = 0;
+ goto out;
+}
+
+/*
+ * when we hit a tree root in a directory, the btrfs part of the inode
+ * needs to be changed to reflect the root directory of the tree root. This
+ * is kind of like crossing a mount point.
+ */
+static int fixup_tree_root_location(struct btrfs_root *root,
+ struct inode *dir,
+ struct dentry *dentry,
+ struct btrfs_key *location,
+ struct btrfs_root **sub_root)
+{
+ struct btrfs_path *path;
+ struct btrfs_root *new_root;
+ struct btrfs_root_ref *ref;
+ struct extent_buffer *leaf;
+ int ret;
+ int err = 0;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = -ENOENT;
+ ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
+ BTRFS_I(dir)->root->root_key.objectid,
+ location->objectid);
+ if (ret) {
+ if (ret < 0)
+ err = ret;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
+ if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
+ btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
+ goto out;
+
+ ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
+ (unsigned long)(ref + 1),
+ dentry->d_name.len);
+ if (ret)
+ goto out;
+
+ btrfs_release_path(path);
+
+ new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
+ if (IS_ERR(new_root)) {
+ err = PTR_ERR(new_root);
+ goto out;
+ }
+
+ if (btrfs_root_refs(&new_root->root_item) == 0) {
+ err = -ENOENT;
+ goto out;
+ }
+
+ *sub_root = new_root;
+ location->objectid = btrfs_root_dirid(&new_root->root_item);
+ location->type = BTRFS_INODE_ITEM_KEY;
+ location->offset = 0;
+ err = 0;
+out:
+ btrfs_free_path(path);
+ return err;
+}
+
+static void inode_tree_add(struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_inode *entry;
+ struct rb_node **p;
+ struct rb_node *parent;
+ u64 ino = btrfs_ino(inode);
+again:
+ p = &root->inode_tree.rb_node;
+ parent = NULL;
+
+ if (inode_unhashed(inode))
+ return;
+
+ spin_lock(&root->inode_lock);
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct btrfs_inode, rb_node);
+
+ if (ino < btrfs_ino(&entry->vfs_inode))
+ p = &parent->rb_left;
+ else if (ino > btrfs_ino(&entry->vfs_inode))
+ p = &parent->rb_right;
+ else {
+ WARN_ON(!(entry->vfs_inode.i_state &
+ (I_WILL_FREE | I_FREEING)));
+ rb_erase(parent, &root->inode_tree);
+ RB_CLEAR_NODE(parent);
+ spin_unlock(&root->inode_lock);
+ goto again;
+ }
+ }
+ rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
+ rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
+ spin_unlock(&root->inode_lock);
+}
+
+static void inode_tree_del(struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int empty = 0;
+
+ spin_lock(&root->inode_lock);
+ if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
+ rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
+ RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
+ empty = RB_EMPTY_ROOT(&root->inode_tree);
+ }
+ spin_unlock(&root->inode_lock);
+
+ /*
+ * Free space cache has inodes in the tree root, but the tree root has a
+ * root_refs of 0, so this could end up dropping the tree root as a
+ * snapshot, so we need the extra !root->fs_info->tree_root check to
+ * make sure we don't drop it.
+ */
+ if (empty && btrfs_root_refs(&root->root_item) == 0 &&
+ root != root->fs_info->tree_root) {
+ synchronize_srcu(&root->fs_info->subvol_srcu);
+ spin_lock(&root->inode_lock);
+ empty = RB_EMPTY_ROOT(&root->inode_tree);
+ spin_unlock(&root->inode_lock);
+ if (empty)
+ btrfs_add_dead_root(root);
+ }
+}
+
+void btrfs_invalidate_inodes(struct btrfs_root *root)
+{
+ struct rb_node *node;
+ struct rb_node *prev;
+ struct btrfs_inode *entry;
+ struct inode *inode;
+ u64 objectid = 0;
+
+ WARN_ON(btrfs_root_refs(&root->root_item) != 0);
+
+ spin_lock(&root->inode_lock);
+again:
+ node = root->inode_tree.rb_node;
+ prev = NULL;
+ while (node) {
+ prev = node;
+ entry = rb_entry(node, struct btrfs_inode, rb_node);
+
+ if (objectid < btrfs_ino(&entry->vfs_inode))
+ node = node->rb_left;
+ else if (objectid > btrfs_ino(&entry->vfs_inode))
+ node = node->rb_right;
+ else
+ break;
+ }
+ if (!node) {
+ while (prev) {
+ entry = rb_entry(prev, struct btrfs_inode, rb_node);
+ if (objectid <= btrfs_ino(&entry->vfs_inode)) {
+ node = prev;
+ break;
+ }
+ prev = rb_next(prev);
+ }
+ }
+ while (node) {
+ entry = rb_entry(node, struct btrfs_inode, rb_node);
+ objectid = btrfs_ino(&entry->vfs_inode) + 1;
+ inode = igrab(&entry->vfs_inode);
+ if (inode) {
+ spin_unlock(&root->inode_lock);
+ if (atomic_read(&inode->i_count) > 1)
+ d_prune_aliases(inode);
+ /*
+ * btrfs_drop_inode will have it removed from
+ * the inode cache when its usage count
+ * hits zero.
+ */
+ iput(inode);
+ cond_resched();
+ spin_lock(&root->inode_lock);
+ goto again;
+ }
+
+ if (cond_resched_lock(&root->inode_lock))
+ goto again;
+
+ node = rb_next(node);
+ }
+ spin_unlock(&root->inode_lock);
+}
+
+static int btrfs_init_locked_inode(struct inode *inode, void *p)
+{
+ struct btrfs_iget_args *args = p;
+ inode->i_ino = args->ino;
+ BTRFS_I(inode)->root = args->root;
+ btrfs_set_inode_space_info(args->root, inode);
+ return 0;
+}
+
+static int btrfs_find_actor(struct inode *inode, void *opaque)
+{
+ struct btrfs_iget_args *args = opaque;
+ return args->ino == btrfs_ino(inode) &&
+ args->root == BTRFS_I(inode)->root;
+}
+
+static struct inode *btrfs_iget_locked(struct super_block *s,
+ u64 objectid,
+ struct btrfs_root *root)
+{
+ struct inode *inode;
+ struct btrfs_iget_args args;
+ args.ino = objectid;
+ args.root = root;
+
+ inode = iget5_locked(s, objectid, btrfs_find_actor,
+ btrfs_init_locked_inode,
+ (void *)&args);
+ return inode;
+}
+
+/* Get an inode object given its location and corresponding root.
+ * Returns in *is_new if the inode was read from disk
+ */
+struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
+ struct btrfs_root *root, int *new)
+{
+ struct inode *inode;
+
+ inode = btrfs_iget_locked(s, location->objectid, root);
+ if (!inode)
+ return ERR_PTR(-ENOMEM);
+
+ if (inode->i_state & I_NEW) {
+ BTRFS_I(inode)->root = root;
+ memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
+ btrfs_read_locked_inode(inode);
+ if (!is_bad_inode(inode)) {
+ inode_tree_add(inode);
+ unlock_new_inode(inode);
+ if (new)
+ *new = 1;
+ } else {
+ unlock_new_inode(inode);
+ iput(inode);
+ inode = ERR_PTR(-ESTALE);
+ }
+ }
+
+ return inode;
+}
+
+static struct inode *new_simple_dir(struct super_block *s,
+ struct btrfs_key *key,
+ struct btrfs_root *root)
+{
+ struct inode *inode = new_inode(s);
+
+ if (!inode)
+ return ERR_PTR(-ENOMEM);
+
+ BTRFS_I(inode)->root = root;
+ memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
+ BTRFS_I(inode)->dummy_inode = 1;
+
+ inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
+ inode->i_op = &btrfs_dir_ro_inode_operations;
+ inode->i_fop = &simple_dir_operations;
+ inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
+ inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
+
+ return inode;
+}
+
+struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
+{
+ struct inode *inode;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_root *sub_root = root;
+ struct btrfs_key location;
+ int index;
+ int ret = 0;
+
+ if (dentry->d_name.len > BTRFS_NAME_LEN)
+ return ERR_PTR(-ENAMETOOLONG);
+
+ if (unlikely(d_need_lookup(dentry))) {
+ memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
+ kfree(dentry->d_fsdata);
+ dentry->d_fsdata = NULL;
+ /* This thing is hashed, drop it for now */
+ d_drop(dentry);
+ } else {
+ ret = btrfs_inode_by_name(dir, dentry, &location);
+ }
+
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ if (location.objectid == 0)
+ return NULL;
+
+ if (location.type == BTRFS_INODE_ITEM_KEY) {
+ inode = btrfs_iget(dir->i_sb, &location, root, NULL);
+ return inode;
+ }
+
+ BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
+
+ index = srcu_read_lock(&root->fs_info->subvol_srcu);
+ ret = fixup_tree_root_location(root, dir, dentry,
+ &location, &sub_root);
+ if (ret < 0) {
+ if (ret != -ENOENT)
+ inode = ERR_PTR(ret);
+ else
+ inode = new_simple_dir(dir->i_sb, &location, sub_root);
+ } else {
+ inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
+ }
+ srcu_read_unlock(&root->fs_info->subvol_srcu, index);
+
+ if (!IS_ERR(inode) && root != sub_root) {
+ down_read(&root->fs_info->cleanup_work_sem);
+ if (!(inode->i_sb->s_flags & MS_RDONLY))
+ ret = btrfs_orphan_cleanup(sub_root);
+ up_read(&root->fs_info->cleanup_work_sem);
+ if (ret)
+ inode = ERR_PTR(ret);
+ }
+
+ return inode;
+}
+
+static int btrfs_dentry_delete(const struct dentry *dentry)
+{
+ struct btrfs_root *root;
+ struct inode *inode = dentry->d_inode;
+
+ if (!inode && !IS_ROOT(dentry))
+ inode = dentry->d_parent->d_inode;
+
+ if (inode) {
+ root = BTRFS_I(inode)->root;
+ if (btrfs_root_refs(&root->root_item) == 0)
+ return 1;
+
+ if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
+ return 1;
+ }
+ return 0;
+}
+
+static void btrfs_dentry_release(struct dentry *dentry)
+{
+ if (dentry->d_fsdata)
+ kfree(dentry->d_fsdata);
+}
+
+static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
+ struct nameidata *nd)
+{
+ struct dentry *ret;
+
+ ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
+ if (unlikely(d_need_lookup(dentry))) {
+ spin_lock(&dentry->d_lock);
+ dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
+ spin_unlock(&dentry->d_lock);
+ }
+ return ret;
+}
+
+unsigned char btrfs_filetype_table[] = {
+ DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
+};
+
+static int btrfs_real_readdir(struct file *filp, void *dirent,
+ filldir_t filldir)
+{
+ struct inode *inode = filp->f_dentry->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_item *item;
+ struct btrfs_dir_item *di;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_path *path;
+ struct list_head ins_list;
+ struct list_head del_list;
+ int ret;
+ struct extent_buffer *leaf;
+ int slot;
+ unsigned char d_type;
+ int over = 0;
+ u32 di_cur;
+ u32 di_total;
+ u32 di_len;
+ int key_type = BTRFS_DIR_INDEX_KEY;
+ char tmp_name[32];
+ char *name_ptr;
+ int name_len;
+ int is_curr = 0; /* filp->f_pos points to the current index? */
+
+ /* FIXME, use a real flag for deciding about the key type */
+ if (root->fs_info->tree_root == root)
+ key_type = BTRFS_DIR_ITEM_KEY;
+
+ /* special case for "." */
+ if (filp->f_pos == 0) {
+ over = filldir(dirent, ".", 1,
+ filp->f_pos, btrfs_ino(inode), DT_DIR);
+ if (over)
+ return 0;
+ filp->f_pos = 1;
+ }
+ /* special case for .., just use the back ref */
+ if (filp->f_pos == 1) {
+ u64 pino = parent_ino(filp->f_path.dentry);
+ over = filldir(dirent, "..", 2,
+ filp->f_pos, pino, DT_DIR);
+ if (over)
+ return 0;
+ filp->f_pos = 2;
+ }
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->reada = 1;
+
+ if (key_type == BTRFS_DIR_INDEX_KEY) {
+ INIT_LIST_HEAD(&ins_list);
+ INIT_LIST_HEAD(&del_list);
+ btrfs_get_delayed_items(inode, &ins_list, &del_list);
+ }
+
+ btrfs_set_key_type(&key, key_type);
+ key.offset = filp->f_pos;
+ key.objectid = btrfs_ino(inode);
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto err;
+
+ while (1) {
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ goto err;
+ else if (ret > 0)
+ break;
+ continue;
+ }
+
+ item = btrfs_item_nr(leaf, slot);
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+ if (found_key.objectid != key.objectid)
+ break;
+ if (btrfs_key_type(&found_key) != key_type)
+ break;
+ if (found_key.offset < filp->f_pos)
+ goto next;
+ if (key_type == BTRFS_DIR_INDEX_KEY &&
+ btrfs_should_delete_dir_index(&del_list,
+ found_key.offset))
+ goto next;
+
+ filp->f_pos = found_key.offset;
+ is_curr = 1;
+
+ di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
+ di_cur = 0;
+ di_total = btrfs_item_size(leaf, item);
+
+ while (di_cur < di_total) {
+ struct btrfs_key location;
+
+ if (verify_dir_item(root, leaf, di))
+ break;
+
+ name_len = btrfs_dir_name_len(leaf, di);
+ if (name_len <= sizeof(tmp_name)) {
+ name_ptr = tmp_name;
+ } else {
+ name_ptr = kmalloc(name_len, GFP_NOFS);
+ if (!name_ptr) {
+ ret = -ENOMEM;
+ goto err;
+ }
+ }
+ read_extent_buffer(leaf, name_ptr,
+ (unsigned long)(di + 1), name_len);
+
+ d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
+ btrfs_dir_item_key_to_cpu(leaf, di, &location);
+
+
+ /* is this a reference to our own snapshot? If so
+ * skip it.
+ *
+ * In contrast to old kernels, we insert the snapshot's
+ * dir item and dir index after it has been created, so
+ * we won't find a reference to our own snapshot. We
+ * still keep the following code for backward
+ * compatibility.
+ */
+ if (location.type == BTRFS_ROOT_ITEM_KEY &&
+ location.objectid == root->root_key.objectid) {
+ over = 0;
+ goto skip;
+ }
+ over = filldir(dirent, name_ptr, name_len,
+ found_key.offset, location.objectid,
+ d_type);
+
+skip:
+ if (name_ptr != tmp_name)
+ kfree(name_ptr);
+
+ if (over)
+ goto nopos;
+ di_len = btrfs_dir_name_len(leaf, di) +
+ btrfs_dir_data_len(leaf, di) + sizeof(*di);
+ di_cur += di_len;
+ di = (struct btrfs_dir_item *)((char *)di + di_len);
+ }
+next:
+ path->slots[0]++;
+ }
+
+ if (key_type == BTRFS_DIR_INDEX_KEY) {
+ if (is_curr)
+ filp->f_pos++;
+ ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
+ &ins_list);
+ if (ret)
+ goto nopos;
+ }
+
+ /* Reached end of directory/root. Bump pos past the last item. */
+ if (key_type == BTRFS_DIR_INDEX_KEY)
+ /*
+ * 32-bit glibc will use getdents64, but then strtol -
+ * so the last number we can serve is this.
+ */
+ filp->f_pos = 0x7fffffff;
+ else
+ filp->f_pos++;
+nopos:
+ ret = 0;
+err:
+ if (key_type == BTRFS_DIR_INDEX_KEY)
+ btrfs_put_delayed_items(&ins_list, &del_list);
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ int ret = 0;
+ bool nolock = false;
+
+ if (BTRFS_I(inode)->dummy_inode)
+ return 0;
+
+ if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
+ nolock = true;
+
+ if (wbc->sync_mode == WB_SYNC_ALL) {
+ if (nolock)
+ trans = btrfs_join_transaction_nolock(root);
+ else
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ if (nolock)
+ ret = btrfs_end_transaction_nolock(trans, root);
+ else
+ ret = btrfs_commit_transaction(trans, root);
+ }
+ return ret;
+}
+
+/*
+ * This is somewhat expensive, updating the tree every time the
+ * inode changes. But, it is most likely to find the inode in cache.
+ * FIXME, needs more benchmarking...there are no reasons other than performance
+ * to keep or drop this code.
+ */
+int btrfs_dirty_inode(struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ int ret;
+
+ if (BTRFS_I(inode)->dummy_inode)
+ return 0;
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ ret = btrfs_update_inode(trans, root, inode);
+ if (ret && ret == -ENOSPC) {
+ /* whoops, lets try again with the full transaction */
+ btrfs_end_transaction(trans, root);
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ ret = btrfs_update_inode(trans, root, inode);
+ }
+ btrfs_end_transaction(trans, root);
+ if (BTRFS_I(inode)->delayed_node)
+ btrfs_balance_delayed_items(root);
+
+ return ret;
+}
+
+/*
+ * This is a copy of file_update_time. We need this so we can return error on
+ * ENOSPC for updating the inode in the case of file write and mmap writes.
+ */
+int btrfs_update_time(struct file *file)
+{
+ struct inode *inode = file->f_path.dentry->d_inode;
+ struct timespec now;
+ int ret;
+ enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
+
+ /* First try to exhaust all avenues to not sync */
+ if (IS_NOCMTIME(inode))
+ return 0;
+
+ now = current_fs_time(inode->i_sb);
+ if (!timespec_equal(&inode->i_mtime, &now))
+ sync_it = S_MTIME;
+
+ if (!timespec_equal(&inode->i_ctime, &now))
+ sync_it |= S_CTIME;
+
+ if (IS_I_VERSION(inode))
+ sync_it |= S_VERSION;
+
+ if (!sync_it)
+ return 0;
+
+ /* Finally allowed to write? Takes lock. */
+ if (mnt_want_write_file(file))
+ return 0;
+
+ /* Only change inode inside the lock region */
+ if (sync_it & S_VERSION)
+ inode_inc_iversion(inode);
+ if (sync_it & S_CTIME)
+ inode->i_ctime = now;
+ if (sync_it & S_MTIME)
+ inode->i_mtime = now;
+ ret = btrfs_dirty_inode(inode);
+ if (!ret)
+ mark_inode_dirty_sync(inode);
+ mnt_drop_write(file->f_path.mnt);
+ return ret;
+}
+
+/*
+ * find the highest existing sequence number in a directory
+ * and then set the in-memory index_cnt variable to reflect
+ * free sequence numbers
+ */
+static int btrfs_set_inode_index_count(struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_key key, found_key;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ int ret;
+
+ key.objectid = btrfs_ino(inode);
+ btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
+ key.offset = (u64)-1;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ /* FIXME: we should be able to handle this */
+ if (ret == 0)
+ goto out;
+ ret = 0;
+
+ /*
+ * MAGIC NUMBER EXPLANATION:
+ * since we search a directory based on f_pos we have to start at 2
+ * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
+ * else has to start at 2
+ */
+ if (path->slots[0] == 0) {
+ BTRFS_I(inode)->index_cnt = 2;
+ goto out;
+ }
+
+ path->slots[0]--;
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+ if (found_key.objectid != btrfs_ino(inode) ||
+ btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
+ BTRFS_I(inode)->index_cnt = 2;
+ goto out;
+ }
+
+ BTRFS_I(inode)->index_cnt = found_key.offset + 1;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * helper to find a free sequence number in a given directory. This current
+ * code is very simple, later versions will do smarter things in the btree
+ */
+int btrfs_set_inode_index(struct inode *dir, u64 *index)
+{
+ int ret = 0;
+
+ if (BTRFS_I(dir)->index_cnt == (u64)-1) {
+ ret = btrfs_inode_delayed_dir_index_count(dir);
+ if (ret) {
+ ret = btrfs_set_inode_index_count(dir);
+ if (ret)
+ return ret;
+ }
+ }
+
+ *index = BTRFS_I(dir)->index_cnt;
+ BTRFS_I(dir)->index_cnt++;
+
+ return ret;
+}
+
+static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *dir,
+ const char *name, int name_len,
+ u64 ref_objectid, u64 objectid,
+ umode_t mode, u64 *index)
+{
+ struct inode *inode;
+ struct btrfs_inode_item *inode_item;
+ struct btrfs_key *location;
+ struct btrfs_path *path;
+ struct btrfs_inode_ref *ref;
+ struct btrfs_key key[2];
+ u32 sizes[2];
+ unsigned long ptr;
+ int ret;
+ int owner;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return ERR_PTR(-ENOMEM);
+
+ inode = new_inode(root->fs_info->sb);
+ if (!inode) {
+ btrfs_free_path(path);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ /*
+ * we have to initialize this early, so we can reclaim the inode
+ * number if we fail afterwards in this function.
+ */
+ inode->i_ino = objectid;
+
+ if (dir) {
+ trace_btrfs_inode_request(dir);
+
+ ret = btrfs_set_inode_index(dir, index);
+ if (ret) {
+ btrfs_free_path(path);
+ iput(inode);
+ return ERR_PTR(ret);
+ }
+ }
+ /*
+ * index_cnt is ignored for everything but a dir,
+ * btrfs_get_inode_index_count has an explanation for the magic
+ * number
+ */
+ BTRFS_I(inode)->index_cnt = 2;
+ BTRFS_I(inode)->root = root;
+ BTRFS_I(inode)->generation = trans->transid;
+ inode->i_generation = BTRFS_I(inode)->generation;
+ btrfs_set_inode_space_info(root, inode);
+
+ if (S_ISDIR(mode))
+ owner = 0;
+ else
+ owner = 1;
+
+ key[0].objectid = objectid;
+ btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
+ key[0].offset = 0;
+
+ key[1].objectid = objectid;
+ btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
+ key[1].offset = ref_objectid;
+
+ sizes[0] = sizeof(struct btrfs_inode_item);
+ sizes[1] = name_len + sizeof(*ref);
+
+ path->leave_spinning = 1;
+ ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
+ if (ret != 0)
+ goto fail;
+
+ inode_init_owner(inode, dir, mode);
+ inode_set_bytes(inode, 0);
+ inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
+ inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_inode_item);
+ fill_inode_item(trans, path->nodes[0], inode_item, inode);
+
+ ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
+ struct btrfs_inode_ref);
+ btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
+ btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
+ ptr = (unsigned long)(ref + 1);
+ write_extent_buffer(path->nodes[0], name, ptr, name_len);
+
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+ btrfs_free_path(path);
+
+ location = &BTRFS_I(inode)->location;
+ location->objectid = objectid;
+ location->offset = 0;
+ btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
+
+ btrfs_inherit_iflags(inode, dir);
+
+ if (S_ISREG(mode)) {
+ if (btrfs_test_opt(root, NODATASUM))
+ BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
+ if (btrfs_test_opt(root, NODATACOW) ||
+ (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
+ BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
+ }
+
+ insert_inode_hash(inode);
+ inode_tree_add(inode);
+
+ trace_btrfs_inode_new(inode);
+ btrfs_set_inode_last_trans(trans, inode);
+
+ return inode;
+fail:
+ if (dir)
+ BTRFS_I(dir)->index_cnt--;
+ btrfs_free_path(path);
+ iput(inode);
+ return ERR_PTR(ret);
+}
+
+static inline u8 btrfs_inode_type(struct inode *inode)
+{
+ return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
+}
+
+/*
+ * utility function to add 'inode' into 'parent_inode' with
+ * a give name and a given sequence number.
+ * if 'add_backref' is true, also insert a backref from the
+ * inode to the parent directory.
+ */
+int btrfs_add_link(struct btrfs_trans_handle *trans,
+ struct inode *parent_inode, struct inode *inode,
+ const char *name, int name_len, int add_backref, u64 index)
+{
+ int ret = 0;
+ struct btrfs_key key;
+ struct btrfs_root *root = BTRFS_I(parent_inode)->root;
+ u64 ino = btrfs_ino(inode);
+ u64 parent_ino = btrfs_ino(parent_inode);
+
+ if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
+ memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
+ } else {
+ key.objectid = ino;
+ btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
+ key.offset = 0;
+ }
+
+ if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
+ ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
+ key.objectid, root->root_key.objectid,
+ parent_ino, index, name, name_len);
+ } else if (add_backref) {
+ ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
+ parent_ino, index);
+ }
+
+ /* Nothing to clean up yet */
+ if (ret)
+ return ret;
+
+ ret = btrfs_insert_dir_item(trans, root, name, name_len,
+ parent_inode, &key,
+ btrfs_inode_type(inode), index);
+ if (ret == -EEXIST)
+ goto fail_dir_item;
+ else if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+ }
+
+ btrfs_i_size_write(parent_inode, parent_inode->i_size +
+ name_len * 2);
+ parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
+ ret = btrfs_update_inode(trans, root, parent_inode);
+ if (ret)
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+
+fail_dir_item:
+ if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
+ u64 local_index;
+ int err;
+ err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
+ key.objectid, root->root_key.objectid,
+ parent_ino, &local_index, name, name_len);
+
+ } else if (add_backref) {
+ u64 local_index;
+ int err;
+
+ err = btrfs_del_inode_ref(trans, root, name, name_len,
+ ino, parent_ino, &local_index);
+ }
+ return ret;
+}
+
+static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
+ struct inode *dir, struct dentry *dentry,
+ struct inode *inode, int backref, u64 index)
+{
+ int err = btrfs_add_link(trans, dir, inode,
+ dentry->d_name.name, dentry->d_name.len,
+ backref, index);
+ if (err > 0)
+ err = -EEXIST;
+ return err;
+}
+
+static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
+ umode_t mode, dev_t rdev)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct inode *inode = NULL;
+ int err;
+ int drop_inode = 0;
+ u64 objectid;
+ unsigned long nr = 0;
+ u64 index = 0;
+
+ if (!new_valid_dev(rdev))
+ return -EINVAL;
+
+ /*
+ * 2 for inode item and ref
+ * 2 for dir items
+ * 1 for xattr if selinux is on
+ */
+ trans = btrfs_start_transaction(root, 5);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ err = btrfs_find_free_ino(root, &objectid);
+ if (err)
+ goto out_unlock;
+
+ inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+ dentry->d_name.len, btrfs_ino(dir), objectid,
+ mode, &index);
+ if (IS_ERR(inode)) {
+ err = PTR_ERR(inode);
+ goto out_unlock;
+ }
+
+ err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+ if (err) {
+ drop_inode = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * If the active LSM wants to access the inode during
+ * d_instantiate it needs these. Smack checks to see
+ * if the filesystem supports xattrs by looking at the
+ * ops vector.
+ */
+
+ inode->i_op = &btrfs_special_inode_operations;
+ err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
+ if (err)
+ drop_inode = 1;
+ else {
+ init_special_inode(inode, inode->i_mode, rdev);
+ btrfs_update_inode(trans, root, inode);
+ d_instantiate(dentry, inode);
+ }
+out_unlock:
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ btrfs_btree_balance_dirty(root, nr);
+ if (drop_inode) {
+ inode_dec_link_count(inode);
+ iput(inode);
+ }
+ return err;
+}
+
+static int btrfs_create(struct inode *dir, struct dentry *dentry,
+ umode_t mode, struct nameidata *nd)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct inode *inode = NULL;
+ int drop_inode = 0;
+ int err;
+ unsigned long nr = 0;
+ u64 objectid;
+ u64 index = 0;
+
+ /*
+ * 2 for inode item and ref
+ * 2 for dir items
+ * 1 for xattr if selinux is on
+ */
+ trans = btrfs_start_transaction(root, 5);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ err = btrfs_find_free_ino(root, &objectid);
+ if (err)
+ goto out_unlock;
+
+ inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+ dentry->d_name.len, btrfs_ino(dir), objectid,
+ mode, &index);
+ if (IS_ERR(inode)) {
+ err = PTR_ERR(inode);
+ goto out_unlock;
+ }
+
+ err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+ if (err) {
+ drop_inode = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * If the active LSM wants to access the inode during
+ * d_instantiate it needs these. Smack checks to see
+ * if the filesystem supports xattrs by looking at the
+ * ops vector.
+ */
+ inode->i_fop = &btrfs_file_operations;
+ inode->i_op = &btrfs_file_inode_operations;
+
+ err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
+ if (err)
+ drop_inode = 1;
+ else {
+ inode->i_mapping->a_ops = &btrfs_aops;
+ inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+ BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
+ d_instantiate(dentry, inode);
+ }
+out_unlock:
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ if (drop_inode) {
+ inode_dec_link_count(inode);
+ iput(inode);
+ }
+ btrfs_btree_balance_dirty(root, nr);
+ return err;
+}
+
+static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
+ struct dentry *dentry)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct inode *inode = old_dentry->d_inode;
+ u64 index;
+ unsigned long nr = 0;
+ int err;
+ int drop_inode = 0;
+
+ /* do not allow sys_link's with other subvols of the same device */
+ if (root->objectid != BTRFS_I(inode)->root->objectid)
+ return -EXDEV;
+
+ if (inode->i_nlink == ~0U)
+ return -EMLINK;
+
+ err = btrfs_set_inode_index(dir, &index);
+ if (err)
+ goto fail;
+
+ /*
+ * 2 items for inode and inode ref
+ * 2 items for dir items
+ * 1 item for parent inode
+ */
+ trans = btrfs_start_transaction(root, 5);
+ if (IS_ERR(trans)) {
+ err = PTR_ERR(trans);
+ goto fail;
+ }
+
+ btrfs_inc_nlink(inode);
+ inode->i_ctime = CURRENT_TIME;
+ ihold(inode);
+
+ err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
+
+ if (err) {
+ drop_inode = 1;
+ } else {
+ struct dentry *parent = dentry->d_parent;
+ err = btrfs_update_inode(trans, root, inode);
+ if (err)
+ goto fail;
+ d_instantiate(dentry, inode);
+ btrfs_log_new_name(trans, inode, NULL, parent);
+ }
+
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+fail:
+ if (drop_inode) {
+ inode_dec_link_count(inode);
+ iput(inode);
+ }
+ btrfs_btree_balance_dirty(root, nr);
+ return err;
+}
+
+static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
+{
+ struct inode *inode = NULL;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ int err = 0;
+ int drop_on_err = 0;
+ u64 objectid = 0;
+ u64 index = 0;
+ unsigned long nr = 1;
+
+ /*
+ * 2 items for inode and ref
+ * 2 items for dir items
+ * 1 for xattr if selinux is on
+ */
+ trans = btrfs_start_transaction(root, 5);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ err = btrfs_find_free_ino(root, &objectid);
+ if (err)
+ goto out_fail;
+
+ inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+ dentry->d_name.len, btrfs_ino(dir), objectid,
+ S_IFDIR | mode, &index);
+ if (IS_ERR(inode)) {
+ err = PTR_ERR(inode);
+ goto out_fail;
+ }
+
+ drop_on_err = 1;
+
+ err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+ if (err)
+ goto out_fail;
+
+ inode->i_op = &btrfs_dir_inode_operations;
+ inode->i_fop = &btrfs_dir_file_operations;
+
+ btrfs_i_size_write(inode, 0);
+ err = btrfs_update_inode(trans, root, inode);
+ if (err)
+ goto out_fail;
+
+ err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
+ dentry->d_name.len, 0, index);
+ if (err)
+ goto out_fail;
+
+ d_instantiate(dentry, inode);
+ drop_on_err = 0;
+
+out_fail:
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ if (drop_on_err)
+ iput(inode);
+ btrfs_btree_balance_dirty(root, nr);
+ return err;
+}
+
+/* helper for btfs_get_extent. Given an existing extent in the tree,
+ * and an extent that you want to insert, deal with overlap and insert
+ * the new extent into the tree.
+ */
+static int merge_extent_mapping(struct extent_map_tree *em_tree,
+ struct extent_map *existing,
+ struct extent_map *em,
+ u64 map_start, u64 map_len)
+{
+ u64 start_diff;
+
+ BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
+ start_diff = map_start - em->start;
+ em->start = map_start;
+ em->len = map_len;
+ if (em->block_start < EXTENT_MAP_LAST_BYTE &&
+ !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
+ em->block_start += start_diff;
+ em->block_len -= start_diff;
+ }
+ return add_extent_mapping(em_tree, em);
+}
+
+static noinline int uncompress_inline(struct btrfs_path *path,
+ struct inode *inode, struct page *page,
+ size_t pg_offset, u64 extent_offset,
+ struct btrfs_file_extent_item *item)
+{
+ int ret;
+ struct extent_buffer *leaf = path->nodes[0];
+ char *tmp;
+ size_t max_size;
+ unsigned long inline_size;
+ unsigned long ptr;
+ int compress_type;
+
+ WARN_ON(pg_offset != 0);
+ compress_type = btrfs_file_extent_compression(leaf, item);
+ max_size = btrfs_file_extent_ram_bytes(leaf, item);
+ inline_size = btrfs_file_extent_inline_item_len(leaf,
+ btrfs_item_nr(leaf, path->slots[0]));
+ tmp = kmalloc(inline_size, GFP_NOFS);
+ if (!tmp)
+ return -ENOMEM;
+ ptr = btrfs_file_extent_inline_start(item);
+
+ read_extent_buffer(leaf, tmp, ptr, inline_size);
+
+ max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
+ ret = btrfs_decompress(compress_type, tmp, page,
+ extent_offset, inline_size, max_size);
+ if (ret) {
+ char *kaddr = kmap_atomic(page);
+ unsigned long copy_size = min_t(u64,
+ PAGE_CACHE_SIZE - pg_offset,
+ max_size - extent_offset);
+ memset(kaddr + pg_offset, 0, copy_size);
+ kunmap_atomic(kaddr);
+ }
+ kfree(tmp);
+ return 0;
+}
+
+/*
+ * a bit scary, this does extent mapping from logical file offset to the disk.
+ * the ugly parts come from merging extents from the disk with the in-ram
+ * representation. This gets more complex because of the data=ordered code,
+ * where the in-ram extents might be locked pending data=ordered completion.
+ *
+ * This also copies inline extents directly into the page.
+ */
+
+struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
+ size_t pg_offset, u64 start, u64 len,
+ int create)
+{
+ int ret;
+ int err = 0;
+ u64 bytenr;
+ u64 extent_start = 0;
+ u64 extent_end = 0;
+ u64 objectid = btrfs_ino(inode);
+ u32 found_type;
+ struct btrfs_path *path = NULL;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_file_extent_item *item;
+ struct extent_buffer *leaf;
+ struct btrfs_key found_key;
+ struct extent_map *em = NULL;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct btrfs_trans_handle *trans = NULL;
+ int compress_type;
+
+again:
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, start, len);
+ if (em)
+ em->bdev = root->fs_info->fs_devices->latest_bdev;
+ read_unlock(&em_tree->lock);
+
+ if (em) {
+ if (em->start > start || em->start + em->len <= start)
+ free_extent_map(em);
+ else if (em->block_start == EXTENT_MAP_INLINE && page)
+ free_extent_map(em);
+ else
+ goto out;
+ }
+ em = alloc_extent_map();
+ if (!em) {
+ err = -ENOMEM;
+ goto out;
+ }
+ em->bdev = root->fs_info->fs_devices->latest_bdev;
+ em->start = EXTENT_MAP_HOLE;
+ em->orig_start = EXTENT_MAP_HOLE;
+ em->len = (u64)-1;
+ em->block_len = (u64)-1;
+
+ if (!path) {
+ path = btrfs_alloc_path();
+ if (!path) {
+ err = -ENOMEM;
+ goto out;
+ }
+ /*
+ * Chances are we'll be called again, so go ahead and do
+ * readahead
+ */
+ path->reada = 1;
+ }
+
+ ret = btrfs_lookup_file_extent(trans, root, path,
+ objectid, start, trans != NULL);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+
+ if (ret != 0) {
+ if (path->slots[0] == 0)
+ goto not_found;
+ path->slots[0]--;
+ }
+
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ /* are we inside the extent that was found? */
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ found_type = btrfs_key_type(&found_key);
+ if (found_key.objectid != objectid ||
+ found_type != BTRFS_EXTENT_DATA_KEY) {
+ goto not_found;
+ }
+
+ found_type = btrfs_file_extent_type(leaf, item);
+ extent_start = found_key.offset;
+ compress_type = btrfs_file_extent_compression(leaf, item);
+ if (found_type == BTRFS_FILE_EXTENT_REG ||
+ found_type == BTRFS_FILE_EXTENT_PREALLOC) {
+ extent_end = extent_start +
+ btrfs_file_extent_num_bytes(leaf, item);
+ } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
+ size_t size;
+ size = btrfs_file_extent_inline_len(leaf, item);
+ extent_end = (extent_start + size + root->sectorsize - 1) &
+ ~((u64)root->sectorsize - 1);
+ }
+
+ if (start >= extent_end) {
+ path->slots[0]++;
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret > 0)
+ goto not_found;
+ leaf = path->nodes[0];
+ }
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ if (found_key.objectid != objectid ||
+ found_key.type != BTRFS_EXTENT_DATA_KEY)
+ goto not_found;
+ if (start + len <= found_key.offset)
+ goto not_found;
+ em->start = start;
+ em->len = found_key.offset - start;
+ goto not_found_em;
+ }
+
+ if (found_type == BTRFS_FILE_EXTENT_REG ||
+ found_type == BTRFS_FILE_EXTENT_PREALLOC) {
+ em->start = extent_start;
+ em->len = extent_end - extent_start;
+ em->orig_start = extent_start -
+ btrfs_file_extent_offset(leaf, item);
+ bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
+ if (bytenr == 0) {
+ em->block_start = EXTENT_MAP_HOLE;
+ goto insert;
+ }
+ if (compress_type != BTRFS_COMPRESS_NONE) {
+ set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+ em->compress_type = compress_type;
+ em->block_start = bytenr;
+ em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
+ item);
+ } else {
+ bytenr += btrfs_file_extent_offset(leaf, item);
+ em->block_start = bytenr;
+ em->block_len = em->len;
+ if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
+ set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
+ }
+ goto insert;
+ } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
+ unsigned long ptr;
+ char *map;
+ size_t size;
+ size_t extent_offset;
+ size_t copy_size;
+
+ em->block_start = EXTENT_MAP_INLINE;
+ if (!page || create) {
+ em->start = extent_start;
+ em->len = extent_end - extent_start;
+ goto out;
+ }
+
+ size = btrfs_file_extent_inline_len(leaf, item);
+ extent_offset = page_offset(page) + pg_offset - extent_start;
+ copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
+ size - extent_offset);
+ em->start = extent_start + extent_offset;
+ em->len = (copy_size + root->sectorsize - 1) &
+ ~((u64)root->sectorsize - 1);
+ em->orig_start = EXTENT_MAP_INLINE;
+ if (compress_type) {
+ set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
+ em->compress_type = compress_type;
+ }
+ ptr = btrfs_file_extent_inline_start(item) + extent_offset;
+ if (create == 0 && !PageUptodate(page)) {
+ if (btrfs_file_extent_compression(leaf, item) !=
+ BTRFS_COMPRESS_NONE) {
+ ret = uncompress_inline(path, inode, page,
+ pg_offset,
+ extent_offset, item);
+ BUG_ON(ret); /* -ENOMEM */
+ } else {
+ map = kmap(page);
+ read_extent_buffer(leaf, map + pg_offset, ptr,
+ copy_size);
+ if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
+ memset(map + pg_offset + copy_size, 0,
+ PAGE_CACHE_SIZE - pg_offset -
+ copy_size);
+ }
+ kunmap(page);
+ }
+ flush_dcache_page(page);
+ } else if (create && PageUptodate(page)) {
+ BUG();
+ if (!trans) {
+ kunmap(page);
+ free_extent_map(em);
+ em = NULL;
+
+ btrfs_release_path(path);
+ trans = btrfs_join_transaction(root);
+
+ if (IS_ERR(trans))
+ return ERR_CAST(trans);
+ goto again;
+ }
+ map = kmap(page);
+ write_extent_buffer(leaf, map + pg_offset, ptr,
+ copy_size);
+ kunmap(page);
+ btrfs_mark_buffer_dirty(leaf);
+ }
+ set_extent_uptodate(io_tree, em->start,
+ extent_map_end(em) - 1, NULL, GFP_NOFS);
+ goto insert;
+ } else {
+ printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
+ WARN_ON(1);
+ }
+not_found:
+ em->start = start;
+ em->len = len;
+not_found_em:
+ em->block_start = EXTENT_MAP_HOLE;
+ set_bit(EXTENT_FLAG_VACANCY, &em->flags);
+insert:
+ btrfs_release_path(path);
+ if (em->start > start || extent_map_end(em) <= start) {
+ printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
+ "[%llu %llu]\n", (unsigned long long)em->start,
+ (unsigned long long)em->len,
+ (unsigned long long)start,
+ (unsigned long long)len);
+ err = -EIO;
+ goto out;
+ }
+
+ err = 0;
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ /* it is possible that someone inserted the extent into the tree
+ * while we had the lock dropped. It is also possible that
+ * an overlapping map exists in the tree
+ */
+ if (ret == -EEXIST) {
+ struct extent_map *existing;
+
+ ret = 0;
+
+ existing = lookup_extent_mapping(em_tree, start, len);
+ if (existing && (existing->start > start ||
+ existing->start + existing->len <= start)) {
+ free_extent_map(existing);
+ existing = NULL;
+ }
+ if (!existing) {
+ existing = lookup_extent_mapping(em_tree, em->start,
+ em->len);
+ if (existing) {
+ err = merge_extent_mapping(em_tree, existing,
+ em, start,
+ root->sectorsize);
+ free_extent_map(existing);
+ if (err) {
+ free_extent_map(em);
+ em = NULL;
+ }
+ } else {
+ err = -EIO;
+ free_extent_map(em);
+ em = NULL;
+ }
+ } else {
+ free_extent_map(em);
+ em = existing;
+ err = 0;
+ }
+ }
+ write_unlock(&em_tree->lock);
+out:
+
+ trace_btrfs_get_extent(root, em);
+
+ if (path)
+ btrfs_free_path(path);
+ if (trans) {
+ ret = btrfs_end_transaction(trans, root);
+ if (!err)
+ err = ret;
+ }
+ if (err) {
+ free_extent_map(em);
+ return ERR_PTR(err);
+ }
+ BUG_ON(!em); /* Error is always set */
+ return em;
+}
+
+struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
+ size_t pg_offset, u64 start, u64 len,
+ int create)
+{
+ struct extent_map *em;
+ struct extent_map *hole_em = NULL;
+ u64 range_start = start;
+ u64 end;
+ u64 found;
+ u64 found_end;
+ int err = 0;
+
+ em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
+ if (IS_ERR(em))
+ return em;
+ if (em) {
+ /*
+ * if our em maps to a hole, there might
+ * actually be delalloc bytes behind it
+ */
+ if (em->block_start != EXTENT_MAP_HOLE)
+ return em;
+ else
+ hole_em = em;
+ }
+
+ /* check to see if we've wrapped (len == -1 or similar) */
+ end = start + len;
+ if (end < start)
+ end = (u64)-1;
+ else
+ end -= 1;
+
+ em = NULL;
+
+ /* ok, we didn't find anything, lets look for delalloc */
+ found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
+ end, len, EXTENT_DELALLOC, 1);
+ found_end = range_start + found;
+ if (found_end < range_start)
+ found_end = (u64)-1;
+
+ /*
+ * we didn't find anything useful, return
+ * the original results from get_extent()
+ */
+ if (range_start > end || found_end <= start) {
+ em = hole_em;
+ hole_em = NULL;
+ goto out;
+ }
+
+ /* adjust the range_start to make sure it doesn't
+ * go backwards from the start they passed in
+ */
+ range_start = max(start,range_start);
+ found = found_end - range_start;
+
+ if (found > 0) {
+ u64 hole_start = start;
+ u64 hole_len = len;
+
+ em = alloc_extent_map();
+ if (!em) {
+ err = -ENOMEM;
+ goto out;
+ }
+ /*
+ * when btrfs_get_extent can't find anything it
+ * returns one huge hole
+ *
+ * make sure what it found really fits our range, and
+ * adjust to make sure it is based on the start from
+ * the caller
+ */
+ if (hole_em) {
+ u64 calc_end = extent_map_end(hole_em);
+
+ if (calc_end <= start || (hole_em->start > end)) {
+ free_extent_map(hole_em);
+ hole_em = NULL;
+ } else {
+ hole_start = max(hole_em->start, start);
+ hole_len = calc_end - hole_start;
+ }
+ }
+ em->bdev = NULL;
+ if (hole_em && range_start > hole_start) {
+ /* our hole starts before our delalloc, so we
+ * have to return just the parts of the hole
+ * that go until the delalloc starts
+ */
+ em->len = min(hole_len,
+ range_start - hole_start);
+ em->start = hole_start;
+ em->orig_start = hole_start;
+ /*
+ * don't adjust block start at all,
+ * it is fixed at EXTENT_MAP_HOLE
+ */
+ em->block_start = hole_em->block_start;
+ em->block_len = hole_len;
+ } else {
+ em->start = range_start;
+ em->len = found;
+ em->orig_start = range_start;
+ em->block_start = EXTENT_MAP_DELALLOC;
+ em->block_len = found;
+ }
+ } else if (hole_em) {
+ return hole_em;
+ }
+out:
+
+ free_extent_map(hole_em);
+ if (err) {
+ free_extent_map(em);
+ return ERR_PTR(err);
+ }
+ return em;
+}
+
+static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
+ struct extent_map *em,
+ u64 start, u64 len)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct btrfs_key ins;
+ u64 alloc_hint;
+ int ret;
+ bool insert = false;
+
+ /*
+ * Ok if the extent map we looked up is a hole and is for the exact
+ * range we want, there is no reason to allocate a new one, however if
+ * it is not right then we need to free this one and drop the cache for
+ * our range.
+ */
+ if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
+ em->len != len) {
+ free_extent_map(em);
+ em = NULL;
+ insert = true;
+ btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
+ }
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return ERR_CAST(trans);
+
+ if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
+ btrfs_add_inode_defrag(trans, inode);
+
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+ alloc_hint = get_extent_allocation_hint(inode, start, len);
+ ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
+ alloc_hint, &ins, 1);
+ if (ret) {
+ em = ERR_PTR(ret);
+ goto out;
+ }
+
+ if (!em) {
+ em = alloc_extent_map();
+ if (!em) {
+ em = ERR_PTR(-ENOMEM);
+ goto out;
+ }
+ }
+
+ em->start = start;
+ em->orig_start = em->start;
+ em->len = ins.offset;
+
+ em->block_start = ins.objectid;
+ em->block_len = ins.offset;
+ em->bdev = root->fs_info->fs_devices->latest_bdev;
+
+ /*
+ * We need to do this because if we're using the original em we searched
+ * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
+ */
+ em->flags = 0;
+ set_bit(EXTENT_FLAG_PINNED, &em->flags);
+
+ while (insert) {
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ write_unlock(&em_tree->lock);
+ if (ret != -EEXIST)
+ break;
+ btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
+ }
+
+ ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
+ ins.offset, ins.offset, 0);
+ if (ret) {
+ btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
+ em = ERR_PTR(ret);
+ }
+out:
+ btrfs_end_transaction(trans, root);
+ return em;
+}
+
+/*
+ * returns 1 when the nocow is safe, < 1 on error, 0 if the
+ * block must be cow'd
+ */
+static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
+ struct inode *inode, u64 offset, u64 len)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct extent_buffer *leaf;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_key key;
+ u64 disk_bytenr;
+ u64 backref_offset;
+ u64 extent_end;
+ u64 num_bytes;
+ int slot;
+ int found_type;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
+ offset, 0);
+ if (ret < 0)
+ goto out;
+
+ slot = path->slots[0];
+ if (ret == 1) {
+ if (slot == 0) {
+ /* can't find the item, must cow */
+ ret = 0;
+ goto out;
+ }
+ slot--;
+ }
+ ret = 0;
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+ if (key.objectid != btrfs_ino(inode) ||
+ key.type != BTRFS_EXTENT_DATA_KEY) {
+ /* not our file or wrong item type, must cow */
+ goto out;
+ }
+
+ if (key.offset > offset) {
+ /* Wrong offset, must cow */
+ goto out;
+ }
+
+ fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
+ found_type = btrfs_file_extent_type(leaf, fi);
+ if (found_type != BTRFS_FILE_EXTENT_REG &&
+ found_type != BTRFS_FILE_EXTENT_PREALLOC) {
+ /* not a regular extent, must cow */
+ goto out;
+ }
+ disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+ backref_offset = btrfs_file_extent_offset(leaf, fi);
+
+ extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
+ if (extent_end < offset + len) {
+ /* extent doesn't include our full range, must cow */
+ goto out;
+ }
+
+ if (btrfs_extent_readonly(root, disk_bytenr))
+ goto out;
+
+ /*
+ * look for other files referencing this extent, if we
+ * find any we must cow
+ */
+ if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
+ key.offset - backref_offset, disk_bytenr))
+ goto out;
+
+ /*
+ * adjust disk_bytenr and num_bytes to cover just the bytes
+ * in this extent we are about to write. If there
+ * are any csums in that range we have to cow in order
+ * to keep the csums correct
+ */
+ disk_bytenr += backref_offset;
+ disk_bytenr += offset - key.offset;
+ num_bytes = min(offset + len, extent_end) - offset;
+ if (csum_exist_in_range(root, disk_bytenr, num_bytes))
+ goto out;
+ /*
+ * all of the above have passed, it is safe to overwrite this extent
+ * without cow
+ */
+ ret = 1;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
+ struct buffer_head *bh_result, int create)
+{
+ struct extent_map *em;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 start = iblock << inode->i_blkbits;
+ u64 len = bh_result->b_size;
+ struct btrfs_trans_handle *trans;
+
+ em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
+ if (IS_ERR(em))
+ return PTR_ERR(em);
+
+ /*
+ * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
+ * io. INLINE is special, and we could probably kludge it in here, but
+ * it's still buffered so for safety lets just fall back to the generic
+ * buffered path.
+ *
+ * For COMPRESSED we _have_ to read the entire extent in so we can
+ * decompress it, so there will be buffering required no matter what we
+ * do, so go ahead and fallback to buffered.
+ *
+ * We return -ENOTBLK because thats what makes DIO go ahead and go back
+ * to buffered IO. Don't blame me, this is the price we pay for using
+ * the generic code.
+ */
+ if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
+ em->block_start == EXTENT_MAP_INLINE) {
+ free_extent_map(em);
+ return -ENOTBLK;
+ }
+
+ /* Just a good old fashioned hole, return */
+ if (!create && (em->block_start == EXTENT_MAP_HOLE ||
+ test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
+ free_extent_map(em);
+ /* DIO will do one hole at a time, so just unlock a sector */
+ unlock_extent(&BTRFS_I(inode)->io_tree, start,
+ start + root->sectorsize - 1);
+ return 0;
+ }
+
+ /*
+ * We don't allocate a new extent in the following cases
+ *
+ * 1) The inode is marked as NODATACOW. In this case we'll just use the
+ * existing extent.
+ * 2) The extent is marked as PREALLOC. We're good to go here and can
+ * just use the extent.
+ *
+ */
+ if (!create) {
+ len = em->len - (start - em->start);
+ goto map;
+ }
+
+ if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
+ ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
+ em->block_start != EXTENT_MAP_HOLE)) {
+ int type;
+ int ret;
+ u64 block_start;
+
+ if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
+ type = BTRFS_ORDERED_PREALLOC;
+ else
+ type = BTRFS_ORDERED_NOCOW;
+ len = min(len, em->len - (start - em->start));
+ block_start = em->block_start + (start - em->start);
+
+ /*
+ * we're not going to log anything, but we do need
+ * to make sure the current transaction stays open
+ * while we look for nocow cross refs
+ */
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ goto must_cow;
+
+ if (can_nocow_odirect(trans, inode, start, len) == 1) {
+ ret = btrfs_add_ordered_extent_dio(inode, start,
+ block_start, len, len, type);
+ btrfs_end_transaction(trans, root);
+ if (ret) {
+ free_extent_map(em);
+ return ret;
+ }
+ goto unlock;
+ }
+ btrfs_end_transaction(trans, root);
+ }
+must_cow:
+ /*
+ * this will cow the extent, reset the len in case we changed
+ * it above
+ */
+ len = bh_result->b_size;
+ em = btrfs_new_extent_direct(inode, em, start, len);
+ if (IS_ERR(em))
+ return PTR_ERR(em);
+ len = min(len, em->len - (start - em->start));
+unlock:
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
+ EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
+ 0, NULL, GFP_NOFS);
+map:
+ bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
+ inode->i_blkbits;
+ bh_result->b_size = len;
+ bh_result->b_bdev = em->bdev;
+ set_buffer_mapped(bh_result);
+ if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
+ set_buffer_new(bh_result);
+
+ free_extent_map(em);
+
+ return 0;
+}
+
+struct btrfs_dio_private {
+ struct inode *inode;
+ u64 logical_offset;
+ u64 disk_bytenr;
+ u64 bytes;
+ u32 *csums;
+ void *private;
+
+ /* number of bios pending for this dio */
+ atomic_t pending_bios;
+
+ /* IO errors */
+ int errors;
+
+ struct bio *orig_bio;
+};
+
+static void btrfs_endio_direct_read(struct bio *bio, int err)
+{
+ struct btrfs_dio_private *dip = bio->bi_private;
+ struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
+ struct bio_vec *bvec = bio->bi_io_vec;
+ struct inode *inode = dip->inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ u64 start;
+ u32 *private = dip->csums;
+
+ start = dip->logical_offset;
+ do {
+ if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
+ struct page *page = bvec->bv_page;
+ char *kaddr;
+ u32 csum = ~(u32)0;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ kaddr = kmap_atomic(page);
+ csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
+ csum, bvec->bv_len);
+ btrfs_csum_final(csum, (char *)&csum);
+ kunmap_atomic(kaddr);
+ local_irq_restore(flags);
+
+ flush_dcache_page(bvec->bv_page);
+ if (csum != *private) {
+ printk(KERN_ERR "btrfs csum failed ino %llu off"
+ " %llu csum %u private %u\n",
+ (unsigned long long)btrfs_ino(inode),
+ (unsigned long long)start,
+ csum, *private);
+ err = -EIO;
+ }
+ }
+
+ start += bvec->bv_len;
+ private++;
+ bvec++;
+ } while (bvec <= bvec_end);
+
+ unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
+ dip->logical_offset + dip->bytes - 1);
+ bio->bi_private = dip->private;
+
+ kfree(dip->csums);
+ kfree(dip);
+
+ /* If we had a csum failure make sure to clear the uptodate flag */
+ if (err)
+ clear_bit(BIO_UPTODATE, &bio->bi_flags);
+ dio_end_io(bio, err);
+}
+
+static void btrfs_endio_direct_write(struct bio *bio, int err)
+{
+ struct btrfs_dio_private *dip = bio->bi_private;
+ struct inode *inode = dip->inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_ordered_extent *ordered = NULL;
+ struct extent_state *cached_state = NULL;
+ u64 ordered_offset = dip->logical_offset;
+ u64 ordered_bytes = dip->bytes;
+ int ret;
+
+ if (err)
+ goto out_done;
+again:
+ ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
+ &ordered_offset,
+ ordered_bytes);
+ if (!ret)
+ goto out_test;
+
+ BUG_ON(!ordered);
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ err = -ENOMEM;
+ goto out;
+ }
+ trans->block_rsv = &root->fs_info->delalloc_block_rsv;
+
+ if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
+ ret = btrfs_ordered_update_i_size(inode, 0, ordered);
+ if (!ret)
+ err = btrfs_update_inode_fallback(trans, root, inode);
+ goto out;
+ }
+
+ lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
+ ordered->file_offset + ordered->len - 1, 0,
+ &cached_state);
+
+ if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
+ ret = btrfs_mark_extent_written(trans, inode,
+ ordered->file_offset,
+ ordered->file_offset +
+ ordered->len);
+ if (ret) {
+ err = ret;
+ goto out_unlock;
+ }
+ } else {
+ ret = insert_reserved_file_extent(trans, inode,
+ ordered->file_offset,
+ ordered->start,
+ ordered->disk_len,
+ ordered->len,
+ ordered->len,
+ 0, 0, 0,
+ BTRFS_FILE_EXTENT_REG);
+ unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
+ ordered->file_offset, ordered->len);
+ if (ret) {
+ err = ret;
+ WARN_ON(1);
+ goto out_unlock;
+ }
+ }
+
+ add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
+ ret = btrfs_ordered_update_i_size(inode, 0, ordered);
+ if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
+ btrfs_update_inode_fallback(trans, root, inode);
+ ret = 0;
+out_unlock:
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
+ ordered->file_offset + ordered->len - 1,
+ &cached_state, GFP_NOFS);
+out:
+ btrfs_delalloc_release_metadata(inode, ordered->len);
+ btrfs_end_transaction(trans, root);
+ ordered_offset = ordered->file_offset + ordered->len;
+ btrfs_put_ordered_extent(ordered);
+ btrfs_put_ordered_extent(ordered);
+
+out_test:
+ /*
+ * our bio might span multiple ordered extents. If we haven't
+ * completed the accounting for the whole dio, go back and try again
+ */
+ if (ordered_offset < dip->logical_offset + dip->bytes) {
+ ordered_bytes = dip->logical_offset + dip->bytes -
+ ordered_offset;
+ goto again;
+ }
+out_done:
+ bio->bi_private = dip->private;
+
+ kfree(dip->csums);
+ kfree(dip);
+
+ /* If we had an error make sure to clear the uptodate flag */
+ if (err)
+ clear_bit(BIO_UPTODATE, &bio->bi_flags);
+ dio_end_io(bio, err);
+}
+
+static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
+ struct bio *bio, int mirror_num,
+ unsigned long bio_flags, u64 offset)
+{
+ int ret;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
+ BUG_ON(ret); /* -ENOMEM */
+ return 0;
+}
+
+static void btrfs_end_dio_bio(struct bio *bio, int err)
+{
+ struct btrfs_dio_private *dip = bio->bi_private;
+
+ if (err) {
+ printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
+ "sector %#Lx len %u err no %d\n",
+ (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
+ (unsigned long long)bio->bi_sector, bio->bi_size, err);
+ dip->errors = 1;
+
+ /*
+ * before atomic variable goto zero, we must make sure
+ * dip->errors is perceived to be set.
+ */
+ smp_mb__before_atomic_dec();
+ }
+
+ /* if there are more bios still pending for this dio, just exit */
+ if (!atomic_dec_and_test(&dip->pending_bios))
+ goto out;
+
+ if (dip->errors)
+ bio_io_error(dip->orig_bio);
+ else {
+ set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
+ bio_endio(dip->orig_bio, 0);
+ }
+out:
+ bio_put(bio);
+}
+
+static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
+ u64 first_sector, gfp_t gfp_flags)
+{
+ int nr_vecs = bio_get_nr_vecs(bdev);
+ return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
+}
+
+static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
+ int rw, u64 file_offset, int skip_sum,
+ u32 *csums, int async_submit)
+{
+ int write = rw & REQ_WRITE;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int ret;
+
+ bio_get(bio);
+ ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
+ if (ret)
+ goto err;
+
+ if (skip_sum)
+ goto map;
+
+ if (write && async_submit) {
+ ret = btrfs_wq_submit_bio(root->fs_info,
+ inode, rw, bio, 0, 0,
+ file_offset,
+ __btrfs_submit_bio_start_direct_io,
+ __btrfs_submit_bio_done);
+ goto err;
+ } else if (write) {
+ /*
+ * If we aren't doing async submit, calculate the csum of the
+ * bio now.
+ */
+ ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
+ if (ret)
+ goto err;
+ } else if (!skip_sum) {
+ ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
+ file_offset, csums);
+ if (ret)
+ goto err;
+ }
+
+map:
+ ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
+err:
+ bio_put(bio);
+ return ret;
+}
+
+static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
+ int skip_sum)
+{
+ struct inode *inode = dip->inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+ struct bio *bio;
+ struct bio *orig_bio = dip->orig_bio;
+ struct bio_vec *bvec = orig_bio->bi_io_vec;
+ u64 start_sector = orig_bio->bi_sector;
+ u64 file_offset = dip->logical_offset;
+ u64 submit_len = 0;
+ u64 map_length;
+ int nr_pages = 0;
+ u32 *csums = dip->csums;
+ int ret = 0;
+ int async_submit = 0;
+ int write = rw & REQ_WRITE;
+
+ map_length = orig_bio->bi_size;
+ ret = btrfs_map_block(map_tree, READ, start_sector << 9,
+ &map_length, NULL, 0);
+ if (ret) {
+ bio_put(orig_bio);
+ return -EIO;
+ }
+
+ if (map_length >= orig_bio->bi_size) {
+ bio = orig_bio;
+ goto submit;
+ }
+
+ async_submit = 1;
+ bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
+ if (!bio)
+ return -ENOMEM;
+ bio->bi_private = dip;
+ bio->bi_end_io = btrfs_end_dio_bio;
+ atomic_inc(&dip->pending_bios);
+
+ while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
+ if (unlikely(map_length < submit_len + bvec->bv_len ||
+ bio_add_page(bio, bvec->bv_page, bvec->bv_len,
+ bvec->bv_offset) < bvec->bv_len)) {
+ /*
+ * inc the count before we submit the bio so
+ * we know the end IO handler won't happen before
+ * we inc the count. Otherwise, the dip might get freed
+ * before we're done setting it up
+ */
+ atomic_inc(&dip->pending_bios);
+ ret = __btrfs_submit_dio_bio(bio, inode, rw,
+ file_offset, skip_sum,
+ csums, async_submit);
+ if (ret) {
+ bio_put(bio);
+ atomic_dec(&dip->pending_bios);
+ goto out_err;
+ }
+
+ /* Write's use the ordered csums */
+ if (!write && !skip_sum)
+ csums = csums + nr_pages;
+ start_sector += submit_len >> 9;
+ file_offset += submit_len;
+
+ submit_len = 0;
+ nr_pages = 0;
+
+ bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
+ start_sector, GFP_NOFS);
+ if (!bio)
+ goto out_err;
+ bio->bi_private = dip;
+ bio->bi_end_io = btrfs_end_dio_bio;
+
+ map_length = orig_bio->bi_size;
+ ret = btrfs_map_block(map_tree, READ, start_sector << 9,
+ &map_length, NULL, 0);
+ if (ret) {
+ bio_put(bio);
+ goto out_err;
+ }
+ } else {
+ submit_len += bvec->bv_len;
+ nr_pages ++;
+ bvec++;
+ }
+ }
+
+submit:
+ ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
+ csums, async_submit);
+ if (!ret)
+ return 0;
+
+ bio_put(bio);
+out_err:
+ dip->errors = 1;
+ /*
+ * before atomic variable goto zero, we must
+ * make sure dip->errors is perceived to be set.
+ */
+ smp_mb__before_atomic_dec();
+ if (atomic_dec_and_test(&dip->pending_bios))
+ bio_io_error(dip->orig_bio);
+
+ /* bio_end_io() will handle error, so we needn't return it */
+ return 0;
+}
+
+static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
+ loff_t file_offset)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_dio_private *dip;
+ struct bio_vec *bvec = bio->bi_io_vec;
+ int skip_sum;
+ int write = rw & REQ_WRITE;
+ int ret = 0;
+
+ skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
+
+ dip = kmalloc(sizeof(*dip), GFP_NOFS);
+ if (!dip) {
+ ret = -ENOMEM;
+ goto free_ordered;
+ }
+ dip->csums = NULL;
+
+ /* Write's use the ordered csum stuff, so we don't need dip->csums */
+ if (!write && !skip_sum) {
+ dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
+ if (!dip->csums) {
+ kfree(dip);
+ ret = -ENOMEM;
+ goto free_ordered;
+ }
+ }
+
+ dip->private = bio->bi_private;
+ dip->inode = inode;
+ dip->logical_offset = file_offset;
+
+ dip->bytes = 0;
+ do {
+ dip->bytes += bvec->bv_len;
+ bvec++;
+ } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
+
+ dip->disk_bytenr = (u64)bio->bi_sector << 9;
+ bio->bi_private = dip;
+ dip->errors = 0;
+ dip->orig_bio = bio;
+ atomic_set(&dip->pending_bios, 0);
+
+ if (write)
+ bio->bi_end_io = btrfs_endio_direct_write;
+ else
+ bio->bi_end_io = btrfs_endio_direct_read;
+
+ ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
+ if (!ret)
+ return;
+free_ordered:
+ /*
+ * If this is a write, we need to clean up the reserved space and kill
+ * the ordered extent.
+ */
+ if (write) {
+ struct btrfs_ordered_extent *ordered;
+ ordered = btrfs_lookup_ordered_extent(inode, file_offset);
+ if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
+ !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
+ btrfs_free_reserved_extent(root, ordered->start,
+ ordered->disk_len);
+ btrfs_put_ordered_extent(ordered);
+ btrfs_put_ordered_extent(ordered);
+ }
+ bio_endio(bio, ret);
+}
+
+static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
+ const struct iovec *iov, loff_t offset,
+ unsigned long nr_segs)
+{
+ int seg;
+ int i;
+ size_t size;
+ unsigned long addr;
+ unsigned blocksize_mask = root->sectorsize - 1;
+ ssize_t retval = -EINVAL;
+ loff_t end = offset;
+
+ if (offset & blocksize_mask)
+ goto out;
+
+ /* Check the memory alignment. Blocks cannot straddle pages */
+ for (seg = 0; seg < nr_segs; seg++) {
+ addr = (unsigned long)iov[seg].iov_base;
+ size = iov[seg].iov_len;
+ end += size;
+ if ((addr & blocksize_mask) || (size & blocksize_mask))
+ goto out;
+
+ /* If this is a write we don't need to check anymore */
+ if (rw & WRITE)
+ continue;
+
+ /*
+ * Check to make sure we don't have duplicate iov_base's in this
+ * iovec, if so return EINVAL, otherwise we'll get csum errors
+ * when reading back.
+ */
+ for (i = seg + 1; i < nr_segs; i++) {
+ if (iov[seg].iov_base == iov[i].iov_base)
+ goto out;
+ }
+ }
+ retval = 0;
+out:
+ return retval;
+}
+static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
+ const struct iovec *iov, loff_t offset,
+ unsigned long nr_segs)
+{
+ struct file *file = iocb->ki_filp;
+ struct inode *inode = file->f_mapping->host;
+ struct btrfs_ordered_extent *ordered;
+ struct extent_state *cached_state = NULL;
+ u64 lockstart, lockend;
+ ssize_t ret;
+ int writing = rw & WRITE;
+ int write_bits = 0;
+ size_t count = iov_length(iov, nr_segs);
+
+ if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
+ offset, nr_segs)) {
+ return 0;
+ }
+
+ lockstart = offset;
+ lockend = offset + count - 1;
+
+ if (writing) {
+ ret = btrfs_delalloc_reserve_space(inode, count);
+ if (ret)
+ goto out;
+ }
+
+ while (1) {
+ lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
+ 0, &cached_state);
+ /*
+ * We're concerned with the entire range that we're going to be
+ * doing DIO to, so we need to make sure theres no ordered
+ * extents in this range.
+ */
+ ordered = btrfs_lookup_ordered_range(inode, lockstart,
+ lockend - lockstart + 1);
+ if (!ordered)
+ break;
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
+ &cached_state, GFP_NOFS);
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ cond_resched();
+ }
+
+ /*
+ * we don't use btrfs_set_extent_delalloc because we don't want
+ * the dirty or uptodate bits
+ */
+ if (writing) {
+ write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
+ ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
+ EXTENT_DELALLOC, NULL, &cached_state,
+ GFP_NOFS);
+ if (ret) {
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
+ lockend, EXTENT_LOCKED | write_bits,
+ 1, 0, &cached_state, GFP_NOFS);
+ goto out;
+ }
+ }
+
+ free_extent_state(cached_state);
+ cached_state = NULL;
+
+ ret = __blockdev_direct_IO(rw, iocb, inode,
+ BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
+ iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
+ btrfs_submit_direct, 0);
+
+ if (ret < 0 && ret != -EIOCBQUEUED) {
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
+ offset + iov_length(iov, nr_segs) - 1,
+ EXTENT_LOCKED | write_bits, 1, 0,
+ &cached_state, GFP_NOFS);
+ } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
+ /*
+ * We're falling back to buffered, unlock the section we didn't
+ * do IO on.
+ */
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
+ offset + iov_length(iov, nr_segs) - 1,
+ EXTENT_LOCKED | write_bits, 1, 0,
+ &cached_state, GFP_NOFS);
+ }
+out:
+ free_extent_state(cached_state);
+ return ret;
+}
+
+static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
+ __u64 start, __u64 len)
+{
+ return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
+}
+
+int btrfs_readpage(struct file *file, struct page *page)
+{
+ struct extent_io_tree *tree;
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+ return extent_read_full_page(tree, page, btrfs_get_extent, 0);
+}
+
+static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
+{
+ struct extent_io_tree *tree;
+
+
+ if (current->flags & PF_MEMALLOC) {
+ redirty_page_for_writepage(wbc, page);
+ unlock_page(page);
+ return 0;
+ }
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+ return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
+}
+
+int btrfs_writepages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct extent_io_tree *tree;
+
+ tree = &BTRFS_I(mapping->host)->io_tree;
+ return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
+}
+
+static int
+btrfs_readpages(struct file *file, struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages)
+{
+ struct extent_io_tree *tree;
+ tree = &BTRFS_I(mapping->host)->io_tree;
+ return extent_readpages(tree, mapping, pages, nr_pages,
+ btrfs_get_extent);
+}
+static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
+{
+ struct extent_io_tree *tree;
+ struct extent_map_tree *map;
+ int ret;
+
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+ map = &BTRFS_I(page->mapping->host)->extent_tree;
+ ret = try_release_extent_mapping(map, tree, page, gfp_flags);
+ if (ret == 1) {
+ ClearPagePrivate(page);
+ set_page_private(page, 0);
+ page_cache_release(page);
+ }
+ return ret;
+}
+
+static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
+{
+ if (PageWriteback(page) || PageDirty(page))
+ return 0;
+ return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
+}
+
+static void btrfs_invalidatepage(struct page *page, unsigned long offset)
+{
+ struct extent_io_tree *tree;
+ struct btrfs_ordered_extent *ordered;
+ struct extent_state *cached_state = NULL;
+ u64 page_start = page_offset(page);
+ u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
+
+
+ /*
+ * we have the page locked, so new writeback can't start,
+ * and the dirty bit won't be cleared while we are here.
+ *
+ * Wait for IO on this page so that we can safely clear
+ * the PagePrivate2 bit and do ordered accounting
+ */
+ wait_on_page_writeback(page);
+
+ tree = &BTRFS_I(page->mapping->host)->io_tree;
+ if (offset) {
+ btrfs_releasepage(page, GFP_NOFS);
+ return;
+ }
+ lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
+ ordered = btrfs_lookup_ordered_extent(page->mapping->host,
+ page_offset(page));
+ if (ordered) {
+ /*
+ * IO on this page will never be started, so we need
+ * to account for any ordered extents now
+ */
+ clear_extent_bit(tree, page_start, page_end,
+ EXTENT_DIRTY | EXTENT_DELALLOC |
+ EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
+ &cached_state, GFP_NOFS);
+ /*
+ * whoever cleared the private bit is responsible
+ * for the finish_ordered_io
+ */
+ if (TestClearPagePrivate2(page)) {
+ btrfs_finish_ordered_io(page->mapping->host,
+ page_start, page_end);
+ }
+ btrfs_put_ordered_extent(ordered);
+ cached_state = NULL;
+ lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
+ }
+ clear_extent_bit(tree, page_start, page_end,
+ EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
+ EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
+ __btrfs_releasepage(page, GFP_NOFS);
+
+ ClearPageChecked(page);
+ if (PagePrivate(page)) {
+ ClearPagePrivate(page);
+ set_page_private(page, 0);
+ page_cache_release(page);
+ }
+}
+
+/*
+ * btrfs_page_mkwrite() is not allowed to change the file size as it gets
+ * called from a page fault handler when a page is first dirtied. Hence we must
+ * be careful to check for EOF conditions here. We set the page up correctly
+ * for a written page which means we get ENOSPC checking when writing into
+ * holes and correct delalloc and unwritten extent mapping on filesystems that
+ * support these features.
+ *
+ * We are not allowed to take the i_mutex here so we have to play games to
+ * protect against truncate races as the page could now be beyond EOF. Because
+ * vmtruncate() writes the inode size before removing pages, once we have the
+ * page lock we can determine safely if the page is beyond EOF. If it is not
+ * beyond EOF, then the page is guaranteed safe against truncation until we
+ * unlock the page.
+ */
+int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+ struct page *page = vmf->page;
+ struct inode *inode = fdentry(vma->vm_file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct btrfs_ordered_extent *ordered;
+ struct extent_state *cached_state = NULL;
+ char *kaddr;
+ unsigned long zero_start;
+ loff_t size;
+ int ret;
+ int reserved = 0;
+ u64 page_start;
+ u64 page_end;
+
+ ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
+ if (!ret) {
+ ret = btrfs_update_time(vma->vm_file);
+ reserved = 1;
+ }
+ if (ret) {
+ if (ret == -ENOMEM)
+ ret = VM_FAULT_OOM;
+ else /* -ENOSPC, -EIO, etc */
+ ret = VM_FAULT_SIGBUS;
+ if (reserved)
+ goto out;
+ goto out_noreserve;
+ }
+
+ ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
+again:
+ lock_page(page);
+ size = i_size_read(inode);
+ page_start = page_offset(page);
+ page_end = page_start + PAGE_CACHE_SIZE - 1;
+
+ if ((page->mapping != inode->i_mapping) ||
+ (page_start >= size)) {
+ /* page got truncated out from underneath us */
+ goto out_unlock;
+ }
+ wait_on_page_writeback(page);
+
+ lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
+ set_page_extent_mapped(page);
+
+ /*
+ * we can't set the delalloc bits if there are pending ordered
+ * extents. Drop our locks and wait for them to finish
+ */
+ ordered = btrfs_lookup_ordered_extent(inode, page_start);
+ if (ordered) {
+ unlock_extent_cached(io_tree, page_start, page_end,
+ &cached_state, GFP_NOFS);
+ unlock_page(page);
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ goto again;
+ }
+
+ /*
+ * XXX - page_mkwrite gets called every time the page is dirtied, even
+ * if it was already dirty, so for space accounting reasons we need to
+ * clear any delalloc bits for the range we are fixing to save. There
+ * is probably a better way to do this, but for now keep consistent with
+ * prepare_pages in the normal write path.
+ */
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
+ EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
+ 0, 0, &cached_state, GFP_NOFS);
+
+ ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
+ &cached_state);
+ if (ret) {
+ unlock_extent_cached(io_tree, page_start, page_end,
+ &cached_state, GFP_NOFS);
+ ret = VM_FAULT_SIGBUS;
+ goto out_unlock;
+ }
+ ret = 0;
+
+ /* page is wholly or partially inside EOF */
+ if (page_start + PAGE_CACHE_SIZE > size)
+ zero_start = size & ~PAGE_CACHE_MASK;
+ else
+ zero_start = PAGE_CACHE_SIZE;
+
+ if (zero_start != PAGE_CACHE_SIZE) {
+ kaddr = kmap(page);
+ memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
+ flush_dcache_page(page);
+ kunmap(page);
+ }
+ ClearPageChecked(page);
+ set_page_dirty(page);
+ SetPageUptodate(page);
+
+ BTRFS_I(inode)->last_trans = root->fs_info->generation;
+ BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
+
+ unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
+
+out_unlock:
+ if (!ret)
+ return VM_FAULT_LOCKED;
+ unlock_page(page);
+out:
+ btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
+out_noreserve:
+ return ret;
+}
+
+static int btrfs_truncate(struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_block_rsv *rsv;
+ int ret;
+ int err = 0;
+ struct btrfs_trans_handle *trans;
+ unsigned long nr;
+ u64 mask = root->sectorsize - 1;
+ u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
+
+ ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
+ if (ret)
+ return ret;
+
+ btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
+ btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
+
+ /*
+ * Yes ladies and gentelment, this is indeed ugly. The fact is we have
+ * 3 things going on here
+ *
+ * 1) We need to reserve space for our orphan item and the space to
+ * delete our orphan item. Lord knows we don't want to have a dangling
+ * orphan item because we didn't reserve space to remove it.
+ *
+ * 2) We need to reserve space to update our inode.
+ *
+ * 3) We need to have something to cache all the space that is going to
+ * be free'd up by the truncate operation, but also have some slack
+ * space reserved in case it uses space during the truncate (thank you
+ * very much snapshotting).
+ *
+ * And we need these to all be seperate. The fact is we can use alot of
+ * space doing the truncate, and we have no earthly idea how much space
+ * we will use, so we need the truncate reservation to be seperate so it
+ * doesn't end up using space reserved for updating the inode or
+ * removing the orphan item. We also need to be able to stop the
+ * transaction and start a new one, which means we need to be able to
+ * update the inode several times, and we have no idea of knowing how
+ * many times that will be, so we can't just reserve 1 item for the
+ * entirety of the opration, so that has to be done seperately as well.
+ * Then there is the orphan item, which does indeed need to be held on
+ * to for the whole operation, and we need nobody to touch this reserved
+ * space except the orphan code.
+ *
+ * So that leaves us with
+ *
+ * 1) root->orphan_block_rsv - for the orphan deletion.
+ * 2) rsv - for the truncate reservation, which we will steal from the
+ * transaction reservation.
+ * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
+ * updating the inode.
+ */
+ rsv = btrfs_alloc_block_rsv(root);
+ if (!rsv)
+ return -ENOMEM;
+ rsv->size = min_size;
+
+ /*
+ * 1 for the truncate slack space
+ * 1 for the orphan item we're going to add
+ * 1 for the orphan item deletion
+ * 1 for updating the inode.
+ */
+ trans = btrfs_start_transaction(root, 4);
+ if (IS_ERR(trans)) {
+ err = PTR_ERR(trans);
+ goto out;
+ }
+
+ /* Migrate the slack space for the truncate to our reserve */
+ ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
+ min_size);
+ BUG_ON(ret);
+
+ ret = btrfs_orphan_add(trans, inode);
+ if (ret) {
+ btrfs_end_transaction(trans, root);
+ goto out;
+ }
+
+ /*
+ * setattr is responsible for setting the ordered_data_close flag,
+ * but that is only tested during the last file release. That
+ * could happen well after the next commit, leaving a great big
+ * window where new writes may get lost if someone chooses to write
+ * to this file after truncating to zero
+ *
+ * The inode doesn't have any dirty data here, and so if we commit
+ * this is a noop. If someone immediately starts writing to the inode
+ * it is very likely we'll catch some of their writes in this
+ * transaction, and the commit will find this file on the ordered
+ * data list with good things to send down.
+ *
+ * This is a best effort solution, there is still a window where
+ * using truncate to replace the contents of the file will
+ * end up with a zero length file after a crash.
+ */
+ if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
+ btrfs_add_ordered_operation(trans, root, inode);
+
+ while (1) {
+ ret = btrfs_block_rsv_refill(root, rsv, min_size);
+ if (ret) {
+ /*
+ * This can only happen with the original transaction we
+ * started above, every other time we shouldn't have a
+ * transaction started yet.
+ */
+ if (ret == -EAGAIN)
+ goto end_trans;
+ err = ret;
+ break;
+ }
+
+ if (!trans) {
+ /* Just need the 1 for updating the inode */
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans)) {
+ ret = err = PTR_ERR(trans);
+ trans = NULL;
+ break;
+ }
+ }
+
+ trans->block_rsv = rsv;
+
+ ret = btrfs_truncate_inode_items(trans, root, inode,
+ inode->i_size,
+ BTRFS_EXTENT_DATA_KEY);
+ if (ret != -EAGAIN) {
+ err = ret;
+ break;
+ }
+
+ trans->block_rsv = &root->fs_info->trans_block_rsv;
+ ret = btrfs_update_inode(trans, root, inode);
+ if (ret) {
+ err = ret;
+ break;
+ }
+end_trans:
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ trans = NULL;
+ btrfs_btree_balance_dirty(root, nr);
+ }
+
+ if (ret == 0 && inode->i_nlink > 0) {
+ trans->block_rsv = root->orphan_block_rsv;
+ ret = btrfs_orphan_del(trans, inode);
+ if (ret)
+ err = ret;
+ } else if (ret && inode->i_nlink > 0) {
+ /*
+ * Failed to do the truncate, remove us from the in memory
+ * orphan list.
+ */
+ ret = btrfs_orphan_del(NULL, inode);
+ }
+
+ if (trans) {
+ trans->block_rsv = &root->fs_info->trans_block_rsv;
+ ret = btrfs_update_inode(trans, root, inode);
+ if (ret && !err)
+ err = ret;
+
+ nr = trans->blocks_used;
+ ret = btrfs_end_transaction(trans, root);
+ btrfs_btree_balance_dirty(root, nr);
+ }
+
+out:
+ btrfs_free_block_rsv(root, rsv);
+
+ if (ret && !err)
+ err = ret;
+
+ return err;
+}
+
+/*
+ * create a new subvolume directory/inode (helper for the ioctl).
+ */
+int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *new_root, u64 new_dirid)
+{
+ struct inode *inode;
+ int err;
+ u64 index = 0;
+
+ inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
+ new_dirid, new_dirid,
+ S_IFDIR | (~current_umask() & S_IRWXUGO),
+ &index);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+ inode->i_op = &btrfs_dir_inode_operations;
+ inode->i_fop = &btrfs_dir_file_operations;
+
+ set_nlink(inode, 1);
+ btrfs_i_size_write(inode, 0);
+
+ err = btrfs_update_inode(trans, new_root, inode);
+
+ iput(inode);
+ return err;
+}
+
+struct inode *btrfs_alloc_inode(struct super_block *sb)
+{
+ struct btrfs_inode *ei;
+ struct inode *inode;
+
+ ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
+ if (!ei)
+ return NULL;
+
+ ei->root = NULL;
+ ei->space_info = NULL;
+ ei->generation = 0;
+ ei->sequence = 0;
+ ei->last_trans = 0;
+ ei->last_sub_trans = 0;
+ ei->logged_trans = 0;
+ ei->delalloc_bytes = 0;
+ ei->disk_i_size = 0;
+ ei->flags = 0;
+ ei->csum_bytes = 0;
+ ei->index_cnt = (u64)-1;
+ ei->last_unlink_trans = 0;
+
+ spin_lock_init(&ei->lock);
+ ei->outstanding_extents = 0;
+ ei->reserved_extents = 0;
+
+ ei->ordered_data_close = 0;
+ ei->orphan_meta_reserved = 0;
+ ei->dummy_inode = 0;
+ ei->in_defrag = 0;
+ ei->delalloc_meta_reserved = 0;
+ ei->force_compress = BTRFS_COMPRESS_NONE;
+
+ ei->delayed_node = NULL;
+
+ inode = &ei->vfs_inode;
+ extent_map_tree_init(&ei->extent_tree);
+ extent_io_tree_init(&ei->io_tree, &inode->i_data);
+ extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
+ ei->io_tree.track_uptodate = 1;
+ ei->io_failure_tree.track_uptodate = 1;
+ mutex_init(&ei->log_mutex);
+ mutex_init(&ei->delalloc_mutex);
+ btrfs_ordered_inode_tree_init(&ei->ordered_tree);
+ INIT_LIST_HEAD(&ei->i_orphan);
+ INIT_LIST_HEAD(&ei->delalloc_inodes);
+ INIT_LIST_HEAD(&ei->ordered_operations);
+ RB_CLEAR_NODE(&ei->rb_node);
+
+ return inode;
+}
+
+static void btrfs_i_callback(struct rcu_head *head)
+{
+ struct inode *inode = container_of(head, struct inode, i_rcu);
+ kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
+}
+
+void btrfs_destroy_inode(struct inode *inode)
+{
+ struct btrfs_ordered_extent *ordered;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+
+ WARN_ON(!list_empty(&inode->i_dentry));
+ WARN_ON(inode->i_data.nrpages);
+ WARN_ON(BTRFS_I(inode)->outstanding_extents);
+ WARN_ON(BTRFS_I(inode)->reserved_extents);
+ WARN_ON(BTRFS_I(inode)->delalloc_bytes);
+ WARN_ON(BTRFS_I(inode)->csum_bytes);
+
+ /*
+ * This can happen where we create an inode, but somebody else also
+ * created the same inode and we need to destroy the one we already
+ * created.
+ */
+ if (!root)
+ goto free;
+
+ /*
+ * Make sure we're properly removed from the ordered operation
+ * lists.
+ */
+ smp_mb();
+ if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
+ spin_lock(&root->fs_info->ordered_extent_lock);
+ list_del_init(&BTRFS_I(inode)->ordered_operations);
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+ }
+
+ spin_lock(&root->orphan_lock);
+ if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
+ printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
+ (unsigned long long)btrfs_ino(inode));
+ list_del_init(&BTRFS_I(inode)->i_orphan);
+ }
+ spin_unlock(&root->orphan_lock);
+
+ while (1) {
+ ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
+ if (!ordered)
+ break;
+ else {
+ printk(KERN_ERR "btrfs found ordered "
+ "extent %llu %llu on inode cleanup\n",
+ (unsigned long long)ordered->file_offset,
+ (unsigned long long)ordered->len);
+ btrfs_remove_ordered_extent(inode, ordered);
+ btrfs_put_ordered_extent(ordered);
+ btrfs_put_ordered_extent(ordered);
+ }
+ }
+ inode_tree_del(inode);
+ btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
+free:
+ btrfs_remove_delayed_node(inode);
+ call_rcu(&inode->i_rcu, btrfs_i_callback);
+}
+
+int btrfs_drop_inode(struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+
+ if (btrfs_root_refs(&root->root_item) == 0 &&
+ !btrfs_is_free_space_inode(root, inode))
+ return 1;
+ else
+ return generic_drop_inode(inode);
+}
+
+static void init_once(void *foo)
+{
+ struct btrfs_inode *ei = (struct btrfs_inode *) foo;
+
+ inode_init_once(&ei->vfs_inode);
+}
+
+void btrfs_destroy_cachep(void)
+{
+ if (btrfs_inode_cachep)
+ kmem_cache_destroy(btrfs_inode_cachep);
+ if (btrfs_trans_handle_cachep)
+ kmem_cache_destroy(btrfs_trans_handle_cachep);
+ if (btrfs_transaction_cachep)
+ kmem_cache_destroy(btrfs_transaction_cachep);
+ if (btrfs_path_cachep)
+ kmem_cache_destroy(btrfs_path_cachep);
+ if (btrfs_free_space_cachep)
+ kmem_cache_destroy(btrfs_free_space_cachep);
+}
+
+int btrfs_init_cachep(void)
+{
+ btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
+ sizeof(struct btrfs_inode), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
+ if (!btrfs_inode_cachep)
+ goto fail;
+
+ btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
+ sizeof(struct btrfs_trans_handle), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+ if (!btrfs_trans_handle_cachep)
+ goto fail;
+
+ btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
+ sizeof(struct btrfs_transaction), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+ if (!btrfs_transaction_cachep)
+ goto fail;
+
+ btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
+ sizeof(struct btrfs_path), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+ if (!btrfs_path_cachep)
+ goto fail;
+
+ btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
+ sizeof(struct btrfs_free_space), 0,
+ SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
+ if (!btrfs_free_space_cachep)
+ goto fail;
+
+ return 0;
+fail:
+ btrfs_destroy_cachep();
+ return -ENOMEM;
+}
+
+static int btrfs_getattr(struct vfsmount *mnt,
+ struct dentry *dentry, struct kstat *stat)
+{
+ struct inode *inode = dentry->d_inode;
+ u32 blocksize = inode->i_sb->s_blocksize;
+
+ generic_fillattr(inode, stat);
+ stat->dev = BTRFS_I(inode)->root->anon_dev;
+ stat->blksize = PAGE_CACHE_SIZE;
+ stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
+ ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
+ return 0;
+}
+
+/*
+ * If a file is moved, it will inherit the cow and compression flags of the new
+ * directory.
+ */
+static void fixup_inode_flags(struct inode *dir, struct inode *inode)
+{
+ struct btrfs_inode *b_dir = BTRFS_I(dir);
+ struct btrfs_inode *b_inode = BTRFS_I(inode);
+
+ if (b_dir->flags & BTRFS_INODE_NODATACOW)
+ b_inode->flags |= BTRFS_INODE_NODATACOW;
+ else
+ b_inode->flags &= ~BTRFS_INODE_NODATACOW;
+
+ if (b_dir->flags & BTRFS_INODE_COMPRESS)
+ b_inode->flags |= BTRFS_INODE_COMPRESS;
+ else
+ b_inode->flags &= ~BTRFS_INODE_COMPRESS;
+}
+
+static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
+ struct inode *new_dir, struct dentry *new_dentry)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(old_dir)->root;
+ struct btrfs_root *dest = BTRFS_I(new_dir)->root;
+ struct inode *new_inode = new_dentry->d_inode;
+ struct inode *old_inode = old_dentry->d_inode;
+ struct timespec ctime = CURRENT_TIME;
+ u64 index = 0;
+ u64 root_objectid;
+ int ret;
+ u64 old_ino = btrfs_ino(old_inode);
+
+ if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
+ return -EPERM;
+
+ /* we only allow rename subvolume link between subvolumes */
+ if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
+ return -EXDEV;
+
+ if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
+ (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
+ return -ENOTEMPTY;
+
+ if (S_ISDIR(old_inode->i_mode) && new_inode &&
+ new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
+ return -ENOTEMPTY;
+ /*
+ * we're using rename to replace one file with another.
+ * and the replacement file is large. Start IO on it now so
+ * we don't add too much work to the end of the transaction
+ */
+ if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
+ old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
+ filemap_flush(old_inode->i_mapping);
+
+ /* close the racy window with snapshot create/destroy ioctl */
+ if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
+ down_read(&root->fs_info->subvol_sem);
+ /*
+ * We want to reserve the absolute worst case amount of items. So if
+ * both inodes are subvols and we need to unlink them then that would
+ * require 4 item modifications, but if they are both normal inodes it
+ * would require 5 item modifications, so we'll assume their normal
+ * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
+ * should cover the worst case number of items we'll modify.
+ */
+ trans = btrfs_start_transaction(root, 20);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto out_notrans;
+ }
+
+ if (dest != root)
+ btrfs_record_root_in_trans(trans, dest);
+
+ ret = btrfs_set_inode_index(new_dir, &index);
+ if (ret)
+ goto out_fail;
+
+ if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
+ /* force full log commit if subvolume involved. */
+ root->fs_info->last_trans_log_full_commit = trans->transid;
+ } else {
+ ret = btrfs_insert_inode_ref(trans, dest,
+ new_dentry->d_name.name,
+ new_dentry->d_name.len,
+ old_ino,
+ btrfs_ino(new_dir), index);
+ if (ret)
+ goto out_fail;
+ /*
+ * this is an ugly little race, but the rename is required
+ * to make sure that if we crash, the inode is either at the
+ * old name or the new one. pinning the log transaction lets
+ * us make sure we don't allow a log commit to come in after
+ * we unlink the name but before we add the new name back in.
+ */
+ btrfs_pin_log_trans(root);
+ }
+ /*
+ * make sure the inode gets flushed if it is replacing
+ * something.
+ */
+ if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
+ btrfs_add_ordered_operation(trans, root, old_inode);
+
+ old_dir->i_ctime = old_dir->i_mtime = ctime;
+ new_dir->i_ctime = new_dir->i_mtime = ctime;
+ old_inode->i_ctime = ctime;
+
+ if (old_dentry->d_parent != new_dentry->d_parent)
+ btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
+
+ if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
+ root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
+ ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
+ old_dentry->d_name.name,
+ old_dentry->d_name.len);
+ } else {
+ ret = __btrfs_unlink_inode(trans, root, old_dir,
+ old_dentry->d_inode,
+ old_dentry->d_name.name,
+ old_dentry->d_name.len);
+ if (!ret)
+ ret = btrfs_update_inode(trans, root, old_inode);
+ }
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_fail;
+ }
+
+ if (new_inode) {
+ new_inode->i_ctime = CURRENT_TIME;
+ if (unlikely(btrfs_ino(new_inode) ==
+ BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
+ root_objectid = BTRFS_I(new_inode)->location.objectid;
+ ret = btrfs_unlink_subvol(trans, dest, new_dir,
+ root_objectid,
+ new_dentry->d_name.name,
+ new_dentry->d_name.len);
+ BUG_ON(new_inode->i_nlink == 0);
+ } else {
+ ret = btrfs_unlink_inode(trans, dest, new_dir,
+ new_dentry->d_inode,
+ new_dentry->d_name.name,
+ new_dentry->d_name.len);
+ }
+ if (!ret && new_inode->i_nlink == 0) {
+ ret = btrfs_orphan_add(trans, new_dentry->d_inode);
+ BUG_ON(ret);
+ }
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_fail;
+ }
+ }
+
+ fixup_inode_flags(new_dir, old_inode);
+
+ ret = btrfs_add_link(trans, new_dir, old_inode,
+ new_dentry->d_name.name,
+ new_dentry->d_name.len, 0, index);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_fail;
+ }
+
+ if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
+ struct dentry *parent = new_dentry->d_parent;
+ btrfs_log_new_name(trans, old_inode, old_dir, parent);
+ btrfs_end_log_trans(root);
+ }
+out_fail:
+ btrfs_end_transaction(trans, root);
+out_notrans:
+ if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
+ up_read(&root->fs_info->subvol_sem);
+
+ return ret;
+}
+
+/*
+ * some fairly slow code that needs optimization. This walks the list
+ * of all the inodes with pending delalloc and forces them to disk.
+ */
+int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
+{
+ struct list_head *head = &root->fs_info->delalloc_inodes;
+ struct btrfs_inode *binode;
+ struct inode *inode;
+
+ if (root->fs_info->sb->s_flags & MS_RDONLY)
+ return -EROFS;
+
+ spin_lock(&root->fs_info->delalloc_lock);
+ while (!list_empty(head)) {
+ binode = list_entry(head->next, struct btrfs_inode,
+ delalloc_inodes);
+ inode = igrab(&binode->vfs_inode);
+ if (!inode)
+ list_del_init(&binode->delalloc_inodes);
+ spin_unlock(&root->fs_info->delalloc_lock);
+ if (inode) {
+ filemap_flush(inode->i_mapping);
+ if (delay_iput)
+ btrfs_add_delayed_iput(inode);
+ else
+ iput(inode);
+ }
+ cond_resched();
+ spin_lock(&root->fs_info->delalloc_lock);
+ }
+ spin_unlock(&root->fs_info->delalloc_lock);
+
+ /* the filemap_flush will queue IO into the worker threads, but
+ * we have to make sure the IO is actually started and that
+ * ordered extents get created before we return
+ */
+ atomic_inc(&root->fs_info->async_submit_draining);
+ while (atomic_read(&root->fs_info->nr_async_submits) ||
+ atomic_read(&root->fs_info->async_delalloc_pages)) {
+ wait_event(root->fs_info->async_submit_wait,
+ (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
+ atomic_read(&root->fs_info->async_delalloc_pages) == 0));
+ }
+ atomic_dec(&root->fs_info->async_submit_draining);
+ return 0;
+}
+
+static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
+ const char *symname)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct inode *inode = NULL;
+ int err;
+ int drop_inode = 0;
+ u64 objectid;
+ u64 index = 0 ;
+ int name_len;
+ int datasize;
+ unsigned long ptr;
+ struct btrfs_file_extent_item *ei;
+ struct extent_buffer *leaf;
+ unsigned long nr = 0;
+
+ name_len = strlen(symname) + 1;
+ if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
+ return -ENAMETOOLONG;
+
+ /*
+ * 2 items for inode item and ref
+ * 2 items for dir items
+ * 1 item for xattr if selinux is on
+ */
+ trans = btrfs_start_transaction(root, 5);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ err = btrfs_find_free_ino(root, &objectid);
+ if (err)
+ goto out_unlock;
+
+ inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
+ dentry->d_name.len, btrfs_ino(dir), objectid,
+ S_IFLNK|S_IRWXUGO, &index);
+ if (IS_ERR(inode)) {
+ err = PTR_ERR(inode);
+ goto out_unlock;
+ }
+
+ err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
+ if (err) {
+ drop_inode = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * If the active LSM wants to access the inode during
+ * d_instantiate it needs these. Smack checks to see
+ * if the filesystem supports xattrs by looking at the
+ * ops vector.
+ */
+ inode->i_fop = &btrfs_file_operations;
+ inode->i_op = &btrfs_file_inode_operations;
+
+ err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
+ if (err)
+ drop_inode = 1;
+ else {
+ inode->i_mapping->a_ops = &btrfs_aops;
+ inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+ BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
+ }
+ if (drop_inode)
+ goto out_unlock;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ err = -ENOMEM;
+ drop_inode = 1;
+ goto out_unlock;
+ }
+ key.objectid = btrfs_ino(inode);
+ key.offset = 0;
+ btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
+ datasize = btrfs_file_extent_calc_inline_size(name_len);
+ err = btrfs_insert_empty_item(trans, root, path, &key,
+ datasize);
+ if (err) {
+ drop_inode = 1;
+ btrfs_free_path(path);
+ goto out_unlock;
+ }
+ leaf = path->nodes[0];
+ ei = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ btrfs_set_file_extent_generation(leaf, ei, trans->transid);
+ btrfs_set_file_extent_type(leaf, ei,
+ BTRFS_FILE_EXTENT_INLINE);
+ btrfs_set_file_extent_encryption(leaf, ei, 0);
+ btrfs_set_file_extent_compression(leaf, ei, 0);
+ btrfs_set_file_extent_other_encoding(leaf, ei, 0);
+ btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
+
+ ptr = btrfs_file_extent_inline_start(ei);
+ write_extent_buffer(leaf, symname, ptr, name_len);
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_free_path(path);
+
+ inode->i_op = &btrfs_symlink_inode_operations;
+ inode->i_mapping->a_ops = &btrfs_symlink_aops;
+ inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
+ inode_set_bytes(inode, name_len);
+ btrfs_i_size_write(inode, name_len - 1);
+ err = btrfs_update_inode(trans, root, inode);
+ if (err)
+ drop_inode = 1;
+
+out_unlock:
+ if (!err)
+ d_instantiate(dentry, inode);
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ if (drop_inode) {
+ inode_dec_link_count(inode);
+ iput(inode);
+ }
+ btrfs_btree_balance_dirty(root, nr);
+ return err;
+}
+
+static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
+ u64 start, u64 num_bytes, u64 min_size,
+ loff_t actual_len, u64 *alloc_hint,
+ struct btrfs_trans_handle *trans)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_key ins;
+ u64 cur_offset = start;
+ u64 i_size;
+ int ret = 0;
+ bool own_trans = true;
+
+ if (trans)
+ own_trans = false;
+ while (num_bytes > 0) {
+ if (own_trans) {
+ trans = btrfs_start_transaction(root, 3);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ break;
+ }
+ }
+
+ ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
+ 0, *alloc_hint, &ins, 1);
+ if (ret) {
+ if (own_trans)
+ btrfs_end_transaction(trans, root);
+ break;
+ }
+
+ ret = insert_reserved_file_extent(trans, inode,
+ cur_offset, ins.objectid,
+ ins.offset, ins.offset,
+ ins.offset, 0, 0, 0,
+ BTRFS_FILE_EXTENT_PREALLOC);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ if (own_trans)
+ btrfs_end_transaction(trans, root);
+ break;
+ }
+ btrfs_drop_extent_cache(inode, cur_offset,
+ cur_offset + ins.offset -1, 0);
+
+ num_bytes -= ins.offset;
+ cur_offset += ins.offset;
+ *alloc_hint = ins.objectid + ins.offset;
+
+ inode->i_ctime = CURRENT_TIME;
+ BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
+ if (!(mode & FALLOC_FL_KEEP_SIZE) &&
+ (actual_len > inode->i_size) &&
+ (cur_offset > inode->i_size)) {
+ if (cur_offset > actual_len)
+ i_size = actual_len;
+ else
+ i_size = cur_offset;
+ i_size_write(inode, i_size);
+ btrfs_ordered_update_i_size(inode, i_size, NULL);
+ }
+
+ ret = btrfs_update_inode(trans, root, inode);
+
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ if (own_trans)
+ btrfs_end_transaction(trans, root);
+ break;
+ }
+
+ if (own_trans)
+ btrfs_end_transaction(trans, root);
+ }
+ return ret;
+}
+
+int btrfs_prealloc_file_range(struct inode *inode, int mode,
+ u64 start, u64 num_bytes, u64 min_size,
+ loff_t actual_len, u64 *alloc_hint)
+{
+ return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
+ min_size, actual_len, alloc_hint,
+ NULL);
+}
+
+int btrfs_prealloc_file_range_trans(struct inode *inode,
+ struct btrfs_trans_handle *trans, int mode,
+ u64 start, u64 num_bytes, u64 min_size,
+ loff_t actual_len, u64 *alloc_hint)
+{
+ return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
+ min_size, actual_len, alloc_hint, trans);
+}
+
+static int btrfs_set_page_dirty(struct page *page)
+{
+ return __set_page_dirty_nobuffers(page);
+}
+
+static int btrfs_permission(struct inode *inode, int mask)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ umode_t mode = inode->i_mode;
+
+ if (mask & MAY_WRITE &&
+ (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
+ if (btrfs_root_readonly(root))
+ return -EROFS;
+ if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
+ return -EACCES;
+ }
+ return generic_permission(inode, mask);
+}
+
+static const struct inode_operations btrfs_dir_inode_operations = {
+ .getattr = btrfs_getattr,
+ .lookup = btrfs_lookup,
+ .create = btrfs_create,
+ .unlink = btrfs_unlink,
+ .link = btrfs_link,
+ .mkdir = btrfs_mkdir,
+ .rmdir = btrfs_rmdir,
+ .rename = btrfs_rename,
+ .symlink = btrfs_symlink,
+ .setattr = btrfs_setattr,
+ .mknod = btrfs_mknod,
+ .setxattr = btrfs_setxattr,
+ .getxattr = btrfs_getxattr,
+ .listxattr = btrfs_listxattr,
+ .removexattr = btrfs_removexattr,
+ .permission = btrfs_permission,
+ .get_acl = btrfs_get_acl,
+};
+static const struct inode_operations btrfs_dir_ro_inode_operations = {
+ .lookup = btrfs_lookup,
+ .permission = btrfs_permission,
+ .get_acl = btrfs_get_acl,
+};
+
+static const struct file_operations btrfs_dir_file_operations = {
+ .llseek = generic_file_llseek,
+ .read = generic_read_dir,
+ .readdir = btrfs_real_readdir,
+ .unlocked_ioctl = btrfs_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = btrfs_ioctl,
+#endif
+ .release = btrfs_release_file,
+ .fsync = btrfs_sync_file,
+};
+
+static struct extent_io_ops btrfs_extent_io_ops = {
+ .fill_delalloc = run_delalloc_range,
+ .submit_bio_hook = btrfs_submit_bio_hook,
+ .merge_bio_hook = btrfs_merge_bio_hook,
+ .readpage_end_io_hook = btrfs_readpage_end_io_hook,
+ .writepage_end_io_hook = btrfs_writepage_end_io_hook,
+ .writepage_start_hook = btrfs_writepage_start_hook,
+ .set_bit_hook = btrfs_set_bit_hook,
+ .clear_bit_hook = btrfs_clear_bit_hook,
+ .merge_extent_hook = btrfs_merge_extent_hook,
+ .split_extent_hook = btrfs_split_extent_hook,
+};
+
+/*
+ * btrfs doesn't support the bmap operation because swapfiles
+ * use bmap to make a mapping of extents in the file. They assume
+ * these extents won't change over the life of the file and they
+ * use the bmap result to do IO directly to the drive.
+ *
+ * the btrfs bmap call would return logical addresses that aren't
+ * suitable for IO and they also will change frequently as COW
+ * operations happen. So, swapfile + btrfs == corruption.
+ *
+ * For now we're avoiding this by dropping bmap.
+ */
+static const struct address_space_operations btrfs_aops = {
+ .readpage = btrfs_readpage,
+ .writepage = btrfs_writepage,
+ .writepages = btrfs_writepages,
+ .readpages = btrfs_readpages,
+ .direct_IO = btrfs_direct_IO,
+ .invalidatepage = btrfs_invalidatepage,
+ .releasepage = btrfs_releasepage,
+ .set_page_dirty = btrfs_set_page_dirty,
+ .error_remove_page = generic_error_remove_page,
+};
+
+static const struct address_space_operations btrfs_symlink_aops = {
+ .readpage = btrfs_readpage,
+ .writepage = btrfs_writepage,
+ .invalidatepage = btrfs_invalidatepage,
+ .releasepage = btrfs_releasepage,
+};
+
+static const struct inode_operations btrfs_file_inode_operations = {
+ .getattr = btrfs_getattr,
+ .setattr = btrfs_setattr,
+ .setxattr = btrfs_setxattr,
+ .getxattr = btrfs_getxattr,
+ .listxattr = btrfs_listxattr,
+ .removexattr = btrfs_removexattr,
+ .permission = btrfs_permission,
+ .fiemap = btrfs_fiemap,
+ .get_acl = btrfs_get_acl,
+};
+static const struct inode_operations btrfs_special_inode_operations = {
+ .getattr = btrfs_getattr,
+ .setattr = btrfs_setattr,
+ .permission = btrfs_permission,
+ .setxattr = btrfs_setxattr,
+ .getxattr = btrfs_getxattr,
+ .listxattr = btrfs_listxattr,
+ .removexattr = btrfs_removexattr,
+ .get_acl = btrfs_get_acl,
+};
+static const struct inode_operations btrfs_symlink_inode_operations = {
+ .readlink = generic_readlink,
+ .follow_link = page_follow_link_light,
+ .put_link = page_put_link,
+ .getattr = btrfs_getattr,
+ .setattr = btrfs_setattr,
+ .permission = btrfs_permission,
+ .setxattr = btrfs_setxattr,
+ .getxattr = btrfs_getxattr,
+ .listxattr = btrfs_listxattr,
+ .removexattr = btrfs_removexattr,
+ .get_acl = btrfs_get_acl,
+};
+
+const struct dentry_operations btrfs_dentry_operations = {
+ .d_delete = btrfs_dentry_delete,
+ .d_release = btrfs_dentry_release,
+};
diff --git a/fs/btrfs/ioctl.c b/fs/btrfs/ioctl.c
new file mode 100644
index 00000000..14f8e1fa
--- /dev/null
+++ b/fs/btrfs/ioctl.c
@@ -0,0 +1,3430 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/buffer_head.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/fsnotify.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mount.h>
+#include <linux/mpage.h>
+#include <linux/namei.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/statfs.h>
+#include <linux/compat.h>
+#include <linux/bit_spinlock.h>
+#include <linux/security.h>
+#include <linux/xattr.h>
+#include <linux/vmalloc.h>
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include "compat.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "ioctl.h"
+#include "print-tree.h"
+#include "volumes.h"
+#include "locking.h"
+#include "inode-map.h"
+#include "backref.h"
+
+/* Mask out flags that are inappropriate for the given type of inode. */
+static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
+{
+ if (S_ISDIR(mode))
+ return flags;
+ else if (S_ISREG(mode))
+ return flags & ~FS_DIRSYNC_FL;
+ else
+ return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
+}
+
+/*
+ * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
+ */
+static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
+{
+ unsigned int iflags = 0;
+
+ if (flags & BTRFS_INODE_SYNC)
+ iflags |= FS_SYNC_FL;
+ if (flags & BTRFS_INODE_IMMUTABLE)
+ iflags |= FS_IMMUTABLE_FL;
+ if (flags & BTRFS_INODE_APPEND)
+ iflags |= FS_APPEND_FL;
+ if (flags & BTRFS_INODE_NODUMP)
+ iflags |= FS_NODUMP_FL;
+ if (flags & BTRFS_INODE_NOATIME)
+ iflags |= FS_NOATIME_FL;
+ if (flags & BTRFS_INODE_DIRSYNC)
+ iflags |= FS_DIRSYNC_FL;
+ if (flags & BTRFS_INODE_NODATACOW)
+ iflags |= FS_NOCOW_FL;
+
+ if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
+ iflags |= FS_COMPR_FL;
+ else if (flags & BTRFS_INODE_NOCOMPRESS)
+ iflags |= FS_NOCOMP_FL;
+
+ return iflags;
+}
+
+/*
+ * Update inode->i_flags based on the btrfs internal flags.
+ */
+void btrfs_update_iflags(struct inode *inode)
+{
+ struct btrfs_inode *ip = BTRFS_I(inode);
+
+ inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
+
+ if (ip->flags & BTRFS_INODE_SYNC)
+ inode->i_flags |= S_SYNC;
+ if (ip->flags & BTRFS_INODE_IMMUTABLE)
+ inode->i_flags |= S_IMMUTABLE;
+ if (ip->flags & BTRFS_INODE_APPEND)
+ inode->i_flags |= S_APPEND;
+ if (ip->flags & BTRFS_INODE_NOATIME)
+ inode->i_flags |= S_NOATIME;
+ if (ip->flags & BTRFS_INODE_DIRSYNC)
+ inode->i_flags |= S_DIRSYNC;
+}
+
+/*
+ * Inherit flags from the parent inode.
+ *
+ * Currently only the compression flags and the cow flags are inherited.
+ */
+void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
+{
+ unsigned int flags;
+
+ if (!dir)
+ return;
+
+ flags = BTRFS_I(dir)->flags;
+
+ if (flags & BTRFS_INODE_NOCOMPRESS) {
+ BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
+ BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
+ } else if (flags & BTRFS_INODE_COMPRESS) {
+ BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
+ BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
+ }
+
+ if (flags & BTRFS_INODE_NODATACOW)
+ BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
+
+ btrfs_update_iflags(inode);
+}
+
+static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
+{
+ struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
+ unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
+
+ if (copy_to_user(arg, &flags, sizeof(flags)))
+ return -EFAULT;
+ return 0;
+}
+
+static int check_flags(unsigned int flags)
+{
+ if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
+ FS_NOATIME_FL | FS_NODUMP_FL | \
+ FS_SYNC_FL | FS_DIRSYNC_FL | \
+ FS_NOCOMP_FL | FS_COMPR_FL |
+ FS_NOCOW_FL))
+ return -EOPNOTSUPP;
+
+ if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
+{
+ struct inode *inode = file->f_path.dentry->d_inode;
+ struct btrfs_inode *ip = BTRFS_I(inode);
+ struct btrfs_root *root = ip->root;
+ struct btrfs_trans_handle *trans;
+ unsigned int flags, oldflags;
+ int ret;
+ u64 ip_oldflags;
+ unsigned int i_oldflags;
+
+ if (btrfs_root_readonly(root))
+ return -EROFS;
+
+ if (copy_from_user(&flags, arg, sizeof(flags)))
+ return -EFAULT;
+
+ ret = check_flags(flags);
+ if (ret)
+ return ret;
+
+ if (!inode_owner_or_capable(inode))
+ return -EACCES;
+
+ mutex_lock(&inode->i_mutex);
+
+ ip_oldflags = ip->flags;
+ i_oldflags = inode->i_flags;
+
+ flags = btrfs_mask_flags(inode->i_mode, flags);
+ oldflags = btrfs_flags_to_ioctl(ip->flags);
+ if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
+ if (!capable(CAP_LINUX_IMMUTABLE)) {
+ ret = -EPERM;
+ goto out_unlock;
+ }
+ }
+
+ ret = mnt_want_write_file(file);
+ if (ret)
+ goto out_unlock;
+
+ if (flags & FS_SYNC_FL)
+ ip->flags |= BTRFS_INODE_SYNC;
+ else
+ ip->flags &= ~BTRFS_INODE_SYNC;
+ if (flags & FS_IMMUTABLE_FL)
+ ip->flags |= BTRFS_INODE_IMMUTABLE;
+ else
+ ip->flags &= ~BTRFS_INODE_IMMUTABLE;
+ if (flags & FS_APPEND_FL)
+ ip->flags |= BTRFS_INODE_APPEND;
+ else
+ ip->flags &= ~BTRFS_INODE_APPEND;
+ if (flags & FS_NODUMP_FL)
+ ip->flags |= BTRFS_INODE_NODUMP;
+ else
+ ip->flags &= ~BTRFS_INODE_NODUMP;
+ if (flags & FS_NOATIME_FL)
+ ip->flags |= BTRFS_INODE_NOATIME;
+ else
+ ip->flags &= ~BTRFS_INODE_NOATIME;
+ if (flags & FS_DIRSYNC_FL)
+ ip->flags |= BTRFS_INODE_DIRSYNC;
+ else
+ ip->flags &= ~BTRFS_INODE_DIRSYNC;
+ if (flags & FS_NOCOW_FL)
+ ip->flags |= BTRFS_INODE_NODATACOW;
+ else
+ ip->flags &= ~BTRFS_INODE_NODATACOW;
+
+ /*
+ * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
+ * flag may be changed automatically if compression code won't make
+ * things smaller.
+ */
+ if (flags & FS_NOCOMP_FL) {
+ ip->flags &= ~BTRFS_INODE_COMPRESS;
+ ip->flags |= BTRFS_INODE_NOCOMPRESS;
+ } else if (flags & FS_COMPR_FL) {
+ ip->flags |= BTRFS_INODE_COMPRESS;
+ ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
+ } else {
+ ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
+ }
+
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto out_drop;
+ }
+
+ btrfs_update_iflags(inode);
+ inode->i_ctime = CURRENT_TIME;
+ ret = btrfs_update_inode(trans, root, inode);
+
+ btrfs_end_transaction(trans, root);
+ out_drop:
+ if (ret) {
+ ip->flags = ip_oldflags;
+ inode->i_flags = i_oldflags;
+ }
+
+ mnt_drop_write_file(file);
+ out_unlock:
+ mutex_unlock(&inode->i_mutex);
+ return ret;
+}
+
+static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
+{
+ struct inode *inode = file->f_path.dentry->d_inode;
+
+ return put_user(inode->i_generation, arg);
+}
+
+static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
+ struct btrfs_device *device;
+ struct request_queue *q;
+ struct fstrim_range range;
+ u64 minlen = ULLONG_MAX;
+ u64 num_devices = 0;
+ u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
+ int ret;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
+ dev_list) {
+ if (!device->bdev)
+ continue;
+ q = bdev_get_queue(device->bdev);
+ if (blk_queue_discard(q)) {
+ num_devices++;
+ minlen = min((u64)q->limits.discard_granularity,
+ minlen);
+ }
+ }
+ rcu_read_unlock();
+
+ if (!num_devices)
+ return -EOPNOTSUPP;
+ if (copy_from_user(&range, arg, sizeof(range)))
+ return -EFAULT;
+ if (range.start > total_bytes)
+ return -EINVAL;
+
+ range.len = min(range.len, total_bytes - range.start);
+ range.minlen = max(range.minlen, minlen);
+ ret = btrfs_trim_fs(fs_info->tree_root, &range);
+ if (ret < 0)
+ return ret;
+
+ if (copy_to_user(arg, &range, sizeof(range)))
+ return -EFAULT;
+
+ return 0;
+}
+
+static noinline int create_subvol(struct btrfs_root *root,
+ struct dentry *dentry,
+ char *name, int namelen,
+ u64 *async_transid)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_key key;
+ struct btrfs_root_item root_item;
+ struct btrfs_inode_item *inode_item;
+ struct extent_buffer *leaf;
+ struct btrfs_root *new_root;
+ struct dentry *parent = dentry->d_parent;
+ struct inode *dir;
+ int ret;
+ int err;
+ u64 objectid;
+ u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
+ u64 index = 0;
+
+ ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
+ if (ret)
+ return ret;
+
+ dir = parent->d_inode;
+
+ /*
+ * 1 - inode item
+ * 2 - refs
+ * 1 - root item
+ * 2 - dir items
+ */
+ trans = btrfs_start_transaction(root, 6);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
+ 0, objectid, NULL, 0, 0, 0, 0);
+ if (IS_ERR(leaf)) {
+ ret = PTR_ERR(leaf);
+ goto fail;
+ }
+
+ memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
+ btrfs_set_header_bytenr(leaf, leaf->start);
+ btrfs_set_header_generation(leaf, trans->transid);
+ btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
+ btrfs_set_header_owner(leaf, objectid);
+
+ write_extent_buffer(leaf, root->fs_info->fsid,
+ (unsigned long)btrfs_header_fsid(leaf),
+ BTRFS_FSID_SIZE);
+ write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
+ (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
+ BTRFS_UUID_SIZE);
+ btrfs_mark_buffer_dirty(leaf);
+
+ inode_item = &root_item.inode;
+ memset(inode_item, 0, sizeof(*inode_item));
+ inode_item->generation = cpu_to_le64(1);
+ inode_item->size = cpu_to_le64(3);
+ inode_item->nlink = cpu_to_le32(1);
+ inode_item->nbytes = cpu_to_le64(root->leafsize);
+ inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
+
+ root_item.flags = 0;
+ root_item.byte_limit = 0;
+ inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
+
+ btrfs_set_root_bytenr(&root_item, leaf->start);
+ btrfs_set_root_generation(&root_item, trans->transid);
+ btrfs_set_root_level(&root_item, 0);
+ btrfs_set_root_refs(&root_item, 1);
+ btrfs_set_root_used(&root_item, leaf->len);
+ btrfs_set_root_last_snapshot(&root_item, 0);
+
+ memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
+ root_item.drop_level = 0;
+
+ btrfs_tree_unlock(leaf);
+ free_extent_buffer(leaf);
+ leaf = NULL;
+
+ btrfs_set_root_dirid(&root_item, new_dirid);
+
+ key.objectid = objectid;
+ key.offset = 0;
+ btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
+ ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
+ &root_item);
+ if (ret)
+ goto fail;
+
+ key.offset = (u64)-1;
+ new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
+ if (IS_ERR(new_root)) {
+ btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
+ ret = PTR_ERR(new_root);
+ goto fail;
+ }
+
+ btrfs_record_root_in_trans(trans, new_root);
+
+ ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
+ if (ret) {
+ /* We potentially lose an unused inode item here */
+ btrfs_abort_transaction(trans, root, ret);
+ goto fail;
+ }
+
+ /*
+ * insert the directory item
+ */
+ ret = btrfs_set_inode_index(dir, &index);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto fail;
+ }
+
+ ret = btrfs_insert_dir_item(trans, root,
+ name, namelen, dir, &key,
+ BTRFS_FT_DIR, index);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto fail;
+ }
+
+ btrfs_i_size_write(dir, dir->i_size + namelen * 2);
+ ret = btrfs_update_inode(trans, root, dir);
+ BUG_ON(ret);
+
+ ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
+ objectid, root->root_key.objectid,
+ btrfs_ino(dir), index, name, namelen);
+
+ BUG_ON(ret);
+
+ d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
+fail:
+ if (async_transid) {
+ *async_transid = trans->transid;
+ err = btrfs_commit_transaction_async(trans, root, 1);
+ } else {
+ err = btrfs_commit_transaction(trans, root);
+ }
+ if (err && !ret)
+ ret = err;
+ return ret;
+}
+
+static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
+ char *name, int namelen, u64 *async_transid,
+ bool readonly)
+{
+ struct inode *inode;
+ struct btrfs_pending_snapshot *pending_snapshot;
+ struct btrfs_trans_handle *trans;
+ int ret;
+
+ if (!root->ref_cows)
+ return -EINVAL;
+
+ pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
+ if (!pending_snapshot)
+ return -ENOMEM;
+
+ btrfs_init_block_rsv(&pending_snapshot->block_rsv);
+ pending_snapshot->dentry = dentry;
+ pending_snapshot->root = root;
+ pending_snapshot->readonly = readonly;
+
+ trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto fail;
+ }
+
+ ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
+ BUG_ON(ret);
+
+ spin_lock(&root->fs_info->trans_lock);
+ list_add(&pending_snapshot->list,
+ &trans->transaction->pending_snapshots);
+ spin_unlock(&root->fs_info->trans_lock);
+ if (async_transid) {
+ *async_transid = trans->transid;
+ ret = btrfs_commit_transaction_async(trans,
+ root->fs_info->extent_root, 1);
+ } else {
+ ret = btrfs_commit_transaction(trans,
+ root->fs_info->extent_root);
+ }
+ BUG_ON(ret);
+
+ ret = pending_snapshot->error;
+ if (ret)
+ goto fail;
+
+ ret = btrfs_orphan_cleanup(pending_snapshot->snap);
+ if (ret)
+ goto fail;
+
+ inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
+ if (IS_ERR(inode)) {
+ ret = PTR_ERR(inode);
+ goto fail;
+ }
+ BUG_ON(!inode);
+ d_instantiate(dentry, inode);
+ ret = 0;
+fail:
+ kfree(pending_snapshot);
+ return ret;
+}
+
+/* copy of check_sticky in fs/namei.c()
+* It's inline, so penalty for filesystems that don't use sticky bit is
+* minimal.
+*/
+static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
+{
+ uid_t fsuid = current_fsuid();
+
+ if (!(dir->i_mode & S_ISVTX))
+ return 0;
+ if (inode->i_uid == fsuid)
+ return 0;
+ if (dir->i_uid == fsuid)
+ return 0;
+ return !capable(CAP_FOWNER);
+}
+
+/* copy of may_delete in fs/namei.c()
+ * Check whether we can remove a link victim from directory dir, check
+ * whether the type of victim is right.
+ * 1. We can't do it if dir is read-only (done in permission())
+ * 2. We should have write and exec permissions on dir
+ * 3. We can't remove anything from append-only dir
+ * 4. We can't do anything with immutable dir (done in permission())
+ * 5. If the sticky bit on dir is set we should either
+ * a. be owner of dir, or
+ * b. be owner of victim, or
+ * c. have CAP_FOWNER capability
+ * 6. If the victim is append-only or immutable we can't do antyhing with
+ * links pointing to it.
+ * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
+ * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
+ * 9. We can't remove a root or mountpoint.
+ * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
+ * nfs_async_unlink().
+ */
+
+static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
+{
+ int error;
+
+ if (!victim->d_inode)
+ return -ENOENT;
+
+ BUG_ON(victim->d_parent->d_inode != dir);
+ audit_inode_child(victim, dir);
+
+ error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
+ if (error)
+ return error;
+ if (IS_APPEND(dir))
+ return -EPERM;
+ if (btrfs_check_sticky(dir, victim->d_inode)||
+ IS_APPEND(victim->d_inode)||
+ IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
+ return -EPERM;
+ if (isdir) {
+ if (!S_ISDIR(victim->d_inode->i_mode))
+ return -ENOTDIR;
+ if (IS_ROOT(victim))
+ return -EBUSY;
+ } else if (S_ISDIR(victim->d_inode->i_mode))
+ return -EISDIR;
+ if (IS_DEADDIR(dir))
+ return -ENOENT;
+ if (victim->d_flags & DCACHE_NFSFS_RENAMED)
+ return -EBUSY;
+ return 0;
+}
+
+/* copy of may_create in fs/namei.c() */
+static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
+{
+ if (child->d_inode)
+ return -EEXIST;
+ if (IS_DEADDIR(dir))
+ return -ENOENT;
+ return inode_permission(dir, MAY_WRITE | MAY_EXEC);
+}
+
+/*
+ * Create a new subvolume below @parent. This is largely modeled after
+ * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
+ * inside this filesystem so it's quite a bit simpler.
+ */
+static noinline int btrfs_mksubvol(struct path *parent,
+ char *name, int namelen,
+ struct btrfs_root *snap_src,
+ u64 *async_transid, bool readonly)
+{
+ struct inode *dir = parent->dentry->d_inode;
+ struct dentry *dentry;
+ int error;
+
+ mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
+
+ dentry = lookup_one_len(name, parent->dentry, namelen);
+ error = PTR_ERR(dentry);
+ if (IS_ERR(dentry))
+ goto out_unlock;
+
+ error = -EEXIST;
+ if (dentry->d_inode)
+ goto out_dput;
+
+ error = mnt_want_write(parent->mnt);
+ if (error)
+ goto out_dput;
+
+ error = btrfs_may_create(dir, dentry);
+ if (error)
+ goto out_drop_write;
+
+ down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
+
+ if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
+ goto out_up_read;
+
+ if (snap_src) {
+ error = create_snapshot(snap_src, dentry,
+ name, namelen, async_transid, readonly);
+ } else {
+ error = create_subvol(BTRFS_I(dir)->root, dentry,
+ name, namelen, async_transid);
+ }
+ if (!error)
+ fsnotify_mkdir(dir, dentry);
+out_up_read:
+ up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
+out_drop_write:
+ mnt_drop_write(parent->mnt);
+out_dput:
+ dput(dentry);
+out_unlock:
+ mutex_unlock(&dir->i_mutex);
+ return error;
+}
+
+/*
+ * When we're defragging a range, we don't want to kick it off again
+ * if it is really just waiting for delalloc to send it down.
+ * If we find a nice big extent or delalloc range for the bytes in the
+ * file you want to defrag, we return 0 to let you know to skip this
+ * part of the file
+ */
+static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
+{
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct extent_map *em = NULL;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ u64 end;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
+ read_unlock(&em_tree->lock);
+
+ if (em) {
+ end = extent_map_end(em);
+ free_extent_map(em);
+ if (end - offset > thresh)
+ return 0;
+ }
+ /* if we already have a nice delalloc here, just stop */
+ thresh /= 2;
+ end = count_range_bits(io_tree, &offset, offset + thresh,
+ thresh, EXTENT_DELALLOC, 1);
+ if (end >= thresh)
+ return 0;
+ return 1;
+}
+
+/*
+ * helper function to walk through a file and find extents
+ * newer than a specific transid, and smaller than thresh.
+ *
+ * This is used by the defragging code to find new and small
+ * extents
+ */
+static int find_new_extents(struct btrfs_root *root,
+ struct inode *inode, u64 newer_than,
+ u64 *off, int thresh)
+{
+ struct btrfs_path *path;
+ struct btrfs_key min_key;
+ struct btrfs_key max_key;
+ struct extent_buffer *leaf;
+ struct btrfs_file_extent_item *extent;
+ int type;
+ int ret;
+ u64 ino = btrfs_ino(inode);
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ min_key.objectid = ino;
+ min_key.type = BTRFS_EXTENT_DATA_KEY;
+ min_key.offset = *off;
+
+ max_key.objectid = ino;
+ max_key.type = (u8)-1;
+ max_key.offset = (u64)-1;
+
+ path->keep_locks = 1;
+
+ while(1) {
+ ret = btrfs_search_forward(root, &min_key, &max_key,
+ path, 0, newer_than);
+ if (ret != 0)
+ goto none;
+ if (min_key.objectid != ino)
+ goto none;
+ if (min_key.type != BTRFS_EXTENT_DATA_KEY)
+ goto none;
+
+ leaf = path->nodes[0];
+ extent = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+
+ type = btrfs_file_extent_type(leaf, extent);
+ if (type == BTRFS_FILE_EXTENT_REG &&
+ btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
+ check_defrag_in_cache(inode, min_key.offset, thresh)) {
+ *off = min_key.offset;
+ btrfs_free_path(path);
+ return 0;
+ }
+
+ if (min_key.offset == (u64)-1)
+ goto none;
+
+ min_key.offset++;
+ btrfs_release_path(path);
+ }
+none:
+ btrfs_free_path(path);
+ return -ENOENT;
+}
+
+/*
+ * Validaty check of prev em and next em:
+ * 1) no prev/next em
+ * 2) prev/next em is an hole/inline extent
+ */
+static int check_adjacent_extents(struct inode *inode, struct extent_map *em)
+{
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct extent_map *prev = NULL, *next = NULL;
+ int ret = 0;
+
+ read_lock(&em_tree->lock);
+ prev = lookup_extent_mapping(em_tree, em->start - 1, (u64)-1);
+ next = lookup_extent_mapping(em_tree, em->start + em->len, (u64)-1);
+ read_unlock(&em_tree->lock);
+
+ if ((!prev || prev->block_start >= EXTENT_MAP_LAST_BYTE) &&
+ (!next || next->block_start >= EXTENT_MAP_LAST_BYTE))
+ ret = 1;
+ free_extent_map(prev);
+ free_extent_map(next);
+
+ return ret;
+}
+
+static int should_defrag_range(struct inode *inode, u64 start, u64 len,
+ int thresh, u64 *last_len, u64 *skip,
+ u64 *defrag_end)
+{
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ struct extent_map *em = NULL;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ int ret = 1;
+
+ /*
+ * make sure that once we start defragging an extent, we keep on
+ * defragging it
+ */
+ if (start < *defrag_end)
+ return 1;
+
+ *skip = 0;
+
+ /*
+ * hopefully we have this extent in the tree already, try without
+ * the full extent lock
+ */
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, start, len);
+ read_unlock(&em_tree->lock);
+
+ if (!em) {
+ /* get the big lock and read metadata off disk */
+ lock_extent(io_tree, start, start + len - 1);
+ em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
+ unlock_extent(io_tree, start, start + len - 1);
+
+ if (IS_ERR(em))
+ return 0;
+ }
+
+ /* this will cover holes, and inline extents */
+ if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
+ ret = 0;
+ goto out;
+ }
+
+ /* If we have nothing to merge with us, just skip. */
+ if (check_adjacent_extents(inode, em)) {
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * we hit a real extent, if it is big don't bother defragging it again
+ */
+ if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
+ ret = 0;
+
+out:
+ /*
+ * last_len ends up being a counter of how many bytes we've defragged.
+ * every time we choose not to defrag an extent, we reset *last_len
+ * so that the next tiny extent will force a defrag.
+ *
+ * The end result of this is that tiny extents before a single big
+ * extent will force at least part of that big extent to be defragged.
+ */
+ if (ret) {
+ *defrag_end = extent_map_end(em);
+ } else {
+ *last_len = 0;
+ *skip = extent_map_end(em);
+ *defrag_end = 0;
+ }
+
+ free_extent_map(em);
+ return ret;
+}
+
+/*
+ * it doesn't do much good to defrag one or two pages
+ * at a time. This pulls in a nice chunk of pages
+ * to COW and defrag.
+ *
+ * It also makes sure the delalloc code has enough
+ * dirty data to avoid making new small extents as part
+ * of the defrag
+ *
+ * It's a good idea to start RA on this range
+ * before calling this.
+ */
+static int cluster_pages_for_defrag(struct inode *inode,
+ struct page **pages,
+ unsigned long start_index,
+ int num_pages)
+{
+ unsigned long file_end;
+ u64 isize = i_size_read(inode);
+ u64 page_start;
+ u64 page_end;
+ u64 page_cnt;
+ int ret;
+ int i;
+ int i_done;
+ struct btrfs_ordered_extent *ordered;
+ struct extent_state *cached_state = NULL;
+ struct extent_io_tree *tree;
+ gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
+
+ file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
+ if (!isize || start_index > file_end)
+ return 0;
+
+ page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
+
+ ret = btrfs_delalloc_reserve_space(inode,
+ page_cnt << PAGE_CACHE_SHIFT);
+ if (ret)
+ return ret;
+ i_done = 0;
+ tree = &BTRFS_I(inode)->io_tree;
+
+ /* step one, lock all the pages */
+ for (i = 0; i < page_cnt; i++) {
+ struct page *page;
+again:
+ page = find_or_create_page(inode->i_mapping,
+ start_index + i, mask);
+ if (!page)
+ break;
+
+ page_start = page_offset(page);
+ page_end = page_start + PAGE_CACHE_SIZE - 1;
+ while (1) {
+ lock_extent(tree, page_start, page_end);
+ ordered = btrfs_lookup_ordered_extent(inode,
+ page_start);
+ unlock_extent(tree, page_start, page_end);
+ if (!ordered)
+ break;
+
+ unlock_page(page);
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ lock_page(page);
+ /*
+ * we unlocked the page above, so we need check if
+ * it was released or not.
+ */
+ if (page->mapping != inode->i_mapping) {
+ unlock_page(page);
+ page_cache_release(page);
+ goto again;
+ }
+ }
+
+ if (!PageUptodate(page)) {
+ btrfs_readpage(NULL, page);
+ lock_page(page);
+ if (!PageUptodate(page)) {
+ unlock_page(page);
+ page_cache_release(page);
+ ret = -EIO;
+ break;
+ }
+ }
+
+ if (page->mapping != inode->i_mapping) {
+ unlock_page(page);
+ page_cache_release(page);
+ goto again;
+ }
+
+ pages[i] = page;
+ i_done++;
+ }
+ if (!i_done || ret)
+ goto out;
+
+ if (!(inode->i_sb->s_flags & MS_ACTIVE))
+ goto out;
+
+ /*
+ * so now we have a nice long stream of locked
+ * and up to date pages, lets wait on them
+ */
+ for (i = 0; i < i_done; i++)
+ wait_on_page_writeback(pages[i]);
+
+ page_start = page_offset(pages[0]);
+ page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
+
+ lock_extent_bits(&BTRFS_I(inode)->io_tree,
+ page_start, page_end - 1, 0, &cached_state);
+ clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
+ page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
+ EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
+ GFP_NOFS);
+
+ if (i_done != page_cnt) {
+ spin_lock(&BTRFS_I(inode)->lock);
+ BTRFS_I(inode)->outstanding_extents++;
+ spin_unlock(&BTRFS_I(inode)->lock);
+ btrfs_delalloc_release_space(inode,
+ (page_cnt - i_done) << PAGE_CACHE_SHIFT);
+ }
+
+
+ btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
+ &cached_state);
+
+ unlock_extent_cached(&BTRFS_I(inode)->io_tree,
+ page_start, page_end - 1, &cached_state,
+ GFP_NOFS);
+
+ for (i = 0; i < i_done; i++) {
+ clear_page_dirty_for_io(pages[i]);
+ ClearPageChecked(pages[i]);
+ set_page_extent_mapped(pages[i]);
+ set_page_dirty(pages[i]);
+ unlock_page(pages[i]);
+ page_cache_release(pages[i]);
+ }
+ return i_done;
+out:
+ for (i = 0; i < i_done; i++) {
+ unlock_page(pages[i]);
+ page_cache_release(pages[i]);
+ }
+ btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
+ return ret;
+
+}
+
+int btrfs_defrag_file(struct inode *inode, struct file *file,
+ struct btrfs_ioctl_defrag_range_args *range,
+ u64 newer_than, unsigned long max_to_defrag)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_super_block *disk_super;
+ struct file_ra_state *ra = NULL;
+ unsigned long last_index;
+ u64 isize = i_size_read(inode);
+ u64 features;
+ u64 last_len = 0;
+ u64 skip = 0;
+ u64 defrag_end = 0;
+ u64 newer_off = range->start;
+ unsigned long i;
+ unsigned long ra_index = 0;
+ int ret;
+ int defrag_count = 0;
+ int compress_type = BTRFS_COMPRESS_ZLIB;
+ int extent_thresh = range->extent_thresh;
+ int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
+ int cluster = max_cluster;
+ u64 new_align = ~((u64)128 * 1024 - 1);
+ struct page **pages = NULL;
+
+ if (extent_thresh == 0)
+ extent_thresh = 256 * 1024;
+
+ if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
+ if (range->compress_type > BTRFS_COMPRESS_TYPES)
+ return -EINVAL;
+ if (range->compress_type)
+ compress_type = range->compress_type;
+ }
+
+ if (isize == 0)
+ return 0;
+
+ /*
+ * if we were not given a file, allocate a readahead
+ * context
+ */
+ if (!file) {
+ ra = kzalloc(sizeof(*ra), GFP_NOFS);
+ if (!ra)
+ return -ENOMEM;
+ file_ra_state_init(ra, inode->i_mapping);
+ } else {
+ ra = &file->f_ra;
+ }
+
+ pages = kmalloc(sizeof(struct page *) * max_cluster,
+ GFP_NOFS);
+ if (!pages) {
+ ret = -ENOMEM;
+ goto out_ra;
+ }
+
+ /* find the last page to defrag */
+ if (range->start + range->len > range->start) {
+ last_index = min_t(u64, isize - 1,
+ range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
+ } else {
+ last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
+ }
+
+ if (newer_than) {
+ ret = find_new_extents(root, inode, newer_than,
+ &newer_off, 64 * 1024);
+ if (!ret) {
+ range->start = newer_off;
+ /*
+ * we always align our defrag to help keep
+ * the extents in the file evenly spaced
+ */
+ i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
+ } else
+ goto out_ra;
+ } else {
+ i = range->start >> PAGE_CACHE_SHIFT;
+ }
+ if (!max_to_defrag)
+ max_to_defrag = last_index + 1;
+
+ /*
+ * make writeback starts from i, so the defrag range can be
+ * written sequentially.
+ */
+ if (i < inode->i_mapping->writeback_index)
+ inode->i_mapping->writeback_index = i;
+
+ while (i <= last_index && defrag_count < max_to_defrag &&
+ (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
+ PAGE_CACHE_SHIFT)) {
+ /*
+ * make sure we stop running if someone unmounts
+ * the FS
+ */
+ if (!(inode->i_sb->s_flags & MS_ACTIVE))
+ break;
+
+ if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
+ PAGE_CACHE_SIZE, extent_thresh,
+ &last_len, &skip, &defrag_end)) {
+ unsigned long next;
+ /*
+ * the should_defrag function tells us how much to skip
+ * bump our counter by the suggested amount
+ */
+ next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ i = max(i + 1, next);
+ continue;
+ }
+
+ if (!newer_than) {
+ cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
+ PAGE_CACHE_SHIFT) - i;
+ cluster = min(cluster, max_cluster);
+ } else {
+ cluster = max_cluster;
+ }
+
+ if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
+ BTRFS_I(inode)->force_compress = compress_type;
+
+ if (i + cluster > ra_index) {
+ ra_index = max(i, ra_index);
+ btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
+ cluster);
+ ra_index += max_cluster;
+ }
+
+ mutex_lock(&inode->i_mutex);
+ ret = cluster_pages_for_defrag(inode, pages, i, cluster);
+ if (ret < 0) {
+ mutex_unlock(&inode->i_mutex);
+ goto out_ra;
+ }
+
+ defrag_count += ret;
+ balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
+ mutex_unlock(&inode->i_mutex);
+
+ if (newer_than) {
+ if (newer_off == (u64)-1)
+ break;
+
+ if (ret > 0)
+ i += ret;
+
+ newer_off = max(newer_off + 1,
+ (u64)i << PAGE_CACHE_SHIFT);
+
+ ret = find_new_extents(root, inode,
+ newer_than, &newer_off,
+ 64 * 1024);
+ if (!ret) {
+ range->start = newer_off;
+ i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
+ } else {
+ break;
+ }
+ } else {
+ if (ret > 0) {
+ i += ret;
+ last_len += ret << PAGE_CACHE_SHIFT;
+ } else {
+ i++;
+ last_len = 0;
+ }
+ }
+ }
+
+ if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
+ filemap_flush(inode->i_mapping);
+
+ if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
+ /* the filemap_flush will queue IO into the worker threads, but
+ * we have to make sure the IO is actually started and that
+ * ordered extents get created before we return
+ */
+ atomic_inc(&root->fs_info->async_submit_draining);
+ while (atomic_read(&root->fs_info->nr_async_submits) ||
+ atomic_read(&root->fs_info->async_delalloc_pages)) {
+ wait_event(root->fs_info->async_submit_wait,
+ (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
+ atomic_read(&root->fs_info->async_delalloc_pages) == 0));
+ }
+ atomic_dec(&root->fs_info->async_submit_draining);
+
+ mutex_lock(&inode->i_mutex);
+ BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
+ mutex_unlock(&inode->i_mutex);
+ }
+
+ disk_super = root->fs_info->super_copy;
+ features = btrfs_super_incompat_flags(disk_super);
+ if (range->compress_type == BTRFS_COMPRESS_LZO) {
+ features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
+ btrfs_set_super_incompat_flags(disk_super, features);
+ }
+
+ ret = defrag_count;
+
+out_ra:
+ if (!file)
+ kfree(ra);
+ kfree(pages);
+ return ret;
+}
+
+static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
+ void __user *arg)
+{
+ u64 new_size;
+ u64 old_size;
+ u64 devid = 1;
+ struct btrfs_ioctl_vol_args *vol_args;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_device *device = NULL;
+ char *sizestr;
+ char *devstr = NULL;
+ int ret = 0;
+ int mod = 0;
+
+ if (root->fs_info->sb->s_flags & MS_RDONLY)
+ return -EROFS;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ mutex_lock(&root->fs_info->volume_mutex);
+ if (root->fs_info->balance_ctl) {
+ printk(KERN_INFO "btrfs: balance in progress\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ vol_args = memdup_user(arg, sizeof(*vol_args));
+ if (IS_ERR(vol_args)) {
+ ret = PTR_ERR(vol_args);
+ goto out;
+ }
+
+ vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
+
+ sizestr = vol_args->name;
+ devstr = strchr(sizestr, ':');
+ if (devstr) {
+ char *end;
+ sizestr = devstr + 1;
+ *devstr = '\0';
+ devstr = vol_args->name;
+ devid = simple_strtoull(devstr, &end, 10);
+ printk(KERN_INFO "btrfs: resizing devid %llu\n",
+ (unsigned long long)devid);
+ }
+ device = btrfs_find_device(root, devid, NULL, NULL);
+ if (!device) {
+ printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
+ (unsigned long long)devid);
+ ret = -EINVAL;
+ goto out_free;
+ }
+ if (!strcmp(sizestr, "max"))
+ new_size = device->bdev->bd_inode->i_size;
+ else {
+ if (sizestr[0] == '-') {
+ mod = -1;
+ sizestr++;
+ } else if (sizestr[0] == '+') {
+ mod = 1;
+ sizestr++;
+ }
+ new_size = memparse(sizestr, NULL);
+ if (new_size == 0) {
+ ret = -EINVAL;
+ goto out_free;
+ }
+ }
+
+ old_size = device->total_bytes;
+
+ if (mod < 0) {
+ if (new_size > old_size) {
+ ret = -EINVAL;
+ goto out_free;
+ }
+ new_size = old_size - new_size;
+ } else if (mod > 0) {
+ new_size = old_size + new_size;
+ }
+
+ if (new_size < 256 * 1024 * 1024) {
+ ret = -EINVAL;
+ goto out_free;
+ }
+ if (new_size > device->bdev->bd_inode->i_size) {
+ ret = -EFBIG;
+ goto out_free;
+ }
+
+ do_div(new_size, root->sectorsize);
+ new_size *= root->sectorsize;
+
+ printk(KERN_INFO "btrfs: new size for %s is %llu\n",
+ device->name, (unsigned long long)new_size);
+
+ if (new_size > old_size) {
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto out_free;
+ }
+ ret = btrfs_grow_device(trans, device, new_size);
+ btrfs_commit_transaction(trans, root);
+ } else if (new_size < old_size) {
+ ret = btrfs_shrink_device(device, new_size);
+ }
+
+out_free:
+ kfree(vol_args);
+out:
+ mutex_unlock(&root->fs_info->volume_mutex);
+ return ret;
+}
+
+static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
+ char *name,
+ unsigned long fd,
+ int subvol,
+ u64 *transid,
+ bool readonly)
+{
+ struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
+ struct file *src_file;
+ int namelen;
+ int ret = 0;
+
+ if (root->fs_info->sb->s_flags & MS_RDONLY)
+ return -EROFS;
+
+ namelen = strlen(name);
+ if (strchr(name, '/')) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (name[0] == '.' &&
+ (namelen == 1 || (name[1] == '.' && namelen == 2))) {
+ ret = -EEXIST;
+ goto out;
+ }
+
+ if (subvol) {
+ ret = btrfs_mksubvol(&file->f_path, name, namelen,
+ NULL, transid, readonly);
+ } else {
+ struct inode *src_inode;
+ src_file = fget(fd);
+ if (!src_file) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ src_inode = src_file->f_path.dentry->d_inode;
+ if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
+ printk(KERN_INFO "btrfs: Snapshot src from "
+ "another FS\n");
+ ret = -EINVAL;
+ fput(src_file);
+ goto out;
+ }
+ ret = btrfs_mksubvol(&file->f_path, name, namelen,
+ BTRFS_I(src_inode)->root,
+ transid, readonly);
+ fput(src_file);
+ }
+out:
+ return ret;
+}
+
+static noinline int btrfs_ioctl_snap_create(struct file *file,
+ void __user *arg, int subvol)
+{
+ struct btrfs_ioctl_vol_args *vol_args;
+ int ret;
+
+ vol_args = memdup_user(arg, sizeof(*vol_args));
+ if (IS_ERR(vol_args))
+ return PTR_ERR(vol_args);
+ vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
+
+ ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
+ vol_args->fd, subvol,
+ NULL, false);
+
+ kfree(vol_args);
+ return ret;
+}
+
+static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
+ void __user *arg, int subvol)
+{
+ struct btrfs_ioctl_vol_args_v2 *vol_args;
+ int ret;
+ u64 transid = 0;
+ u64 *ptr = NULL;
+ bool readonly = false;
+
+ vol_args = memdup_user(arg, sizeof(*vol_args));
+ if (IS_ERR(vol_args))
+ return PTR_ERR(vol_args);
+ vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
+
+ if (vol_args->flags &
+ ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
+ ret = -EOPNOTSUPP;
+ goto out;
+ }
+
+ if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
+ ptr = &transid;
+ if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
+ readonly = true;
+
+ ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
+ vol_args->fd, subvol,
+ ptr, readonly);
+
+ if (ret == 0 && ptr &&
+ copy_to_user(arg +
+ offsetof(struct btrfs_ioctl_vol_args_v2,
+ transid), ptr, sizeof(*ptr)))
+ ret = -EFAULT;
+out:
+ kfree(vol_args);
+ return ret;
+}
+
+static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
+ void __user *arg)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int ret = 0;
+ u64 flags = 0;
+
+ if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
+ return -EINVAL;
+
+ down_read(&root->fs_info->subvol_sem);
+ if (btrfs_root_readonly(root))
+ flags |= BTRFS_SUBVOL_RDONLY;
+ up_read(&root->fs_info->subvol_sem);
+
+ if (copy_to_user(arg, &flags, sizeof(flags)))
+ ret = -EFAULT;
+
+ return ret;
+}
+
+static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
+ void __user *arg)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ u64 root_flags;
+ u64 flags;
+ int ret = 0;
+
+ if (root->fs_info->sb->s_flags & MS_RDONLY)
+ return -EROFS;
+
+ if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
+ return -EINVAL;
+
+ if (copy_from_user(&flags, arg, sizeof(flags)))
+ return -EFAULT;
+
+ if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
+ return -EINVAL;
+
+ if (flags & ~BTRFS_SUBVOL_RDONLY)
+ return -EOPNOTSUPP;
+
+ if (!inode_owner_or_capable(inode))
+ return -EACCES;
+
+ down_write(&root->fs_info->subvol_sem);
+
+ /* nothing to do */
+ if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
+ goto out;
+
+ root_flags = btrfs_root_flags(&root->root_item);
+ if (flags & BTRFS_SUBVOL_RDONLY)
+ btrfs_set_root_flags(&root->root_item,
+ root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
+ else
+ btrfs_set_root_flags(&root->root_item,
+ root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
+
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto out_reset;
+ }
+
+ ret = btrfs_update_root(trans, root->fs_info->tree_root,
+ &root->root_key, &root->root_item);
+
+ btrfs_commit_transaction(trans, root);
+out_reset:
+ if (ret)
+ btrfs_set_root_flags(&root->root_item, root_flags);
+out:
+ up_write(&root->fs_info->subvol_sem);
+ return ret;
+}
+
+/*
+ * helper to check if the subvolume references other subvolumes
+ */
+static noinline int may_destroy_subvol(struct btrfs_root *root)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = root->root_key.objectid;
+ key.type = BTRFS_ROOT_REF_KEY;
+ key.offset = (u64)-1;
+
+ ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
+ &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ BUG_ON(ret == 0);
+
+ ret = 0;
+ if (path->slots[0] > 0) {
+ path->slots[0]--;
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ if (key.objectid == root->root_key.objectid &&
+ key.type == BTRFS_ROOT_REF_KEY)
+ ret = -ENOTEMPTY;
+ }
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static noinline int key_in_sk(struct btrfs_key *key,
+ struct btrfs_ioctl_search_key *sk)
+{
+ struct btrfs_key test;
+ int ret;
+
+ test.objectid = sk->min_objectid;
+ test.type = sk->min_type;
+ test.offset = sk->min_offset;
+
+ ret = btrfs_comp_cpu_keys(key, &test);
+ if (ret < 0)
+ return 0;
+
+ test.objectid = sk->max_objectid;
+ test.type = sk->max_type;
+ test.offset = sk->max_offset;
+
+ ret = btrfs_comp_cpu_keys(key, &test);
+ if (ret > 0)
+ return 0;
+ return 1;
+}
+
+static noinline int copy_to_sk(struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *key,
+ struct btrfs_ioctl_search_key *sk,
+ char *buf,
+ unsigned long *sk_offset,
+ int *num_found)
+{
+ u64 found_transid;
+ struct extent_buffer *leaf;
+ struct btrfs_ioctl_search_header sh;
+ unsigned long item_off;
+ unsigned long item_len;
+ int nritems;
+ int i;
+ int slot;
+ int ret = 0;
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ nritems = btrfs_header_nritems(leaf);
+
+ if (btrfs_header_generation(leaf) > sk->max_transid) {
+ i = nritems;
+ goto advance_key;
+ }
+ found_transid = btrfs_header_generation(leaf);
+
+ for (i = slot; i < nritems; i++) {
+ item_off = btrfs_item_ptr_offset(leaf, i);
+ item_len = btrfs_item_size_nr(leaf, i);
+
+ if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
+ item_len = 0;
+
+ if (sizeof(sh) + item_len + *sk_offset >
+ BTRFS_SEARCH_ARGS_BUFSIZE) {
+ ret = 1;
+ goto overflow;
+ }
+
+ btrfs_item_key_to_cpu(leaf, key, i);
+ if (!key_in_sk(key, sk))
+ continue;
+
+ sh.objectid = key->objectid;
+ sh.offset = key->offset;
+ sh.type = key->type;
+ sh.len = item_len;
+ sh.transid = found_transid;
+
+ /* copy search result header */
+ memcpy(buf + *sk_offset, &sh, sizeof(sh));
+ *sk_offset += sizeof(sh);
+
+ if (item_len) {
+ char *p = buf + *sk_offset;
+ /* copy the item */
+ read_extent_buffer(leaf, p,
+ item_off, item_len);
+ *sk_offset += item_len;
+ }
+ (*num_found)++;
+
+ if (*num_found >= sk->nr_items)
+ break;
+ }
+advance_key:
+ ret = 0;
+ if (key->offset < (u64)-1 && key->offset < sk->max_offset)
+ key->offset++;
+ else if (key->type < (u8)-1 && key->type < sk->max_type) {
+ key->offset = 0;
+ key->type++;
+ } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
+ key->offset = 0;
+ key->type = 0;
+ key->objectid++;
+ } else
+ ret = 1;
+overflow:
+ return ret;
+}
+
+static noinline int search_ioctl(struct inode *inode,
+ struct btrfs_ioctl_search_args *args)
+{
+ struct btrfs_root *root;
+ struct btrfs_key key;
+ struct btrfs_key max_key;
+ struct btrfs_path *path;
+ struct btrfs_ioctl_search_key *sk = &args->key;
+ struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
+ int ret;
+ int num_found = 0;
+ unsigned long sk_offset = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ if (sk->tree_id == 0) {
+ /* search the root of the inode that was passed */
+ root = BTRFS_I(inode)->root;
+ } else {
+ key.objectid = sk->tree_id;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = (u64)-1;
+ root = btrfs_read_fs_root_no_name(info, &key);
+ if (IS_ERR(root)) {
+ printk(KERN_ERR "could not find root %llu\n",
+ sk->tree_id);
+ btrfs_free_path(path);
+ return -ENOENT;
+ }
+ }
+
+ key.objectid = sk->min_objectid;
+ key.type = sk->min_type;
+ key.offset = sk->min_offset;
+
+ max_key.objectid = sk->max_objectid;
+ max_key.type = sk->max_type;
+ max_key.offset = sk->max_offset;
+
+ path->keep_locks = 1;
+
+ while(1) {
+ ret = btrfs_search_forward(root, &key, &max_key, path, 0,
+ sk->min_transid);
+ if (ret != 0) {
+ if (ret > 0)
+ ret = 0;
+ goto err;
+ }
+ ret = copy_to_sk(root, path, &key, sk, args->buf,
+ &sk_offset, &num_found);
+ btrfs_release_path(path);
+ if (ret || num_found >= sk->nr_items)
+ break;
+
+ }
+ ret = 0;
+err:
+ sk->nr_items = num_found;
+ btrfs_free_path(path);
+ return ret;
+}
+
+static noinline int btrfs_ioctl_tree_search(struct file *file,
+ void __user *argp)
+{
+ struct btrfs_ioctl_search_args *args;
+ struct inode *inode;
+ int ret;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ args = memdup_user(argp, sizeof(*args));
+ if (IS_ERR(args))
+ return PTR_ERR(args);
+
+ inode = fdentry(file)->d_inode;
+ ret = search_ioctl(inode, args);
+ if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
+ ret = -EFAULT;
+ kfree(args);
+ return ret;
+}
+
+/*
+ * Search INODE_REFs to identify path name of 'dirid' directory
+ * in a 'tree_id' tree. and sets path name to 'name'.
+ */
+static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
+ u64 tree_id, u64 dirid, char *name)
+{
+ struct btrfs_root *root;
+ struct btrfs_key key;
+ char *ptr;
+ int ret = -1;
+ int slot;
+ int len;
+ int total_len = 0;
+ struct btrfs_inode_ref *iref;
+ struct extent_buffer *l;
+ struct btrfs_path *path;
+
+ if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
+ name[0]='\0';
+ return 0;
+ }
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
+
+ key.objectid = tree_id;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = (u64)-1;
+ root = btrfs_read_fs_root_no_name(info, &key);
+ if (IS_ERR(root)) {
+ printk(KERN_ERR "could not find root %llu\n", tree_id);
+ ret = -ENOENT;
+ goto out;
+ }
+
+ key.objectid = dirid;
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = (u64)-1;
+
+ while(1) {
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+
+ l = path->nodes[0];
+ slot = path->slots[0];
+ if (ret > 0 && slot > 0)
+ slot--;
+ btrfs_item_key_to_cpu(l, &key, slot);
+
+ if (ret > 0 && (key.objectid != dirid ||
+ key.type != BTRFS_INODE_REF_KEY)) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
+ len = btrfs_inode_ref_name_len(l, iref);
+ ptr -= len + 1;
+ total_len += len + 1;
+ if (ptr < name)
+ goto out;
+
+ *(ptr + len) = '/';
+ read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
+
+ if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
+ break;
+
+ btrfs_release_path(path);
+ key.objectid = key.offset;
+ key.offset = (u64)-1;
+ dirid = key.objectid;
+ }
+ if (ptr < name)
+ goto out;
+ memmove(name, ptr, total_len);
+ name[total_len]='\0';
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static noinline int btrfs_ioctl_ino_lookup(struct file *file,
+ void __user *argp)
+{
+ struct btrfs_ioctl_ino_lookup_args *args;
+ struct inode *inode;
+ int ret;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ args = memdup_user(argp, sizeof(*args));
+ if (IS_ERR(args))
+ return PTR_ERR(args);
+
+ inode = fdentry(file)->d_inode;
+
+ if (args->treeid == 0)
+ args->treeid = BTRFS_I(inode)->root->root_key.objectid;
+
+ ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
+ args->treeid, args->objectid,
+ args->name);
+
+ if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
+ ret = -EFAULT;
+
+ kfree(args);
+ return ret;
+}
+
+static noinline int btrfs_ioctl_snap_destroy(struct file *file,
+ void __user *arg)
+{
+ struct dentry *parent = fdentry(file);
+ struct dentry *dentry;
+ struct inode *dir = parent->d_inode;
+ struct inode *inode;
+ struct btrfs_root *root = BTRFS_I(dir)->root;
+ struct btrfs_root *dest = NULL;
+ struct btrfs_ioctl_vol_args *vol_args;
+ struct btrfs_trans_handle *trans;
+ int namelen;
+ int ret;
+ int err = 0;
+
+ vol_args = memdup_user(arg, sizeof(*vol_args));
+ if (IS_ERR(vol_args))
+ return PTR_ERR(vol_args);
+
+ vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
+ namelen = strlen(vol_args->name);
+ if (strchr(vol_args->name, '/') ||
+ strncmp(vol_args->name, "..", namelen) == 0) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ err = mnt_want_write_file(file);
+ if (err)
+ goto out;
+
+ mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
+ dentry = lookup_one_len(vol_args->name, parent, namelen);
+ if (IS_ERR(dentry)) {
+ err = PTR_ERR(dentry);
+ goto out_unlock_dir;
+ }
+
+ if (!dentry->d_inode) {
+ err = -ENOENT;
+ goto out_dput;
+ }
+
+ inode = dentry->d_inode;
+ dest = BTRFS_I(inode)->root;
+ if (!capable(CAP_SYS_ADMIN)){
+ /*
+ * Regular user. Only allow this with a special mount
+ * option, when the user has write+exec access to the
+ * subvol root, and when rmdir(2) would have been
+ * allowed.
+ *
+ * Note that this is _not_ check that the subvol is
+ * empty or doesn't contain data that we wouldn't
+ * otherwise be able to delete.
+ *
+ * Users who want to delete empty subvols should try
+ * rmdir(2).
+ */
+ err = -EPERM;
+ if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
+ goto out_dput;
+
+ /*
+ * Do not allow deletion if the parent dir is the same
+ * as the dir to be deleted. That means the ioctl
+ * must be called on the dentry referencing the root
+ * of the subvol, not a random directory contained
+ * within it.
+ */
+ err = -EINVAL;
+ if (root == dest)
+ goto out_dput;
+
+ err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
+ if (err)
+ goto out_dput;
+
+ /* check if subvolume may be deleted by a non-root user */
+ err = btrfs_may_delete(dir, dentry, 1);
+ if (err)
+ goto out_dput;
+ }
+
+ if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
+ err = -EINVAL;
+ goto out_dput;
+ }
+
+ mutex_lock(&inode->i_mutex);
+ err = d_invalidate(dentry);
+ if (err)
+ goto out_unlock;
+
+ down_write(&root->fs_info->subvol_sem);
+
+ err = may_destroy_subvol(dest);
+ if (err)
+ goto out_up_write;
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ err = PTR_ERR(trans);
+ goto out_up_write;
+ }
+ trans->block_rsv = &root->fs_info->global_block_rsv;
+
+ ret = btrfs_unlink_subvol(trans, root, dir,
+ dest->root_key.objectid,
+ dentry->d_name.name,
+ dentry->d_name.len);
+ if (ret) {
+ err = ret;
+ btrfs_abort_transaction(trans, root, ret);
+ goto out_end_trans;
+ }
+
+ btrfs_record_root_in_trans(trans, dest);
+
+ memset(&dest->root_item.drop_progress, 0,
+ sizeof(dest->root_item.drop_progress));
+ dest->root_item.drop_level = 0;
+ btrfs_set_root_refs(&dest->root_item, 0);
+
+ if (!xchg(&dest->orphan_item_inserted, 1)) {
+ ret = btrfs_insert_orphan_item(trans,
+ root->fs_info->tree_root,
+ dest->root_key.objectid);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ err = ret;
+ goto out_end_trans;
+ }
+ }
+out_end_trans:
+ ret = btrfs_end_transaction(trans, root);
+ if (ret && !err)
+ err = ret;
+ inode->i_flags |= S_DEAD;
+out_up_write:
+ up_write(&root->fs_info->subvol_sem);
+out_unlock:
+ mutex_unlock(&inode->i_mutex);
+ if (!err) {
+ shrink_dcache_sb(root->fs_info->sb);
+ btrfs_invalidate_inodes(dest);
+ d_delete(dentry);
+ }
+out_dput:
+ dput(dentry);
+out_unlock_dir:
+ mutex_unlock(&dir->i_mutex);
+ mnt_drop_write_file(file);
+out:
+ kfree(vol_args);
+ return err;
+}
+
+static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_ioctl_defrag_range_args *range;
+ int ret;
+
+ if (btrfs_root_readonly(root))
+ return -EROFS;
+
+ ret = mnt_want_write_file(file);
+ if (ret)
+ return ret;
+
+ switch (inode->i_mode & S_IFMT) {
+ case S_IFDIR:
+ if (!capable(CAP_SYS_ADMIN)) {
+ ret = -EPERM;
+ goto out;
+ }
+ ret = btrfs_defrag_root(root, 0);
+ if (ret)
+ goto out;
+ ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
+ break;
+ case S_IFREG:
+ if (!(file->f_mode & FMODE_WRITE)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ range = kzalloc(sizeof(*range), GFP_KERNEL);
+ if (!range) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ if (argp) {
+ if (copy_from_user(range, argp,
+ sizeof(*range))) {
+ ret = -EFAULT;
+ kfree(range);
+ goto out;
+ }
+ /* compression requires us to start the IO */
+ if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
+ range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
+ range->extent_thresh = (u32)-1;
+ }
+ } else {
+ /* the rest are all set to zero by kzalloc */
+ range->len = (u64)-1;
+ }
+ ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
+ range, 0, 0);
+ if (ret > 0)
+ ret = 0;
+ kfree(range);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+out:
+ mnt_drop_write_file(file);
+ return ret;
+}
+
+static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
+{
+ struct btrfs_ioctl_vol_args *vol_args;
+ int ret;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ mutex_lock(&root->fs_info->volume_mutex);
+ if (root->fs_info->balance_ctl) {
+ printk(KERN_INFO "btrfs: balance in progress\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ vol_args = memdup_user(arg, sizeof(*vol_args));
+ if (IS_ERR(vol_args)) {
+ ret = PTR_ERR(vol_args);
+ goto out;
+ }
+
+ vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
+ ret = btrfs_init_new_device(root, vol_args->name);
+
+ kfree(vol_args);
+out:
+ mutex_unlock(&root->fs_info->volume_mutex);
+ return ret;
+}
+
+static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
+{
+ struct btrfs_ioctl_vol_args *vol_args;
+ int ret;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ if (root->fs_info->sb->s_flags & MS_RDONLY)
+ return -EROFS;
+
+ mutex_lock(&root->fs_info->volume_mutex);
+ if (root->fs_info->balance_ctl) {
+ printk(KERN_INFO "btrfs: balance in progress\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ vol_args = memdup_user(arg, sizeof(*vol_args));
+ if (IS_ERR(vol_args)) {
+ ret = PTR_ERR(vol_args);
+ goto out;
+ }
+
+ vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
+ ret = btrfs_rm_device(root, vol_args->name);
+
+ kfree(vol_args);
+out:
+ mutex_unlock(&root->fs_info->volume_mutex);
+ return ret;
+}
+
+static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
+{
+ struct btrfs_ioctl_fs_info_args *fi_args;
+ struct btrfs_device *device;
+ struct btrfs_device *next;
+ struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+ int ret = 0;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
+ if (!fi_args)
+ return -ENOMEM;
+
+ fi_args->num_devices = fs_devices->num_devices;
+ memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
+
+ mutex_lock(&fs_devices->device_list_mutex);
+ list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
+ if (device->devid > fi_args->max_id)
+ fi_args->max_id = device->devid;
+ }
+ mutex_unlock(&fs_devices->device_list_mutex);
+
+ if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
+ ret = -EFAULT;
+
+ kfree(fi_args);
+ return ret;
+}
+
+static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
+{
+ struct btrfs_ioctl_dev_info_args *di_args;
+ struct btrfs_device *dev;
+ struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+ int ret = 0;
+ char *s_uuid = NULL;
+ char empty_uuid[BTRFS_UUID_SIZE] = {0};
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ di_args = memdup_user(arg, sizeof(*di_args));
+ if (IS_ERR(di_args))
+ return PTR_ERR(di_args);
+
+ if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
+ s_uuid = di_args->uuid;
+
+ mutex_lock(&fs_devices->device_list_mutex);
+ dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
+ mutex_unlock(&fs_devices->device_list_mutex);
+
+ if (!dev) {
+ ret = -ENODEV;
+ goto out;
+ }
+
+ di_args->devid = dev->devid;
+ di_args->bytes_used = dev->bytes_used;
+ di_args->total_bytes = dev->total_bytes;
+ memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
+ if (dev->name)
+ strncpy(di_args->path, dev->name, sizeof(di_args->path));
+ else
+ di_args->path[0] = '\0';
+
+out:
+ if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
+ ret = -EFAULT;
+
+ kfree(di_args);
+ return ret;
+}
+
+static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
+ u64 off, u64 olen, u64 destoff)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct file *src_file;
+ struct inode *src;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ char *buf;
+ struct btrfs_key key;
+ u32 nritems;
+ int slot;
+ int ret;
+ u64 len = olen;
+ u64 bs = root->fs_info->sb->s_blocksize;
+ u64 hint_byte;
+
+ /*
+ * TODO:
+ * - split compressed inline extents. annoying: we need to
+ * decompress into destination's address_space (the file offset
+ * may change, so source mapping won't do), then recompress (or
+ * otherwise reinsert) a subrange.
+ * - allow ranges within the same file to be cloned (provided
+ * they don't overlap)?
+ */
+
+ /* the destination must be opened for writing */
+ if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
+ return -EINVAL;
+
+ if (btrfs_root_readonly(root))
+ return -EROFS;
+
+ ret = mnt_want_write_file(file);
+ if (ret)
+ return ret;
+
+ src_file = fget(srcfd);
+ if (!src_file) {
+ ret = -EBADF;
+ goto out_drop_write;
+ }
+
+ src = src_file->f_dentry->d_inode;
+
+ ret = -EINVAL;
+ if (src == inode)
+ goto out_fput;
+
+ /* the src must be open for reading */
+ if (!(src_file->f_mode & FMODE_READ))
+ goto out_fput;
+
+ /* don't make the dst file partly checksummed */
+ if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
+ (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
+ goto out_fput;
+
+ ret = -EISDIR;
+ if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
+ goto out_fput;
+
+ ret = -EXDEV;
+ if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
+ goto out_fput;
+
+ ret = -ENOMEM;
+ buf = vmalloc(btrfs_level_size(root, 0));
+ if (!buf)
+ goto out_fput;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ vfree(buf);
+ goto out_fput;
+ }
+ path->reada = 2;
+
+ if (inode < src) {
+ mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
+ mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
+ } else {
+ mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
+ mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
+ }
+
+ /* determine range to clone */
+ ret = -EINVAL;
+ if (off + len > src->i_size || off + len < off)
+ goto out_unlock;
+ if (len == 0)
+ olen = len = src->i_size - off;
+ /* if we extend to eof, continue to block boundary */
+ if (off + len == src->i_size)
+ len = ALIGN(src->i_size, bs) - off;
+
+ /* verify the end result is block aligned */
+ if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
+ !IS_ALIGNED(destoff, bs))
+ goto out_unlock;
+
+ if (destoff > inode->i_size) {
+ ret = btrfs_cont_expand(inode, inode->i_size, destoff);
+ if (ret)
+ goto out_unlock;
+ }
+
+ /* truncate page cache pages from target inode range */
+ truncate_inode_pages_range(&inode->i_data, destoff,
+ PAGE_CACHE_ALIGN(destoff + len) - 1);
+
+ /* do any pending delalloc/csum calc on src, one way or
+ another, and lock file content */
+ while (1) {
+ struct btrfs_ordered_extent *ordered;
+ lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
+ ordered = btrfs_lookup_first_ordered_extent(src, off+len);
+ if (!ordered &&
+ !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
+ EXTENT_DELALLOC, 0, NULL))
+ break;
+ unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
+ if (ordered)
+ btrfs_put_ordered_extent(ordered);
+ btrfs_wait_ordered_range(src, off, len);
+ }
+
+ /* clone data */
+ key.objectid = btrfs_ino(src);
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = 0;
+
+ while (1) {
+ /*
+ * note the key will change type as we walk through the
+ * tree.
+ */
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ if (path->slots[0] >= nritems) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ goto out;
+ if (ret > 0)
+ break;
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ }
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+ if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
+ key.objectid != btrfs_ino(src))
+ break;
+
+ if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
+ struct btrfs_file_extent_item *extent;
+ int type;
+ u32 size;
+ struct btrfs_key new_key;
+ u64 disko = 0, diskl = 0;
+ u64 datao = 0, datal = 0;
+ u8 comp;
+ u64 endoff;
+
+ size = btrfs_item_size_nr(leaf, slot);
+ read_extent_buffer(leaf, buf,
+ btrfs_item_ptr_offset(leaf, slot),
+ size);
+
+ extent = btrfs_item_ptr(leaf, slot,
+ struct btrfs_file_extent_item);
+ comp = btrfs_file_extent_compression(leaf, extent);
+ type = btrfs_file_extent_type(leaf, extent);
+ if (type == BTRFS_FILE_EXTENT_REG ||
+ type == BTRFS_FILE_EXTENT_PREALLOC) {
+ disko = btrfs_file_extent_disk_bytenr(leaf,
+ extent);
+ diskl = btrfs_file_extent_disk_num_bytes(leaf,
+ extent);
+ datao = btrfs_file_extent_offset(leaf, extent);
+ datal = btrfs_file_extent_num_bytes(leaf,
+ extent);
+ } else if (type == BTRFS_FILE_EXTENT_INLINE) {
+ /* take upper bound, may be compressed */
+ datal = btrfs_file_extent_ram_bytes(leaf,
+ extent);
+ }
+ btrfs_release_path(path);
+
+ if (key.offset + datal <= off ||
+ key.offset >= off+len)
+ goto next;
+
+ memcpy(&new_key, &key, sizeof(new_key));
+ new_key.objectid = btrfs_ino(inode);
+ if (off <= key.offset)
+ new_key.offset = key.offset + destoff - off;
+ else
+ new_key.offset = destoff;
+
+ /*
+ * 1 - adjusting old extent (we may have to split it)
+ * 1 - add new extent
+ * 1 - inode update
+ */
+ trans = btrfs_start_transaction(root, 3);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto out;
+ }
+
+ if (type == BTRFS_FILE_EXTENT_REG ||
+ type == BTRFS_FILE_EXTENT_PREALLOC) {
+ /*
+ * a | --- range to clone ---| b
+ * | ------------- extent ------------- |
+ */
+
+ /* substract range b */
+ if (key.offset + datal > off + len)
+ datal = off + len - key.offset;
+
+ /* substract range a */
+ if (off > key.offset) {
+ datao += off - key.offset;
+ datal -= off - key.offset;
+ }
+
+ ret = btrfs_drop_extents(trans, inode,
+ new_key.offset,
+ new_key.offset + datal,
+ &hint_byte, 1);
+ if (ret) {
+ btrfs_abort_transaction(trans, root,
+ ret);
+ btrfs_end_transaction(trans, root);
+ goto out;
+ }
+
+ ret = btrfs_insert_empty_item(trans, root, path,
+ &new_key, size);
+ if (ret) {
+ btrfs_abort_transaction(trans, root,
+ ret);
+ btrfs_end_transaction(trans, root);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ write_extent_buffer(leaf, buf,
+ btrfs_item_ptr_offset(leaf, slot),
+ size);
+
+ extent = btrfs_item_ptr(leaf, slot,
+ struct btrfs_file_extent_item);
+
+ /* disko == 0 means it's a hole */
+ if (!disko)
+ datao = 0;
+
+ btrfs_set_file_extent_offset(leaf, extent,
+ datao);
+ btrfs_set_file_extent_num_bytes(leaf, extent,
+ datal);
+ if (disko) {
+ inode_add_bytes(inode, datal);
+ ret = btrfs_inc_extent_ref(trans, root,
+ disko, diskl, 0,
+ root->root_key.objectid,
+ btrfs_ino(inode),
+ new_key.offset - datao,
+ 0);
+ if (ret) {
+ btrfs_abort_transaction(trans,
+ root,
+ ret);
+ btrfs_end_transaction(trans,
+ root);
+ goto out;
+
+ }
+ }
+ } else if (type == BTRFS_FILE_EXTENT_INLINE) {
+ u64 skip = 0;
+ u64 trim = 0;
+ if (off > key.offset) {
+ skip = off - key.offset;
+ new_key.offset += skip;
+ }
+
+ if (key.offset + datal > off+len)
+ trim = key.offset + datal - (off+len);
+
+ if (comp && (skip || trim)) {
+ ret = -EINVAL;
+ btrfs_end_transaction(trans, root);
+ goto out;
+ }
+ size -= skip + trim;
+ datal -= skip + trim;
+
+ ret = btrfs_drop_extents(trans, inode,
+ new_key.offset,
+ new_key.offset + datal,
+ &hint_byte, 1);
+ if (ret) {
+ btrfs_abort_transaction(trans, root,
+ ret);
+ btrfs_end_transaction(trans, root);
+ goto out;
+ }
+
+ ret = btrfs_insert_empty_item(trans, root, path,
+ &new_key, size);
+ if (ret) {
+ btrfs_abort_transaction(trans, root,
+ ret);
+ btrfs_end_transaction(trans, root);
+ goto out;
+ }
+
+ if (skip) {
+ u32 start =
+ btrfs_file_extent_calc_inline_size(0);
+ memmove(buf+start, buf+start+skip,
+ datal);
+ }
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ write_extent_buffer(leaf, buf,
+ btrfs_item_ptr_offset(leaf, slot),
+ size);
+ inode_add_bytes(inode, datal);
+ }
+
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+
+ inode->i_mtime = inode->i_ctime = CURRENT_TIME;
+
+ /*
+ * we round up to the block size at eof when
+ * determining which extents to clone above,
+ * but shouldn't round up the file size
+ */
+ endoff = new_key.offset + datal;
+ if (endoff > destoff+olen)
+ endoff = destoff+olen;
+ if (endoff > inode->i_size)
+ btrfs_i_size_write(inode, endoff);
+
+ ret = btrfs_update_inode(trans, root, inode);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ btrfs_end_transaction(trans, root);
+ goto out;
+ }
+ ret = btrfs_end_transaction(trans, root);
+ }
+next:
+ btrfs_release_path(path);
+ key.offset++;
+ }
+ ret = 0;
+out:
+ btrfs_release_path(path);
+ unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
+out_unlock:
+ mutex_unlock(&src->i_mutex);
+ mutex_unlock(&inode->i_mutex);
+ vfree(buf);
+ btrfs_free_path(path);
+out_fput:
+ fput(src_file);
+out_drop_write:
+ mnt_drop_write_file(file);
+ return ret;
+}
+
+static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
+{
+ struct btrfs_ioctl_clone_range_args args;
+
+ if (copy_from_user(&args, argp, sizeof(args)))
+ return -EFAULT;
+ return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
+ args.src_length, args.dest_offset);
+}
+
+/*
+ * there are many ways the trans_start and trans_end ioctls can lead
+ * to deadlocks. They should only be used by applications that
+ * basically own the machine, and have a very in depth understanding
+ * of all the possible deadlocks and enospc problems.
+ */
+static long btrfs_ioctl_trans_start(struct file *file)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+ int ret;
+
+ ret = -EPERM;
+ if (!capable(CAP_SYS_ADMIN))
+ goto out;
+
+ ret = -EINPROGRESS;
+ if (file->private_data)
+ goto out;
+
+ ret = -EROFS;
+ if (btrfs_root_readonly(root))
+ goto out;
+
+ ret = mnt_want_write_file(file);
+ if (ret)
+ goto out;
+
+ atomic_inc(&root->fs_info->open_ioctl_trans);
+
+ ret = -ENOMEM;
+ trans = btrfs_start_ioctl_transaction(root);
+ if (IS_ERR(trans))
+ goto out_drop;
+
+ file->private_data = trans;
+ return 0;
+
+out_drop:
+ atomic_dec(&root->fs_info->open_ioctl_trans);
+ mnt_drop_write_file(file);
+out:
+ return ret;
+}
+
+static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_root *new_root;
+ struct btrfs_dir_item *di;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_path *path;
+ struct btrfs_key location;
+ struct btrfs_disk_key disk_key;
+ struct btrfs_super_block *disk_super;
+ u64 features;
+ u64 objectid = 0;
+ u64 dir_id;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ if (copy_from_user(&objectid, argp, sizeof(objectid)))
+ return -EFAULT;
+
+ if (!objectid)
+ objectid = root->root_key.objectid;
+
+ location.objectid = objectid;
+ location.type = BTRFS_ROOT_ITEM_KEY;
+ location.offset = (u64)-1;
+
+ new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
+ if (IS_ERR(new_root))
+ return PTR_ERR(new_root);
+
+ if (btrfs_root_refs(&new_root->root_item) == 0)
+ return -ENOENT;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->leave_spinning = 1;
+
+ trans = btrfs_start_transaction(root, 1);
+ if (IS_ERR(trans)) {
+ btrfs_free_path(path);
+ return PTR_ERR(trans);
+ }
+
+ dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
+ di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
+ dir_id, "default", 7, 1);
+ if (IS_ERR_OR_NULL(di)) {
+ btrfs_free_path(path);
+ btrfs_end_transaction(trans, root);
+ printk(KERN_ERR "Umm, you don't have the default dir item, "
+ "this isn't going to work\n");
+ return -ENOENT;
+ }
+
+ btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
+ btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+ btrfs_free_path(path);
+
+ disk_super = root->fs_info->super_copy;
+ features = btrfs_super_incompat_flags(disk_super);
+ if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
+ features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
+ btrfs_set_super_incompat_flags(disk_super, features);
+ }
+ btrfs_end_transaction(trans, root);
+
+ return 0;
+}
+
+static void get_block_group_info(struct list_head *groups_list,
+ struct btrfs_ioctl_space_info *space)
+{
+ struct btrfs_block_group_cache *block_group;
+
+ space->total_bytes = 0;
+ space->used_bytes = 0;
+ space->flags = 0;
+ list_for_each_entry(block_group, groups_list, list) {
+ space->flags = block_group->flags;
+ space->total_bytes += block_group->key.offset;
+ space->used_bytes +=
+ btrfs_block_group_used(&block_group->item);
+ }
+}
+
+long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
+{
+ struct btrfs_ioctl_space_args space_args;
+ struct btrfs_ioctl_space_info space;
+ struct btrfs_ioctl_space_info *dest;
+ struct btrfs_ioctl_space_info *dest_orig;
+ struct btrfs_ioctl_space_info __user *user_dest;
+ struct btrfs_space_info *info;
+ u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
+ BTRFS_BLOCK_GROUP_SYSTEM,
+ BTRFS_BLOCK_GROUP_METADATA,
+ BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
+ int num_types = 4;
+ int alloc_size;
+ int ret = 0;
+ u64 slot_count = 0;
+ int i, c;
+
+ if (copy_from_user(&space_args,
+ (struct btrfs_ioctl_space_args __user *)arg,
+ sizeof(space_args)))
+ return -EFAULT;
+
+ for (i = 0; i < num_types; i++) {
+ struct btrfs_space_info *tmp;
+
+ info = NULL;
+ rcu_read_lock();
+ list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
+ list) {
+ if (tmp->flags == types[i]) {
+ info = tmp;
+ break;
+ }
+ }
+ rcu_read_unlock();
+
+ if (!info)
+ continue;
+
+ down_read(&info->groups_sem);
+ for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
+ if (!list_empty(&info->block_groups[c]))
+ slot_count++;
+ }
+ up_read(&info->groups_sem);
+ }
+
+ /* space_slots == 0 means they are asking for a count */
+ if (space_args.space_slots == 0) {
+ space_args.total_spaces = slot_count;
+ goto out;
+ }
+
+ slot_count = min_t(u64, space_args.space_slots, slot_count);
+
+ alloc_size = sizeof(*dest) * slot_count;
+
+ /* we generally have at most 6 or so space infos, one for each raid
+ * level. So, a whole page should be more than enough for everyone
+ */
+ if (alloc_size > PAGE_CACHE_SIZE)
+ return -ENOMEM;
+
+ space_args.total_spaces = 0;
+ dest = kmalloc(alloc_size, GFP_NOFS);
+ if (!dest)
+ return -ENOMEM;
+ dest_orig = dest;
+
+ /* now we have a buffer to copy into */
+ for (i = 0; i < num_types; i++) {
+ struct btrfs_space_info *tmp;
+
+ if (!slot_count)
+ break;
+
+ info = NULL;
+ rcu_read_lock();
+ list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
+ list) {
+ if (tmp->flags == types[i]) {
+ info = tmp;
+ break;
+ }
+ }
+ rcu_read_unlock();
+
+ if (!info)
+ continue;
+ down_read(&info->groups_sem);
+ for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
+ if (!list_empty(&info->block_groups[c])) {
+ get_block_group_info(&info->block_groups[c],
+ &space);
+ memcpy(dest, &space, sizeof(space));
+ dest++;
+ space_args.total_spaces++;
+ slot_count--;
+ }
+ if (!slot_count)
+ break;
+ }
+ up_read(&info->groups_sem);
+ }
+
+ user_dest = (struct btrfs_ioctl_space_info *)
+ (arg + sizeof(struct btrfs_ioctl_space_args));
+
+ if (copy_to_user(user_dest, dest_orig, alloc_size))
+ ret = -EFAULT;
+
+ kfree(dest_orig);
+out:
+ if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
+ ret = -EFAULT;
+
+ return ret;
+}
+
+/*
+ * there are many ways the trans_start and trans_end ioctls can lead
+ * to deadlocks. They should only be used by applications that
+ * basically own the machine, and have a very in depth understanding
+ * of all the possible deadlocks and enospc problems.
+ */
+long btrfs_ioctl_trans_end(struct file *file)
+{
+ struct inode *inode = fdentry(file)->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_trans_handle *trans;
+
+ trans = file->private_data;
+ if (!trans)
+ return -EINVAL;
+ file->private_data = NULL;
+
+ btrfs_end_transaction(trans, root);
+
+ atomic_dec(&root->fs_info->open_ioctl_trans);
+
+ mnt_drop_write_file(file);
+ return 0;
+}
+
+static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
+{
+ struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
+ struct btrfs_trans_handle *trans;
+ u64 transid;
+ int ret;
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ transid = trans->transid;
+ ret = btrfs_commit_transaction_async(trans, root, 0);
+ if (ret) {
+ btrfs_end_transaction(trans, root);
+ return ret;
+ }
+
+ if (argp)
+ if (copy_to_user(argp, &transid, sizeof(transid)))
+ return -EFAULT;
+ return 0;
+}
+
+static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
+{
+ struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
+ u64 transid;
+
+ if (argp) {
+ if (copy_from_user(&transid, argp, sizeof(transid)))
+ return -EFAULT;
+ } else {
+ transid = 0; /* current trans */
+ }
+ return btrfs_wait_for_commit(root, transid);
+}
+
+static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
+{
+ int ret;
+ struct btrfs_ioctl_scrub_args *sa;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ sa = memdup_user(arg, sizeof(*sa));
+ if (IS_ERR(sa))
+ return PTR_ERR(sa);
+
+ ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
+ &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
+
+ if (copy_to_user(arg, sa, sizeof(*sa)))
+ ret = -EFAULT;
+
+ kfree(sa);
+ return ret;
+}
+
+static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
+{
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ return btrfs_scrub_cancel(root);
+}
+
+static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
+ void __user *arg)
+{
+ struct btrfs_ioctl_scrub_args *sa;
+ int ret;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ sa = memdup_user(arg, sizeof(*sa));
+ if (IS_ERR(sa))
+ return PTR_ERR(sa);
+
+ ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
+
+ if (copy_to_user(arg, sa, sizeof(*sa)))
+ ret = -EFAULT;
+
+ kfree(sa);
+ return ret;
+}
+
+static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
+{
+ int ret = 0;
+ int i;
+ u64 rel_ptr;
+ int size;
+ struct btrfs_ioctl_ino_path_args *ipa = NULL;
+ struct inode_fs_paths *ipath = NULL;
+ struct btrfs_path *path;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ipa = memdup_user(arg, sizeof(*ipa));
+ if (IS_ERR(ipa)) {
+ ret = PTR_ERR(ipa);
+ ipa = NULL;
+ goto out;
+ }
+
+ size = min_t(u32, ipa->size, 4096);
+ ipath = init_ipath(size, root, path);
+ if (IS_ERR(ipath)) {
+ ret = PTR_ERR(ipath);
+ ipath = NULL;
+ goto out;
+ }
+
+ ret = paths_from_inode(ipa->inum, ipath);
+ if (ret < 0)
+ goto out;
+
+ for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
+ rel_ptr = ipath->fspath->val[i] -
+ (u64)(unsigned long)ipath->fspath->val;
+ ipath->fspath->val[i] = rel_ptr;
+ }
+
+ ret = copy_to_user((void *)(unsigned long)ipa->fspath,
+ (void *)(unsigned long)ipath->fspath, size);
+ if (ret) {
+ ret = -EFAULT;
+ goto out;
+ }
+
+out:
+ btrfs_free_path(path);
+ free_ipath(ipath);
+ kfree(ipa);
+
+ return ret;
+}
+
+static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
+{
+ struct btrfs_data_container *inodes = ctx;
+ const size_t c = 3 * sizeof(u64);
+
+ if (inodes->bytes_left >= c) {
+ inodes->bytes_left -= c;
+ inodes->val[inodes->elem_cnt] = inum;
+ inodes->val[inodes->elem_cnt + 1] = offset;
+ inodes->val[inodes->elem_cnt + 2] = root;
+ inodes->elem_cnt += 3;
+ } else {
+ inodes->bytes_missing += c - inodes->bytes_left;
+ inodes->bytes_left = 0;
+ inodes->elem_missed += 3;
+ }
+
+ return 0;
+}
+
+static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
+ void __user *arg)
+{
+ int ret = 0;
+ int size;
+ u64 extent_item_pos;
+ struct btrfs_ioctl_logical_ino_args *loi;
+ struct btrfs_data_container *inodes = NULL;
+ struct btrfs_path *path = NULL;
+ struct btrfs_key key;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ loi = memdup_user(arg, sizeof(*loi));
+ if (IS_ERR(loi)) {
+ ret = PTR_ERR(loi);
+ loi = NULL;
+ goto out;
+ }
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ size = min_t(u32, loi->size, 4096);
+ inodes = init_data_container(size);
+ if (IS_ERR(inodes)) {
+ ret = PTR_ERR(inodes);
+ inodes = NULL;
+ goto out;
+ }
+
+ ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
+ btrfs_release_path(path);
+
+ if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ ret = -ENOENT;
+ if (ret < 0)
+ goto out;
+
+ extent_item_pos = loi->logical - key.objectid;
+ ret = iterate_extent_inodes(root->fs_info, key.objectid,
+ extent_item_pos, 0, build_ino_list,
+ inodes);
+
+ if (ret < 0)
+ goto out;
+
+ ret = copy_to_user((void *)(unsigned long)loi->inodes,
+ (void *)(unsigned long)inodes, size);
+ if (ret)
+ ret = -EFAULT;
+
+out:
+ btrfs_free_path(path);
+ kfree(inodes);
+ kfree(loi);
+
+ return ret;
+}
+
+void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
+ struct btrfs_ioctl_balance_args *bargs)
+{
+ struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+
+ bargs->flags = bctl->flags;
+
+ if (atomic_read(&fs_info->balance_running))
+ bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
+ if (atomic_read(&fs_info->balance_pause_req))
+ bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
+ if (atomic_read(&fs_info->balance_cancel_req))
+ bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
+
+ memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
+ memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
+ memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
+
+ if (lock) {
+ spin_lock(&fs_info->balance_lock);
+ memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
+ spin_unlock(&fs_info->balance_lock);
+ } else {
+ memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
+ }
+}
+
+static long btrfs_ioctl_balance(struct btrfs_root *root, void __user *arg)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_ioctl_balance_args *bargs;
+ struct btrfs_balance_control *bctl;
+ int ret;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ if (fs_info->sb->s_flags & MS_RDONLY)
+ return -EROFS;
+
+ mutex_lock(&fs_info->volume_mutex);
+ mutex_lock(&fs_info->balance_mutex);
+
+ if (arg) {
+ bargs = memdup_user(arg, sizeof(*bargs));
+ if (IS_ERR(bargs)) {
+ ret = PTR_ERR(bargs);
+ goto out;
+ }
+
+ if (bargs->flags & BTRFS_BALANCE_RESUME) {
+ if (!fs_info->balance_ctl) {
+ ret = -ENOTCONN;
+ goto out_bargs;
+ }
+
+ bctl = fs_info->balance_ctl;
+ spin_lock(&fs_info->balance_lock);
+ bctl->flags |= BTRFS_BALANCE_RESUME;
+ spin_unlock(&fs_info->balance_lock);
+
+ goto do_balance;
+ }
+ } else {
+ bargs = NULL;
+ }
+
+ if (fs_info->balance_ctl) {
+ ret = -EINPROGRESS;
+ goto out_bargs;
+ }
+
+ bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
+ if (!bctl) {
+ ret = -ENOMEM;
+ goto out_bargs;
+ }
+
+ bctl->fs_info = fs_info;
+ if (arg) {
+ memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
+ memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
+ memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
+
+ bctl->flags = bargs->flags;
+ } else {
+ /* balance everything - no filters */
+ bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
+ }
+
+do_balance:
+ ret = btrfs_balance(bctl, bargs);
+ /*
+ * bctl is freed in __cancel_balance or in free_fs_info if
+ * restriper was paused all the way until unmount
+ */
+ if (arg) {
+ if (copy_to_user(arg, bargs, sizeof(*bargs)))
+ ret = -EFAULT;
+ }
+
+out_bargs:
+ kfree(bargs);
+out:
+ mutex_unlock(&fs_info->balance_mutex);
+ mutex_unlock(&fs_info->volume_mutex);
+ return ret;
+}
+
+static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
+{
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ switch (cmd) {
+ case BTRFS_BALANCE_CTL_PAUSE:
+ return btrfs_pause_balance(root->fs_info);
+ case BTRFS_BALANCE_CTL_CANCEL:
+ return btrfs_cancel_balance(root->fs_info);
+ }
+
+ return -EINVAL;
+}
+
+static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
+ void __user *arg)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_ioctl_balance_args *bargs;
+ int ret = 0;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ mutex_lock(&fs_info->balance_mutex);
+ if (!fs_info->balance_ctl) {
+ ret = -ENOTCONN;
+ goto out;
+ }
+
+ bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
+ if (!bargs) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ update_ioctl_balance_args(fs_info, 1, bargs);
+
+ if (copy_to_user(arg, bargs, sizeof(*bargs)))
+ ret = -EFAULT;
+
+ kfree(bargs);
+out:
+ mutex_unlock(&fs_info->balance_mutex);
+ return ret;
+}
+
+long btrfs_ioctl(struct file *file, unsigned int
+ cmd, unsigned long arg)
+{
+ struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
+ void __user *argp = (void __user *)arg;
+
+ switch (cmd) {
+ case FS_IOC_GETFLAGS:
+ return btrfs_ioctl_getflags(file, argp);
+ case FS_IOC_SETFLAGS:
+ return btrfs_ioctl_setflags(file, argp);
+ case FS_IOC_GETVERSION:
+ return btrfs_ioctl_getversion(file, argp);
+ case FITRIM:
+ return btrfs_ioctl_fitrim(file, argp);
+ case BTRFS_IOC_SNAP_CREATE:
+ return btrfs_ioctl_snap_create(file, argp, 0);
+ case BTRFS_IOC_SNAP_CREATE_V2:
+ return btrfs_ioctl_snap_create_v2(file, argp, 0);
+ case BTRFS_IOC_SUBVOL_CREATE:
+ return btrfs_ioctl_snap_create(file, argp, 1);
+ case BTRFS_IOC_SNAP_DESTROY:
+ return btrfs_ioctl_snap_destroy(file, argp);
+ case BTRFS_IOC_SUBVOL_GETFLAGS:
+ return btrfs_ioctl_subvol_getflags(file, argp);
+ case BTRFS_IOC_SUBVOL_SETFLAGS:
+ return btrfs_ioctl_subvol_setflags(file, argp);
+ case BTRFS_IOC_DEFAULT_SUBVOL:
+ return btrfs_ioctl_default_subvol(file, argp);
+ case BTRFS_IOC_DEFRAG:
+ return btrfs_ioctl_defrag(file, NULL);
+ case BTRFS_IOC_DEFRAG_RANGE:
+ return btrfs_ioctl_defrag(file, argp);
+ case BTRFS_IOC_RESIZE:
+ return btrfs_ioctl_resize(root, argp);
+ case BTRFS_IOC_ADD_DEV:
+ return btrfs_ioctl_add_dev(root, argp);
+ case BTRFS_IOC_RM_DEV:
+ return btrfs_ioctl_rm_dev(root, argp);
+ case BTRFS_IOC_FS_INFO:
+ return btrfs_ioctl_fs_info(root, argp);
+ case BTRFS_IOC_DEV_INFO:
+ return btrfs_ioctl_dev_info(root, argp);
+ case BTRFS_IOC_BALANCE:
+ return btrfs_ioctl_balance(root, NULL);
+ case BTRFS_IOC_CLONE:
+ return btrfs_ioctl_clone(file, arg, 0, 0, 0);
+ case BTRFS_IOC_CLONE_RANGE:
+ return btrfs_ioctl_clone_range(file, argp);
+ case BTRFS_IOC_TRANS_START:
+ return btrfs_ioctl_trans_start(file);
+ case BTRFS_IOC_TRANS_END:
+ return btrfs_ioctl_trans_end(file);
+ case BTRFS_IOC_TREE_SEARCH:
+ return btrfs_ioctl_tree_search(file, argp);
+ case BTRFS_IOC_INO_LOOKUP:
+ return btrfs_ioctl_ino_lookup(file, argp);
+ case BTRFS_IOC_INO_PATHS:
+ return btrfs_ioctl_ino_to_path(root, argp);
+ case BTRFS_IOC_LOGICAL_INO:
+ return btrfs_ioctl_logical_to_ino(root, argp);
+ case BTRFS_IOC_SPACE_INFO:
+ return btrfs_ioctl_space_info(root, argp);
+ case BTRFS_IOC_SYNC:
+ btrfs_sync_fs(file->f_dentry->d_sb, 1);
+ return 0;
+ case BTRFS_IOC_START_SYNC:
+ return btrfs_ioctl_start_sync(file, argp);
+ case BTRFS_IOC_WAIT_SYNC:
+ return btrfs_ioctl_wait_sync(file, argp);
+ case BTRFS_IOC_SCRUB:
+ return btrfs_ioctl_scrub(root, argp);
+ case BTRFS_IOC_SCRUB_CANCEL:
+ return btrfs_ioctl_scrub_cancel(root, argp);
+ case BTRFS_IOC_SCRUB_PROGRESS:
+ return btrfs_ioctl_scrub_progress(root, argp);
+ case BTRFS_IOC_BALANCE_V2:
+ return btrfs_ioctl_balance(root, argp);
+ case BTRFS_IOC_BALANCE_CTL:
+ return btrfs_ioctl_balance_ctl(root, arg);
+ case BTRFS_IOC_BALANCE_PROGRESS:
+ return btrfs_ioctl_balance_progress(root, argp);
+ }
+
+ return -ENOTTY;
+}
diff --git a/fs/btrfs/ioctl.h b/fs/btrfs/ioctl.h
new file mode 100644
index 00000000..086e6bda
--- /dev/null
+++ b/fs/btrfs/ioctl.h
@@ -0,0 +1,334 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __IOCTL_
+#define __IOCTL_
+#include <linux/ioctl.h>
+
+#define BTRFS_IOCTL_MAGIC 0x94
+#define BTRFS_VOL_NAME_MAX 255
+
+/* this should be 4k */
+#define BTRFS_PATH_NAME_MAX 4087
+struct btrfs_ioctl_vol_args {
+ __s64 fd;
+ char name[BTRFS_PATH_NAME_MAX + 1];
+};
+
+#define BTRFS_SUBVOL_CREATE_ASYNC (1ULL << 0)
+#define BTRFS_SUBVOL_RDONLY (1ULL << 1)
+#define BTRFS_FSID_SIZE 16
+#define BTRFS_UUID_SIZE 16
+
+#define BTRFS_SUBVOL_NAME_MAX 4039
+struct btrfs_ioctl_vol_args_v2 {
+ __s64 fd;
+ __u64 transid;
+ __u64 flags;
+ __u64 unused[4];
+ char name[BTRFS_SUBVOL_NAME_MAX + 1];
+};
+
+/*
+ * structure to report errors and progress to userspace, either as a
+ * result of a finished scrub, a canceled scrub or a progress inquiry
+ */
+struct btrfs_scrub_progress {
+ __u64 data_extents_scrubbed; /* # of data extents scrubbed */
+ __u64 tree_extents_scrubbed; /* # of tree extents scrubbed */
+ __u64 data_bytes_scrubbed; /* # of data bytes scrubbed */
+ __u64 tree_bytes_scrubbed; /* # of tree bytes scrubbed */
+ __u64 read_errors; /* # of read errors encountered (EIO) */
+ __u64 csum_errors; /* # of failed csum checks */
+ __u64 verify_errors; /* # of occurences, where the metadata
+ * of a tree block did not match the
+ * expected values, like generation or
+ * logical */
+ __u64 no_csum; /* # of 4k data block for which no csum
+ * is present, probably the result of
+ * data written with nodatasum */
+ __u64 csum_discards; /* # of csum for which no data was found
+ * in the extent tree. */
+ __u64 super_errors; /* # of bad super blocks encountered */
+ __u64 malloc_errors; /* # of internal kmalloc errors. These
+ * will likely cause an incomplete
+ * scrub */
+ __u64 uncorrectable_errors; /* # of errors where either no intact
+ * copy was found or the writeback
+ * failed */
+ __u64 corrected_errors; /* # of errors corrected */
+ __u64 last_physical; /* last physical address scrubbed. In
+ * case a scrub was aborted, this can
+ * be used to restart the scrub */
+ __u64 unverified_errors; /* # of occurences where a read for a
+ * full (64k) bio failed, but the re-
+ * check succeeded for each 4k piece.
+ * Intermittent error. */
+};
+
+#define BTRFS_SCRUB_READONLY 1
+struct btrfs_ioctl_scrub_args {
+ __u64 devid; /* in */
+ __u64 start; /* in */
+ __u64 end; /* in */
+ __u64 flags; /* in */
+ struct btrfs_scrub_progress progress; /* out */
+ /* pad to 1k */
+ __u64 unused[(1024-32-sizeof(struct btrfs_scrub_progress))/8];
+};
+
+#define BTRFS_DEVICE_PATH_NAME_MAX 1024
+struct btrfs_ioctl_dev_info_args {
+ __u64 devid; /* in/out */
+ __u8 uuid[BTRFS_UUID_SIZE]; /* in/out */
+ __u64 bytes_used; /* out */
+ __u64 total_bytes; /* out */
+ __u64 unused[379]; /* pad to 4k */
+ __u8 path[BTRFS_DEVICE_PATH_NAME_MAX]; /* out */
+};
+
+struct btrfs_ioctl_fs_info_args {
+ __u64 max_id; /* out */
+ __u64 num_devices; /* out */
+ __u8 fsid[BTRFS_FSID_SIZE]; /* out */
+ __u64 reserved[124]; /* pad to 1k */
+};
+
+/* balance control ioctl modes */
+#define BTRFS_BALANCE_CTL_PAUSE 1
+#define BTRFS_BALANCE_CTL_CANCEL 2
+
+/*
+ * this is packed, because it should be exactly the same as its disk
+ * byte order counterpart (struct btrfs_disk_balance_args)
+ */
+struct btrfs_balance_args {
+ __u64 profiles;
+ __u64 usage;
+ __u64 devid;
+ __u64 pstart;
+ __u64 pend;
+ __u64 vstart;
+ __u64 vend;
+
+ __u64 target;
+
+ __u64 flags;
+
+ __u64 unused[8];
+} __attribute__ ((__packed__));
+
+/* report balance progress to userspace */
+struct btrfs_balance_progress {
+ __u64 expected; /* estimated # of chunks that will be
+ * relocated to fulfill the request */
+ __u64 considered; /* # of chunks we have considered so far */
+ __u64 completed; /* # of chunks relocated so far */
+};
+
+#define BTRFS_BALANCE_STATE_RUNNING (1ULL << 0)
+#define BTRFS_BALANCE_STATE_PAUSE_REQ (1ULL << 1)
+#define BTRFS_BALANCE_STATE_CANCEL_REQ (1ULL << 2)
+
+struct btrfs_ioctl_balance_args {
+ __u64 flags; /* in/out */
+ __u64 state; /* out */
+
+ struct btrfs_balance_args data; /* in/out */
+ struct btrfs_balance_args meta; /* in/out */
+ struct btrfs_balance_args sys; /* in/out */
+
+ struct btrfs_balance_progress stat; /* out */
+
+ __u64 unused[72]; /* pad to 1k */
+};
+
+#define BTRFS_INO_LOOKUP_PATH_MAX 4080
+struct btrfs_ioctl_ino_lookup_args {
+ __u64 treeid;
+ __u64 objectid;
+ char name[BTRFS_INO_LOOKUP_PATH_MAX];
+};
+
+struct btrfs_ioctl_search_key {
+ /* which root are we searching. 0 is the tree of tree roots */
+ __u64 tree_id;
+
+ /* keys returned will be >= min and <= max */
+ __u64 min_objectid;
+ __u64 max_objectid;
+
+ /* keys returned will be >= min and <= max */
+ __u64 min_offset;
+ __u64 max_offset;
+
+ /* max and min transids to search for */
+ __u64 min_transid;
+ __u64 max_transid;
+
+ /* keys returned will be >= min and <= max */
+ __u32 min_type;
+ __u32 max_type;
+
+ /*
+ * how many items did userland ask for, and how many are we
+ * returning
+ */
+ __u32 nr_items;
+
+ /* align to 64 bits */
+ __u32 unused;
+
+ /* some extra for later */
+ __u64 unused1;
+ __u64 unused2;
+ __u64 unused3;
+ __u64 unused4;
+};
+
+struct btrfs_ioctl_search_header {
+ __u64 transid;
+ __u64 objectid;
+ __u64 offset;
+ __u32 type;
+ __u32 len;
+};
+
+#define BTRFS_SEARCH_ARGS_BUFSIZE (4096 - sizeof(struct btrfs_ioctl_search_key))
+/*
+ * the buf is an array of search headers where
+ * each header is followed by the actual item
+ * the type field is expanded to 32 bits for alignment
+ */
+struct btrfs_ioctl_search_args {
+ struct btrfs_ioctl_search_key key;
+ char buf[BTRFS_SEARCH_ARGS_BUFSIZE];
+};
+
+struct btrfs_ioctl_clone_range_args {
+ __s64 src_fd;
+ __u64 src_offset, src_length;
+ __u64 dest_offset;
+};
+
+/* flags for the defrag range ioctl */
+#define BTRFS_DEFRAG_RANGE_COMPRESS 1
+#define BTRFS_DEFRAG_RANGE_START_IO 2
+
+struct btrfs_ioctl_space_info {
+ __u64 flags;
+ __u64 total_bytes;
+ __u64 used_bytes;
+};
+
+struct btrfs_ioctl_space_args {
+ __u64 space_slots;
+ __u64 total_spaces;
+ struct btrfs_ioctl_space_info spaces[0];
+};
+
+struct btrfs_data_container {
+ __u32 bytes_left; /* out -- bytes not needed to deliver output */
+ __u32 bytes_missing; /* out -- additional bytes needed for result */
+ __u32 elem_cnt; /* out */
+ __u32 elem_missed; /* out */
+ __u64 val[0]; /* out */
+};
+
+struct btrfs_ioctl_ino_path_args {
+ __u64 inum; /* in */
+ __u64 size; /* in */
+ __u64 reserved[4];
+ /* struct btrfs_data_container *fspath; out */
+ __u64 fspath; /* out */
+};
+
+struct btrfs_ioctl_logical_ino_args {
+ __u64 logical; /* in */
+ __u64 size; /* in */
+ __u64 reserved[4];
+ /* struct btrfs_data_container *inodes; out */
+ __u64 inodes;
+};
+
+#define BTRFS_IOC_SNAP_CREATE _IOW(BTRFS_IOCTL_MAGIC, 1, \
+ struct btrfs_ioctl_vol_args)
+#define BTRFS_IOC_DEFRAG _IOW(BTRFS_IOCTL_MAGIC, 2, \
+ struct btrfs_ioctl_vol_args)
+#define BTRFS_IOC_RESIZE _IOW(BTRFS_IOCTL_MAGIC, 3, \
+ struct btrfs_ioctl_vol_args)
+#define BTRFS_IOC_SCAN_DEV _IOW(BTRFS_IOCTL_MAGIC, 4, \
+ struct btrfs_ioctl_vol_args)
+/* trans start and trans end are dangerous, and only for
+ * use by applications that know how to avoid the
+ * resulting deadlocks
+ */
+#define BTRFS_IOC_TRANS_START _IO(BTRFS_IOCTL_MAGIC, 6)
+#define BTRFS_IOC_TRANS_END _IO(BTRFS_IOCTL_MAGIC, 7)
+#define BTRFS_IOC_SYNC _IO(BTRFS_IOCTL_MAGIC, 8)
+
+#define BTRFS_IOC_CLONE _IOW(BTRFS_IOCTL_MAGIC, 9, int)
+#define BTRFS_IOC_ADD_DEV _IOW(BTRFS_IOCTL_MAGIC, 10, \
+ struct btrfs_ioctl_vol_args)
+#define BTRFS_IOC_RM_DEV _IOW(BTRFS_IOCTL_MAGIC, 11, \
+ struct btrfs_ioctl_vol_args)
+#define BTRFS_IOC_BALANCE _IOW(BTRFS_IOCTL_MAGIC, 12, \
+ struct btrfs_ioctl_vol_args)
+
+#define BTRFS_IOC_CLONE_RANGE _IOW(BTRFS_IOCTL_MAGIC, 13, \
+ struct btrfs_ioctl_clone_range_args)
+
+#define BTRFS_IOC_SUBVOL_CREATE _IOW(BTRFS_IOCTL_MAGIC, 14, \
+ struct btrfs_ioctl_vol_args)
+#define BTRFS_IOC_SNAP_DESTROY _IOW(BTRFS_IOCTL_MAGIC, 15, \
+ struct btrfs_ioctl_vol_args)
+#define BTRFS_IOC_DEFRAG_RANGE _IOW(BTRFS_IOCTL_MAGIC, 16, \
+ struct btrfs_ioctl_defrag_range_args)
+#define BTRFS_IOC_TREE_SEARCH _IOWR(BTRFS_IOCTL_MAGIC, 17, \
+ struct btrfs_ioctl_search_args)
+#define BTRFS_IOC_INO_LOOKUP _IOWR(BTRFS_IOCTL_MAGIC, 18, \
+ struct btrfs_ioctl_ino_lookup_args)
+#define BTRFS_IOC_DEFAULT_SUBVOL _IOW(BTRFS_IOCTL_MAGIC, 19, u64)
+#define BTRFS_IOC_SPACE_INFO _IOWR(BTRFS_IOCTL_MAGIC, 20, \
+ struct btrfs_ioctl_space_args)
+#define BTRFS_IOC_START_SYNC _IOR(BTRFS_IOCTL_MAGIC, 24, __u64)
+#define BTRFS_IOC_WAIT_SYNC _IOW(BTRFS_IOCTL_MAGIC, 22, __u64)
+#define BTRFS_IOC_SNAP_CREATE_V2 _IOW(BTRFS_IOCTL_MAGIC, 23, \
+ struct btrfs_ioctl_vol_args_v2)
+#define BTRFS_IOC_SUBVOL_GETFLAGS _IOW(BTRFS_IOCTL_MAGIC, 25, __u64)
+#define BTRFS_IOC_SUBVOL_SETFLAGS _IOW(BTRFS_IOCTL_MAGIC, 26, __u64)
+#define BTRFS_IOC_SCRUB _IOWR(BTRFS_IOCTL_MAGIC, 27, \
+ struct btrfs_ioctl_scrub_args)
+#define BTRFS_IOC_SCRUB_CANCEL _IO(BTRFS_IOCTL_MAGIC, 28)
+#define BTRFS_IOC_SCRUB_PROGRESS _IOWR(BTRFS_IOCTL_MAGIC, 29, \
+ struct btrfs_ioctl_scrub_args)
+#define BTRFS_IOC_DEV_INFO _IOWR(BTRFS_IOCTL_MAGIC, 30, \
+ struct btrfs_ioctl_dev_info_args)
+#define BTRFS_IOC_FS_INFO _IOR(BTRFS_IOCTL_MAGIC, 31, \
+ struct btrfs_ioctl_fs_info_args)
+#define BTRFS_IOC_BALANCE_V2 _IOWR(BTRFS_IOCTL_MAGIC, 32, \
+ struct btrfs_ioctl_balance_args)
+#define BTRFS_IOC_BALANCE_CTL _IOW(BTRFS_IOCTL_MAGIC, 33, int)
+#define BTRFS_IOC_BALANCE_PROGRESS _IOR(BTRFS_IOCTL_MAGIC, 34, \
+ struct btrfs_ioctl_balance_args)
+#define BTRFS_IOC_INO_PATHS _IOWR(BTRFS_IOCTL_MAGIC, 35, \
+ struct btrfs_ioctl_ino_path_args)
+#define BTRFS_IOC_LOGICAL_INO _IOWR(BTRFS_IOCTL_MAGIC, 36, \
+ struct btrfs_ioctl_ino_path_args)
+
+#endif
diff --git a/fs/btrfs/locking.c b/fs/btrfs/locking.c
new file mode 100644
index 00000000..272f9112
--- /dev/null
+++ b/fs/btrfs/locking.c
@@ -0,0 +1,267 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/spinlock.h>
+#include <linux/page-flags.h>
+#include <asm/bug.h>
+#include "ctree.h"
+#include "extent_io.h"
+#include "locking.h"
+
+void btrfs_assert_tree_read_locked(struct extent_buffer *eb);
+
+/*
+ * if we currently have a spinning reader or writer lock
+ * (indicated by the rw flag) this will bump the count
+ * of blocking holders and drop the spinlock.
+ */
+void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw)
+{
+ if (eb->lock_nested) {
+ read_lock(&eb->lock);
+ if (eb->lock_nested && current->pid == eb->lock_owner) {
+ read_unlock(&eb->lock);
+ return;
+ }
+ read_unlock(&eb->lock);
+ }
+ if (rw == BTRFS_WRITE_LOCK) {
+ if (atomic_read(&eb->blocking_writers) == 0) {
+ WARN_ON(atomic_read(&eb->spinning_writers) != 1);
+ atomic_dec(&eb->spinning_writers);
+ btrfs_assert_tree_locked(eb);
+ atomic_inc(&eb->blocking_writers);
+ write_unlock(&eb->lock);
+ }
+ } else if (rw == BTRFS_READ_LOCK) {
+ btrfs_assert_tree_read_locked(eb);
+ atomic_inc(&eb->blocking_readers);
+ WARN_ON(atomic_read(&eb->spinning_readers) == 0);
+ atomic_dec(&eb->spinning_readers);
+ read_unlock(&eb->lock);
+ }
+ return;
+}
+
+/*
+ * if we currently have a blocking lock, take the spinlock
+ * and drop our blocking count
+ */
+void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw)
+{
+ if (eb->lock_nested) {
+ read_lock(&eb->lock);
+ if (&eb->lock_nested && current->pid == eb->lock_owner) {
+ read_unlock(&eb->lock);
+ return;
+ }
+ read_unlock(&eb->lock);
+ }
+ if (rw == BTRFS_WRITE_LOCK_BLOCKING) {
+ BUG_ON(atomic_read(&eb->blocking_writers) != 1);
+ write_lock(&eb->lock);
+ WARN_ON(atomic_read(&eb->spinning_writers));
+ atomic_inc(&eb->spinning_writers);
+ if (atomic_dec_and_test(&eb->blocking_writers))
+ wake_up(&eb->write_lock_wq);
+ } else if (rw == BTRFS_READ_LOCK_BLOCKING) {
+ BUG_ON(atomic_read(&eb->blocking_readers) == 0);
+ read_lock(&eb->lock);
+ atomic_inc(&eb->spinning_readers);
+ if (atomic_dec_and_test(&eb->blocking_readers))
+ wake_up(&eb->read_lock_wq);
+ }
+ return;
+}
+
+/*
+ * take a spinning read lock. This will wait for any blocking
+ * writers
+ */
+void btrfs_tree_read_lock(struct extent_buffer *eb)
+{
+again:
+ read_lock(&eb->lock);
+ if (atomic_read(&eb->blocking_writers) &&
+ current->pid == eb->lock_owner) {
+ /*
+ * This extent is already write-locked by our thread. We allow
+ * an additional read lock to be added because it's for the same
+ * thread. btrfs_find_all_roots() depends on this as it may be
+ * called on a partly (write-)locked tree.
+ */
+ BUG_ON(eb->lock_nested);
+ eb->lock_nested = 1;
+ read_unlock(&eb->lock);
+ return;
+ }
+ read_unlock(&eb->lock);
+ wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
+ read_lock(&eb->lock);
+ if (atomic_read(&eb->blocking_writers)) {
+ read_unlock(&eb->lock);
+ goto again;
+ }
+ atomic_inc(&eb->read_locks);
+ atomic_inc(&eb->spinning_readers);
+}
+
+/*
+ * returns 1 if we get the read lock and 0 if we don't
+ * this won't wait for blocking writers
+ */
+int btrfs_try_tree_read_lock(struct extent_buffer *eb)
+{
+ if (atomic_read(&eb->blocking_writers))
+ return 0;
+
+ read_lock(&eb->lock);
+ if (atomic_read(&eb->blocking_writers)) {
+ read_unlock(&eb->lock);
+ return 0;
+ }
+ atomic_inc(&eb->read_locks);
+ atomic_inc(&eb->spinning_readers);
+ return 1;
+}
+
+/*
+ * returns 1 if we get the read lock and 0 if we don't
+ * this won't wait for blocking writers or readers
+ */
+int btrfs_try_tree_write_lock(struct extent_buffer *eb)
+{
+ if (atomic_read(&eb->blocking_writers) ||
+ atomic_read(&eb->blocking_readers))
+ return 0;
+ write_lock(&eb->lock);
+ if (atomic_read(&eb->blocking_writers) ||
+ atomic_read(&eb->blocking_readers)) {
+ write_unlock(&eb->lock);
+ return 0;
+ }
+ atomic_inc(&eb->write_locks);
+ atomic_inc(&eb->spinning_writers);
+ eb->lock_owner = current->pid;
+ return 1;
+}
+
+/*
+ * drop a spinning read lock
+ */
+void btrfs_tree_read_unlock(struct extent_buffer *eb)
+{
+ if (eb->lock_nested) {
+ read_lock(&eb->lock);
+ if (eb->lock_nested && current->pid == eb->lock_owner) {
+ eb->lock_nested = 0;
+ read_unlock(&eb->lock);
+ return;
+ }
+ read_unlock(&eb->lock);
+ }
+ btrfs_assert_tree_read_locked(eb);
+ WARN_ON(atomic_read(&eb->spinning_readers) == 0);
+ atomic_dec(&eb->spinning_readers);
+ atomic_dec(&eb->read_locks);
+ read_unlock(&eb->lock);
+}
+
+/*
+ * drop a blocking read lock
+ */
+void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
+{
+ if (eb->lock_nested) {
+ read_lock(&eb->lock);
+ if (eb->lock_nested && current->pid == eb->lock_owner) {
+ eb->lock_nested = 0;
+ read_unlock(&eb->lock);
+ return;
+ }
+ read_unlock(&eb->lock);
+ }
+ btrfs_assert_tree_read_locked(eb);
+ WARN_ON(atomic_read(&eb->blocking_readers) == 0);
+ if (atomic_dec_and_test(&eb->blocking_readers))
+ wake_up(&eb->read_lock_wq);
+ atomic_dec(&eb->read_locks);
+}
+
+/*
+ * take a spinning write lock. This will wait for both
+ * blocking readers or writers
+ */
+void btrfs_tree_lock(struct extent_buffer *eb)
+{
+again:
+ wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
+ wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
+ write_lock(&eb->lock);
+ if (atomic_read(&eb->blocking_readers)) {
+ write_unlock(&eb->lock);
+ wait_event(eb->read_lock_wq,
+ atomic_read(&eb->blocking_readers) == 0);
+ goto again;
+ }
+ if (atomic_read(&eb->blocking_writers)) {
+ write_unlock(&eb->lock);
+ wait_event(eb->write_lock_wq,
+ atomic_read(&eb->blocking_writers) == 0);
+ goto again;
+ }
+ WARN_ON(atomic_read(&eb->spinning_writers));
+ atomic_inc(&eb->spinning_writers);
+ atomic_inc(&eb->write_locks);
+ eb->lock_owner = current->pid;
+}
+
+/*
+ * drop a spinning or a blocking write lock.
+ */
+void btrfs_tree_unlock(struct extent_buffer *eb)
+{
+ int blockers = atomic_read(&eb->blocking_writers);
+
+ BUG_ON(blockers > 1);
+
+ btrfs_assert_tree_locked(eb);
+ atomic_dec(&eb->write_locks);
+
+ if (blockers) {
+ WARN_ON(atomic_read(&eb->spinning_writers));
+ atomic_dec(&eb->blocking_writers);
+ smp_wmb();
+ wake_up(&eb->write_lock_wq);
+ } else {
+ WARN_ON(atomic_read(&eb->spinning_writers) != 1);
+ atomic_dec(&eb->spinning_writers);
+ write_unlock(&eb->lock);
+ }
+}
+
+void btrfs_assert_tree_locked(struct extent_buffer *eb)
+{
+ BUG_ON(!atomic_read(&eb->write_locks));
+}
+
+void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
+{
+ BUG_ON(!atomic_read(&eb->read_locks));
+}
diff --git a/fs/btrfs/locking.h b/fs/btrfs/locking.h
new file mode 100644
index 00000000..ca52681e
--- /dev/null
+++ b/fs/btrfs/locking.h
@@ -0,0 +1,61 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_LOCKING_
+#define __BTRFS_LOCKING_
+
+#define BTRFS_WRITE_LOCK 1
+#define BTRFS_READ_LOCK 2
+#define BTRFS_WRITE_LOCK_BLOCKING 3
+#define BTRFS_READ_LOCK_BLOCKING 4
+
+void btrfs_tree_lock(struct extent_buffer *eb);
+void btrfs_tree_unlock(struct extent_buffer *eb);
+int btrfs_try_spin_lock(struct extent_buffer *eb);
+
+void btrfs_tree_read_lock(struct extent_buffer *eb);
+void btrfs_tree_read_unlock(struct extent_buffer *eb);
+void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb);
+void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw);
+void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw);
+void btrfs_assert_tree_locked(struct extent_buffer *eb);
+int btrfs_try_tree_read_lock(struct extent_buffer *eb);
+int btrfs_try_tree_write_lock(struct extent_buffer *eb);
+
+static inline void btrfs_tree_unlock_rw(struct extent_buffer *eb, int rw)
+{
+ if (rw == BTRFS_WRITE_LOCK || rw == BTRFS_WRITE_LOCK_BLOCKING)
+ btrfs_tree_unlock(eb);
+ else if (rw == BTRFS_READ_LOCK_BLOCKING)
+ btrfs_tree_read_unlock_blocking(eb);
+ else if (rw == BTRFS_READ_LOCK)
+ btrfs_tree_read_unlock(eb);
+ else
+ BUG();
+}
+
+static inline void btrfs_set_lock_blocking(struct extent_buffer *eb)
+{
+ btrfs_set_lock_blocking_rw(eb, BTRFS_WRITE_LOCK);
+}
+
+static inline void btrfs_clear_lock_blocking(struct extent_buffer *eb)
+{
+ btrfs_clear_lock_blocking_rw(eb, BTRFS_WRITE_LOCK_BLOCKING);
+}
+#endif
diff --git a/fs/btrfs/lzo.c b/fs/btrfs/lzo.c
new file mode 100644
index 00000000..743b86fa
--- /dev/null
+++ b/fs/btrfs/lzo.c
@@ -0,0 +1,427 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/bio.h>
+#include <linux/lzo.h>
+#include "compression.h"
+
+#define LZO_LEN 4
+
+struct workspace {
+ void *mem;
+ void *buf; /* where compressed data goes */
+ void *cbuf; /* where decompressed data goes */
+ struct list_head list;
+};
+
+static void lzo_free_workspace(struct list_head *ws)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+
+ vfree(workspace->buf);
+ vfree(workspace->cbuf);
+ vfree(workspace->mem);
+ kfree(workspace);
+}
+
+static struct list_head *lzo_alloc_workspace(void)
+{
+ struct workspace *workspace;
+
+ workspace = kzalloc(sizeof(*workspace), GFP_NOFS);
+ if (!workspace)
+ return ERR_PTR(-ENOMEM);
+
+ workspace->mem = vmalloc(LZO1X_MEM_COMPRESS);
+ workspace->buf = vmalloc(lzo1x_worst_compress(PAGE_CACHE_SIZE));
+ workspace->cbuf = vmalloc(lzo1x_worst_compress(PAGE_CACHE_SIZE));
+ if (!workspace->mem || !workspace->buf || !workspace->cbuf)
+ goto fail;
+
+ INIT_LIST_HEAD(&workspace->list);
+
+ return &workspace->list;
+fail:
+ lzo_free_workspace(&workspace->list);
+ return ERR_PTR(-ENOMEM);
+}
+
+static inline void write_compress_length(char *buf, size_t len)
+{
+ __le32 dlen;
+
+ dlen = cpu_to_le32(len);
+ memcpy(buf, &dlen, LZO_LEN);
+}
+
+static inline size_t read_compress_length(char *buf)
+{
+ __le32 dlen;
+
+ memcpy(&dlen, buf, LZO_LEN);
+ return le32_to_cpu(dlen);
+}
+
+static int lzo_compress_pages(struct list_head *ws,
+ struct address_space *mapping,
+ u64 start, unsigned long len,
+ struct page **pages,
+ unsigned long nr_dest_pages,
+ unsigned long *out_pages,
+ unsigned long *total_in,
+ unsigned long *total_out,
+ unsigned long max_out)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+ int ret = 0;
+ char *data_in;
+ char *cpage_out;
+ int nr_pages = 0;
+ struct page *in_page = NULL;
+ struct page *out_page = NULL;
+ unsigned long bytes_left;
+
+ size_t in_len;
+ size_t out_len;
+ char *buf;
+ unsigned long tot_in = 0;
+ unsigned long tot_out = 0;
+ unsigned long pg_bytes_left;
+ unsigned long out_offset;
+ unsigned long bytes;
+
+ *out_pages = 0;
+ *total_out = 0;
+ *total_in = 0;
+
+ in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
+ data_in = kmap(in_page);
+
+ /*
+ * store the size of all chunks of compressed data in
+ * the first 4 bytes
+ */
+ out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
+ if (out_page == NULL) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ cpage_out = kmap(out_page);
+ out_offset = LZO_LEN;
+ tot_out = LZO_LEN;
+ pages[0] = out_page;
+ nr_pages = 1;
+ pg_bytes_left = PAGE_CACHE_SIZE - LZO_LEN;
+
+ /* compress at most one page of data each time */
+ in_len = min(len, PAGE_CACHE_SIZE);
+ while (tot_in < len) {
+ ret = lzo1x_1_compress(data_in, in_len, workspace->cbuf,
+ &out_len, workspace->mem);
+ if (ret != LZO_E_OK) {
+ printk(KERN_DEBUG "btrfs deflate in loop returned %d\n",
+ ret);
+ ret = -1;
+ goto out;
+ }
+
+ /* store the size of this chunk of compressed data */
+ write_compress_length(cpage_out + out_offset, out_len);
+ tot_out += LZO_LEN;
+ out_offset += LZO_LEN;
+ pg_bytes_left -= LZO_LEN;
+
+ tot_in += in_len;
+ tot_out += out_len;
+
+ /* copy bytes from the working buffer into the pages */
+ buf = workspace->cbuf;
+ while (out_len) {
+ bytes = min_t(unsigned long, pg_bytes_left, out_len);
+
+ memcpy(cpage_out + out_offset, buf, bytes);
+
+ out_len -= bytes;
+ pg_bytes_left -= bytes;
+ buf += bytes;
+ out_offset += bytes;
+
+ /*
+ * we need another page for writing out.
+ *
+ * Note if there's less than 4 bytes left, we just
+ * skip to a new page.
+ */
+ if ((out_len == 0 && pg_bytes_left < LZO_LEN) ||
+ pg_bytes_left == 0) {
+ if (pg_bytes_left) {
+ memset(cpage_out + out_offset, 0,
+ pg_bytes_left);
+ tot_out += pg_bytes_left;
+ }
+
+ /* we're done, don't allocate new page */
+ if (out_len == 0 && tot_in >= len)
+ break;
+
+ kunmap(out_page);
+ if (nr_pages == nr_dest_pages) {
+ out_page = NULL;
+ ret = -1;
+ goto out;
+ }
+
+ out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
+ if (out_page == NULL) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ cpage_out = kmap(out_page);
+ pages[nr_pages++] = out_page;
+
+ pg_bytes_left = PAGE_CACHE_SIZE;
+ out_offset = 0;
+ }
+ }
+
+ /* we're making it bigger, give up */
+ if (tot_in > 8192 && tot_in < tot_out)
+ goto out;
+
+ /* we're all done */
+ if (tot_in >= len)
+ break;
+
+ if (tot_out > max_out)
+ break;
+
+ bytes_left = len - tot_in;
+ kunmap(in_page);
+ page_cache_release(in_page);
+
+ start += PAGE_CACHE_SIZE;
+ in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
+ data_in = kmap(in_page);
+ in_len = min(bytes_left, PAGE_CACHE_SIZE);
+ }
+
+ if (tot_out > tot_in)
+ goto out;
+
+ /* store the size of all chunks of compressed data */
+ cpage_out = kmap(pages[0]);
+ write_compress_length(cpage_out, tot_out);
+
+ kunmap(pages[0]);
+
+ ret = 0;
+ *total_out = tot_out;
+ *total_in = tot_in;
+out:
+ *out_pages = nr_pages;
+ if (out_page)
+ kunmap(out_page);
+
+ if (in_page) {
+ kunmap(in_page);
+ page_cache_release(in_page);
+ }
+
+ return ret;
+}
+
+static int lzo_decompress_biovec(struct list_head *ws,
+ struct page **pages_in,
+ u64 disk_start,
+ struct bio_vec *bvec,
+ int vcnt,
+ size_t srclen)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+ int ret = 0, ret2;
+ char *data_in;
+ unsigned long page_in_index = 0;
+ unsigned long page_out_index = 0;
+ unsigned long total_pages_in = (srclen + PAGE_CACHE_SIZE - 1) /
+ PAGE_CACHE_SIZE;
+ unsigned long buf_start;
+ unsigned long buf_offset = 0;
+ unsigned long bytes;
+ unsigned long working_bytes;
+ unsigned long pg_offset;
+
+ size_t in_len;
+ size_t out_len;
+ unsigned long in_offset;
+ unsigned long in_page_bytes_left;
+ unsigned long tot_in;
+ unsigned long tot_out;
+ unsigned long tot_len;
+ char *buf;
+ bool may_late_unmap, need_unmap;
+
+ data_in = kmap(pages_in[0]);
+ tot_len = read_compress_length(data_in);
+
+ tot_in = LZO_LEN;
+ in_offset = LZO_LEN;
+ tot_len = min_t(size_t, srclen, tot_len);
+ in_page_bytes_left = PAGE_CACHE_SIZE - LZO_LEN;
+
+ tot_out = 0;
+ pg_offset = 0;
+
+ while (tot_in < tot_len) {
+ in_len = read_compress_length(data_in + in_offset);
+ in_page_bytes_left -= LZO_LEN;
+ in_offset += LZO_LEN;
+ tot_in += LZO_LEN;
+
+ tot_in += in_len;
+ working_bytes = in_len;
+ may_late_unmap = need_unmap = false;
+
+ /* fast path: avoid using the working buffer */
+ if (in_page_bytes_left >= in_len) {
+ buf = data_in + in_offset;
+ bytes = in_len;
+ may_late_unmap = true;
+ goto cont;
+ }
+
+ /* copy bytes from the pages into the working buffer */
+ buf = workspace->cbuf;
+ buf_offset = 0;
+ while (working_bytes) {
+ bytes = min(working_bytes, in_page_bytes_left);
+
+ memcpy(buf + buf_offset, data_in + in_offset, bytes);
+ buf_offset += bytes;
+cont:
+ working_bytes -= bytes;
+ in_page_bytes_left -= bytes;
+ in_offset += bytes;
+
+ /* check if we need to pick another page */
+ if ((working_bytes == 0 && in_page_bytes_left < LZO_LEN)
+ || in_page_bytes_left == 0) {
+ tot_in += in_page_bytes_left;
+
+ if (working_bytes == 0 && tot_in >= tot_len)
+ break;
+
+ if (page_in_index + 1 >= total_pages_in) {
+ ret = -1;
+ goto done;
+ }
+
+ if (may_late_unmap)
+ need_unmap = true;
+ else
+ kunmap(pages_in[page_in_index]);
+
+ data_in = kmap(pages_in[++page_in_index]);
+
+ in_page_bytes_left = PAGE_CACHE_SIZE;
+ in_offset = 0;
+ }
+ }
+
+ out_len = lzo1x_worst_compress(PAGE_CACHE_SIZE);
+ ret = lzo1x_decompress_safe(buf, in_len, workspace->buf,
+ &out_len);
+ if (need_unmap)
+ kunmap(pages_in[page_in_index - 1]);
+ if (ret != LZO_E_OK) {
+ printk(KERN_WARNING "btrfs decompress failed\n");
+ ret = -1;
+ break;
+ }
+
+ buf_start = tot_out;
+ tot_out += out_len;
+
+ ret2 = btrfs_decompress_buf2page(workspace->buf, buf_start,
+ tot_out, disk_start,
+ bvec, vcnt,
+ &page_out_index, &pg_offset);
+ if (ret2 == 0)
+ break;
+ }
+done:
+ kunmap(pages_in[page_in_index]);
+ return ret;
+}
+
+static int lzo_decompress(struct list_head *ws, unsigned char *data_in,
+ struct page *dest_page,
+ unsigned long start_byte,
+ size_t srclen, size_t destlen)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+ size_t in_len;
+ size_t out_len;
+ size_t tot_len;
+ int ret = 0;
+ char *kaddr;
+ unsigned long bytes;
+
+ BUG_ON(srclen < LZO_LEN);
+
+ tot_len = read_compress_length(data_in);
+ data_in += LZO_LEN;
+
+ in_len = read_compress_length(data_in);
+ data_in += LZO_LEN;
+
+ out_len = PAGE_CACHE_SIZE;
+ ret = lzo1x_decompress_safe(data_in, in_len, workspace->buf, &out_len);
+ if (ret != LZO_E_OK) {
+ printk(KERN_WARNING "btrfs decompress failed!\n");
+ ret = -1;
+ goto out;
+ }
+
+ if (out_len < start_byte) {
+ ret = -1;
+ goto out;
+ }
+
+ bytes = min_t(unsigned long, destlen, out_len - start_byte);
+
+ kaddr = kmap_atomic(dest_page);
+ memcpy(kaddr, workspace->buf + start_byte, bytes);
+ kunmap_atomic(kaddr);
+out:
+ return ret;
+}
+
+struct btrfs_compress_op btrfs_lzo_compress = {
+ .alloc_workspace = lzo_alloc_workspace,
+ .free_workspace = lzo_free_workspace,
+ .compress_pages = lzo_compress_pages,
+ .decompress_biovec = lzo_decompress_biovec,
+ .decompress = lzo_decompress,
+};
diff --git a/fs/btrfs/ordered-data.c b/fs/btrfs/ordered-data.c
new file mode 100644
index 00000000..bbf6d0d9
--- /dev/null
+++ b/fs/btrfs/ordered-data.c
@@ -0,0 +1,977 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/writeback.h>
+#include <linux/pagevec.h>
+#include "ctree.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "extent_io.h"
+
+static u64 entry_end(struct btrfs_ordered_extent *entry)
+{
+ if (entry->file_offset + entry->len < entry->file_offset)
+ return (u64)-1;
+ return entry->file_offset + entry->len;
+}
+
+/* returns NULL if the insertion worked, or it returns the node it did find
+ * in the tree
+ */
+static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
+ struct rb_node *node)
+{
+ struct rb_node **p = &root->rb_node;
+ struct rb_node *parent = NULL;
+ struct btrfs_ordered_extent *entry;
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
+
+ if (file_offset < entry->file_offset)
+ p = &(*p)->rb_left;
+ else if (file_offset >= entry_end(entry))
+ p = &(*p)->rb_right;
+ else
+ return parent;
+ }
+
+ rb_link_node(node, parent, p);
+ rb_insert_color(node, root);
+ return NULL;
+}
+
+static void ordered_data_tree_panic(struct inode *inode, int errno,
+ u64 offset)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
+ btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
+ "%llu\n", (unsigned long long)offset);
+}
+
+/*
+ * look for a given offset in the tree, and if it can't be found return the
+ * first lesser offset
+ */
+static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
+ struct rb_node **prev_ret)
+{
+ struct rb_node *n = root->rb_node;
+ struct rb_node *prev = NULL;
+ struct rb_node *test;
+ struct btrfs_ordered_extent *entry;
+ struct btrfs_ordered_extent *prev_entry = NULL;
+
+ while (n) {
+ entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
+ prev = n;
+ prev_entry = entry;
+
+ if (file_offset < entry->file_offset)
+ n = n->rb_left;
+ else if (file_offset >= entry_end(entry))
+ n = n->rb_right;
+ else
+ return n;
+ }
+ if (!prev_ret)
+ return NULL;
+
+ while (prev && file_offset >= entry_end(prev_entry)) {
+ test = rb_next(prev);
+ if (!test)
+ break;
+ prev_entry = rb_entry(test, struct btrfs_ordered_extent,
+ rb_node);
+ if (file_offset < entry_end(prev_entry))
+ break;
+
+ prev = test;
+ }
+ if (prev)
+ prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
+ rb_node);
+ while (prev && file_offset < entry_end(prev_entry)) {
+ test = rb_prev(prev);
+ if (!test)
+ break;
+ prev_entry = rb_entry(test, struct btrfs_ordered_extent,
+ rb_node);
+ prev = test;
+ }
+ *prev_ret = prev;
+ return NULL;
+}
+
+/*
+ * helper to check if a given offset is inside a given entry
+ */
+static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
+{
+ if (file_offset < entry->file_offset ||
+ entry->file_offset + entry->len <= file_offset)
+ return 0;
+ return 1;
+}
+
+static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
+ u64 len)
+{
+ if (file_offset + len <= entry->file_offset ||
+ entry->file_offset + entry->len <= file_offset)
+ return 0;
+ return 1;
+}
+
+/*
+ * look find the first ordered struct that has this offset, otherwise
+ * the first one less than this offset
+ */
+static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
+ u64 file_offset)
+{
+ struct rb_root *root = &tree->tree;
+ struct rb_node *prev = NULL;
+ struct rb_node *ret;
+ struct btrfs_ordered_extent *entry;
+
+ if (tree->last) {
+ entry = rb_entry(tree->last, struct btrfs_ordered_extent,
+ rb_node);
+ if (offset_in_entry(entry, file_offset))
+ return tree->last;
+ }
+ ret = __tree_search(root, file_offset, &prev);
+ if (!ret)
+ ret = prev;
+ if (ret)
+ tree->last = ret;
+ return ret;
+}
+
+/* allocate and add a new ordered_extent into the per-inode tree.
+ * file_offset is the logical offset in the file
+ *
+ * start is the disk block number of an extent already reserved in the
+ * extent allocation tree
+ *
+ * len is the length of the extent
+ *
+ * The tree is given a single reference on the ordered extent that was
+ * inserted.
+ */
+static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
+ u64 start, u64 len, u64 disk_len,
+ int type, int dio, int compress_type)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ entry = kzalloc(sizeof(*entry), GFP_NOFS);
+ if (!entry)
+ return -ENOMEM;
+
+ entry->file_offset = file_offset;
+ entry->start = start;
+ entry->len = len;
+ entry->disk_len = disk_len;
+ entry->bytes_left = len;
+ entry->inode = inode;
+ entry->compress_type = compress_type;
+ if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
+ set_bit(type, &entry->flags);
+
+ if (dio)
+ set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
+
+ /* one ref for the tree */
+ atomic_set(&entry->refs, 1);
+ init_waitqueue_head(&entry->wait);
+ INIT_LIST_HEAD(&entry->list);
+ INIT_LIST_HEAD(&entry->root_extent_list);
+
+ trace_btrfs_ordered_extent_add(inode, entry);
+
+ spin_lock(&tree->lock);
+ node = tree_insert(&tree->tree, file_offset,
+ &entry->rb_node);
+ if (node)
+ ordered_data_tree_panic(inode, -EEXIST, file_offset);
+ spin_unlock(&tree->lock);
+
+ spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
+ list_add_tail(&entry->root_extent_list,
+ &BTRFS_I(inode)->root->fs_info->ordered_extents);
+ spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
+
+ return 0;
+}
+
+int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
+ u64 start, u64 len, u64 disk_len, int type)
+{
+ return __btrfs_add_ordered_extent(inode, file_offset, start, len,
+ disk_len, type, 0,
+ BTRFS_COMPRESS_NONE);
+}
+
+int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
+ u64 start, u64 len, u64 disk_len, int type)
+{
+ return __btrfs_add_ordered_extent(inode, file_offset, start, len,
+ disk_len, type, 1,
+ BTRFS_COMPRESS_NONE);
+}
+
+int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
+ u64 start, u64 len, u64 disk_len,
+ int type, int compress_type)
+{
+ return __btrfs_add_ordered_extent(inode, file_offset, start, len,
+ disk_len, type, 0,
+ compress_type);
+}
+
+/*
+ * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
+ * when an ordered extent is finished. If the list covers more than one
+ * ordered extent, it is split across multiples.
+ */
+void btrfs_add_ordered_sum(struct inode *inode,
+ struct btrfs_ordered_extent *entry,
+ struct btrfs_ordered_sum *sum)
+{
+ struct btrfs_ordered_inode_tree *tree;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ spin_lock(&tree->lock);
+ list_add_tail(&sum->list, &entry->list);
+ spin_unlock(&tree->lock);
+}
+
+/*
+ * this is used to account for finished IO across a given range
+ * of the file. The IO may span ordered extents. If
+ * a given ordered_extent is completely done, 1 is returned, otherwise
+ * 0.
+ *
+ * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
+ * to make sure this function only returns 1 once for a given ordered extent.
+ *
+ * file_offset is updated to one byte past the range that is recorded as
+ * complete. This allows you to walk forward in the file.
+ */
+int btrfs_dec_test_first_ordered_pending(struct inode *inode,
+ struct btrfs_ordered_extent **cached,
+ u64 *file_offset, u64 io_size)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+ int ret;
+ u64 dec_end;
+ u64 dec_start;
+ u64 to_dec;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ spin_lock(&tree->lock);
+ node = tree_search(tree, *file_offset);
+ if (!node) {
+ ret = 1;
+ goto out;
+ }
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (!offset_in_entry(entry, *file_offset)) {
+ ret = 1;
+ goto out;
+ }
+
+ dec_start = max(*file_offset, entry->file_offset);
+ dec_end = min(*file_offset + io_size, entry->file_offset +
+ entry->len);
+ *file_offset = dec_end;
+ if (dec_start > dec_end) {
+ printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
+ (unsigned long long)dec_start,
+ (unsigned long long)dec_end);
+ }
+ to_dec = dec_end - dec_start;
+ if (to_dec > entry->bytes_left) {
+ printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
+ (unsigned long long)entry->bytes_left,
+ (unsigned long long)to_dec);
+ }
+ entry->bytes_left -= to_dec;
+ if (entry->bytes_left == 0)
+ ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
+ else
+ ret = 1;
+out:
+ if (!ret && cached && entry) {
+ *cached = entry;
+ atomic_inc(&entry->refs);
+ }
+ spin_unlock(&tree->lock);
+ return ret == 0;
+}
+
+/*
+ * this is used to account for finished IO across a given range
+ * of the file. The IO should not span ordered extents. If
+ * a given ordered_extent is completely done, 1 is returned, otherwise
+ * 0.
+ *
+ * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
+ * to make sure this function only returns 1 once for a given ordered extent.
+ */
+int btrfs_dec_test_ordered_pending(struct inode *inode,
+ struct btrfs_ordered_extent **cached,
+ u64 file_offset, u64 io_size)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+ int ret;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ spin_lock(&tree->lock);
+ node = tree_search(tree, file_offset);
+ if (!node) {
+ ret = 1;
+ goto out;
+ }
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (!offset_in_entry(entry, file_offset)) {
+ ret = 1;
+ goto out;
+ }
+
+ if (io_size > entry->bytes_left) {
+ printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
+ (unsigned long long)entry->bytes_left,
+ (unsigned long long)io_size);
+ }
+ entry->bytes_left -= io_size;
+ if (entry->bytes_left == 0)
+ ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
+ else
+ ret = 1;
+out:
+ if (!ret && cached && entry) {
+ *cached = entry;
+ atomic_inc(&entry->refs);
+ }
+ spin_unlock(&tree->lock);
+ return ret == 0;
+}
+
+/*
+ * used to drop a reference on an ordered extent. This will free
+ * the extent if the last reference is dropped
+ */
+void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
+{
+ struct list_head *cur;
+ struct btrfs_ordered_sum *sum;
+
+ trace_btrfs_ordered_extent_put(entry->inode, entry);
+
+ if (atomic_dec_and_test(&entry->refs)) {
+ while (!list_empty(&entry->list)) {
+ cur = entry->list.next;
+ sum = list_entry(cur, struct btrfs_ordered_sum, list);
+ list_del(&sum->list);
+ kfree(sum);
+ }
+ kfree(entry);
+ }
+}
+
+/*
+ * remove an ordered extent from the tree. No references are dropped
+ * and you must wake_up entry->wait. You must hold the tree lock
+ * while you call this function.
+ */
+static void __btrfs_remove_ordered_extent(struct inode *inode,
+ struct btrfs_ordered_extent *entry)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct rb_node *node;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ node = &entry->rb_node;
+ rb_erase(node, &tree->tree);
+ tree->last = NULL;
+ set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
+
+ spin_lock(&root->fs_info->ordered_extent_lock);
+ list_del_init(&entry->root_extent_list);
+
+ trace_btrfs_ordered_extent_remove(inode, entry);
+
+ /*
+ * we have no more ordered extents for this inode and
+ * no dirty pages. We can safely remove it from the
+ * list of ordered extents
+ */
+ if (RB_EMPTY_ROOT(&tree->tree) &&
+ !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
+ list_del_init(&BTRFS_I(inode)->ordered_operations);
+ }
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+}
+
+/*
+ * remove an ordered extent from the tree. No references are dropped
+ * but any waiters are woken.
+ */
+void btrfs_remove_ordered_extent(struct inode *inode,
+ struct btrfs_ordered_extent *entry)
+{
+ struct btrfs_ordered_inode_tree *tree;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ spin_lock(&tree->lock);
+ __btrfs_remove_ordered_extent(inode, entry);
+ spin_unlock(&tree->lock);
+ wake_up(&entry->wait);
+}
+
+/*
+ * wait for all the ordered extents in a root. This is done when balancing
+ * space between drives.
+ */
+void btrfs_wait_ordered_extents(struct btrfs_root *root,
+ int nocow_only, int delay_iput)
+{
+ struct list_head splice;
+ struct list_head *cur;
+ struct btrfs_ordered_extent *ordered;
+ struct inode *inode;
+
+ INIT_LIST_HEAD(&splice);
+
+ spin_lock(&root->fs_info->ordered_extent_lock);
+ list_splice_init(&root->fs_info->ordered_extents, &splice);
+ while (!list_empty(&splice)) {
+ cur = splice.next;
+ ordered = list_entry(cur, struct btrfs_ordered_extent,
+ root_extent_list);
+ if (nocow_only &&
+ !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
+ !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
+ list_move(&ordered->root_extent_list,
+ &root->fs_info->ordered_extents);
+ cond_resched_lock(&root->fs_info->ordered_extent_lock);
+ continue;
+ }
+
+ list_del_init(&ordered->root_extent_list);
+ atomic_inc(&ordered->refs);
+
+ /*
+ * the inode may be getting freed (in sys_unlink path).
+ */
+ inode = igrab(ordered->inode);
+
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+
+ if (inode) {
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ if (delay_iput)
+ btrfs_add_delayed_iput(inode);
+ else
+ iput(inode);
+ } else {
+ btrfs_put_ordered_extent(ordered);
+ }
+
+ spin_lock(&root->fs_info->ordered_extent_lock);
+ }
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+}
+
+/*
+ * this is used during transaction commit to write all the inodes
+ * added to the ordered operation list. These files must be fully on
+ * disk before the transaction commits.
+ *
+ * we have two modes here, one is to just start the IO via filemap_flush
+ * and the other is to wait for all the io. When we wait, we have an
+ * extra check to make sure the ordered operation list really is empty
+ * before we return
+ */
+void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
+{
+ struct btrfs_inode *btrfs_inode;
+ struct inode *inode;
+ struct list_head splice;
+
+ INIT_LIST_HEAD(&splice);
+
+ mutex_lock(&root->fs_info->ordered_operations_mutex);
+ spin_lock(&root->fs_info->ordered_extent_lock);
+again:
+ list_splice_init(&root->fs_info->ordered_operations, &splice);
+
+ while (!list_empty(&splice)) {
+ btrfs_inode = list_entry(splice.next, struct btrfs_inode,
+ ordered_operations);
+
+ inode = &btrfs_inode->vfs_inode;
+
+ list_del_init(&btrfs_inode->ordered_operations);
+
+ /*
+ * the inode may be getting freed (in sys_unlink path).
+ */
+ inode = igrab(inode);
+
+ if (!wait && inode) {
+ list_add_tail(&BTRFS_I(inode)->ordered_operations,
+ &root->fs_info->ordered_operations);
+ }
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+
+ if (inode) {
+ if (wait)
+ btrfs_wait_ordered_range(inode, 0, (u64)-1);
+ else
+ filemap_flush(inode->i_mapping);
+ btrfs_add_delayed_iput(inode);
+ }
+
+ cond_resched();
+ spin_lock(&root->fs_info->ordered_extent_lock);
+ }
+ if (wait && !list_empty(&root->fs_info->ordered_operations))
+ goto again;
+
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+ mutex_unlock(&root->fs_info->ordered_operations_mutex);
+}
+
+/*
+ * Used to start IO or wait for a given ordered extent to finish.
+ *
+ * If wait is one, this effectively waits on page writeback for all the pages
+ * in the extent, and it waits on the io completion code to insert
+ * metadata into the btree corresponding to the extent
+ */
+void btrfs_start_ordered_extent(struct inode *inode,
+ struct btrfs_ordered_extent *entry,
+ int wait)
+{
+ u64 start = entry->file_offset;
+ u64 end = start + entry->len - 1;
+
+ trace_btrfs_ordered_extent_start(inode, entry);
+
+ /*
+ * pages in the range can be dirty, clean or writeback. We
+ * start IO on any dirty ones so the wait doesn't stall waiting
+ * for pdflush to find them
+ */
+ if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
+ filemap_fdatawrite_range(inode->i_mapping, start, end);
+ if (wait) {
+ wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
+ &entry->flags));
+ }
+}
+
+/*
+ * Used to wait on ordered extents across a large range of bytes.
+ */
+void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
+{
+ u64 end;
+ u64 orig_end;
+ struct btrfs_ordered_extent *ordered;
+ int found;
+
+ if (start + len < start) {
+ orig_end = INT_LIMIT(loff_t);
+ } else {
+ orig_end = start + len - 1;
+ if (orig_end > INT_LIMIT(loff_t))
+ orig_end = INT_LIMIT(loff_t);
+ }
+again:
+ /* start IO across the range first to instantiate any delalloc
+ * extents
+ */
+ filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
+
+ /* The compression code will leave pages locked but return from
+ * writepage without setting the page writeback. Starting again
+ * with WB_SYNC_ALL will end up waiting for the IO to actually start.
+ */
+ filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
+
+ filemap_fdatawait_range(inode->i_mapping, start, orig_end);
+
+ end = orig_end;
+ found = 0;
+ while (1) {
+ ordered = btrfs_lookup_first_ordered_extent(inode, end);
+ if (!ordered)
+ break;
+ if (ordered->file_offset > orig_end) {
+ btrfs_put_ordered_extent(ordered);
+ break;
+ }
+ if (ordered->file_offset + ordered->len < start) {
+ btrfs_put_ordered_extent(ordered);
+ break;
+ }
+ found++;
+ btrfs_start_ordered_extent(inode, ordered, 1);
+ end = ordered->file_offset;
+ btrfs_put_ordered_extent(ordered);
+ if (end == 0 || end == start)
+ break;
+ end--;
+ }
+ if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
+ EXTENT_DELALLOC, 0, NULL)) {
+ schedule_timeout(1);
+ goto again;
+ }
+}
+
+/*
+ * find an ordered extent corresponding to file_offset. return NULL if
+ * nothing is found, otherwise take a reference on the extent and return it
+ */
+struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
+ u64 file_offset)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ spin_lock(&tree->lock);
+ node = tree_search(tree, file_offset);
+ if (!node)
+ goto out;
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (!offset_in_entry(entry, file_offset))
+ entry = NULL;
+ if (entry)
+ atomic_inc(&entry->refs);
+out:
+ spin_unlock(&tree->lock);
+ return entry;
+}
+
+/* Since the DIO code tries to lock a wide area we need to look for any ordered
+ * extents that exist in the range, rather than just the start of the range.
+ */
+struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
+ u64 file_offset,
+ u64 len)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ spin_lock(&tree->lock);
+ node = tree_search(tree, file_offset);
+ if (!node) {
+ node = tree_search(tree, file_offset + len);
+ if (!node)
+ goto out;
+ }
+
+ while (1) {
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (range_overlaps(entry, file_offset, len))
+ break;
+
+ if (entry->file_offset >= file_offset + len) {
+ entry = NULL;
+ break;
+ }
+ entry = NULL;
+ node = rb_next(node);
+ if (!node)
+ break;
+ }
+out:
+ if (entry)
+ atomic_inc(&entry->refs);
+ spin_unlock(&tree->lock);
+ return entry;
+}
+
+/*
+ * lookup and return any extent before 'file_offset'. NULL is returned
+ * if none is found
+ */
+struct btrfs_ordered_extent *
+btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+
+ tree = &BTRFS_I(inode)->ordered_tree;
+ spin_lock(&tree->lock);
+ node = tree_search(tree, file_offset);
+ if (!node)
+ goto out;
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ atomic_inc(&entry->refs);
+out:
+ spin_unlock(&tree->lock);
+ return entry;
+}
+
+/*
+ * After an extent is done, call this to conditionally update the on disk
+ * i_size. i_size is updated to cover any fully written part of the file.
+ */
+int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
+ struct btrfs_ordered_extent *ordered)
+{
+ struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
+ struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
+ u64 disk_i_size;
+ u64 new_i_size;
+ u64 i_size_test;
+ u64 i_size = i_size_read(inode);
+ struct rb_node *node;
+ struct rb_node *prev = NULL;
+ struct btrfs_ordered_extent *test;
+ int ret = 1;
+
+ if (ordered)
+ offset = entry_end(ordered);
+ else
+ offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
+
+ spin_lock(&tree->lock);
+ disk_i_size = BTRFS_I(inode)->disk_i_size;
+
+ /* truncate file */
+ if (disk_i_size > i_size) {
+ BTRFS_I(inode)->disk_i_size = i_size;
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * if the disk i_size is already at the inode->i_size, or
+ * this ordered extent is inside the disk i_size, we're done
+ */
+ if (disk_i_size == i_size || offset <= disk_i_size) {
+ goto out;
+ }
+
+ /*
+ * we can't update the disk_isize if there are delalloc bytes
+ * between disk_i_size and this ordered extent
+ */
+ if (test_range_bit(io_tree, disk_i_size, offset - 1,
+ EXTENT_DELALLOC, 0, NULL)) {
+ goto out;
+ }
+ /*
+ * walk backward from this ordered extent to disk_i_size.
+ * if we find an ordered extent then we can't update disk i_size
+ * yet
+ */
+ if (ordered) {
+ node = rb_prev(&ordered->rb_node);
+ } else {
+ prev = tree_search(tree, offset);
+ /*
+ * we insert file extents without involving ordered struct,
+ * so there should be no ordered struct cover this offset
+ */
+ if (prev) {
+ test = rb_entry(prev, struct btrfs_ordered_extent,
+ rb_node);
+ BUG_ON(offset_in_entry(test, offset));
+ }
+ node = prev;
+ }
+ while (node) {
+ test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (test->file_offset + test->len <= disk_i_size)
+ break;
+ if (test->file_offset >= i_size)
+ break;
+ if (test->file_offset >= disk_i_size)
+ goto out;
+ node = rb_prev(node);
+ }
+ new_i_size = min_t(u64, offset, i_size);
+
+ /*
+ * at this point, we know we can safely update i_size to at least
+ * the offset from this ordered extent. But, we need to
+ * walk forward and see if ios from higher up in the file have
+ * finished.
+ */
+ if (ordered) {
+ node = rb_next(&ordered->rb_node);
+ } else {
+ if (prev)
+ node = rb_next(prev);
+ else
+ node = rb_first(&tree->tree);
+ }
+ i_size_test = 0;
+ if (node) {
+ /*
+ * do we have an area where IO might have finished
+ * between our ordered extent and the next one.
+ */
+ test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (test->file_offset > offset)
+ i_size_test = test->file_offset;
+ } else {
+ i_size_test = i_size;
+ }
+
+ /*
+ * i_size_test is the end of a region after this ordered
+ * extent where there are no ordered extents. As long as there
+ * are no delalloc bytes in this area, it is safe to update
+ * disk_i_size to the end of the region.
+ */
+ if (i_size_test > offset &&
+ !test_range_bit(io_tree, offset, i_size_test - 1,
+ EXTENT_DELALLOC, 0, NULL)) {
+ new_i_size = min_t(u64, i_size_test, i_size);
+ }
+ BTRFS_I(inode)->disk_i_size = new_i_size;
+ ret = 0;
+out:
+ /*
+ * we need to remove the ordered extent with the tree lock held
+ * so that other people calling this function don't find our fully
+ * processed ordered entry and skip updating the i_size
+ */
+ if (ordered)
+ __btrfs_remove_ordered_extent(inode, ordered);
+ spin_unlock(&tree->lock);
+ if (ordered)
+ wake_up(&ordered->wait);
+ return ret;
+}
+
+/*
+ * search the ordered extents for one corresponding to 'offset' and
+ * try to find a checksum. This is used because we allow pages to
+ * be reclaimed before their checksum is actually put into the btree
+ */
+int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
+ u32 *sum)
+{
+ struct btrfs_ordered_sum *ordered_sum;
+ struct btrfs_sector_sum *sector_sums;
+ struct btrfs_ordered_extent *ordered;
+ struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
+ unsigned long num_sectors;
+ unsigned long i;
+ u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
+ int ret = 1;
+
+ ordered = btrfs_lookup_ordered_extent(inode, offset);
+ if (!ordered)
+ return 1;
+
+ spin_lock(&tree->lock);
+ list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
+ if (disk_bytenr >= ordered_sum->bytenr) {
+ num_sectors = ordered_sum->len / sectorsize;
+ sector_sums = ordered_sum->sums;
+ for (i = 0; i < num_sectors; i++) {
+ if (sector_sums[i].bytenr == disk_bytenr) {
+ *sum = sector_sums[i].sum;
+ ret = 0;
+ goto out;
+ }
+ }
+ }
+ }
+out:
+ spin_unlock(&tree->lock);
+ btrfs_put_ordered_extent(ordered);
+ return ret;
+}
+
+
+/*
+ * add a given inode to the list of inodes that must be fully on
+ * disk before a transaction commit finishes.
+ *
+ * This basically gives us the ext3 style data=ordered mode, and it is mostly
+ * used to make sure renamed files are fully on disk.
+ *
+ * It is a noop if the inode is already fully on disk.
+ *
+ * If trans is not null, we'll do a friendly check for a transaction that
+ * is already flushing things and force the IO down ourselves.
+ */
+void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode)
+{
+ u64 last_mod;
+
+ last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
+
+ /*
+ * if this file hasn't been changed since the last transaction
+ * commit, we can safely return without doing anything
+ */
+ if (last_mod < root->fs_info->last_trans_committed)
+ return;
+
+ /*
+ * the transaction is already committing. Just start the IO and
+ * don't bother with all of this list nonsense
+ */
+ if (trans && root->fs_info->running_transaction->blocked) {
+ btrfs_wait_ordered_range(inode, 0, (u64)-1);
+ return;
+ }
+
+ spin_lock(&root->fs_info->ordered_extent_lock);
+ if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
+ list_add_tail(&BTRFS_I(inode)->ordered_operations,
+ &root->fs_info->ordered_operations);
+ }
+ spin_unlock(&root->fs_info->ordered_extent_lock);
+}
diff --git a/fs/btrfs/ordered-data.h b/fs/btrfs/ordered-data.h
new file mode 100644
index 00000000..c355ad4d
--- /dev/null
+++ b/fs/btrfs/ordered-data.h
@@ -0,0 +1,179 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_ORDERED_DATA__
+#define __BTRFS_ORDERED_DATA__
+
+/* one of these per inode */
+struct btrfs_ordered_inode_tree {
+ spinlock_t lock;
+ struct rb_root tree;
+ struct rb_node *last;
+};
+
+/*
+ * these are used to collect checksums done just before bios submission.
+ * They are attached via a list into the ordered extent, and
+ * checksum items are inserted into the tree after all the blocks in
+ * the ordered extent are on disk
+ */
+struct btrfs_sector_sum {
+ /* bytenr on disk */
+ u64 bytenr;
+ u32 sum;
+};
+
+struct btrfs_ordered_sum {
+ /* bytenr is the start of this extent on disk */
+ u64 bytenr;
+
+ /*
+ * this is the length in bytes covered by the sums array below.
+ */
+ unsigned long len;
+ struct list_head list;
+ /* last field is a variable length array of btrfs_sector_sums */
+ struct btrfs_sector_sum sums[];
+};
+
+/*
+ * bits for the flags field:
+ *
+ * BTRFS_ORDERED_IO_DONE is set when all of the blocks are written.
+ * It is used to make sure metadata is inserted into the tree only once
+ * per extent.
+ *
+ * BTRFS_ORDERED_COMPLETE is set when the extent is removed from the
+ * rbtree, just before waking any waiters. It is used to indicate the
+ * IO is done and any metadata is inserted into the tree.
+ */
+#define BTRFS_ORDERED_IO_DONE 0 /* set when all the pages are written */
+
+#define BTRFS_ORDERED_COMPLETE 1 /* set when removed from the tree */
+
+#define BTRFS_ORDERED_NOCOW 2 /* set when we want to write in place */
+
+#define BTRFS_ORDERED_COMPRESSED 3 /* writing a zlib compressed extent */
+
+#define BTRFS_ORDERED_PREALLOC 4 /* set when writing to prealloced extent */
+
+#define BTRFS_ORDERED_DIRECT 5 /* set when we're doing DIO with this extent */
+
+struct btrfs_ordered_extent {
+ /* logical offset in the file */
+ u64 file_offset;
+
+ /* disk byte number */
+ u64 start;
+
+ /* ram length of the extent in bytes */
+ u64 len;
+
+ /* extent length on disk */
+ u64 disk_len;
+
+ /* number of bytes that still need writing */
+ u64 bytes_left;
+
+ /* flags (described above) */
+ unsigned long flags;
+
+ /* compression algorithm */
+ int compress_type;
+
+ /* reference count */
+ atomic_t refs;
+
+ /* the inode we belong to */
+ struct inode *inode;
+
+ /* list of checksums for insertion when the extent io is done */
+ struct list_head list;
+
+ /* used to wait for the BTRFS_ORDERED_COMPLETE bit */
+ wait_queue_head_t wait;
+
+ /* our friendly rbtree entry */
+ struct rb_node rb_node;
+
+ /* a per root list of all the pending ordered extents */
+ struct list_head root_extent_list;
+};
+
+
+/*
+ * calculates the total size you need to allocate for an ordered sum
+ * structure spanning 'bytes' in the file
+ */
+static inline int btrfs_ordered_sum_size(struct btrfs_root *root,
+ unsigned long bytes)
+{
+ unsigned long num_sectors = (bytes + root->sectorsize - 1) /
+ root->sectorsize;
+ num_sectors++;
+ return sizeof(struct btrfs_ordered_sum) +
+ num_sectors * sizeof(struct btrfs_sector_sum);
+}
+
+static inline void
+btrfs_ordered_inode_tree_init(struct btrfs_ordered_inode_tree *t)
+{
+ spin_lock_init(&t->lock);
+ t->tree = RB_ROOT;
+ t->last = NULL;
+}
+
+void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry);
+void btrfs_remove_ordered_extent(struct inode *inode,
+ struct btrfs_ordered_extent *entry);
+int btrfs_dec_test_ordered_pending(struct inode *inode,
+ struct btrfs_ordered_extent **cached,
+ u64 file_offset, u64 io_size);
+int btrfs_dec_test_first_ordered_pending(struct inode *inode,
+ struct btrfs_ordered_extent **cached,
+ u64 *file_offset, u64 io_size);
+int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
+ u64 start, u64 len, u64 disk_len, int type);
+int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
+ u64 start, u64 len, u64 disk_len, int type);
+int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
+ u64 start, u64 len, u64 disk_len,
+ int type, int compress_type);
+void btrfs_add_ordered_sum(struct inode *inode,
+ struct btrfs_ordered_extent *entry,
+ struct btrfs_ordered_sum *sum);
+struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
+ u64 file_offset);
+void btrfs_start_ordered_extent(struct inode *inode,
+ struct btrfs_ordered_extent *entry, int wait);
+void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len);
+struct btrfs_ordered_extent *
+btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset);
+struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
+ u64 file_offset,
+ u64 len);
+int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
+ struct btrfs_ordered_extent *ordered);
+int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, u32 *sum);
+void btrfs_run_ordered_operations(struct btrfs_root *root, int wait);
+void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *inode);
+void btrfs_wait_ordered_extents(struct btrfs_root *root,
+ int nocow_only, int delay_iput);
+#endif
diff --git a/fs/btrfs/orphan.c b/fs/btrfs/orphan.c
new file mode 100644
index 00000000..24cad169
--- /dev/null
+++ b/fs/btrfs/orphan.c
@@ -0,0 +1,91 @@
+/*
+ * Copyright (C) 2008 Red Hat. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include "ctree.h"
+#include "disk-io.h"
+
+int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 offset)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret = 0;
+
+ key.objectid = BTRFS_ORPHAN_OBJECTID;
+ btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
+ key.offset = offset;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 offset)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret = 0;
+
+ key.objectid = BTRFS_ORPHAN_OBJECTID;
+ btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
+ key.offset = offset;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0)
+ goto out;
+ if (ret) { /* JDM: Really? */
+ ret = -ENOENT;
+ goto out;
+ }
+
+ ret = btrfs_del_item(trans, root, path);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret;
+
+ key.objectid = BTRFS_ORPHAN_OBJECTID;
+ key.type = BTRFS_ORPHAN_ITEM_KEY;
+ key.offset = offset;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+
+ btrfs_free_path(path);
+ return ret;
+}
diff --git a/fs/btrfs/print-tree.c b/fs/btrfs/print-tree.c
new file mode 100644
index 00000000..f38e4524
--- /dev/null
+++ b/fs/btrfs/print-tree.c
@@ -0,0 +1,342 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include "ctree.h"
+#include "disk-io.h"
+#include "print-tree.h"
+
+static void print_chunk(struct extent_buffer *eb, struct btrfs_chunk *chunk)
+{
+ int num_stripes = btrfs_chunk_num_stripes(eb, chunk);
+ int i;
+ printk(KERN_INFO "\t\tchunk length %llu owner %llu type %llu "
+ "num_stripes %d\n",
+ (unsigned long long)btrfs_chunk_length(eb, chunk),
+ (unsigned long long)btrfs_chunk_owner(eb, chunk),
+ (unsigned long long)btrfs_chunk_type(eb, chunk),
+ num_stripes);
+ for (i = 0 ; i < num_stripes ; i++) {
+ printk(KERN_INFO "\t\t\tstripe %d devid %llu offset %llu\n", i,
+ (unsigned long long)btrfs_stripe_devid_nr(eb, chunk, i),
+ (unsigned long long)btrfs_stripe_offset_nr(eb, chunk, i));
+ }
+}
+static void print_dev_item(struct extent_buffer *eb,
+ struct btrfs_dev_item *dev_item)
+{
+ printk(KERN_INFO "\t\tdev item devid %llu "
+ "total_bytes %llu bytes used %llu\n",
+ (unsigned long long)btrfs_device_id(eb, dev_item),
+ (unsigned long long)btrfs_device_total_bytes(eb, dev_item),
+ (unsigned long long)btrfs_device_bytes_used(eb, dev_item));
+}
+static void print_extent_data_ref(struct extent_buffer *eb,
+ struct btrfs_extent_data_ref *ref)
+{
+ printk(KERN_INFO "\t\textent data backref root %llu "
+ "objectid %llu offset %llu count %u\n",
+ (unsigned long long)btrfs_extent_data_ref_root(eb, ref),
+ (unsigned long long)btrfs_extent_data_ref_objectid(eb, ref),
+ (unsigned long long)btrfs_extent_data_ref_offset(eb, ref),
+ btrfs_extent_data_ref_count(eb, ref));
+}
+
+static void print_extent_item(struct extent_buffer *eb, int slot)
+{
+ struct btrfs_extent_item *ei;
+ struct btrfs_extent_inline_ref *iref;
+ struct btrfs_extent_data_ref *dref;
+ struct btrfs_shared_data_ref *sref;
+ struct btrfs_disk_key key;
+ unsigned long end;
+ unsigned long ptr;
+ int type;
+ u32 item_size = btrfs_item_size_nr(eb, slot);
+ u64 flags;
+ u64 offset;
+
+ if (item_size < sizeof(*ei)) {
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ struct btrfs_extent_item_v0 *ei0;
+ BUG_ON(item_size != sizeof(*ei0));
+ ei0 = btrfs_item_ptr(eb, slot, struct btrfs_extent_item_v0);
+ printk(KERN_INFO "\t\textent refs %u\n",
+ btrfs_extent_refs_v0(eb, ei0));
+ return;
+#else
+ BUG();
+#endif
+ }
+
+ ei = btrfs_item_ptr(eb, slot, struct btrfs_extent_item);
+ flags = btrfs_extent_flags(eb, ei);
+
+ printk(KERN_INFO "\t\textent refs %llu gen %llu flags %llu\n",
+ (unsigned long long)btrfs_extent_refs(eb, ei),
+ (unsigned long long)btrfs_extent_generation(eb, ei),
+ (unsigned long long)flags);
+
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ struct btrfs_tree_block_info *info;
+ info = (struct btrfs_tree_block_info *)(ei + 1);
+ btrfs_tree_block_key(eb, info, &key);
+ printk(KERN_INFO "\t\ttree block key (%llu %x %llu) "
+ "level %d\n",
+ (unsigned long long)btrfs_disk_key_objectid(&key),
+ key.type,
+ (unsigned long long)btrfs_disk_key_offset(&key),
+ btrfs_tree_block_level(eb, info));
+ iref = (struct btrfs_extent_inline_ref *)(info + 1);
+ } else {
+ iref = (struct btrfs_extent_inline_ref *)(ei + 1);
+ }
+
+ ptr = (unsigned long)iref;
+ end = (unsigned long)ei + item_size;
+ while (ptr < end) {
+ iref = (struct btrfs_extent_inline_ref *)ptr;
+ type = btrfs_extent_inline_ref_type(eb, iref);
+ offset = btrfs_extent_inline_ref_offset(eb, iref);
+ switch (type) {
+ case BTRFS_TREE_BLOCK_REF_KEY:
+ printk(KERN_INFO "\t\ttree block backref "
+ "root %llu\n", (unsigned long long)offset);
+ break;
+ case BTRFS_SHARED_BLOCK_REF_KEY:
+ printk(KERN_INFO "\t\tshared block backref "
+ "parent %llu\n", (unsigned long long)offset);
+ break;
+ case BTRFS_EXTENT_DATA_REF_KEY:
+ dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ print_extent_data_ref(eb, dref);
+ break;
+ case BTRFS_SHARED_DATA_REF_KEY:
+ sref = (struct btrfs_shared_data_ref *)(iref + 1);
+ printk(KERN_INFO "\t\tshared data backref "
+ "parent %llu count %u\n",
+ (unsigned long long)offset,
+ btrfs_shared_data_ref_count(eb, sref));
+ break;
+ default:
+ BUG();
+ }
+ ptr += btrfs_extent_inline_ref_size(type);
+ }
+ WARN_ON(ptr > end);
+}
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+static void print_extent_ref_v0(struct extent_buffer *eb, int slot)
+{
+ struct btrfs_extent_ref_v0 *ref0;
+
+ ref0 = btrfs_item_ptr(eb, slot, struct btrfs_extent_ref_v0);
+ printk("\t\textent back ref root %llu gen %llu "
+ "owner %llu num_refs %lu\n",
+ (unsigned long long)btrfs_ref_root_v0(eb, ref0),
+ (unsigned long long)btrfs_ref_generation_v0(eb, ref0),
+ (unsigned long long)btrfs_ref_objectid_v0(eb, ref0),
+ (unsigned long)btrfs_ref_count_v0(eb, ref0));
+}
+#endif
+
+void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l)
+{
+ int i;
+ u32 type, nr;
+ struct btrfs_item *item;
+ struct btrfs_root_item *ri;
+ struct btrfs_dir_item *di;
+ struct btrfs_inode_item *ii;
+ struct btrfs_block_group_item *bi;
+ struct btrfs_file_extent_item *fi;
+ struct btrfs_extent_data_ref *dref;
+ struct btrfs_shared_data_ref *sref;
+ struct btrfs_dev_extent *dev_extent;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+
+ if (!l)
+ return;
+
+ nr = btrfs_header_nritems(l);
+
+ printk(KERN_INFO "leaf %llu total ptrs %d free space %d\n",
+ (unsigned long long)btrfs_header_bytenr(l), nr,
+ btrfs_leaf_free_space(root, l));
+ for (i = 0 ; i < nr ; i++) {
+ item = btrfs_item_nr(l, i);
+ btrfs_item_key_to_cpu(l, &key, i);
+ type = btrfs_key_type(&key);
+ printk(KERN_INFO "\titem %d key (%llu %x %llu) itemoff %d "
+ "itemsize %d\n",
+ i,
+ (unsigned long long)key.objectid, type,
+ (unsigned long long)key.offset,
+ btrfs_item_offset(l, item), btrfs_item_size(l, item));
+ switch (type) {
+ case BTRFS_INODE_ITEM_KEY:
+ ii = btrfs_item_ptr(l, i, struct btrfs_inode_item);
+ printk(KERN_INFO "\t\tinode generation %llu size %llu "
+ "mode %o\n",
+ (unsigned long long)
+ btrfs_inode_generation(l, ii),
+ (unsigned long long)btrfs_inode_size(l, ii),
+ btrfs_inode_mode(l, ii));
+ break;
+ case BTRFS_DIR_ITEM_KEY:
+ di = btrfs_item_ptr(l, i, struct btrfs_dir_item);
+ btrfs_dir_item_key_to_cpu(l, di, &found_key);
+ printk(KERN_INFO "\t\tdir oid %llu type %u\n",
+ (unsigned long long)found_key.objectid,
+ btrfs_dir_type(l, di));
+ break;
+ case BTRFS_ROOT_ITEM_KEY:
+ ri = btrfs_item_ptr(l, i, struct btrfs_root_item);
+ printk(KERN_INFO "\t\troot data bytenr %llu refs %u\n",
+ (unsigned long long)
+ btrfs_disk_root_bytenr(l, ri),
+ btrfs_disk_root_refs(l, ri));
+ break;
+ case BTRFS_EXTENT_ITEM_KEY:
+ print_extent_item(l, i);
+ break;
+ case BTRFS_TREE_BLOCK_REF_KEY:
+ printk(KERN_INFO "\t\ttree block backref\n");
+ break;
+ case BTRFS_SHARED_BLOCK_REF_KEY:
+ printk(KERN_INFO "\t\tshared block backref\n");
+ break;
+ case BTRFS_EXTENT_DATA_REF_KEY:
+ dref = btrfs_item_ptr(l, i,
+ struct btrfs_extent_data_ref);
+ print_extent_data_ref(l, dref);
+ break;
+ case BTRFS_SHARED_DATA_REF_KEY:
+ sref = btrfs_item_ptr(l, i,
+ struct btrfs_shared_data_ref);
+ printk(KERN_INFO "\t\tshared data backref count %u\n",
+ btrfs_shared_data_ref_count(l, sref));
+ break;
+ case BTRFS_EXTENT_DATA_KEY:
+ fi = btrfs_item_ptr(l, i,
+ struct btrfs_file_extent_item);
+ if (btrfs_file_extent_type(l, fi) ==
+ BTRFS_FILE_EXTENT_INLINE) {
+ printk(KERN_INFO "\t\tinline extent data "
+ "size %u\n",
+ btrfs_file_extent_inline_len(l, fi));
+ break;
+ }
+ printk(KERN_INFO "\t\textent data disk bytenr %llu "
+ "nr %llu\n",
+ (unsigned long long)
+ btrfs_file_extent_disk_bytenr(l, fi),
+ (unsigned long long)
+ btrfs_file_extent_disk_num_bytes(l, fi));
+ printk(KERN_INFO "\t\textent data offset %llu "
+ "nr %llu ram %llu\n",
+ (unsigned long long)
+ btrfs_file_extent_offset(l, fi),
+ (unsigned long long)
+ btrfs_file_extent_num_bytes(l, fi),
+ (unsigned long long)
+ btrfs_file_extent_ram_bytes(l, fi));
+ break;
+ case BTRFS_EXTENT_REF_V0_KEY:
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ print_extent_ref_v0(l, i);
+#else
+ BUG();
+#endif
+ break;
+ case BTRFS_BLOCK_GROUP_ITEM_KEY:
+ bi = btrfs_item_ptr(l, i,
+ struct btrfs_block_group_item);
+ printk(KERN_INFO "\t\tblock group used %llu\n",
+ (unsigned long long)
+ btrfs_disk_block_group_used(l, bi));
+ break;
+ case BTRFS_CHUNK_ITEM_KEY:
+ print_chunk(l, btrfs_item_ptr(l, i,
+ struct btrfs_chunk));
+ break;
+ case BTRFS_DEV_ITEM_KEY:
+ print_dev_item(l, btrfs_item_ptr(l, i,
+ struct btrfs_dev_item));
+ break;
+ case BTRFS_DEV_EXTENT_KEY:
+ dev_extent = btrfs_item_ptr(l, i,
+ struct btrfs_dev_extent);
+ printk(KERN_INFO "\t\tdev extent chunk_tree %llu\n"
+ "\t\tchunk objectid %llu chunk offset %llu "
+ "length %llu\n",
+ (unsigned long long)
+ btrfs_dev_extent_chunk_tree(l, dev_extent),
+ (unsigned long long)
+ btrfs_dev_extent_chunk_objectid(l, dev_extent),
+ (unsigned long long)
+ btrfs_dev_extent_chunk_offset(l, dev_extent),
+ (unsigned long long)
+ btrfs_dev_extent_length(l, dev_extent));
+ };
+ }
+}
+
+void btrfs_print_tree(struct btrfs_root *root, struct extent_buffer *c)
+{
+ int i; u32 nr;
+ struct btrfs_key key;
+ int level;
+
+ if (!c)
+ return;
+ nr = btrfs_header_nritems(c);
+ level = btrfs_header_level(c);
+ if (level == 0) {
+ btrfs_print_leaf(root, c);
+ return;
+ }
+ printk(KERN_INFO "node %llu level %d total ptrs %d free spc %u\n",
+ (unsigned long long)btrfs_header_bytenr(c),
+ level, nr,
+ (u32)BTRFS_NODEPTRS_PER_BLOCK(root) - nr);
+ for (i = 0; i < nr; i++) {
+ btrfs_node_key_to_cpu(c, &key, i);
+ printk(KERN_INFO "\tkey %d (%llu %u %llu) block %llu\n",
+ i,
+ (unsigned long long)key.objectid,
+ key.type,
+ (unsigned long long)key.offset,
+ (unsigned long long)btrfs_node_blockptr(c, i));
+ }
+ for (i = 0; i < nr; i++) {
+ struct extent_buffer *next = read_tree_block(root,
+ btrfs_node_blockptr(c, i),
+ btrfs_level_size(root, level - 1),
+ btrfs_node_ptr_generation(c, i));
+ if (btrfs_is_leaf(next) &&
+ level != 1)
+ BUG();
+ if (btrfs_header_level(next) !=
+ level - 1)
+ BUG();
+ btrfs_print_tree(root, next);
+ free_extent_buffer(next);
+ }
+}
diff --git a/fs/btrfs/print-tree.h b/fs/btrfs/print-tree.h
new file mode 100644
index 00000000..da75efe5
--- /dev/null
+++ b/fs/btrfs/print-tree.h
@@ -0,0 +1,23 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __PRINT_TREE_
+#define __PRINT_TREE_
+void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l);
+void btrfs_print_tree(struct btrfs_root *root, struct extent_buffer *t);
+#endif
diff --git a/fs/btrfs/reada.c b/fs/btrfs/reada.c
new file mode 100644
index 00000000..ac5d0108
--- /dev/null
+++ b/fs/btrfs/reada.c
@@ -0,0 +1,961 @@
+/*
+ * Copyright (C) 2011 STRATO. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/rbtree.h>
+#include <linux/slab.h>
+#include <linux/workqueue.h>
+#include "ctree.h"
+#include "volumes.h"
+#include "disk-io.h"
+#include "transaction.h"
+
+#undef DEBUG
+
+/*
+ * This is the implementation for the generic read ahead framework.
+ *
+ * To trigger a readahead, btrfs_reada_add must be called. It will start
+ * a read ahead for the given range [start, end) on tree root. The returned
+ * handle can either be used to wait on the readahead to finish
+ * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
+ *
+ * The read ahead works as follows:
+ * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
+ * reada_start_machine will then search for extents to prefetch and trigger
+ * some reads. When a read finishes for a node, all contained node/leaf
+ * pointers that lie in the given range will also be enqueued. The reads will
+ * be triggered in sequential order, thus giving a big win over a naive
+ * enumeration. It will also make use of multi-device layouts. Each disk
+ * will have its on read pointer and all disks will by utilized in parallel.
+ * Also will no two disks read both sides of a mirror simultaneously, as this
+ * would waste seeking capacity. Instead both disks will read different parts
+ * of the filesystem.
+ * Any number of readaheads can be started in parallel. The read order will be
+ * determined globally, i.e. 2 parallel readaheads will normally finish faster
+ * than the 2 started one after another.
+ */
+
+#define MAX_IN_FLIGHT 6
+
+struct reada_extctl {
+ struct list_head list;
+ struct reada_control *rc;
+ u64 generation;
+};
+
+struct reada_extent {
+ u64 logical;
+ struct btrfs_key top;
+ u32 blocksize;
+ int err;
+ struct list_head extctl;
+ struct kref refcnt;
+ spinlock_t lock;
+ struct reada_zone *zones[BTRFS_MAX_MIRRORS];
+ int nzones;
+ struct btrfs_device *scheduled_for;
+};
+
+struct reada_zone {
+ u64 start;
+ u64 end;
+ u64 elems;
+ struct list_head list;
+ spinlock_t lock;
+ int locked;
+ struct btrfs_device *device;
+ struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
+ * self */
+ int ndevs;
+ struct kref refcnt;
+};
+
+struct reada_machine_work {
+ struct btrfs_work work;
+ struct btrfs_fs_info *fs_info;
+};
+
+static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
+static void reada_control_release(struct kref *kref);
+static void reada_zone_release(struct kref *kref);
+static void reada_start_machine(struct btrfs_fs_info *fs_info);
+static void __reada_start_machine(struct btrfs_fs_info *fs_info);
+
+static int reada_add_block(struct reada_control *rc, u64 logical,
+ struct btrfs_key *top, int level, u64 generation);
+
+/* recurses */
+/* in case of err, eb might be NULL */
+static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
+ u64 start, int err)
+{
+ int level = 0;
+ int nritems;
+ int i;
+ u64 bytenr;
+ u64 generation;
+ struct reada_extent *re;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct list_head list;
+ unsigned long index = start >> PAGE_CACHE_SHIFT;
+ struct btrfs_device *for_dev;
+
+ if (eb)
+ level = btrfs_header_level(eb);
+
+ /* find extent */
+ spin_lock(&fs_info->reada_lock);
+ re = radix_tree_lookup(&fs_info->reada_tree, index);
+ if (re)
+ kref_get(&re->refcnt);
+ spin_unlock(&fs_info->reada_lock);
+
+ if (!re)
+ return -1;
+
+ spin_lock(&re->lock);
+ /*
+ * just take the full list from the extent. afterwards we
+ * don't need the lock anymore
+ */
+ list_replace_init(&re->extctl, &list);
+ for_dev = re->scheduled_for;
+ re->scheduled_for = NULL;
+ spin_unlock(&re->lock);
+
+ if (err == 0) {
+ nritems = level ? btrfs_header_nritems(eb) : 0;
+ generation = btrfs_header_generation(eb);
+ /*
+ * FIXME: currently we just set nritems to 0 if this is a leaf,
+ * effectively ignoring the content. In a next step we could
+ * trigger more readahead depending from the content, e.g.
+ * fetch the checksums for the extents in the leaf.
+ */
+ } else {
+ /*
+ * this is the error case, the extent buffer has not been
+ * read correctly. We won't access anything from it and
+ * just cleanup our data structures. Effectively this will
+ * cut the branch below this node from read ahead.
+ */
+ nritems = 0;
+ generation = 0;
+ }
+
+ for (i = 0; i < nritems; i++) {
+ struct reada_extctl *rec;
+ u64 n_gen;
+ struct btrfs_key key;
+ struct btrfs_key next_key;
+
+ btrfs_node_key_to_cpu(eb, &key, i);
+ if (i + 1 < nritems)
+ btrfs_node_key_to_cpu(eb, &next_key, i + 1);
+ else
+ next_key = re->top;
+ bytenr = btrfs_node_blockptr(eb, i);
+ n_gen = btrfs_node_ptr_generation(eb, i);
+
+ list_for_each_entry(rec, &list, list) {
+ struct reada_control *rc = rec->rc;
+
+ /*
+ * if the generation doesn't match, just ignore this
+ * extctl. This will probably cut off a branch from
+ * prefetch. Alternatively one could start a new (sub-)
+ * prefetch for this branch, starting again from root.
+ * FIXME: move the generation check out of this loop
+ */
+#ifdef DEBUG
+ if (rec->generation != generation) {
+ printk(KERN_DEBUG "generation mismatch for "
+ "(%llu,%d,%llu) %llu != %llu\n",
+ key.objectid, key.type, key.offset,
+ rec->generation, generation);
+ }
+#endif
+ if (rec->generation == generation &&
+ btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
+ btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
+ reada_add_block(rc, bytenr, &next_key,
+ level - 1, n_gen);
+ }
+ }
+ /*
+ * free extctl records
+ */
+ while (!list_empty(&list)) {
+ struct reada_control *rc;
+ struct reada_extctl *rec;
+
+ rec = list_first_entry(&list, struct reada_extctl, list);
+ list_del(&rec->list);
+ rc = rec->rc;
+ kfree(rec);
+
+ kref_get(&rc->refcnt);
+ if (atomic_dec_and_test(&rc->elems)) {
+ kref_put(&rc->refcnt, reada_control_release);
+ wake_up(&rc->wait);
+ }
+ kref_put(&rc->refcnt, reada_control_release);
+
+ reada_extent_put(fs_info, re); /* one ref for each entry */
+ }
+ reada_extent_put(fs_info, re); /* our ref */
+ if (for_dev)
+ atomic_dec(&for_dev->reada_in_flight);
+
+ return 0;
+}
+
+/*
+ * start is passed separately in case eb in NULL, which may be the case with
+ * failed I/O
+ */
+int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
+ u64 start, int err)
+{
+ int ret;
+
+ ret = __readahead_hook(root, eb, start, err);
+
+ reada_start_machine(root->fs_info);
+
+ return ret;
+}
+
+static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
+ struct btrfs_device *dev, u64 logical,
+ struct btrfs_bio *bbio)
+{
+ int ret;
+ struct reada_zone *zone;
+ struct btrfs_block_group_cache *cache = NULL;
+ u64 start;
+ u64 end;
+ int i;
+
+ zone = NULL;
+ spin_lock(&fs_info->reada_lock);
+ ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
+ logical >> PAGE_CACHE_SHIFT, 1);
+ if (ret == 1)
+ kref_get(&zone->refcnt);
+ spin_unlock(&fs_info->reada_lock);
+
+ if (ret == 1) {
+ if (logical >= zone->start && logical < zone->end)
+ return zone;
+ spin_lock(&fs_info->reada_lock);
+ kref_put(&zone->refcnt, reada_zone_release);
+ spin_unlock(&fs_info->reada_lock);
+ }
+
+ cache = btrfs_lookup_block_group(fs_info, logical);
+ if (!cache)
+ return NULL;
+
+ start = cache->key.objectid;
+ end = start + cache->key.offset - 1;
+ btrfs_put_block_group(cache);
+
+ zone = kzalloc(sizeof(*zone), GFP_NOFS);
+ if (!zone)
+ return NULL;
+
+ zone->start = start;
+ zone->end = end;
+ INIT_LIST_HEAD(&zone->list);
+ spin_lock_init(&zone->lock);
+ zone->locked = 0;
+ kref_init(&zone->refcnt);
+ zone->elems = 0;
+ zone->device = dev; /* our device always sits at index 0 */
+ for (i = 0; i < bbio->num_stripes; ++i) {
+ /* bounds have already been checked */
+ zone->devs[i] = bbio->stripes[i].dev;
+ }
+ zone->ndevs = bbio->num_stripes;
+
+ spin_lock(&fs_info->reada_lock);
+ ret = radix_tree_insert(&dev->reada_zones,
+ (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
+ zone);
+
+ if (ret == -EEXIST) {
+ kfree(zone);
+ ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
+ logical >> PAGE_CACHE_SHIFT, 1);
+ if (ret == 1)
+ kref_get(&zone->refcnt);
+ }
+ spin_unlock(&fs_info->reada_lock);
+
+ return zone;
+}
+
+static struct reada_extent *reada_find_extent(struct btrfs_root *root,
+ u64 logical,
+ struct btrfs_key *top, int level)
+{
+ int ret;
+ struct reada_extent *re = NULL;
+ struct reada_extent *re_exist = NULL;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
+ struct btrfs_bio *bbio = NULL;
+ struct btrfs_device *dev;
+ struct btrfs_device *prev_dev;
+ u32 blocksize;
+ u64 length;
+ int nzones = 0;
+ int i;
+ unsigned long index = logical >> PAGE_CACHE_SHIFT;
+
+ spin_lock(&fs_info->reada_lock);
+ re = radix_tree_lookup(&fs_info->reada_tree, index);
+ if (re)
+ kref_get(&re->refcnt);
+ spin_unlock(&fs_info->reada_lock);
+
+ if (re)
+ return re;
+
+ re = kzalloc(sizeof(*re), GFP_NOFS);
+ if (!re)
+ return NULL;
+
+ blocksize = btrfs_level_size(root, level);
+ re->logical = logical;
+ re->blocksize = blocksize;
+ re->top = *top;
+ INIT_LIST_HEAD(&re->extctl);
+ spin_lock_init(&re->lock);
+ kref_init(&re->refcnt);
+
+ /*
+ * map block
+ */
+ length = blocksize;
+ ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
+ if (ret || !bbio || length < blocksize)
+ goto error;
+
+ if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
+ printk(KERN_ERR "btrfs readahead: more than %d copies not "
+ "supported", BTRFS_MAX_MIRRORS);
+ goto error;
+ }
+
+ for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
+ struct reada_zone *zone;
+
+ dev = bbio->stripes[nzones].dev;
+ zone = reada_find_zone(fs_info, dev, logical, bbio);
+ if (!zone)
+ break;
+
+ re->zones[nzones] = zone;
+ spin_lock(&zone->lock);
+ if (!zone->elems)
+ kref_get(&zone->refcnt);
+ ++zone->elems;
+ spin_unlock(&zone->lock);
+ spin_lock(&fs_info->reada_lock);
+ kref_put(&zone->refcnt, reada_zone_release);
+ spin_unlock(&fs_info->reada_lock);
+ }
+ re->nzones = nzones;
+ if (nzones == 0) {
+ /* not a single zone found, error and out */
+ goto error;
+ }
+
+ /* insert extent in reada_tree + all per-device trees, all or nothing */
+ spin_lock(&fs_info->reada_lock);
+ ret = radix_tree_insert(&fs_info->reada_tree, index, re);
+ if (ret == -EEXIST) {
+ re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
+ BUG_ON(!re_exist);
+ kref_get(&re_exist->refcnt);
+ spin_unlock(&fs_info->reada_lock);
+ goto error;
+ }
+ if (ret) {
+ spin_unlock(&fs_info->reada_lock);
+ goto error;
+ }
+ prev_dev = NULL;
+ for (i = 0; i < nzones; ++i) {
+ dev = bbio->stripes[i].dev;
+ if (dev == prev_dev) {
+ /*
+ * in case of DUP, just add the first zone. As both
+ * are on the same device, there's nothing to gain
+ * from adding both.
+ * Also, it wouldn't work, as the tree is per device
+ * and adding would fail with EEXIST
+ */
+ continue;
+ }
+ prev_dev = dev;
+ ret = radix_tree_insert(&dev->reada_extents, index, re);
+ if (ret) {
+ while (--i >= 0) {
+ dev = bbio->stripes[i].dev;
+ BUG_ON(dev == NULL);
+ radix_tree_delete(&dev->reada_extents, index);
+ }
+ BUG_ON(fs_info == NULL);
+ radix_tree_delete(&fs_info->reada_tree, index);
+ spin_unlock(&fs_info->reada_lock);
+ goto error;
+ }
+ }
+ spin_unlock(&fs_info->reada_lock);
+
+ kfree(bbio);
+ return re;
+
+error:
+ while (nzones) {
+ struct reada_zone *zone;
+
+ --nzones;
+ zone = re->zones[nzones];
+ kref_get(&zone->refcnt);
+ spin_lock(&zone->lock);
+ --zone->elems;
+ if (zone->elems == 0) {
+ /*
+ * no fs_info->reada_lock needed, as this can't be
+ * the last ref
+ */
+ kref_put(&zone->refcnt, reada_zone_release);
+ }
+ spin_unlock(&zone->lock);
+
+ spin_lock(&fs_info->reada_lock);
+ kref_put(&zone->refcnt, reada_zone_release);
+ spin_unlock(&fs_info->reada_lock);
+ }
+ kfree(bbio);
+ kfree(re);
+ return re_exist;
+}
+
+static void reada_kref_dummy(struct kref *kr)
+{
+}
+
+static void reada_extent_put(struct btrfs_fs_info *fs_info,
+ struct reada_extent *re)
+{
+ int i;
+ unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
+
+ spin_lock(&fs_info->reada_lock);
+ if (!kref_put(&re->refcnt, reada_kref_dummy)) {
+ spin_unlock(&fs_info->reada_lock);
+ return;
+ }
+
+ radix_tree_delete(&fs_info->reada_tree, index);
+ for (i = 0; i < re->nzones; ++i) {
+ struct reada_zone *zone = re->zones[i];
+
+ radix_tree_delete(&zone->device->reada_extents, index);
+ }
+
+ spin_unlock(&fs_info->reada_lock);
+
+ for (i = 0; i < re->nzones; ++i) {
+ struct reada_zone *zone = re->zones[i];
+
+ kref_get(&zone->refcnt);
+ spin_lock(&zone->lock);
+ --zone->elems;
+ if (zone->elems == 0) {
+ /* no fs_info->reada_lock needed, as this can't be
+ * the last ref */
+ kref_put(&zone->refcnt, reada_zone_release);
+ }
+ spin_unlock(&zone->lock);
+
+ spin_lock(&fs_info->reada_lock);
+ kref_put(&zone->refcnt, reada_zone_release);
+ spin_unlock(&fs_info->reada_lock);
+ }
+ if (re->scheduled_for)
+ atomic_dec(&re->scheduled_for->reada_in_flight);
+
+ kfree(re);
+}
+
+static void reada_zone_release(struct kref *kref)
+{
+ struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
+
+ radix_tree_delete(&zone->device->reada_zones,
+ zone->end >> PAGE_CACHE_SHIFT);
+
+ kfree(zone);
+}
+
+static void reada_control_release(struct kref *kref)
+{
+ struct reada_control *rc = container_of(kref, struct reada_control,
+ refcnt);
+
+ kfree(rc);
+}
+
+static int reada_add_block(struct reada_control *rc, u64 logical,
+ struct btrfs_key *top, int level, u64 generation)
+{
+ struct btrfs_root *root = rc->root;
+ struct reada_extent *re;
+ struct reada_extctl *rec;
+
+ re = reada_find_extent(root, logical, top, level); /* takes one ref */
+ if (!re)
+ return -1;
+
+ rec = kzalloc(sizeof(*rec), GFP_NOFS);
+ if (!rec) {
+ reada_extent_put(root->fs_info, re);
+ return -1;
+ }
+
+ rec->rc = rc;
+ rec->generation = generation;
+ atomic_inc(&rc->elems);
+
+ spin_lock(&re->lock);
+ list_add_tail(&rec->list, &re->extctl);
+ spin_unlock(&re->lock);
+
+ /* leave the ref on the extent */
+
+ return 0;
+}
+
+/*
+ * called with fs_info->reada_lock held
+ */
+static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
+{
+ int i;
+ unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
+
+ for (i = 0; i < zone->ndevs; ++i) {
+ struct reada_zone *peer;
+ peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
+ if (peer && peer->device != zone->device)
+ peer->locked = lock;
+ }
+}
+
+/*
+ * called with fs_info->reada_lock held
+ */
+static int reada_pick_zone(struct btrfs_device *dev)
+{
+ struct reada_zone *top_zone = NULL;
+ struct reada_zone *top_locked_zone = NULL;
+ u64 top_elems = 0;
+ u64 top_locked_elems = 0;
+ unsigned long index = 0;
+ int ret;
+
+ if (dev->reada_curr_zone) {
+ reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
+ kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
+ dev->reada_curr_zone = NULL;
+ }
+ /* pick the zone with the most elements */
+ while (1) {
+ struct reada_zone *zone;
+
+ ret = radix_tree_gang_lookup(&dev->reada_zones,
+ (void **)&zone, index, 1);
+ if (ret == 0)
+ break;
+ index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
+ if (zone->locked) {
+ if (zone->elems > top_locked_elems) {
+ top_locked_elems = zone->elems;
+ top_locked_zone = zone;
+ }
+ } else {
+ if (zone->elems > top_elems) {
+ top_elems = zone->elems;
+ top_zone = zone;
+ }
+ }
+ }
+ if (top_zone)
+ dev->reada_curr_zone = top_zone;
+ else if (top_locked_zone)
+ dev->reada_curr_zone = top_locked_zone;
+ else
+ return 0;
+
+ dev->reada_next = dev->reada_curr_zone->start;
+ kref_get(&dev->reada_curr_zone->refcnt);
+ reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
+
+ return 1;
+}
+
+static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
+ struct btrfs_device *dev)
+{
+ struct reada_extent *re = NULL;
+ int mirror_num = 0;
+ struct extent_buffer *eb = NULL;
+ u64 logical;
+ u32 blocksize;
+ int ret;
+ int i;
+ int need_kick = 0;
+
+ spin_lock(&fs_info->reada_lock);
+ if (dev->reada_curr_zone == NULL) {
+ ret = reada_pick_zone(dev);
+ if (!ret) {
+ spin_unlock(&fs_info->reada_lock);
+ return 0;
+ }
+ }
+ /*
+ * FIXME currently we issue the reads one extent at a time. If we have
+ * a contiguous block of extents, we could also coagulate them or use
+ * plugging to speed things up
+ */
+ ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
+ dev->reada_next >> PAGE_CACHE_SHIFT, 1);
+ if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
+ ret = reada_pick_zone(dev);
+ if (!ret) {
+ spin_unlock(&fs_info->reada_lock);
+ return 0;
+ }
+ re = NULL;
+ ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
+ dev->reada_next >> PAGE_CACHE_SHIFT, 1);
+ }
+ if (ret == 0) {
+ spin_unlock(&fs_info->reada_lock);
+ return 0;
+ }
+ dev->reada_next = re->logical + re->blocksize;
+ kref_get(&re->refcnt);
+
+ spin_unlock(&fs_info->reada_lock);
+
+ /*
+ * find mirror num
+ */
+ for (i = 0; i < re->nzones; ++i) {
+ if (re->zones[i]->device == dev) {
+ mirror_num = i + 1;
+ break;
+ }
+ }
+ logical = re->logical;
+ blocksize = re->blocksize;
+
+ spin_lock(&re->lock);
+ if (re->scheduled_for == NULL) {
+ re->scheduled_for = dev;
+ need_kick = 1;
+ }
+ spin_unlock(&re->lock);
+
+ reada_extent_put(fs_info, re);
+
+ if (!need_kick)
+ return 0;
+
+ atomic_inc(&dev->reada_in_flight);
+ ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
+ mirror_num, &eb);
+ if (ret)
+ __readahead_hook(fs_info->extent_root, NULL, logical, ret);
+ else if (eb)
+ __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
+
+ if (eb)
+ free_extent_buffer(eb);
+
+ return 1;
+
+}
+
+static void reada_start_machine_worker(struct btrfs_work *work)
+{
+ struct reada_machine_work *rmw;
+ struct btrfs_fs_info *fs_info;
+
+ rmw = container_of(work, struct reada_machine_work, work);
+ fs_info = rmw->fs_info;
+
+ kfree(rmw);
+
+ __reada_start_machine(fs_info);
+}
+
+static void __reada_start_machine(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_device *device;
+ struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
+ u64 enqueued;
+ u64 total = 0;
+ int i;
+
+ do {
+ enqueued = 0;
+ list_for_each_entry(device, &fs_devices->devices, dev_list) {
+ if (atomic_read(&device->reada_in_flight) <
+ MAX_IN_FLIGHT)
+ enqueued += reada_start_machine_dev(fs_info,
+ device);
+ }
+ total += enqueued;
+ } while (enqueued && total < 10000);
+
+ if (enqueued == 0)
+ return;
+
+ /*
+ * If everything is already in the cache, this is effectively single
+ * threaded. To a) not hold the caller for too long and b) to utilize
+ * more cores, we broke the loop above after 10000 iterations and now
+ * enqueue to workers to finish it. This will distribute the load to
+ * the cores.
+ */
+ for (i = 0; i < 2; ++i)
+ reada_start_machine(fs_info);
+}
+
+static void reada_start_machine(struct btrfs_fs_info *fs_info)
+{
+ struct reada_machine_work *rmw;
+
+ rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
+ if (!rmw) {
+ /* FIXME we cannot handle this properly right now */
+ BUG();
+ }
+ rmw->work.func = reada_start_machine_worker;
+ rmw->fs_info = fs_info;
+
+ btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
+}
+
+#ifdef DEBUG
+static void dump_devs(struct btrfs_fs_info *fs_info, int all)
+{
+ struct btrfs_device *device;
+ struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
+ unsigned long index;
+ int ret;
+ int i;
+ int j;
+ int cnt;
+
+ spin_lock(&fs_info->reada_lock);
+ list_for_each_entry(device, &fs_devices->devices, dev_list) {
+ printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
+ atomic_read(&device->reada_in_flight));
+ index = 0;
+ while (1) {
+ struct reada_zone *zone;
+ ret = radix_tree_gang_lookup(&device->reada_zones,
+ (void **)&zone, index, 1);
+ if (ret == 0)
+ break;
+ printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
+ "%d devs", zone->start, zone->end, zone->elems,
+ zone->locked);
+ for (j = 0; j < zone->ndevs; ++j) {
+ printk(KERN_CONT " %lld",
+ zone->devs[j]->devid);
+ }
+ if (device->reada_curr_zone == zone)
+ printk(KERN_CONT " curr off %llu",
+ device->reada_next - zone->start);
+ printk(KERN_CONT "\n");
+ index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
+ }
+ cnt = 0;
+ index = 0;
+ while (all) {
+ struct reada_extent *re = NULL;
+
+ ret = radix_tree_gang_lookup(&device->reada_extents,
+ (void **)&re, index, 1);
+ if (ret == 0)
+ break;
+ printk(KERN_DEBUG
+ " re: logical %llu size %u empty %d for %lld",
+ re->logical, re->blocksize,
+ list_empty(&re->extctl), re->scheduled_for ?
+ re->scheduled_for->devid : -1);
+
+ for (i = 0; i < re->nzones; ++i) {
+ printk(KERN_CONT " zone %llu-%llu devs",
+ re->zones[i]->start,
+ re->zones[i]->end);
+ for (j = 0; j < re->zones[i]->ndevs; ++j) {
+ printk(KERN_CONT " %lld",
+ re->zones[i]->devs[j]->devid);
+ }
+ }
+ printk(KERN_CONT "\n");
+ index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
+ if (++cnt > 15)
+ break;
+ }
+ }
+
+ index = 0;
+ cnt = 0;
+ while (all) {
+ struct reada_extent *re = NULL;
+
+ ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
+ index, 1);
+ if (ret == 0)
+ break;
+ if (!re->scheduled_for) {
+ index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
+ continue;
+ }
+ printk(KERN_DEBUG
+ "re: logical %llu size %u list empty %d for %lld",
+ re->logical, re->blocksize, list_empty(&re->extctl),
+ re->scheduled_for ? re->scheduled_for->devid : -1);
+ for (i = 0; i < re->nzones; ++i) {
+ printk(KERN_CONT " zone %llu-%llu devs",
+ re->zones[i]->start,
+ re->zones[i]->end);
+ for (i = 0; i < re->nzones; ++i) {
+ printk(KERN_CONT " zone %llu-%llu devs",
+ re->zones[i]->start,
+ re->zones[i]->end);
+ for (j = 0; j < re->zones[i]->ndevs; ++j) {
+ printk(KERN_CONT " %lld",
+ re->zones[i]->devs[j]->devid);
+ }
+ }
+ }
+ printk(KERN_CONT "\n");
+ index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
+ }
+ spin_unlock(&fs_info->reada_lock);
+}
+#endif
+
+/*
+ * interface
+ */
+struct reada_control *btrfs_reada_add(struct btrfs_root *root,
+ struct btrfs_key *key_start, struct btrfs_key *key_end)
+{
+ struct reada_control *rc;
+ u64 start;
+ u64 generation;
+ int level;
+ struct extent_buffer *node;
+ static struct btrfs_key max_key = {
+ .objectid = (u64)-1,
+ .type = (u8)-1,
+ .offset = (u64)-1
+ };
+
+ rc = kzalloc(sizeof(*rc), GFP_NOFS);
+ if (!rc)
+ return ERR_PTR(-ENOMEM);
+
+ rc->root = root;
+ rc->key_start = *key_start;
+ rc->key_end = *key_end;
+ atomic_set(&rc->elems, 0);
+ init_waitqueue_head(&rc->wait);
+ kref_init(&rc->refcnt);
+ kref_get(&rc->refcnt); /* one ref for having elements */
+
+ node = btrfs_root_node(root);
+ start = node->start;
+ level = btrfs_header_level(node);
+ generation = btrfs_header_generation(node);
+ free_extent_buffer(node);
+
+ reada_add_block(rc, start, &max_key, level, generation);
+
+ reada_start_machine(root->fs_info);
+
+ return rc;
+}
+
+#ifdef DEBUG
+int btrfs_reada_wait(void *handle)
+{
+ struct reada_control *rc = handle;
+
+ while (atomic_read(&rc->elems)) {
+ wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
+ 5 * HZ);
+ dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
+ }
+
+ dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
+
+ kref_put(&rc->refcnt, reada_control_release);
+
+ return 0;
+}
+#else
+int btrfs_reada_wait(void *handle)
+{
+ struct reada_control *rc = handle;
+
+ while (atomic_read(&rc->elems)) {
+ wait_event(rc->wait, atomic_read(&rc->elems) == 0);
+ }
+
+ kref_put(&rc->refcnt, reada_control_release);
+
+ return 0;
+}
+#endif
+
+void btrfs_reada_detach(void *handle)
+{
+ struct reada_control *rc = handle;
+
+ kref_put(&rc->refcnt, reada_control_release);
+}
diff --git a/fs/btrfs/relocation.c b/fs/btrfs/relocation.c
new file mode 100644
index 00000000..646ee21b
--- /dev/null
+++ b/fs/btrfs/relocation.c
@@ -0,0 +1,4464 @@
+/*
+ * Copyright (C) 2009 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/rbtree.h>
+#include <linux/slab.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "volumes.h"
+#include "locking.h"
+#include "btrfs_inode.h"
+#include "async-thread.h"
+#include "free-space-cache.h"
+#include "inode-map.h"
+
+/*
+ * backref_node, mapping_node and tree_block start with this
+ */
+struct tree_entry {
+ struct rb_node rb_node;
+ u64 bytenr;
+};
+
+/*
+ * present a tree block in the backref cache
+ */
+struct backref_node {
+ struct rb_node rb_node;
+ u64 bytenr;
+
+ u64 new_bytenr;
+ /* objectid of tree block owner, can be not uptodate */
+ u64 owner;
+ /* link to pending, changed or detached list */
+ struct list_head list;
+ /* list of upper level blocks reference this block */
+ struct list_head upper;
+ /* list of child blocks in the cache */
+ struct list_head lower;
+ /* NULL if this node is not tree root */
+ struct btrfs_root *root;
+ /* extent buffer got by COW the block */
+ struct extent_buffer *eb;
+ /* level of tree block */
+ unsigned int level:8;
+ /* is the block in non-reference counted tree */
+ unsigned int cowonly:1;
+ /* 1 if no child node in the cache */
+ unsigned int lowest:1;
+ /* is the extent buffer locked */
+ unsigned int locked:1;
+ /* has the block been processed */
+ unsigned int processed:1;
+ /* have backrefs of this block been checked */
+ unsigned int checked:1;
+ /*
+ * 1 if corresponding block has been cowed but some upper
+ * level block pointers may not point to the new location
+ */
+ unsigned int pending:1;
+ /*
+ * 1 if the backref node isn't connected to any other
+ * backref node.
+ */
+ unsigned int detached:1;
+};
+
+/*
+ * present a block pointer in the backref cache
+ */
+struct backref_edge {
+ struct list_head list[2];
+ struct backref_node *node[2];
+};
+
+#define LOWER 0
+#define UPPER 1
+
+struct backref_cache {
+ /* red black tree of all backref nodes in the cache */
+ struct rb_root rb_root;
+ /* for passing backref nodes to btrfs_reloc_cow_block */
+ struct backref_node *path[BTRFS_MAX_LEVEL];
+ /*
+ * list of blocks that have been cowed but some block
+ * pointers in upper level blocks may not reflect the
+ * new location
+ */
+ struct list_head pending[BTRFS_MAX_LEVEL];
+ /* list of backref nodes with no child node */
+ struct list_head leaves;
+ /* list of blocks that have been cowed in current transaction */
+ struct list_head changed;
+ /* list of detached backref node. */
+ struct list_head detached;
+
+ u64 last_trans;
+
+ int nr_nodes;
+ int nr_edges;
+};
+
+/*
+ * map address of tree root to tree
+ */
+struct mapping_node {
+ struct rb_node rb_node;
+ u64 bytenr;
+ void *data;
+};
+
+struct mapping_tree {
+ struct rb_root rb_root;
+ spinlock_t lock;
+};
+
+/*
+ * present a tree block to process
+ */
+struct tree_block {
+ struct rb_node rb_node;
+ u64 bytenr;
+ struct btrfs_key key;
+ unsigned int level:8;
+ unsigned int key_ready:1;
+};
+
+#define MAX_EXTENTS 128
+
+struct file_extent_cluster {
+ u64 start;
+ u64 end;
+ u64 boundary[MAX_EXTENTS];
+ unsigned int nr;
+};
+
+struct reloc_control {
+ /* block group to relocate */
+ struct btrfs_block_group_cache *block_group;
+ /* extent tree */
+ struct btrfs_root *extent_root;
+ /* inode for moving data */
+ struct inode *data_inode;
+
+ struct btrfs_block_rsv *block_rsv;
+
+ struct backref_cache backref_cache;
+
+ struct file_extent_cluster cluster;
+ /* tree blocks have been processed */
+ struct extent_io_tree processed_blocks;
+ /* map start of tree root to corresponding reloc tree */
+ struct mapping_tree reloc_root_tree;
+ /* list of reloc trees */
+ struct list_head reloc_roots;
+ /* size of metadata reservation for merging reloc trees */
+ u64 merging_rsv_size;
+ /* size of relocated tree nodes */
+ u64 nodes_relocated;
+
+ u64 search_start;
+ u64 extents_found;
+
+ unsigned int stage:8;
+ unsigned int create_reloc_tree:1;
+ unsigned int merge_reloc_tree:1;
+ unsigned int found_file_extent:1;
+ unsigned int commit_transaction:1;
+};
+
+/* stages of data relocation */
+#define MOVE_DATA_EXTENTS 0
+#define UPDATE_DATA_PTRS 1
+
+static void remove_backref_node(struct backref_cache *cache,
+ struct backref_node *node);
+static void __mark_block_processed(struct reloc_control *rc,
+ struct backref_node *node);
+
+static void mapping_tree_init(struct mapping_tree *tree)
+{
+ tree->rb_root = RB_ROOT;
+ spin_lock_init(&tree->lock);
+}
+
+static void backref_cache_init(struct backref_cache *cache)
+{
+ int i;
+ cache->rb_root = RB_ROOT;
+ for (i = 0; i < BTRFS_MAX_LEVEL; i++)
+ INIT_LIST_HEAD(&cache->pending[i]);
+ INIT_LIST_HEAD(&cache->changed);
+ INIT_LIST_HEAD(&cache->detached);
+ INIT_LIST_HEAD(&cache->leaves);
+}
+
+static void backref_cache_cleanup(struct backref_cache *cache)
+{
+ struct backref_node *node;
+ int i;
+
+ while (!list_empty(&cache->detached)) {
+ node = list_entry(cache->detached.next,
+ struct backref_node, list);
+ remove_backref_node(cache, node);
+ }
+
+ while (!list_empty(&cache->leaves)) {
+ node = list_entry(cache->leaves.next,
+ struct backref_node, lower);
+ remove_backref_node(cache, node);
+ }
+
+ cache->last_trans = 0;
+
+ for (i = 0; i < BTRFS_MAX_LEVEL; i++)
+ BUG_ON(!list_empty(&cache->pending[i]));
+ BUG_ON(!list_empty(&cache->changed));
+ BUG_ON(!list_empty(&cache->detached));
+ BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
+ BUG_ON(cache->nr_nodes);
+ BUG_ON(cache->nr_edges);
+}
+
+static struct backref_node *alloc_backref_node(struct backref_cache *cache)
+{
+ struct backref_node *node;
+
+ node = kzalloc(sizeof(*node), GFP_NOFS);
+ if (node) {
+ INIT_LIST_HEAD(&node->list);
+ INIT_LIST_HEAD(&node->upper);
+ INIT_LIST_HEAD(&node->lower);
+ RB_CLEAR_NODE(&node->rb_node);
+ cache->nr_nodes++;
+ }
+ return node;
+}
+
+static void free_backref_node(struct backref_cache *cache,
+ struct backref_node *node)
+{
+ if (node) {
+ cache->nr_nodes--;
+ kfree(node);
+ }
+}
+
+static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
+{
+ struct backref_edge *edge;
+
+ edge = kzalloc(sizeof(*edge), GFP_NOFS);
+ if (edge)
+ cache->nr_edges++;
+ return edge;
+}
+
+static void free_backref_edge(struct backref_cache *cache,
+ struct backref_edge *edge)
+{
+ if (edge) {
+ cache->nr_edges--;
+ kfree(edge);
+ }
+}
+
+static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
+ struct rb_node *node)
+{
+ struct rb_node **p = &root->rb_node;
+ struct rb_node *parent = NULL;
+ struct tree_entry *entry;
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct tree_entry, rb_node);
+
+ if (bytenr < entry->bytenr)
+ p = &(*p)->rb_left;
+ else if (bytenr > entry->bytenr)
+ p = &(*p)->rb_right;
+ else
+ return parent;
+ }
+
+ rb_link_node(node, parent, p);
+ rb_insert_color(node, root);
+ return NULL;
+}
+
+static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
+{
+ struct rb_node *n = root->rb_node;
+ struct tree_entry *entry;
+
+ while (n) {
+ entry = rb_entry(n, struct tree_entry, rb_node);
+
+ if (bytenr < entry->bytenr)
+ n = n->rb_left;
+ else if (bytenr > entry->bytenr)
+ n = n->rb_right;
+ else
+ return n;
+ }
+ return NULL;
+}
+
+void backref_tree_panic(struct rb_node *rb_node, int errno,
+ u64 bytenr)
+{
+
+ struct btrfs_fs_info *fs_info = NULL;
+ struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
+ rb_node);
+ if (bnode->root)
+ fs_info = bnode->root->fs_info;
+ btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
+ "found at offset %llu\n", (unsigned long long)bytenr);
+}
+
+/*
+ * walk up backref nodes until reach node presents tree root
+ */
+static struct backref_node *walk_up_backref(struct backref_node *node,
+ struct backref_edge *edges[],
+ int *index)
+{
+ struct backref_edge *edge;
+ int idx = *index;
+
+ while (!list_empty(&node->upper)) {
+ edge = list_entry(node->upper.next,
+ struct backref_edge, list[LOWER]);
+ edges[idx++] = edge;
+ node = edge->node[UPPER];
+ }
+ BUG_ON(node->detached);
+ *index = idx;
+ return node;
+}
+
+/*
+ * walk down backref nodes to find start of next reference path
+ */
+static struct backref_node *walk_down_backref(struct backref_edge *edges[],
+ int *index)
+{
+ struct backref_edge *edge;
+ struct backref_node *lower;
+ int idx = *index;
+
+ while (idx > 0) {
+ edge = edges[idx - 1];
+ lower = edge->node[LOWER];
+ if (list_is_last(&edge->list[LOWER], &lower->upper)) {
+ idx--;
+ continue;
+ }
+ edge = list_entry(edge->list[LOWER].next,
+ struct backref_edge, list[LOWER]);
+ edges[idx - 1] = edge;
+ *index = idx;
+ return edge->node[UPPER];
+ }
+ *index = 0;
+ return NULL;
+}
+
+static void unlock_node_buffer(struct backref_node *node)
+{
+ if (node->locked) {
+ btrfs_tree_unlock(node->eb);
+ node->locked = 0;
+ }
+}
+
+static void drop_node_buffer(struct backref_node *node)
+{
+ if (node->eb) {
+ unlock_node_buffer(node);
+ free_extent_buffer(node->eb);
+ node->eb = NULL;
+ }
+}
+
+static void drop_backref_node(struct backref_cache *tree,
+ struct backref_node *node)
+{
+ BUG_ON(!list_empty(&node->upper));
+
+ drop_node_buffer(node);
+ list_del(&node->list);
+ list_del(&node->lower);
+ if (!RB_EMPTY_NODE(&node->rb_node))
+ rb_erase(&node->rb_node, &tree->rb_root);
+ free_backref_node(tree, node);
+}
+
+/*
+ * remove a backref node from the backref cache
+ */
+static void remove_backref_node(struct backref_cache *cache,
+ struct backref_node *node)
+{
+ struct backref_node *upper;
+ struct backref_edge *edge;
+
+ if (!node)
+ return;
+
+ BUG_ON(!node->lowest && !node->detached);
+ while (!list_empty(&node->upper)) {
+ edge = list_entry(node->upper.next, struct backref_edge,
+ list[LOWER]);
+ upper = edge->node[UPPER];
+ list_del(&edge->list[LOWER]);
+ list_del(&edge->list[UPPER]);
+ free_backref_edge(cache, edge);
+
+ if (RB_EMPTY_NODE(&upper->rb_node)) {
+ BUG_ON(!list_empty(&node->upper));
+ drop_backref_node(cache, node);
+ node = upper;
+ node->lowest = 1;
+ continue;
+ }
+ /*
+ * add the node to leaf node list if no other
+ * child block cached.
+ */
+ if (list_empty(&upper->lower)) {
+ list_add_tail(&upper->lower, &cache->leaves);
+ upper->lowest = 1;
+ }
+ }
+
+ drop_backref_node(cache, node);
+}
+
+static void update_backref_node(struct backref_cache *cache,
+ struct backref_node *node, u64 bytenr)
+{
+ struct rb_node *rb_node;
+ rb_erase(&node->rb_node, &cache->rb_root);
+ node->bytenr = bytenr;
+ rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
+ if (rb_node)
+ backref_tree_panic(rb_node, -EEXIST, bytenr);
+}
+
+/*
+ * update backref cache after a transaction commit
+ */
+static int update_backref_cache(struct btrfs_trans_handle *trans,
+ struct backref_cache *cache)
+{
+ struct backref_node *node;
+ int level = 0;
+
+ if (cache->last_trans == 0) {
+ cache->last_trans = trans->transid;
+ return 0;
+ }
+
+ if (cache->last_trans == trans->transid)
+ return 0;
+
+ /*
+ * detached nodes are used to avoid unnecessary backref
+ * lookup. transaction commit changes the extent tree.
+ * so the detached nodes are no longer useful.
+ */
+ while (!list_empty(&cache->detached)) {
+ node = list_entry(cache->detached.next,
+ struct backref_node, list);
+ remove_backref_node(cache, node);
+ }
+
+ while (!list_empty(&cache->changed)) {
+ node = list_entry(cache->changed.next,
+ struct backref_node, list);
+ list_del_init(&node->list);
+ BUG_ON(node->pending);
+ update_backref_node(cache, node, node->new_bytenr);
+ }
+
+ /*
+ * some nodes can be left in the pending list if there were
+ * errors during processing the pending nodes.
+ */
+ for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
+ list_for_each_entry(node, &cache->pending[level], list) {
+ BUG_ON(!node->pending);
+ if (node->bytenr == node->new_bytenr)
+ continue;
+ update_backref_node(cache, node, node->new_bytenr);
+ }
+ }
+
+ cache->last_trans = 0;
+ return 1;
+}
+
+
+static int should_ignore_root(struct btrfs_root *root)
+{
+ struct btrfs_root *reloc_root;
+
+ if (!root->ref_cows)
+ return 0;
+
+ reloc_root = root->reloc_root;
+ if (!reloc_root)
+ return 0;
+
+ if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
+ root->fs_info->running_transaction->transid - 1)
+ return 0;
+ /*
+ * if there is reloc tree and it was created in previous
+ * transaction backref lookup can find the reloc tree,
+ * so backref node for the fs tree root is useless for
+ * relocation.
+ */
+ return 1;
+}
+/*
+ * find reloc tree by address of tree root
+ */
+static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
+ u64 bytenr)
+{
+ struct rb_node *rb_node;
+ struct mapping_node *node;
+ struct btrfs_root *root = NULL;
+
+ spin_lock(&rc->reloc_root_tree.lock);
+ rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
+ if (rb_node) {
+ node = rb_entry(rb_node, struct mapping_node, rb_node);
+ root = (struct btrfs_root *)node->data;
+ }
+ spin_unlock(&rc->reloc_root_tree.lock);
+ return root;
+}
+
+static int is_cowonly_root(u64 root_objectid)
+{
+ if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
+ root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
+ root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
+ root_objectid == BTRFS_DEV_TREE_OBJECTID ||
+ root_objectid == BTRFS_TREE_LOG_OBJECTID ||
+ root_objectid == BTRFS_CSUM_TREE_OBJECTID)
+ return 1;
+ return 0;
+}
+
+static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
+ u64 root_objectid)
+{
+ struct btrfs_key key;
+
+ key.objectid = root_objectid;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ if (is_cowonly_root(root_objectid))
+ key.offset = 0;
+ else
+ key.offset = (u64)-1;
+
+ return btrfs_read_fs_root_no_name(fs_info, &key);
+}
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+static noinline_for_stack
+struct btrfs_root *find_tree_root(struct reloc_control *rc,
+ struct extent_buffer *leaf,
+ struct btrfs_extent_ref_v0 *ref0)
+{
+ struct btrfs_root *root;
+ u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
+ u64 generation = btrfs_ref_generation_v0(leaf, ref0);
+
+ BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
+
+ root = read_fs_root(rc->extent_root->fs_info, root_objectid);
+ BUG_ON(IS_ERR(root));
+
+ if (root->ref_cows &&
+ generation != btrfs_root_generation(&root->root_item))
+ return NULL;
+
+ return root;
+}
+#endif
+
+static noinline_for_stack
+int find_inline_backref(struct extent_buffer *leaf, int slot,
+ unsigned long *ptr, unsigned long *end)
+{
+ struct btrfs_extent_item *ei;
+ struct btrfs_tree_block_info *bi;
+ u32 item_size;
+
+ item_size = btrfs_item_size_nr(leaf, slot);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (item_size < sizeof(*ei)) {
+ WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
+ return 1;
+ }
+#endif
+ ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
+ WARN_ON(!(btrfs_extent_flags(leaf, ei) &
+ BTRFS_EXTENT_FLAG_TREE_BLOCK));
+
+ if (item_size <= sizeof(*ei) + sizeof(*bi)) {
+ WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
+ return 1;
+ }
+
+ bi = (struct btrfs_tree_block_info *)(ei + 1);
+ *ptr = (unsigned long)(bi + 1);
+ *end = (unsigned long)ei + item_size;
+ return 0;
+}
+
+/*
+ * build backref tree for a given tree block. root of the backref tree
+ * corresponds the tree block, leaves of the backref tree correspond
+ * roots of b-trees that reference the tree block.
+ *
+ * the basic idea of this function is check backrefs of a given block
+ * to find upper level blocks that refernece the block, and then check
+ * bakcrefs of these upper level blocks recursively. the recursion stop
+ * when tree root is reached or backrefs for the block is cached.
+ *
+ * NOTE: if we find backrefs for a block are cached, we know backrefs
+ * for all upper level blocks that directly/indirectly reference the
+ * block are also cached.
+ */
+static noinline_for_stack
+struct backref_node *build_backref_tree(struct reloc_control *rc,
+ struct btrfs_key *node_key,
+ int level, u64 bytenr)
+{
+ struct backref_cache *cache = &rc->backref_cache;
+ struct btrfs_path *path1;
+ struct btrfs_path *path2;
+ struct extent_buffer *eb;
+ struct btrfs_root *root;
+ struct backref_node *cur;
+ struct backref_node *upper;
+ struct backref_node *lower;
+ struct backref_node *node = NULL;
+ struct backref_node *exist = NULL;
+ struct backref_edge *edge;
+ struct rb_node *rb_node;
+ struct btrfs_key key;
+ unsigned long end;
+ unsigned long ptr;
+ LIST_HEAD(list);
+ LIST_HEAD(useless);
+ int cowonly;
+ int ret;
+ int err = 0;
+
+ path1 = btrfs_alloc_path();
+ path2 = btrfs_alloc_path();
+ if (!path1 || !path2) {
+ err = -ENOMEM;
+ goto out;
+ }
+ path1->reada = 1;
+ path2->reada = 2;
+
+ node = alloc_backref_node(cache);
+ if (!node) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ node->bytenr = bytenr;
+ node->level = level;
+ node->lowest = 1;
+ cur = node;
+again:
+ end = 0;
+ ptr = 0;
+ key.objectid = cur->bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = (u64)-1;
+
+ path1->search_commit_root = 1;
+ path1->skip_locking = 1;
+ ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
+ 0, 0);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ BUG_ON(!ret || !path1->slots[0]);
+
+ path1->slots[0]--;
+
+ WARN_ON(cur->checked);
+ if (!list_empty(&cur->upper)) {
+ /*
+ * the backref was added previously when processing
+ * backref of type BTRFS_TREE_BLOCK_REF_KEY
+ */
+ BUG_ON(!list_is_singular(&cur->upper));
+ edge = list_entry(cur->upper.next, struct backref_edge,
+ list[LOWER]);
+ BUG_ON(!list_empty(&edge->list[UPPER]));
+ exist = edge->node[UPPER];
+ /*
+ * add the upper level block to pending list if we need
+ * check its backrefs
+ */
+ if (!exist->checked)
+ list_add_tail(&edge->list[UPPER], &list);
+ } else {
+ exist = NULL;
+ }
+
+ while (1) {
+ cond_resched();
+ eb = path1->nodes[0];
+
+ if (ptr >= end) {
+ if (path1->slots[0] >= btrfs_header_nritems(eb)) {
+ ret = btrfs_next_leaf(rc->extent_root, path1);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret > 0)
+ break;
+ eb = path1->nodes[0];
+ }
+
+ btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
+ if (key.objectid != cur->bytenr) {
+ WARN_ON(exist);
+ break;
+ }
+
+ if (key.type == BTRFS_EXTENT_ITEM_KEY) {
+ ret = find_inline_backref(eb, path1->slots[0],
+ &ptr, &end);
+ if (ret)
+ goto next;
+ }
+ }
+
+ if (ptr < end) {
+ /* update key for inline back ref */
+ struct btrfs_extent_inline_ref *iref;
+ iref = (struct btrfs_extent_inline_ref *)ptr;
+ key.type = btrfs_extent_inline_ref_type(eb, iref);
+ key.offset = btrfs_extent_inline_ref_offset(eb, iref);
+ WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
+ key.type != BTRFS_SHARED_BLOCK_REF_KEY);
+ }
+
+ if (exist &&
+ ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
+ exist->owner == key.offset) ||
+ (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
+ exist->bytenr == key.offset))) {
+ exist = NULL;
+ goto next;
+ }
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
+ key.type == BTRFS_EXTENT_REF_V0_KEY) {
+ if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
+ struct btrfs_extent_ref_v0 *ref0;
+ ref0 = btrfs_item_ptr(eb, path1->slots[0],
+ struct btrfs_extent_ref_v0);
+ if (key.objectid == key.offset) {
+ root = find_tree_root(rc, eb, ref0);
+ if (root && !should_ignore_root(root))
+ cur->root = root;
+ else
+ list_add(&cur->list, &useless);
+ break;
+ }
+ if (is_cowonly_root(btrfs_ref_root_v0(eb,
+ ref0)))
+ cur->cowonly = 1;
+ }
+#else
+ BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
+ if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
+#endif
+ if (key.objectid == key.offset) {
+ /*
+ * only root blocks of reloc trees use
+ * backref of this type.
+ */
+ root = find_reloc_root(rc, cur->bytenr);
+ BUG_ON(!root);
+ cur->root = root;
+ break;
+ }
+
+ edge = alloc_backref_edge(cache);
+ if (!edge) {
+ err = -ENOMEM;
+ goto out;
+ }
+ rb_node = tree_search(&cache->rb_root, key.offset);
+ if (!rb_node) {
+ upper = alloc_backref_node(cache);
+ if (!upper) {
+ free_backref_edge(cache, edge);
+ err = -ENOMEM;
+ goto out;
+ }
+ upper->bytenr = key.offset;
+ upper->level = cur->level + 1;
+ /*
+ * backrefs for the upper level block isn't
+ * cached, add the block to pending list
+ */
+ list_add_tail(&edge->list[UPPER], &list);
+ } else {
+ upper = rb_entry(rb_node, struct backref_node,
+ rb_node);
+ BUG_ON(!upper->checked);
+ INIT_LIST_HEAD(&edge->list[UPPER]);
+ }
+ list_add_tail(&edge->list[LOWER], &cur->upper);
+ edge->node[LOWER] = cur;
+ edge->node[UPPER] = upper;
+
+ goto next;
+ } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
+ goto next;
+ }
+
+ /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
+ root = read_fs_root(rc->extent_root->fs_info, key.offset);
+ if (IS_ERR(root)) {
+ err = PTR_ERR(root);
+ goto out;
+ }
+
+ if (!root->ref_cows)
+ cur->cowonly = 1;
+
+ if (btrfs_root_level(&root->root_item) == cur->level) {
+ /* tree root */
+ BUG_ON(btrfs_root_bytenr(&root->root_item) !=
+ cur->bytenr);
+ if (should_ignore_root(root))
+ list_add(&cur->list, &useless);
+ else
+ cur->root = root;
+ break;
+ }
+
+ level = cur->level + 1;
+
+ /*
+ * searching the tree to find upper level blocks
+ * reference the block.
+ */
+ path2->search_commit_root = 1;
+ path2->skip_locking = 1;
+ path2->lowest_level = level;
+ ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
+ path2->lowest_level = 0;
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret > 0 && path2->slots[level] > 0)
+ path2->slots[level]--;
+
+ eb = path2->nodes[level];
+ WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
+ cur->bytenr);
+
+ lower = cur;
+ for (; level < BTRFS_MAX_LEVEL; level++) {
+ if (!path2->nodes[level]) {
+ BUG_ON(btrfs_root_bytenr(&root->root_item) !=
+ lower->bytenr);
+ if (should_ignore_root(root))
+ list_add(&lower->list, &useless);
+ else
+ lower->root = root;
+ break;
+ }
+
+ edge = alloc_backref_edge(cache);
+ if (!edge) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ eb = path2->nodes[level];
+ rb_node = tree_search(&cache->rb_root, eb->start);
+ if (!rb_node) {
+ upper = alloc_backref_node(cache);
+ if (!upper) {
+ free_backref_edge(cache, edge);
+ err = -ENOMEM;
+ goto out;
+ }
+ upper->bytenr = eb->start;
+ upper->owner = btrfs_header_owner(eb);
+ upper->level = lower->level + 1;
+ if (!root->ref_cows)
+ upper->cowonly = 1;
+
+ /*
+ * if we know the block isn't shared
+ * we can void checking its backrefs.
+ */
+ if (btrfs_block_can_be_shared(root, eb))
+ upper->checked = 0;
+ else
+ upper->checked = 1;
+
+ /*
+ * add the block to pending list if we
+ * need check its backrefs. only block
+ * at 'cur->level + 1' is added to the
+ * tail of pending list. this guarantees
+ * we check backrefs from lower level
+ * blocks to upper level blocks.
+ */
+ if (!upper->checked &&
+ level == cur->level + 1) {
+ list_add_tail(&edge->list[UPPER],
+ &list);
+ } else
+ INIT_LIST_HEAD(&edge->list[UPPER]);
+ } else {
+ upper = rb_entry(rb_node, struct backref_node,
+ rb_node);
+ BUG_ON(!upper->checked);
+ INIT_LIST_HEAD(&edge->list[UPPER]);
+ if (!upper->owner)
+ upper->owner = btrfs_header_owner(eb);
+ }
+ list_add_tail(&edge->list[LOWER], &lower->upper);
+ edge->node[LOWER] = lower;
+ edge->node[UPPER] = upper;
+
+ if (rb_node)
+ break;
+ lower = upper;
+ upper = NULL;
+ }
+ btrfs_release_path(path2);
+next:
+ if (ptr < end) {
+ ptr += btrfs_extent_inline_ref_size(key.type);
+ if (ptr >= end) {
+ WARN_ON(ptr > end);
+ ptr = 0;
+ end = 0;
+ }
+ }
+ if (ptr >= end)
+ path1->slots[0]++;
+ }
+ btrfs_release_path(path1);
+
+ cur->checked = 1;
+ WARN_ON(exist);
+
+ /* the pending list isn't empty, take the first block to process */
+ if (!list_empty(&list)) {
+ edge = list_entry(list.next, struct backref_edge, list[UPPER]);
+ list_del_init(&edge->list[UPPER]);
+ cur = edge->node[UPPER];
+ goto again;
+ }
+
+ /*
+ * everything goes well, connect backref nodes and insert backref nodes
+ * into the cache.
+ */
+ BUG_ON(!node->checked);
+ cowonly = node->cowonly;
+ if (!cowonly) {
+ rb_node = tree_insert(&cache->rb_root, node->bytenr,
+ &node->rb_node);
+ if (rb_node)
+ backref_tree_panic(rb_node, -EEXIST, node->bytenr);
+ list_add_tail(&node->lower, &cache->leaves);
+ }
+
+ list_for_each_entry(edge, &node->upper, list[LOWER])
+ list_add_tail(&edge->list[UPPER], &list);
+
+ while (!list_empty(&list)) {
+ edge = list_entry(list.next, struct backref_edge, list[UPPER]);
+ list_del_init(&edge->list[UPPER]);
+ upper = edge->node[UPPER];
+ if (upper->detached) {
+ list_del(&edge->list[LOWER]);
+ lower = edge->node[LOWER];
+ free_backref_edge(cache, edge);
+ if (list_empty(&lower->upper))
+ list_add(&lower->list, &useless);
+ continue;
+ }
+
+ if (!RB_EMPTY_NODE(&upper->rb_node)) {
+ if (upper->lowest) {
+ list_del_init(&upper->lower);
+ upper->lowest = 0;
+ }
+
+ list_add_tail(&edge->list[UPPER], &upper->lower);
+ continue;
+ }
+
+ BUG_ON(!upper->checked);
+ BUG_ON(cowonly != upper->cowonly);
+ if (!cowonly) {
+ rb_node = tree_insert(&cache->rb_root, upper->bytenr,
+ &upper->rb_node);
+ if (rb_node)
+ backref_tree_panic(rb_node, -EEXIST,
+ upper->bytenr);
+ }
+
+ list_add_tail(&edge->list[UPPER], &upper->lower);
+
+ list_for_each_entry(edge, &upper->upper, list[LOWER])
+ list_add_tail(&edge->list[UPPER], &list);
+ }
+ /*
+ * process useless backref nodes. backref nodes for tree leaves
+ * are deleted from the cache. backref nodes for upper level
+ * tree blocks are left in the cache to avoid unnecessary backref
+ * lookup.
+ */
+ while (!list_empty(&useless)) {
+ upper = list_entry(useless.next, struct backref_node, list);
+ list_del_init(&upper->list);
+ BUG_ON(!list_empty(&upper->upper));
+ if (upper == node)
+ node = NULL;
+ if (upper->lowest) {
+ list_del_init(&upper->lower);
+ upper->lowest = 0;
+ }
+ while (!list_empty(&upper->lower)) {
+ edge = list_entry(upper->lower.next,
+ struct backref_edge, list[UPPER]);
+ list_del(&edge->list[UPPER]);
+ list_del(&edge->list[LOWER]);
+ lower = edge->node[LOWER];
+ free_backref_edge(cache, edge);
+
+ if (list_empty(&lower->upper))
+ list_add(&lower->list, &useless);
+ }
+ __mark_block_processed(rc, upper);
+ if (upper->level > 0) {
+ list_add(&upper->list, &cache->detached);
+ upper->detached = 1;
+ } else {
+ rb_erase(&upper->rb_node, &cache->rb_root);
+ free_backref_node(cache, upper);
+ }
+ }
+out:
+ btrfs_free_path(path1);
+ btrfs_free_path(path2);
+ if (err) {
+ while (!list_empty(&useless)) {
+ lower = list_entry(useless.next,
+ struct backref_node, upper);
+ list_del_init(&lower->upper);
+ }
+ upper = node;
+ INIT_LIST_HEAD(&list);
+ while (upper) {
+ if (RB_EMPTY_NODE(&upper->rb_node)) {
+ list_splice_tail(&upper->upper, &list);
+ free_backref_node(cache, upper);
+ }
+
+ if (list_empty(&list))
+ break;
+
+ edge = list_entry(list.next, struct backref_edge,
+ list[LOWER]);
+ list_del(&edge->list[LOWER]);
+ upper = edge->node[UPPER];
+ free_backref_edge(cache, edge);
+ }
+ return ERR_PTR(err);
+ }
+ BUG_ON(node && node->detached);
+ return node;
+}
+
+/*
+ * helper to add backref node for the newly created snapshot.
+ * the backref node is created by cloning backref node that
+ * corresponds to root of source tree
+ */
+static int clone_backref_node(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct btrfs_root *src,
+ struct btrfs_root *dest)
+{
+ struct btrfs_root *reloc_root = src->reloc_root;
+ struct backref_cache *cache = &rc->backref_cache;
+ struct backref_node *node = NULL;
+ struct backref_node *new_node;
+ struct backref_edge *edge;
+ struct backref_edge *new_edge;
+ struct rb_node *rb_node;
+
+ if (cache->last_trans > 0)
+ update_backref_cache(trans, cache);
+
+ rb_node = tree_search(&cache->rb_root, src->commit_root->start);
+ if (rb_node) {
+ node = rb_entry(rb_node, struct backref_node, rb_node);
+ if (node->detached)
+ node = NULL;
+ else
+ BUG_ON(node->new_bytenr != reloc_root->node->start);
+ }
+
+ if (!node) {
+ rb_node = tree_search(&cache->rb_root,
+ reloc_root->commit_root->start);
+ if (rb_node) {
+ node = rb_entry(rb_node, struct backref_node,
+ rb_node);
+ BUG_ON(node->detached);
+ }
+ }
+
+ if (!node)
+ return 0;
+
+ new_node = alloc_backref_node(cache);
+ if (!new_node)
+ return -ENOMEM;
+
+ new_node->bytenr = dest->node->start;
+ new_node->level = node->level;
+ new_node->lowest = node->lowest;
+ new_node->checked = 1;
+ new_node->root = dest;
+
+ if (!node->lowest) {
+ list_for_each_entry(edge, &node->lower, list[UPPER]) {
+ new_edge = alloc_backref_edge(cache);
+ if (!new_edge)
+ goto fail;
+
+ new_edge->node[UPPER] = new_node;
+ new_edge->node[LOWER] = edge->node[LOWER];
+ list_add_tail(&new_edge->list[UPPER],
+ &new_node->lower);
+ }
+ } else {
+ list_add_tail(&new_node->lower, &cache->leaves);
+ }
+
+ rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
+ &new_node->rb_node);
+ if (rb_node)
+ backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
+
+ if (!new_node->lowest) {
+ list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
+ list_add_tail(&new_edge->list[LOWER],
+ &new_edge->node[LOWER]->upper);
+ }
+ }
+ return 0;
+fail:
+ while (!list_empty(&new_node->lower)) {
+ new_edge = list_entry(new_node->lower.next,
+ struct backref_edge, list[UPPER]);
+ list_del(&new_edge->list[UPPER]);
+ free_backref_edge(cache, new_edge);
+ }
+ free_backref_node(cache, new_node);
+ return -ENOMEM;
+}
+
+/*
+ * helper to add 'address of tree root -> reloc tree' mapping
+ */
+static int __must_check __add_reloc_root(struct btrfs_root *root)
+{
+ struct rb_node *rb_node;
+ struct mapping_node *node;
+ struct reloc_control *rc = root->fs_info->reloc_ctl;
+
+ node = kmalloc(sizeof(*node), GFP_NOFS);
+ if (!node)
+ return -ENOMEM;
+
+ node->bytenr = root->node->start;
+ node->data = root;
+
+ spin_lock(&rc->reloc_root_tree.lock);
+ rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
+ node->bytenr, &node->rb_node);
+ spin_unlock(&rc->reloc_root_tree.lock);
+ if (rb_node) {
+ kfree(node);
+ btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
+ "for start=%llu while inserting into relocation "
+ "tree\n");
+ }
+
+ list_add_tail(&root->root_list, &rc->reloc_roots);
+ return 0;
+}
+
+/*
+ * helper to update/delete the 'address of tree root -> reloc tree'
+ * mapping
+ */
+static int __update_reloc_root(struct btrfs_root *root, int del)
+{
+ struct rb_node *rb_node;
+ struct mapping_node *node = NULL;
+ struct reloc_control *rc = root->fs_info->reloc_ctl;
+
+ spin_lock(&rc->reloc_root_tree.lock);
+ rb_node = tree_search(&rc->reloc_root_tree.rb_root,
+ root->commit_root->start);
+ if (rb_node) {
+ node = rb_entry(rb_node, struct mapping_node, rb_node);
+ rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
+ }
+ spin_unlock(&rc->reloc_root_tree.lock);
+
+ BUG_ON((struct btrfs_root *)node->data != root);
+
+ if (!del) {
+ spin_lock(&rc->reloc_root_tree.lock);
+ node->bytenr = root->node->start;
+ rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
+ node->bytenr, &node->rb_node);
+ spin_unlock(&rc->reloc_root_tree.lock);
+ if (rb_node)
+ backref_tree_panic(rb_node, -EEXIST, node->bytenr);
+ } else {
+ spin_lock(&root->fs_info->trans_lock);
+ list_del_init(&root->root_list);
+ spin_unlock(&root->fs_info->trans_lock);
+ kfree(node);
+ }
+ return 0;
+}
+
+static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 objectid)
+{
+ struct btrfs_root *reloc_root;
+ struct extent_buffer *eb;
+ struct btrfs_root_item *root_item;
+ struct btrfs_key root_key;
+ int ret;
+
+ root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
+ BUG_ON(!root_item);
+
+ root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
+ root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root_key.offset = objectid;
+
+ if (root->root_key.objectid == objectid) {
+ /* called by btrfs_init_reloc_root */
+ ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
+ BTRFS_TREE_RELOC_OBJECTID);
+ BUG_ON(ret);
+
+ btrfs_set_root_last_snapshot(&root->root_item,
+ trans->transid - 1);
+ } else {
+ /*
+ * called by btrfs_reloc_post_snapshot_hook.
+ * the source tree is a reloc tree, all tree blocks
+ * modified after it was created have RELOC flag
+ * set in their headers. so it's OK to not update
+ * the 'last_snapshot'.
+ */
+ ret = btrfs_copy_root(trans, root, root->node, &eb,
+ BTRFS_TREE_RELOC_OBJECTID);
+ BUG_ON(ret);
+ }
+
+ memcpy(root_item, &root->root_item, sizeof(*root_item));
+ btrfs_set_root_bytenr(root_item, eb->start);
+ btrfs_set_root_level(root_item, btrfs_header_level(eb));
+ btrfs_set_root_generation(root_item, trans->transid);
+
+ if (root->root_key.objectid == objectid) {
+ btrfs_set_root_refs(root_item, 0);
+ memset(&root_item->drop_progress, 0,
+ sizeof(struct btrfs_disk_key));
+ root_item->drop_level = 0;
+ }
+
+ btrfs_tree_unlock(eb);
+ free_extent_buffer(eb);
+
+ ret = btrfs_insert_root(trans, root->fs_info->tree_root,
+ &root_key, root_item);
+ BUG_ON(ret);
+ kfree(root_item);
+
+ reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
+ &root_key);
+ BUG_ON(IS_ERR(reloc_root));
+ reloc_root->last_trans = trans->transid;
+ return reloc_root;
+}
+
+/*
+ * create reloc tree for a given fs tree. reloc tree is just a
+ * snapshot of the fs tree with special root objectid.
+ */
+int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_root *reloc_root;
+ struct reloc_control *rc = root->fs_info->reloc_ctl;
+ int clear_rsv = 0;
+ int ret;
+
+ if (root->reloc_root) {
+ reloc_root = root->reloc_root;
+ reloc_root->last_trans = trans->transid;
+ return 0;
+ }
+
+ if (!rc || !rc->create_reloc_tree ||
+ root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
+ return 0;
+
+ if (!trans->block_rsv) {
+ trans->block_rsv = rc->block_rsv;
+ clear_rsv = 1;
+ }
+ reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
+ if (clear_rsv)
+ trans->block_rsv = NULL;
+
+ ret = __add_reloc_root(reloc_root);
+ BUG_ON(ret < 0);
+ root->reloc_root = reloc_root;
+ return 0;
+}
+
+/*
+ * update root item of reloc tree
+ */
+int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_root *reloc_root;
+ struct btrfs_root_item *root_item;
+ int del = 0;
+ int ret;
+
+ if (!root->reloc_root)
+ goto out;
+
+ reloc_root = root->reloc_root;
+ root_item = &reloc_root->root_item;
+
+ if (root->fs_info->reloc_ctl->merge_reloc_tree &&
+ btrfs_root_refs(root_item) == 0) {
+ root->reloc_root = NULL;
+ del = 1;
+ }
+
+ __update_reloc_root(reloc_root, del);
+
+ if (reloc_root->commit_root != reloc_root->node) {
+ btrfs_set_root_node(root_item, reloc_root->node);
+ free_extent_buffer(reloc_root->commit_root);
+ reloc_root->commit_root = btrfs_root_node(reloc_root);
+ }
+
+ ret = btrfs_update_root(trans, root->fs_info->tree_root,
+ &reloc_root->root_key, root_item);
+ BUG_ON(ret);
+
+out:
+ return 0;
+}
+
+/*
+ * helper to find first cached inode with inode number >= objectid
+ * in a subvolume
+ */
+static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
+{
+ struct rb_node *node;
+ struct rb_node *prev;
+ struct btrfs_inode *entry;
+ struct inode *inode;
+
+ spin_lock(&root->inode_lock);
+again:
+ node = root->inode_tree.rb_node;
+ prev = NULL;
+ while (node) {
+ prev = node;
+ entry = rb_entry(node, struct btrfs_inode, rb_node);
+
+ if (objectid < btrfs_ino(&entry->vfs_inode))
+ node = node->rb_left;
+ else if (objectid > btrfs_ino(&entry->vfs_inode))
+ node = node->rb_right;
+ else
+ break;
+ }
+ if (!node) {
+ while (prev) {
+ entry = rb_entry(prev, struct btrfs_inode, rb_node);
+ if (objectid <= btrfs_ino(&entry->vfs_inode)) {
+ node = prev;
+ break;
+ }
+ prev = rb_next(prev);
+ }
+ }
+ while (node) {
+ entry = rb_entry(node, struct btrfs_inode, rb_node);
+ inode = igrab(&entry->vfs_inode);
+ if (inode) {
+ spin_unlock(&root->inode_lock);
+ return inode;
+ }
+
+ objectid = btrfs_ino(&entry->vfs_inode) + 1;
+ if (cond_resched_lock(&root->inode_lock))
+ goto again;
+
+ node = rb_next(node);
+ }
+ spin_unlock(&root->inode_lock);
+ return NULL;
+}
+
+static int in_block_group(u64 bytenr,
+ struct btrfs_block_group_cache *block_group)
+{
+ if (bytenr >= block_group->key.objectid &&
+ bytenr < block_group->key.objectid + block_group->key.offset)
+ return 1;
+ return 0;
+}
+
+/*
+ * get new location of data
+ */
+static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
+ u64 bytenr, u64 num_bytes)
+{
+ struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
+ struct btrfs_path *path;
+ struct btrfs_file_extent_item *fi;
+ struct extent_buffer *leaf;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ bytenr -= BTRFS_I(reloc_inode)->index_cnt;
+ ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
+ bytenr, 0);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+
+ BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
+ btrfs_file_extent_compression(leaf, fi) ||
+ btrfs_file_extent_encryption(leaf, fi) ||
+ btrfs_file_extent_other_encoding(leaf, fi));
+
+ if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
+ ret = 1;
+ goto out;
+ }
+
+ *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * update file extent items in the tree leaf to point to
+ * the new locations.
+ */
+static noinline_for_stack
+int replace_file_extents(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct btrfs_root *root,
+ struct extent_buffer *leaf)
+{
+ struct btrfs_key key;
+ struct btrfs_file_extent_item *fi;
+ struct inode *inode = NULL;
+ u64 parent;
+ u64 bytenr;
+ u64 new_bytenr = 0;
+ u64 num_bytes;
+ u64 end;
+ u32 nritems;
+ u32 i;
+ int ret;
+ int first = 1;
+ int dirty = 0;
+
+ if (rc->stage != UPDATE_DATA_PTRS)
+ return 0;
+
+ /* reloc trees always use full backref */
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
+ parent = leaf->start;
+ else
+ parent = 0;
+
+ nritems = btrfs_header_nritems(leaf);
+ for (i = 0; i < nritems; i++) {
+ cond_resched();
+ btrfs_item_key_to_cpu(leaf, &key, i);
+ if (key.type != BTRFS_EXTENT_DATA_KEY)
+ continue;
+ fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
+ if (btrfs_file_extent_type(leaf, fi) ==
+ BTRFS_FILE_EXTENT_INLINE)
+ continue;
+ bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
+ num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
+ if (bytenr == 0)
+ continue;
+ if (!in_block_group(bytenr, rc->block_group))
+ continue;
+
+ /*
+ * if we are modifying block in fs tree, wait for readpage
+ * to complete and drop the extent cache
+ */
+ if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
+ if (first) {
+ inode = find_next_inode(root, key.objectid);
+ first = 0;
+ } else if (inode && btrfs_ino(inode) < key.objectid) {
+ btrfs_add_delayed_iput(inode);
+ inode = find_next_inode(root, key.objectid);
+ }
+ if (inode && btrfs_ino(inode) == key.objectid) {
+ end = key.offset +
+ btrfs_file_extent_num_bytes(leaf, fi);
+ WARN_ON(!IS_ALIGNED(key.offset,
+ root->sectorsize));
+ WARN_ON(!IS_ALIGNED(end, root->sectorsize));
+ end--;
+ ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
+ key.offset, end);
+ if (!ret)
+ continue;
+
+ btrfs_drop_extent_cache(inode, key.offset, end,
+ 1);
+ unlock_extent(&BTRFS_I(inode)->io_tree,
+ key.offset, end);
+ }
+ }
+
+ ret = get_new_location(rc->data_inode, &new_bytenr,
+ bytenr, num_bytes);
+ if (ret > 0) {
+ WARN_ON(1);
+ continue;
+ }
+ BUG_ON(ret < 0);
+
+ btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
+ dirty = 1;
+
+ key.offset -= btrfs_file_extent_offset(leaf, fi);
+ ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
+ num_bytes, parent,
+ btrfs_header_owner(leaf),
+ key.objectid, key.offset, 1);
+ BUG_ON(ret);
+
+ ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
+ parent, btrfs_header_owner(leaf),
+ key.objectid, key.offset, 1);
+ BUG_ON(ret);
+ }
+ if (dirty)
+ btrfs_mark_buffer_dirty(leaf);
+ if (inode)
+ btrfs_add_delayed_iput(inode);
+ return 0;
+}
+
+static noinline_for_stack
+int memcmp_node_keys(struct extent_buffer *eb, int slot,
+ struct btrfs_path *path, int level)
+{
+ struct btrfs_disk_key key1;
+ struct btrfs_disk_key key2;
+ btrfs_node_key(eb, &key1, slot);
+ btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
+ return memcmp(&key1, &key2, sizeof(key1));
+}
+
+/*
+ * try to replace tree blocks in fs tree with the new blocks
+ * in reloc tree. tree blocks haven't been modified since the
+ * reloc tree was create can be replaced.
+ *
+ * if a block was replaced, level of the block + 1 is returned.
+ * if no block got replaced, 0 is returned. if there are other
+ * errors, a negative error number is returned.
+ */
+static noinline_for_stack
+int replace_path(struct btrfs_trans_handle *trans,
+ struct btrfs_root *dest, struct btrfs_root *src,
+ struct btrfs_path *path, struct btrfs_key *next_key,
+ int lowest_level, int max_level)
+{
+ struct extent_buffer *eb;
+ struct extent_buffer *parent;
+ struct btrfs_key key;
+ u64 old_bytenr;
+ u64 new_bytenr;
+ u64 old_ptr_gen;
+ u64 new_ptr_gen;
+ u64 last_snapshot;
+ u32 blocksize;
+ int cow = 0;
+ int level;
+ int ret;
+ int slot;
+
+ BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
+ BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
+
+ last_snapshot = btrfs_root_last_snapshot(&src->root_item);
+again:
+ slot = path->slots[lowest_level];
+ btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
+
+ eb = btrfs_lock_root_node(dest);
+ btrfs_set_lock_blocking(eb);
+ level = btrfs_header_level(eb);
+
+ if (level < lowest_level) {
+ btrfs_tree_unlock(eb);
+ free_extent_buffer(eb);
+ return 0;
+ }
+
+ if (cow) {
+ ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
+ BUG_ON(ret);
+ }
+ btrfs_set_lock_blocking(eb);
+
+ if (next_key) {
+ next_key->objectid = (u64)-1;
+ next_key->type = (u8)-1;
+ next_key->offset = (u64)-1;
+ }
+
+ parent = eb;
+ while (1) {
+ level = btrfs_header_level(parent);
+ BUG_ON(level < lowest_level);
+
+ ret = btrfs_bin_search(parent, &key, level, &slot);
+ if (ret && slot > 0)
+ slot--;
+
+ if (next_key && slot + 1 < btrfs_header_nritems(parent))
+ btrfs_node_key_to_cpu(parent, next_key, slot + 1);
+
+ old_bytenr = btrfs_node_blockptr(parent, slot);
+ blocksize = btrfs_level_size(dest, level - 1);
+ old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
+
+ if (level <= max_level) {
+ eb = path->nodes[level];
+ new_bytenr = btrfs_node_blockptr(eb,
+ path->slots[level]);
+ new_ptr_gen = btrfs_node_ptr_generation(eb,
+ path->slots[level]);
+ } else {
+ new_bytenr = 0;
+ new_ptr_gen = 0;
+ }
+
+ if (new_bytenr > 0 && new_bytenr == old_bytenr) {
+ WARN_ON(1);
+ ret = level;
+ break;
+ }
+
+ if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
+ memcmp_node_keys(parent, slot, path, level)) {
+ if (level <= lowest_level) {
+ ret = 0;
+ break;
+ }
+
+ eb = read_tree_block(dest, old_bytenr, blocksize,
+ old_ptr_gen);
+ BUG_ON(!eb);
+ btrfs_tree_lock(eb);
+ if (cow) {
+ ret = btrfs_cow_block(trans, dest, eb, parent,
+ slot, &eb);
+ BUG_ON(ret);
+ }
+ btrfs_set_lock_blocking(eb);
+
+ btrfs_tree_unlock(parent);
+ free_extent_buffer(parent);
+
+ parent = eb;
+ continue;
+ }
+
+ if (!cow) {
+ btrfs_tree_unlock(parent);
+ free_extent_buffer(parent);
+ cow = 1;
+ goto again;
+ }
+
+ btrfs_node_key_to_cpu(path->nodes[level], &key,
+ path->slots[level]);
+ btrfs_release_path(path);
+
+ path->lowest_level = level;
+ ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
+ path->lowest_level = 0;
+ BUG_ON(ret);
+
+ /*
+ * swap blocks in fs tree and reloc tree.
+ */
+ btrfs_set_node_blockptr(parent, slot, new_bytenr);
+ btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
+ btrfs_mark_buffer_dirty(parent);
+
+ btrfs_set_node_blockptr(path->nodes[level],
+ path->slots[level], old_bytenr);
+ btrfs_set_node_ptr_generation(path->nodes[level],
+ path->slots[level], old_ptr_gen);
+ btrfs_mark_buffer_dirty(path->nodes[level]);
+
+ ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
+ path->nodes[level]->start,
+ src->root_key.objectid, level - 1, 0,
+ 1);
+ BUG_ON(ret);
+ ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
+ 0, dest->root_key.objectid, level - 1,
+ 0, 1);
+ BUG_ON(ret);
+
+ ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
+ path->nodes[level]->start,
+ src->root_key.objectid, level - 1, 0,
+ 1);
+ BUG_ON(ret);
+
+ ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
+ 0, dest->root_key.objectid, level - 1,
+ 0, 1);
+ BUG_ON(ret);
+
+ btrfs_unlock_up_safe(path, 0);
+
+ ret = level;
+ break;
+ }
+ btrfs_tree_unlock(parent);
+ free_extent_buffer(parent);
+ return ret;
+}
+
+/*
+ * helper to find next relocated block in reloc tree
+ */
+static noinline_for_stack
+int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
+ int *level)
+{
+ struct extent_buffer *eb;
+ int i;
+ u64 last_snapshot;
+ u32 nritems;
+
+ last_snapshot = btrfs_root_last_snapshot(&root->root_item);
+
+ for (i = 0; i < *level; i++) {
+ free_extent_buffer(path->nodes[i]);
+ path->nodes[i] = NULL;
+ }
+
+ for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
+ eb = path->nodes[i];
+ nritems = btrfs_header_nritems(eb);
+ while (path->slots[i] + 1 < nritems) {
+ path->slots[i]++;
+ if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
+ last_snapshot)
+ continue;
+
+ *level = i;
+ return 0;
+ }
+ free_extent_buffer(path->nodes[i]);
+ path->nodes[i] = NULL;
+ }
+ return 1;
+}
+
+/*
+ * walk down reloc tree to find relocated block of lowest level
+ */
+static noinline_for_stack
+int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
+ int *level)
+{
+ struct extent_buffer *eb = NULL;
+ int i;
+ u64 bytenr;
+ u64 ptr_gen = 0;
+ u64 last_snapshot;
+ u32 blocksize;
+ u32 nritems;
+
+ last_snapshot = btrfs_root_last_snapshot(&root->root_item);
+
+ for (i = *level; i > 0; i--) {
+ eb = path->nodes[i];
+ nritems = btrfs_header_nritems(eb);
+ while (path->slots[i] < nritems) {
+ ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
+ if (ptr_gen > last_snapshot)
+ break;
+ path->slots[i]++;
+ }
+ if (path->slots[i] >= nritems) {
+ if (i == *level)
+ break;
+ *level = i + 1;
+ return 0;
+ }
+ if (i == 1) {
+ *level = i;
+ return 0;
+ }
+
+ bytenr = btrfs_node_blockptr(eb, path->slots[i]);
+ blocksize = btrfs_level_size(root, i - 1);
+ eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
+ BUG_ON(btrfs_header_level(eb) != i - 1);
+ path->nodes[i - 1] = eb;
+ path->slots[i - 1] = 0;
+ }
+ return 1;
+}
+
+/*
+ * invalidate extent cache for file extents whose key in range of
+ * [min_key, max_key)
+ */
+static int invalidate_extent_cache(struct btrfs_root *root,
+ struct btrfs_key *min_key,
+ struct btrfs_key *max_key)
+{
+ struct inode *inode = NULL;
+ u64 objectid;
+ u64 start, end;
+ u64 ino;
+
+ objectid = min_key->objectid;
+ while (1) {
+ cond_resched();
+ iput(inode);
+
+ if (objectid > max_key->objectid)
+ break;
+
+ inode = find_next_inode(root, objectid);
+ if (!inode)
+ break;
+ ino = btrfs_ino(inode);
+
+ if (ino > max_key->objectid) {
+ iput(inode);
+ break;
+ }
+
+ objectid = ino + 1;
+ if (!S_ISREG(inode->i_mode))
+ continue;
+
+ if (unlikely(min_key->objectid == ino)) {
+ if (min_key->type > BTRFS_EXTENT_DATA_KEY)
+ continue;
+ if (min_key->type < BTRFS_EXTENT_DATA_KEY)
+ start = 0;
+ else {
+ start = min_key->offset;
+ WARN_ON(!IS_ALIGNED(start, root->sectorsize));
+ }
+ } else {
+ start = 0;
+ }
+
+ if (unlikely(max_key->objectid == ino)) {
+ if (max_key->type < BTRFS_EXTENT_DATA_KEY)
+ continue;
+ if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
+ end = (u64)-1;
+ } else {
+ if (max_key->offset == 0)
+ continue;
+ end = max_key->offset;
+ WARN_ON(!IS_ALIGNED(end, root->sectorsize));
+ end--;
+ }
+ } else {
+ end = (u64)-1;
+ }
+
+ /* the lock_extent waits for readpage to complete */
+ lock_extent(&BTRFS_I(inode)->io_tree, start, end);
+ btrfs_drop_extent_cache(inode, start, end, 1);
+ unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
+ }
+ return 0;
+}
+
+static int find_next_key(struct btrfs_path *path, int level,
+ struct btrfs_key *key)
+
+{
+ while (level < BTRFS_MAX_LEVEL) {
+ if (!path->nodes[level])
+ break;
+ if (path->slots[level] + 1 <
+ btrfs_header_nritems(path->nodes[level])) {
+ btrfs_node_key_to_cpu(path->nodes[level], key,
+ path->slots[level] + 1);
+ return 0;
+ }
+ level++;
+ }
+ return 1;
+}
+
+/*
+ * merge the relocated tree blocks in reloc tree with corresponding
+ * fs tree.
+ */
+static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
+ struct btrfs_root *root)
+{
+ LIST_HEAD(inode_list);
+ struct btrfs_key key;
+ struct btrfs_key next_key;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *reloc_root;
+ struct btrfs_root_item *root_item;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ unsigned long nr;
+ int level;
+ int max_level;
+ int replaced = 0;
+ int ret;
+ int err = 0;
+ u32 min_reserved;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = 1;
+
+ reloc_root = root->reloc_root;
+ root_item = &reloc_root->root_item;
+
+ if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
+ level = btrfs_root_level(root_item);
+ extent_buffer_get(reloc_root->node);
+ path->nodes[level] = reloc_root->node;
+ path->slots[level] = 0;
+ } else {
+ btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
+
+ level = root_item->drop_level;
+ BUG_ON(level == 0);
+ path->lowest_level = level;
+ ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
+ path->lowest_level = 0;
+ if (ret < 0) {
+ btrfs_free_path(path);
+ return ret;
+ }
+
+ btrfs_node_key_to_cpu(path->nodes[level], &next_key,
+ path->slots[level]);
+ WARN_ON(memcmp(&key, &next_key, sizeof(key)));
+
+ btrfs_unlock_up_safe(path, 0);
+ }
+
+ min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
+ memset(&next_key, 0, sizeof(next_key));
+
+ while (1) {
+ trans = btrfs_start_transaction(root, 0);
+ BUG_ON(IS_ERR(trans));
+ trans->block_rsv = rc->block_rsv;
+
+ ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved);
+ if (ret) {
+ BUG_ON(ret != -EAGAIN);
+ ret = btrfs_commit_transaction(trans, root);
+ BUG_ON(ret);
+ continue;
+ }
+
+ replaced = 0;
+ max_level = level;
+
+ ret = walk_down_reloc_tree(reloc_root, path, &level);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret > 0)
+ break;
+
+ if (!find_next_key(path, level, &key) &&
+ btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
+ ret = 0;
+ } else {
+ ret = replace_path(trans, root, reloc_root, path,
+ &next_key, level, max_level);
+ }
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+
+ if (ret > 0) {
+ level = ret;
+ btrfs_node_key_to_cpu(path->nodes[level], &key,
+ path->slots[level]);
+ replaced = 1;
+ }
+
+ ret = walk_up_reloc_tree(reloc_root, path, &level);
+ if (ret > 0)
+ break;
+
+ BUG_ON(level == 0);
+ /*
+ * save the merging progress in the drop_progress.
+ * this is OK since root refs == 1 in this case.
+ */
+ btrfs_node_key(path->nodes[level], &root_item->drop_progress,
+ path->slots[level]);
+ root_item->drop_level = level;
+
+ nr = trans->blocks_used;
+ btrfs_end_transaction_throttle(trans, root);
+
+ btrfs_btree_balance_dirty(root, nr);
+
+ if (replaced && rc->stage == UPDATE_DATA_PTRS)
+ invalidate_extent_cache(root, &key, &next_key);
+ }
+
+ /*
+ * handle the case only one block in the fs tree need to be
+ * relocated and the block is tree root.
+ */
+ leaf = btrfs_lock_root_node(root);
+ ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
+ btrfs_tree_unlock(leaf);
+ free_extent_buffer(leaf);
+ if (ret < 0)
+ err = ret;
+out:
+ btrfs_free_path(path);
+
+ if (err == 0) {
+ memset(&root_item->drop_progress, 0,
+ sizeof(root_item->drop_progress));
+ root_item->drop_level = 0;
+ btrfs_set_root_refs(root_item, 0);
+ btrfs_update_reloc_root(trans, root);
+ }
+
+ nr = trans->blocks_used;
+ btrfs_end_transaction_throttle(trans, root);
+
+ btrfs_btree_balance_dirty(root, nr);
+
+ if (replaced && rc->stage == UPDATE_DATA_PTRS)
+ invalidate_extent_cache(root, &key, &next_key);
+
+ return err;
+}
+
+static noinline_for_stack
+int prepare_to_merge(struct reloc_control *rc, int err)
+{
+ struct btrfs_root *root = rc->extent_root;
+ struct btrfs_root *reloc_root;
+ struct btrfs_trans_handle *trans;
+ LIST_HEAD(reloc_roots);
+ u64 num_bytes = 0;
+ int ret;
+
+ mutex_lock(&root->fs_info->reloc_mutex);
+ rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
+ rc->merging_rsv_size += rc->nodes_relocated * 2;
+ mutex_unlock(&root->fs_info->reloc_mutex);
+
+again:
+ if (!err) {
+ num_bytes = rc->merging_rsv_size;
+ ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
+ if (ret)
+ err = ret;
+ }
+
+ trans = btrfs_join_transaction(rc->extent_root);
+ if (IS_ERR(trans)) {
+ if (!err)
+ btrfs_block_rsv_release(rc->extent_root,
+ rc->block_rsv, num_bytes);
+ return PTR_ERR(trans);
+ }
+
+ if (!err) {
+ if (num_bytes != rc->merging_rsv_size) {
+ btrfs_end_transaction(trans, rc->extent_root);
+ btrfs_block_rsv_release(rc->extent_root,
+ rc->block_rsv, num_bytes);
+ goto again;
+ }
+ }
+
+ rc->merge_reloc_tree = 1;
+
+ while (!list_empty(&rc->reloc_roots)) {
+ reloc_root = list_entry(rc->reloc_roots.next,
+ struct btrfs_root, root_list);
+ list_del_init(&reloc_root->root_list);
+
+ root = read_fs_root(reloc_root->fs_info,
+ reloc_root->root_key.offset);
+ BUG_ON(IS_ERR(root));
+ BUG_ON(root->reloc_root != reloc_root);
+
+ /*
+ * set reference count to 1, so btrfs_recover_relocation
+ * knows it should resumes merging
+ */
+ if (!err)
+ btrfs_set_root_refs(&reloc_root->root_item, 1);
+ btrfs_update_reloc_root(trans, root);
+
+ list_add(&reloc_root->root_list, &reloc_roots);
+ }
+
+ list_splice(&reloc_roots, &rc->reloc_roots);
+
+ if (!err)
+ btrfs_commit_transaction(trans, rc->extent_root);
+ else
+ btrfs_end_transaction(trans, rc->extent_root);
+ return err;
+}
+
+static noinline_for_stack
+int merge_reloc_roots(struct reloc_control *rc)
+{
+ struct btrfs_root *root;
+ struct btrfs_root *reloc_root;
+ LIST_HEAD(reloc_roots);
+ int found = 0;
+ int ret;
+again:
+ root = rc->extent_root;
+
+ /*
+ * this serializes us with btrfs_record_root_in_transaction,
+ * we have to make sure nobody is in the middle of
+ * adding their roots to the list while we are
+ * doing this splice
+ */
+ mutex_lock(&root->fs_info->reloc_mutex);
+ list_splice_init(&rc->reloc_roots, &reloc_roots);
+ mutex_unlock(&root->fs_info->reloc_mutex);
+
+ while (!list_empty(&reloc_roots)) {
+ found = 1;
+ reloc_root = list_entry(reloc_roots.next,
+ struct btrfs_root, root_list);
+
+ if (btrfs_root_refs(&reloc_root->root_item) > 0) {
+ root = read_fs_root(reloc_root->fs_info,
+ reloc_root->root_key.offset);
+ BUG_ON(IS_ERR(root));
+ BUG_ON(root->reloc_root != reloc_root);
+
+ ret = merge_reloc_root(rc, root);
+ BUG_ON(ret);
+ } else {
+ list_del_init(&reloc_root->root_list);
+ }
+ ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
+ BUG_ON(ret < 0);
+ }
+
+ if (found) {
+ found = 0;
+ goto again;
+ }
+ BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
+ return 0;
+}
+
+static void free_block_list(struct rb_root *blocks)
+{
+ struct tree_block *block;
+ struct rb_node *rb_node;
+ while ((rb_node = rb_first(blocks))) {
+ block = rb_entry(rb_node, struct tree_block, rb_node);
+ rb_erase(rb_node, blocks);
+ kfree(block);
+ }
+}
+
+static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
+ struct btrfs_root *reloc_root)
+{
+ struct btrfs_root *root;
+
+ if (reloc_root->last_trans == trans->transid)
+ return 0;
+
+ root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
+ BUG_ON(IS_ERR(root));
+ BUG_ON(root->reloc_root != reloc_root);
+
+ return btrfs_record_root_in_trans(trans, root);
+}
+
+static noinline_for_stack
+struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct backref_node *node,
+ struct backref_edge *edges[], int *nr)
+{
+ struct backref_node *next;
+ struct btrfs_root *root;
+ int index = 0;
+
+ next = node;
+ while (1) {
+ cond_resched();
+ next = walk_up_backref(next, edges, &index);
+ root = next->root;
+ BUG_ON(!root);
+ BUG_ON(!root->ref_cows);
+
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
+ record_reloc_root_in_trans(trans, root);
+ break;
+ }
+
+ btrfs_record_root_in_trans(trans, root);
+ root = root->reloc_root;
+
+ if (next->new_bytenr != root->node->start) {
+ BUG_ON(next->new_bytenr);
+ BUG_ON(!list_empty(&next->list));
+ next->new_bytenr = root->node->start;
+ next->root = root;
+ list_add_tail(&next->list,
+ &rc->backref_cache.changed);
+ __mark_block_processed(rc, next);
+ break;
+ }
+
+ WARN_ON(1);
+ root = NULL;
+ next = walk_down_backref(edges, &index);
+ if (!next || next->level <= node->level)
+ break;
+ }
+ if (!root)
+ return NULL;
+
+ *nr = index;
+ next = node;
+ /* setup backref node path for btrfs_reloc_cow_block */
+ while (1) {
+ rc->backref_cache.path[next->level] = next;
+ if (--index < 0)
+ break;
+ next = edges[index]->node[UPPER];
+ }
+ return root;
+}
+
+/*
+ * select a tree root for relocation. return NULL if the block
+ * is reference counted. we should use do_relocation() in this
+ * case. return a tree root pointer if the block isn't reference
+ * counted. return -ENOENT if the block is root of reloc tree.
+ */
+static noinline_for_stack
+struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
+ struct backref_node *node)
+{
+ struct backref_node *next;
+ struct btrfs_root *root;
+ struct btrfs_root *fs_root = NULL;
+ struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
+ int index = 0;
+
+ next = node;
+ while (1) {
+ cond_resched();
+ next = walk_up_backref(next, edges, &index);
+ root = next->root;
+ BUG_ON(!root);
+
+ /* no other choice for non-references counted tree */
+ if (!root->ref_cows)
+ return root;
+
+ if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
+ fs_root = root;
+
+ if (next != node)
+ return NULL;
+
+ next = walk_down_backref(edges, &index);
+ if (!next || next->level <= node->level)
+ break;
+ }
+
+ if (!fs_root)
+ return ERR_PTR(-ENOENT);
+ return fs_root;
+}
+
+static noinline_for_stack
+u64 calcu_metadata_size(struct reloc_control *rc,
+ struct backref_node *node, int reserve)
+{
+ struct backref_node *next = node;
+ struct backref_edge *edge;
+ struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
+ u64 num_bytes = 0;
+ int index = 0;
+
+ BUG_ON(reserve && node->processed);
+
+ while (next) {
+ cond_resched();
+ while (1) {
+ if (next->processed && (reserve || next != node))
+ break;
+
+ num_bytes += btrfs_level_size(rc->extent_root,
+ next->level);
+
+ if (list_empty(&next->upper))
+ break;
+
+ edge = list_entry(next->upper.next,
+ struct backref_edge, list[LOWER]);
+ edges[index++] = edge;
+ next = edge->node[UPPER];
+ }
+ next = walk_down_backref(edges, &index);
+ }
+ return num_bytes;
+}
+
+static int reserve_metadata_space(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct backref_node *node)
+{
+ struct btrfs_root *root = rc->extent_root;
+ u64 num_bytes;
+ int ret;
+
+ num_bytes = calcu_metadata_size(rc, node, 1) * 2;
+
+ trans->block_rsv = rc->block_rsv;
+ ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
+ if (ret) {
+ if (ret == -EAGAIN)
+ rc->commit_transaction = 1;
+ return ret;
+ }
+
+ return 0;
+}
+
+static void release_metadata_space(struct reloc_control *rc,
+ struct backref_node *node)
+{
+ u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
+ btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
+}
+
+/*
+ * relocate a block tree, and then update pointers in upper level
+ * blocks that reference the block to point to the new location.
+ *
+ * if called by link_to_upper, the block has already been relocated.
+ * in that case this function just updates pointers.
+ */
+static int do_relocation(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct backref_node *node,
+ struct btrfs_key *key,
+ struct btrfs_path *path, int lowest)
+{
+ struct backref_node *upper;
+ struct backref_edge *edge;
+ struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
+ struct btrfs_root *root;
+ struct extent_buffer *eb;
+ u32 blocksize;
+ u64 bytenr;
+ u64 generation;
+ int nr;
+ int slot;
+ int ret;
+ int err = 0;
+
+ BUG_ON(lowest && node->eb);
+
+ path->lowest_level = node->level + 1;
+ rc->backref_cache.path[node->level] = node;
+ list_for_each_entry(edge, &node->upper, list[LOWER]) {
+ cond_resched();
+
+ upper = edge->node[UPPER];
+ root = select_reloc_root(trans, rc, upper, edges, &nr);
+ BUG_ON(!root);
+
+ if (upper->eb && !upper->locked) {
+ if (!lowest) {
+ ret = btrfs_bin_search(upper->eb, key,
+ upper->level, &slot);
+ BUG_ON(ret);
+ bytenr = btrfs_node_blockptr(upper->eb, slot);
+ if (node->eb->start == bytenr)
+ goto next;
+ }
+ drop_node_buffer(upper);
+ }
+
+ if (!upper->eb) {
+ ret = btrfs_search_slot(trans, root, key, path, 0, 1);
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+ BUG_ON(ret > 0);
+
+ if (!upper->eb) {
+ upper->eb = path->nodes[upper->level];
+ path->nodes[upper->level] = NULL;
+ } else {
+ BUG_ON(upper->eb != path->nodes[upper->level]);
+ }
+
+ upper->locked = 1;
+ path->locks[upper->level] = 0;
+
+ slot = path->slots[upper->level];
+ btrfs_release_path(path);
+ } else {
+ ret = btrfs_bin_search(upper->eb, key, upper->level,
+ &slot);
+ BUG_ON(ret);
+ }
+
+ bytenr = btrfs_node_blockptr(upper->eb, slot);
+ if (lowest) {
+ BUG_ON(bytenr != node->bytenr);
+ } else {
+ if (node->eb->start == bytenr)
+ goto next;
+ }
+
+ blocksize = btrfs_level_size(root, node->level);
+ generation = btrfs_node_ptr_generation(upper->eb, slot);
+ eb = read_tree_block(root, bytenr, blocksize, generation);
+ if (!eb) {
+ err = -EIO;
+ goto next;
+ }
+ btrfs_tree_lock(eb);
+ btrfs_set_lock_blocking(eb);
+
+ if (!node->eb) {
+ ret = btrfs_cow_block(trans, root, eb, upper->eb,
+ slot, &eb);
+ btrfs_tree_unlock(eb);
+ free_extent_buffer(eb);
+ if (ret < 0) {
+ err = ret;
+ goto next;
+ }
+ BUG_ON(node->eb != eb);
+ } else {
+ btrfs_set_node_blockptr(upper->eb, slot,
+ node->eb->start);
+ btrfs_set_node_ptr_generation(upper->eb, slot,
+ trans->transid);
+ btrfs_mark_buffer_dirty(upper->eb);
+
+ ret = btrfs_inc_extent_ref(trans, root,
+ node->eb->start, blocksize,
+ upper->eb->start,
+ btrfs_header_owner(upper->eb),
+ node->level, 0, 1);
+ BUG_ON(ret);
+
+ ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
+ BUG_ON(ret);
+ }
+next:
+ if (!upper->pending)
+ drop_node_buffer(upper);
+ else
+ unlock_node_buffer(upper);
+ if (err)
+ break;
+ }
+
+ if (!err && node->pending) {
+ drop_node_buffer(node);
+ list_move_tail(&node->list, &rc->backref_cache.changed);
+ node->pending = 0;
+ }
+
+ path->lowest_level = 0;
+ BUG_ON(err == -ENOSPC);
+ return err;
+}
+
+static int link_to_upper(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct backref_node *node,
+ struct btrfs_path *path)
+{
+ struct btrfs_key key;
+
+ btrfs_node_key_to_cpu(node->eb, &key, 0);
+ return do_relocation(trans, rc, node, &key, path, 0);
+}
+
+static int finish_pending_nodes(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct btrfs_path *path, int err)
+{
+ LIST_HEAD(list);
+ struct backref_cache *cache = &rc->backref_cache;
+ struct backref_node *node;
+ int level;
+ int ret;
+
+ for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
+ while (!list_empty(&cache->pending[level])) {
+ node = list_entry(cache->pending[level].next,
+ struct backref_node, list);
+ list_move_tail(&node->list, &list);
+ BUG_ON(!node->pending);
+
+ if (!err) {
+ ret = link_to_upper(trans, rc, node, path);
+ if (ret < 0)
+ err = ret;
+ }
+ }
+ list_splice_init(&list, &cache->pending[level]);
+ }
+ return err;
+}
+
+static void mark_block_processed(struct reloc_control *rc,
+ u64 bytenr, u32 blocksize)
+{
+ set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
+ EXTENT_DIRTY, GFP_NOFS);
+}
+
+static void __mark_block_processed(struct reloc_control *rc,
+ struct backref_node *node)
+{
+ u32 blocksize;
+ if (node->level == 0 ||
+ in_block_group(node->bytenr, rc->block_group)) {
+ blocksize = btrfs_level_size(rc->extent_root, node->level);
+ mark_block_processed(rc, node->bytenr, blocksize);
+ }
+ node->processed = 1;
+}
+
+/*
+ * mark a block and all blocks directly/indirectly reference the block
+ * as processed.
+ */
+static void update_processed_blocks(struct reloc_control *rc,
+ struct backref_node *node)
+{
+ struct backref_node *next = node;
+ struct backref_edge *edge;
+ struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
+ int index = 0;
+
+ while (next) {
+ cond_resched();
+ while (1) {
+ if (next->processed)
+ break;
+
+ __mark_block_processed(rc, next);
+
+ if (list_empty(&next->upper))
+ break;
+
+ edge = list_entry(next->upper.next,
+ struct backref_edge, list[LOWER]);
+ edges[index++] = edge;
+ next = edge->node[UPPER];
+ }
+ next = walk_down_backref(edges, &index);
+ }
+}
+
+static int tree_block_processed(u64 bytenr, u32 blocksize,
+ struct reloc_control *rc)
+{
+ if (test_range_bit(&rc->processed_blocks, bytenr,
+ bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
+ return 1;
+ return 0;
+}
+
+static int get_tree_block_key(struct reloc_control *rc,
+ struct tree_block *block)
+{
+ struct extent_buffer *eb;
+
+ BUG_ON(block->key_ready);
+ eb = read_tree_block(rc->extent_root, block->bytenr,
+ block->key.objectid, block->key.offset);
+ BUG_ON(!eb);
+ WARN_ON(btrfs_header_level(eb) != block->level);
+ if (block->level == 0)
+ btrfs_item_key_to_cpu(eb, &block->key, 0);
+ else
+ btrfs_node_key_to_cpu(eb, &block->key, 0);
+ free_extent_buffer(eb);
+ block->key_ready = 1;
+ return 0;
+}
+
+static int reada_tree_block(struct reloc_control *rc,
+ struct tree_block *block)
+{
+ BUG_ON(block->key_ready);
+ readahead_tree_block(rc->extent_root, block->bytenr,
+ block->key.objectid, block->key.offset);
+ return 0;
+}
+
+/*
+ * helper function to relocate a tree block
+ */
+static int relocate_tree_block(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc,
+ struct backref_node *node,
+ struct btrfs_key *key,
+ struct btrfs_path *path)
+{
+ struct btrfs_root *root;
+ int release = 0;
+ int ret = 0;
+
+ if (!node)
+ return 0;
+
+ BUG_ON(node->processed);
+ root = select_one_root(trans, node);
+ if (root == ERR_PTR(-ENOENT)) {
+ update_processed_blocks(rc, node);
+ goto out;
+ }
+
+ if (!root || root->ref_cows) {
+ ret = reserve_metadata_space(trans, rc, node);
+ if (ret)
+ goto out;
+ release = 1;
+ }
+
+ if (root) {
+ if (root->ref_cows) {
+ BUG_ON(node->new_bytenr);
+ BUG_ON(!list_empty(&node->list));
+ btrfs_record_root_in_trans(trans, root);
+ root = root->reloc_root;
+ node->new_bytenr = root->node->start;
+ node->root = root;
+ list_add_tail(&node->list, &rc->backref_cache.changed);
+ } else {
+ path->lowest_level = node->level;
+ ret = btrfs_search_slot(trans, root, key, path, 0, 1);
+ btrfs_release_path(path);
+ if (ret > 0)
+ ret = 0;
+ }
+ if (!ret)
+ update_processed_blocks(rc, node);
+ } else {
+ ret = do_relocation(trans, rc, node, key, path, 1);
+ }
+out:
+ if (ret || node->level == 0 || node->cowonly) {
+ if (release)
+ release_metadata_space(rc, node);
+ remove_backref_node(&rc->backref_cache, node);
+ }
+ return ret;
+}
+
+/*
+ * relocate a list of blocks
+ */
+static noinline_for_stack
+int relocate_tree_blocks(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc, struct rb_root *blocks)
+{
+ struct backref_node *node;
+ struct btrfs_path *path;
+ struct tree_block *block;
+ struct rb_node *rb_node;
+ int ret;
+ int err = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ rb_node = rb_first(blocks);
+ while (rb_node) {
+ block = rb_entry(rb_node, struct tree_block, rb_node);
+ if (!block->key_ready)
+ reada_tree_block(rc, block);
+ rb_node = rb_next(rb_node);
+ }
+
+ rb_node = rb_first(blocks);
+ while (rb_node) {
+ block = rb_entry(rb_node, struct tree_block, rb_node);
+ if (!block->key_ready)
+ get_tree_block_key(rc, block);
+ rb_node = rb_next(rb_node);
+ }
+
+ rb_node = rb_first(blocks);
+ while (rb_node) {
+ block = rb_entry(rb_node, struct tree_block, rb_node);
+
+ node = build_backref_tree(rc, &block->key,
+ block->level, block->bytenr);
+ if (IS_ERR(node)) {
+ err = PTR_ERR(node);
+ goto out;
+ }
+
+ ret = relocate_tree_block(trans, rc, node, &block->key,
+ path);
+ if (ret < 0) {
+ if (ret != -EAGAIN || rb_node == rb_first(blocks))
+ err = ret;
+ goto out;
+ }
+ rb_node = rb_next(rb_node);
+ }
+out:
+ free_block_list(blocks);
+ err = finish_pending_nodes(trans, rc, path, err);
+
+ btrfs_free_path(path);
+ return err;
+}
+
+static noinline_for_stack
+int prealloc_file_extent_cluster(struct inode *inode,
+ struct file_extent_cluster *cluster)
+{
+ u64 alloc_hint = 0;
+ u64 start;
+ u64 end;
+ u64 offset = BTRFS_I(inode)->index_cnt;
+ u64 num_bytes;
+ int nr = 0;
+ int ret = 0;
+
+ BUG_ON(cluster->start != cluster->boundary[0]);
+ mutex_lock(&inode->i_mutex);
+
+ ret = btrfs_check_data_free_space(inode, cluster->end +
+ 1 - cluster->start);
+ if (ret)
+ goto out;
+
+ while (nr < cluster->nr) {
+ start = cluster->boundary[nr] - offset;
+ if (nr + 1 < cluster->nr)
+ end = cluster->boundary[nr + 1] - 1 - offset;
+ else
+ end = cluster->end - offset;
+
+ lock_extent(&BTRFS_I(inode)->io_tree, start, end);
+ num_bytes = end + 1 - start;
+ ret = btrfs_prealloc_file_range(inode, 0, start,
+ num_bytes, num_bytes,
+ end + 1, &alloc_hint);
+ unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
+ if (ret)
+ break;
+ nr++;
+ }
+ btrfs_free_reserved_data_space(inode, cluster->end +
+ 1 - cluster->start);
+out:
+ mutex_unlock(&inode->i_mutex);
+ return ret;
+}
+
+static noinline_for_stack
+int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
+ u64 block_start)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+ struct extent_map *em;
+ int ret = 0;
+
+ em = alloc_extent_map();
+ if (!em)
+ return -ENOMEM;
+
+ em->start = start;
+ em->len = end + 1 - start;
+ em->block_len = em->len;
+ em->block_start = block_start;
+ em->bdev = root->fs_info->fs_devices->latest_bdev;
+ set_bit(EXTENT_FLAG_PINNED, &em->flags);
+
+ lock_extent(&BTRFS_I(inode)->io_tree, start, end);
+ while (1) {
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ write_unlock(&em_tree->lock);
+ if (ret != -EEXIST) {
+ free_extent_map(em);
+ break;
+ }
+ btrfs_drop_extent_cache(inode, start, end, 0);
+ }
+ unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
+ return ret;
+}
+
+static int relocate_file_extent_cluster(struct inode *inode,
+ struct file_extent_cluster *cluster)
+{
+ u64 page_start;
+ u64 page_end;
+ u64 offset = BTRFS_I(inode)->index_cnt;
+ unsigned long index;
+ unsigned long last_index;
+ struct page *page;
+ struct file_ra_state *ra;
+ gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
+ int nr = 0;
+ int ret = 0;
+
+ if (!cluster->nr)
+ return 0;
+
+ ra = kzalloc(sizeof(*ra), GFP_NOFS);
+ if (!ra)
+ return -ENOMEM;
+
+ ret = prealloc_file_extent_cluster(inode, cluster);
+ if (ret)
+ goto out;
+
+ file_ra_state_init(ra, inode->i_mapping);
+
+ ret = setup_extent_mapping(inode, cluster->start - offset,
+ cluster->end - offset, cluster->start);
+ if (ret)
+ goto out;
+
+ index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
+ last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
+ while (index <= last_index) {
+ ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
+ if (ret)
+ goto out;
+
+ page = find_lock_page(inode->i_mapping, index);
+ if (!page) {
+ page_cache_sync_readahead(inode->i_mapping,
+ ra, NULL, index,
+ last_index + 1 - index);
+ page = find_or_create_page(inode->i_mapping, index,
+ mask);
+ if (!page) {
+ btrfs_delalloc_release_metadata(inode,
+ PAGE_CACHE_SIZE);
+ ret = -ENOMEM;
+ goto out;
+ }
+ }
+
+ if (PageReadahead(page)) {
+ page_cache_async_readahead(inode->i_mapping,
+ ra, NULL, page, index,
+ last_index + 1 - index);
+ }
+
+ if (!PageUptodate(page)) {
+ btrfs_readpage(NULL, page);
+ lock_page(page);
+ if (!PageUptodate(page)) {
+ unlock_page(page);
+ page_cache_release(page);
+ btrfs_delalloc_release_metadata(inode,
+ PAGE_CACHE_SIZE);
+ ret = -EIO;
+ goto out;
+ }
+ }
+
+ page_start = (u64)page->index << PAGE_CACHE_SHIFT;
+ page_end = page_start + PAGE_CACHE_SIZE - 1;
+
+ lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
+
+ set_page_extent_mapped(page);
+
+ if (nr < cluster->nr &&
+ page_start + offset == cluster->boundary[nr]) {
+ set_extent_bits(&BTRFS_I(inode)->io_tree,
+ page_start, page_end,
+ EXTENT_BOUNDARY, GFP_NOFS);
+ nr++;
+ }
+
+ btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
+ set_page_dirty(page);
+
+ unlock_extent(&BTRFS_I(inode)->io_tree,
+ page_start, page_end);
+ unlock_page(page);
+ page_cache_release(page);
+
+ index++;
+ balance_dirty_pages_ratelimited(inode->i_mapping);
+ btrfs_throttle(BTRFS_I(inode)->root);
+ }
+ WARN_ON(nr != cluster->nr);
+out:
+ kfree(ra);
+ return ret;
+}
+
+static noinline_for_stack
+int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
+ struct file_extent_cluster *cluster)
+{
+ int ret;
+
+ if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
+ ret = relocate_file_extent_cluster(inode, cluster);
+ if (ret)
+ return ret;
+ cluster->nr = 0;
+ }
+
+ if (!cluster->nr)
+ cluster->start = extent_key->objectid;
+ else
+ BUG_ON(cluster->nr >= MAX_EXTENTS);
+ cluster->end = extent_key->objectid + extent_key->offset - 1;
+ cluster->boundary[cluster->nr] = extent_key->objectid;
+ cluster->nr++;
+
+ if (cluster->nr >= MAX_EXTENTS) {
+ ret = relocate_file_extent_cluster(inode, cluster);
+ if (ret)
+ return ret;
+ cluster->nr = 0;
+ }
+ return 0;
+}
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+static int get_ref_objectid_v0(struct reloc_control *rc,
+ struct btrfs_path *path,
+ struct btrfs_key *extent_key,
+ u64 *ref_objectid, int *path_change)
+{
+ struct btrfs_key key;
+ struct extent_buffer *leaf;
+ struct btrfs_extent_ref_v0 *ref0;
+ int ret;
+ int slot;
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ while (1) {
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(rc->extent_root, path);
+ if (ret < 0)
+ return ret;
+ BUG_ON(ret > 0);
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ if (path_change)
+ *path_change = 1;
+ }
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+ if (key.objectid != extent_key->objectid)
+ return -ENOENT;
+
+ if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
+ slot++;
+ continue;
+ }
+ ref0 = btrfs_item_ptr(leaf, slot,
+ struct btrfs_extent_ref_v0);
+ *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
+ break;
+ }
+ return 0;
+}
+#endif
+
+/*
+ * helper to add a tree block to the list.
+ * the major work is getting the generation and level of the block
+ */
+static int add_tree_block(struct reloc_control *rc,
+ struct btrfs_key *extent_key,
+ struct btrfs_path *path,
+ struct rb_root *blocks)
+{
+ struct extent_buffer *eb;
+ struct btrfs_extent_item *ei;
+ struct btrfs_tree_block_info *bi;
+ struct tree_block *block;
+ struct rb_node *rb_node;
+ u32 item_size;
+ int level = -1;
+ int generation;
+
+ eb = path->nodes[0];
+ item_size = btrfs_item_size_nr(eb, path->slots[0]);
+
+ if (item_size >= sizeof(*ei) + sizeof(*bi)) {
+ ei = btrfs_item_ptr(eb, path->slots[0],
+ struct btrfs_extent_item);
+ bi = (struct btrfs_tree_block_info *)(ei + 1);
+ generation = btrfs_extent_generation(eb, ei);
+ level = btrfs_tree_block_level(eb, bi);
+ } else {
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ u64 ref_owner;
+ int ret;
+
+ BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
+ ret = get_ref_objectid_v0(rc, path, extent_key,
+ &ref_owner, NULL);
+ if (ret < 0)
+ return ret;
+ BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
+ level = (int)ref_owner;
+ /* FIXME: get real generation */
+ generation = 0;
+#else
+ BUG();
+#endif
+ }
+
+ btrfs_release_path(path);
+
+ BUG_ON(level == -1);
+
+ block = kmalloc(sizeof(*block), GFP_NOFS);
+ if (!block)
+ return -ENOMEM;
+
+ block->bytenr = extent_key->objectid;
+ block->key.objectid = extent_key->offset;
+ block->key.offset = generation;
+ block->level = level;
+ block->key_ready = 0;
+
+ rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
+ if (rb_node)
+ backref_tree_panic(rb_node, -EEXIST, block->bytenr);
+
+ return 0;
+}
+
+/*
+ * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
+ */
+static int __add_tree_block(struct reloc_control *rc,
+ u64 bytenr, u32 blocksize,
+ struct rb_root *blocks)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret;
+
+ if (tree_block_processed(bytenr, blocksize, rc))
+ return 0;
+
+ if (tree_search(blocks, bytenr))
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = bytenr;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = blocksize;
+
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+ ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ BUG_ON(ret);
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ ret = add_tree_block(rc, &key, path, blocks);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * helper to check if the block use full backrefs for pointers in it
+ */
+static int block_use_full_backref(struct reloc_control *rc,
+ struct extent_buffer *eb)
+{
+ u64 flags;
+ int ret;
+
+ if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
+ btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
+ return 1;
+
+ ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
+ eb->start, eb->len, NULL, &flags);
+ BUG_ON(ret);
+
+ if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
+ ret = 1;
+ else
+ ret = 0;
+ return ret;
+}
+
+static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
+ struct inode *inode, u64 ino)
+{
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct btrfs_root *root = fs_info->tree_root;
+ struct btrfs_trans_handle *trans;
+ unsigned long nr;
+ int ret = 0;
+
+ if (inode)
+ goto truncate;
+
+ key.objectid = ino;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+
+ inode = btrfs_iget(fs_info->sb, &key, root, NULL);
+ if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
+ if (inode && !IS_ERR(inode))
+ iput(inode);
+ return -ENOENT;
+ }
+
+truncate:
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans)) {
+ btrfs_free_path(path);
+ ret = PTR_ERR(trans);
+ goto out;
+ }
+
+ ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
+
+ btrfs_free_path(path);
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ btrfs_btree_balance_dirty(root, nr);
+out:
+ iput(inode);
+ return ret;
+}
+
+/*
+ * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
+ * this function scans fs tree to find blocks reference the data extent
+ */
+static int find_data_references(struct reloc_control *rc,
+ struct btrfs_key *extent_key,
+ struct extent_buffer *leaf,
+ struct btrfs_extent_data_ref *ref,
+ struct rb_root *blocks)
+{
+ struct btrfs_path *path;
+ struct tree_block *block;
+ struct btrfs_root *root;
+ struct btrfs_file_extent_item *fi;
+ struct rb_node *rb_node;
+ struct btrfs_key key;
+ u64 ref_root;
+ u64 ref_objectid;
+ u64 ref_offset;
+ u32 ref_count;
+ u32 nritems;
+ int err = 0;
+ int added = 0;
+ int counted;
+ int ret;
+
+ ref_root = btrfs_extent_data_ref_root(leaf, ref);
+ ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
+ ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
+ ref_count = btrfs_extent_data_ref_count(leaf, ref);
+
+ /*
+ * This is an extent belonging to the free space cache, lets just delete
+ * it and redo the search.
+ */
+ if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
+ ret = delete_block_group_cache(rc->extent_root->fs_info,
+ NULL, ref_objectid);
+ if (ret != -ENOENT)
+ return ret;
+ ret = 0;
+ }
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = 1;
+
+ root = read_fs_root(rc->extent_root->fs_info, ref_root);
+ if (IS_ERR(root)) {
+ err = PTR_ERR(root);
+ goto out;
+ }
+
+ key.objectid = ref_objectid;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ if (ref_offset > ((u64)-1 << 32))
+ key.offset = 0;
+ else
+ key.offset = ref_offset;
+
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ /*
+ * the references in tree blocks that use full backrefs
+ * are not counted in
+ */
+ if (block_use_full_backref(rc, leaf))
+ counted = 0;
+ else
+ counted = 1;
+ rb_node = tree_search(blocks, leaf->start);
+ if (rb_node) {
+ if (counted)
+ added = 1;
+ else
+ path->slots[0] = nritems;
+ }
+
+ while (ref_count > 0) {
+ while (path->slots[0] >= nritems) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret > 0) {
+ WARN_ON(1);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ added = 0;
+
+ if (block_use_full_backref(rc, leaf))
+ counted = 0;
+ else
+ counted = 1;
+ rb_node = tree_search(blocks, leaf->start);
+ if (rb_node) {
+ if (counted)
+ added = 1;
+ else
+ path->slots[0] = nritems;
+ }
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.objectid != ref_objectid ||
+ key.type != BTRFS_EXTENT_DATA_KEY) {
+ WARN_ON(1);
+ break;
+ }
+
+ fi = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+
+ if (btrfs_file_extent_type(leaf, fi) ==
+ BTRFS_FILE_EXTENT_INLINE)
+ goto next;
+
+ if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
+ extent_key->objectid)
+ goto next;
+
+ key.offset -= btrfs_file_extent_offset(leaf, fi);
+ if (key.offset != ref_offset)
+ goto next;
+
+ if (counted)
+ ref_count--;
+ if (added)
+ goto next;
+
+ if (!tree_block_processed(leaf->start, leaf->len, rc)) {
+ block = kmalloc(sizeof(*block), GFP_NOFS);
+ if (!block) {
+ err = -ENOMEM;
+ break;
+ }
+ block->bytenr = leaf->start;
+ btrfs_item_key_to_cpu(leaf, &block->key, 0);
+ block->level = 0;
+ block->key_ready = 1;
+ rb_node = tree_insert(blocks, block->bytenr,
+ &block->rb_node);
+ if (rb_node)
+ backref_tree_panic(rb_node, -EEXIST,
+ block->bytenr);
+ }
+ if (counted)
+ added = 1;
+ else
+ path->slots[0] = nritems;
+next:
+ path->slots[0]++;
+
+ }
+out:
+ btrfs_free_path(path);
+ return err;
+}
+
+/*
+ * hepler to find all tree blocks that reference a given data extent
+ */
+static noinline_for_stack
+int add_data_references(struct reloc_control *rc,
+ struct btrfs_key *extent_key,
+ struct btrfs_path *path,
+ struct rb_root *blocks)
+{
+ struct btrfs_key key;
+ struct extent_buffer *eb;
+ struct btrfs_extent_data_ref *dref;
+ struct btrfs_extent_inline_ref *iref;
+ unsigned long ptr;
+ unsigned long end;
+ u32 blocksize = btrfs_level_size(rc->extent_root, 0);
+ int ret;
+ int err = 0;
+
+ eb = path->nodes[0];
+ ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
+ end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
+ ptr = end;
+ else
+#endif
+ ptr += sizeof(struct btrfs_extent_item);
+
+ while (ptr < end) {
+ iref = (struct btrfs_extent_inline_ref *)ptr;
+ key.type = btrfs_extent_inline_ref_type(eb, iref);
+ if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+ key.offset = btrfs_extent_inline_ref_offset(eb, iref);
+ ret = __add_tree_block(rc, key.offset, blocksize,
+ blocks);
+ } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+ dref = (struct btrfs_extent_data_ref *)(&iref->offset);
+ ret = find_data_references(rc, extent_key,
+ eb, dref, blocks);
+ } else {
+ BUG();
+ }
+ ptr += btrfs_extent_inline_ref_size(key.type);
+ }
+ WARN_ON(ptr > end);
+
+ while (1) {
+ cond_resched();
+ eb = path->nodes[0];
+ if (path->slots[0] >= btrfs_header_nritems(eb)) {
+ ret = btrfs_next_leaf(rc->extent_root, path);
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+ if (ret > 0)
+ break;
+ eb = path->nodes[0];
+ }
+
+ btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
+ if (key.objectid != extent_key->objectid)
+ break;
+
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
+ key.type == BTRFS_EXTENT_REF_V0_KEY) {
+#else
+ BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
+ if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
+#endif
+ ret = __add_tree_block(rc, key.offset, blocksize,
+ blocks);
+ } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
+ dref = btrfs_item_ptr(eb, path->slots[0],
+ struct btrfs_extent_data_ref);
+ ret = find_data_references(rc, extent_key,
+ eb, dref, blocks);
+ } else {
+ ret = 0;
+ }
+ if (ret) {
+ err = ret;
+ break;
+ }
+ path->slots[0]++;
+ }
+ btrfs_release_path(path);
+ if (err)
+ free_block_list(blocks);
+ return err;
+}
+
+/*
+ * hepler to find next unprocessed extent
+ */
+static noinline_for_stack
+int find_next_extent(struct btrfs_trans_handle *trans,
+ struct reloc_control *rc, struct btrfs_path *path,
+ struct btrfs_key *extent_key)
+{
+ struct btrfs_key key;
+ struct extent_buffer *leaf;
+ u64 start, end, last;
+ int ret;
+
+ last = rc->block_group->key.objectid + rc->block_group->key.offset;
+ while (1) {
+ cond_resched();
+ if (rc->search_start >= last) {
+ ret = 1;
+ break;
+ }
+
+ key.objectid = rc->search_start;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = 0;
+
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+ ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
+ 0, 0);
+ if (ret < 0)
+ break;
+next:
+ leaf = path->nodes[0];
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(rc->extent_root, path);
+ if (ret != 0)
+ break;
+ leaf = path->nodes[0];
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.objectid >= last) {
+ ret = 1;
+ break;
+ }
+
+ if (key.type != BTRFS_EXTENT_ITEM_KEY ||
+ key.objectid + key.offset <= rc->search_start) {
+ path->slots[0]++;
+ goto next;
+ }
+
+ ret = find_first_extent_bit(&rc->processed_blocks,
+ key.objectid, &start, &end,
+ EXTENT_DIRTY);
+
+ if (ret == 0 && start <= key.objectid) {
+ btrfs_release_path(path);
+ rc->search_start = end + 1;
+ } else {
+ rc->search_start = key.objectid + key.offset;
+ memcpy(extent_key, &key, sizeof(key));
+ return 0;
+ }
+ }
+ btrfs_release_path(path);
+ return ret;
+}
+
+static void set_reloc_control(struct reloc_control *rc)
+{
+ struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
+
+ mutex_lock(&fs_info->reloc_mutex);
+ fs_info->reloc_ctl = rc;
+ mutex_unlock(&fs_info->reloc_mutex);
+}
+
+static void unset_reloc_control(struct reloc_control *rc)
+{
+ struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
+
+ mutex_lock(&fs_info->reloc_mutex);
+ fs_info->reloc_ctl = NULL;
+ mutex_unlock(&fs_info->reloc_mutex);
+}
+
+static int check_extent_flags(u64 flags)
+{
+ if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
+ (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
+ return 1;
+ if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
+ !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
+ return 1;
+ if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
+ (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
+ return 1;
+ return 0;
+}
+
+static noinline_for_stack
+int prepare_to_relocate(struct reloc_control *rc)
+{
+ struct btrfs_trans_handle *trans;
+ int ret;
+
+ rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
+ if (!rc->block_rsv)
+ return -ENOMEM;
+
+ /*
+ * reserve some space for creating reloc trees.
+ * btrfs_init_reloc_root will use them when there
+ * is no reservation in transaction handle.
+ */
+ ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
+ rc->extent_root->nodesize * 256);
+ if (ret)
+ return ret;
+
+ memset(&rc->cluster, 0, sizeof(rc->cluster));
+ rc->search_start = rc->block_group->key.objectid;
+ rc->extents_found = 0;
+ rc->nodes_relocated = 0;
+ rc->merging_rsv_size = 0;
+
+ rc->create_reloc_tree = 1;
+ set_reloc_control(rc);
+
+ trans = btrfs_join_transaction(rc->extent_root);
+ BUG_ON(IS_ERR(trans));
+ btrfs_commit_transaction(trans, rc->extent_root);
+ return 0;
+}
+
+static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
+{
+ struct rb_root blocks = RB_ROOT;
+ struct btrfs_key key;
+ struct btrfs_trans_handle *trans = NULL;
+ struct btrfs_path *path;
+ struct btrfs_extent_item *ei;
+ unsigned long nr;
+ u64 flags;
+ u32 item_size;
+ int ret;
+ int err = 0;
+ int progress = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = 1;
+
+ ret = prepare_to_relocate(rc);
+ if (ret) {
+ err = ret;
+ goto out_free;
+ }
+
+ while (1) {
+ progress++;
+ trans = btrfs_start_transaction(rc->extent_root, 0);
+ BUG_ON(IS_ERR(trans));
+restart:
+ if (update_backref_cache(trans, &rc->backref_cache)) {
+ btrfs_end_transaction(trans, rc->extent_root);
+ continue;
+ }
+
+ ret = find_next_extent(trans, rc, path, &key);
+ if (ret < 0)
+ err = ret;
+ if (ret != 0)
+ break;
+
+ rc->extents_found++;
+
+ ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_extent_item);
+ item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
+ if (item_size >= sizeof(*ei)) {
+ flags = btrfs_extent_flags(path->nodes[0], ei);
+ ret = check_extent_flags(flags);
+ BUG_ON(ret);
+
+ } else {
+#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
+ u64 ref_owner;
+ int path_change = 0;
+
+ BUG_ON(item_size !=
+ sizeof(struct btrfs_extent_item_v0));
+ ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
+ &path_change);
+ if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
+ flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
+ else
+ flags = BTRFS_EXTENT_FLAG_DATA;
+
+ if (path_change) {
+ btrfs_release_path(path);
+
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+ ret = btrfs_search_slot(NULL, rc->extent_root,
+ &key, path, 0, 0);
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+ BUG_ON(ret > 0);
+ }
+#else
+ BUG();
+#endif
+ }
+
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ ret = add_tree_block(rc, &key, path, &blocks);
+ } else if (rc->stage == UPDATE_DATA_PTRS &&
+ (flags & BTRFS_EXTENT_FLAG_DATA)) {
+ ret = add_data_references(rc, &key, path, &blocks);
+ } else {
+ btrfs_release_path(path);
+ ret = 0;
+ }
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+
+ if (!RB_EMPTY_ROOT(&blocks)) {
+ ret = relocate_tree_blocks(trans, rc, &blocks);
+ if (ret < 0) {
+ if (ret != -EAGAIN) {
+ err = ret;
+ break;
+ }
+ rc->extents_found--;
+ rc->search_start = key.objectid;
+ }
+ }
+
+ ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
+ if (ret < 0) {
+ if (ret != -ENOSPC) {
+ err = ret;
+ WARN_ON(1);
+ break;
+ }
+ rc->commit_transaction = 1;
+ }
+
+ if (rc->commit_transaction) {
+ rc->commit_transaction = 0;
+ ret = btrfs_commit_transaction(trans, rc->extent_root);
+ BUG_ON(ret);
+ } else {
+ nr = trans->blocks_used;
+ btrfs_end_transaction_throttle(trans, rc->extent_root);
+ btrfs_btree_balance_dirty(rc->extent_root, nr);
+ }
+ trans = NULL;
+
+ if (rc->stage == MOVE_DATA_EXTENTS &&
+ (flags & BTRFS_EXTENT_FLAG_DATA)) {
+ rc->found_file_extent = 1;
+ ret = relocate_data_extent(rc->data_inode,
+ &key, &rc->cluster);
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+ }
+ }
+ if (trans && progress && err == -ENOSPC) {
+ ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
+ rc->block_group->flags);
+ if (ret == 0) {
+ err = 0;
+ progress = 0;
+ goto restart;
+ }
+ }
+
+ btrfs_release_path(path);
+ clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
+ GFP_NOFS);
+
+ if (trans) {
+ nr = trans->blocks_used;
+ btrfs_end_transaction_throttle(trans, rc->extent_root);
+ btrfs_btree_balance_dirty(rc->extent_root, nr);
+ }
+
+ if (!err) {
+ ret = relocate_file_extent_cluster(rc->data_inode,
+ &rc->cluster);
+ if (ret < 0)
+ err = ret;
+ }
+
+ rc->create_reloc_tree = 0;
+ set_reloc_control(rc);
+
+ backref_cache_cleanup(&rc->backref_cache);
+ btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
+
+ err = prepare_to_merge(rc, err);
+
+ merge_reloc_roots(rc);
+
+ rc->merge_reloc_tree = 0;
+ unset_reloc_control(rc);
+ btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
+
+ /* get rid of pinned extents */
+ trans = btrfs_join_transaction(rc->extent_root);
+ if (IS_ERR(trans))
+ err = PTR_ERR(trans);
+ else
+ btrfs_commit_transaction(trans, rc->extent_root);
+out_free:
+ btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
+ btrfs_free_path(path);
+ return err;
+}
+
+static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 objectid)
+{
+ struct btrfs_path *path;
+ struct btrfs_inode_item *item;
+ struct extent_buffer *leaf;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_insert_empty_inode(trans, root, path, objectid);
+ if (ret)
+ goto out;
+
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
+ memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
+ btrfs_set_inode_generation(leaf, item, 1);
+ btrfs_set_inode_size(leaf, item, 0);
+ btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
+ btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
+ BTRFS_INODE_PREALLOC);
+ btrfs_mark_buffer_dirty(leaf);
+ btrfs_release_path(path);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * helper to create inode for data relocation.
+ * the inode is in data relocation tree and its link count is 0
+ */
+static noinline_for_stack
+struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
+ struct btrfs_block_group_cache *group)
+{
+ struct inode *inode = NULL;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root;
+ struct btrfs_key key;
+ unsigned long nr;
+ u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
+ int err = 0;
+
+ root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
+ if (IS_ERR(root))
+ return ERR_CAST(root);
+
+ trans = btrfs_start_transaction(root, 6);
+ if (IS_ERR(trans))
+ return ERR_CAST(trans);
+
+ err = btrfs_find_free_objectid(root, &objectid);
+ if (err)
+ goto out;
+
+ err = __insert_orphan_inode(trans, root, objectid);
+ BUG_ON(err);
+
+ key.objectid = objectid;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+ inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
+ BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
+ BTRFS_I(inode)->index_cnt = group->key.objectid;
+
+ err = btrfs_orphan_add(trans, inode);
+out:
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ btrfs_btree_balance_dirty(root, nr);
+ if (err) {
+ if (inode)
+ iput(inode);
+ inode = ERR_PTR(err);
+ }
+ return inode;
+}
+
+static struct reloc_control *alloc_reloc_control(void)
+{
+ struct reloc_control *rc;
+
+ rc = kzalloc(sizeof(*rc), GFP_NOFS);
+ if (!rc)
+ return NULL;
+
+ INIT_LIST_HEAD(&rc->reloc_roots);
+ backref_cache_init(&rc->backref_cache);
+ mapping_tree_init(&rc->reloc_root_tree);
+ extent_io_tree_init(&rc->processed_blocks, NULL);
+ return rc;
+}
+
+/*
+ * function to relocate all extents in a block group.
+ */
+int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
+{
+ struct btrfs_fs_info *fs_info = extent_root->fs_info;
+ struct reloc_control *rc;
+ struct inode *inode;
+ struct btrfs_path *path;
+ int ret;
+ int rw = 0;
+ int err = 0;
+
+ rc = alloc_reloc_control();
+ if (!rc)
+ return -ENOMEM;
+
+ rc->extent_root = extent_root;
+
+ rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
+ BUG_ON(!rc->block_group);
+
+ if (!rc->block_group->ro) {
+ ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
+ if (ret) {
+ err = ret;
+ goto out;
+ }
+ rw = 1;
+ }
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
+ path);
+ btrfs_free_path(path);
+
+ if (!IS_ERR(inode))
+ ret = delete_block_group_cache(fs_info, inode, 0);
+ else
+ ret = PTR_ERR(inode);
+
+ if (ret && ret != -ENOENT) {
+ err = ret;
+ goto out;
+ }
+
+ rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
+ if (IS_ERR(rc->data_inode)) {
+ err = PTR_ERR(rc->data_inode);
+ rc->data_inode = NULL;
+ goto out;
+ }
+
+ printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
+ (unsigned long long)rc->block_group->key.objectid,
+ (unsigned long long)rc->block_group->flags);
+
+ btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
+ btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
+
+ while (1) {
+ mutex_lock(&fs_info->cleaner_mutex);
+
+ btrfs_clean_old_snapshots(fs_info->tree_root);
+ ret = relocate_block_group(rc);
+
+ mutex_unlock(&fs_info->cleaner_mutex);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+
+ if (rc->extents_found == 0)
+ break;
+
+ printk(KERN_INFO "btrfs: found %llu extents\n",
+ (unsigned long long)rc->extents_found);
+
+ if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
+ btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
+ invalidate_mapping_pages(rc->data_inode->i_mapping,
+ 0, -1);
+ rc->stage = UPDATE_DATA_PTRS;
+ }
+ }
+
+ filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
+ rc->block_group->key.objectid,
+ rc->block_group->key.objectid +
+ rc->block_group->key.offset - 1);
+
+ WARN_ON(rc->block_group->pinned > 0);
+ WARN_ON(rc->block_group->reserved > 0);
+ WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
+out:
+ if (err && rw)
+ btrfs_set_block_group_rw(extent_root, rc->block_group);
+ iput(rc->data_inode);
+ btrfs_put_block_group(rc->block_group);
+ kfree(rc);
+ return err;
+}
+
+static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
+{
+ struct btrfs_trans_handle *trans;
+ int ret, err;
+
+ trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ memset(&root->root_item.drop_progress, 0,
+ sizeof(root->root_item.drop_progress));
+ root->root_item.drop_level = 0;
+ btrfs_set_root_refs(&root->root_item, 0);
+ ret = btrfs_update_root(trans, root->fs_info->tree_root,
+ &root->root_key, &root->root_item);
+
+ err = btrfs_end_transaction(trans, root->fs_info->tree_root);
+ if (err)
+ return err;
+ return ret;
+}
+
+/*
+ * recover relocation interrupted by system crash.
+ *
+ * this function resumes merging reloc trees with corresponding fs trees.
+ * this is important for keeping the sharing of tree blocks
+ */
+int btrfs_recover_relocation(struct btrfs_root *root)
+{
+ LIST_HEAD(reloc_roots);
+ struct btrfs_key key;
+ struct btrfs_root *fs_root;
+ struct btrfs_root *reloc_root;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct reloc_control *rc = NULL;
+ struct btrfs_trans_handle *trans;
+ int ret;
+ int err = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = -1;
+
+ key.objectid = BTRFS_TREE_RELOC_OBJECTID;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = (u64)-1;
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
+ path, 0, 0);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ if (ret > 0) {
+ if (path->slots[0] == 0)
+ break;
+ path->slots[0]--;
+ }
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ btrfs_release_path(path);
+
+ if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
+ key.type != BTRFS_ROOT_ITEM_KEY)
+ break;
+
+ reloc_root = btrfs_read_fs_root_no_radix(root, &key);
+ if (IS_ERR(reloc_root)) {
+ err = PTR_ERR(reloc_root);
+ goto out;
+ }
+
+ list_add(&reloc_root->root_list, &reloc_roots);
+
+ if (btrfs_root_refs(&reloc_root->root_item) > 0) {
+ fs_root = read_fs_root(root->fs_info,
+ reloc_root->root_key.offset);
+ if (IS_ERR(fs_root)) {
+ ret = PTR_ERR(fs_root);
+ if (ret != -ENOENT) {
+ err = ret;
+ goto out;
+ }
+ ret = mark_garbage_root(reloc_root);
+ if (ret < 0) {
+ err = ret;
+ goto out;
+ }
+ }
+ }
+
+ if (key.offset == 0)
+ break;
+
+ key.offset--;
+ }
+ btrfs_release_path(path);
+
+ if (list_empty(&reloc_roots))
+ goto out;
+
+ rc = alloc_reloc_control();
+ if (!rc) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ rc->extent_root = root->fs_info->extent_root;
+
+ set_reloc_control(rc);
+
+ trans = btrfs_join_transaction(rc->extent_root);
+ if (IS_ERR(trans)) {
+ unset_reloc_control(rc);
+ err = PTR_ERR(trans);
+ goto out_free;
+ }
+
+ rc->merge_reloc_tree = 1;
+
+ while (!list_empty(&reloc_roots)) {
+ reloc_root = list_entry(reloc_roots.next,
+ struct btrfs_root, root_list);
+ list_del(&reloc_root->root_list);
+
+ if (btrfs_root_refs(&reloc_root->root_item) == 0) {
+ list_add_tail(&reloc_root->root_list,
+ &rc->reloc_roots);
+ continue;
+ }
+
+ fs_root = read_fs_root(root->fs_info,
+ reloc_root->root_key.offset);
+ if (IS_ERR(fs_root)) {
+ err = PTR_ERR(fs_root);
+ goto out_free;
+ }
+
+ err = __add_reloc_root(reloc_root);
+ BUG_ON(err < 0); /* -ENOMEM or logic error */
+ fs_root->reloc_root = reloc_root;
+ }
+
+ err = btrfs_commit_transaction(trans, rc->extent_root);
+ if (err)
+ goto out_free;
+
+ merge_reloc_roots(rc);
+
+ unset_reloc_control(rc);
+
+ trans = btrfs_join_transaction(rc->extent_root);
+ if (IS_ERR(trans))
+ err = PTR_ERR(trans);
+ else
+ err = btrfs_commit_transaction(trans, rc->extent_root);
+out_free:
+ kfree(rc);
+out:
+ while (!list_empty(&reloc_roots)) {
+ reloc_root = list_entry(reloc_roots.next,
+ struct btrfs_root, root_list);
+ list_del(&reloc_root->root_list);
+ free_extent_buffer(reloc_root->node);
+ free_extent_buffer(reloc_root->commit_root);
+ kfree(reloc_root);
+ }
+ btrfs_free_path(path);
+
+ if (err == 0) {
+ /* cleanup orphan inode in data relocation tree */
+ fs_root = read_fs_root(root->fs_info,
+ BTRFS_DATA_RELOC_TREE_OBJECTID);
+ if (IS_ERR(fs_root))
+ err = PTR_ERR(fs_root);
+ else
+ err = btrfs_orphan_cleanup(fs_root);
+ }
+ return err;
+}
+
+/*
+ * helper to add ordered checksum for data relocation.
+ *
+ * cloning checksum properly handles the nodatasum extents.
+ * it also saves CPU time to re-calculate the checksum.
+ */
+int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
+{
+ struct btrfs_ordered_sum *sums;
+ struct btrfs_sector_sum *sector_sum;
+ struct btrfs_ordered_extent *ordered;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ size_t offset;
+ int ret;
+ u64 disk_bytenr;
+ LIST_HEAD(list);
+
+ ordered = btrfs_lookup_ordered_extent(inode, file_pos);
+ BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
+
+ disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
+ ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
+ disk_bytenr + len - 1, &list, 0);
+ if (ret)
+ goto out;
+
+ while (!list_empty(&list)) {
+ sums = list_entry(list.next, struct btrfs_ordered_sum, list);
+ list_del_init(&sums->list);
+
+ sector_sum = sums->sums;
+ sums->bytenr = ordered->start;
+
+ offset = 0;
+ while (offset < sums->len) {
+ sector_sum->bytenr += ordered->start - disk_bytenr;
+ sector_sum++;
+ offset += root->sectorsize;
+ }
+
+ btrfs_add_ordered_sum(inode, ordered, sums);
+ }
+out:
+ btrfs_put_ordered_extent(ordered);
+ return ret;
+}
+
+void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct extent_buffer *buf,
+ struct extent_buffer *cow)
+{
+ struct reloc_control *rc;
+ struct backref_node *node;
+ int first_cow = 0;
+ int level;
+ int ret;
+
+ rc = root->fs_info->reloc_ctl;
+ if (!rc)
+ return;
+
+ BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
+ root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
+
+ level = btrfs_header_level(buf);
+ if (btrfs_header_generation(buf) <=
+ btrfs_root_last_snapshot(&root->root_item))
+ first_cow = 1;
+
+ if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
+ rc->create_reloc_tree) {
+ WARN_ON(!first_cow && level == 0);
+
+ node = rc->backref_cache.path[level];
+ BUG_ON(node->bytenr != buf->start &&
+ node->new_bytenr != buf->start);
+
+ drop_node_buffer(node);
+ extent_buffer_get(cow);
+ node->eb = cow;
+ node->new_bytenr = cow->start;
+
+ if (!node->pending) {
+ list_move_tail(&node->list,
+ &rc->backref_cache.pending[level]);
+ node->pending = 1;
+ }
+
+ if (first_cow)
+ __mark_block_processed(rc, node);
+
+ if (first_cow && level > 0)
+ rc->nodes_relocated += buf->len;
+ }
+
+ if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
+ ret = replace_file_extents(trans, rc, root, cow);
+ BUG_ON(ret);
+ }
+}
+
+/*
+ * called before creating snapshot. it calculates metadata reservation
+ * requried for relocating tree blocks in the snapshot
+ */
+void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
+ struct btrfs_pending_snapshot *pending,
+ u64 *bytes_to_reserve)
+{
+ struct btrfs_root *root;
+ struct reloc_control *rc;
+
+ root = pending->root;
+ if (!root->reloc_root)
+ return;
+
+ rc = root->fs_info->reloc_ctl;
+ if (!rc->merge_reloc_tree)
+ return;
+
+ root = root->reloc_root;
+ BUG_ON(btrfs_root_refs(&root->root_item) == 0);
+ /*
+ * relocation is in the stage of merging trees. the space
+ * used by merging a reloc tree is twice the size of
+ * relocated tree nodes in the worst case. half for cowing
+ * the reloc tree, half for cowing the fs tree. the space
+ * used by cowing the reloc tree will be freed after the
+ * tree is dropped. if we create snapshot, cowing the fs
+ * tree may use more space than it frees. so we need
+ * reserve extra space.
+ */
+ *bytes_to_reserve += rc->nodes_relocated;
+}
+
+/*
+ * called after snapshot is created. migrate block reservation
+ * and create reloc root for the newly created snapshot
+ */
+int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
+ struct btrfs_pending_snapshot *pending)
+{
+ struct btrfs_root *root = pending->root;
+ struct btrfs_root *reloc_root;
+ struct btrfs_root *new_root;
+ struct reloc_control *rc;
+ int ret;
+
+ if (!root->reloc_root)
+ return 0;
+
+ rc = root->fs_info->reloc_ctl;
+ rc->merging_rsv_size += rc->nodes_relocated;
+
+ if (rc->merge_reloc_tree) {
+ ret = btrfs_block_rsv_migrate(&pending->block_rsv,
+ rc->block_rsv,
+ rc->nodes_relocated);
+ if (ret)
+ return ret;
+ }
+
+ new_root = pending->snap;
+ reloc_root = create_reloc_root(trans, root->reloc_root,
+ new_root->root_key.objectid);
+ if (IS_ERR(reloc_root))
+ return PTR_ERR(reloc_root);
+
+ ret = __add_reloc_root(reloc_root);
+ BUG_ON(ret < 0);
+ new_root->reloc_root = reloc_root;
+
+ if (rc->create_reloc_tree)
+ ret = clone_backref_node(trans, rc, root, reloc_root);
+ return ret;
+}
diff --git a/fs/btrfs/root-tree.c b/fs/btrfs/root-tree.c
new file mode 100644
index 00000000..24fb8ce4
--- /dev/null
+++ b/fs/btrfs/root-tree.c
@@ -0,0 +1,456 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include "ctree.h"
+#include "transaction.h"
+#include "disk-io.h"
+#include "print-tree.h"
+
+/*
+ * lookup the root with the highest offset for a given objectid. The key we do
+ * find is copied into 'key'. If we find something return 0, otherwise 1, < 0
+ * on error.
+ */
+int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
+ struct btrfs_root_item *item, struct btrfs_key *key)
+{
+ struct btrfs_path *path;
+ struct btrfs_key search_key;
+ struct btrfs_key found_key;
+ struct extent_buffer *l;
+ int ret;
+ int slot;
+
+ search_key.objectid = objectid;
+ search_key.type = BTRFS_ROOT_ITEM_KEY;
+ search_key.offset = (u64)-1;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+
+ BUG_ON(ret == 0);
+ if (path->slots[0] == 0) {
+ ret = 1;
+ goto out;
+ }
+ l = path->nodes[0];
+ slot = path->slots[0] - 1;
+ btrfs_item_key_to_cpu(l, &found_key, slot);
+ if (found_key.objectid != objectid ||
+ found_key.type != BTRFS_ROOT_ITEM_KEY) {
+ ret = 1;
+ goto out;
+ }
+ if (item)
+ read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
+ sizeof(*item));
+ if (key)
+ memcpy(key, &found_key, sizeof(found_key));
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+void btrfs_set_root_node(struct btrfs_root_item *item,
+ struct extent_buffer *node)
+{
+ btrfs_set_root_bytenr(item, node->start);
+ btrfs_set_root_level(item, btrfs_header_level(node));
+ btrfs_set_root_generation(item, btrfs_header_generation(node));
+}
+
+/*
+ * copy the data in 'item' into the btree
+ */
+int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
+ *root, struct btrfs_key *key, struct btrfs_root_item
+ *item)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *l;
+ int ret;
+ int slot;
+ unsigned long ptr;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_search_slot(trans, root, key, path, 0, 1);
+ if (ret < 0) {
+ btrfs_abort_transaction(trans, root, ret);
+ goto out;
+ }
+
+ if (ret != 0) {
+ btrfs_print_leaf(root, path->nodes[0]);
+ printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
+ (unsigned long long)key->objectid, key->type,
+ (unsigned long long)key->offset);
+ BUG_ON(1);
+ }
+
+ l = path->nodes[0];
+ slot = path->slots[0];
+ ptr = btrfs_item_ptr_offset(l, slot);
+ write_extent_buffer(l, item, ptr, sizeof(*item));
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct btrfs_key *key, struct btrfs_root_item *item)
+{
+ return btrfs_insert_item(trans, root, key, item, sizeof(*item));
+}
+
+/*
+ * at mount time we want to find all the old transaction snapshots that were in
+ * the process of being deleted if we crashed. This is any root item with an
+ * offset lower than the latest root. They need to be queued for deletion to
+ * finish what was happening when we crashed.
+ */
+int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
+{
+ struct btrfs_root *dead_root;
+ struct btrfs_root_item *ri;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_path *path;
+ int ret;
+ u32 nritems;
+ struct extent_buffer *leaf;
+ int slot;
+
+ key.objectid = objectid;
+ btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
+ key.offset = 0;
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+again:
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto err;
+ while (1) {
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ slot = path->slots[0];
+ if (slot >= nritems) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret)
+ break;
+ leaf = path->nodes[0];
+ nritems = btrfs_header_nritems(leaf);
+ slot = path->slots[0];
+ }
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+ if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
+ goto next;
+
+ if (key.objectid < objectid)
+ goto next;
+
+ if (key.objectid > objectid)
+ break;
+
+ ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
+ if (btrfs_disk_root_refs(leaf, ri) != 0)
+ goto next;
+
+ memcpy(&found_key, &key, sizeof(key));
+ key.offset++;
+ btrfs_release_path(path);
+ dead_root =
+ btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
+ &found_key);
+ if (IS_ERR(dead_root)) {
+ ret = PTR_ERR(dead_root);
+ goto err;
+ }
+
+ ret = btrfs_add_dead_root(dead_root);
+ if (ret)
+ goto err;
+ goto again;
+next:
+ slot++;
+ path->slots[0]++;
+ }
+ ret = 0;
+err:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
+{
+ struct extent_buffer *leaf;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key root_key;
+ struct btrfs_root *root;
+ int err = 0;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = BTRFS_ORPHAN_OBJECTID;
+ key.type = BTRFS_ORPHAN_ITEM_KEY;
+ key.offset = 0;
+
+ root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root_key.offset = (u64)-1;
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
+ if (ret < 0) {
+ err = ret;
+ break;
+ }
+
+ leaf = path->nodes[0];
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(tree_root, path);
+ if (ret < 0)
+ err = ret;
+ if (ret != 0)
+ break;
+ leaf = path->nodes[0];
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ btrfs_release_path(path);
+
+ if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
+ key.type != BTRFS_ORPHAN_ITEM_KEY)
+ break;
+
+ root_key.objectid = key.offset;
+ key.offset++;
+
+ root = btrfs_read_fs_root_no_name(tree_root->fs_info,
+ &root_key);
+ if (!IS_ERR(root))
+ continue;
+
+ ret = PTR_ERR(root);
+ if (ret != -ENOENT) {
+ err = ret;
+ break;
+ }
+
+ ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
+ if (ret) {
+ err = ret;
+ break;
+ }
+ }
+
+ btrfs_free_path(path);
+ return err;
+}
+
+/* drop the root item for 'key' from 'root' */
+int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+ struct btrfs_key *key)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct btrfs_root_item *ri;
+ struct extent_buffer *leaf;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ ret = btrfs_search_slot(trans, root, key, path, -1, 1);
+ if (ret < 0)
+ goto out;
+
+ BUG_ON(ret != 0);
+ leaf = path->nodes[0];
+ ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
+
+ ret = btrfs_del_item(trans, root, path);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *tree_root,
+ u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
+ const char *name, int name_len)
+
+{
+ struct btrfs_path *path;
+ struct btrfs_root_ref *ref;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ unsigned long ptr;
+ int err = 0;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = root_id;
+ key.type = BTRFS_ROOT_BACKREF_KEY;
+ key.offset = ref_id;
+again:
+ ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
+ BUG_ON(ret < 0);
+ if (ret == 0) {
+ leaf = path->nodes[0];
+ ref = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_root_ref);
+
+ WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
+ WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
+ ptr = (unsigned long)(ref + 1);
+ WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
+ *sequence = btrfs_root_ref_sequence(leaf, ref);
+
+ ret = btrfs_del_item(trans, tree_root, path);
+ if (ret) {
+ err = ret;
+ goto out;
+ }
+ } else
+ err = -ENOENT;
+
+ if (key.type == BTRFS_ROOT_BACKREF_KEY) {
+ btrfs_release_path(path);
+ key.objectid = ref_id;
+ key.type = BTRFS_ROOT_REF_KEY;
+ key.offset = root_id;
+ goto again;
+ }
+
+out:
+ btrfs_free_path(path);
+ return err;
+}
+
+int btrfs_find_root_ref(struct btrfs_root *tree_root,
+ struct btrfs_path *path,
+ u64 root_id, u64 ref_id)
+{
+ struct btrfs_key key;
+ int ret;
+
+ key.objectid = root_id;
+ key.type = BTRFS_ROOT_REF_KEY;
+ key.offset = ref_id;
+
+ ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
+ return ret;
+}
+
+/*
+ * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
+ * or BTRFS_ROOT_BACKREF_KEY.
+ *
+ * The dirid, sequence, name and name_len refer to the directory entry
+ * that is referencing the root.
+ *
+ * For a forward ref, the root_id is the id of the tree referencing
+ * the root and ref_id is the id of the subvol or snapshot.
+ *
+ * For a back ref the root_id is the id of the subvol or snapshot and
+ * ref_id is the id of the tree referencing it.
+ *
+ * Will return 0, -ENOMEM, or anything from the CoW path
+ */
+int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *tree_root,
+ u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
+ const char *name, int name_len)
+{
+ struct btrfs_key key;
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_root_ref *ref;
+ struct extent_buffer *leaf;
+ unsigned long ptr;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = root_id;
+ key.type = BTRFS_ROOT_BACKREF_KEY;
+ key.offset = ref_id;
+again:
+ ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
+ sizeof(*ref) + name_len);
+ if (ret) {
+ btrfs_abort_transaction(trans, tree_root, ret);
+ btrfs_free_path(path);
+ return ret;
+ }
+
+ leaf = path->nodes[0];
+ ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
+ btrfs_set_root_ref_dirid(leaf, ref, dirid);
+ btrfs_set_root_ref_sequence(leaf, ref, sequence);
+ btrfs_set_root_ref_name_len(leaf, ref, name_len);
+ ptr = (unsigned long)(ref + 1);
+ write_extent_buffer(leaf, name, ptr, name_len);
+ btrfs_mark_buffer_dirty(leaf);
+
+ if (key.type == BTRFS_ROOT_BACKREF_KEY) {
+ btrfs_release_path(path);
+ key.objectid = ref_id;
+ key.type = BTRFS_ROOT_REF_KEY;
+ key.offset = root_id;
+ goto again;
+ }
+
+ btrfs_free_path(path);
+ return 0;
+}
+
+/*
+ * Old btrfs forgets to init root_item->flags and root_item->byte_limit
+ * for subvolumes. To work around this problem, we steal a bit from
+ * root_item->inode_item->flags, and use it to indicate if those fields
+ * have been properly initialized.
+ */
+void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
+{
+ u64 inode_flags = le64_to_cpu(root_item->inode.flags);
+
+ if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
+ inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
+ root_item->inode.flags = cpu_to_le64(inode_flags);
+ root_item->flags = 0;
+ root_item->byte_limit = 0;
+ }
+}
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c
new file mode 100644
index 00000000..2f3d6f91
--- /dev/null
+++ b/fs/btrfs/scrub.c
@@ -0,0 +1,2440 @@
+/*
+ * Copyright (C) 2011 STRATO. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/ratelimit.h>
+#include "ctree.h"
+#include "volumes.h"
+#include "disk-io.h"
+#include "ordered-data.h"
+#include "transaction.h"
+#include "backref.h"
+#include "extent_io.h"
+#include "check-integrity.h"
+
+/*
+ * This is only the first step towards a full-features scrub. It reads all
+ * extent and super block and verifies the checksums. In case a bad checksum
+ * is found or the extent cannot be read, good data will be written back if
+ * any can be found.
+ *
+ * Future enhancements:
+ * - In case an unrepairable extent is encountered, track which files are
+ * affected and report them
+ * - track and record media errors, throw out bad devices
+ * - add a mode to also read unallocated space
+ */
+
+struct scrub_block;
+struct scrub_dev;
+
+#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
+#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
+#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
+
+struct scrub_page {
+ struct scrub_block *sblock;
+ struct page *page;
+ struct block_device *bdev;
+ u64 flags; /* extent flags */
+ u64 generation;
+ u64 logical;
+ u64 physical;
+ struct {
+ unsigned int mirror_num:8;
+ unsigned int have_csum:1;
+ unsigned int io_error:1;
+ };
+ u8 csum[BTRFS_CSUM_SIZE];
+};
+
+struct scrub_bio {
+ int index;
+ struct scrub_dev *sdev;
+ struct bio *bio;
+ int err;
+ u64 logical;
+ u64 physical;
+ struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
+ int page_count;
+ int next_free;
+ struct btrfs_work work;
+};
+
+struct scrub_block {
+ struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
+ int page_count;
+ atomic_t outstanding_pages;
+ atomic_t ref_count; /* free mem on transition to zero */
+ struct scrub_dev *sdev;
+ struct {
+ unsigned int header_error:1;
+ unsigned int checksum_error:1;
+ unsigned int no_io_error_seen:1;
+ };
+};
+
+struct scrub_dev {
+ struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
+ struct btrfs_device *dev;
+ int first_free;
+ int curr;
+ atomic_t in_flight;
+ atomic_t fixup_cnt;
+ spinlock_t list_lock;
+ wait_queue_head_t list_wait;
+ u16 csum_size;
+ struct list_head csum_list;
+ atomic_t cancel_req;
+ int readonly;
+ int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
+ u32 sectorsize;
+ u32 nodesize;
+ u32 leafsize;
+ /*
+ * statistics
+ */
+ struct btrfs_scrub_progress stat;
+ spinlock_t stat_lock;
+};
+
+struct scrub_fixup_nodatasum {
+ struct scrub_dev *sdev;
+ u64 logical;
+ struct btrfs_root *root;
+ struct btrfs_work work;
+ int mirror_num;
+};
+
+struct scrub_warning {
+ struct btrfs_path *path;
+ u64 extent_item_size;
+ char *scratch_buf;
+ char *msg_buf;
+ const char *errstr;
+ sector_t sector;
+ u64 logical;
+ struct btrfs_device *dev;
+ int msg_bufsize;
+ int scratch_bufsize;
+};
+
+
+static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
+static int scrub_setup_recheck_block(struct scrub_dev *sdev,
+ struct btrfs_mapping_tree *map_tree,
+ u64 length, u64 logical,
+ struct scrub_block *sblock);
+static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock, int is_metadata,
+ int have_csum, u8 *csum, u64 generation,
+ u16 csum_size);
+static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock,
+ int is_metadata, int have_csum,
+ const u8 *csum, u64 generation,
+ u16 csum_size);
+static void scrub_complete_bio_end_io(struct bio *bio, int err);
+static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int force_write);
+static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int page_num, int force_write);
+static int scrub_checksum_data(struct scrub_block *sblock);
+static int scrub_checksum_tree_block(struct scrub_block *sblock);
+static int scrub_checksum_super(struct scrub_block *sblock);
+static void scrub_block_get(struct scrub_block *sblock);
+static void scrub_block_put(struct scrub_block *sblock);
+static int scrub_add_page_to_bio(struct scrub_dev *sdev,
+ struct scrub_page *spage);
+static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
+ u64 physical, u64 flags, u64 gen, int mirror_num,
+ u8 *csum, int force);
+static void scrub_bio_end_io(struct bio *bio, int err);
+static void scrub_bio_end_io_worker(struct btrfs_work *work);
+static void scrub_block_complete(struct scrub_block *sblock);
+
+
+static void scrub_free_csums(struct scrub_dev *sdev)
+{
+ while (!list_empty(&sdev->csum_list)) {
+ struct btrfs_ordered_sum *sum;
+ sum = list_first_entry(&sdev->csum_list,
+ struct btrfs_ordered_sum, list);
+ list_del(&sum->list);
+ kfree(sum);
+ }
+}
+
+static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
+{
+ int i;
+
+ if (!sdev)
+ return;
+
+ /* this can happen when scrub is cancelled */
+ if (sdev->curr != -1) {
+ struct scrub_bio *sbio = sdev->bios[sdev->curr];
+
+ for (i = 0; i < sbio->page_count; i++) {
+ BUG_ON(!sbio->pagev[i]);
+ BUG_ON(!sbio->pagev[i]->page);
+ scrub_block_put(sbio->pagev[i]->sblock);
+ }
+ bio_put(sbio->bio);
+ }
+
+ for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
+ struct scrub_bio *sbio = sdev->bios[i];
+
+ if (!sbio)
+ break;
+ kfree(sbio);
+ }
+
+ scrub_free_csums(sdev);
+ kfree(sdev);
+}
+
+static noinline_for_stack
+struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
+{
+ struct scrub_dev *sdev;
+ int i;
+ struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
+ int pages_per_bio;
+
+ pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
+ bio_get_nr_vecs(dev->bdev));
+ sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
+ if (!sdev)
+ goto nomem;
+ sdev->dev = dev;
+ sdev->pages_per_bio = pages_per_bio;
+ sdev->curr = -1;
+ for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
+ struct scrub_bio *sbio;
+
+ sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
+ if (!sbio)
+ goto nomem;
+ sdev->bios[i] = sbio;
+
+ sbio->index = i;
+ sbio->sdev = sdev;
+ sbio->page_count = 0;
+ sbio->work.func = scrub_bio_end_io_worker;
+
+ if (i != SCRUB_BIOS_PER_DEV-1)
+ sdev->bios[i]->next_free = i + 1;
+ else
+ sdev->bios[i]->next_free = -1;
+ }
+ sdev->first_free = 0;
+ sdev->nodesize = dev->dev_root->nodesize;
+ sdev->leafsize = dev->dev_root->leafsize;
+ sdev->sectorsize = dev->dev_root->sectorsize;
+ atomic_set(&sdev->in_flight, 0);
+ atomic_set(&sdev->fixup_cnt, 0);
+ atomic_set(&sdev->cancel_req, 0);
+ sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
+ INIT_LIST_HEAD(&sdev->csum_list);
+
+ spin_lock_init(&sdev->list_lock);
+ spin_lock_init(&sdev->stat_lock);
+ init_waitqueue_head(&sdev->list_wait);
+ return sdev;
+
+nomem:
+ scrub_free_dev(sdev);
+ return ERR_PTR(-ENOMEM);
+}
+
+static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
+{
+ u64 isize;
+ u32 nlink;
+ int ret;
+ int i;
+ struct extent_buffer *eb;
+ struct btrfs_inode_item *inode_item;
+ struct scrub_warning *swarn = ctx;
+ struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
+ struct inode_fs_paths *ipath = NULL;
+ struct btrfs_root *local_root;
+ struct btrfs_key root_key;
+
+ root_key.objectid = root;
+ root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root_key.offset = (u64)-1;
+ local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
+ if (IS_ERR(local_root)) {
+ ret = PTR_ERR(local_root);
+ goto err;
+ }
+
+ ret = inode_item_info(inum, 0, local_root, swarn->path);
+ if (ret) {
+ btrfs_release_path(swarn->path);
+ goto err;
+ }
+
+ eb = swarn->path->nodes[0];
+ inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
+ struct btrfs_inode_item);
+ isize = btrfs_inode_size(eb, inode_item);
+ nlink = btrfs_inode_nlink(eb, inode_item);
+ btrfs_release_path(swarn->path);
+
+ ipath = init_ipath(4096, local_root, swarn->path);
+ if (IS_ERR(ipath)) {
+ ret = PTR_ERR(ipath);
+ ipath = NULL;
+ goto err;
+ }
+ ret = paths_from_inode(inum, ipath);
+
+ if (ret < 0)
+ goto err;
+
+ /*
+ * we deliberately ignore the bit ipath might have been too small to
+ * hold all of the paths here
+ */
+ for (i = 0; i < ipath->fspath->elem_cnt; ++i)
+ printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
+ "%s, sector %llu, root %llu, inode %llu, offset %llu, "
+ "length %llu, links %u (path: %s)\n", swarn->errstr,
+ swarn->logical, swarn->dev->name,
+ (unsigned long long)swarn->sector, root, inum, offset,
+ min(isize - offset, (u64)PAGE_SIZE), nlink,
+ (char *)(unsigned long)ipath->fspath->val[i]);
+
+ free_ipath(ipath);
+ return 0;
+
+err:
+ printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
+ "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
+ "resolving failed with ret=%d\n", swarn->errstr,
+ swarn->logical, swarn->dev->name,
+ (unsigned long long)swarn->sector, root, inum, offset, ret);
+
+ free_ipath(ipath);
+ return 0;
+}
+
+static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
+{
+ struct btrfs_device *dev = sblock->sdev->dev;
+ struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
+ struct btrfs_path *path;
+ struct btrfs_key found_key;
+ struct extent_buffer *eb;
+ struct btrfs_extent_item *ei;
+ struct scrub_warning swarn;
+ u32 item_size;
+ int ret;
+ u64 ref_root;
+ u8 ref_level;
+ unsigned long ptr = 0;
+ const int bufsize = 4096;
+ u64 extent_item_pos;
+
+ path = btrfs_alloc_path();
+
+ swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
+ swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
+ BUG_ON(sblock->page_count < 1);
+ swarn.sector = (sblock->pagev[0].physical) >> 9;
+ swarn.logical = sblock->pagev[0].logical;
+ swarn.errstr = errstr;
+ swarn.dev = dev;
+ swarn.msg_bufsize = bufsize;
+ swarn.scratch_bufsize = bufsize;
+
+ if (!path || !swarn.scratch_buf || !swarn.msg_buf)
+ goto out;
+
+ ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
+ if (ret < 0)
+ goto out;
+
+ extent_item_pos = swarn.logical - found_key.objectid;
+ swarn.extent_item_size = found_key.offset;
+
+ eb = path->nodes[0];
+ ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
+ item_size = btrfs_item_size_nr(eb, path->slots[0]);
+ btrfs_release_path(path);
+
+ if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ do {
+ ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
+ &ref_root, &ref_level);
+ printk(KERN_WARNING
+ "btrfs: %s at logical %llu on dev %s, "
+ "sector %llu: metadata %s (level %d) in tree "
+ "%llu\n", errstr, swarn.logical, dev->name,
+ (unsigned long long)swarn.sector,
+ ref_level ? "node" : "leaf",
+ ret < 0 ? -1 : ref_level,
+ ret < 0 ? -1 : ref_root);
+ } while (ret != 1);
+ } else {
+ swarn.path = path;
+ iterate_extent_inodes(fs_info, found_key.objectid,
+ extent_item_pos, 1,
+ scrub_print_warning_inode, &swarn);
+ }
+
+out:
+ btrfs_free_path(path);
+ kfree(swarn.scratch_buf);
+ kfree(swarn.msg_buf);
+}
+
+static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
+{
+ struct page *page = NULL;
+ unsigned long index;
+ struct scrub_fixup_nodatasum *fixup = ctx;
+ int ret;
+ int corrected = 0;
+ struct btrfs_key key;
+ struct inode *inode = NULL;
+ u64 end = offset + PAGE_SIZE - 1;
+ struct btrfs_root *local_root;
+
+ key.objectid = root;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = (u64)-1;
+ local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
+ if (IS_ERR(local_root))
+ return PTR_ERR(local_root);
+
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.objectid = inum;
+ key.offset = 0;
+ inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ index = offset >> PAGE_CACHE_SHIFT;
+
+ page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
+ if (!page) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ if (PageUptodate(page)) {
+ struct btrfs_mapping_tree *map_tree;
+ if (PageDirty(page)) {
+ /*
+ * we need to write the data to the defect sector. the
+ * data that was in that sector is not in memory,
+ * because the page was modified. we must not write the
+ * modified page to that sector.
+ *
+ * TODO: what could be done here: wait for the delalloc
+ * runner to write out that page (might involve
+ * COW) and see whether the sector is still
+ * referenced afterwards.
+ *
+ * For the meantime, we'll treat this error
+ * incorrectable, although there is a chance that a
+ * later scrub will find the bad sector again and that
+ * there's no dirty page in memory, then.
+ */
+ ret = -EIO;
+ goto out;
+ }
+ map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
+ ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
+ fixup->logical, page,
+ fixup->mirror_num);
+ unlock_page(page);
+ corrected = !ret;
+ } else {
+ /*
+ * we need to get good data first. the general readpage path
+ * will call repair_io_failure for us, we just have to make
+ * sure we read the bad mirror.
+ */
+ ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
+ EXTENT_DAMAGED, GFP_NOFS);
+ if (ret) {
+ /* set_extent_bits should give proper error */
+ WARN_ON(ret > 0);
+ if (ret > 0)
+ ret = -EFAULT;
+ goto out;
+ }
+
+ ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
+ btrfs_get_extent,
+ fixup->mirror_num);
+ wait_on_page_locked(page);
+
+ corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
+ end, EXTENT_DAMAGED, 0, NULL);
+ if (!corrected)
+ clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
+ EXTENT_DAMAGED, GFP_NOFS);
+ }
+
+out:
+ if (page)
+ put_page(page);
+ if (inode)
+ iput(inode);
+
+ if (ret < 0)
+ return ret;
+
+ if (ret == 0 && corrected) {
+ /*
+ * we only need to call readpage for one of the inodes belonging
+ * to this extent. so make iterate_extent_inodes stop
+ */
+ return 1;
+ }
+
+ return -EIO;
+}
+
+static void scrub_fixup_nodatasum(struct btrfs_work *work)
+{
+ int ret;
+ struct scrub_fixup_nodatasum *fixup;
+ struct scrub_dev *sdev;
+ struct btrfs_trans_handle *trans = NULL;
+ struct btrfs_fs_info *fs_info;
+ struct btrfs_path *path;
+ int uncorrectable = 0;
+
+ fixup = container_of(work, struct scrub_fixup_nodatasum, work);
+ sdev = fixup->sdev;
+ fs_info = fixup->root->fs_info;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ spin_lock(&sdev->stat_lock);
+ ++sdev->stat.malloc_errors;
+ spin_unlock(&sdev->stat_lock);
+ uncorrectable = 1;
+ goto out;
+ }
+
+ trans = btrfs_join_transaction(fixup->root);
+ if (IS_ERR(trans)) {
+ uncorrectable = 1;
+ goto out;
+ }
+
+ /*
+ * the idea is to trigger a regular read through the standard path. we
+ * read a page from the (failed) logical address by specifying the
+ * corresponding copynum of the failed sector. thus, that readpage is
+ * expected to fail.
+ * that is the point where on-the-fly error correction will kick in
+ * (once it's finished) and rewrite the failed sector if a good copy
+ * can be found.
+ */
+ ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
+ path, scrub_fixup_readpage,
+ fixup);
+ if (ret < 0) {
+ uncorrectable = 1;
+ goto out;
+ }
+ WARN_ON(ret != 1);
+
+ spin_lock(&sdev->stat_lock);
+ ++sdev->stat.corrected_errors;
+ spin_unlock(&sdev->stat_lock);
+
+out:
+ if (trans && !IS_ERR(trans))
+ btrfs_end_transaction(trans, fixup->root);
+ if (uncorrectable) {
+ spin_lock(&sdev->stat_lock);
+ ++sdev->stat.uncorrectable_errors;
+ spin_unlock(&sdev->stat_lock);
+ printk_ratelimited(KERN_ERR
+ "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
+ (unsigned long long)fixup->logical, sdev->dev->name);
+ }
+
+ btrfs_free_path(path);
+ kfree(fixup);
+
+ /* see caller why we're pretending to be paused in the scrub counters */
+ mutex_lock(&fs_info->scrub_lock);
+ atomic_dec(&fs_info->scrubs_running);
+ atomic_dec(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+ atomic_dec(&sdev->fixup_cnt);
+ wake_up(&fs_info->scrub_pause_wait);
+ wake_up(&sdev->list_wait);
+}
+
+/*
+ * scrub_handle_errored_block gets called when either verification of the
+ * pages failed or the bio failed to read, e.g. with EIO. In the latter
+ * case, this function handles all pages in the bio, even though only one
+ * may be bad.
+ * The goal of this function is to repair the errored block by using the
+ * contents of one of the mirrors.
+ */
+static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
+{
+ struct scrub_dev *sdev = sblock_to_check->sdev;
+ struct btrfs_fs_info *fs_info;
+ u64 length;
+ u64 logical;
+ u64 generation;
+ unsigned int failed_mirror_index;
+ unsigned int is_metadata;
+ unsigned int have_csum;
+ u8 *csum;
+ struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
+ struct scrub_block *sblock_bad;
+ int ret;
+ int mirror_index;
+ int page_num;
+ int success;
+ static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+
+ BUG_ON(sblock_to_check->page_count < 1);
+ fs_info = sdev->dev->dev_root->fs_info;
+ length = sblock_to_check->page_count * PAGE_SIZE;
+ logical = sblock_to_check->pagev[0].logical;
+ generation = sblock_to_check->pagev[0].generation;
+ BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
+ failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
+ is_metadata = !(sblock_to_check->pagev[0].flags &
+ BTRFS_EXTENT_FLAG_DATA);
+ have_csum = sblock_to_check->pagev[0].have_csum;
+ csum = sblock_to_check->pagev[0].csum;
+
+ /*
+ * read all mirrors one after the other. This includes to
+ * re-read the extent or metadata block that failed (that was
+ * the cause that this fixup code is called) another time,
+ * page by page this time in order to know which pages
+ * caused I/O errors and which ones are good (for all mirrors).
+ * It is the goal to handle the situation when more than one
+ * mirror contains I/O errors, but the errors do not
+ * overlap, i.e. the data can be repaired by selecting the
+ * pages from those mirrors without I/O error on the
+ * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
+ * would be that mirror #1 has an I/O error on the first page,
+ * the second page is good, and mirror #2 has an I/O error on
+ * the second page, but the first page is good.
+ * Then the first page of the first mirror can be repaired by
+ * taking the first page of the second mirror, and the
+ * second page of the second mirror can be repaired by
+ * copying the contents of the 2nd page of the 1st mirror.
+ * One more note: if the pages of one mirror contain I/O
+ * errors, the checksum cannot be verified. In order to get
+ * the best data for repairing, the first attempt is to find
+ * a mirror without I/O errors and with a validated checksum.
+ * Only if this is not possible, the pages are picked from
+ * mirrors with I/O errors without considering the checksum.
+ * If the latter is the case, at the end, the checksum of the
+ * repaired area is verified in order to correctly maintain
+ * the statistics.
+ */
+
+ sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
+ sizeof(*sblocks_for_recheck),
+ GFP_NOFS);
+ if (!sblocks_for_recheck) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.malloc_errors++;
+ sdev->stat.read_errors++;
+ sdev->stat.uncorrectable_errors++;
+ spin_unlock(&sdev->stat_lock);
+ goto out;
+ }
+
+ /* setup the context, map the logical blocks and alloc the pages */
+ ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
+ logical, sblocks_for_recheck);
+ if (ret) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.read_errors++;
+ sdev->stat.uncorrectable_errors++;
+ spin_unlock(&sdev->stat_lock);
+ goto out;
+ }
+ BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
+ sblock_bad = sblocks_for_recheck + failed_mirror_index;
+
+ /* build and submit the bios for the failed mirror, check checksums */
+ ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
+ csum, generation, sdev->csum_size);
+ if (ret) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.read_errors++;
+ sdev->stat.uncorrectable_errors++;
+ spin_unlock(&sdev->stat_lock);
+ goto out;
+ }
+
+ if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
+ sblock_bad->no_io_error_seen) {
+ /*
+ * the error disappeared after reading page by page, or
+ * the area was part of a huge bio and other parts of the
+ * bio caused I/O errors, or the block layer merged several
+ * read requests into one and the error is caused by a
+ * different bio (usually one of the two latter cases is
+ * the cause)
+ */
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.unverified_errors++;
+ spin_unlock(&sdev->stat_lock);
+
+ goto out;
+ }
+
+ if (!sblock_bad->no_io_error_seen) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.read_errors++;
+ spin_unlock(&sdev->stat_lock);
+ if (__ratelimit(&_rs))
+ scrub_print_warning("i/o error", sblock_to_check);
+ } else if (sblock_bad->checksum_error) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.csum_errors++;
+ spin_unlock(&sdev->stat_lock);
+ if (__ratelimit(&_rs))
+ scrub_print_warning("checksum error", sblock_to_check);
+ } else if (sblock_bad->header_error) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.verify_errors++;
+ spin_unlock(&sdev->stat_lock);
+ if (__ratelimit(&_rs))
+ scrub_print_warning("checksum/header error",
+ sblock_to_check);
+ }
+
+ if (sdev->readonly)
+ goto did_not_correct_error;
+
+ if (!is_metadata && !have_csum) {
+ struct scrub_fixup_nodatasum *fixup_nodatasum;
+
+ /*
+ * !is_metadata and !have_csum, this means that the data
+ * might not be COW'ed, that it might be modified
+ * concurrently. The general strategy to work on the
+ * commit root does not help in the case when COW is not
+ * used.
+ */
+ fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
+ if (!fixup_nodatasum)
+ goto did_not_correct_error;
+ fixup_nodatasum->sdev = sdev;
+ fixup_nodatasum->logical = logical;
+ fixup_nodatasum->root = fs_info->extent_root;
+ fixup_nodatasum->mirror_num = failed_mirror_index + 1;
+ /*
+ * increment scrubs_running to prevent cancel requests from
+ * completing as long as a fixup worker is running. we must also
+ * increment scrubs_paused to prevent deadlocking on pause
+ * requests used for transactions commits (as the worker uses a
+ * transaction context). it is safe to regard the fixup worker
+ * as paused for all matters practical. effectively, we only
+ * avoid cancellation requests from completing.
+ */
+ mutex_lock(&fs_info->scrub_lock);
+ atomic_inc(&fs_info->scrubs_running);
+ atomic_inc(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+ atomic_inc(&sdev->fixup_cnt);
+ fixup_nodatasum->work.func = scrub_fixup_nodatasum;
+ btrfs_queue_worker(&fs_info->scrub_workers,
+ &fixup_nodatasum->work);
+ goto out;
+ }
+
+ /*
+ * now build and submit the bios for the other mirrors, check
+ * checksums
+ */
+ for (mirror_index = 0;
+ mirror_index < BTRFS_MAX_MIRRORS &&
+ sblocks_for_recheck[mirror_index].page_count > 0;
+ mirror_index++) {
+ if (mirror_index == failed_mirror_index)
+ continue;
+
+ /* build and submit the bios, check checksums */
+ ret = scrub_recheck_block(fs_info,
+ sblocks_for_recheck + mirror_index,
+ is_metadata, have_csum, csum,
+ generation, sdev->csum_size);
+ if (ret)
+ goto did_not_correct_error;
+ }
+
+ /*
+ * first try to pick the mirror which is completely without I/O
+ * errors and also does not have a checksum error.
+ * If one is found, and if a checksum is present, the full block
+ * that is known to contain an error is rewritten. Afterwards
+ * the block is known to be corrected.
+ * If a mirror is found which is completely correct, and no
+ * checksum is present, only those pages are rewritten that had
+ * an I/O error in the block to be repaired, since it cannot be
+ * determined, which copy of the other pages is better (and it
+ * could happen otherwise that a correct page would be
+ * overwritten by a bad one).
+ */
+ for (mirror_index = 0;
+ mirror_index < BTRFS_MAX_MIRRORS &&
+ sblocks_for_recheck[mirror_index].page_count > 0;
+ mirror_index++) {
+ struct scrub_block *sblock_other = sblocks_for_recheck +
+ mirror_index;
+
+ if (!sblock_other->header_error &&
+ !sblock_other->checksum_error &&
+ sblock_other->no_io_error_seen) {
+ int force_write = is_metadata || have_csum;
+
+ ret = scrub_repair_block_from_good_copy(sblock_bad,
+ sblock_other,
+ force_write);
+ if (0 == ret)
+ goto corrected_error;
+ }
+ }
+
+ /*
+ * in case of I/O errors in the area that is supposed to be
+ * repaired, continue by picking good copies of those pages.
+ * Select the good pages from mirrors to rewrite bad pages from
+ * the area to fix. Afterwards verify the checksum of the block
+ * that is supposed to be repaired. This verification step is
+ * only done for the purpose of statistic counting and for the
+ * final scrub report, whether errors remain.
+ * A perfect algorithm could make use of the checksum and try
+ * all possible combinations of pages from the different mirrors
+ * until the checksum verification succeeds. For example, when
+ * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
+ * of mirror #2 is readable but the final checksum test fails,
+ * then the 2nd page of mirror #3 could be tried, whether now
+ * the final checksum succeedes. But this would be a rare
+ * exception and is therefore not implemented. At least it is
+ * avoided that the good copy is overwritten.
+ * A more useful improvement would be to pick the sectors
+ * without I/O error based on sector sizes (512 bytes on legacy
+ * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
+ * mirror could be repaired by taking 512 byte of a different
+ * mirror, even if other 512 byte sectors in the same PAGE_SIZE
+ * area are unreadable.
+ */
+
+ /* can only fix I/O errors from here on */
+ if (sblock_bad->no_io_error_seen)
+ goto did_not_correct_error;
+
+ success = 1;
+ for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
+ struct scrub_page *page_bad = sblock_bad->pagev + page_num;
+
+ if (!page_bad->io_error)
+ continue;
+
+ for (mirror_index = 0;
+ mirror_index < BTRFS_MAX_MIRRORS &&
+ sblocks_for_recheck[mirror_index].page_count > 0;
+ mirror_index++) {
+ struct scrub_block *sblock_other = sblocks_for_recheck +
+ mirror_index;
+ struct scrub_page *page_other = sblock_other->pagev +
+ page_num;
+
+ if (!page_other->io_error) {
+ ret = scrub_repair_page_from_good_copy(
+ sblock_bad, sblock_other, page_num, 0);
+ if (0 == ret) {
+ page_bad->io_error = 0;
+ break; /* succeeded for this page */
+ }
+ }
+ }
+
+ if (page_bad->io_error) {
+ /* did not find a mirror to copy the page from */
+ success = 0;
+ }
+ }
+
+ if (success) {
+ if (is_metadata || have_csum) {
+ /*
+ * need to verify the checksum now that all
+ * sectors on disk are repaired (the write
+ * request for data to be repaired is on its way).
+ * Just be lazy and use scrub_recheck_block()
+ * which re-reads the data before the checksum
+ * is verified, but most likely the data comes out
+ * of the page cache.
+ */
+ ret = scrub_recheck_block(fs_info, sblock_bad,
+ is_metadata, have_csum, csum,
+ generation, sdev->csum_size);
+ if (!ret && !sblock_bad->header_error &&
+ !sblock_bad->checksum_error &&
+ sblock_bad->no_io_error_seen)
+ goto corrected_error;
+ else
+ goto did_not_correct_error;
+ } else {
+corrected_error:
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.corrected_errors++;
+ spin_unlock(&sdev->stat_lock);
+ printk_ratelimited(KERN_ERR
+ "btrfs: fixed up error at logical %llu on dev %s\n",
+ (unsigned long long)logical, sdev->dev->name);
+ }
+ } else {
+did_not_correct_error:
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.uncorrectable_errors++;
+ spin_unlock(&sdev->stat_lock);
+ printk_ratelimited(KERN_ERR
+ "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
+ (unsigned long long)logical, sdev->dev->name);
+ }
+
+out:
+ if (sblocks_for_recheck) {
+ for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
+ mirror_index++) {
+ struct scrub_block *sblock = sblocks_for_recheck +
+ mirror_index;
+ int page_index;
+
+ for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
+ page_index++)
+ if (sblock->pagev[page_index].page)
+ __free_page(
+ sblock->pagev[page_index].page);
+ }
+ kfree(sblocks_for_recheck);
+ }
+
+ return 0;
+}
+
+static int scrub_setup_recheck_block(struct scrub_dev *sdev,
+ struct btrfs_mapping_tree *map_tree,
+ u64 length, u64 logical,
+ struct scrub_block *sblocks_for_recheck)
+{
+ int page_index;
+ int mirror_index;
+ int ret;
+
+ /*
+ * note: the three members sdev, ref_count and outstanding_pages
+ * are not used (and not set) in the blocks that are used for
+ * the recheck procedure
+ */
+
+ page_index = 0;
+ while (length > 0) {
+ u64 sublen = min_t(u64, length, PAGE_SIZE);
+ u64 mapped_length = sublen;
+ struct btrfs_bio *bbio = NULL;
+
+ /*
+ * with a length of PAGE_SIZE, each returned stripe
+ * represents one mirror
+ */
+ ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
+ &bbio, 0);
+ if (ret || !bbio || mapped_length < sublen) {
+ kfree(bbio);
+ return -EIO;
+ }
+
+ BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
+ for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
+ mirror_index++) {
+ struct scrub_block *sblock;
+ struct scrub_page *page;
+
+ if (mirror_index >= BTRFS_MAX_MIRRORS)
+ continue;
+
+ sblock = sblocks_for_recheck + mirror_index;
+ page = sblock->pagev + page_index;
+ page->logical = logical;
+ page->physical = bbio->stripes[mirror_index].physical;
+ /* for missing devices, bdev is NULL */
+ page->bdev = bbio->stripes[mirror_index].dev->bdev;
+ page->mirror_num = mirror_index + 1;
+ page->page = alloc_page(GFP_NOFS);
+ if (!page->page) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.malloc_errors++;
+ spin_unlock(&sdev->stat_lock);
+ return -ENOMEM;
+ }
+ sblock->page_count++;
+ }
+ kfree(bbio);
+ length -= sublen;
+ logical += sublen;
+ page_index++;
+ }
+
+ return 0;
+}
+
+/*
+ * this function will check the on disk data for checksum errors, header
+ * errors and read I/O errors. If any I/O errors happen, the exact pages
+ * which are errored are marked as being bad. The goal is to enable scrub
+ * to take those pages that are not errored from all the mirrors so that
+ * the pages that are errored in the just handled mirror can be repaired.
+ */
+static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock, int is_metadata,
+ int have_csum, u8 *csum, u64 generation,
+ u16 csum_size)
+{
+ int page_num;
+
+ sblock->no_io_error_seen = 1;
+ sblock->header_error = 0;
+ sblock->checksum_error = 0;
+
+ for (page_num = 0; page_num < sblock->page_count; page_num++) {
+ struct bio *bio;
+ int ret;
+ struct scrub_page *page = sblock->pagev + page_num;
+ DECLARE_COMPLETION_ONSTACK(complete);
+
+ if (page->bdev == NULL) {
+ page->io_error = 1;
+ sblock->no_io_error_seen = 0;
+ continue;
+ }
+
+ BUG_ON(!page->page);
+ bio = bio_alloc(GFP_NOFS, 1);
+ if (!bio)
+ return -EIO;
+ bio->bi_bdev = page->bdev;
+ bio->bi_sector = page->physical >> 9;
+ bio->bi_end_io = scrub_complete_bio_end_io;
+ bio->bi_private = &complete;
+
+ ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
+ if (PAGE_SIZE != ret) {
+ bio_put(bio);
+ return -EIO;
+ }
+ btrfsic_submit_bio(READ, bio);
+
+ /* this will also unplug the queue */
+ wait_for_completion(&complete);
+
+ page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
+ if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
+ sblock->no_io_error_seen = 0;
+ bio_put(bio);
+ }
+
+ if (sblock->no_io_error_seen)
+ scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
+ have_csum, csum, generation,
+ csum_size);
+
+ return 0;
+}
+
+static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
+ struct scrub_block *sblock,
+ int is_metadata, int have_csum,
+ const u8 *csum, u64 generation,
+ u16 csum_size)
+{
+ int page_num;
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
+ u32 crc = ~(u32)0;
+ struct btrfs_root *root = fs_info->extent_root;
+ void *mapped_buffer;
+
+ BUG_ON(!sblock->pagev[0].page);
+ if (is_metadata) {
+ struct btrfs_header *h;
+
+ mapped_buffer = kmap_atomic(sblock->pagev[0].page);
+ h = (struct btrfs_header *)mapped_buffer;
+
+ if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
+ generation != le64_to_cpu(h->generation) ||
+ memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
+ memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
+ BTRFS_UUID_SIZE))
+ sblock->header_error = 1;
+ csum = h->csum;
+ } else {
+ if (!have_csum)
+ return;
+
+ mapped_buffer = kmap_atomic(sblock->pagev[0].page);
+ }
+
+ for (page_num = 0;;) {
+ if (page_num == 0 && is_metadata)
+ crc = btrfs_csum_data(root,
+ ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
+ crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
+ else
+ crc = btrfs_csum_data(root, mapped_buffer, crc,
+ PAGE_SIZE);
+
+ kunmap_atomic(mapped_buffer);
+ page_num++;
+ if (page_num >= sblock->page_count)
+ break;
+ BUG_ON(!sblock->pagev[page_num].page);
+
+ mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
+ }
+
+ btrfs_csum_final(crc, calculated_csum);
+ if (memcmp(calculated_csum, csum, csum_size))
+ sblock->checksum_error = 1;
+}
+
+static void scrub_complete_bio_end_io(struct bio *bio, int err)
+{
+ complete((struct completion *)bio->bi_private);
+}
+
+static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int force_write)
+{
+ int page_num;
+ int ret = 0;
+
+ for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
+ int ret_sub;
+
+ ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
+ sblock_good,
+ page_num,
+ force_write);
+ if (ret_sub)
+ ret = ret_sub;
+ }
+
+ return ret;
+}
+
+static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
+ struct scrub_block *sblock_good,
+ int page_num, int force_write)
+{
+ struct scrub_page *page_bad = sblock_bad->pagev + page_num;
+ struct scrub_page *page_good = sblock_good->pagev + page_num;
+
+ BUG_ON(sblock_bad->pagev[page_num].page == NULL);
+ BUG_ON(sblock_good->pagev[page_num].page == NULL);
+ if (force_write || sblock_bad->header_error ||
+ sblock_bad->checksum_error || page_bad->io_error) {
+ struct bio *bio;
+ int ret;
+ DECLARE_COMPLETION_ONSTACK(complete);
+
+ bio = bio_alloc(GFP_NOFS, 1);
+ if (!bio)
+ return -EIO;
+ bio->bi_bdev = page_bad->bdev;
+ bio->bi_sector = page_bad->physical >> 9;
+ bio->bi_end_io = scrub_complete_bio_end_io;
+ bio->bi_private = &complete;
+
+ ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
+ if (PAGE_SIZE != ret) {
+ bio_put(bio);
+ return -EIO;
+ }
+ btrfsic_submit_bio(WRITE, bio);
+
+ /* this will also unplug the queue */
+ wait_for_completion(&complete);
+ bio_put(bio);
+ }
+
+ return 0;
+}
+
+static void scrub_checksum(struct scrub_block *sblock)
+{
+ u64 flags;
+ int ret;
+
+ BUG_ON(sblock->page_count < 1);
+ flags = sblock->pagev[0].flags;
+ ret = 0;
+ if (flags & BTRFS_EXTENT_FLAG_DATA)
+ ret = scrub_checksum_data(sblock);
+ else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
+ ret = scrub_checksum_tree_block(sblock);
+ else if (flags & BTRFS_EXTENT_FLAG_SUPER)
+ (void)scrub_checksum_super(sblock);
+ else
+ WARN_ON(1);
+ if (ret)
+ scrub_handle_errored_block(sblock);
+}
+
+static int scrub_checksum_data(struct scrub_block *sblock)
+{
+ struct scrub_dev *sdev = sblock->sdev;
+ u8 csum[BTRFS_CSUM_SIZE];
+ u8 *on_disk_csum;
+ struct page *page;
+ void *buffer;
+ u32 crc = ~(u32)0;
+ int fail = 0;
+ struct btrfs_root *root = sdev->dev->dev_root;
+ u64 len;
+ int index;
+
+ BUG_ON(sblock->page_count < 1);
+ if (!sblock->pagev[0].have_csum)
+ return 0;
+
+ on_disk_csum = sblock->pagev[0].csum;
+ page = sblock->pagev[0].page;
+ buffer = kmap_atomic(page);
+
+ len = sdev->sectorsize;
+ index = 0;
+ for (;;) {
+ u64 l = min_t(u64, len, PAGE_SIZE);
+
+ crc = btrfs_csum_data(root, buffer, crc, l);
+ kunmap_atomic(buffer);
+ len -= l;
+ if (len == 0)
+ break;
+ index++;
+ BUG_ON(index >= sblock->page_count);
+ BUG_ON(!sblock->pagev[index].page);
+ page = sblock->pagev[index].page;
+ buffer = kmap_atomic(page);
+ }
+
+ btrfs_csum_final(crc, csum);
+ if (memcmp(csum, on_disk_csum, sdev->csum_size))
+ fail = 1;
+
+ return fail;
+}
+
+static int scrub_checksum_tree_block(struct scrub_block *sblock)
+{
+ struct scrub_dev *sdev = sblock->sdev;
+ struct btrfs_header *h;
+ struct btrfs_root *root = sdev->dev->dev_root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
+ u8 on_disk_csum[BTRFS_CSUM_SIZE];
+ struct page *page;
+ void *mapped_buffer;
+ u64 mapped_size;
+ void *p;
+ u32 crc = ~(u32)0;
+ int fail = 0;
+ int crc_fail = 0;
+ u64 len;
+ int index;
+
+ BUG_ON(sblock->page_count < 1);
+ page = sblock->pagev[0].page;
+ mapped_buffer = kmap_atomic(page);
+ h = (struct btrfs_header *)mapped_buffer;
+ memcpy(on_disk_csum, h->csum, sdev->csum_size);
+
+ /*
+ * we don't use the getter functions here, as we
+ * a) don't have an extent buffer and
+ * b) the page is already kmapped
+ */
+
+ if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
+ ++fail;
+
+ if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
+ ++fail;
+
+ if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
+ ++fail;
+
+ if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
+ BTRFS_UUID_SIZE))
+ ++fail;
+
+ BUG_ON(sdev->nodesize != sdev->leafsize);
+ len = sdev->nodesize - BTRFS_CSUM_SIZE;
+ mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
+ p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
+ index = 0;
+ for (;;) {
+ u64 l = min_t(u64, len, mapped_size);
+
+ crc = btrfs_csum_data(root, p, crc, l);
+ kunmap_atomic(mapped_buffer);
+ len -= l;
+ if (len == 0)
+ break;
+ index++;
+ BUG_ON(index >= sblock->page_count);
+ BUG_ON(!sblock->pagev[index].page);
+ page = sblock->pagev[index].page;
+ mapped_buffer = kmap_atomic(page);
+ mapped_size = PAGE_SIZE;
+ p = mapped_buffer;
+ }
+
+ btrfs_csum_final(crc, calculated_csum);
+ if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
+ ++crc_fail;
+
+ return fail || crc_fail;
+}
+
+static int scrub_checksum_super(struct scrub_block *sblock)
+{
+ struct btrfs_super_block *s;
+ struct scrub_dev *sdev = sblock->sdev;
+ struct btrfs_root *root = sdev->dev->dev_root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ u8 calculated_csum[BTRFS_CSUM_SIZE];
+ u8 on_disk_csum[BTRFS_CSUM_SIZE];
+ struct page *page;
+ void *mapped_buffer;
+ u64 mapped_size;
+ void *p;
+ u32 crc = ~(u32)0;
+ int fail = 0;
+ u64 len;
+ int index;
+
+ BUG_ON(sblock->page_count < 1);
+ page = sblock->pagev[0].page;
+ mapped_buffer = kmap_atomic(page);
+ s = (struct btrfs_super_block *)mapped_buffer;
+ memcpy(on_disk_csum, s->csum, sdev->csum_size);
+
+ if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
+ ++fail;
+
+ if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
+ ++fail;
+
+ if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
+ ++fail;
+
+ len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
+ mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
+ p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
+ index = 0;
+ for (;;) {
+ u64 l = min_t(u64, len, mapped_size);
+
+ crc = btrfs_csum_data(root, p, crc, l);
+ kunmap_atomic(mapped_buffer);
+ len -= l;
+ if (len == 0)
+ break;
+ index++;
+ BUG_ON(index >= sblock->page_count);
+ BUG_ON(!sblock->pagev[index].page);
+ page = sblock->pagev[index].page;
+ mapped_buffer = kmap_atomic(page);
+ mapped_size = PAGE_SIZE;
+ p = mapped_buffer;
+ }
+
+ btrfs_csum_final(crc, calculated_csum);
+ if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
+ ++fail;
+
+ if (fail) {
+ /*
+ * if we find an error in a super block, we just report it.
+ * They will get written with the next transaction commit
+ * anyway
+ */
+ spin_lock(&sdev->stat_lock);
+ ++sdev->stat.super_errors;
+ spin_unlock(&sdev->stat_lock);
+ }
+
+ return fail;
+}
+
+static void scrub_block_get(struct scrub_block *sblock)
+{
+ atomic_inc(&sblock->ref_count);
+}
+
+static void scrub_block_put(struct scrub_block *sblock)
+{
+ if (atomic_dec_and_test(&sblock->ref_count)) {
+ int i;
+
+ for (i = 0; i < sblock->page_count; i++)
+ if (sblock->pagev[i].page)
+ __free_page(sblock->pagev[i].page);
+ kfree(sblock);
+ }
+}
+
+static void scrub_submit(struct scrub_dev *sdev)
+{
+ struct scrub_bio *sbio;
+
+ if (sdev->curr == -1)
+ return;
+
+ sbio = sdev->bios[sdev->curr];
+ sdev->curr = -1;
+ atomic_inc(&sdev->in_flight);
+
+ btrfsic_submit_bio(READ, sbio->bio);
+}
+
+static int scrub_add_page_to_bio(struct scrub_dev *sdev,
+ struct scrub_page *spage)
+{
+ struct scrub_block *sblock = spage->sblock;
+ struct scrub_bio *sbio;
+ int ret;
+
+again:
+ /*
+ * grab a fresh bio or wait for one to become available
+ */
+ while (sdev->curr == -1) {
+ spin_lock(&sdev->list_lock);
+ sdev->curr = sdev->first_free;
+ if (sdev->curr != -1) {
+ sdev->first_free = sdev->bios[sdev->curr]->next_free;
+ sdev->bios[sdev->curr]->next_free = -1;
+ sdev->bios[sdev->curr]->page_count = 0;
+ spin_unlock(&sdev->list_lock);
+ } else {
+ spin_unlock(&sdev->list_lock);
+ wait_event(sdev->list_wait, sdev->first_free != -1);
+ }
+ }
+ sbio = sdev->bios[sdev->curr];
+ if (sbio->page_count == 0) {
+ struct bio *bio;
+
+ sbio->physical = spage->physical;
+ sbio->logical = spage->logical;
+ bio = sbio->bio;
+ if (!bio) {
+ bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
+ if (!bio)
+ return -ENOMEM;
+ sbio->bio = bio;
+ }
+
+ bio->bi_private = sbio;
+ bio->bi_end_io = scrub_bio_end_io;
+ bio->bi_bdev = sdev->dev->bdev;
+ bio->bi_sector = spage->physical >> 9;
+ sbio->err = 0;
+ } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
+ spage->physical ||
+ sbio->logical + sbio->page_count * PAGE_SIZE !=
+ spage->logical) {
+ scrub_submit(sdev);
+ goto again;
+ }
+
+ sbio->pagev[sbio->page_count] = spage;
+ ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
+ if (ret != PAGE_SIZE) {
+ if (sbio->page_count < 1) {
+ bio_put(sbio->bio);
+ sbio->bio = NULL;
+ return -EIO;
+ }
+ scrub_submit(sdev);
+ goto again;
+ }
+
+ scrub_block_get(sblock); /* one for the added page */
+ atomic_inc(&sblock->outstanding_pages);
+ sbio->page_count++;
+ if (sbio->page_count == sdev->pages_per_bio)
+ scrub_submit(sdev);
+
+ return 0;
+}
+
+static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
+ u64 physical, u64 flags, u64 gen, int mirror_num,
+ u8 *csum, int force)
+{
+ struct scrub_block *sblock;
+ int index;
+
+ sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
+ if (!sblock) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.malloc_errors++;
+ spin_unlock(&sdev->stat_lock);
+ return -ENOMEM;
+ }
+
+ /* one ref inside this function, plus one for each page later on */
+ atomic_set(&sblock->ref_count, 1);
+ sblock->sdev = sdev;
+ sblock->no_io_error_seen = 1;
+
+ for (index = 0; len > 0; index++) {
+ struct scrub_page *spage = sblock->pagev + index;
+ u64 l = min_t(u64, len, PAGE_SIZE);
+
+ BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
+ spage->page = alloc_page(GFP_NOFS);
+ if (!spage->page) {
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.malloc_errors++;
+ spin_unlock(&sdev->stat_lock);
+ while (index > 0) {
+ index--;
+ __free_page(sblock->pagev[index].page);
+ }
+ kfree(sblock);
+ return -ENOMEM;
+ }
+ spage->sblock = sblock;
+ spage->bdev = sdev->dev->bdev;
+ spage->flags = flags;
+ spage->generation = gen;
+ spage->logical = logical;
+ spage->physical = physical;
+ spage->mirror_num = mirror_num;
+ if (csum) {
+ spage->have_csum = 1;
+ memcpy(spage->csum, csum, sdev->csum_size);
+ } else {
+ spage->have_csum = 0;
+ }
+ sblock->page_count++;
+ len -= l;
+ logical += l;
+ physical += l;
+ }
+
+ BUG_ON(sblock->page_count == 0);
+ for (index = 0; index < sblock->page_count; index++) {
+ struct scrub_page *spage = sblock->pagev + index;
+ int ret;
+
+ ret = scrub_add_page_to_bio(sdev, spage);
+ if (ret) {
+ scrub_block_put(sblock);
+ return ret;
+ }
+ }
+
+ if (force)
+ scrub_submit(sdev);
+
+ /* last one frees, either here or in bio completion for last page */
+ scrub_block_put(sblock);
+ return 0;
+}
+
+static void scrub_bio_end_io(struct bio *bio, int err)
+{
+ struct scrub_bio *sbio = bio->bi_private;
+ struct scrub_dev *sdev = sbio->sdev;
+ struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
+
+ sbio->err = err;
+ sbio->bio = bio;
+
+ btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
+}
+
+static void scrub_bio_end_io_worker(struct btrfs_work *work)
+{
+ struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
+ struct scrub_dev *sdev = sbio->sdev;
+ int i;
+
+ BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
+ if (sbio->err) {
+ for (i = 0; i < sbio->page_count; i++) {
+ struct scrub_page *spage = sbio->pagev[i];
+
+ spage->io_error = 1;
+ spage->sblock->no_io_error_seen = 0;
+ }
+ }
+
+ /* now complete the scrub_block items that have all pages completed */
+ for (i = 0; i < sbio->page_count; i++) {
+ struct scrub_page *spage = sbio->pagev[i];
+ struct scrub_block *sblock = spage->sblock;
+
+ if (atomic_dec_and_test(&sblock->outstanding_pages))
+ scrub_block_complete(sblock);
+ scrub_block_put(sblock);
+ }
+
+ if (sbio->err) {
+ /* what is this good for??? */
+ sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
+ sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
+ sbio->bio->bi_phys_segments = 0;
+ sbio->bio->bi_idx = 0;
+
+ for (i = 0; i < sbio->page_count; i++) {
+ struct bio_vec *bi;
+ bi = &sbio->bio->bi_io_vec[i];
+ bi->bv_offset = 0;
+ bi->bv_len = PAGE_SIZE;
+ }
+ }
+
+ bio_put(sbio->bio);
+ sbio->bio = NULL;
+ spin_lock(&sdev->list_lock);
+ sbio->next_free = sdev->first_free;
+ sdev->first_free = sbio->index;
+ spin_unlock(&sdev->list_lock);
+ atomic_dec(&sdev->in_flight);
+ wake_up(&sdev->list_wait);
+}
+
+static void scrub_block_complete(struct scrub_block *sblock)
+{
+ if (!sblock->no_io_error_seen)
+ scrub_handle_errored_block(sblock);
+ else
+ scrub_checksum(sblock);
+}
+
+static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
+ u8 *csum)
+{
+ struct btrfs_ordered_sum *sum = NULL;
+ int ret = 0;
+ unsigned long i;
+ unsigned long num_sectors;
+
+ while (!list_empty(&sdev->csum_list)) {
+ sum = list_first_entry(&sdev->csum_list,
+ struct btrfs_ordered_sum, list);
+ if (sum->bytenr > logical)
+ return 0;
+ if (sum->bytenr + sum->len > logical)
+ break;
+
+ ++sdev->stat.csum_discards;
+ list_del(&sum->list);
+ kfree(sum);
+ sum = NULL;
+ }
+ if (!sum)
+ return 0;
+
+ num_sectors = sum->len / sdev->sectorsize;
+ for (i = 0; i < num_sectors; ++i) {
+ if (sum->sums[i].bytenr == logical) {
+ memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
+ ret = 1;
+ break;
+ }
+ }
+ if (ret && i == num_sectors - 1) {
+ list_del(&sum->list);
+ kfree(sum);
+ }
+ return ret;
+}
+
+/* scrub extent tries to collect up to 64 kB for each bio */
+static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
+ u64 physical, u64 flags, u64 gen, int mirror_num)
+{
+ int ret;
+ u8 csum[BTRFS_CSUM_SIZE];
+ u32 blocksize;
+
+ if (flags & BTRFS_EXTENT_FLAG_DATA) {
+ blocksize = sdev->sectorsize;
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.data_extents_scrubbed++;
+ sdev->stat.data_bytes_scrubbed += len;
+ spin_unlock(&sdev->stat_lock);
+ } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ BUG_ON(sdev->nodesize != sdev->leafsize);
+ blocksize = sdev->nodesize;
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.tree_extents_scrubbed++;
+ sdev->stat.tree_bytes_scrubbed += len;
+ spin_unlock(&sdev->stat_lock);
+ } else {
+ blocksize = sdev->sectorsize;
+ BUG_ON(1);
+ }
+
+ while (len) {
+ u64 l = min_t(u64, len, blocksize);
+ int have_csum = 0;
+
+ if (flags & BTRFS_EXTENT_FLAG_DATA) {
+ /* push csums to sbio */
+ have_csum = scrub_find_csum(sdev, logical, l, csum);
+ if (have_csum == 0)
+ ++sdev->stat.no_csum;
+ }
+ ret = scrub_pages(sdev, logical, l, physical, flags, gen,
+ mirror_num, have_csum ? csum : NULL, 0);
+ if (ret)
+ return ret;
+ len -= l;
+ logical += l;
+ physical += l;
+ }
+ return 0;
+}
+
+static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
+ struct map_lookup *map, int num, u64 base, u64 length)
+{
+ struct btrfs_path *path;
+ struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
+ struct btrfs_root *root = fs_info->extent_root;
+ struct btrfs_root *csum_root = fs_info->csum_root;
+ struct btrfs_extent_item *extent;
+ struct blk_plug plug;
+ u64 flags;
+ int ret;
+ int slot;
+ int i;
+ u64 nstripes;
+ struct extent_buffer *l;
+ struct btrfs_key key;
+ u64 physical;
+ u64 logical;
+ u64 generation;
+ int mirror_num;
+ struct reada_control *reada1;
+ struct reada_control *reada2;
+ struct btrfs_key key_start;
+ struct btrfs_key key_end;
+
+ u64 increment = map->stripe_len;
+ u64 offset;
+
+ nstripes = length;
+ offset = 0;
+ do_div(nstripes, map->stripe_len);
+ if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
+ offset = map->stripe_len * num;
+ increment = map->stripe_len * map->num_stripes;
+ mirror_num = 1;
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+ int factor = map->num_stripes / map->sub_stripes;
+ offset = map->stripe_len * (num / map->sub_stripes);
+ increment = map->stripe_len * factor;
+ mirror_num = num % map->sub_stripes + 1;
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
+ increment = map->stripe_len;
+ mirror_num = num % map->num_stripes + 1;
+ } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
+ increment = map->stripe_len;
+ mirror_num = num % map->num_stripes + 1;
+ } else {
+ increment = map->stripe_len;
+ mirror_num = 1;
+ }
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ /*
+ * work on commit root. The related disk blocks are static as
+ * long as COW is applied. This means, it is save to rewrite
+ * them to repair disk errors without any race conditions
+ */
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+
+ /*
+ * trigger the readahead for extent tree csum tree and wait for
+ * completion. During readahead, the scrub is officially paused
+ * to not hold off transaction commits
+ */
+ logical = base + offset;
+
+ wait_event(sdev->list_wait,
+ atomic_read(&sdev->in_flight) == 0);
+ atomic_inc(&fs_info->scrubs_paused);
+ wake_up(&fs_info->scrub_pause_wait);
+
+ /* FIXME it might be better to start readahead at commit root */
+ key_start.objectid = logical;
+ key_start.type = BTRFS_EXTENT_ITEM_KEY;
+ key_start.offset = (u64)0;
+ key_end.objectid = base + offset + nstripes * increment;
+ key_end.type = BTRFS_EXTENT_ITEM_KEY;
+ key_end.offset = (u64)0;
+ reada1 = btrfs_reada_add(root, &key_start, &key_end);
+
+ key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+ key_start.type = BTRFS_EXTENT_CSUM_KEY;
+ key_start.offset = logical;
+ key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
+ key_end.type = BTRFS_EXTENT_CSUM_KEY;
+ key_end.offset = base + offset + nstripes * increment;
+ reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
+
+ if (!IS_ERR(reada1))
+ btrfs_reada_wait(reada1);
+ if (!IS_ERR(reada2))
+ btrfs_reada_wait(reada2);
+
+ mutex_lock(&fs_info->scrub_lock);
+ while (atomic_read(&fs_info->scrub_pause_req)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrub_pause_req) == 0);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ atomic_dec(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+ wake_up(&fs_info->scrub_pause_wait);
+
+ /*
+ * collect all data csums for the stripe to avoid seeking during
+ * the scrub. This might currently (crc32) end up to be about 1MB
+ */
+ blk_start_plug(&plug);
+
+ /*
+ * now find all extents for each stripe and scrub them
+ */
+ logical = base + offset;
+ physical = map->stripes[num].physical;
+ ret = 0;
+ for (i = 0; i < nstripes; ++i) {
+ /*
+ * canceled?
+ */
+ if (atomic_read(&fs_info->scrub_cancel_req) ||
+ atomic_read(&sdev->cancel_req)) {
+ ret = -ECANCELED;
+ goto out;
+ }
+ /*
+ * check to see if we have to pause
+ */
+ if (atomic_read(&fs_info->scrub_pause_req)) {
+ /* push queued extents */
+ scrub_submit(sdev);
+ wait_event(sdev->list_wait,
+ atomic_read(&sdev->in_flight) == 0);
+ atomic_inc(&fs_info->scrubs_paused);
+ wake_up(&fs_info->scrub_pause_wait);
+ mutex_lock(&fs_info->scrub_lock);
+ while (atomic_read(&fs_info->scrub_pause_req)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrub_pause_req) == 0);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ atomic_dec(&fs_info->scrubs_paused);
+ mutex_unlock(&fs_info->scrub_lock);
+ wake_up(&fs_info->scrub_pause_wait);
+ }
+
+ ret = btrfs_lookup_csums_range(csum_root, logical,
+ logical + map->stripe_len - 1,
+ &sdev->csum_list, 1);
+ if (ret)
+ goto out;
+
+ key.objectid = logical;
+ key.type = BTRFS_EXTENT_ITEM_KEY;
+ key.offset = (u64)0;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = btrfs_previous_item(root, path, 0,
+ BTRFS_EXTENT_ITEM_KEY);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ /* there's no smaller item, so stick with the
+ * larger one */
+ btrfs_release_path(path);
+ ret = btrfs_search_slot(NULL, root, &key,
+ path, 0, 0);
+ if (ret < 0)
+ goto out;
+ }
+ }
+
+ while (1) {
+ l = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(l)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto out;
+
+ break;
+ }
+ btrfs_item_key_to_cpu(l, &key, slot);
+
+ if (key.objectid + key.offset <= logical)
+ goto next;
+
+ if (key.objectid >= logical + map->stripe_len)
+ break;
+
+ if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
+ goto next;
+
+ extent = btrfs_item_ptr(l, slot,
+ struct btrfs_extent_item);
+ flags = btrfs_extent_flags(l, extent);
+ generation = btrfs_extent_generation(l, extent);
+
+ if (key.objectid < logical &&
+ (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
+ printk(KERN_ERR
+ "btrfs scrub: tree block %llu spanning "
+ "stripes, ignored. logical=%llu\n",
+ (unsigned long long)key.objectid,
+ (unsigned long long)logical);
+ goto next;
+ }
+
+ /*
+ * trim extent to this stripe
+ */
+ if (key.objectid < logical) {
+ key.offset -= logical - key.objectid;
+ key.objectid = logical;
+ }
+ if (key.objectid + key.offset >
+ logical + map->stripe_len) {
+ key.offset = logical + map->stripe_len -
+ key.objectid;
+ }
+
+ ret = scrub_extent(sdev, key.objectid, key.offset,
+ key.objectid - logical + physical,
+ flags, generation, mirror_num);
+ if (ret)
+ goto out;
+
+next:
+ path->slots[0]++;
+ }
+ btrfs_release_path(path);
+ logical += increment;
+ physical += map->stripe_len;
+ spin_lock(&sdev->stat_lock);
+ sdev->stat.last_physical = physical;
+ spin_unlock(&sdev->stat_lock);
+ }
+ /* push queued extents */
+ scrub_submit(sdev);
+
+out:
+ blk_finish_plug(&plug);
+ btrfs_free_path(path);
+ return ret < 0 ? ret : 0;
+}
+
+static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
+ u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
+ u64 dev_offset)
+{
+ struct btrfs_mapping_tree *map_tree =
+ &sdev->dev->dev_root->fs_info->mapping_tree;
+ struct map_lookup *map;
+ struct extent_map *em;
+ int i;
+ int ret = -EINVAL;
+
+ read_lock(&map_tree->map_tree.lock);
+ em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
+ read_unlock(&map_tree->map_tree.lock);
+
+ if (!em)
+ return -EINVAL;
+
+ map = (struct map_lookup *)em->bdev;
+ if (em->start != chunk_offset)
+ goto out;
+
+ if (em->len < length)
+ goto out;
+
+ for (i = 0; i < map->num_stripes; ++i) {
+ if (map->stripes[i].dev == sdev->dev &&
+ map->stripes[i].physical == dev_offset) {
+ ret = scrub_stripe(sdev, map, i, chunk_offset, length);
+ if (ret)
+ goto out;
+ }
+ }
+out:
+ free_extent_map(em);
+
+ return ret;
+}
+
+static noinline_for_stack
+int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
+{
+ struct btrfs_dev_extent *dev_extent = NULL;
+ struct btrfs_path *path;
+ struct btrfs_root *root = sdev->dev->dev_root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ u64 length;
+ u64 chunk_tree;
+ u64 chunk_objectid;
+ u64 chunk_offset;
+ int ret;
+ int slot;
+ struct extent_buffer *l;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_block_group_cache *cache;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->reada = 2;
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+
+ key.objectid = sdev->dev->devid;
+ key.offset = 0ull;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ break;
+ if (ret > 0) {
+ if (path->slots[0] >=
+ btrfs_header_nritems(path->nodes[0])) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret)
+ break;
+ }
+ }
+
+ l = path->nodes[0];
+ slot = path->slots[0];
+
+ btrfs_item_key_to_cpu(l, &found_key, slot);
+
+ if (found_key.objectid != sdev->dev->devid)
+ break;
+
+ if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
+ break;
+
+ if (found_key.offset >= end)
+ break;
+
+ if (found_key.offset < key.offset)
+ break;
+
+ dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+ length = btrfs_dev_extent_length(l, dev_extent);
+
+ if (found_key.offset + length <= start) {
+ key.offset = found_key.offset + length;
+ btrfs_release_path(path);
+ continue;
+ }
+
+ chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
+ chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
+ chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
+
+ /*
+ * get a reference on the corresponding block group to prevent
+ * the chunk from going away while we scrub it
+ */
+ cache = btrfs_lookup_block_group(fs_info, chunk_offset);
+ if (!cache) {
+ ret = -ENOENT;
+ break;
+ }
+ ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
+ chunk_offset, length, found_key.offset);
+ btrfs_put_block_group(cache);
+ if (ret)
+ break;
+
+ key.offset = found_key.offset + length;
+ btrfs_release_path(path);
+ }
+
+ btrfs_free_path(path);
+
+ /*
+ * ret can still be 1 from search_slot or next_leaf,
+ * that's not an error
+ */
+ return ret < 0 ? ret : 0;
+}
+
+static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
+{
+ int i;
+ u64 bytenr;
+ u64 gen;
+ int ret;
+ struct btrfs_device *device = sdev->dev;
+ struct btrfs_root *root = device->dev_root;
+
+ if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
+ return -EIO;
+
+ gen = root->fs_info->last_trans_committed;
+
+ for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
+ bytenr = btrfs_sb_offset(i);
+ if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
+ break;
+
+ ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
+ BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
+ if (ret)
+ return ret;
+ }
+ wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
+
+ return 0;
+}
+
+/*
+ * get a reference count on fs_info->scrub_workers. start worker if necessary
+ */
+static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ int ret = 0;
+
+ mutex_lock(&fs_info->scrub_lock);
+ if (fs_info->scrub_workers_refcnt == 0) {
+ btrfs_init_workers(&fs_info->scrub_workers, "scrub",
+ fs_info->thread_pool_size, &fs_info->generic_worker);
+ fs_info->scrub_workers.idle_thresh = 4;
+ ret = btrfs_start_workers(&fs_info->scrub_workers);
+ if (ret)
+ goto out;
+ }
+ ++fs_info->scrub_workers_refcnt;
+out:
+ mutex_unlock(&fs_info->scrub_lock);
+
+ return ret;
+}
+
+static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ mutex_lock(&fs_info->scrub_lock);
+ if (--fs_info->scrub_workers_refcnt == 0)
+ btrfs_stop_workers(&fs_info->scrub_workers);
+ WARN_ON(fs_info->scrub_workers_refcnt < 0);
+ mutex_unlock(&fs_info->scrub_lock);
+}
+
+
+int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
+ struct btrfs_scrub_progress *progress, int readonly)
+{
+ struct scrub_dev *sdev;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ int ret;
+ struct btrfs_device *dev;
+
+ if (btrfs_fs_closing(root->fs_info))
+ return -EINVAL;
+
+ /*
+ * check some assumptions
+ */
+ if (root->nodesize != root->leafsize) {
+ printk(KERN_ERR
+ "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
+ root->nodesize, root->leafsize);
+ return -EINVAL;
+ }
+
+ if (root->nodesize > BTRFS_STRIPE_LEN) {
+ /*
+ * in this case scrub is unable to calculate the checksum
+ * the way scrub is implemented. Do not handle this
+ * situation at all because it won't ever happen.
+ */
+ printk(KERN_ERR
+ "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
+ root->nodesize, BTRFS_STRIPE_LEN);
+ return -EINVAL;
+ }
+
+ if (root->sectorsize != PAGE_SIZE) {
+ /* not supported for data w/o checksums */
+ printk(KERN_ERR
+ "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
+ root->sectorsize, (unsigned long long)PAGE_SIZE);
+ return -EINVAL;
+ }
+
+ ret = scrub_workers_get(root);
+ if (ret)
+ return ret;
+
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ dev = btrfs_find_device(root, devid, NULL, NULL);
+ if (!dev || dev->missing) {
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+ scrub_workers_put(root);
+ return -ENODEV;
+ }
+ mutex_lock(&fs_info->scrub_lock);
+
+ if (!dev->in_fs_metadata) {
+ mutex_unlock(&fs_info->scrub_lock);
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+ scrub_workers_put(root);
+ return -ENODEV;
+ }
+
+ if (dev->scrub_device) {
+ mutex_unlock(&fs_info->scrub_lock);
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+ scrub_workers_put(root);
+ return -EINPROGRESS;
+ }
+ sdev = scrub_setup_dev(dev);
+ if (IS_ERR(sdev)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+ scrub_workers_put(root);
+ return PTR_ERR(sdev);
+ }
+ sdev->readonly = readonly;
+ dev->scrub_device = sdev;
+
+ atomic_inc(&fs_info->scrubs_running);
+ mutex_unlock(&fs_info->scrub_lock);
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+ down_read(&fs_info->scrub_super_lock);
+ ret = scrub_supers(sdev);
+ up_read(&fs_info->scrub_super_lock);
+
+ if (!ret)
+ ret = scrub_enumerate_chunks(sdev, start, end);
+
+ wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
+ atomic_dec(&fs_info->scrubs_running);
+ wake_up(&fs_info->scrub_pause_wait);
+
+ wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
+
+ if (progress)
+ memcpy(progress, &sdev->stat, sizeof(*progress));
+
+ mutex_lock(&fs_info->scrub_lock);
+ dev->scrub_device = NULL;
+ mutex_unlock(&fs_info->scrub_lock);
+
+ scrub_free_dev(sdev);
+ scrub_workers_put(root);
+
+ return ret;
+}
+
+void btrfs_scrub_pause(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ mutex_lock(&fs_info->scrub_lock);
+ atomic_inc(&fs_info->scrub_pause_req);
+ while (atomic_read(&fs_info->scrubs_paused) !=
+ atomic_read(&fs_info->scrubs_running)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrubs_paused) ==
+ atomic_read(&fs_info->scrubs_running));
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ mutex_unlock(&fs_info->scrub_lock);
+}
+
+void btrfs_scrub_continue(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ atomic_dec(&fs_info->scrub_pause_req);
+ wake_up(&fs_info->scrub_pause_wait);
+}
+
+void btrfs_scrub_pause_super(struct btrfs_root *root)
+{
+ down_write(&root->fs_info->scrub_super_lock);
+}
+
+void btrfs_scrub_continue_super(struct btrfs_root *root)
+{
+ up_write(&root->fs_info->scrub_super_lock);
+}
+
+int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
+{
+
+ mutex_lock(&fs_info->scrub_lock);
+ if (!atomic_read(&fs_info->scrubs_running)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ return -ENOTCONN;
+ }
+
+ atomic_inc(&fs_info->scrub_cancel_req);
+ while (atomic_read(&fs_info->scrubs_running)) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ atomic_read(&fs_info->scrubs_running) == 0);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ atomic_dec(&fs_info->scrub_cancel_req);
+ mutex_unlock(&fs_info->scrub_lock);
+
+ return 0;
+}
+
+int btrfs_scrub_cancel(struct btrfs_root *root)
+{
+ return __btrfs_scrub_cancel(root->fs_info);
+}
+
+int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct scrub_dev *sdev;
+
+ mutex_lock(&fs_info->scrub_lock);
+ sdev = dev->scrub_device;
+ if (!sdev) {
+ mutex_unlock(&fs_info->scrub_lock);
+ return -ENOTCONN;
+ }
+ atomic_inc(&sdev->cancel_req);
+ while (dev->scrub_device) {
+ mutex_unlock(&fs_info->scrub_lock);
+ wait_event(fs_info->scrub_pause_wait,
+ dev->scrub_device == NULL);
+ mutex_lock(&fs_info->scrub_lock);
+ }
+ mutex_unlock(&fs_info->scrub_lock);
+
+ return 0;
+}
+
+int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_device *dev;
+ int ret;
+
+ /*
+ * we have to hold the device_list_mutex here so the device
+ * does not go away in cancel_dev. FIXME: find a better solution
+ */
+ mutex_lock(&fs_info->fs_devices->device_list_mutex);
+ dev = btrfs_find_device(root, devid, NULL, NULL);
+ if (!dev) {
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ return -ENODEV;
+ }
+ ret = btrfs_scrub_cancel_dev(root, dev);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+ return ret;
+}
+
+int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
+ struct btrfs_scrub_progress *progress)
+{
+ struct btrfs_device *dev;
+ struct scrub_dev *sdev = NULL;
+
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ dev = btrfs_find_device(root, devid, NULL, NULL);
+ if (dev)
+ sdev = dev->scrub_device;
+ if (sdev)
+ memcpy(progress, &sdev->stat, sizeof(*progress));
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+ return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
+}
diff --git a/fs/btrfs/struct-funcs.c b/fs/btrfs/struct-funcs.c
new file mode 100644
index 00000000..c6ffa581
--- /dev/null
+++ b/fs/btrfs/struct-funcs.c
@@ -0,0 +1,140 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/highmem.h>
+
+/* this is some deeply nasty code. ctree.h has a different
+ * definition for this BTRFS_SETGET_FUNCS macro, behind a #ifndef
+ *
+ * The end result is that anyone who #includes ctree.h gets a
+ * declaration for the btrfs_set_foo functions and btrfs_foo functions
+ *
+ * This file declares the macros and then #includes ctree.h, which results
+ * in cpp creating the function here based on the template below.
+ *
+ * These setget functions do all the extent_buffer related mapping
+ * required to efficiently read and write specific fields in the extent
+ * buffers. Every pointer to metadata items in btrfs is really just
+ * an unsigned long offset into the extent buffer which has been
+ * cast to a specific type. This gives us all the gcc type checking.
+ *
+ * The extent buffer api is used to do all the kmapping and page
+ * spanning work required to get extent buffers in highmem and have
+ * a metadata blocksize different from the page size.
+ *
+ * The macro starts with a simple function prototype declaration so that
+ * sparse won't complain about it being static.
+ */
+
+#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
+u##bits btrfs_##name(struct extent_buffer *eb, type *s); \
+void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val); \
+void btrfs_set_token_##name(struct extent_buffer *eb, type *s, u##bits val, struct btrfs_map_token *token); \
+u##bits btrfs_token_##name(struct extent_buffer *eb, \
+ type *s, struct btrfs_map_token *token) \
+{ \
+ unsigned long part_offset = (unsigned long)s; \
+ unsigned long offset = part_offset + offsetof(type, member); \
+ type *p; \
+ int err; \
+ char *kaddr; \
+ unsigned long map_start; \
+ unsigned long map_len; \
+ unsigned long mem_len = sizeof(((type *)0)->member); \
+ u##bits res; \
+ if (token && token->kaddr && token->offset <= offset && \
+ token->eb == eb && \
+ (token->offset + PAGE_CACHE_SIZE >= offset + mem_len)) { \
+ kaddr = token->kaddr; \
+ p = (type *)(kaddr + part_offset - token->offset); \
+ res = le##bits##_to_cpu(p->member); \
+ return res; \
+ } \
+ err = map_private_extent_buffer(eb, offset, \
+ mem_len, \
+ &kaddr, &map_start, &map_len); \
+ if (err) { \
+ __le##bits leres; \
+ read_eb_member(eb, s, type, member, &leres); \
+ return le##bits##_to_cpu(leres); \
+ } \
+ p = (type *)(kaddr + part_offset - map_start); \
+ res = le##bits##_to_cpu(p->member); \
+ if (token) { \
+ token->kaddr = kaddr; \
+ token->offset = map_start; \
+ token->eb = eb; \
+ } \
+ return res; \
+} \
+void btrfs_set_token_##name(struct extent_buffer *eb, \
+ type *s, u##bits val, struct btrfs_map_token *token) \
+{ \
+ unsigned long part_offset = (unsigned long)s; \
+ unsigned long offset = part_offset + offsetof(type, member); \
+ type *p; \
+ int err; \
+ char *kaddr; \
+ unsigned long map_start; \
+ unsigned long map_len; \
+ unsigned long mem_len = sizeof(((type *)0)->member); \
+ if (token && token->kaddr && token->offset <= offset && \
+ token->eb == eb && \
+ (token->offset + PAGE_CACHE_SIZE >= offset + mem_len)) { \
+ kaddr = token->kaddr; \
+ p = (type *)(kaddr + part_offset - token->offset); \
+ p->member = cpu_to_le##bits(val); \
+ return; \
+ } \
+ err = map_private_extent_buffer(eb, offset, \
+ mem_len, \
+ &kaddr, &map_start, &map_len); \
+ if (err) { \
+ __le##bits val2; \
+ val2 = cpu_to_le##bits(val); \
+ write_eb_member(eb, s, type, member, &val2); \
+ return; \
+ } \
+ p = (type *)(kaddr + part_offset - map_start); \
+ p->member = cpu_to_le##bits(val); \
+ if (token) { \
+ token->kaddr = kaddr; \
+ token->offset = map_start; \
+ token->eb = eb; \
+ } \
+} \
+void btrfs_set_##name(struct extent_buffer *eb, \
+ type *s, u##bits val) \
+{ \
+ btrfs_set_token_##name(eb, s, val, NULL); \
+} \
+u##bits btrfs_##name(struct extent_buffer *eb, \
+ type *s) \
+{ \
+ return btrfs_token_##name(eb, s, NULL); \
+} \
+
+#include "ctree.h"
+
+void btrfs_node_key(struct extent_buffer *eb,
+ struct btrfs_disk_key *disk_key, int nr)
+{
+ unsigned long ptr = btrfs_node_key_ptr_offset(nr);
+ read_eb_member(eb, (struct btrfs_key_ptr *)ptr,
+ struct btrfs_key_ptr, key, disk_key);
+}
diff --git a/fs/btrfs/super.c b/fs/btrfs/super.c
new file mode 100644
index 00000000..c5f8fca4
--- /dev/null
+++ b/fs/btrfs/super.c
@@ -0,0 +1,1578 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/buffer_head.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/highmem.h>
+#include <linux/time.h>
+#include <linux/init.h>
+#include <linux/seq_file.h>
+#include <linux/string.h>
+#include <linux/backing-dev.h>
+#include <linux/mount.h>
+#include <linux/mpage.h>
+#include <linux/swap.h>
+#include <linux/writeback.h>
+#include <linux/statfs.h>
+#include <linux/compat.h>
+#include <linux/parser.h>
+#include <linux/ctype.h>
+#include <linux/namei.h>
+#include <linux/miscdevice.h>
+#include <linux/magic.h>
+#include <linux/slab.h>
+#include <linux/cleancache.h>
+#include <linux/ratelimit.h>
+#include "compat.h"
+#include "delayed-inode.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "ioctl.h"
+#include "print-tree.h"
+#include "xattr.h"
+#include "volumes.h"
+#include "version.h"
+#include "export.h"
+#include "compression.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/btrfs.h>
+
+static const struct super_operations btrfs_super_ops;
+static struct file_system_type btrfs_fs_type;
+
+static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
+ char nbuf[16])
+{
+ char *errstr = NULL;
+
+ switch (errno) {
+ case -EIO:
+ errstr = "IO failure";
+ break;
+ case -ENOMEM:
+ errstr = "Out of memory";
+ break;
+ case -EROFS:
+ errstr = "Readonly filesystem";
+ break;
+ case -EEXIST:
+ errstr = "Object already exists";
+ break;
+ default:
+ if (nbuf) {
+ if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
+ errstr = nbuf;
+ }
+ break;
+ }
+
+ return errstr;
+}
+
+static void __save_error_info(struct btrfs_fs_info *fs_info)
+{
+ /*
+ * today we only save the error info into ram. Long term we'll
+ * also send it down to the disk
+ */
+ fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
+}
+
+/* NOTE:
+ * We move write_super stuff at umount in order to avoid deadlock
+ * for umount hold all lock.
+ */
+static void save_error_info(struct btrfs_fs_info *fs_info)
+{
+ __save_error_info(fs_info);
+}
+
+/* btrfs handle error by forcing the filesystem readonly */
+static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
+{
+ struct super_block *sb = fs_info->sb;
+
+ if (sb->s_flags & MS_RDONLY)
+ return;
+
+ if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+ sb->s_flags |= MS_RDONLY;
+ printk(KERN_INFO "btrfs is forced readonly\n");
+ __btrfs_scrub_cancel(fs_info);
+// WARN_ON(1);
+ }
+}
+
+/*
+ * __btrfs_std_error decodes expected errors from the caller and
+ * invokes the approciate error response.
+ */
+void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
+ unsigned int line, int errno, const char *fmt, ...)
+{
+ struct super_block *sb = fs_info->sb;
+ char nbuf[16];
+ const char *errstr;
+ va_list args;
+ va_start(args, fmt);
+
+ /*
+ * Special case: if the error is EROFS, and we're already
+ * under MS_RDONLY, then it is safe here.
+ */
+ if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
+ return;
+
+ errstr = btrfs_decode_error(fs_info, errno, nbuf);
+ if (fmt) {
+ struct va_format vaf = {
+ .fmt = fmt,
+ .va = &args,
+ };
+
+ printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
+ sb->s_id, function, line, errstr, &vaf);
+ } else {
+ printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
+ sb->s_id, function, line, errstr);
+ }
+
+ /* Don't go through full error handling during mount */
+ if (sb->s_flags & MS_BORN) {
+ save_error_info(fs_info);
+ btrfs_handle_error(fs_info);
+ }
+ va_end(args);
+}
+
+const char *logtypes[] = {
+ "emergency",
+ "alert",
+ "critical",
+ "error",
+ "warning",
+ "notice",
+ "info",
+ "debug",
+};
+
+void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
+{
+ struct super_block *sb = fs_info->sb;
+ char lvl[4];
+ struct va_format vaf;
+ va_list args;
+ const char *type = logtypes[4];
+
+ va_start(args, fmt);
+
+ if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
+ strncpy(lvl, fmt, 3);
+ fmt += 3;
+ type = logtypes[fmt[1] - '0'];
+ } else
+ *lvl = '\0';
+
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
+}
+
+/*
+ * We only mark the transaction aborted and then set the file system read-only.
+ * This will prevent new transactions from starting or trying to join this
+ * one.
+ *
+ * This means that error recovery at the call site is limited to freeing
+ * any local memory allocations and passing the error code up without
+ * further cleanup. The transaction should complete as it normally would
+ * in the call path but will return -EIO.
+ *
+ * We'll complete the cleanup in btrfs_end_transaction and
+ * btrfs_commit_transaction.
+ */
+void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, const char *function,
+ unsigned int line, int errno)
+{
+ WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
+ trans->aborted = errno;
+ /* Nothing used. The other threads that have joined this
+ * transaction may be able to continue. */
+ if (!trans->blocks_used) {
+ btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
+ return;
+ }
+ trans->transaction->aborted = errno;
+ __btrfs_std_error(root->fs_info, function, line, errno, NULL);
+}
+/*
+ * __btrfs_panic decodes unexpected, fatal errors from the caller,
+ * issues an alert, and either panics or BUGs, depending on mount options.
+ */
+void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
+ unsigned int line, int errno, const char *fmt, ...)
+{
+ char nbuf[16];
+ char *s_id = "<unknown>";
+ const char *errstr;
+ struct va_format vaf = { .fmt = fmt };
+ va_list args;
+
+ if (fs_info)
+ s_id = fs_info->sb->s_id;
+
+ va_start(args, fmt);
+ vaf.va = &args;
+
+ errstr = btrfs_decode_error(fs_info, errno, nbuf);
+ if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
+ panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
+ s_id, function, line, &vaf, errstr);
+
+ printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
+ s_id, function, line, &vaf, errstr);
+ va_end(args);
+ /* Caller calls BUG() */
+}
+
+static void btrfs_put_super(struct super_block *sb)
+{
+ (void)close_ctree(btrfs_sb(sb)->tree_root);
+ /* FIXME: need to fix VFS to return error? */
+ /* AV: return it _where_? ->put_super() can be triggered by any number
+ * of async events, up to and including delivery of SIGKILL to the
+ * last process that kept it busy. Or segfault in the aforementioned
+ * process... Whom would you report that to?
+ */
+}
+
+enum {
+ Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
+ Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
+ Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
+ Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
+ Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
+ Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
+ Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
+ Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
+ Opt_check_integrity, Opt_check_integrity_including_extent_data,
+ Opt_check_integrity_print_mask, Opt_fatal_errors,
+ Opt_err,
+};
+
+static match_table_t tokens = {
+ {Opt_degraded, "degraded"},
+ {Opt_subvol, "subvol=%s"},
+ {Opt_subvolid, "subvolid=%d"},
+ {Opt_device, "device=%s"},
+ {Opt_nodatasum, "nodatasum"},
+ {Opt_nodatacow, "nodatacow"},
+ {Opt_nobarrier, "nobarrier"},
+ {Opt_max_inline, "max_inline=%s"},
+ {Opt_alloc_start, "alloc_start=%s"},
+ {Opt_thread_pool, "thread_pool=%d"},
+ {Opt_compress, "compress"},
+ {Opt_compress_type, "compress=%s"},
+ {Opt_compress_force, "compress-force"},
+ {Opt_compress_force_type, "compress-force=%s"},
+ {Opt_ssd, "ssd"},
+ {Opt_ssd_spread, "ssd_spread"},
+ {Opt_nossd, "nossd"},
+ {Opt_noacl, "noacl"},
+ {Opt_notreelog, "notreelog"},
+ {Opt_flushoncommit, "flushoncommit"},
+ {Opt_ratio, "metadata_ratio=%d"},
+ {Opt_discard, "discard"},
+ {Opt_space_cache, "space_cache"},
+ {Opt_clear_cache, "clear_cache"},
+ {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
+ {Opt_enospc_debug, "enospc_debug"},
+ {Opt_subvolrootid, "subvolrootid=%d"},
+ {Opt_defrag, "autodefrag"},
+ {Opt_inode_cache, "inode_cache"},
+ {Opt_no_space_cache, "nospace_cache"},
+ {Opt_recovery, "recovery"},
+ {Opt_skip_balance, "skip_balance"},
+ {Opt_check_integrity, "check_int"},
+ {Opt_check_integrity_including_extent_data, "check_int_data"},
+ {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
+ {Opt_fatal_errors, "fatal_errors=%s"},
+ {Opt_err, NULL},
+};
+
+/*
+ * Regular mount options parser. Everything that is needed only when
+ * reading in a new superblock is parsed here.
+ * XXX JDM: This needs to be cleaned up for remount.
+ */
+int btrfs_parse_options(struct btrfs_root *root, char *options)
+{
+ struct btrfs_fs_info *info = root->fs_info;
+ substring_t args[MAX_OPT_ARGS];
+ char *p, *num, *orig = NULL;
+ u64 cache_gen;
+ int intarg;
+ int ret = 0;
+ char *compress_type;
+ bool compress_force = false;
+
+ cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
+ if (cache_gen)
+ btrfs_set_opt(info->mount_opt, SPACE_CACHE);
+
+ if (!options)
+ goto out;
+
+ /*
+ * strsep changes the string, duplicate it because parse_options
+ * gets called twice
+ */
+ options = kstrdup(options, GFP_NOFS);
+ if (!options)
+ return -ENOMEM;
+
+ orig = options;
+
+ while ((p = strsep(&options, ",")) != NULL) {
+ int token;
+ if (!*p)
+ continue;
+
+ token = match_token(p, tokens, args);
+ switch (token) {
+ case Opt_degraded:
+ printk(KERN_INFO "btrfs: allowing degraded mounts\n");
+ btrfs_set_opt(info->mount_opt, DEGRADED);
+ break;
+ case Opt_subvol:
+ case Opt_subvolid:
+ case Opt_subvolrootid:
+ case Opt_device:
+ /*
+ * These are parsed by btrfs_parse_early_options
+ * and can be happily ignored here.
+ */
+ break;
+ case Opt_nodatasum:
+ printk(KERN_INFO "btrfs: setting nodatasum\n");
+ btrfs_set_opt(info->mount_opt, NODATASUM);
+ break;
+ case Opt_nodatacow:
+ printk(KERN_INFO "btrfs: setting nodatacow\n");
+ btrfs_set_opt(info->mount_opt, NODATACOW);
+ btrfs_set_opt(info->mount_opt, NODATASUM);
+ break;
+ case Opt_compress_force:
+ case Opt_compress_force_type:
+ compress_force = true;
+ case Opt_compress:
+ case Opt_compress_type:
+ if (token == Opt_compress ||
+ token == Opt_compress_force ||
+ strcmp(args[0].from, "zlib") == 0) {
+ compress_type = "zlib";
+ info->compress_type = BTRFS_COMPRESS_ZLIB;
+ } else if (strcmp(args[0].from, "lzo") == 0) {
+ compress_type = "lzo";
+ info->compress_type = BTRFS_COMPRESS_LZO;
+ } else {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ btrfs_set_opt(info->mount_opt, COMPRESS);
+ if (compress_force) {
+ btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
+ pr_info("btrfs: force %s compression\n",
+ compress_type);
+ } else
+ pr_info("btrfs: use %s compression\n",
+ compress_type);
+ break;
+ case Opt_ssd:
+ printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
+ btrfs_set_opt(info->mount_opt, SSD);
+ break;
+ case Opt_ssd_spread:
+ printk(KERN_INFO "btrfs: use spread ssd "
+ "allocation scheme\n");
+ btrfs_set_opt(info->mount_opt, SSD);
+ btrfs_set_opt(info->mount_opt, SSD_SPREAD);
+ break;
+ case Opt_nossd:
+ printk(KERN_INFO "btrfs: not using ssd allocation "
+ "scheme\n");
+ btrfs_set_opt(info->mount_opt, NOSSD);
+ btrfs_clear_opt(info->mount_opt, SSD);
+ btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
+ break;
+ case Opt_nobarrier:
+ printk(KERN_INFO "btrfs: turning off barriers\n");
+ btrfs_set_opt(info->mount_opt, NOBARRIER);
+ break;
+ case Opt_thread_pool:
+ intarg = 0;
+ match_int(&args[0], &intarg);
+ if (intarg) {
+ info->thread_pool_size = intarg;
+ printk(KERN_INFO "btrfs: thread pool %d\n",
+ info->thread_pool_size);
+ }
+ break;
+ case Opt_max_inline:
+ num = match_strdup(&args[0]);
+ if (num) {
+ info->max_inline = memparse(num, NULL);
+ kfree(num);
+
+ if (info->max_inline) {
+ info->max_inline = max_t(u64,
+ info->max_inline,
+ root->sectorsize);
+ }
+ printk(KERN_INFO "btrfs: max_inline at %llu\n",
+ (unsigned long long)info->max_inline);
+ }
+ break;
+ case Opt_alloc_start:
+ num = match_strdup(&args[0]);
+ if (num) {
+ info->alloc_start = memparse(num, NULL);
+ kfree(num);
+ printk(KERN_INFO
+ "btrfs: allocations start at %llu\n",
+ (unsigned long long)info->alloc_start);
+ }
+ break;
+ case Opt_noacl:
+ root->fs_info->sb->s_flags &= ~MS_POSIXACL;
+ break;
+ case Opt_notreelog:
+ printk(KERN_INFO "btrfs: disabling tree log\n");
+ btrfs_set_opt(info->mount_opt, NOTREELOG);
+ break;
+ case Opt_flushoncommit:
+ printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
+ btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
+ break;
+ case Opt_ratio:
+ intarg = 0;
+ match_int(&args[0], &intarg);
+ if (intarg) {
+ info->metadata_ratio = intarg;
+ printk(KERN_INFO "btrfs: metadata ratio %d\n",
+ info->metadata_ratio);
+ }
+ break;
+ case Opt_discard:
+ btrfs_set_opt(info->mount_opt, DISCARD);
+ break;
+ case Opt_space_cache:
+ btrfs_set_opt(info->mount_opt, SPACE_CACHE);
+ break;
+ case Opt_no_space_cache:
+ printk(KERN_INFO "btrfs: disabling disk space caching\n");
+ btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
+ break;
+ case Opt_inode_cache:
+ printk(KERN_INFO "btrfs: enabling inode map caching\n");
+ btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
+ break;
+ case Opt_clear_cache:
+ printk(KERN_INFO "btrfs: force clearing of disk cache\n");
+ btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
+ break;
+ case Opt_user_subvol_rm_allowed:
+ btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
+ break;
+ case Opt_enospc_debug:
+ btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
+ break;
+ case Opt_defrag:
+ printk(KERN_INFO "btrfs: enabling auto defrag");
+ btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
+ break;
+ case Opt_recovery:
+ printk(KERN_INFO "btrfs: enabling auto recovery");
+ btrfs_set_opt(info->mount_opt, RECOVERY);
+ break;
+ case Opt_skip_balance:
+ btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
+ break;
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ case Opt_check_integrity_including_extent_data:
+ printk(KERN_INFO "btrfs: enabling check integrity"
+ " including extent data\n");
+ btrfs_set_opt(info->mount_opt,
+ CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
+ btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
+ break;
+ case Opt_check_integrity:
+ printk(KERN_INFO "btrfs: enabling check integrity\n");
+ btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
+ break;
+ case Opt_check_integrity_print_mask:
+ intarg = 0;
+ match_int(&args[0], &intarg);
+ if (intarg) {
+ info->check_integrity_print_mask = intarg;
+ printk(KERN_INFO "btrfs:"
+ " check_integrity_print_mask 0x%x\n",
+ info->check_integrity_print_mask);
+ }
+ break;
+#else
+ case Opt_check_integrity_including_extent_data:
+ case Opt_check_integrity:
+ case Opt_check_integrity_print_mask:
+ printk(KERN_ERR "btrfs: support for check_integrity*"
+ " not compiled in!\n");
+ ret = -EINVAL;
+ goto out;
+#endif
+ case Opt_fatal_errors:
+ if (strcmp(args[0].from, "panic") == 0)
+ btrfs_set_opt(info->mount_opt,
+ PANIC_ON_FATAL_ERROR);
+ else if (strcmp(args[0].from, "bug") == 0)
+ btrfs_clear_opt(info->mount_opt,
+ PANIC_ON_FATAL_ERROR);
+ else {
+ ret = -EINVAL;
+ goto out;
+ }
+ break;
+ case Opt_err:
+ printk(KERN_INFO "btrfs: unrecognized mount option "
+ "'%s'\n", p);
+ ret = -EINVAL;
+ goto out;
+ default:
+ break;
+ }
+ }
+out:
+ if (!ret && btrfs_test_opt(root, SPACE_CACHE))
+ printk(KERN_INFO "btrfs: disk space caching is enabled\n");
+ kfree(orig);
+ return ret;
+}
+
+/*
+ * Parse mount options that are required early in the mount process.
+ *
+ * All other options will be parsed on much later in the mount process and
+ * only when we need to allocate a new super block.
+ */
+static int btrfs_parse_early_options(const char *options, fmode_t flags,
+ void *holder, char **subvol_name, u64 *subvol_objectid,
+ u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
+{
+ substring_t args[MAX_OPT_ARGS];
+ char *device_name, *opts, *orig, *p;
+ int error = 0;
+ int intarg;
+
+ if (!options)
+ return 0;
+
+ /*
+ * strsep changes the string, duplicate it because parse_options
+ * gets called twice
+ */
+ opts = kstrdup(options, GFP_KERNEL);
+ if (!opts)
+ return -ENOMEM;
+ orig = opts;
+
+ while ((p = strsep(&opts, ",")) != NULL) {
+ int token;
+ if (!*p)
+ continue;
+
+ token = match_token(p, tokens, args);
+ switch (token) {
+ case Opt_subvol:
+ kfree(*subvol_name);
+ *subvol_name = match_strdup(&args[0]);
+ break;
+ case Opt_subvolid:
+ intarg = 0;
+ error = match_int(&args[0], &intarg);
+ if (!error) {
+ /* we want the original fs_tree */
+ if (!intarg)
+ *subvol_objectid =
+ BTRFS_FS_TREE_OBJECTID;
+ else
+ *subvol_objectid = intarg;
+ }
+ break;
+ case Opt_subvolrootid:
+ intarg = 0;
+ error = match_int(&args[0], &intarg);
+ if (!error) {
+ /* we want the original fs_tree */
+ if (!intarg)
+ *subvol_rootid =
+ BTRFS_FS_TREE_OBJECTID;
+ else
+ *subvol_rootid = intarg;
+ }
+ break;
+ case Opt_device:
+ device_name = match_strdup(&args[0]);
+ if (!device_name) {
+ error = -ENOMEM;
+ goto out;
+ }
+ error = btrfs_scan_one_device(device_name,
+ flags, holder, fs_devices);
+ kfree(device_name);
+ if (error)
+ goto out;
+ break;
+ default:
+ break;
+ }
+ }
+
+out:
+ kfree(orig);
+ return error;
+}
+
+static struct dentry *get_default_root(struct super_block *sb,
+ u64 subvol_objectid)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_root *root = fs_info->tree_root;
+ struct btrfs_root *new_root;
+ struct btrfs_dir_item *di;
+ struct btrfs_path *path;
+ struct btrfs_key location;
+ struct inode *inode;
+ u64 dir_id;
+ int new = 0;
+
+ /*
+ * We have a specific subvol we want to mount, just setup location and
+ * go look up the root.
+ */
+ if (subvol_objectid) {
+ location.objectid = subvol_objectid;
+ location.type = BTRFS_ROOT_ITEM_KEY;
+ location.offset = (u64)-1;
+ goto find_root;
+ }
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return ERR_PTR(-ENOMEM);
+ path->leave_spinning = 1;
+
+ /*
+ * Find the "default" dir item which points to the root item that we
+ * will mount by default if we haven't been given a specific subvolume
+ * to mount.
+ */
+ dir_id = btrfs_super_root_dir(fs_info->super_copy);
+ di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
+ if (IS_ERR(di)) {
+ btrfs_free_path(path);
+ return ERR_CAST(di);
+ }
+ if (!di) {
+ /*
+ * Ok the default dir item isn't there. This is weird since
+ * it's always been there, but don't freak out, just try and
+ * mount to root most subvolume.
+ */
+ btrfs_free_path(path);
+ dir_id = BTRFS_FIRST_FREE_OBJECTID;
+ new_root = fs_info->fs_root;
+ goto setup_root;
+ }
+
+ btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
+ btrfs_free_path(path);
+
+find_root:
+ new_root = btrfs_read_fs_root_no_name(fs_info, &location);
+ if (IS_ERR(new_root))
+ return ERR_CAST(new_root);
+
+ if (btrfs_root_refs(&new_root->root_item) == 0)
+ return ERR_PTR(-ENOENT);
+
+ dir_id = btrfs_root_dirid(&new_root->root_item);
+setup_root:
+ location.objectid = dir_id;
+ location.type = BTRFS_INODE_ITEM_KEY;
+ location.offset = 0;
+
+ inode = btrfs_iget(sb, &location, new_root, &new);
+ if (IS_ERR(inode))
+ return ERR_CAST(inode);
+
+ /*
+ * If we're just mounting the root most subvol put the inode and return
+ * a reference to the dentry. We will have already gotten a reference
+ * to the inode in btrfs_fill_super so we're good to go.
+ */
+ if (!new && sb->s_root->d_inode == inode) {
+ iput(inode);
+ return dget(sb->s_root);
+ }
+
+ return d_obtain_alias(inode);
+}
+
+static int btrfs_fill_super(struct super_block *sb,
+ struct btrfs_fs_devices *fs_devices,
+ void *data, int silent)
+{
+ struct inode *inode;
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_key key;
+ int err;
+
+ sb->s_maxbytes = MAX_LFS_FILESIZE;
+ sb->s_magic = BTRFS_SUPER_MAGIC;
+ sb->s_op = &btrfs_super_ops;
+ sb->s_d_op = &btrfs_dentry_operations;
+ sb->s_export_op = &btrfs_export_ops;
+ sb->s_xattr = btrfs_xattr_handlers;
+ sb->s_time_gran = 1;
+#ifdef CONFIG_BTRFS_FS_POSIX_ACL
+ sb->s_flags |= MS_POSIXACL;
+#endif
+
+ err = open_ctree(sb, fs_devices, (char *)data);
+ if (err) {
+ printk("btrfs: open_ctree failed\n");
+ return err;
+ }
+
+ key.objectid = BTRFS_FIRST_FREE_OBJECTID;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+ inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
+ if (IS_ERR(inode)) {
+ err = PTR_ERR(inode);
+ goto fail_close;
+ }
+
+ sb->s_root = d_make_root(inode);
+ if (!sb->s_root) {
+ err = -ENOMEM;
+ goto fail_close;
+ }
+
+ save_mount_options(sb, data);
+ cleancache_init_fs(sb);
+ sb->s_flags |= MS_ACTIVE;
+ return 0;
+
+fail_close:
+ close_ctree(fs_info->tree_root);
+ return err;
+}
+
+int btrfs_sync_fs(struct super_block *sb, int wait)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_root *root = fs_info->tree_root;
+ int ret;
+
+ trace_btrfs_sync_fs(wait);
+
+ if (!wait) {
+ filemap_flush(fs_info->btree_inode->i_mapping);
+ return 0;
+ }
+
+ btrfs_wait_ordered_extents(root, 0, 0);
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ ret = btrfs_commit_transaction(trans, root);
+ return ret;
+}
+
+static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
+{
+ struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
+ struct btrfs_root *root = info->tree_root;
+ char *compress_type;
+
+ if (btrfs_test_opt(root, DEGRADED))
+ seq_puts(seq, ",degraded");
+ if (btrfs_test_opt(root, NODATASUM))
+ seq_puts(seq, ",nodatasum");
+ if (btrfs_test_opt(root, NODATACOW))
+ seq_puts(seq, ",nodatacow");
+ if (btrfs_test_opt(root, NOBARRIER))
+ seq_puts(seq, ",nobarrier");
+ if (info->max_inline != 8192 * 1024)
+ seq_printf(seq, ",max_inline=%llu",
+ (unsigned long long)info->max_inline);
+ if (info->alloc_start != 0)
+ seq_printf(seq, ",alloc_start=%llu",
+ (unsigned long long)info->alloc_start);
+ if (info->thread_pool_size != min_t(unsigned long,
+ num_online_cpus() + 2, 8))
+ seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
+ if (btrfs_test_opt(root, COMPRESS)) {
+ if (info->compress_type == BTRFS_COMPRESS_ZLIB)
+ compress_type = "zlib";
+ else
+ compress_type = "lzo";
+ if (btrfs_test_opt(root, FORCE_COMPRESS))
+ seq_printf(seq, ",compress-force=%s", compress_type);
+ else
+ seq_printf(seq, ",compress=%s", compress_type);
+ }
+ if (btrfs_test_opt(root, NOSSD))
+ seq_puts(seq, ",nossd");
+ if (btrfs_test_opt(root, SSD_SPREAD))
+ seq_puts(seq, ",ssd_spread");
+ else if (btrfs_test_opt(root, SSD))
+ seq_puts(seq, ",ssd");
+ if (btrfs_test_opt(root, NOTREELOG))
+ seq_puts(seq, ",notreelog");
+ if (btrfs_test_opt(root, FLUSHONCOMMIT))
+ seq_puts(seq, ",flushoncommit");
+ if (btrfs_test_opt(root, DISCARD))
+ seq_puts(seq, ",discard");
+ if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
+ seq_puts(seq, ",noacl");
+ if (btrfs_test_opt(root, SPACE_CACHE))
+ seq_puts(seq, ",space_cache");
+ else
+ seq_puts(seq, ",nospace_cache");
+ if (btrfs_test_opt(root, CLEAR_CACHE))
+ seq_puts(seq, ",clear_cache");
+ if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
+ seq_puts(seq, ",user_subvol_rm_allowed");
+ if (btrfs_test_opt(root, ENOSPC_DEBUG))
+ seq_puts(seq, ",enospc_debug");
+ if (btrfs_test_opt(root, AUTO_DEFRAG))
+ seq_puts(seq, ",autodefrag");
+ if (btrfs_test_opt(root, INODE_MAP_CACHE))
+ seq_puts(seq, ",inode_cache");
+ if (btrfs_test_opt(root, SKIP_BALANCE))
+ seq_puts(seq, ",skip_balance");
+ if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
+ seq_puts(seq, ",fatal_errors=panic");
+ return 0;
+}
+
+static int btrfs_test_super(struct super_block *s, void *data)
+{
+ struct btrfs_fs_info *p = data;
+ struct btrfs_fs_info *fs_info = btrfs_sb(s);
+
+ return fs_info->fs_devices == p->fs_devices;
+}
+
+static int btrfs_set_super(struct super_block *s, void *data)
+{
+ int err = set_anon_super(s, data);
+ if (!err)
+ s->s_fs_info = data;
+ return err;
+}
+
+/*
+ * subvolumes are identified by ino 256
+ */
+static inline int is_subvolume_inode(struct inode *inode)
+{
+ if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
+ return 1;
+ return 0;
+}
+
+/*
+ * This will strip out the subvol=%s argument for an argument string and add
+ * subvolid=0 to make sure we get the actual tree root for path walking to the
+ * subvol we want.
+ */
+static char *setup_root_args(char *args)
+{
+ unsigned copied = 0;
+ unsigned len = strlen(args) + 2;
+ char *pos;
+ char *ret;
+
+ /*
+ * We need the same args as before, but minus
+ *
+ * subvol=a
+ *
+ * and add
+ *
+ * subvolid=0
+ *
+ * which is a difference of 2 characters, so we allocate strlen(args) +
+ * 2 characters.
+ */
+ ret = kzalloc(len * sizeof(char), GFP_NOFS);
+ if (!ret)
+ return NULL;
+ pos = strstr(args, "subvol=");
+
+ /* This shouldn't happen, but just in case.. */
+ if (!pos) {
+ kfree(ret);
+ return NULL;
+ }
+
+ /*
+ * The subvol=<> arg is not at the front of the string, copy everybody
+ * up to that into ret.
+ */
+ if (pos != args) {
+ *pos = '\0';
+ strcpy(ret, args);
+ copied += strlen(args);
+ pos++;
+ }
+
+ strncpy(ret + copied, "subvolid=0", len - copied);
+
+ /* Length of subvolid=0 */
+ copied += 10;
+
+ /*
+ * If there is no , after the subvol= option then we know there's no
+ * other options and we can just return.
+ */
+ pos = strchr(pos, ',');
+ if (!pos)
+ return ret;
+
+ /* Copy the rest of the arguments into our buffer */
+ strncpy(ret + copied, pos, len - copied);
+ copied += strlen(pos);
+
+ return ret;
+}
+
+static struct dentry *mount_subvol(const char *subvol_name, int flags,
+ const char *device_name, char *data)
+{
+ struct dentry *root;
+ struct vfsmount *mnt;
+ char *newargs;
+
+ newargs = setup_root_args(data);
+ if (!newargs)
+ return ERR_PTR(-ENOMEM);
+ mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
+ newargs);
+ kfree(newargs);
+ if (IS_ERR(mnt))
+ return ERR_CAST(mnt);
+
+ root = mount_subtree(mnt, subvol_name);
+
+ if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
+ struct super_block *s = root->d_sb;
+ dput(root);
+ root = ERR_PTR(-EINVAL);
+ deactivate_locked_super(s);
+ printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
+ subvol_name);
+ }
+
+ return root;
+}
+
+/*
+ * Find a superblock for the given device / mount point.
+ *
+ * Note: This is based on get_sb_bdev from fs/super.c with a few additions
+ * for multiple device setup. Make sure to keep it in sync.
+ */
+static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
+ const char *device_name, void *data)
+{
+ struct block_device *bdev = NULL;
+ struct super_block *s;
+ struct dentry *root;
+ struct btrfs_fs_devices *fs_devices = NULL;
+ struct btrfs_fs_info *fs_info = NULL;
+ fmode_t mode = FMODE_READ;
+ char *subvol_name = NULL;
+ u64 subvol_objectid = 0;
+ u64 subvol_rootid = 0;
+ int error = 0;
+
+ if (!(flags & MS_RDONLY))
+ mode |= FMODE_WRITE;
+
+ error = btrfs_parse_early_options(data, mode, fs_type,
+ &subvol_name, &subvol_objectid,
+ &subvol_rootid, &fs_devices);
+ if (error) {
+ kfree(subvol_name);
+ return ERR_PTR(error);
+ }
+
+ if (subvol_name) {
+ root = mount_subvol(subvol_name, flags, device_name, data);
+ kfree(subvol_name);
+ return root;
+ }
+
+ error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
+ if (error)
+ return ERR_PTR(error);
+
+ /*
+ * Setup a dummy root and fs_info for test/set super. This is because
+ * we don't actually fill this stuff out until open_ctree, but we need
+ * it for searching for existing supers, so this lets us do that and
+ * then open_ctree will properly initialize everything later.
+ */
+ fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
+ if (!fs_info)
+ return ERR_PTR(-ENOMEM);
+
+ fs_info->fs_devices = fs_devices;
+
+ fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
+ fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
+ if (!fs_info->super_copy || !fs_info->super_for_commit) {
+ error = -ENOMEM;
+ goto error_fs_info;
+ }
+
+ error = btrfs_open_devices(fs_devices, mode, fs_type);
+ if (error)
+ goto error_fs_info;
+
+ if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
+ error = -EACCES;
+ goto error_close_devices;
+ }
+
+ bdev = fs_devices->latest_bdev;
+ s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
+ if (IS_ERR(s)) {
+ error = PTR_ERR(s);
+ goto error_close_devices;
+ }
+
+ if (s->s_root) {
+ btrfs_close_devices(fs_devices);
+ free_fs_info(fs_info);
+ if ((flags ^ s->s_flags) & MS_RDONLY)
+ error = -EBUSY;
+ } else {
+ char b[BDEVNAME_SIZE];
+
+ s->s_flags = flags | MS_NOSEC;
+ strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
+ btrfs_sb(s)->bdev_holder = fs_type;
+ error = btrfs_fill_super(s, fs_devices, data,
+ flags & MS_SILENT ? 1 : 0);
+ }
+
+ root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
+ if (IS_ERR(root))
+ deactivate_locked_super(s);
+
+ return root;
+
+error_close_devices:
+ btrfs_close_devices(fs_devices);
+error_fs_info:
+ free_fs_info(fs_info);
+ return ERR_PTR(error);
+}
+
+static int btrfs_remount(struct super_block *sb, int *flags, char *data)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_root *root = fs_info->tree_root;
+ unsigned old_flags = sb->s_flags;
+ unsigned long old_opts = fs_info->mount_opt;
+ unsigned long old_compress_type = fs_info->compress_type;
+ u64 old_max_inline = fs_info->max_inline;
+ u64 old_alloc_start = fs_info->alloc_start;
+ int old_thread_pool_size = fs_info->thread_pool_size;
+ unsigned int old_metadata_ratio = fs_info->metadata_ratio;
+ int ret;
+
+ ret = btrfs_parse_options(root, data);
+ if (ret) {
+ ret = -EINVAL;
+ goto restore;
+ }
+
+ if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
+ return 0;
+
+ if (*flags & MS_RDONLY) {
+ sb->s_flags |= MS_RDONLY;
+
+ ret = btrfs_commit_super(root);
+ if (ret)
+ goto restore;
+ } else {
+ if (fs_info->fs_devices->rw_devices == 0) {
+ ret = -EACCES;
+ goto restore;
+ }
+
+ if (btrfs_super_log_root(fs_info->super_copy) != 0) {
+ ret = -EINVAL;
+ goto restore;
+ }
+
+ ret = btrfs_cleanup_fs_roots(fs_info);
+ if (ret)
+ goto restore;
+
+ /* recover relocation */
+ ret = btrfs_recover_relocation(root);
+ if (ret)
+ goto restore;
+
+ sb->s_flags &= ~MS_RDONLY;
+ }
+
+ return 0;
+
+restore:
+ /* We've hit an error - don't reset MS_RDONLY */
+ if (sb->s_flags & MS_RDONLY)
+ old_flags |= MS_RDONLY;
+ sb->s_flags = old_flags;
+ fs_info->mount_opt = old_opts;
+ fs_info->compress_type = old_compress_type;
+ fs_info->max_inline = old_max_inline;
+ fs_info->alloc_start = old_alloc_start;
+ fs_info->thread_pool_size = old_thread_pool_size;
+ fs_info->metadata_ratio = old_metadata_ratio;
+ return ret;
+}
+
+/* Used to sort the devices by max_avail(descending sort) */
+static int btrfs_cmp_device_free_bytes(const void *dev_info1,
+ const void *dev_info2)
+{
+ if (((struct btrfs_device_info *)dev_info1)->max_avail >
+ ((struct btrfs_device_info *)dev_info2)->max_avail)
+ return -1;
+ else if (((struct btrfs_device_info *)dev_info1)->max_avail <
+ ((struct btrfs_device_info *)dev_info2)->max_avail)
+ return 1;
+ else
+ return 0;
+}
+
+/*
+ * sort the devices by max_avail, in which max free extent size of each device
+ * is stored.(Descending Sort)
+ */
+static inline void btrfs_descending_sort_devices(
+ struct btrfs_device_info *devices,
+ size_t nr_devices)
+{
+ sort(devices, nr_devices, sizeof(struct btrfs_device_info),
+ btrfs_cmp_device_free_bytes, NULL);
+}
+
+/*
+ * The helper to calc the free space on the devices that can be used to store
+ * file data.
+ */
+static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_device_info *devices_info;
+ struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
+ struct btrfs_device *device;
+ u64 skip_space;
+ u64 type;
+ u64 avail_space;
+ u64 used_space;
+ u64 min_stripe_size;
+ int min_stripes = 1, num_stripes = 1;
+ int i = 0, nr_devices;
+ int ret;
+
+ nr_devices = fs_info->fs_devices->open_devices;
+ BUG_ON(!nr_devices);
+
+ devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
+ GFP_NOFS);
+ if (!devices_info)
+ return -ENOMEM;
+
+ /* calc min stripe number for data space alloction */
+ type = btrfs_get_alloc_profile(root, 1);
+ if (type & BTRFS_BLOCK_GROUP_RAID0) {
+ min_stripes = 2;
+ num_stripes = nr_devices;
+ } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
+ min_stripes = 2;
+ num_stripes = 2;
+ } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
+ min_stripes = 4;
+ num_stripes = 4;
+ }
+
+ if (type & BTRFS_BLOCK_GROUP_DUP)
+ min_stripe_size = 2 * BTRFS_STRIPE_LEN;
+ else
+ min_stripe_size = BTRFS_STRIPE_LEN;
+
+ list_for_each_entry(device, &fs_devices->devices, dev_list) {
+ if (!device->in_fs_metadata || !device->bdev)
+ continue;
+
+ avail_space = device->total_bytes - device->bytes_used;
+
+ /* align with stripe_len */
+ do_div(avail_space, BTRFS_STRIPE_LEN);
+ avail_space *= BTRFS_STRIPE_LEN;
+
+ /*
+ * In order to avoid overwritting the superblock on the drive,
+ * btrfs starts at an offset of at least 1MB when doing chunk
+ * allocation.
+ */
+ skip_space = 1024 * 1024;
+
+ /* user can set the offset in fs_info->alloc_start. */
+ if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
+ device->total_bytes)
+ skip_space = max(fs_info->alloc_start, skip_space);
+
+ /*
+ * btrfs can not use the free space in [0, skip_space - 1],
+ * we must subtract it from the total. In order to implement
+ * it, we account the used space in this range first.
+ */
+ ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
+ &used_space);
+ if (ret) {
+ kfree(devices_info);
+ return ret;
+ }
+
+ /* calc the free space in [0, skip_space - 1] */
+ skip_space -= used_space;
+
+ /*
+ * we can use the free space in [0, skip_space - 1], subtract
+ * it from the total.
+ */
+ if (avail_space && avail_space >= skip_space)
+ avail_space -= skip_space;
+ else
+ avail_space = 0;
+
+ if (avail_space < min_stripe_size)
+ continue;
+
+ devices_info[i].dev = device;
+ devices_info[i].max_avail = avail_space;
+
+ i++;
+ }
+
+ nr_devices = i;
+
+ btrfs_descending_sort_devices(devices_info, nr_devices);
+
+ i = nr_devices - 1;
+ avail_space = 0;
+ while (nr_devices >= min_stripes) {
+ if (num_stripes > nr_devices)
+ num_stripes = nr_devices;
+
+ if (devices_info[i].max_avail >= min_stripe_size) {
+ int j;
+ u64 alloc_size;
+
+ avail_space += devices_info[i].max_avail * num_stripes;
+ alloc_size = devices_info[i].max_avail;
+ for (j = i + 1 - num_stripes; j <= i; j++)
+ devices_info[j].max_avail -= alloc_size;
+ }
+ i--;
+ nr_devices--;
+ }
+
+ kfree(devices_info);
+ *free_bytes = avail_space;
+ return 0;
+}
+
+static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
+ struct btrfs_super_block *disk_super = fs_info->super_copy;
+ struct list_head *head = &fs_info->space_info;
+ struct btrfs_space_info *found;
+ u64 total_used = 0;
+ u64 total_free_data = 0;
+ int bits = dentry->d_sb->s_blocksize_bits;
+ __be32 *fsid = (__be32 *)fs_info->fsid;
+ int ret;
+
+ /* holding chunk_muext to avoid allocating new chunks */
+ mutex_lock(&fs_info->chunk_mutex);
+ rcu_read_lock();
+ list_for_each_entry_rcu(found, head, list) {
+ if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
+ total_free_data += found->disk_total - found->disk_used;
+ total_free_data -=
+ btrfs_account_ro_block_groups_free_space(found);
+ }
+
+ total_used += found->disk_used;
+ }
+ rcu_read_unlock();
+
+ buf->f_namelen = BTRFS_NAME_LEN;
+ buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
+ buf->f_bfree = buf->f_blocks - (total_used >> bits);
+ buf->f_bsize = dentry->d_sb->s_blocksize;
+ buf->f_type = BTRFS_SUPER_MAGIC;
+ buf->f_bavail = total_free_data;
+ ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
+ if (ret) {
+ mutex_unlock(&fs_info->chunk_mutex);
+ return ret;
+ }
+ buf->f_bavail += total_free_data;
+ buf->f_bavail = buf->f_bavail >> bits;
+ mutex_unlock(&fs_info->chunk_mutex);
+
+ /* We treat it as constant endianness (it doesn't matter _which_)
+ because we want the fsid to come out the same whether mounted
+ on a big-endian or little-endian host */
+ buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
+ buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
+ /* Mask in the root object ID too, to disambiguate subvols */
+ buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
+ buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
+
+ return 0;
+}
+
+static void btrfs_kill_super(struct super_block *sb)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ kill_anon_super(sb);
+ free_fs_info(fs_info);
+}
+
+static struct file_system_type btrfs_fs_type = {
+ .owner = THIS_MODULE,
+ .name = "btrfs",
+ .mount = btrfs_mount,
+ .kill_sb = btrfs_kill_super,
+ .fs_flags = FS_REQUIRES_DEV,
+};
+
+/*
+ * used by btrfsctl to scan devices when no FS is mounted
+ */
+static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg)
+{
+ struct btrfs_ioctl_vol_args *vol;
+ struct btrfs_fs_devices *fs_devices;
+ int ret = -ENOTTY;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ vol = memdup_user((void __user *)arg, sizeof(*vol));
+ if (IS_ERR(vol))
+ return PTR_ERR(vol);
+
+ switch (cmd) {
+ case BTRFS_IOC_SCAN_DEV:
+ ret = btrfs_scan_one_device(vol->name, FMODE_READ,
+ &btrfs_fs_type, &fs_devices);
+ break;
+ }
+
+ kfree(vol);
+ return ret;
+}
+
+static int btrfs_freeze(struct super_block *sb)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ mutex_lock(&fs_info->transaction_kthread_mutex);
+ mutex_lock(&fs_info->cleaner_mutex);
+ return 0;
+}
+
+static int btrfs_unfreeze(struct super_block *sb)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ mutex_unlock(&fs_info->cleaner_mutex);
+ mutex_unlock(&fs_info->transaction_kthread_mutex);
+ return 0;
+}
+
+static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
+{
+ int ret;
+
+ ret = btrfs_dirty_inode(inode);
+ if (ret)
+ printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
+ "error %d\n", btrfs_ino(inode), ret);
+}
+
+static const struct super_operations btrfs_super_ops = {
+ .drop_inode = btrfs_drop_inode,
+ .evict_inode = btrfs_evict_inode,
+ .put_super = btrfs_put_super,
+ .sync_fs = btrfs_sync_fs,
+ .show_options = btrfs_show_options,
+ .write_inode = btrfs_write_inode,
+ .dirty_inode = btrfs_fs_dirty_inode,
+ .alloc_inode = btrfs_alloc_inode,
+ .destroy_inode = btrfs_destroy_inode,
+ .statfs = btrfs_statfs,
+ .remount_fs = btrfs_remount,
+ .freeze_fs = btrfs_freeze,
+ .unfreeze_fs = btrfs_unfreeze,
+};
+
+static const struct file_operations btrfs_ctl_fops = {
+ .unlocked_ioctl = btrfs_control_ioctl,
+ .compat_ioctl = btrfs_control_ioctl,
+ .owner = THIS_MODULE,
+ .llseek = noop_llseek,
+};
+
+static struct miscdevice btrfs_misc = {
+ .minor = BTRFS_MINOR,
+ .name = "btrfs-control",
+ .fops = &btrfs_ctl_fops
+};
+
+MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
+MODULE_ALIAS("devname:btrfs-control");
+
+static int btrfs_interface_init(void)
+{
+ return misc_register(&btrfs_misc);
+}
+
+static void btrfs_interface_exit(void)
+{
+ if (misc_deregister(&btrfs_misc) < 0)
+ printk(KERN_INFO "misc_deregister failed for control device");
+}
+
+static int __init init_btrfs_fs(void)
+{
+ int err;
+
+ err = btrfs_init_sysfs();
+ if (err)
+ return err;
+
+ btrfs_init_compress();
+
+ err = btrfs_init_cachep();
+ if (err)
+ goto free_compress;
+
+ err = extent_io_init();
+ if (err)
+ goto free_cachep;
+
+ err = extent_map_init();
+ if (err)
+ goto free_extent_io;
+
+ err = btrfs_delayed_inode_init();
+ if (err)
+ goto free_extent_map;
+
+ err = btrfs_interface_init();
+ if (err)
+ goto free_delayed_inode;
+
+ err = register_filesystem(&btrfs_fs_type);
+ if (err)
+ goto unregister_ioctl;
+
+ btrfs_init_lockdep();
+
+ printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
+ return 0;
+
+unregister_ioctl:
+ btrfs_interface_exit();
+free_delayed_inode:
+ btrfs_delayed_inode_exit();
+free_extent_map:
+ extent_map_exit();
+free_extent_io:
+ extent_io_exit();
+free_cachep:
+ btrfs_destroy_cachep();
+free_compress:
+ btrfs_exit_compress();
+ btrfs_exit_sysfs();
+ return err;
+}
+
+static void __exit exit_btrfs_fs(void)
+{
+ btrfs_destroy_cachep();
+ btrfs_delayed_inode_exit();
+ extent_map_exit();
+ extent_io_exit();
+ btrfs_interface_exit();
+ unregister_filesystem(&btrfs_fs_type);
+ btrfs_exit_sysfs();
+ btrfs_cleanup_fs_uuids();
+ btrfs_exit_compress();
+}
+
+module_init(init_btrfs_fs)
+module_exit(exit_btrfs_fs)
+
+MODULE_LICENSE("GPL");
diff --git a/fs/btrfs/sysfs.c b/fs/btrfs/sysfs.c
new file mode 100644
index 00000000..daac9ae6
--- /dev/null
+++ b/fs/btrfs/sysfs.c
@@ -0,0 +1,46 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/completion.h>
+#include <linux/buffer_head.h>
+#include <linux/module.h>
+#include <linux/kobject.h>
+
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+
+/* /sys/fs/btrfs/ entry */
+static struct kset *btrfs_kset;
+
+int btrfs_init_sysfs(void)
+{
+ btrfs_kset = kset_create_and_add("btrfs", NULL, fs_kobj);
+ if (!btrfs_kset)
+ return -ENOMEM;
+ return 0;
+}
+
+void btrfs_exit_sysfs(void)
+{
+ kset_unregister(btrfs_kset);
+}
+
diff --git a/fs/btrfs/transaction.c b/fs/btrfs/transaction.c
new file mode 100644
index 00000000..36422254
--- /dev/null
+++ b/fs/btrfs/transaction.c
@@ -0,0 +1,1539 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/writeback.h>
+#include <linux/pagemap.h>
+#include <linux/blkdev.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "locking.h"
+#include "tree-log.h"
+#include "inode-map.h"
+
+#define BTRFS_ROOT_TRANS_TAG 0
+
+void put_transaction(struct btrfs_transaction *transaction)
+{
+ WARN_ON(atomic_read(&transaction->use_count) == 0);
+ if (atomic_dec_and_test(&transaction->use_count)) {
+ BUG_ON(!list_empty(&transaction->list));
+ WARN_ON(transaction->delayed_refs.root.rb_node);
+ WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
+ memset(transaction, 0, sizeof(*transaction));
+ kmem_cache_free(btrfs_transaction_cachep, transaction);
+ }
+}
+
+static noinline void switch_commit_root(struct btrfs_root *root)
+{
+ free_extent_buffer(root->commit_root);
+ root->commit_root = btrfs_root_node(root);
+}
+
+/*
+ * either allocate a new transaction or hop into the existing one
+ */
+static noinline int join_transaction(struct btrfs_root *root, int nofail)
+{
+ struct btrfs_transaction *cur_trans;
+
+ spin_lock(&root->fs_info->trans_lock);
+loop:
+ /* The file system has been taken offline. No new transactions. */
+ if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+ spin_unlock(&root->fs_info->trans_lock);
+ return -EROFS;
+ }
+
+ if (root->fs_info->trans_no_join) {
+ if (!nofail) {
+ spin_unlock(&root->fs_info->trans_lock);
+ return -EBUSY;
+ }
+ }
+
+ cur_trans = root->fs_info->running_transaction;
+ if (cur_trans) {
+ if (cur_trans->aborted) {
+ spin_unlock(&root->fs_info->trans_lock);
+ return cur_trans->aborted;
+ }
+ atomic_inc(&cur_trans->use_count);
+ atomic_inc(&cur_trans->num_writers);
+ cur_trans->num_joined++;
+ spin_unlock(&root->fs_info->trans_lock);
+ return 0;
+ }
+ spin_unlock(&root->fs_info->trans_lock);
+
+ cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
+ if (!cur_trans)
+ return -ENOMEM;
+
+ spin_lock(&root->fs_info->trans_lock);
+ if (root->fs_info->running_transaction) {
+ /*
+ * someone started a transaction after we unlocked. Make sure
+ * to redo the trans_no_join checks above
+ */
+ kmem_cache_free(btrfs_transaction_cachep, cur_trans);
+ cur_trans = root->fs_info->running_transaction;
+ goto loop;
+ }
+
+ atomic_set(&cur_trans->num_writers, 1);
+ cur_trans->num_joined = 0;
+ init_waitqueue_head(&cur_trans->writer_wait);
+ init_waitqueue_head(&cur_trans->commit_wait);
+ cur_trans->in_commit = 0;
+ cur_trans->blocked = 0;
+ /*
+ * One for this trans handle, one so it will live on until we
+ * commit the transaction.
+ */
+ atomic_set(&cur_trans->use_count, 2);
+ cur_trans->commit_done = 0;
+ cur_trans->start_time = get_seconds();
+
+ cur_trans->delayed_refs.root = RB_ROOT;
+ cur_trans->delayed_refs.num_entries = 0;
+ cur_trans->delayed_refs.num_heads_ready = 0;
+ cur_trans->delayed_refs.num_heads = 0;
+ cur_trans->delayed_refs.flushing = 0;
+ cur_trans->delayed_refs.run_delayed_start = 0;
+ cur_trans->delayed_refs.seq = 1;
+ init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
+ spin_lock_init(&cur_trans->commit_lock);
+ spin_lock_init(&cur_trans->delayed_refs.lock);
+ INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
+
+ INIT_LIST_HEAD(&cur_trans->pending_snapshots);
+ list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
+ extent_io_tree_init(&cur_trans->dirty_pages,
+ root->fs_info->btree_inode->i_mapping);
+ root->fs_info->generation++;
+ cur_trans->transid = root->fs_info->generation;
+ root->fs_info->running_transaction = cur_trans;
+ cur_trans->aborted = 0;
+ spin_unlock(&root->fs_info->trans_lock);
+
+ return 0;
+}
+
+/*
+ * this does all the record keeping required to make sure that a reference
+ * counted root is properly recorded in a given transaction. This is required
+ * to make sure the old root from before we joined the transaction is deleted
+ * when the transaction commits
+ */
+static int record_root_in_trans(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ if (root->ref_cows && root->last_trans < trans->transid) {
+ WARN_ON(root == root->fs_info->extent_root);
+ WARN_ON(root->commit_root != root->node);
+
+ /*
+ * see below for in_trans_setup usage rules
+ * we have the reloc mutex held now, so there
+ * is only one writer in this function
+ */
+ root->in_trans_setup = 1;
+
+ /* make sure readers find in_trans_setup before
+ * they find our root->last_trans update
+ */
+ smp_wmb();
+
+ spin_lock(&root->fs_info->fs_roots_radix_lock);
+ if (root->last_trans == trans->transid) {
+ spin_unlock(&root->fs_info->fs_roots_radix_lock);
+ return 0;
+ }
+ radix_tree_tag_set(&root->fs_info->fs_roots_radix,
+ (unsigned long)root->root_key.objectid,
+ BTRFS_ROOT_TRANS_TAG);
+ spin_unlock(&root->fs_info->fs_roots_radix_lock);
+ root->last_trans = trans->transid;
+
+ /* this is pretty tricky. We don't want to
+ * take the relocation lock in btrfs_record_root_in_trans
+ * unless we're really doing the first setup for this root in
+ * this transaction.
+ *
+ * Normally we'd use root->last_trans as a flag to decide
+ * if we want to take the expensive mutex.
+ *
+ * But, we have to set root->last_trans before we
+ * init the relocation root, otherwise, we trip over warnings
+ * in ctree.c. The solution used here is to flag ourselves
+ * with root->in_trans_setup. When this is 1, we're still
+ * fixing up the reloc trees and everyone must wait.
+ *
+ * When this is zero, they can trust root->last_trans and fly
+ * through btrfs_record_root_in_trans without having to take the
+ * lock. smp_wmb() makes sure that all the writes above are
+ * done before we pop in the zero below
+ */
+ btrfs_init_reloc_root(trans, root);
+ smp_wmb();
+ root->in_trans_setup = 0;
+ }
+ return 0;
+}
+
+
+int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ if (!root->ref_cows)
+ return 0;
+
+ /*
+ * see record_root_in_trans for comments about in_trans_setup usage
+ * and barriers
+ */
+ smp_rmb();
+ if (root->last_trans == trans->transid &&
+ !root->in_trans_setup)
+ return 0;
+
+ mutex_lock(&root->fs_info->reloc_mutex);
+ record_root_in_trans(trans, root);
+ mutex_unlock(&root->fs_info->reloc_mutex);
+
+ return 0;
+}
+
+/* wait for commit against the current transaction to become unblocked
+ * when this is done, it is safe to start a new transaction, but the current
+ * transaction might not be fully on disk.
+ */
+static void wait_current_trans(struct btrfs_root *root)
+{
+ struct btrfs_transaction *cur_trans;
+
+ spin_lock(&root->fs_info->trans_lock);
+ cur_trans = root->fs_info->running_transaction;
+ if (cur_trans && cur_trans->blocked) {
+ atomic_inc(&cur_trans->use_count);
+ spin_unlock(&root->fs_info->trans_lock);
+
+ wait_event(root->fs_info->transaction_wait,
+ !cur_trans->blocked);
+ put_transaction(cur_trans);
+ } else {
+ spin_unlock(&root->fs_info->trans_lock);
+ }
+}
+
+enum btrfs_trans_type {
+ TRANS_START,
+ TRANS_JOIN,
+ TRANS_USERSPACE,
+ TRANS_JOIN_NOLOCK,
+};
+
+static int may_wait_transaction(struct btrfs_root *root, int type)
+{
+ if (root->fs_info->log_root_recovering)
+ return 0;
+
+ if (type == TRANS_USERSPACE)
+ return 1;
+
+ if (type == TRANS_START &&
+ !atomic_read(&root->fs_info->open_ioctl_trans))
+ return 1;
+
+ return 0;
+}
+
+static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
+ u64 num_items, int type)
+{
+ struct btrfs_trans_handle *h;
+ struct btrfs_transaction *cur_trans;
+ u64 num_bytes = 0;
+ int ret;
+
+ if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
+ return ERR_PTR(-EROFS);
+
+ if (current->journal_info) {
+ WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
+ h = current->journal_info;
+ h->use_count++;
+ h->orig_rsv = h->block_rsv;
+ h->block_rsv = NULL;
+ goto got_it;
+ }
+
+ /*
+ * Do the reservation before we join the transaction so we can do all
+ * the appropriate flushing if need be.
+ */
+ if (num_items > 0 && root != root->fs_info->chunk_root) {
+ num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
+ ret = btrfs_block_rsv_add(root,
+ &root->fs_info->trans_block_rsv,
+ num_bytes);
+ if (ret)
+ return ERR_PTR(ret);
+ }
+again:
+ h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
+ if (!h)
+ return ERR_PTR(-ENOMEM);
+
+ if (may_wait_transaction(root, type))
+ wait_current_trans(root);
+
+ do {
+ ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
+ if (ret == -EBUSY)
+ wait_current_trans(root);
+ } while (ret == -EBUSY);
+
+ if (ret < 0) {
+ kmem_cache_free(btrfs_trans_handle_cachep, h);
+ return ERR_PTR(ret);
+ }
+
+ cur_trans = root->fs_info->running_transaction;
+
+ h->transid = cur_trans->transid;
+ h->transaction = cur_trans;
+ h->blocks_used = 0;
+ h->bytes_reserved = 0;
+ h->delayed_ref_updates = 0;
+ h->use_count = 1;
+ h->block_rsv = NULL;
+ h->orig_rsv = NULL;
+ h->aborted = 0;
+
+ smp_mb();
+ if (cur_trans->blocked && may_wait_transaction(root, type)) {
+ btrfs_commit_transaction(h, root);
+ goto again;
+ }
+
+ if (num_bytes) {
+ trace_btrfs_space_reservation(root->fs_info, "transaction",
+ h->transid, num_bytes, 1);
+ h->block_rsv = &root->fs_info->trans_block_rsv;
+ h->bytes_reserved = num_bytes;
+ }
+
+got_it:
+ btrfs_record_root_in_trans(h, root);
+
+ if (!current->journal_info && type != TRANS_USERSPACE)
+ current->journal_info = h;
+ return h;
+}
+
+struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
+ int num_items)
+{
+ return start_transaction(root, num_items, TRANS_START);
+}
+struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
+{
+ return start_transaction(root, 0, TRANS_JOIN);
+}
+
+struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
+{
+ return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
+}
+
+struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
+{
+ return start_transaction(root, 0, TRANS_USERSPACE);
+}
+
+/* wait for a transaction commit to be fully complete */
+static noinline void wait_for_commit(struct btrfs_root *root,
+ struct btrfs_transaction *commit)
+{
+ wait_event(commit->commit_wait, commit->commit_done);
+}
+
+int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
+{
+ struct btrfs_transaction *cur_trans = NULL, *t;
+ int ret;
+
+ ret = 0;
+ if (transid) {
+ if (transid <= root->fs_info->last_trans_committed)
+ goto out;
+
+ /* find specified transaction */
+ spin_lock(&root->fs_info->trans_lock);
+ list_for_each_entry(t, &root->fs_info->trans_list, list) {
+ if (t->transid == transid) {
+ cur_trans = t;
+ atomic_inc(&cur_trans->use_count);
+ break;
+ }
+ if (t->transid > transid)
+ break;
+ }
+ spin_unlock(&root->fs_info->trans_lock);
+ ret = -EINVAL;
+ if (!cur_trans)
+ goto out; /* bad transid */
+ } else {
+ /* find newest transaction that is committing | committed */
+ spin_lock(&root->fs_info->trans_lock);
+ list_for_each_entry_reverse(t, &root->fs_info->trans_list,
+ list) {
+ if (t->in_commit) {
+ if (t->commit_done)
+ break;
+ cur_trans = t;
+ atomic_inc(&cur_trans->use_count);
+ break;
+ }
+ }
+ spin_unlock(&root->fs_info->trans_lock);
+ if (!cur_trans)
+ goto out; /* nothing committing|committed */
+ }
+
+ wait_for_commit(root, cur_trans);
+
+ put_transaction(cur_trans);
+ ret = 0;
+out:
+ return ret;
+}
+
+void btrfs_throttle(struct btrfs_root *root)
+{
+ if (!atomic_read(&root->fs_info->open_ioctl_trans))
+ wait_current_trans(root);
+}
+
+static int should_end_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ int ret;
+
+ ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
+ return ret ? 1 : 0;
+}
+
+int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_transaction *cur_trans = trans->transaction;
+ struct btrfs_block_rsv *rsv = trans->block_rsv;
+ int updates;
+ int err;
+
+ smp_mb();
+ if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
+ return 1;
+
+ /*
+ * We need to do this in case we're deleting csums so the global block
+ * rsv get's used instead of the csum block rsv.
+ */
+ trans->block_rsv = NULL;
+
+ updates = trans->delayed_ref_updates;
+ trans->delayed_ref_updates = 0;
+ if (updates) {
+ err = btrfs_run_delayed_refs(trans, root, updates);
+ if (err) /* Error code will also eval true */
+ return err;
+ }
+
+ trans->block_rsv = rsv;
+
+ return should_end_transaction(trans, root);
+}
+
+static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, int throttle, int lock)
+{
+ struct btrfs_transaction *cur_trans = trans->transaction;
+ struct btrfs_fs_info *info = root->fs_info;
+ int count = 0;
+ int err = 0;
+
+ if (--trans->use_count) {
+ trans->block_rsv = trans->orig_rsv;
+ return 0;
+ }
+
+ btrfs_trans_release_metadata(trans, root);
+ trans->block_rsv = NULL;
+ while (count < 2) {
+ unsigned long cur = trans->delayed_ref_updates;
+ trans->delayed_ref_updates = 0;
+ if (cur &&
+ trans->transaction->delayed_refs.num_heads_ready > 64) {
+ trans->delayed_ref_updates = 0;
+ btrfs_run_delayed_refs(trans, root, cur);
+ } else {
+ break;
+ }
+ count++;
+ }
+
+ if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
+ should_end_transaction(trans, root)) {
+ trans->transaction->blocked = 1;
+ smp_wmb();
+ }
+
+ if (lock && cur_trans->blocked && !cur_trans->in_commit) {
+ if (throttle) {
+ /*
+ * We may race with somebody else here so end up having
+ * to call end_transaction on ourselves again, so inc
+ * our use_count.
+ */
+ trans->use_count++;
+ return btrfs_commit_transaction(trans, root);
+ } else {
+ wake_up_process(info->transaction_kthread);
+ }
+ }
+
+ WARN_ON(cur_trans != info->running_transaction);
+ WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
+ atomic_dec(&cur_trans->num_writers);
+
+ smp_mb();
+ if (waitqueue_active(&cur_trans->writer_wait))
+ wake_up(&cur_trans->writer_wait);
+ put_transaction(cur_trans);
+
+ if (current->journal_info == trans)
+ current->journal_info = NULL;
+
+ if (throttle)
+ btrfs_run_delayed_iputs(root);
+
+ if (trans->aborted ||
+ root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+ err = -EIO;
+ }
+
+ memset(trans, 0, sizeof(*trans));
+ kmem_cache_free(btrfs_trans_handle_cachep, trans);
+ return err;
+}
+
+int btrfs_end_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ int ret;
+
+ ret = __btrfs_end_transaction(trans, root, 0, 1);
+ if (ret)
+ return ret;
+ return 0;
+}
+
+int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ int ret;
+
+ ret = __btrfs_end_transaction(trans, root, 1, 1);
+ if (ret)
+ return ret;
+ return 0;
+}
+
+int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ int ret;
+
+ ret = __btrfs_end_transaction(trans, root, 0, 0);
+ if (ret)
+ return ret;
+ return 0;
+}
+
+int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ return __btrfs_end_transaction(trans, root, 1, 1);
+}
+
+/*
+ * when btree blocks are allocated, they have some corresponding bits set for
+ * them in one of two extent_io trees. This is used to make sure all of
+ * those extents are sent to disk but does not wait on them
+ */
+int btrfs_write_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages, int mark)
+{
+ int err = 0;
+ int werr = 0;
+ struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
+ u64 start = 0;
+ u64 end;
+
+ while (!find_first_extent_bit(dirty_pages, start, &start, &end,
+ mark)) {
+ convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
+ GFP_NOFS);
+ err = filemap_fdatawrite_range(mapping, start, end);
+ if (err)
+ werr = err;
+ cond_resched();
+ start = end + 1;
+ }
+ if (err)
+ werr = err;
+ return werr;
+}
+
+/*
+ * when btree blocks are allocated, they have some corresponding bits set for
+ * them in one of two extent_io trees. This is used to make sure all of
+ * those extents are on disk for transaction or log commit. We wait
+ * on all the pages and clear them from the dirty pages state tree
+ */
+int btrfs_wait_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages, int mark)
+{
+ int err = 0;
+ int werr = 0;
+ struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
+ u64 start = 0;
+ u64 end;
+
+ while (!find_first_extent_bit(dirty_pages, start, &start, &end,
+ EXTENT_NEED_WAIT)) {
+ clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
+ err = filemap_fdatawait_range(mapping, start, end);
+ if (err)
+ werr = err;
+ cond_resched();
+ start = end + 1;
+ }
+ if (err)
+ werr = err;
+ return werr;
+}
+
+/*
+ * when btree blocks are allocated, they have some corresponding bits set for
+ * them in one of two extent_io trees. This is used to make sure all of
+ * those extents are on disk for transaction or log commit
+ */
+int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages, int mark)
+{
+ int ret;
+ int ret2;
+
+ ret = btrfs_write_marked_extents(root, dirty_pages, mark);
+ ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
+
+ if (ret)
+ return ret;
+ if (ret2)
+ return ret2;
+ return 0;
+}
+
+int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ if (!trans || !trans->transaction) {
+ struct inode *btree_inode;
+ btree_inode = root->fs_info->btree_inode;
+ return filemap_write_and_wait(btree_inode->i_mapping);
+ }
+ return btrfs_write_and_wait_marked_extents(root,
+ &trans->transaction->dirty_pages,
+ EXTENT_DIRTY);
+}
+
+/*
+ * this is used to update the root pointer in the tree of tree roots.
+ *
+ * But, in the case of the extent allocation tree, updating the root
+ * pointer may allocate blocks which may change the root of the extent
+ * allocation tree.
+ *
+ * So, this loops and repeats and makes sure the cowonly root didn't
+ * change while the root pointer was being updated in the metadata.
+ */
+static int update_cowonly_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ int ret;
+ u64 old_root_bytenr;
+ u64 old_root_used;
+ struct btrfs_root *tree_root = root->fs_info->tree_root;
+
+ old_root_used = btrfs_root_used(&root->root_item);
+ btrfs_write_dirty_block_groups(trans, root);
+
+ while (1) {
+ old_root_bytenr = btrfs_root_bytenr(&root->root_item);
+ if (old_root_bytenr == root->node->start &&
+ old_root_used == btrfs_root_used(&root->root_item))
+ break;
+
+ btrfs_set_root_node(&root->root_item, root->node);
+ ret = btrfs_update_root(trans, tree_root,
+ &root->root_key,
+ &root->root_item);
+ if (ret)
+ return ret;
+
+ old_root_used = btrfs_root_used(&root->root_item);
+ ret = btrfs_write_dirty_block_groups(trans, root);
+ if (ret)
+ return ret;
+ }
+
+ if (root != root->fs_info->extent_root)
+ switch_commit_root(root);
+
+ return 0;
+}
+
+/*
+ * update all the cowonly tree roots on disk
+ *
+ * The error handling in this function may not be obvious. Any of the
+ * failures will cause the file system to go offline. We still need
+ * to clean up the delayed refs.
+ */
+static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct list_head *next;
+ struct extent_buffer *eb;
+ int ret;
+
+ ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
+ if (ret)
+ return ret;
+
+ eb = btrfs_lock_root_node(fs_info->tree_root);
+ ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
+ 0, &eb);
+ btrfs_tree_unlock(eb);
+ free_extent_buffer(eb);
+
+ if (ret)
+ return ret;
+
+ ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
+ if (ret)
+ return ret;
+
+ while (!list_empty(&fs_info->dirty_cowonly_roots)) {
+ next = fs_info->dirty_cowonly_roots.next;
+ list_del_init(next);
+ root = list_entry(next, struct btrfs_root, dirty_list);
+
+ ret = update_cowonly_root(trans, root);
+ if (ret)
+ return ret;
+ }
+
+ down_write(&fs_info->extent_commit_sem);
+ switch_commit_root(fs_info->extent_root);
+ up_write(&fs_info->extent_commit_sem);
+
+ return 0;
+}
+
+/*
+ * dead roots are old snapshots that need to be deleted. This allocates
+ * a dirty root struct and adds it into the list of dead roots that need to
+ * be deleted
+ */
+int btrfs_add_dead_root(struct btrfs_root *root)
+{
+ spin_lock(&root->fs_info->trans_lock);
+ list_add(&root->root_list, &root->fs_info->dead_roots);
+ spin_unlock(&root->fs_info->trans_lock);
+ return 0;
+}
+
+/*
+ * update all the cowonly tree roots on disk
+ */
+static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_root *gang[8];
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ int i;
+ int ret;
+ int err = 0;
+
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ while (1) {
+ ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
+ (void **)gang, 0,
+ ARRAY_SIZE(gang),
+ BTRFS_ROOT_TRANS_TAG);
+ if (ret == 0)
+ break;
+ for (i = 0; i < ret; i++) {
+ root = gang[i];
+ radix_tree_tag_clear(&fs_info->fs_roots_radix,
+ (unsigned long)root->root_key.objectid,
+ BTRFS_ROOT_TRANS_TAG);
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+
+ btrfs_free_log(trans, root);
+ btrfs_update_reloc_root(trans, root);
+ btrfs_orphan_commit_root(trans, root);
+
+ btrfs_save_ino_cache(root, trans);
+
+ /* see comments in should_cow_block() */
+ root->force_cow = 0;
+ smp_wmb();
+
+ if (root->commit_root != root->node) {
+ mutex_lock(&root->fs_commit_mutex);
+ switch_commit_root(root);
+ btrfs_unpin_free_ino(root);
+ mutex_unlock(&root->fs_commit_mutex);
+
+ btrfs_set_root_node(&root->root_item,
+ root->node);
+ }
+
+ err = btrfs_update_root(trans, fs_info->tree_root,
+ &root->root_key,
+ &root->root_item);
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ if (err)
+ break;
+ }
+ }
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+ return err;
+}
+
+/*
+ * defrag a given btree. If cacheonly == 1, this won't read from the disk,
+ * otherwise every leaf in the btree is read and defragged.
+ */
+int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
+{
+ struct btrfs_fs_info *info = root->fs_info;
+ struct btrfs_trans_handle *trans;
+ int ret;
+ unsigned long nr;
+
+ if (xchg(&root->defrag_running, 1))
+ return 0;
+
+ while (1) {
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ ret = btrfs_defrag_leaves(trans, root, cacheonly);
+
+ nr = trans->blocks_used;
+ btrfs_end_transaction(trans, root);
+ btrfs_btree_balance_dirty(info->tree_root, nr);
+ cond_resched();
+
+ if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
+ break;
+ }
+ root->defrag_running = 0;
+ return ret;
+}
+
+/*
+ * new snapshots need to be created at a very specific time in the
+ * transaction commit. This does the actual creation
+ */
+static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info,
+ struct btrfs_pending_snapshot *pending)
+{
+ struct btrfs_key key;
+ struct btrfs_root_item *new_root_item;
+ struct btrfs_root *tree_root = fs_info->tree_root;
+ struct btrfs_root *root = pending->root;
+ struct btrfs_root *parent_root;
+ struct btrfs_block_rsv *rsv;
+ struct inode *parent_inode;
+ struct dentry *parent;
+ struct dentry *dentry;
+ struct extent_buffer *tmp;
+ struct extent_buffer *old;
+ int ret;
+ u64 to_reserve = 0;
+ u64 index = 0;
+ u64 objectid;
+ u64 root_flags;
+
+ rsv = trans->block_rsv;
+
+ new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
+ if (!new_root_item) {
+ ret = pending->error = -ENOMEM;
+ goto fail;
+ }
+
+ ret = btrfs_find_free_objectid(tree_root, &objectid);
+ if (ret) {
+ pending->error = ret;
+ goto fail;
+ }
+
+ btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
+
+ if (to_reserve > 0) {
+ ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
+ to_reserve);
+ if (ret) {
+ pending->error = ret;
+ goto fail;
+ }
+ }
+
+ key.objectid = objectid;
+ key.offset = (u64)-1;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+
+ trans->block_rsv = &pending->block_rsv;
+
+ dentry = pending->dentry;
+ parent = dget_parent(dentry);
+ parent_inode = parent->d_inode;
+ parent_root = BTRFS_I(parent_inode)->root;
+ record_root_in_trans(trans, parent_root);
+
+ /*
+ * insert the directory item
+ */
+ ret = btrfs_set_inode_index(parent_inode, &index);
+ BUG_ON(ret); /* -ENOMEM */
+ ret = btrfs_insert_dir_item(trans, parent_root,
+ dentry->d_name.name, dentry->d_name.len,
+ parent_inode, &key,
+ BTRFS_FT_DIR, index);
+ if (ret == -EEXIST) {
+ pending->error = -EEXIST;
+ dput(parent);
+ goto fail;
+ } else if (ret) {
+ goto abort_trans_dput;
+ }
+
+ btrfs_i_size_write(parent_inode, parent_inode->i_size +
+ dentry->d_name.len * 2);
+ ret = btrfs_update_inode(trans, parent_root, parent_inode);
+ if (ret)
+ goto abort_trans_dput;
+
+ /*
+ * pull in the delayed directory update
+ * and the delayed inode item
+ * otherwise we corrupt the FS during
+ * snapshot
+ */
+ ret = btrfs_run_delayed_items(trans, root);
+ if (ret) { /* Transaction aborted */
+ dput(parent);
+ goto fail;
+ }
+
+ record_root_in_trans(trans, root);
+ btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
+ memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
+ btrfs_check_and_init_root_item(new_root_item);
+
+ root_flags = btrfs_root_flags(new_root_item);
+ if (pending->readonly)
+ root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
+ else
+ root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
+ btrfs_set_root_flags(new_root_item, root_flags);
+
+ old = btrfs_lock_root_node(root);
+ ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
+ if (ret) {
+ btrfs_tree_unlock(old);
+ free_extent_buffer(old);
+ goto abort_trans_dput;
+ }
+
+ btrfs_set_lock_blocking(old);
+
+ ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
+ /* clean up in any case */
+ btrfs_tree_unlock(old);
+ free_extent_buffer(old);
+ if (ret)
+ goto abort_trans_dput;
+
+ /* see comments in should_cow_block() */
+ root->force_cow = 1;
+ smp_wmb();
+
+ btrfs_set_root_node(new_root_item, tmp);
+ /* record when the snapshot was created in key.offset */
+ key.offset = trans->transid;
+ ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
+ btrfs_tree_unlock(tmp);
+ free_extent_buffer(tmp);
+ if (ret)
+ goto abort_trans_dput;
+
+ /*
+ * insert root back/forward references
+ */
+ ret = btrfs_add_root_ref(trans, tree_root, objectid,
+ parent_root->root_key.objectid,
+ btrfs_ino(parent_inode), index,
+ dentry->d_name.name, dentry->d_name.len);
+ dput(parent);
+ if (ret)
+ goto fail;
+
+ key.offset = (u64)-1;
+ pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
+ if (IS_ERR(pending->snap)) {
+ ret = PTR_ERR(pending->snap);
+ goto abort_trans;
+ }
+
+ ret = btrfs_reloc_post_snapshot(trans, pending);
+ if (ret)
+ goto abort_trans;
+ ret = 0;
+fail:
+ kfree(new_root_item);
+ trans->block_rsv = rsv;
+ btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
+ return ret;
+
+abort_trans_dput:
+ dput(parent);
+abort_trans:
+ btrfs_abort_transaction(trans, root, ret);
+ goto fail;
+}
+
+/*
+ * create all the snapshots we've scheduled for creation
+ */
+static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_pending_snapshot *pending;
+ struct list_head *head = &trans->transaction->pending_snapshots;
+
+ list_for_each_entry(pending, head, list)
+ create_pending_snapshot(trans, fs_info, pending);
+ return 0;
+}
+
+static void update_super_roots(struct btrfs_root *root)
+{
+ struct btrfs_root_item *root_item;
+ struct btrfs_super_block *super;
+
+ super = root->fs_info->super_copy;
+
+ root_item = &root->fs_info->chunk_root->root_item;
+ super->chunk_root = root_item->bytenr;
+ super->chunk_root_generation = root_item->generation;
+ super->chunk_root_level = root_item->level;
+
+ root_item = &root->fs_info->tree_root->root_item;
+ super->root = root_item->bytenr;
+ super->generation = root_item->generation;
+ super->root_level = root_item->level;
+ if (btrfs_test_opt(root, SPACE_CACHE))
+ super->cache_generation = root_item->generation;
+}
+
+int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
+{
+ int ret = 0;
+ spin_lock(&info->trans_lock);
+ if (info->running_transaction)
+ ret = info->running_transaction->in_commit;
+ spin_unlock(&info->trans_lock);
+ return ret;
+}
+
+int btrfs_transaction_blocked(struct btrfs_fs_info *info)
+{
+ int ret = 0;
+ spin_lock(&info->trans_lock);
+ if (info->running_transaction)
+ ret = info->running_transaction->blocked;
+ spin_unlock(&info->trans_lock);
+ return ret;
+}
+
+/*
+ * wait for the current transaction commit to start and block subsequent
+ * transaction joins
+ */
+static void wait_current_trans_commit_start(struct btrfs_root *root,
+ struct btrfs_transaction *trans)
+{
+ wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
+}
+
+/*
+ * wait for the current transaction to start and then become unblocked.
+ * caller holds ref.
+ */
+static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
+ struct btrfs_transaction *trans)
+{
+ wait_event(root->fs_info->transaction_wait,
+ trans->commit_done || (trans->in_commit && !trans->blocked));
+}
+
+/*
+ * commit transactions asynchronously. once btrfs_commit_transaction_async
+ * returns, any subsequent transaction will not be allowed to join.
+ */
+struct btrfs_async_commit {
+ struct btrfs_trans_handle *newtrans;
+ struct btrfs_root *root;
+ struct delayed_work work;
+};
+
+static void do_async_commit(struct work_struct *work)
+{
+ struct btrfs_async_commit *ac =
+ container_of(work, struct btrfs_async_commit, work.work);
+
+ btrfs_commit_transaction(ac->newtrans, ac->root);
+ kfree(ac);
+}
+
+int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ int wait_for_unblock)
+{
+ struct btrfs_async_commit *ac;
+ struct btrfs_transaction *cur_trans;
+
+ ac = kmalloc(sizeof(*ac), GFP_NOFS);
+ if (!ac)
+ return -ENOMEM;
+
+ INIT_DELAYED_WORK(&ac->work, do_async_commit);
+ ac->root = root;
+ ac->newtrans = btrfs_join_transaction(root);
+ if (IS_ERR(ac->newtrans)) {
+ int err = PTR_ERR(ac->newtrans);
+ kfree(ac);
+ return err;
+ }
+
+ /* take transaction reference */
+ cur_trans = trans->transaction;
+ atomic_inc(&cur_trans->use_count);
+
+ btrfs_end_transaction(trans, root);
+ schedule_delayed_work(&ac->work, 0);
+
+ /* wait for transaction to start and unblock */
+ if (wait_for_unblock)
+ wait_current_trans_commit_start_and_unblock(root, cur_trans);
+ else
+ wait_current_trans_commit_start(root, cur_trans);
+
+ if (current->journal_info == trans)
+ current->journal_info = NULL;
+
+ put_transaction(cur_trans);
+ return 0;
+}
+
+
+static void cleanup_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_transaction *cur_trans = trans->transaction;
+
+ WARN_ON(trans->use_count > 1);
+
+ spin_lock(&root->fs_info->trans_lock);
+ list_del_init(&cur_trans->list);
+ spin_unlock(&root->fs_info->trans_lock);
+
+ btrfs_cleanup_one_transaction(trans->transaction, root);
+
+ put_transaction(cur_trans);
+ put_transaction(cur_trans);
+
+ trace_btrfs_transaction_commit(root);
+
+ btrfs_scrub_continue(root);
+
+ if (current->journal_info == trans)
+ current->journal_info = NULL;
+
+ kmem_cache_free(btrfs_trans_handle_cachep, trans);
+}
+
+/*
+ * btrfs_transaction state sequence:
+ * in_commit = 0, blocked = 0 (initial)
+ * in_commit = 1, blocked = 1
+ * blocked = 0
+ * commit_done = 1
+ */
+int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ unsigned long joined = 0;
+ struct btrfs_transaction *cur_trans = trans->transaction;
+ struct btrfs_transaction *prev_trans = NULL;
+ DEFINE_WAIT(wait);
+ int ret = -EIO;
+ int should_grow = 0;
+ unsigned long now = get_seconds();
+ int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
+
+ btrfs_run_ordered_operations(root, 0);
+
+ btrfs_trans_release_metadata(trans, root);
+ trans->block_rsv = NULL;
+
+ if (cur_trans->aborted)
+ goto cleanup_transaction;
+
+ /* make a pass through all the delayed refs we have so far
+ * any runnings procs may add more while we are here
+ */
+ ret = btrfs_run_delayed_refs(trans, root, 0);
+ if (ret)
+ goto cleanup_transaction;
+
+ cur_trans = trans->transaction;
+
+ /*
+ * set the flushing flag so procs in this transaction have to
+ * start sending their work down.
+ */
+ cur_trans->delayed_refs.flushing = 1;
+
+ ret = btrfs_run_delayed_refs(trans, root, 0);
+ if (ret)
+ goto cleanup_transaction;
+
+ spin_lock(&cur_trans->commit_lock);
+ if (cur_trans->in_commit) {
+ spin_unlock(&cur_trans->commit_lock);
+ atomic_inc(&cur_trans->use_count);
+ ret = btrfs_end_transaction(trans, root);
+
+ wait_for_commit(root, cur_trans);
+
+ put_transaction(cur_trans);
+
+ return ret;
+ }
+
+ trans->transaction->in_commit = 1;
+ trans->transaction->blocked = 1;
+ spin_unlock(&cur_trans->commit_lock);
+ wake_up(&root->fs_info->transaction_blocked_wait);
+
+ spin_lock(&root->fs_info->trans_lock);
+ if (cur_trans->list.prev != &root->fs_info->trans_list) {
+ prev_trans = list_entry(cur_trans->list.prev,
+ struct btrfs_transaction, list);
+ if (!prev_trans->commit_done) {
+ atomic_inc(&prev_trans->use_count);
+ spin_unlock(&root->fs_info->trans_lock);
+
+ wait_for_commit(root, prev_trans);
+
+ put_transaction(prev_trans);
+ } else {
+ spin_unlock(&root->fs_info->trans_lock);
+ }
+ } else {
+ spin_unlock(&root->fs_info->trans_lock);
+ }
+
+ if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
+ should_grow = 1;
+
+ do {
+ int snap_pending = 0;
+
+ joined = cur_trans->num_joined;
+ if (!list_empty(&trans->transaction->pending_snapshots))
+ snap_pending = 1;
+
+ WARN_ON(cur_trans != trans->transaction);
+
+ if (flush_on_commit || snap_pending) {
+ btrfs_start_delalloc_inodes(root, 1);
+ btrfs_wait_ordered_extents(root, 0, 1);
+ }
+
+ ret = btrfs_run_delayed_items(trans, root);
+ if (ret)
+ goto cleanup_transaction;
+
+ /*
+ * rename don't use btrfs_join_transaction, so, once we
+ * set the transaction to blocked above, we aren't going
+ * to get any new ordered operations. We can safely run
+ * it here and no for sure that nothing new will be added
+ * to the list
+ */
+ btrfs_run_ordered_operations(root, 1);
+
+ prepare_to_wait(&cur_trans->writer_wait, &wait,
+ TASK_UNINTERRUPTIBLE);
+
+ if (atomic_read(&cur_trans->num_writers) > 1)
+ schedule_timeout(MAX_SCHEDULE_TIMEOUT);
+ else if (should_grow)
+ schedule_timeout(1);
+
+ finish_wait(&cur_trans->writer_wait, &wait);
+ } while (atomic_read(&cur_trans->num_writers) > 1 ||
+ (should_grow && cur_trans->num_joined != joined));
+
+ /*
+ * Ok now we need to make sure to block out any other joins while we
+ * commit the transaction. We could have started a join before setting
+ * no_join so make sure to wait for num_writers to == 1 again.
+ */
+ spin_lock(&root->fs_info->trans_lock);
+ root->fs_info->trans_no_join = 1;
+ spin_unlock(&root->fs_info->trans_lock);
+ wait_event(cur_trans->writer_wait,
+ atomic_read(&cur_trans->num_writers) == 1);
+
+ /*
+ * the reloc mutex makes sure that we stop
+ * the balancing code from coming in and moving
+ * extents around in the middle of the commit
+ */
+ mutex_lock(&root->fs_info->reloc_mutex);
+
+ ret = btrfs_run_delayed_items(trans, root);
+ if (ret) {
+ mutex_unlock(&root->fs_info->reloc_mutex);
+ goto cleanup_transaction;
+ }
+
+ ret = create_pending_snapshots(trans, root->fs_info);
+ if (ret) {
+ mutex_unlock(&root->fs_info->reloc_mutex);
+ goto cleanup_transaction;
+ }
+
+ ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
+ if (ret) {
+ mutex_unlock(&root->fs_info->reloc_mutex);
+ goto cleanup_transaction;
+ }
+
+ /*
+ * make sure none of the code above managed to slip in a
+ * delayed item
+ */
+ btrfs_assert_delayed_root_empty(root);
+
+ WARN_ON(cur_trans != trans->transaction);
+
+ btrfs_scrub_pause(root);
+ /* btrfs_commit_tree_roots is responsible for getting the
+ * various roots consistent with each other. Every pointer
+ * in the tree of tree roots has to point to the most up to date
+ * root for every subvolume and other tree. So, we have to keep
+ * the tree logging code from jumping in and changing any
+ * of the trees.
+ *
+ * At this point in the commit, there can't be any tree-log
+ * writers, but a little lower down we drop the trans mutex
+ * and let new people in. By holding the tree_log_mutex
+ * from now until after the super is written, we avoid races
+ * with the tree-log code.
+ */
+ mutex_lock(&root->fs_info->tree_log_mutex);
+
+ ret = commit_fs_roots(trans, root);
+ if (ret) {
+ mutex_unlock(&root->fs_info->tree_log_mutex);
+ mutex_unlock(&root->fs_info->reloc_mutex);
+ goto cleanup_transaction;
+ }
+
+ /* commit_fs_roots gets rid of all the tree log roots, it is now
+ * safe to free the root of tree log roots
+ */
+ btrfs_free_log_root_tree(trans, root->fs_info);
+
+ ret = commit_cowonly_roots(trans, root);
+ if (ret) {
+ mutex_unlock(&root->fs_info->tree_log_mutex);
+ mutex_unlock(&root->fs_info->reloc_mutex);
+ goto cleanup_transaction;
+ }
+
+ btrfs_prepare_extent_commit(trans, root);
+
+ cur_trans = root->fs_info->running_transaction;
+
+ btrfs_set_root_node(&root->fs_info->tree_root->root_item,
+ root->fs_info->tree_root->node);
+ switch_commit_root(root->fs_info->tree_root);
+
+ btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
+ root->fs_info->chunk_root->node);
+ switch_commit_root(root->fs_info->chunk_root);
+
+ update_super_roots(root);
+
+ if (!root->fs_info->log_root_recovering) {
+ btrfs_set_super_log_root(root->fs_info->super_copy, 0);
+ btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
+ }
+
+ memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
+ sizeof(*root->fs_info->super_copy));
+
+ trans->transaction->blocked = 0;
+ spin_lock(&root->fs_info->trans_lock);
+ root->fs_info->running_transaction = NULL;
+ root->fs_info->trans_no_join = 0;
+ spin_unlock(&root->fs_info->trans_lock);
+ mutex_unlock(&root->fs_info->reloc_mutex);
+
+ wake_up(&root->fs_info->transaction_wait);
+
+ ret = btrfs_write_and_wait_transaction(trans, root);
+ if (ret) {
+ btrfs_error(root->fs_info, ret,
+ "Error while writing out transaction.");
+ mutex_unlock(&root->fs_info->tree_log_mutex);
+ goto cleanup_transaction;
+ }
+
+ ret = write_ctree_super(trans, root, 0);
+ if (ret) {
+ mutex_unlock(&root->fs_info->tree_log_mutex);
+ goto cleanup_transaction;
+ }
+
+ /*
+ * the super is written, we can safely allow the tree-loggers
+ * to go about their business
+ */
+ mutex_unlock(&root->fs_info->tree_log_mutex);
+
+ btrfs_finish_extent_commit(trans, root);
+
+ cur_trans->commit_done = 1;
+
+ root->fs_info->last_trans_committed = cur_trans->transid;
+
+ wake_up(&cur_trans->commit_wait);
+
+ spin_lock(&root->fs_info->trans_lock);
+ list_del_init(&cur_trans->list);
+ spin_unlock(&root->fs_info->trans_lock);
+
+ put_transaction(cur_trans);
+ put_transaction(cur_trans);
+
+ trace_btrfs_transaction_commit(root);
+
+ btrfs_scrub_continue(root);
+
+ if (current->journal_info == trans)
+ current->journal_info = NULL;
+
+ kmem_cache_free(btrfs_trans_handle_cachep, trans);
+
+ if (current != root->fs_info->transaction_kthread)
+ btrfs_run_delayed_iputs(root);
+
+ return ret;
+
+cleanup_transaction:
+ btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
+// WARN_ON(1);
+ if (current->journal_info == trans)
+ current->journal_info = NULL;
+ cleanup_transaction(trans, root);
+
+ return ret;
+}
+
+/*
+ * interface function to delete all the snapshots we have scheduled for deletion
+ */
+int btrfs_clean_old_snapshots(struct btrfs_root *root)
+{
+ LIST_HEAD(list);
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ spin_lock(&fs_info->trans_lock);
+ list_splice_init(&fs_info->dead_roots, &list);
+ spin_unlock(&fs_info->trans_lock);
+
+ while (!list_empty(&list)) {
+ int ret;
+
+ root = list_entry(list.next, struct btrfs_root, root_list);
+ list_del(&root->root_list);
+
+ btrfs_kill_all_delayed_nodes(root);
+
+ if (btrfs_header_backref_rev(root->node) <
+ BTRFS_MIXED_BACKREF_REV)
+ ret = btrfs_drop_snapshot(root, NULL, 0, 0);
+ else
+ ret =btrfs_drop_snapshot(root, NULL, 1, 0);
+ BUG_ON(ret < 0);
+ }
+ return 0;
+}
diff --git a/fs/btrfs/transaction.h b/fs/btrfs/transaction.h
new file mode 100644
index 00000000..fe27379e
--- /dev/null
+++ b/fs/btrfs/transaction.h
@@ -0,0 +1,120 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_TRANSACTION__
+#define __BTRFS_TRANSACTION__
+#include "btrfs_inode.h"
+#include "delayed-ref.h"
+
+struct btrfs_transaction {
+ u64 transid;
+ /*
+ * total writers in this transaction, it must be zero before the
+ * transaction can end
+ */
+ atomic_t num_writers;
+ atomic_t use_count;
+
+ unsigned long num_joined;
+
+ spinlock_t commit_lock;
+ int in_commit;
+ int commit_done;
+ int blocked;
+ struct list_head list;
+ struct extent_io_tree dirty_pages;
+ unsigned long start_time;
+ wait_queue_head_t writer_wait;
+ wait_queue_head_t commit_wait;
+ struct list_head pending_snapshots;
+ struct btrfs_delayed_ref_root delayed_refs;
+ int aborted;
+};
+
+struct btrfs_trans_handle {
+ u64 transid;
+ u64 bytes_reserved;
+ unsigned long use_count;
+ unsigned long blocks_reserved;
+ unsigned long blocks_used;
+ unsigned long delayed_ref_updates;
+ struct btrfs_transaction *transaction;
+ struct btrfs_block_rsv *block_rsv;
+ struct btrfs_block_rsv *orig_rsv;
+ int aborted;
+};
+
+struct btrfs_pending_snapshot {
+ struct dentry *dentry;
+ struct btrfs_root *root;
+ struct btrfs_root *snap;
+ /* block reservation for the operation */
+ struct btrfs_block_rsv block_rsv;
+ /* extra metadata reseration for relocation */
+ int error;
+ bool readonly;
+ struct list_head list;
+};
+
+static inline void btrfs_set_inode_last_trans(struct btrfs_trans_handle *trans,
+ struct inode *inode)
+{
+ BTRFS_I(inode)->last_trans = trans->transaction->transid;
+ BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
+}
+
+int btrfs_end_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
+ int num_items);
+struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root);
+struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root);
+struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root);
+int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid);
+int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+
+int btrfs_add_dead_root(struct btrfs_root *root);
+int btrfs_defrag_root(struct btrfs_root *root, int cacheonly);
+int btrfs_clean_old_snapshots(struct btrfs_root *root);
+int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ int wait_for_unblock);
+int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+void btrfs_throttle(struct btrfs_root *root);
+int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages, int mark);
+int btrfs_write_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages, int mark);
+int btrfs_wait_marked_extents(struct btrfs_root *root,
+ struct extent_io_tree *dirty_pages, int mark);
+int btrfs_transaction_blocked(struct btrfs_fs_info *info);
+int btrfs_transaction_in_commit(struct btrfs_fs_info *info);
+void put_transaction(struct btrfs_transaction *transaction);
+#endif
diff --git a/fs/btrfs/tree-defrag.c b/fs/btrfs/tree-defrag.c
new file mode 100644
index 00000000..3b580ee8
--- /dev/null
+++ b/fs/btrfs/tree-defrag.c
@@ -0,0 +1,145 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "print-tree.h"
+#include "transaction.h"
+#include "locking.h"
+
+/* defrag all the leaves in a given btree. If cache_only == 1, don't read
+ * things from disk, otherwise read all the leaves and try to get key order to
+ * better reflect disk order
+ */
+
+int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, int cache_only)
+{
+ struct btrfs_path *path = NULL;
+ struct btrfs_key key;
+ int ret = 0;
+ int wret;
+ int level;
+ int is_extent = 0;
+ int next_key_ret = 0;
+ u64 last_ret = 0;
+ u64 min_trans = 0;
+
+ if (cache_only)
+ goto out;
+
+ if (root->fs_info->extent_root == root) {
+ /*
+ * there's recursion here right now in the tree locking,
+ * we can't defrag the extent root without deadlock
+ */
+ goto out;
+ }
+
+ if (root->ref_cows == 0 && !is_extent)
+ goto out;
+
+ if (btrfs_test_opt(root, SSD))
+ goto out;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ level = btrfs_header_level(root->node);
+
+ if (level == 0)
+ goto out;
+
+ if (root->defrag_progress.objectid == 0) {
+ struct extent_buffer *root_node;
+ u32 nritems;
+
+ root_node = btrfs_lock_root_node(root);
+ btrfs_set_lock_blocking(root_node);
+ nritems = btrfs_header_nritems(root_node);
+ root->defrag_max.objectid = 0;
+ /* from above we know this is not a leaf */
+ btrfs_node_key_to_cpu(root_node, &root->defrag_max,
+ nritems - 1);
+ btrfs_tree_unlock(root_node);
+ free_extent_buffer(root_node);
+ memset(&key, 0, sizeof(key));
+ } else {
+ memcpy(&key, &root->defrag_progress, sizeof(key));
+ }
+
+ path->keep_locks = 1;
+ if (cache_only)
+ min_trans = root->defrag_trans_start;
+
+ ret = btrfs_search_forward(root, &key, NULL, path,
+ cache_only, min_trans);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = 0;
+ goto out;
+ }
+ btrfs_release_path(path);
+ wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+
+ if (wret < 0) {
+ ret = wret;
+ goto out;
+ }
+ if (!path->nodes[1]) {
+ ret = 0;
+ goto out;
+ }
+ path->slots[1] = btrfs_header_nritems(path->nodes[1]);
+ next_key_ret = btrfs_find_next_key(root, path, &key, 1, cache_only,
+ min_trans);
+ ret = btrfs_realloc_node(trans, root,
+ path->nodes[1], 0,
+ cache_only, &last_ret,
+ &root->defrag_progress);
+ if (ret) {
+ WARN_ON(ret == -EAGAIN);
+ goto out;
+ }
+ if (next_key_ret == 0) {
+ memcpy(&root->defrag_progress, &key, sizeof(key));
+ ret = -EAGAIN;
+ }
+out:
+ if (path)
+ btrfs_free_path(path);
+ if (ret == -EAGAIN) {
+ if (root->defrag_max.objectid > root->defrag_progress.objectid)
+ goto done;
+ if (root->defrag_max.type > root->defrag_progress.type)
+ goto done;
+ if (root->defrag_max.offset > root->defrag_progress.offset)
+ goto done;
+ ret = 0;
+ }
+done:
+ if (ret != -EAGAIN) {
+ memset(&root->defrag_progress, 0,
+ sizeof(root->defrag_progress));
+ root->defrag_trans_start = trans->transid;
+ }
+ return ret;
+}
diff --git a/fs/btrfs/tree-log.c b/fs/btrfs/tree-log.c
new file mode 100644
index 00000000..dce89da9
--- /dev/null
+++ b/fs/btrfs/tree-log.c
@@ -0,0 +1,3398 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include "ctree.h"
+#include "transaction.h"
+#include "disk-io.h"
+#include "locking.h"
+#include "print-tree.h"
+#include "compat.h"
+#include "tree-log.h"
+
+/* magic values for the inode_only field in btrfs_log_inode:
+ *
+ * LOG_INODE_ALL means to log everything
+ * LOG_INODE_EXISTS means to log just enough to recreate the inode
+ * during log replay
+ */
+#define LOG_INODE_ALL 0
+#define LOG_INODE_EXISTS 1
+
+/*
+ * directory trouble cases
+ *
+ * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
+ * log, we must force a full commit before doing an fsync of the directory
+ * where the unlink was done.
+ * ---> record transid of last unlink/rename per directory
+ *
+ * mkdir foo/some_dir
+ * normal commit
+ * rename foo/some_dir foo2/some_dir
+ * mkdir foo/some_dir
+ * fsync foo/some_dir/some_file
+ *
+ * The fsync above will unlink the original some_dir without recording
+ * it in its new location (foo2). After a crash, some_dir will be gone
+ * unless the fsync of some_file forces a full commit
+ *
+ * 2) we must log any new names for any file or dir that is in the fsync
+ * log. ---> check inode while renaming/linking.
+ *
+ * 2a) we must log any new names for any file or dir during rename
+ * when the directory they are being removed from was logged.
+ * ---> check inode and old parent dir during rename
+ *
+ * 2a is actually the more important variant. With the extra logging
+ * a crash might unlink the old name without recreating the new one
+ *
+ * 3) after a crash, we must go through any directories with a link count
+ * of zero and redo the rm -rf
+ *
+ * mkdir f1/foo
+ * normal commit
+ * rm -rf f1/foo
+ * fsync(f1)
+ *
+ * The directory f1 was fully removed from the FS, but fsync was never
+ * called on f1, only its parent dir. After a crash the rm -rf must
+ * be replayed. This must be able to recurse down the entire
+ * directory tree. The inode link count fixup code takes care of the
+ * ugly details.
+ */
+
+/*
+ * stages for the tree walking. The first
+ * stage (0) is to only pin down the blocks we find
+ * the second stage (1) is to make sure that all the inodes
+ * we find in the log are created in the subvolume.
+ *
+ * The last stage is to deal with directories and links and extents
+ * and all the other fun semantics
+ */
+#define LOG_WALK_PIN_ONLY 0
+#define LOG_WALK_REPLAY_INODES 1
+#define LOG_WALK_REPLAY_ALL 2
+
+static int btrfs_log_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode,
+ int inode_only);
+static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, u64 objectid);
+static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_root *log,
+ struct btrfs_path *path,
+ u64 dirid, int del_all);
+
+/*
+ * tree logging is a special write ahead log used to make sure that
+ * fsyncs and O_SYNCs can happen without doing full tree commits.
+ *
+ * Full tree commits are expensive because they require commonly
+ * modified blocks to be recowed, creating many dirty pages in the
+ * extent tree an 4x-6x higher write load than ext3.
+ *
+ * Instead of doing a tree commit on every fsync, we use the
+ * key ranges and transaction ids to find items for a given file or directory
+ * that have changed in this transaction. Those items are copied into
+ * a special tree (one per subvolume root), that tree is written to disk
+ * and then the fsync is considered complete.
+ *
+ * After a crash, items are copied out of the log-tree back into the
+ * subvolume tree. Any file data extents found are recorded in the extent
+ * allocation tree, and the log-tree freed.
+ *
+ * The log tree is read three times, once to pin down all the extents it is
+ * using in ram and once, once to create all the inodes logged in the tree
+ * and once to do all the other items.
+ */
+
+/*
+ * start a sub transaction and setup the log tree
+ * this increments the log tree writer count to make the people
+ * syncing the tree wait for us to finish
+ */
+static int start_log_trans(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ int ret;
+ int err = 0;
+
+ mutex_lock(&root->log_mutex);
+ if (root->log_root) {
+ if (!root->log_start_pid) {
+ root->log_start_pid = current->pid;
+ root->log_multiple_pids = false;
+ } else if (root->log_start_pid != current->pid) {
+ root->log_multiple_pids = true;
+ }
+
+ root->log_batch++;
+ atomic_inc(&root->log_writers);
+ mutex_unlock(&root->log_mutex);
+ return 0;
+ }
+ root->log_multiple_pids = false;
+ root->log_start_pid = current->pid;
+ mutex_lock(&root->fs_info->tree_log_mutex);
+ if (!root->fs_info->log_root_tree) {
+ ret = btrfs_init_log_root_tree(trans, root->fs_info);
+ if (ret)
+ err = ret;
+ }
+ if (err == 0 && !root->log_root) {
+ ret = btrfs_add_log_tree(trans, root);
+ if (ret)
+ err = ret;
+ }
+ mutex_unlock(&root->fs_info->tree_log_mutex);
+ root->log_batch++;
+ atomic_inc(&root->log_writers);
+ mutex_unlock(&root->log_mutex);
+ return err;
+}
+
+/*
+ * returns 0 if there was a log transaction running and we were able
+ * to join, or returns -ENOENT if there were not transactions
+ * in progress
+ */
+static int join_running_log_trans(struct btrfs_root *root)
+{
+ int ret = -ENOENT;
+
+ smp_mb();
+ if (!root->log_root)
+ return -ENOENT;
+
+ mutex_lock(&root->log_mutex);
+ if (root->log_root) {
+ ret = 0;
+ atomic_inc(&root->log_writers);
+ }
+ mutex_unlock(&root->log_mutex);
+ return ret;
+}
+
+/*
+ * This either makes the current running log transaction wait
+ * until you call btrfs_end_log_trans() or it makes any future
+ * log transactions wait until you call btrfs_end_log_trans()
+ */
+int btrfs_pin_log_trans(struct btrfs_root *root)
+{
+ int ret = -ENOENT;
+
+ mutex_lock(&root->log_mutex);
+ atomic_inc(&root->log_writers);
+ mutex_unlock(&root->log_mutex);
+ return ret;
+}
+
+/*
+ * indicate we're done making changes to the log tree
+ * and wake up anyone waiting to do a sync
+ */
+void btrfs_end_log_trans(struct btrfs_root *root)
+{
+ if (atomic_dec_and_test(&root->log_writers)) {
+ smp_mb();
+ if (waitqueue_active(&root->log_writer_wait))
+ wake_up(&root->log_writer_wait);
+ }
+}
+
+
+/*
+ * the walk control struct is used to pass state down the chain when
+ * processing the log tree. The stage field tells us which part
+ * of the log tree processing we are currently doing. The others
+ * are state fields used for that specific part
+ */
+struct walk_control {
+ /* should we free the extent on disk when done? This is used
+ * at transaction commit time while freeing a log tree
+ */
+ int free;
+
+ /* should we write out the extent buffer? This is used
+ * while flushing the log tree to disk during a sync
+ */
+ int write;
+
+ /* should we wait for the extent buffer io to finish? Also used
+ * while flushing the log tree to disk for a sync
+ */
+ int wait;
+
+ /* pin only walk, we record which extents on disk belong to the
+ * log trees
+ */
+ int pin;
+
+ /* what stage of the replay code we're currently in */
+ int stage;
+
+ /* the root we are currently replaying */
+ struct btrfs_root *replay_dest;
+
+ /* the trans handle for the current replay */
+ struct btrfs_trans_handle *trans;
+
+ /* the function that gets used to process blocks we find in the
+ * tree. Note the extent_buffer might not be up to date when it is
+ * passed in, and it must be checked or read if you need the data
+ * inside it
+ */
+ int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
+ struct walk_control *wc, u64 gen);
+};
+
+/*
+ * process_func used to pin down extents, write them or wait on them
+ */
+static int process_one_buffer(struct btrfs_root *log,
+ struct extent_buffer *eb,
+ struct walk_control *wc, u64 gen)
+{
+ if (wc->pin)
+ btrfs_pin_extent_for_log_replay(wc->trans,
+ log->fs_info->extent_root,
+ eb->start, eb->len);
+
+ if (btrfs_buffer_uptodate(eb, gen, 0)) {
+ if (wc->write)
+ btrfs_write_tree_block(eb);
+ if (wc->wait)
+ btrfs_wait_tree_block_writeback(eb);
+ }
+ return 0;
+}
+
+/*
+ * Item overwrite used by replay and tree logging. eb, slot and key all refer
+ * to the src data we are copying out.
+ *
+ * root is the tree we are copying into, and path is a scratch
+ * path for use in this function (it should be released on entry and
+ * will be released on exit).
+ *
+ * If the key is already in the destination tree the existing item is
+ * overwritten. If the existing item isn't big enough, it is extended.
+ * If it is too large, it is truncated.
+ *
+ * If the key isn't in the destination yet, a new item is inserted.
+ */
+static noinline int overwrite_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct extent_buffer *eb, int slot,
+ struct btrfs_key *key)
+{
+ int ret;
+ u32 item_size;
+ u64 saved_i_size = 0;
+ int save_old_i_size = 0;
+ unsigned long src_ptr;
+ unsigned long dst_ptr;
+ int overwrite_root = 0;
+
+ if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
+ overwrite_root = 1;
+
+ item_size = btrfs_item_size_nr(eb, slot);
+ src_ptr = btrfs_item_ptr_offset(eb, slot);
+
+ /* look for the key in the destination tree */
+ ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
+ if (ret == 0) {
+ char *src_copy;
+ char *dst_copy;
+ u32 dst_size = btrfs_item_size_nr(path->nodes[0],
+ path->slots[0]);
+ if (dst_size != item_size)
+ goto insert;
+
+ if (item_size == 0) {
+ btrfs_release_path(path);
+ return 0;
+ }
+ dst_copy = kmalloc(item_size, GFP_NOFS);
+ src_copy = kmalloc(item_size, GFP_NOFS);
+ if (!dst_copy || !src_copy) {
+ btrfs_release_path(path);
+ kfree(dst_copy);
+ kfree(src_copy);
+ return -ENOMEM;
+ }
+
+ read_extent_buffer(eb, src_copy, src_ptr, item_size);
+
+ dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
+ read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
+ item_size);
+ ret = memcmp(dst_copy, src_copy, item_size);
+
+ kfree(dst_copy);
+ kfree(src_copy);
+ /*
+ * they have the same contents, just return, this saves
+ * us from cowing blocks in the destination tree and doing
+ * extra writes that may not have been done by a previous
+ * sync
+ */
+ if (ret == 0) {
+ btrfs_release_path(path);
+ return 0;
+ }
+
+ }
+insert:
+ btrfs_release_path(path);
+ /* try to insert the key into the destination tree */
+ ret = btrfs_insert_empty_item(trans, root, path,
+ key, item_size);
+
+ /* make sure any existing item is the correct size */
+ if (ret == -EEXIST) {
+ u32 found_size;
+ found_size = btrfs_item_size_nr(path->nodes[0],
+ path->slots[0]);
+ if (found_size > item_size)
+ btrfs_truncate_item(trans, root, path, item_size, 1);
+ else if (found_size < item_size)
+ btrfs_extend_item(trans, root, path,
+ item_size - found_size);
+ } else if (ret) {
+ return ret;
+ }
+ dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
+ path->slots[0]);
+
+ /* don't overwrite an existing inode if the generation number
+ * was logged as zero. This is done when the tree logging code
+ * is just logging an inode to make sure it exists after recovery.
+ *
+ * Also, don't overwrite i_size on directories during replay.
+ * log replay inserts and removes directory items based on the
+ * state of the tree found in the subvolume, and i_size is modified
+ * as it goes
+ */
+ if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
+ struct btrfs_inode_item *src_item;
+ struct btrfs_inode_item *dst_item;
+
+ src_item = (struct btrfs_inode_item *)src_ptr;
+ dst_item = (struct btrfs_inode_item *)dst_ptr;
+
+ if (btrfs_inode_generation(eb, src_item) == 0)
+ goto no_copy;
+
+ if (overwrite_root &&
+ S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
+ S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
+ save_old_i_size = 1;
+ saved_i_size = btrfs_inode_size(path->nodes[0],
+ dst_item);
+ }
+ }
+
+ copy_extent_buffer(path->nodes[0], eb, dst_ptr,
+ src_ptr, item_size);
+
+ if (save_old_i_size) {
+ struct btrfs_inode_item *dst_item;
+ dst_item = (struct btrfs_inode_item *)dst_ptr;
+ btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
+ }
+
+ /* make sure the generation is filled in */
+ if (key->type == BTRFS_INODE_ITEM_KEY) {
+ struct btrfs_inode_item *dst_item;
+ dst_item = (struct btrfs_inode_item *)dst_ptr;
+ if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
+ btrfs_set_inode_generation(path->nodes[0], dst_item,
+ trans->transid);
+ }
+ }
+no_copy:
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+ btrfs_release_path(path);
+ return 0;
+}
+
+/*
+ * simple helper to read an inode off the disk from a given root
+ * This can only be called for subvolume roots and not for the log
+ */
+static noinline struct inode *read_one_inode(struct btrfs_root *root,
+ u64 objectid)
+{
+ struct btrfs_key key;
+ struct inode *inode;
+
+ key.objectid = objectid;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+ inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
+ if (IS_ERR(inode)) {
+ inode = NULL;
+ } else if (is_bad_inode(inode)) {
+ iput(inode);
+ inode = NULL;
+ }
+ return inode;
+}
+
+/* replays a single extent in 'eb' at 'slot' with 'key' into the
+ * subvolume 'root'. path is released on entry and should be released
+ * on exit.
+ *
+ * extents in the log tree have not been allocated out of the extent
+ * tree yet. So, this completes the allocation, taking a reference
+ * as required if the extent already exists or creating a new extent
+ * if it isn't in the extent allocation tree yet.
+ *
+ * The extent is inserted into the file, dropping any existing extents
+ * from the file that overlap the new one.
+ */
+static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct extent_buffer *eb, int slot,
+ struct btrfs_key *key)
+{
+ int found_type;
+ u64 mask = root->sectorsize - 1;
+ u64 extent_end;
+ u64 alloc_hint;
+ u64 start = key->offset;
+ u64 saved_nbytes;
+ struct btrfs_file_extent_item *item;
+ struct inode *inode = NULL;
+ unsigned long size;
+ int ret = 0;
+
+ item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
+ found_type = btrfs_file_extent_type(eb, item);
+
+ if (found_type == BTRFS_FILE_EXTENT_REG ||
+ found_type == BTRFS_FILE_EXTENT_PREALLOC)
+ extent_end = start + btrfs_file_extent_num_bytes(eb, item);
+ else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
+ size = btrfs_file_extent_inline_len(eb, item);
+ extent_end = (start + size + mask) & ~mask;
+ } else {
+ ret = 0;
+ goto out;
+ }
+
+ inode = read_one_inode(root, key->objectid);
+ if (!inode) {
+ ret = -EIO;
+ goto out;
+ }
+
+ /*
+ * first check to see if we already have this extent in the
+ * file. This must be done before the btrfs_drop_extents run
+ * so we don't try to drop this extent.
+ */
+ ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
+ start, 0);
+
+ if (ret == 0 &&
+ (found_type == BTRFS_FILE_EXTENT_REG ||
+ found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
+ struct btrfs_file_extent_item cmp1;
+ struct btrfs_file_extent_item cmp2;
+ struct btrfs_file_extent_item *existing;
+ struct extent_buffer *leaf;
+
+ leaf = path->nodes[0];
+ existing = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+
+ read_extent_buffer(eb, &cmp1, (unsigned long)item,
+ sizeof(cmp1));
+ read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
+ sizeof(cmp2));
+
+ /*
+ * we already have a pointer to this exact extent,
+ * we don't have to do anything
+ */
+ if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
+ btrfs_release_path(path);
+ goto out;
+ }
+ }
+ btrfs_release_path(path);
+
+ saved_nbytes = inode_get_bytes(inode);
+ /* drop any overlapping extents */
+ ret = btrfs_drop_extents(trans, inode, start, extent_end,
+ &alloc_hint, 1);
+ BUG_ON(ret);
+
+ if (found_type == BTRFS_FILE_EXTENT_REG ||
+ found_type == BTRFS_FILE_EXTENT_PREALLOC) {
+ u64 offset;
+ unsigned long dest_offset;
+ struct btrfs_key ins;
+
+ ret = btrfs_insert_empty_item(trans, root, path, key,
+ sizeof(*item));
+ BUG_ON(ret);
+ dest_offset = btrfs_item_ptr_offset(path->nodes[0],
+ path->slots[0]);
+ copy_extent_buffer(path->nodes[0], eb, dest_offset,
+ (unsigned long)item, sizeof(*item));
+
+ ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
+ ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
+ ins.type = BTRFS_EXTENT_ITEM_KEY;
+ offset = key->offset - btrfs_file_extent_offset(eb, item);
+
+ if (ins.objectid > 0) {
+ u64 csum_start;
+ u64 csum_end;
+ LIST_HEAD(ordered_sums);
+ /*
+ * is this extent already allocated in the extent
+ * allocation tree? If so, just add a reference
+ */
+ ret = btrfs_lookup_extent(root, ins.objectid,
+ ins.offset);
+ if (ret == 0) {
+ ret = btrfs_inc_extent_ref(trans, root,
+ ins.objectid, ins.offset,
+ 0, root->root_key.objectid,
+ key->objectid, offset, 0);
+ BUG_ON(ret);
+ } else {
+ /*
+ * insert the extent pointer in the extent
+ * allocation tree
+ */
+ ret = btrfs_alloc_logged_file_extent(trans,
+ root, root->root_key.objectid,
+ key->objectid, offset, &ins);
+ BUG_ON(ret);
+ }
+ btrfs_release_path(path);
+
+ if (btrfs_file_extent_compression(eb, item)) {
+ csum_start = ins.objectid;
+ csum_end = csum_start + ins.offset;
+ } else {
+ csum_start = ins.objectid +
+ btrfs_file_extent_offset(eb, item);
+ csum_end = csum_start +
+ btrfs_file_extent_num_bytes(eb, item);
+ }
+
+ ret = btrfs_lookup_csums_range(root->log_root,
+ csum_start, csum_end - 1,
+ &ordered_sums, 0);
+ BUG_ON(ret);
+ while (!list_empty(&ordered_sums)) {
+ struct btrfs_ordered_sum *sums;
+ sums = list_entry(ordered_sums.next,
+ struct btrfs_ordered_sum,
+ list);
+ ret = btrfs_csum_file_blocks(trans,
+ root->fs_info->csum_root,
+ sums);
+ BUG_ON(ret);
+ list_del(&sums->list);
+ kfree(sums);
+ }
+ } else {
+ btrfs_release_path(path);
+ }
+ } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
+ /* inline extents are easy, we just overwrite them */
+ ret = overwrite_item(trans, root, path, eb, slot, key);
+ BUG_ON(ret);
+ }
+
+ inode_set_bytes(inode, saved_nbytes);
+ btrfs_update_inode(trans, root, inode);
+out:
+ if (inode)
+ iput(inode);
+ return ret;
+}
+
+/*
+ * when cleaning up conflicts between the directory names in the
+ * subvolume, directory names in the log and directory names in the
+ * inode back references, we may have to unlink inodes from directories.
+ *
+ * This is a helper function to do the unlink of a specific directory
+ * item
+ */
+static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct inode *dir,
+ struct btrfs_dir_item *di)
+{
+ struct inode *inode;
+ char *name;
+ int name_len;
+ struct extent_buffer *leaf;
+ struct btrfs_key location;
+ int ret;
+
+ leaf = path->nodes[0];
+
+ btrfs_dir_item_key_to_cpu(leaf, di, &location);
+ name_len = btrfs_dir_name_len(leaf, di);
+ name = kmalloc(name_len, GFP_NOFS);
+ if (!name)
+ return -ENOMEM;
+
+ read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
+ btrfs_release_path(path);
+
+ inode = read_one_inode(root, location.objectid);
+ if (!inode) {
+ kfree(name);
+ return -EIO;
+ }
+
+ ret = link_to_fixup_dir(trans, root, path, location.objectid);
+ BUG_ON(ret);
+
+ ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
+ BUG_ON(ret);
+ kfree(name);
+
+ iput(inode);
+
+ btrfs_run_delayed_items(trans, root);
+ return ret;
+}
+
+/*
+ * helper function to see if a given name and sequence number found
+ * in an inode back reference are already in a directory and correctly
+ * point to this inode
+ */
+static noinline int inode_in_dir(struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 dirid, u64 objectid, u64 index,
+ const char *name, int name_len)
+{
+ struct btrfs_dir_item *di;
+ struct btrfs_key location;
+ int match = 0;
+
+ di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
+ index, name, name_len, 0);
+ if (di && !IS_ERR(di)) {
+ btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
+ if (location.objectid != objectid)
+ goto out;
+ } else
+ goto out;
+ btrfs_release_path(path);
+
+ di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
+ if (di && !IS_ERR(di)) {
+ btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
+ if (location.objectid != objectid)
+ goto out;
+ } else
+ goto out;
+ match = 1;
+out:
+ btrfs_release_path(path);
+ return match;
+}
+
+/*
+ * helper function to check a log tree for a named back reference in
+ * an inode. This is used to decide if a back reference that is
+ * found in the subvolume conflicts with what we find in the log.
+ *
+ * inode backreferences may have multiple refs in a single item,
+ * during replay we process one reference at a time, and we don't
+ * want to delete valid links to a file from the subvolume if that
+ * link is also in the log.
+ */
+static noinline int backref_in_log(struct btrfs_root *log,
+ struct btrfs_key *key,
+ char *name, int namelen)
+{
+ struct btrfs_path *path;
+ struct btrfs_inode_ref *ref;
+ unsigned long ptr;
+ unsigned long ptr_end;
+ unsigned long name_ptr;
+ int found_name_len;
+ int item_size;
+ int ret;
+ int match = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
+ if (ret != 0)
+ goto out;
+
+ item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
+ ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
+ ptr_end = ptr + item_size;
+ while (ptr < ptr_end) {
+ ref = (struct btrfs_inode_ref *)ptr;
+ found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
+ if (found_name_len == namelen) {
+ name_ptr = (unsigned long)(ref + 1);
+ ret = memcmp_extent_buffer(path->nodes[0], name,
+ name_ptr, namelen);
+ if (ret == 0) {
+ match = 1;
+ goto out;
+ }
+ }
+ ptr = (unsigned long)(ref + 1) + found_name_len;
+ }
+out:
+ btrfs_free_path(path);
+ return match;
+}
+
+
+/*
+ * replay one inode back reference item found in the log tree.
+ * eb, slot and key refer to the buffer and key found in the log tree.
+ * root is the destination we are replaying into, and path is for temp
+ * use by this function. (it should be released on return).
+ */
+static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_root *log,
+ struct btrfs_path *path,
+ struct extent_buffer *eb, int slot,
+ struct btrfs_key *key)
+{
+ struct btrfs_inode_ref *ref;
+ struct btrfs_dir_item *di;
+ struct inode *dir;
+ struct inode *inode;
+ unsigned long ref_ptr;
+ unsigned long ref_end;
+ char *name;
+ int namelen;
+ int ret;
+ int search_done = 0;
+
+ /*
+ * it is possible that we didn't log all the parent directories
+ * for a given inode. If we don't find the dir, just don't
+ * copy the back ref in. The link count fixup code will take
+ * care of the rest
+ */
+ dir = read_one_inode(root, key->offset);
+ if (!dir)
+ return -ENOENT;
+
+ inode = read_one_inode(root, key->objectid);
+ if (!inode) {
+ iput(dir);
+ return -EIO;
+ }
+
+ ref_ptr = btrfs_item_ptr_offset(eb, slot);
+ ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
+
+again:
+ ref = (struct btrfs_inode_ref *)ref_ptr;
+
+ namelen = btrfs_inode_ref_name_len(eb, ref);
+ name = kmalloc(namelen, GFP_NOFS);
+ BUG_ON(!name);
+
+ read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
+
+ /* if we already have a perfect match, we're done */
+ if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
+ btrfs_inode_ref_index(eb, ref),
+ name, namelen)) {
+ goto out;
+ }
+
+ /*
+ * look for a conflicting back reference in the metadata.
+ * if we find one we have to unlink that name of the file
+ * before we add our new link. Later on, we overwrite any
+ * existing back reference, and we don't want to create
+ * dangling pointers in the directory.
+ */
+
+ if (search_done)
+ goto insert;
+
+ ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
+ if (ret == 0) {
+ char *victim_name;
+ int victim_name_len;
+ struct btrfs_inode_ref *victim_ref;
+ unsigned long ptr;
+ unsigned long ptr_end;
+ struct extent_buffer *leaf = path->nodes[0];
+
+ /* are we trying to overwrite a back ref for the root directory
+ * if so, just jump out, we're done
+ */
+ if (key->objectid == key->offset)
+ goto out_nowrite;
+
+ /* check all the names in this back reference to see
+ * if they are in the log. if so, we allow them to stay
+ * otherwise they must be unlinked as a conflict
+ */
+ ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
+ ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
+ while (ptr < ptr_end) {
+ victim_ref = (struct btrfs_inode_ref *)ptr;
+ victim_name_len = btrfs_inode_ref_name_len(leaf,
+ victim_ref);
+ victim_name = kmalloc(victim_name_len, GFP_NOFS);
+ BUG_ON(!victim_name);
+
+ read_extent_buffer(leaf, victim_name,
+ (unsigned long)(victim_ref + 1),
+ victim_name_len);
+
+ if (!backref_in_log(log, key, victim_name,
+ victim_name_len)) {
+ btrfs_inc_nlink(inode);
+ btrfs_release_path(path);
+
+ ret = btrfs_unlink_inode(trans, root, dir,
+ inode, victim_name,
+ victim_name_len);
+ btrfs_run_delayed_items(trans, root);
+ }
+ kfree(victim_name);
+ ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
+ }
+ BUG_ON(ret);
+
+ /*
+ * NOTE: we have searched root tree and checked the
+ * coresponding ref, it does not need to check again.
+ */
+ search_done = 1;
+ }
+ btrfs_release_path(path);
+
+ /* look for a conflicting sequence number */
+ di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
+ btrfs_inode_ref_index(eb, ref),
+ name, namelen, 0);
+ if (di && !IS_ERR(di)) {
+ ret = drop_one_dir_item(trans, root, path, dir, di);
+ BUG_ON(ret);
+ }
+ btrfs_release_path(path);
+
+ /* look for a conflicing name */
+ di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
+ name, namelen, 0);
+ if (di && !IS_ERR(di)) {
+ ret = drop_one_dir_item(trans, root, path, dir, di);
+ BUG_ON(ret);
+ }
+ btrfs_release_path(path);
+
+insert:
+ /* insert our name */
+ ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
+ btrfs_inode_ref_index(eb, ref));
+ BUG_ON(ret);
+
+ btrfs_update_inode(trans, root, inode);
+
+out:
+ ref_ptr = (unsigned long)(ref + 1) + namelen;
+ kfree(name);
+ if (ref_ptr < ref_end)
+ goto again;
+
+ /* finally write the back reference in the inode */
+ ret = overwrite_item(trans, root, path, eb, slot, key);
+ BUG_ON(ret);
+
+out_nowrite:
+ btrfs_release_path(path);
+ iput(dir);
+ iput(inode);
+ return 0;
+}
+
+static int insert_orphan_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, u64 offset)
+{
+ int ret;
+ ret = btrfs_find_orphan_item(root, offset);
+ if (ret > 0)
+ ret = btrfs_insert_orphan_item(trans, root, offset);
+ return ret;
+}
+
+
+/*
+ * There are a few corners where the link count of the file can't
+ * be properly maintained during replay. So, instead of adding
+ * lots of complexity to the log code, we just scan the backrefs
+ * for any file that has been through replay.
+ *
+ * The scan will update the link count on the inode to reflect the
+ * number of back refs found. If it goes down to zero, the iput
+ * will free the inode.
+ */
+static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct inode *inode)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct btrfs_key key;
+ u64 nlink = 0;
+ unsigned long ptr;
+ unsigned long ptr_end;
+ int name_len;
+ u64 ino = btrfs_ino(inode);
+
+ key.objectid = ino;
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = (u64)-1;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ break;
+ if (ret > 0) {
+ if (path->slots[0] == 0)
+ break;
+ path->slots[0]--;
+ }
+ btrfs_item_key_to_cpu(path->nodes[0], &key,
+ path->slots[0]);
+ if (key.objectid != ino ||
+ key.type != BTRFS_INODE_REF_KEY)
+ break;
+ ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
+ ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
+ path->slots[0]);
+ while (ptr < ptr_end) {
+ struct btrfs_inode_ref *ref;
+
+ ref = (struct btrfs_inode_ref *)ptr;
+ name_len = btrfs_inode_ref_name_len(path->nodes[0],
+ ref);
+ ptr = (unsigned long)(ref + 1) + name_len;
+ nlink++;
+ }
+
+ if (key.offset == 0)
+ break;
+ key.offset--;
+ btrfs_release_path(path);
+ }
+ btrfs_release_path(path);
+ if (nlink != inode->i_nlink) {
+ set_nlink(inode, nlink);
+ btrfs_update_inode(trans, root, inode);
+ }
+ BTRFS_I(inode)->index_cnt = (u64)-1;
+
+ if (inode->i_nlink == 0) {
+ if (S_ISDIR(inode->i_mode)) {
+ ret = replay_dir_deletes(trans, root, NULL, path,
+ ino, 1);
+ BUG_ON(ret);
+ }
+ ret = insert_orphan_item(trans, root, ino);
+ BUG_ON(ret);
+ }
+ btrfs_free_path(path);
+
+ return 0;
+}
+
+static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path)
+{
+ int ret;
+ struct btrfs_key key;
+ struct inode *inode;
+
+ key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
+ key.type = BTRFS_ORPHAN_ITEM_KEY;
+ key.offset = (u64)-1;
+ while (1) {
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0)
+ break;
+
+ if (ret == 1) {
+ if (path->slots[0] == 0)
+ break;
+ path->slots[0]--;
+ }
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
+ key.type != BTRFS_ORPHAN_ITEM_KEY)
+ break;
+
+ ret = btrfs_del_item(trans, root, path);
+ if (ret)
+ goto out;
+
+ btrfs_release_path(path);
+ inode = read_one_inode(root, key.offset);
+ if (!inode)
+ return -EIO;
+
+ ret = fixup_inode_link_count(trans, root, inode);
+ BUG_ON(ret);
+
+ iput(inode);
+
+ /*
+ * fixup on a directory may create new entries,
+ * make sure we always look for the highset possible
+ * offset
+ */
+ key.offset = (u64)-1;
+ }
+ ret = 0;
+out:
+ btrfs_release_path(path);
+ return ret;
+}
+
+
+/*
+ * record a given inode in the fixup dir so we can check its link
+ * count when replay is done. The link count is incremented here
+ * so the inode won't go away until we check it
+ */
+static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 objectid)
+{
+ struct btrfs_key key;
+ int ret = 0;
+ struct inode *inode;
+
+ inode = read_one_inode(root, objectid);
+ if (!inode)
+ return -EIO;
+
+ key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
+ btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
+ key.offset = objectid;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
+
+ btrfs_release_path(path);
+ if (ret == 0) {
+ btrfs_inc_nlink(inode);
+ btrfs_update_inode(trans, root, inode);
+ } else if (ret == -EEXIST) {
+ ret = 0;
+ } else {
+ BUG();
+ }
+ iput(inode);
+
+ return ret;
+}
+
+/*
+ * when replaying the log for a directory, we only insert names
+ * for inodes that actually exist. This means an fsync on a directory
+ * does not implicitly fsync all the new files in it
+ */
+static noinline int insert_one_name(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 dirid, u64 index,
+ char *name, int name_len, u8 type,
+ struct btrfs_key *location)
+{
+ struct inode *inode;
+ struct inode *dir;
+ int ret;
+
+ inode = read_one_inode(root, location->objectid);
+ if (!inode)
+ return -ENOENT;
+
+ dir = read_one_inode(root, dirid);
+ if (!dir) {
+ iput(inode);
+ return -EIO;
+ }
+ ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
+
+ /* FIXME, put inode into FIXUP list */
+
+ iput(inode);
+ iput(dir);
+ return ret;
+}
+
+/*
+ * take a single entry in a log directory item and replay it into
+ * the subvolume.
+ *
+ * if a conflicting item exists in the subdirectory already,
+ * the inode it points to is unlinked and put into the link count
+ * fix up tree.
+ *
+ * If a name from the log points to a file or directory that does
+ * not exist in the FS, it is skipped. fsyncs on directories
+ * do not force down inodes inside that directory, just changes to the
+ * names or unlinks in a directory.
+ */
+static noinline int replay_one_name(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct extent_buffer *eb,
+ struct btrfs_dir_item *di,
+ struct btrfs_key *key)
+{
+ char *name;
+ int name_len;
+ struct btrfs_dir_item *dst_di;
+ struct btrfs_key found_key;
+ struct btrfs_key log_key;
+ struct inode *dir;
+ u8 log_type;
+ int exists;
+ int ret;
+
+ dir = read_one_inode(root, key->objectid);
+ if (!dir)
+ return -EIO;
+
+ name_len = btrfs_dir_name_len(eb, di);
+ name = kmalloc(name_len, GFP_NOFS);
+ if (!name)
+ return -ENOMEM;
+
+ log_type = btrfs_dir_type(eb, di);
+ read_extent_buffer(eb, name, (unsigned long)(di + 1),
+ name_len);
+
+ btrfs_dir_item_key_to_cpu(eb, di, &log_key);
+ exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
+ if (exists == 0)
+ exists = 1;
+ else
+ exists = 0;
+ btrfs_release_path(path);
+
+ if (key->type == BTRFS_DIR_ITEM_KEY) {
+ dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
+ name, name_len, 1);
+ } else if (key->type == BTRFS_DIR_INDEX_KEY) {
+ dst_di = btrfs_lookup_dir_index_item(trans, root, path,
+ key->objectid,
+ key->offset, name,
+ name_len, 1);
+ } else {
+ BUG();
+ }
+ if (IS_ERR_OR_NULL(dst_di)) {
+ /* we need a sequence number to insert, so we only
+ * do inserts for the BTRFS_DIR_INDEX_KEY types
+ */
+ if (key->type != BTRFS_DIR_INDEX_KEY)
+ goto out;
+ goto insert;
+ }
+
+ btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
+ /* the existing item matches the logged item */
+ if (found_key.objectid == log_key.objectid &&
+ found_key.type == log_key.type &&
+ found_key.offset == log_key.offset &&
+ btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
+ goto out;
+ }
+
+ /*
+ * don't drop the conflicting directory entry if the inode
+ * for the new entry doesn't exist
+ */
+ if (!exists)
+ goto out;
+
+ ret = drop_one_dir_item(trans, root, path, dir, dst_di);
+ BUG_ON(ret);
+
+ if (key->type == BTRFS_DIR_INDEX_KEY)
+ goto insert;
+out:
+ btrfs_release_path(path);
+ kfree(name);
+ iput(dir);
+ return 0;
+
+insert:
+ btrfs_release_path(path);
+ ret = insert_one_name(trans, root, path, key->objectid, key->offset,
+ name, name_len, log_type, &log_key);
+
+ BUG_ON(ret && ret != -ENOENT);
+ goto out;
+}
+
+/*
+ * find all the names in a directory item and reconcile them into
+ * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
+ * one name in a directory item, but the same code gets used for
+ * both directory index types
+ */
+static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct extent_buffer *eb, int slot,
+ struct btrfs_key *key)
+{
+ int ret;
+ u32 item_size = btrfs_item_size_nr(eb, slot);
+ struct btrfs_dir_item *di;
+ int name_len;
+ unsigned long ptr;
+ unsigned long ptr_end;
+
+ ptr = btrfs_item_ptr_offset(eb, slot);
+ ptr_end = ptr + item_size;
+ while (ptr < ptr_end) {
+ di = (struct btrfs_dir_item *)ptr;
+ if (verify_dir_item(root, eb, di))
+ return -EIO;
+ name_len = btrfs_dir_name_len(eb, di);
+ ret = replay_one_name(trans, root, path, eb, di, key);
+ BUG_ON(ret);
+ ptr = (unsigned long)(di + 1);
+ ptr += name_len;
+ }
+ return 0;
+}
+
+/*
+ * directory replay has two parts. There are the standard directory
+ * items in the log copied from the subvolume, and range items
+ * created in the log while the subvolume was logged.
+ *
+ * The range items tell us which parts of the key space the log
+ * is authoritative for. During replay, if a key in the subvolume
+ * directory is in a logged range item, but not actually in the log
+ * that means it was deleted from the directory before the fsync
+ * and should be removed.
+ */
+static noinline int find_dir_range(struct btrfs_root *root,
+ struct btrfs_path *path,
+ u64 dirid, int key_type,
+ u64 *start_ret, u64 *end_ret)
+{
+ struct btrfs_key key;
+ u64 found_end;
+ struct btrfs_dir_log_item *item;
+ int ret;
+ int nritems;
+
+ if (*start_ret == (u64)-1)
+ return 1;
+
+ key.objectid = dirid;
+ key.type = key_type;
+ key.offset = *start_ret;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ if (path->slots[0] == 0)
+ goto out;
+ path->slots[0]--;
+ }
+ if (ret != 0)
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+
+ if (key.type != key_type || key.objectid != dirid) {
+ ret = 1;
+ goto next;
+ }
+ item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_dir_log_item);
+ found_end = btrfs_dir_log_end(path->nodes[0], item);
+
+ if (*start_ret >= key.offset && *start_ret <= found_end) {
+ ret = 0;
+ *start_ret = key.offset;
+ *end_ret = found_end;
+ goto out;
+ }
+ ret = 1;
+next:
+ /* check the next slot in the tree to see if it is a valid item */
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ if (path->slots[0] >= nritems) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret)
+ goto out;
+ } else {
+ path->slots[0]++;
+ }
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+
+ if (key.type != key_type || key.objectid != dirid) {
+ ret = 1;
+ goto out;
+ }
+ item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_dir_log_item);
+ found_end = btrfs_dir_log_end(path->nodes[0], item);
+ *start_ret = key.offset;
+ *end_ret = found_end;
+ ret = 0;
+out:
+ btrfs_release_path(path);
+ return ret;
+}
+
+/*
+ * this looks for a given directory item in the log. If the directory
+ * item is not in the log, the item is removed and the inode it points
+ * to is unlinked
+ */
+static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_root *log,
+ struct btrfs_path *path,
+ struct btrfs_path *log_path,
+ struct inode *dir,
+ struct btrfs_key *dir_key)
+{
+ int ret;
+ struct extent_buffer *eb;
+ int slot;
+ u32 item_size;
+ struct btrfs_dir_item *di;
+ struct btrfs_dir_item *log_di;
+ int name_len;
+ unsigned long ptr;
+ unsigned long ptr_end;
+ char *name;
+ struct inode *inode;
+ struct btrfs_key location;
+
+again:
+ eb = path->nodes[0];
+ slot = path->slots[0];
+ item_size = btrfs_item_size_nr(eb, slot);
+ ptr = btrfs_item_ptr_offset(eb, slot);
+ ptr_end = ptr + item_size;
+ while (ptr < ptr_end) {
+ di = (struct btrfs_dir_item *)ptr;
+ if (verify_dir_item(root, eb, di)) {
+ ret = -EIO;
+ goto out;
+ }
+
+ name_len = btrfs_dir_name_len(eb, di);
+ name = kmalloc(name_len, GFP_NOFS);
+ if (!name) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ read_extent_buffer(eb, name, (unsigned long)(di + 1),
+ name_len);
+ log_di = NULL;
+ if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
+ log_di = btrfs_lookup_dir_item(trans, log, log_path,
+ dir_key->objectid,
+ name, name_len, 0);
+ } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
+ log_di = btrfs_lookup_dir_index_item(trans, log,
+ log_path,
+ dir_key->objectid,
+ dir_key->offset,
+ name, name_len, 0);
+ }
+ if (IS_ERR_OR_NULL(log_di)) {
+ btrfs_dir_item_key_to_cpu(eb, di, &location);
+ btrfs_release_path(path);
+ btrfs_release_path(log_path);
+ inode = read_one_inode(root, location.objectid);
+ if (!inode) {
+ kfree(name);
+ return -EIO;
+ }
+
+ ret = link_to_fixup_dir(trans, root,
+ path, location.objectid);
+ BUG_ON(ret);
+ btrfs_inc_nlink(inode);
+ ret = btrfs_unlink_inode(trans, root, dir, inode,
+ name, name_len);
+ BUG_ON(ret);
+
+ btrfs_run_delayed_items(trans, root);
+
+ kfree(name);
+ iput(inode);
+
+ /* there might still be more names under this key
+ * check and repeat if required
+ */
+ ret = btrfs_search_slot(NULL, root, dir_key, path,
+ 0, 0);
+ if (ret == 0)
+ goto again;
+ ret = 0;
+ goto out;
+ }
+ btrfs_release_path(log_path);
+ kfree(name);
+
+ ptr = (unsigned long)(di + 1);
+ ptr += name_len;
+ }
+ ret = 0;
+out:
+ btrfs_release_path(path);
+ btrfs_release_path(log_path);
+ return ret;
+}
+
+/*
+ * deletion replay happens before we copy any new directory items
+ * out of the log or out of backreferences from inodes. It
+ * scans the log to find ranges of keys that log is authoritative for,
+ * and then scans the directory to find items in those ranges that are
+ * not present in the log.
+ *
+ * Anything we don't find in the log is unlinked and removed from the
+ * directory.
+ */
+static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_root *log,
+ struct btrfs_path *path,
+ u64 dirid, int del_all)
+{
+ u64 range_start;
+ u64 range_end;
+ int key_type = BTRFS_DIR_LOG_ITEM_KEY;
+ int ret = 0;
+ struct btrfs_key dir_key;
+ struct btrfs_key found_key;
+ struct btrfs_path *log_path;
+ struct inode *dir;
+
+ dir_key.objectid = dirid;
+ dir_key.type = BTRFS_DIR_ITEM_KEY;
+ log_path = btrfs_alloc_path();
+ if (!log_path)
+ return -ENOMEM;
+
+ dir = read_one_inode(root, dirid);
+ /* it isn't an error if the inode isn't there, that can happen
+ * because we replay the deletes before we copy in the inode item
+ * from the log
+ */
+ if (!dir) {
+ btrfs_free_path(log_path);
+ return 0;
+ }
+again:
+ range_start = 0;
+ range_end = 0;
+ while (1) {
+ if (del_all)
+ range_end = (u64)-1;
+ else {
+ ret = find_dir_range(log, path, dirid, key_type,
+ &range_start, &range_end);
+ if (ret != 0)
+ break;
+ }
+
+ dir_key.offset = range_start;
+ while (1) {
+ int nritems;
+ ret = btrfs_search_slot(NULL, root, &dir_key, path,
+ 0, 0);
+ if (ret < 0)
+ goto out;
+
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ if (path->slots[0] >= nritems) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret)
+ break;
+ }
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+ if (found_key.objectid != dirid ||
+ found_key.type != dir_key.type)
+ goto next_type;
+
+ if (found_key.offset > range_end)
+ break;
+
+ ret = check_item_in_log(trans, root, log, path,
+ log_path, dir,
+ &found_key);
+ BUG_ON(ret);
+ if (found_key.offset == (u64)-1)
+ break;
+ dir_key.offset = found_key.offset + 1;
+ }
+ btrfs_release_path(path);
+ if (range_end == (u64)-1)
+ break;
+ range_start = range_end + 1;
+ }
+
+next_type:
+ ret = 0;
+ if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
+ key_type = BTRFS_DIR_LOG_INDEX_KEY;
+ dir_key.type = BTRFS_DIR_INDEX_KEY;
+ btrfs_release_path(path);
+ goto again;
+ }
+out:
+ btrfs_release_path(path);
+ btrfs_free_path(log_path);
+ iput(dir);
+ return ret;
+}
+
+/*
+ * the process_func used to replay items from the log tree. This
+ * gets called in two different stages. The first stage just looks
+ * for inodes and makes sure they are all copied into the subvolume.
+ *
+ * The second stage copies all the other item types from the log into
+ * the subvolume. The two stage approach is slower, but gets rid of
+ * lots of complexity around inodes referencing other inodes that exist
+ * only in the log (references come from either directory items or inode
+ * back refs).
+ */
+static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
+ struct walk_control *wc, u64 gen)
+{
+ int nritems;
+ struct btrfs_path *path;
+ struct btrfs_root *root = wc->replay_dest;
+ struct btrfs_key key;
+ int level;
+ int i;
+ int ret;
+
+ btrfs_read_buffer(eb, gen);
+
+ level = btrfs_header_level(eb);
+
+ if (level != 0)
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ nritems = btrfs_header_nritems(eb);
+ for (i = 0; i < nritems; i++) {
+ btrfs_item_key_to_cpu(eb, &key, i);
+
+ /* inode keys are done during the first stage */
+ if (key.type == BTRFS_INODE_ITEM_KEY &&
+ wc->stage == LOG_WALK_REPLAY_INODES) {
+ struct btrfs_inode_item *inode_item;
+ u32 mode;
+
+ inode_item = btrfs_item_ptr(eb, i,
+ struct btrfs_inode_item);
+ mode = btrfs_inode_mode(eb, inode_item);
+ if (S_ISDIR(mode)) {
+ ret = replay_dir_deletes(wc->trans,
+ root, log, path, key.objectid, 0);
+ BUG_ON(ret);
+ }
+ ret = overwrite_item(wc->trans, root, path,
+ eb, i, &key);
+ BUG_ON(ret);
+
+ /* for regular files, make sure corresponding
+ * orhpan item exist. extents past the new EOF
+ * will be truncated later by orphan cleanup.
+ */
+ if (S_ISREG(mode)) {
+ ret = insert_orphan_item(wc->trans, root,
+ key.objectid);
+ BUG_ON(ret);
+ }
+
+ ret = link_to_fixup_dir(wc->trans, root,
+ path, key.objectid);
+ BUG_ON(ret);
+ }
+ if (wc->stage < LOG_WALK_REPLAY_ALL)
+ continue;
+
+ /* these keys are simply copied */
+ if (key.type == BTRFS_XATTR_ITEM_KEY) {
+ ret = overwrite_item(wc->trans, root, path,
+ eb, i, &key);
+ BUG_ON(ret);
+ } else if (key.type == BTRFS_INODE_REF_KEY) {
+ ret = add_inode_ref(wc->trans, root, log, path,
+ eb, i, &key);
+ BUG_ON(ret && ret != -ENOENT);
+ } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
+ ret = replay_one_extent(wc->trans, root, path,
+ eb, i, &key);
+ BUG_ON(ret);
+ } else if (key.type == BTRFS_DIR_ITEM_KEY ||
+ key.type == BTRFS_DIR_INDEX_KEY) {
+ ret = replay_one_dir_item(wc->trans, root, path,
+ eb, i, &key);
+ BUG_ON(ret);
+ }
+ }
+ btrfs_free_path(path);
+ return 0;
+}
+
+static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int *level,
+ struct walk_control *wc)
+{
+ u64 root_owner;
+ u64 bytenr;
+ u64 ptr_gen;
+ struct extent_buffer *next;
+ struct extent_buffer *cur;
+ struct extent_buffer *parent;
+ u32 blocksize;
+ int ret = 0;
+
+ WARN_ON(*level < 0);
+ WARN_ON(*level >= BTRFS_MAX_LEVEL);
+
+ while (*level > 0) {
+ WARN_ON(*level < 0);
+ WARN_ON(*level >= BTRFS_MAX_LEVEL);
+ cur = path->nodes[*level];
+
+ if (btrfs_header_level(cur) != *level)
+ WARN_ON(1);
+
+ if (path->slots[*level] >=
+ btrfs_header_nritems(cur))
+ break;
+
+ bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
+ ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
+ blocksize = btrfs_level_size(root, *level - 1);
+
+ parent = path->nodes[*level];
+ root_owner = btrfs_header_owner(parent);
+
+ next = btrfs_find_create_tree_block(root, bytenr, blocksize);
+ if (!next)
+ return -ENOMEM;
+
+ if (*level == 1) {
+ ret = wc->process_func(root, next, wc, ptr_gen);
+ if (ret)
+ return ret;
+
+ path->slots[*level]++;
+ if (wc->free) {
+ btrfs_read_buffer(next, ptr_gen);
+
+ btrfs_tree_lock(next);
+ btrfs_set_lock_blocking(next);
+ clean_tree_block(trans, root, next);
+ btrfs_wait_tree_block_writeback(next);
+ btrfs_tree_unlock(next);
+
+ WARN_ON(root_owner !=
+ BTRFS_TREE_LOG_OBJECTID);
+ ret = btrfs_free_and_pin_reserved_extent(root,
+ bytenr, blocksize);
+ BUG_ON(ret); /* -ENOMEM or logic errors */
+ }
+ free_extent_buffer(next);
+ continue;
+ }
+ btrfs_read_buffer(next, ptr_gen);
+
+ WARN_ON(*level <= 0);
+ if (path->nodes[*level-1])
+ free_extent_buffer(path->nodes[*level-1]);
+ path->nodes[*level-1] = next;
+ *level = btrfs_header_level(next);
+ path->slots[*level] = 0;
+ cond_resched();
+ }
+ WARN_ON(*level < 0);
+ WARN_ON(*level >= BTRFS_MAX_LEVEL);
+
+ path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
+
+ cond_resched();
+ return 0;
+}
+
+static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_path *path, int *level,
+ struct walk_control *wc)
+{
+ u64 root_owner;
+ int i;
+ int slot;
+ int ret;
+
+ for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
+ slot = path->slots[i];
+ if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
+ path->slots[i]++;
+ *level = i;
+ WARN_ON(*level == 0);
+ return 0;
+ } else {
+ struct extent_buffer *parent;
+ if (path->nodes[*level] == root->node)
+ parent = path->nodes[*level];
+ else
+ parent = path->nodes[*level + 1];
+
+ root_owner = btrfs_header_owner(parent);
+ ret = wc->process_func(root, path->nodes[*level], wc,
+ btrfs_header_generation(path->nodes[*level]));
+ if (ret)
+ return ret;
+
+ if (wc->free) {
+ struct extent_buffer *next;
+
+ next = path->nodes[*level];
+
+ btrfs_tree_lock(next);
+ btrfs_set_lock_blocking(next);
+ clean_tree_block(trans, root, next);
+ btrfs_wait_tree_block_writeback(next);
+ btrfs_tree_unlock(next);
+
+ WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
+ ret = btrfs_free_and_pin_reserved_extent(root,
+ path->nodes[*level]->start,
+ path->nodes[*level]->len);
+ BUG_ON(ret);
+ }
+ free_extent_buffer(path->nodes[*level]);
+ path->nodes[*level] = NULL;
+ *level = i + 1;
+ }
+ }
+ return 1;
+}
+
+/*
+ * drop the reference count on the tree rooted at 'snap'. This traverses
+ * the tree freeing any blocks that have a ref count of zero after being
+ * decremented.
+ */
+static int walk_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *log, struct walk_control *wc)
+{
+ int ret = 0;
+ int wret;
+ int level;
+ struct btrfs_path *path;
+ int i;
+ int orig_level;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ level = btrfs_header_level(log->node);
+ orig_level = level;
+ path->nodes[level] = log->node;
+ extent_buffer_get(log->node);
+ path->slots[level] = 0;
+
+ while (1) {
+ wret = walk_down_log_tree(trans, log, path, &level, wc);
+ if (wret > 0)
+ break;
+ if (wret < 0) {
+ ret = wret;
+ goto out;
+ }
+
+ wret = walk_up_log_tree(trans, log, path, &level, wc);
+ if (wret > 0)
+ break;
+ if (wret < 0) {
+ ret = wret;
+ goto out;
+ }
+ }
+
+ /* was the root node processed? if not, catch it here */
+ if (path->nodes[orig_level]) {
+ ret = wc->process_func(log, path->nodes[orig_level], wc,
+ btrfs_header_generation(path->nodes[orig_level]));
+ if (ret)
+ goto out;
+ if (wc->free) {
+ struct extent_buffer *next;
+
+ next = path->nodes[orig_level];
+
+ btrfs_tree_lock(next);
+ btrfs_set_lock_blocking(next);
+ clean_tree_block(trans, log, next);
+ btrfs_wait_tree_block_writeback(next);
+ btrfs_tree_unlock(next);
+
+ WARN_ON(log->root_key.objectid !=
+ BTRFS_TREE_LOG_OBJECTID);
+ ret = btrfs_free_and_pin_reserved_extent(log, next->start,
+ next->len);
+ BUG_ON(ret); /* -ENOMEM or logic errors */
+ }
+ }
+
+out:
+ for (i = 0; i <= orig_level; i++) {
+ if (path->nodes[i]) {
+ free_extent_buffer(path->nodes[i]);
+ path->nodes[i] = NULL;
+ }
+ }
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * helper function to update the item for a given subvolumes log root
+ * in the tree of log roots
+ */
+static int update_log_root(struct btrfs_trans_handle *trans,
+ struct btrfs_root *log)
+{
+ int ret;
+
+ if (log->log_transid == 1) {
+ /* insert root item on the first sync */
+ ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
+ &log->root_key, &log->root_item);
+ } else {
+ ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
+ &log->root_key, &log->root_item);
+ }
+ return ret;
+}
+
+static int wait_log_commit(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, unsigned long transid)
+{
+ DEFINE_WAIT(wait);
+ int index = transid % 2;
+
+ /*
+ * we only allow two pending log transactions at a time,
+ * so we know that if ours is more than 2 older than the
+ * current transaction, we're done
+ */
+ do {
+ prepare_to_wait(&root->log_commit_wait[index],
+ &wait, TASK_UNINTERRUPTIBLE);
+ mutex_unlock(&root->log_mutex);
+
+ if (root->fs_info->last_trans_log_full_commit !=
+ trans->transid && root->log_transid < transid + 2 &&
+ atomic_read(&root->log_commit[index]))
+ schedule();
+
+ finish_wait(&root->log_commit_wait[index], &wait);
+ mutex_lock(&root->log_mutex);
+ } while (root->fs_info->last_trans_log_full_commit !=
+ trans->transid && root->log_transid < transid + 2 &&
+ atomic_read(&root->log_commit[index]));
+ return 0;
+}
+
+static void wait_for_writer(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ DEFINE_WAIT(wait);
+ while (root->fs_info->last_trans_log_full_commit !=
+ trans->transid && atomic_read(&root->log_writers)) {
+ prepare_to_wait(&root->log_writer_wait,
+ &wait, TASK_UNINTERRUPTIBLE);
+ mutex_unlock(&root->log_mutex);
+ if (root->fs_info->last_trans_log_full_commit !=
+ trans->transid && atomic_read(&root->log_writers))
+ schedule();
+ mutex_lock(&root->log_mutex);
+ finish_wait(&root->log_writer_wait, &wait);
+ }
+}
+
+/*
+ * btrfs_sync_log does sends a given tree log down to the disk and
+ * updates the super blocks to record it. When this call is done,
+ * you know that any inodes previously logged are safely on disk only
+ * if it returns 0.
+ *
+ * Any other return value means you need to call btrfs_commit_transaction.
+ * Some of the edge cases for fsyncing directories that have had unlinks
+ * or renames done in the past mean that sometimes the only safe
+ * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
+ * that has happened.
+ */
+int btrfs_sync_log(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ int index1;
+ int index2;
+ int mark;
+ int ret;
+ struct btrfs_root *log = root->log_root;
+ struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
+ unsigned long log_transid = 0;
+
+ mutex_lock(&root->log_mutex);
+ index1 = root->log_transid % 2;
+ if (atomic_read(&root->log_commit[index1])) {
+ wait_log_commit(trans, root, root->log_transid);
+ mutex_unlock(&root->log_mutex);
+ return 0;
+ }
+ atomic_set(&root->log_commit[index1], 1);
+
+ /* wait for previous tree log sync to complete */
+ if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
+ wait_log_commit(trans, root, root->log_transid - 1);
+ while (1) {
+ unsigned long batch = root->log_batch;
+ /* when we're on an ssd, just kick the log commit out */
+ if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
+ mutex_unlock(&root->log_mutex);
+ schedule_timeout_uninterruptible(1);
+ mutex_lock(&root->log_mutex);
+ }
+ wait_for_writer(trans, root);
+ if (batch == root->log_batch)
+ break;
+ }
+
+ /* bail out if we need to do a full commit */
+ if (root->fs_info->last_trans_log_full_commit == trans->transid) {
+ ret = -EAGAIN;
+ mutex_unlock(&root->log_mutex);
+ goto out;
+ }
+
+ log_transid = root->log_transid;
+ if (log_transid % 2 == 0)
+ mark = EXTENT_DIRTY;
+ else
+ mark = EXTENT_NEW;
+
+ /* we start IO on all the marked extents here, but we don't actually
+ * wait for them until later.
+ */
+ ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ mutex_unlock(&root->log_mutex);
+ goto out;
+ }
+
+ btrfs_set_root_node(&log->root_item, log->node);
+
+ root->log_batch = 0;
+ root->log_transid++;
+ log->log_transid = root->log_transid;
+ root->log_start_pid = 0;
+ smp_mb();
+ /*
+ * IO has been started, blocks of the log tree have WRITTEN flag set
+ * in their headers. new modifications of the log will be written to
+ * new positions. so it's safe to allow log writers to go in.
+ */
+ mutex_unlock(&root->log_mutex);
+
+ mutex_lock(&log_root_tree->log_mutex);
+ log_root_tree->log_batch++;
+ atomic_inc(&log_root_tree->log_writers);
+ mutex_unlock(&log_root_tree->log_mutex);
+
+ ret = update_log_root(trans, log);
+
+ mutex_lock(&log_root_tree->log_mutex);
+ if (atomic_dec_and_test(&log_root_tree->log_writers)) {
+ smp_mb();
+ if (waitqueue_active(&log_root_tree->log_writer_wait))
+ wake_up(&log_root_tree->log_writer_wait);
+ }
+
+ if (ret) {
+ if (ret != -ENOSPC) {
+ btrfs_abort_transaction(trans, root, ret);
+ mutex_unlock(&log_root_tree->log_mutex);
+ goto out;
+ }
+ root->fs_info->last_trans_log_full_commit = trans->transid;
+ btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
+ mutex_unlock(&log_root_tree->log_mutex);
+ ret = -EAGAIN;
+ goto out;
+ }
+
+ index2 = log_root_tree->log_transid % 2;
+ if (atomic_read(&log_root_tree->log_commit[index2])) {
+ btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
+ wait_log_commit(trans, log_root_tree,
+ log_root_tree->log_transid);
+ mutex_unlock(&log_root_tree->log_mutex);
+ ret = 0;
+ goto out;
+ }
+ atomic_set(&log_root_tree->log_commit[index2], 1);
+
+ if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
+ wait_log_commit(trans, log_root_tree,
+ log_root_tree->log_transid - 1);
+ }
+
+ wait_for_writer(trans, log_root_tree);
+
+ /*
+ * now that we've moved on to the tree of log tree roots,
+ * check the full commit flag again
+ */
+ if (root->fs_info->last_trans_log_full_commit == trans->transid) {
+ btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
+ mutex_unlock(&log_root_tree->log_mutex);
+ ret = -EAGAIN;
+ goto out_wake_log_root;
+ }
+
+ ret = btrfs_write_and_wait_marked_extents(log_root_tree,
+ &log_root_tree->dirty_log_pages,
+ EXTENT_DIRTY | EXTENT_NEW);
+ if (ret) {
+ btrfs_abort_transaction(trans, root, ret);
+ mutex_unlock(&log_root_tree->log_mutex);
+ goto out_wake_log_root;
+ }
+ btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
+
+ btrfs_set_super_log_root(root->fs_info->super_for_commit,
+ log_root_tree->node->start);
+ btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
+ btrfs_header_level(log_root_tree->node));
+
+ log_root_tree->log_batch = 0;
+ log_root_tree->log_transid++;
+ smp_mb();
+
+ mutex_unlock(&log_root_tree->log_mutex);
+
+ /*
+ * nobody else is going to jump in and write the the ctree
+ * super here because the log_commit atomic below is protecting
+ * us. We must be called with a transaction handle pinning
+ * the running transaction open, so a full commit can't hop
+ * in and cause problems either.
+ */
+ btrfs_scrub_pause_super(root);
+ write_ctree_super(trans, root->fs_info->tree_root, 1);
+ btrfs_scrub_continue_super(root);
+ ret = 0;
+
+ mutex_lock(&root->log_mutex);
+ if (root->last_log_commit < log_transid)
+ root->last_log_commit = log_transid;
+ mutex_unlock(&root->log_mutex);
+
+out_wake_log_root:
+ atomic_set(&log_root_tree->log_commit[index2], 0);
+ smp_mb();
+ if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
+ wake_up(&log_root_tree->log_commit_wait[index2]);
+out:
+ atomic_set(&root->log_commit[index1], 0);
+ smp_mb();
+ if (waitqueue_active(&root->log_commit_wait[index1]))
+ wake_up(&root->log_commit_wait[index1]);
+ return ret;
+}
+
+static void free_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *log)
+{
+ int ret;
+ u64 start;
+ u64 end;
+ struct walk_control wc = {
+ .free = 1,
+ .process_func = process_one_buffer
+ };
+
+ ret = walk_log_tree(trans, log, &wc);
+ BUG_ON(ret);
+
+ while (1) {
+ ret = find_first_extent_bit(&log->dirty_log_pages,
+ 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
+ if (ret)
+ break;
+
+ clear_extent_bits(&log->dirty_log_pages, start, end,
+ EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
+ }
+
+ free_extent_buffer(log->node);
+ kfree(log);
+}
+
+/*
+ * free all the extents used by the tree log. This should be called
+ * at commit time of the full transaction
+ */
+int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
+{
+ if (root->log_root) {
+ free_log_tree(trans, root->log_root);
+ root->log_root = NULL;
+ }
+ return 0;
+}
+
+int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info)
+{
+ if (fs_info->log_root_tree) {
+ free_log_tree(trans, fs_info->log_root_tree);
+ fs_info->log_root_tree = NULL;
+ }
+ return 0;
+}
+
+/*
+ * If both a file and directory are logged, and unlinks or renames are
+ * mixed in, we have a few interesting corners:
+ *
+ * create file X in dir Y
+ * link file X to X.link in dir Y
+ * fsync file X
+ * unlink file X but leave X.link
+ * fsync dir Y
+ *
+ * After a crash we would expect only X.link to exist. But file X
+ * didn't get fsync'd again so the log has back refs for X and X.link.
+ *
+ * We solve this by removing directory entries and inode backrefs from the
+ * log when a file that was logged in the current transaction is
+ * unlinked. Any later fsync will include the updated log entries, and
+ * we'll be able to reconstruct the proper directory items from backrefs.
+ *
+ * This optimizations allows us to avoid relogging the entire inode
+ * or the entire directory.
+ */
+int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ struct inode *dir, u64 index)
+{
+ struct btrfs_root *log;
+ struct btrfs_dir_item *di;
+ struct btrfs_path *path;
+ int ret;
+ int err = 0;
+ int bytes_del = 0;
+ u64 dir_ino = btrfs_ino(dir);
+
+ if (BTRFS_I(dir)->logged_trans < trans->transid)
+ return 0;
+
+ ret = join_running_log_trans(root);
+ if (ret)
+ return 0;
+
+ mutex_lock(&BTRFS_I(dir)->log_mutex);
+
+ log = root->log_root;
+ path = btrfs_alloc_path();
+ if (!path) {
+ err = -ENOMEM;
+ goto out_unlock;
+ }
+
+ di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
+ name, name_len, -1);
+ if (IS_ERR(di)) {
+ err = PTR_ERR(di);
+ goto fail;
+ }
+ if (di) {
+ ret = btrfs_delete_one_dir_name(trans, log, path, di);
+ bytes_del += name_len;
+ BUG_ON(ret);
+ }
+ btrfs_release_path(path);
+ di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
+ index, name, name_len, -1);
+ if (IS_ERR(di)) {
+ err = PTR_ERR(di);
+ goto fail;
+ }
+ if (di) {
+ ret = btrfs_delete_one_dir_name(trans, log, path, di);
+ bytes_del += name_len;
+ BUG_ON(ret);
+ }
+
+ /* update the directory size in the log to reflect the names
+ * we have removed
+ */
+ if (bytes_del) {
+ struct btrfs_key key;
+
+ key.objectid = dir_ino;
+ key.offset = 0;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ btrfs_release_path(path);
+
+ ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
+ if (ret < 0) {
+ err = ret;
+ goto fail;
+ }
+ if (ret == 0) {
+ struct btrfs_inode_item *item;
+ u64 i_size;
+
+ item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_inode_item);
+ i_size = btrfs_inode_size(path->nodes[0], item);
+ if (i_size > bytes_del)
+ i_size -= bytes_del;
+ else
+ i_size = 0;
+ btrfs_set_inode_size(path->nodes[0], item, i_size);
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+ } else
+ ret = 0;
+ btrfs_release_path(path);
+ }
+fail:
+ btrfs_free_path(path);
+out_unlock:
+ mutex_unlock(&BTRFS_I(dir)->log_mutex);
+ if (ret == -ENOSPC) {
+ root->fs_info->last_trans_log_full_commit = trans->transid;
+ ret = 0;
+ } else if (ret < 0)
+ btrfs_abort_transaction(trans, root, ret);
+
+ btrfs_end_log_trans(root);
+
+ return err;
+}
+
+/* see comments for btrfs_del_dir_entries_in_log */
+int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ struct inode *inode, u64 dirid)
+{
+ struct btrfs_root *log;
+ u64 index;
+ int ret;
+
+ if (BTRFS_I(inode)->logged_trans < trans->transid)
+ return 0;
+
+ ret = join_running_log_trans(root);
+ if (ret)
+ return 0;
+ log = root->log_root;
+ mutex_lock(&BTRFS_I(inode)->log_mutex);
+
+ ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
+ dirid, &index);
+ mutex_unlock(&BTRFS_I(inode)->log_mutex);
+ if (ret == -ENOSPC) {
+ root->fs_info->last_trans_log_full_commit = trans->transid;
+ ret = 0;
+ } else if (ret < 0 && ret != -ENOENT)
+ btrfs_abort_transaction(trans, root, ret);
+ btrfs_end_log_trans(root);
+
+ return ret;
+}
+
+/*
+ * creates a range item in the log for 'dirid'. first_offset and
+ * last_offset tell us which parts of the key space the log should
+ * be considered authoritative for.
+ */
+static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
+ struct btrfs_root *log,
+ struct btrfs_path *path,
+ int key_type, u64 dirid,
+ u64 first_offset, u64 last_offset)
+{
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_dir_log_item *item;
+
+ key.objectid = dirid;
+ key.offset = first_offset;
+ if (key_type == BTRFS_DIR_ITEM_KEY)
+ key.type = BTRFS_DIR_LOG_ITEM_KEY;
+ else
+ key.type = BTRFS_DIR_LOG_INDEX_KEY;
+ ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
+ if (ret)
+ return ret;
+
+ item = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_dir_log_item);
+ btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
+ btrfs_mark_buffer_dirty(path->nodes[0]);
+ btrfs_release_path(path);
+ return 0;
+}
+
+/*
+ * log all the items included in the current transaction for a given
+ * directory. This also creates the range items in the log tree required
+ * to replay anything deleted before the fsync
+ */
+static noinline int log_dir_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode,
+ struct btrfs_path *path,
+ struct btrfs_path *dst_path, int key_type,
+ u64 min_offset, u64 *last_offset_ret)
+{
+ struct btrfs_key min_key;
+ struct btrfs_key max_key;
+ struct btrfs_root *log = root->log_root;
+ struct extent_buffer *src;
+ int err = 0;
+ int ret;
+ int i;
+ int nritems;
+ u64 first_offset = min_offset;
+ u64 last_offset = (u64)-1;
+ u64 ino = btrfs_ino(inode);
+
+ log = root->log_root;
+ max_key.objectid = ino;
+ max_key.offset = (u64)-1;
+ max_key.type = key_type;
+
+ min_key.objectid = ino;
+ min_key.type = key_type;
+ min_key.offset = min_offset;
+
+ path->keep_locks = 1;
+
+ ret = btrfs_search_forward(root, &min_key, &max_key,
+ path, 0, trans->transid);
+
+ /*
+ * we didn't find anything from this transaction, see if there
+ * is anything at all
+ */
+ if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
+ min_key.objectid = ino;
+ min_key.type = key_type;
+ min_key.offset = (u64)-1;
+ btrfs_release_path(path);
+ ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
+ if (ret < 0) {
+ btrfs_release_path(path);
+ return ret;
+ }
+ ret = btrfs_previous_item(root, path, ino, key_type);
+
+ /* if ret == 0 there are items for this type,
+ * create a range to tell us the last key of this type.
+ * otherwise, there are no items in this directory after
+ * *min_offset, and we create a range to indicate that.
+ */
+ if (ret == 0) {
+ struct btrfs_key tmp;
+ btrfs_item_key_to_cpu(path->nodes[0], &tmp,
+ path->slots[0]);
+ if (key_type == tmp.type)
+ first_offset = max(min_offset, tmp.offset) + 1;
+ }
+ goto done;
+ }
+
+ /* go backward to find any previous key */
+ ret = btrfs_previous_item(root, path, ino, key_type);
+ if (ret == 0) {
+ struct btrfs_key tmp;
+ btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
+ if (key_type == tmp.type) {
+ first_offset = tmp.offset;
+ ret = overwrite_item(trans, log, dst_path,
+ path->nodes[0], path->slots[0],
+ &tmp);
+ if (ret) {
+ err = ret;
+ goto done;
+ }
+ }
+ }
+ btrfs_release_path(path);
+
+ /* find the first key from this transaction again */
+ ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
+ if (ret != 0) {
+ WARN_ON(1);
+ goto done;
+ }
+
+ /*
+ * we have a block from this transaction, log every item in it
+ * from our directory
+ */
+ while (1) {
+ struct btrfs_key tmp;
+ src = path->nodes[0];
+ nritems = btrfs_header_nritems(src);
+ for (i = path->slots[0]; i < nritems; i++) {
+ btrfs_item_key_to_cpu(src, &min_key, i);
+
+ if (min_key.objectid != ino || min_key.type != key_type)
+ goto done;
+ ret = overwrite_item(trans, log, dst_path, src, i,
+ &min_key);
+ if (ret) {
+ err = ret;
+ goto done;
+ }
+ }
+ path->slots[0] = nritems;
+
+ /*
+ * look ahead to the next item and see if it is also
+ * from this directory and from this transaction
+ */
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 1) {
+ last_offset = (u64)-1;
+ goto done;
+ }
+ btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
+ if (tmp.objectid != ino || tmp.type != key_type) {
+ last_offset = (u64)-1;
+ goto done;
+ }
+ if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
+ ret = overwrite_item(trans, log, dst_path,
+ path->nodes[0], path->slots[0],
+ &tmp);
+ if (ret)
+ err = ret;
+ else
+ last_offset = tmp.offset;
+ goto done;
+ }
+ }
+done:
+ btrfs_release_path(path);
+ btrfs_release_path(dst_path);
+
+ if (err == 0) {
+ *last_offset_ret = last_offset;
+ /*
+ * insert the log range keys to indicate where the log
+ * is valid
+ */
+ ret = insert_dir_log_key(trans, log, path, key_type,
+ ino, first_offset, last_offset);
+ if (ret)
+ err = ret;
+ }
+ return err;
+}
+
+/*
+ * logging directories is very similar to logging inodes, We find all the items
+ * from the current transaction and write them to the log.
+ *
+ * The recovery code scans the directory in the subvolume, and if it finds a
+ * key in the range logged that is not present in the log tree, then it means
+ * that dir entry was unlinked during the transaction.
+ *
+ * In order for that scan to work, we must include one key smaller than
+ * the smallest logged by this transaction and one key larger than the largest
+ * key logged by this transaction.
+ */
+static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode,
+ struct btrfs_path *path,
+ struct btrfs_path *dst_path)
+{
+ u64 min_key;
+ u64 max_key;
+ int ret;
+ int key_type = BTRFS_DIR_ITEM_KEY;
+
+again:
+ min_key = 0;
+ max_key = 0;
+ while (1) {
+ ret = log_dir_items(trans, root, inode, path,
+ dst_path, key_type, min_key,
+ &max_key);
+ if (ret)
+ return ret;
+ if (max_key == (u64)-1)
+ break;
+ min_key = max_key + 1;
+ }
+
+ if (key_type == BTRFS_DIR_ITEM_KEY) {
+ key_type = BTRFS_DIR_INDEX_KEY;
+ goto again;
+ }
+ return 0;
+}
+
+/*
+ * a helper function to drop items from the log before we relog an
+ * inode. max_key_type indicates the highest item type to remove.
+ * This cannot be run for file data extents because it does not
+ * free the extents they point to.
+ */
+static int drop_objectid_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *log,
+ struct btrfs_path *path,
+ u64 objectid, int max_key_type)
+{
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+
+ key.objectid = objectid;
+ key.type = max_key_type;
+ key.offset = (u64)-1;
+
+ while (1) {
+ ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
+ BUG_ON(ret == 0);
+ if (ret < 0)
+ break;
+
+ if (path->slots[0] == 0)
+ break;
+
+ path->slots[0]--;
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+
+ if (found_key.objectid != objectid)
+ break;
+
+ ret = btrfs_del_item(trans, log, path);
+ if (ret)
+ break;
+ btrfs_release_path(path);
+ }
+ btrfs_release_path(path);
+ return ret;
+}
+
+static noinline int copy_items(struct btrfs_trans_handle *trans,
+ struct btrfs_root *log,
+ struct btrfs_path *dst_path,
+ struct extent_buffer *src,
+ int start_slot, int nr, int inode_only)
+{
+ unsigned long src_offset;
+ unsigned long dst_offset;
+ struct btrfs_file_extent_item *extent;
+ struct btrfs_inode_item *inode_item;
+ int ret;
+ struct btrfs_key *ins_keys;
+ u32 *ins_sizes;
+ char *ins_data;
+ int i;
+ struct list_head ordered_sums;
+
+ INIT_LIST_HEAD(&ordered_sums);
+
+ ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
+ nr * sizeof(u32), GFP_NOFS);
+ if (!ins_data)
+ return -ENOMEM;
+
+ ins_sizes = (u32 *)ins_data;
+ ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
+
+ for (i = 0; i < nr; i++) {
+ ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
+ btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
+ }
+ ret = btrfs_insert_empty_items(trans, log, dst_path,
+ ins_keys, ins_sizes, nr);
+ if (ret) {
+ kfree(ins_data);
+ return ret;
+ }
+
+ for (i = 0; i < nr; i++, dst_path->slots[0]++) {
+ dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
+ dst_path->slots[0]);
+
+ src_offset = btrfs_item_ptr_offset(src, start_slot + i);
+
+ copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
+ src_offset, ins_sizes[i]);
+
+ if (inode_only == LOG_INODE_EXISTS &&
+ ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
+ inode_item = btrfs_item_ptr(dst_path->nodes[0],
+ dst_path->slots[0],
+ struct btrfs_inode_item);
+ btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
+
+ /* set the generation to zero so the recover code
+ * can tell the difference between an logging
+ * just to say 'this inode exists' and a logging
+ * to say 'update this inode with these values'
+ */
+ btrfs_set_inode_generation(dst_path->nodes[0],
+ inode_item, 0);
+ }
+ /* take a reference on file data extents so that truncates
+ * or deletes of this inode don't have to relog the inode
+ * again
+ */
+ if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
+ int found_type;
+ extent = btrfs_item_ptr(src, start_slot + i,
+ struct btrfs_file_extent_item);
+
+ if (btrfs_file_extent_generation(src, extent) < trans->transid)
+ continue;
+
+ found_type = btrfs_file_extent_type(src, extent);
+ if (found_type == BTRFS_FILE_EXTENT_REG ||
+ found_type == BTRFS_FILE_EXTENT_PREALLOC) {
+ u64 ds, dl, cs, cl;
+ ds = btrfs_file_extent_disk_bytenr(src,
+ extent);
+ /* ds == 0 is a hole */
+ if (ds == 0)
+ continue;
+
+ dl = btrfs_file_extent_disk_num_bytes(src,
+ extent);
+ cs = btrfs_file_extent_offset(src, extent);
+ cl = btrfs_file_extent_num_bytes(src,
+ extent);
+ if (btrfs_file_extent_compression(src,
+ extent)) {
+ cs = 0;
+ cl = dl;
+ }
+
+ ret = btrfs_lookup_csums_range(
+ log->fs_info->csum_root,
+ ds + cs, ds + cs + cl - 1,
+ &ordered_sums, 0);
+ BUG_ON(ret);
+ }
+ }
+ }
+
+ btrfs_mark_buffer_dirty(dst_path->nodes[0]);
+ btrfs_release_path(dst_path);
+ kfree(ins_data);
+
+ /*
+ * we have to do this after the loop above to avoid changing the
+ * log tree while trying to change the log tree.
+ */
+ ret = 0;
+ while (!list_empty(&ordered_sums)) {
+ struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
+ struct btrfs_ordered_sum,
+ list);
+ if (!ret)
+ ret = btrfs_csum_file_blocks(trans, log, sums);
+ list_del(&sums->list);
+ kfree(sums);
+ }
+ return ret;
+}
+
+/* log a single inode in the tree log.
+ * At least one parent directory for this inode must exist in the tree
+ * or be logged already.
+ *
+ * Any items from this inode changed by the current transaction are copied
+ * to the log tree. An extra reference is taken on any extents in this
+ * file, allowing us to avoid a whole pile of corner cases around logging
+ * blocks that have been removed from the tree.
+ *
+ * See LOG_INODE_ALL and related defines for a description of what inode_only
+ * does.
+ *
+ * This handles both files and directories.
+ */
+static int btrfs_log_inode(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode,
+ int inode_only)
+{
+ struct btrfs_path *path;
+ struct btrfs_path *dst_path;
+ struct btrfs_key min_key;
+ struct btrfs_key max_key;
+ struct btrfs_root *log = root->log_root;
+ struct extent_buffer *src = NULL;
+ int err = 0;
+ int ret;
+ int nritems;
+ int ins_start_slot = 0;
+ int ins_nr;
+ u64 ino = btrfs_ino(inode);
+
+ log = root->log_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ dst_path = btrfs_alloc_path();
+ if (!dst_path) {
+ btrfs_free_path(path);
+ return -ENOMEM;
+ }
+
+ min_key.objectid = ino;
+ min_key.type = BTRFS_INODE_ITEM_KEY;
+ min_key.offset = 0;
+
+ max_key.objectid = ino;
+
+ /* today the code can only do partial logging of directories */
+ if (!S_ISDIR(inode->i_mode))
+ inode_only = LOG_INODE_ALL;
+
+ if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
+ max_key.type = BTRFS_XATTR_ITEM_KEY;
+ else
+ max_key.type = (u8)-1;
+ max_key.offset = (u64)-1;
+
+ ret = btrfs_commit_inode_delayed_items(trans, inode);
+ if (ret) {
+ btrfs_free_path(path);
+ btrfs_free_path(dst_path);
+ return ret;
+ }
+
+ mutex_lock(&BTRFS_I(inode)->log_mutex);
+
+ /*
+ * a brute force approach to making sure we get the most uptodate
+ * copies of everything.
+ */
+ if (S_ISDIR(inode->i_mode)) {
+ int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
+
+ if (inode_only == LOG_INODE_EXISTS)
+ max_key_type = BTRFS_XATTR_ITEM_KEY;
+ ret = drop_objectid_items(trans, log, path, ino, max_key_type);
+ } else {
+ ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
+ }
+ if (ret) {
+ err = ret;
+ goto out_unlock;
+ }
+ path->keep_locks = 1;
+
+ while (1) {
+ ins_nr = 0;
+ ret = btrfs_search_forward(root, &min_key, &max_key,
+ path, 0, trans->transid);
+ if (ret != 0)
+ break;
+again:
+ /* note, ins_nr might be > 0 here, cleanup outside the loop */
+ if (min_key.objectid != ino)
+ break;
+ if (min_key.type > max_key.type)
+ break;
+
+ src = path->nodes[0];
+ if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
+ ins_nr++;
+ goto next_slot;
+ } else if (!ins_nr) {
+ ins_start_slot = path->slots[0];
+ ins_nr = 1;
+ goto next_slot;
+ }
+
+ ret = copy_items(trans, log, dst_path, src, ins_start_slot,
+ ins_nr, inode_only);
+ if (ret) {
+ err = ret;
+ goto out_unlock;
+ }
+ ins_nr = 1;
+ ins_start_slot = path->slots[0];
+next_slot:
+
+ nritems = btrfs_header_nritems(path->nodes[0]);
+ path->slots[0]++;
+ if (path->slots[0] < nritems) {
+ btrfs_item_key_to_cpu(path->nodes[0], &min_key,
+ path->slots[0]);
+ goto again;
+ }
+ if (ins_nr) {
+ ret = copy_items(trans, log, dst_path, src,
+ ins_start_slot,
+ ins_nr, inode_only);
+ if (ret) {
+ err = ret;
+ goto out_unlock;
+ }
+ ins_nr = 0;
+ }
+ btrfs_release_path(path);
+
+ if (min_key.offset < (u64)-1)
+ min_key.offset++;
+ else if (min_key.type < (u8)-1)
+ min_key.type++;
+ else if (min_key.objectid < (u64)-1)
+ min_key.objectid++;
+ else
+ break;
+ }
+ if (ins_nr) {
+ ret = copy_items(trans, log, dst_path, src,
+ ins_start_slot,
+ ins_nr, inode_only);
+ if (ret) {
+ err = ret;
+ goto out_unlock;
+ }
+ ins_nr = 0;
+ }
+ WARN_ON(ins_nr);
+ if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
+ btrfs_release_path(path);
+ btrfs_release_path(dst_path);
+ ret = log_directory_changes(trans, root, inode, path, dst_path);
+ if (ret) {
+ err = ret;
+ goto out_unlock;
+ }
+ }
+ BTRFS_I(inode)->logged_trans = trans->transid;
+out_unlock:
+ mutex_unlock(&BTRFS_I(inode)->log_mutex);
+
+ btrfs_free_path(path);
+ btrfs_free_path(dst_path);
+ return err;
+}
+
+/*
+ * follow the dentry parent pointers up the chain and see if any
+ * of the directories in it require a full commit before they can
+ * be logged. Returns zero if nothing special needs to be done or 1 if
+ * a full commit is required.
+ */
+static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
+ struct inode *inode,
+ struct dentry *parent,
+ struct super_block *sb,
+ u64 last_committed)
+{
+ int ret = 0;
+ struct btrfs_root *root;
+ struct dentry *old_parent = NULL;
+
+ /*
+ * for regular files, if its inode is already on disk, we don't
+ * have to worry about the parents at all. This is because
+ * we can use the last_unlink_trans field to record renames
+ * and other fun in this file.
+ */
+ if (S_ISREG(inode->i_mode) &&
+ BTRFS_I(inode)->generation <= last_committed &&
+ BTRFS_I(inode)->last_unlink_trans <= last_committed)
+ goto out;
+
+ if (!S_ISDIR(inode->i_mode)) {
+ if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
+ goto out;
+ inode = parent->d_inode;
+ }
+
+ while (1) {
+ BTRFS_I(inode)->logged_trans = trans->transid;
+ smp_mb();
+
+ if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
+ root = BTRFS_I(inode)->root;
+
+ /*
+ * make sure any commits to the log are forced
+ * to be full commits
+ */
+ root->fs_info->last_trans_log_full_commit =
+ trans->transid;
+ ret = 1;
+ break;
+ }
+
+ if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
+ break;
+
+ if (IS_ROOT(parent))
+ break;
+
+ parent = dget_parent(parent);
+ dput(old_parent);
+ old_parent = parent;
+ inode = parent->d_inode;
+
+ }
+ dput(old_parent);
+out:
+ return ret;
+}
+
+static int inode_in_log(struct btrfs_trans_handle *trans,
+ struct inode *inode)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int ret = 0;
+
+ mutex_lock(&root->log_mutex);
+ if (BTRFS_I(inode)->logged_trans == trans->transid &&
+ BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
+ ret = 1;
+ mutex_unlock(&root->log_mutex);
+ return ret;
+}
+
+
+/*
+ * helper function around btrfs_log_inode to make sure newly created
+ * parent directories also end up in the log. A minimal inode and backref
+ * only logging is done of any parent directories that are older than
+ * the last committed transaction
+ */
+int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode,
+ struct dentry *parent, int exists_only)
+{
+ int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
+ struct super_block *sb;
+ struct dentry *old_parent = NULL;
+ int ret = 0;
+ u64 last_committed = root->fs_info->last_trans_committed;
+
+ sb = inode->i_sb;
+
+ if (btrfs_test_opt(root, NOTREELOG)) {
+ ret = 1;
+ goto end_no_trans;
+ }
+
+ if (root->fs_info->last_trans_log_full_commit >
+ root->fs_info->last_trans_committed) {
+ ret = 1;
+ goto end_no_trans;
+ }
+
+ if (root != BTRFS_I(inode)->root ||
+ btrfs_root_refs(&root->root_item) == 0) {
+ ret = 1;
+ goto end_no_trans;
+ }
+
+ ret = check_parent_dirs_for_sync(trans, inode, parent,
+ sb, last_committed);
+ if (ret)
+ goto end_no_trans;
+
+ if (inode_in_log(trans, inode)) {
+ ret = BTRFS_NO_LOG_SYNC;
+ goto end_no_trans;
+ }
+
+ ret = start_log_trans(trans, root);
+ if (ret)
+ goto end_trans;
+
+ ret = btrfs_log_inode(trans, root, inode, inode_only);
+ if (ret)
+ goto end_trans;
+
+ /*
+ * for regular files, if its inode is already on disk, we don't
+ * have to worry about the parents at all. This is because
+ * we can use the last_unlink_trans field to record renames
+ * and other fun in this file.
+ */
+ if (S_ISREG(inode->i_mode) &&
+ BTRFS_I(inode)->generation <= last_committed &&
+ BTRFS_I(inode)->last_unlink_trans <= last_committed) {
+ ret = 0;
+ goto end_trans;
+ }
+
+ inode_only = LOG_INODE_EXISTS;
+ while (1) {
+ if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
+ break;
+
+ inode = parent->d_inode;
+ if (root != BTRFS_I(inode)->root)
+ break;
+
+ if (BTRFS_I(inode)->generation >
+ root->fs_info->last_trans_committed) {
+ ret = btrfs_log_inode(trans, root, inode, inode_only);
+ if (ret)
+ goto end_trans;
+ }
+ if (IS_ROOT(parent))
+ break;
+
+ parent = dget_parent(parent);
+ dput(old_parent);
+ old_parent = parent;
+ }
+ ret = 0;
+end_trans:
+ dput(old_parent);
+ if (ret < 0) {
+ BUG_ON(ret != -ENOSPC);
+ root->fs_info->last_trans_log_full_commit = trans->transid;
+ ret = 1;
+ }
+ btrfs_end_log_trans(root);
+end_no_trans:
+ return ret;
+}
+
+/*
+ * it is not safe to log dentry if the chunk root has added new
+ * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
+ * If this returns 1, you must commit the transaction to safely get your
+ * data on disk.
+ */
+int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct dentry *dentry)
+{
+ struct dentry *parent = dget_parent(dentry);
+ int ret;
+
+ ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
+ dput(parent);
+
+ return ret;
+}
+
+/*
+ * should be called during mount to recover any replay any log trees
+ * from the FS
+ */
+int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_key tmp_key;
+ struct btrfs_root *log;
+ struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
+ struct walk_control wc = {
+ .process_func = process_one_buffer,
+ .stage = 0,
+ };
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ fs_info->log_root_recovering = 1;
+
+ trans = btrfs_start_transaction(fs_info->tree_root, 0);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto error;
+ }
+
+ wc.trans = trans;
+ wc.pin = 1;
+
+ ret = walk_log_tree(trans, log_root_tree, &wc);
+ if (ret) {
+ btrfs_error(fs_info, ret, "Failed to pin buffers while "
+ "recovering log root tree.");
+ goto error;
+ }
+
+again:
+ key.objectid = BTRFS_TREE_LOG_OBJECTID;
+ key.offset = (u64)-1;
+ btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
+
+ if (ret < 0) {
+ btrfs_error(fs_info, ret,
+ "Couldn't find tree log root.");
+ goto error;
+ }
+ if (ret > 0) {
+ if (path->slots[0] == 0)
+ break;
+ path->slots[0]--;
+ }
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+ btrfs_release_path(path);
+ if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
+ break;
+
+ log = btrfs_read_fs_root_no_radix(log_root_tree,
+ &found_key);
+ if (IS_ERR(log)) {
+ ret = PTR_ERR(log);
+ btrfs_error(fs_info, ret,
+ "Couldn't read tree log root.");
+ goto error;
+ }
+
+ tmp_key.objectid = found_key.offset;
+ tmp_key.type = BTRFS_ROOT_ITEM_KEY;
+ tmp_key.offset = (u64)-1;
+
+ wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
+ if (IS_ERR(wc.replay_dest)) {
+ ret = PTR_ERR(wc.replay_dest);
+ btrfs_error(fs_info, ret, "Couldn't read target root "
+ "for tree log recovery.");
+ goto error;
+ }
+
+ wc.replay_dest->log_root = log;
+ btrfs_record_root_in_trans(trans, wc.replay_dest);
+ ret = walk_log_tree(trans, log, &wc);
+ BUG_ON(ret);
+
+ if (wc.stage == LOG_WALK_REPLAY_ALL) {
+ ret = fixup_inode_link_counts(trans, wc.replay_dest,
+ path);
+ BUG_ON(ret);
+ }
+
+ key.offset = found_key.offset - 1;
+ wc.replay_dest->log_root = NULL;
+ free_extent_buffer(log->node);
+ free_extent_buffer(log->commit_root);
+ kfree(log);
+
+ if (found_key.offset == 0)
+ break;
+ }
+ btrfs_release_path(path);
+
+ /* step one is to pin it all, step two is to replay just inodes */
+ if (wc.pin) {
+ wc.pin = 0;
+ wc.process_func = replay_one_buffer;
+ wc.stage = LOG_WALK_REPLAY_INODES;
+ goto again;
+ }
+ /* step three is to replay everything */
+ if (wc.stage < LOG_WALK_REPLAY_ALL) {
+ wc.stage++;
+ goto again;
+ }
+
+ btrfs_free_path(path);
+
+ free_extent_buffer(log_root_tree->node);
+ log_root_tree->log_root = NULL;
+ fs_info->log_root_recovering = 0;
+
+ /* step 4: commit the transaction, which also unpins the blocks */
+ btrfs_commit_transaction(trans, fs_info->tree_root);
+
+ kfree(log_root_tree);
+ return 0;
+
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * there are some corner cases where we want to force a full
+ * commit instead of allowing a directory to be logged.
+ *
+ * They revolve around files there were unlinked from the directory, and
+ * this function updates the parent directory so that a full commit is
+ * properly done if it is fsync'd later after the unlinks are done.
+ */
+void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
+ struct inode *dir, struct inode *inode,
+ int for_rename)
+{
+ /*
+ * when we're logging a file, if it hasn't been renamed
+ * or unlinked, and its inode is fully committed on disk,
+ * we don't have to worry about walking up the directory chain
+ * to log its parents.
+ *
+ * So, we use the last_unlink_trans field to put this transid
+ * into the file. When the file is logged we check it and
+ * don't log the parents if the file is fully on disk.
+ */
+ if (S_ISREG(inode->i_mode))
+ BTRFS_I(inode)->last_unlink_trans = trans->transid;
+
+ /*
+ * if this directory was already logged any new
+ * names for this file/dir will get recorded
+ */
+ smp_mb();
+ if (BTRFS_I(dir)->logged_trans == trans->transid)
+ return;
+
+ /*
+ * if the inode we're about to unlink was logged,
+ * the log will be properly updated for any new names
+ */
+ if (BTRFS_I(inode)->logged_trans == trans->transid)
+ return;
+
+ /*
+ * when renaming files across directories, if the directory
+ * there we're unlinking from gets fsync'd later on, there's
+ * no way to find the destination directory later and fsync it
+ * properly. So, we have to be conservative and force commits
+ * so the new name gets discovered.
+ */
+ if (for_rename)
+ goto record;
+
+ /* we can safely do the unlink without any special recording */
+ return;
+
+record:
+ BTRFS_I(dir)->last_unlink_trans = trans->transid;
+}
+
+/*
+ * Call this after adding a new name for a file and it will properly
+ * update the log to reflect the new name.
+ *
+ * It will return zero if all goes well, and it will return 1 if a
+ * full transaction commit is required.
+ */
+int btrfs_log_new_name(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *old_dir,
+ struct dentry *parent)
+{
+ struct btrfs_root * root = BTRFS_I(inode)->root;
+
+ /*
+ * this will force the logging code to walk the dentry chain
+ * up for the file
+ */
+ if (S_ISREG(inode->i_mode))
+ BTRFS_I(inode)->last_unlink_trans = trans->transid;
+
+ /*
+ * if this inode hasn't been logged and directory we're renaming it
+ * from hasn't been logged, we don't need to log it
+ */
+ if (BTRFS_I(inode)->logged_trans <=
+ root->fs_info->last_trans_committed &&
+ (!old_dir || BTRFS_I(old_dir)->logged_trans <=
+ root->fs_info->last_trans_committed))
+ return 0;
+
+ return btrfs_log_inode_parent(trans, root, inode, parent, 1);
+}
+
diff --git a/fs/btrfs/tree-log.h b/fs/btrfs/tree-log.h
new file mode 100644
index 00000000..862ac813
--- /dev/null
+++ b/fs/btrfs/tree-log.h
@@ -0,0 +1,52 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __TREE_LOG_
+#define __TREE_LOG_
+
+/* return value for btrfs_log_dentry_safe that means we don't need to log it at all */
+#define BTRFS_NO_LOG_SYNC 256
+
+int btrfs_sync_log(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root);
+int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root);
+int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info);
+int btrfs_recover_log_trees(struct btrfs_root *tree_root);
+int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct dentry *dentry);
+int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ struct inode *dir, u64 index);
+int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ const char *name, int name_len,
+ struct inode *inode, u64 dirid);
+void btrfs_end_log_trans(struct btrfs_root *root);
+int btrfs_pin_log_trans(struct btrfs_root *root);
+int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root, struct inode *inode,
+ struct dentry *parent, int exists_only);
+void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
+ struct inode *dir, struct inode *inode,
+ int for_rename);
+int btrfs_log_new_name(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *old_dir,
+ struct dentry *parent);
+#endif
diff --git a/fs/btrfs/ulist.c b/fs/btrfs/ulist.c
new file mode 100644
index 00000000..12f5147b
--- /dev/null
+++ b/fs/btrfs/ulist.c
@@ -0,0 +1,220 @@
+/*
+ * Copyright (C) 2011 STRATO AG
+ * written by Arne Jansen <sensille@gmx.net>
+ * Distributed under the GNU GPL license version 2.
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include "ulist.h"
+
+/*
+ * ulist is a generic data structure to hold a collection of unique u64
+ * values. The only operations it supports is adding to the list and
+ * enumerating it.
+ * It is possible to store an auxiliary value along with the key.
+ *
+ * The implementation is preliminary and can probably be sped up
+ * significantly. A first step would be to store the values in an rbtree
+ * as soon as ULIST_SIZE is exceeded.
+ *
+ * A sample usage for ulists is the enumeration of directed graphs without
+ * visiting a node twice. The pseudo-code could look like this:
+ *
+ * ulist = ulist_alloc();
+ * ulist_add(ulist, root);
+ * elem = NULL;
+ *
+ * while ((elem = ulist_next(ulist, elem)) {
+ * for (all child nodes n in elem)
+ * ulist_add(ulist, n);
+ * do something useful with the node;
+ * }
+ * ulist_free(ulist);
+ *
+ * This assumes the graph nodes are adressable by u64. This stems from the
+ * usage for tree enumeration in btrfs, where the logical addresses are
+ * 64 bit.
+ *
+ * It is also useful for tree enumeration which could be done elegantly
+ * recursively, but is not possible due to kernel stack limitations. The
+ * loop would be similar to the above.
+ */
+
+/**
+ * ulist_init - freshly initialize a ulist
+ * @ulist: the ulist to initialize
+ *
+ * Note: don't use this function to init an already used ulist, use
+ * ulist_reinit instead.
+ */
+void ulist_init(struct ulist *ulist)
+{
+ ulist->nnodes = 0;
+ ulist->nodes = ulist->int_nodes;
+ ulist->nodes_alloced = ULIST_SIZE;
+}
+EXPORT_SYMBOL(ulist_init);
+
+/**
+ * ulist_fini - free up additionally allocated memory for the ulist
+ * @ulist: the ulist from which to free the additional memory
+ *
+ * This is useful in cases where the base 'struct ulist' has been statically
+ * allocated.
+ */
+void ulist_fini(struct ulist *ulist)
+{
+ /*
+ * The first ULIST_SIZE elements are stored inline in struct ulist.
+ * Only if more elements are alocated they need to be freed.
+ */
+ if (ulist->nodes_alloced > ULIST_SIZE)
+ kfree(ulist->nodes);
+ ulist->nodes_alloced = 0; /* in case ulist_fini is called twice */
+}
+EXPORT_SYMBOL(ulist_fini);
+
+/**
+ * ulist_reinit - prepare a ulist for reuse
+ * @ulist: ulist to be reused
+ *
+ * Free up all additional memory allocated for the list elements and reinit
+ * the ulist.
+ */
+void ulist_reinit(struct ulist *ulist)
+{
+ ulist_fini(ulist);
+ ulist_init(ulist);
+}
+EXPORT_SYMBOL(ulist_reinit);
+
+/**
+ * ulist_alloc - dynamically allocate a ulist
+ * @gfp_mask: allocation flags to for base allocation
+ *
+ * The allocated ulist will be returned in an initialized state.
+ */
+struct ulist *ulist_alloc(unsigned long gfp_mask)
+{
+ struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
+
+ if (!ulist)
+ return NULL;
+
+ ulist_init(ulist);
+
+ return ulist;
+}
+EXPORT_SYMBOL(ulist_alloc);
+
+/**
+ * ulist_free - free dynamically allocated ulist
+ * @ulist: ulist to free
+ *
+ * It is not necessary to call ulist_fini before.
+ */
+void ulist_free(struct ulist *ulist)
+{
+ if (!ulist)
+ return;
+ ulist_fini(ulist);
+ kfree(ulist);
+}
+EXPORT_SYMBOL(ulist_free);
+
+/**
+ * ulist_add - add an element to the ulist
+ * @ulist: ulist to add the element to
+ * @val: value to add to ulist
+ * @aux: auxiliary value to store along with val
+ * @gfp_mask: flags to use for allocation
+ *
+ * Note: locking must be provided by the caller. In case of rwlocks write
+ * locking is needed
+ *
+ * Add an element to a ulist. The @val will only be added if it doesn't
+ * already exist. If it is added, the auxiliary value @aux is stored along with
+ * it. In case @val already exists in the ulist, @aux is ignored, even if
+ * it differs from the already stored value.
+ *
+ * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
+ * inserted.
+ * In case of allocation failure -ENOMEM is returned and the ulist stays
+ * unaltered.
+ */
+int ulist_add(struct ulist *ulist, u64 val, unsigned long aux,
+ unsigned long gfp_mask)
+{
+ int i;
+
+ for (i = 0; i < ulist->nnodes; ++i) {
+ if (ulist->nodes[i].val == val)
+ return 0;
+ }
+
+ if (ulist->nnodes >= ulist->nodes_alloced) {
+ u64 new_alloced = ulist->nodes_alloced + 128;
+ struct ulist_node *new_nodes;
+ void *old = NULL;
+
+ /*
+ * if nodes_alloced == ULIST_SIZE no memory has been allocated
+ * yet, so pass NULL to krealloc
+ */
+ if (ulist->nodes_alloced > ULIST_SIZE)
+ old = ulist->nodes;
+
+ new_nodes = krealloc(old, sizeof(*new_nodes) * new_alloced,
+ gfp_mask);
+ if (!new_nodes)
+ return -ENOMEM;
+
+ if (!old)
+ memcpy(new_nodes, ulist->int_nodes,
+ sizeof(ulist->int_nodes));
+
+ ulist->nodes = new_nodes;
+ ulist->nodes_alloced = new_alloced;
+ }
+ ulist->nodes[ulist->nnodes].val = val;
+ ulist->nodes[ulist->nnodes].aux = aux;
+ ++ulist->nnodes;
+
+ return 1;
+}
+EXPORT_SYMBOL(ulist_add);
+
+/**
+ * ulist_next - iterate ulist
+ * @ulist: ulist to iterate
+ * @prev: previously returned element or %NULL to start iteration
+ *
+ * Note: locking must be provided by the caller. In case of rwlocks only read
+ * locking is needed
+ *
+ * This function is used to iterate an ulist. The iteration is started with
+ * @prev = %NULL. It returns the next element from the ulist or %NULL when the
+ * end is reached. No guarantee is made with respect to the order in which
+ * the elements are returned. They might neither be returned in order of
+ * addition nor in ascending order.
+ * It is allowed to call ulist_add during an enumeration. Newly added items
+ * are guaranteed to show up in the running enumeration.
+ */
+struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_node *prev)
+{
+ int next;
+
+ if (ulist->nnodes == 0)
+ return NULL;
+
+ if (!prev)
+ return &ulist->nodes[0];
+
+ next = (prev - ulist->nodes) + 1;
+ if (next < 0 || next >= ulist->nnodes)
+ return NULL;
+
+ return &ulist->nodes[next];
+}
+EXPORT_SYMBOL(ulist_next);
diff --git a/fs/btrfs/ulist.h b/fs/btrfs/ulist.h
new file mode 100644
index 00000000..2e25dec5
--- /dev/null
+++ b/fs/btrfs/ulist.h
@@ -0,0 +1,68 @@
+/*
+ * Copyright (C) 2011 STRATO AG
+ * written by Arne Jansen <sensille@gmx.net>
+ * Distributed under the GNU GPL license version 2.
+ *
+ */
+
+#ifndef __ULIST__
+#define __ULIST__
+
+/*
+ * ulist is a generic data structure to hold a collection of unique u64
+ * values. The only operations it supports is adding to the list and
+ * enumerating it.
+ * It is possible to store an auxiliary value along with the key.
+ *
+ * The implementation is preliminary and can probably be sped up
+ * significantly. A first step would be to store the values in an rbtree
+ * as soon as ULIST_SIZE is exceeded.
+ */
+
+/*
+ * number of elements statically allocated inside struct ulist
+ */
+#define ULIST_SIZE 16
+
+/*
+ * element of the list
+ */
+struct ulist_node {
+ u64 val; /* value to store */
+ unsigned long aux; /* auxiliary value saved along with the val */
+};
+
+struct ulist {
+ /*
+ * number of elements stored in list
+ */
+ unsigned long nnodes;
+
+ /*
+ * number of nodes we already have room for
+ */
+ unsigned long nodes_alloced;
+
+ /*
+ * pointer to the array storing the elements. The first ULIST_SIZE
+ * elements are stored inline. In this case the it points to int_nodes.
+ * After exceeding ULIST_SIZE, dynamic memory is allocated.
+ */
+ struct ulist_node *nodes;
+
+ /*
+ * inline storage space for the first ULIST_SIZE entries
+ */
+ struct ulist_node int_nodes[ULIST_SIZE];
+};
+
+void ulist_init(struct ulist *ulist);
+void ulist_fini(struct ulist *ulist);
+void ulist_reinit(struct ulist *ulist);
+struct ulist *ulist_alloc(unsigned long gfp_mask);
+void ulist_free(struct ulist *ulist);
+int ulist_add(struct ulist *ulist, u64 val, unsigned long aux,
+ unsigned long gfp_mask);
+struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_node *prev);
+
+#endif
diff --git a/fs/btrfs/version.h b/fs/btrfs/version.h
new file mode 100644
index 00000000..9bf3946d
--- /dev/null
+++ b/fs/btrfs/version.h
@@ -0,0 +1,4 @@
+#ifndef __BTRFS_VERSION_H
+#define __BTRFS_VERSION_H
+#define BTRFS_BUILD_VERSION "Btrfs"
+#endif
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c
new file mode 100644
index 00000000..1411b995
--- /dev/null
+++ b/fs/btrfs/volumes.c
@@ -0,0 +1,4585 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <linux/sched.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/buffer_head.h>
+#include <linux/blkdev.h>
+#include <linux/random.h>
+#include <linux/iocontext.h>
+#include <linux/capability.h>
+#include <linux/kthread.h>
+#include <asm/div64.h>
+#include "compat.h"
+#include "ctree.h"
+#include "extent_map.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+#include "volumes.h"
+#include "async-thread.h"
+#include "check-integrity.h"
+
+static int init_first_rw_device(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_device *device);
+static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
+
+static DEFINE_MUTEX(uuid_mutex);
+static LIST_HEAD(fs_uuids);
+
+static void lock_chunks(struct btrfs_root *root)
+{
+ mutex_lock(&root->fs_info->chunk_mutex);
+}
+
+static void unlock_chunks(struct btrfs_root *root)
+{
+ mutex_unlock(&root->fs_info->chunk_mutex);
+}
+
+static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
+{
+ struct btrfs_device *device;
+ WARN_ON(fs_devices->opened);
+ while (!list_empty(&fs_devices->devices)) {
+ device = list_entry(fs_devices->devices.next,
+ struct btrfs_device, dev_list);
+ list_del(&device->dev_list);
+ kfree(device->name);
+ kfree(device);
+ }
+ kfree(fs_devices);
+}
+
+void btrfs_cleanup_fs_uuids(void)
+{
+ struct btrfs_fs_devices *fs_devices;
+
+ while (!list_empty(&fs_uuids)) {
+ fs_devices = list_entry(fs_uuids.next,
+ struct btrfs_fs_devices, list);
+ list_del(&fs_devices->list);
+ free_fs_devices(fs_devices);
+ }
+}
+
+static noinline struct btrfs_device *__find_device(struct list_head *head,
+ u64 devid, u8 *uuid)
+{
+ struct btrfs_device *dev;
+
+ list_for_each_entry(dev, head, dev_list) {
+ if (dev->devid == devid &&
+ (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
+ return dev;
+ }
+ }
+ return NULL;
+}
+
+static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
+{
+ struct btrfs_fs_devices *fs_devices;
+
+ list_for_each_entry(fs_devices, &fs_uuids, list) {
+ if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
+ return fs_devices;
+ }
+ return NULL;
+}
+
+static void requeue_list(struct btrfs_pending_bios *pending_bios,
+ struct bio *head, struct bio *tail)
+{
+
+ struct bio *old_head;
+
+ old_head = pending_bios->head;
+ pending_bios->head = head;
+ if (pending_bios->tail)
+ tail->bi_next = old_head;
+ else
+ pending_bios->tail = tail;
+}
+
+/*
+ * we try to collect pending bios for a device so we don't get a large
+ * number of procs sending bios down to the same device. This greatly
+ * improves the schedulers ability to collect and merge the bios.
+ *
+ * But, it also turns into a long list of bios to process and that is sure
+ * to eventually make the worker thread block. The solution here is to
+ * make some progress and then put this work struct back at the end of
+ * the list if the block device is congested. This way, multiple devices
+ * can make progress from a single worker thread.
+ */
+static noinline void run_scheduled_bios(struct btrfs_device *device)
+{
+ struct bio *pending;
+ struct backing_dev_info *bdi;
+ struct btrfs_fs_info *fs_info;
+ struct btrfs_pending_bios *pending_bios;
+ struct bio *tail;
+ struct bio *cur;
+ int again = 0;
+ unsigned long num_run;
+ unsigned long batch_run = 0;
+ unsigned long limit;
+ unsigned long last_waited = 0;
+ int force_reg = 0;
+ int sync_pending = 0;
+ struct blk_plug plug;
+
+ /*
+ * this function runs all the bios we've collected for
+ * a particular device. We don't want to wander off to
+ * another device without first sending all of these down.
+ * So, setup a plug here and finish it off before we return
+ */
+ blk_start_plug(&plug);
+
+ bdi = blk_get_backing_dev_info(device->bdev);
+ fs_info = device->dev_root->fs_info;
+ limit = btrfs_async_submit_limit(fs_info);
+ limit = limit * 2 / 3;
+
+loop:
+ spin_lock(&device->io_lock);
+
+loop_lock:
+ num_run = 0;
+
+ /* take all the bios off the list at once and process them
+ * later on (without the lock held). But, remember the
+ * tail and other pointers so the bios can be properly reinserted
+ * into the list if we hit congestion
+ */
+ if (!force_reg && device->pending_sync_bios.head) {
+ pending_bios = &device->pending_sync_bios;
+ force_reg = 1;
+ } else {
+ pending_bios = &device->pending_bios;
+ force_reg = 0;
+ }
+
+ pending = pending_bios->head;
+ tail = pending_bios->tail;
+ WARN_ON(pending && !tail);
+
+ /*
+ * if pending was null this time around, no bios need processing
+ * at all and we can stop. Otherwise it'll loop back up again
+ * and do an additional check so no bios are missed.
+ *
+ * device->running_pending is used to synchronize with the
+ * schedule_bio code.
+ */
+ if (device->pending_sync_bios.head == NULL &&
+ device->pending_bios.head == NULL) {
+ again = 0;
+ device->running_pending = 0;
+ } else {
+ again = 1;
+ device->running_pending = 1;
+ }
+
+ pending_bios->head = NULL;
+ pending_bios->tail = NULL;
+
+ spin_unlock(&device->io_lock);
+
+ while (pending) {
+
+ rmb();
+ /* we want to work on both lists, but do more bios on the
+ * sync list than the regular list
+ */
+ if ((num_run > 32 &&
+ pending_bios != &device->pending_sync_bios &&
+ device->pending_sync_bios.head) ||
+ (num_run > 64 && pending_bios == &device->pending_sync_bios &&
+ device->pending_bios.head)) {
+ spin_lock(&device->io_lock);
+ requeue_list(pending_bios, pending, tail);
+ goto loop_lock;
+ }
+
+ cur = pending;
+ pending = pending->bi_next;
+ cur->bi_next = NULL;
+ atomic_dec(&fs_info->nr_async_bios);
+
+ if (atomic_read(&fs_info->nr_async_bios) < limit &&
+ waitqueue_active(&fs_info->async_submit_wait))
+ wake_up(&fs_info->async_submit_wait);
+
+ BUG_ON(atomic_read(&cur->bi_cnt) == 0);
+
+ /*
+ * if we're doing the sync list, record that our
+ * plug has some sync requests on it
+ *
+ * If we're doing the regular list and there are
+ * sync requests sitting around, unplug before
+ * we add more
+ */
+ if (pending_bios == &device->pending_sync_bios) {
+ sync_pending = 1;
+ } else if (sync_pending) {
+ blk_finish_plug(&plug);
+ blk_start_plug(&plug);
+ sync_pending = 0;
+ }
+
+ btrfsic_submit_bio(cur->bi_rw, cur);
+ num_run++;
+ batch_run++;
+ if (need_resched())
+ cond_resched();
+
+ /*
+ * we made progress, there is more work to do and the bdi
+ * is now congested. Back off and let other work structs
+ * run instead
+ */
+ if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
+ fs_info->fs_devices->open_devices > 1) {
+ struct io_context *ioc;
+
+ ioc = current->io_context;
+
+ /*
+ * the main goal here is that we don't want to
+ * block if we're going to be able to submit
+ * more requests without blocking.
+ *
+ * This code does two great things, it pokes into
+ * the elevator code from a filesystem _and_
+ * it makes assumptions about how batching works.
+ */
+ if (ioc && ioc->nr_batch_requests > 0 &&
+ time_before(jiffies, ioc->last_waited + HZ/50UL) &&
+ (last_waited == 0 ||
+ ioc->last_waited == last_waited)) {
+ /*
+ * we want to go through our batch of
+ * requests and stop. So, we copy out
+ * the ioc->last_waited time and test
+ * against it before looping
+ */
+ last_waited = ioc->last_waited;
+ if (need_resched())
+ cond_resched();
+ continue;
+ }
+ spin_lock(&device->io_lock);
+ requeue_list(pending_bios, pending, tail);
+ device->running_pending = 1;
+
+ spin_unlock(&device->io_lock);
+ btrfs_requeue_work(&device->work);
+ goto done;
+ }
+ /* unplug every 64 requests just for good measure */
+ if (batch_run % 64 == 0) {
+ blk_finish_plug(&plug);
+ blk_start_plug(&plug);
+ sync_pending = 0;
+ }
+ }
+
+ cond_resched();
+ if (again)
+ goto loop;
+
+ spin_lock(&device->io_lock);
+ if (device->pending_bios.head || device->pending_sync_bios.head)
+ goto loop_lock;
+ spin_unlock(&device->io_lock);
+
+done:
+ blk_finish_plug(&plug);
+}
+
+static void pending_bios_fn(struct btrfs_work *work)
+{
+ struct btrfs_device *device;
+
+ device = container_of(work, struct btrfs_device, work);
+ run_scheduled_bios(device);
+}
+
+static noinline int device_list_add(const char *path,
+ struct btrfs_super_block *disk_super,
+ u64 devid, struct btrfs_fs_devices **fs_devices_ret)
+{
+ struct btrfs_device *device;
+ struct btrfs_fs_devices *fs_devices;
+ u64 found_transid = btrfs_super_generation(disk_super);
+ char *name;
+
+ fs_devices = find_fsid(disk_super->fsid);
+ if (!fs_devices) {
+ fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+ if (!fs_devices)
+ return -ENOMEM;
+ INIT_LIST_HEAD(&fs_devices->devices);
+ INIT_LIST_HEAD(&fs_devices->alloc_list);
+ list_add(&fs_devices->list, &fs_uuids);
+ memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
+ fs_devices->latest_devid = devid;
+ fs_devices->latest_trans = found_transid;
+ mutex_init(&fs_devices->device_list_mutex);
+ device = NULL;
+ } else {
+ device = __find_device(&fs_devices->devices, devid,
+ disk_super->dev_item.uuid);
+ }
+ if (!device) {
+ if (fs_devices->opened)
+ return -EBUSY;
+
+ device = kzalloc(sizeof(*device), GFP_NOFS);
+ if (!device) {
+ /* we can safely leave the fs_devices entry around */
+ return -ENOMEM;
+ }
+ device->devid = devid;
+ device->work.func = pending_bios_fn;
+ memcpy(device->uuid, disk_super->dev_item.uuid,
+ BTRFS_UUID_SIZE);
+ spin_lock_init(&device->io_lock);
+ device->name = kstrdup(path, GFP_NOFS);
+ if (!device->name) {
+ kfree(device);
+ return -ENOMEM;
+ }
+ INIT_LIST_HEAD(&device->dev_alloc_list);
+
+ /* init readahead state */
+ spin_lock_init(&device->reada_lock);
+ device->reada_curr_zone = NULL;
+ atomic_set(&device->reada_in_flight, 0);
+ device->reada_next = 0;
+ INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
+ INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
+
+ mutex_lock(&fs_devices->device_list_mutex);
+ list_add_rcu(&device->dev_list, &fs_devices->devices);
+ mutex_unlock(&fs_devices->device_list_mutex);
+
+ device->fs_devices = fs_devices;
+ fs_devices->num_devices++;
+ } else if (!device->name || strcmp(device->name, path)) {
+ name = kstrdup(path, GFP_NOFS);
+ if (!name)
+ return -ENOMEM;
+ kfree(device->name);
+ device->name = name;
+ if (device->missing) {
+ fs_devices->missing_devices--;
+ device->missing = 0;
+ }
+ }
+
+ if (found_transid > fs_devices->latest_trans) {
+ fs_devices->latest_devid = devid;
+ fs_devices->latest_trans = found_transid;
+ }
+ *fs_devices_ret = fs_devices;
+ return 0;
+}
+
+static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
+{
+ struct btrfs_fs_devices *fs_devices;
+ struct btrfs_device *device;
+ struct btrfs_device *orig_dev;
+
+ fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+ if (!fs_devices)
+ return ERR_PTR(-ENOMEM);
+
+ INIT_LIST_HEAD(&fs_devices->devices);
+ INIT_LIST_HEAD(&fs_devices->alloc_list);
+ INIT_LIST_HEAD(&fs_devices->list);
+ mutex_init(&fs_devices->device_list_mutex);
+ fs_devices->latest_devid = orig->latest_devid;
+ fs_devices->latest_trans = orig->latest_trans;
+ memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
+
+ /* We have held the volume lock, it is safe to get the devices. */
+ list_for_each_entry(orig_dev, &orig->devices, dev_list) {
+ device = kzalloc(sizeof(*device), GFP_NOFS);
+ if (!device)
+ goto error;
+
+ device->name = kstrdup(orig_dev->name, GFP_NOFS);
+ if (!device->name) {
+ kfree(device);
+ goto error;
+ }
+
+ device->devid = orig_dev->devid;
+ device->work.func = pending_bios_fn;
+ memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
+ spin_lock_init(&device->io_lock);
+ INIT_LIST_HEAD(&device->dev_list);
+ INIT_LIST_HEAD(&device->dev_alloc_list);
+
+ list_add(&device->dev_list, &fs_devices->devices);
+ device->fs_devices = fs_devices;
+ fs_devices->num_devices++;
+ }
+ return fs_devices;
+error:
+ free_fs_devices(fs_devices);
+ return ERR_PTR(-ENOMEM);
+}
+
+void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
+{
+ struct btrfs_device *device, *next;
+
+ struct block_device *latest_bdev = NULL;
+ u64 latest_devid = 0;
+ u64 latest_transid = 0;
+
+ mutex_lock(&uuid_mutex);
+again:
+ /* This is the initialized path, it is safe to release the devices. */
+ list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
+ if (device->in_fs_metadata) {
+ if (!latest_transid ||
+ device->generation > latest_transid) {
+ latest_devid = device->devid;
+ latest_transid = device->generation;
+ latest_bdev = device->bdev;
+ }
+ continue;
+ }
+
+ if (device->bdev) {
+ blkdev_put(device->bdev, device->mode);
+ device->bdev = NULL;
+ fs_devices->open_devices--;
+ }
+ if (device->writeable) {
+ list_del_init(&device->dev_alloc_list);
+ device->writeable = 0;
+ fs_devices->rw_devices--;
+ }
+ list_del_init(&device->dev_list);
+ fs_devices->num_devices--;
+ kfree(device->name);
+ kfree(device);
+ }
+
+ if (fs_devices->seed) {
+ fs_devices = fs_devices->seed;
+ goto again;
+ }
+
+ fs_devices->latest_bdev = latest_bdev;
+ fs_devices->latest_devid = latest_devid;
+ fs_devices->latest_trans = latest_transid;
+
+ mutex_unlock(&uuid_mutex);
+}
+
+static void __free_device(struct work_struct *work)
+{
+ struct btrfs_device *device;
+
+ device = container_of(work, struct btrfs_device, rcu_work);
+
+ if (device->bdev)
+ blkdev_put(device->bdev, device->mode);
+
+ kfree(device->name);
+ kfree(device);
+}
+
+static void free_device(struct rcu_head *head)
+{
+ struct btrfs_device *device;
+
+ device = container_of(head, struct btrfs_device, rcu);
+
+ INIT_WORK(&device->rcu_work, __free_device);
+ schedule_work(&device->rcu_work);
+}
+
+static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
+{
+ struct btrfs_device *device;
+
+ if (--fs_devices->opened > 0)
+ return 0;
+
+ mutex_lock(&fs_devices->device_list_mutex);
+ list_for_each_entry(device, &fs_devices->devices, dev_list) {
+ struct btrfs_device *new_device;
+
+ if (device->bdev)
+ fs_devices->open_devices--;
+
+ if (device->writeable) {
+ list_del_init(&device->dev_alloc_list);
+ fs_devices->rw_devices--;
+ }
+
+ if (device->can_discard)
+ fs_devices->num_can_discard--;
+
+ new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
+ BUG_ON(!new_device); /* -ENOMEM */
+ memcpy(new_device, device, sizeof(*new_device));
+ new_device->name = kstrdup(device->name, GFP_NOFS);
+ BUG_ON(device->name && !new_device->name); /* -ENOMEM */
+ new_device->bdev = NULL;
+ new_device->writeable = 0;
+ new_device->in_fs_metadata = 0;
+ new_device->can_discard = 0;
+ list_replace_rcu(&device->dev_list, &new_device->dev_list);
+
+ call_rcu(&device->rcu, free_device);
+ }
+ mutex_unlock(&fs_devices->device_list_mutex);
+
+ WARN_ON(fs_devices->open_devices);
+ WARN_ON(fs_devices->rw_devices);
+ fs_devices->opened = 0;
+ fs_devices->seeding = 0;
+
+ return 0;
+}
+
+int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
+{
+ struct btrfs_fs_devices *seed_devices = NULL;
+ int ret;
+
+ mutex_lock(&uuid_mutex);
+ ret = __btrfs_close_devices(fs_devices);
+ if (!fs_devices->opened) {
+ seed_devices = fs_devices->seed;
+ fs_devices->seed = NULL;
+ }
+ mutex_unlock(&uuid_mutex);
+
+ while (seed_devices) {
+ fs_devices = seed_devices;
+ seed_devices = fs_devices->seed;
+ __btrfs_close_devices(fs_devices);
+ free_fs_devices(fs_devices);
+ }
+ return ret;
+}
+
+static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
+ fmode_t flags, void *holder)
+{
+ struct request_queue *q;
+ struct block_device *bdev;
+ struct list_head *head = &fs_devices->devices;
+ struct btrfs_device *device;
+ struct block_device *latest_bdev = NULL;
+ struct buffer_head *bh;
+ struct btrfs_super_block *disk_super;
+ u64 latest_devid = 0;
+ u64 latest_transid = 0;
+ u64 devid;
+ int seeding = 1;
+ int ret = 0;
+
+ flags |= FMODE_EXCL;
+
+ list_for_each_entry(device, head, dev_list) {
+ if (device->bdev)
+ continue;
+ if (!device->name)
+ continue;
+
+ bdev = blkdev_get_by_path(device->name, flags, holder);
+ if (IS_ERR(bdev)) {
+ printk(KERN_INFO "open %s failed\n", device->name);
+ goto error;
+ }
+ filemap_write_and_wait(bdev->bd_inode->i_mapping);
+ invalidate_bdev(bdev);
+ set_blocksize(bdev, 4096);
+
+ bh = btrfs_read_dev_super(bdev);
+ if (!bh)
+ goto error_close;
+
+ disk_super = (struct btrfs_super_block *)bh->b_data;
+ devid = btrfs_stack_device_id(&disk_super->dev_item);
+ if (devid != device->devid)
+ goto error_brelse;
+
+ if (memcmp(device->uuid, disk_super->dev_item.uuid,
+ BTRFS_UUID_SIZE))
+ goto error_brelse;
+
+ device->generation = btrfs_super_generation(disk_super);
+ if (!latest_transid || device->generation > latest_transid) {
+ latest_devid = devid;
+ latest_transid = device->generation;
+ latest_bdev = bdev;
+ }
+
+ if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
+ device->writeable = 0;
+ } else {
+ device->writeable = !bdev_read_only(bdev);
+ seeding = 0;
+ }
+
+ q = bdev_get_queue(bdev);
+ if (blk_queue_discard(q)) {
+ device->can_discard = 1;
+ fs_devices->num_can_discard++;
+ }
+
+ device->bdev = bdev;
+ device->in_fs_metadata = 0;
+ device->mode = flags;
+
+ if (!blk_queue_nonrot(bdev_get_queue(bdev)))
+ fs_devices->rotating = 1;
+
+ fs_devices->open_devices++;
+ if (device->writeable) {
+ fs_devices->rw_devices++;
+ list_add(&device->dev_alloc_list,
+ &fs_devices->alloc_list);
+ }
+ brelse(bh);
+ continue;
+
+error_brelse:
+ brelse(bh);
+error_close:
+ blkdev_put(bdev, flags);
+error:
+ continue;
+ }
+ if (fs_devices->open_devices == 0) {
+ ret = -EINVAL;
+ goto out;
+ }
+ fs_devices->seeding = seeding;
+ fs_devices->opened = 1;
+ fs_devices->latest_bdev = latest_bdev;
+ fs_devices->latest_devid = latest_devid;
+ fs_devices->latest_trans = latest_transid;
+ fs_devices->total_rw_bytes = 0;
+out:
+ return ret;
+}
+
+int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
+ fmode_t flags, void *holder)
+{
+ int ret;
+
+ mutex_lock(&uuid_mutex);
+ if (fs_devices->opened) {
+ fs_devices->opened++;
+ ret = 0;
+ } else {
+ ret = __btrfs_open_devices(fs_devices, flags, holder);
+ }
+ mutex_unlock(&uuid_mutex);
+ return ret;
+}
+
+int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
+ struct btrfs_fs_devices **fs_devices_ret)
+{
+ struct btrfs_super_block *disk_super;
+ struct block_device *bdev;
+ struct buffer_head *bh;
+ int ret;
+ u64 devid;
+ u64 transid;
+
+ flags |= FMODE_EXCL;
+ bdev = blkdev_get_by_path(path, flags, holder);
+
+ if (IS_ERR(bdev)) {
+ ret = PTR_ERR(bdev);
+ goto error;
+ }
+
+ mutex_lock(&uuid_mutex);
+ ret = set_blocksize(bdev, 4096);
+ if (ret)
+ goto error_close;
+ bh = btrfs_read_dev_super(bdev);
+ if (!bh) {
+ ret = -EINVAL;
+ goto error_close;
+ }
+ disk_super = (struct btrfs_super_block *)bh->b_data;
+ devid = btrfs_stack_device_id(&disk_super->dev_item);
+ transid = btrfs_super_generation(disk_super);
+ if (disk_super->label[0])
+ printk(KERN_INFO "device label %s ", disk_super->label);
+ else
+ printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
+ printk(KERN_CONT "devid %llu transid %llu %s\n",
+ (unsigned long long)devid, (unsigned long long)transid, path);
+ ret = device_list_add(path, disk_super, devid, fs_devices_ret);
+
+ brelse(bh);
+error_close:
+ mutex_unlock(&uuid_mutex);
+ blkdev_put(bdev, flags);
+error:
+ return ret;
+}
+
+/* helper to account the used device space in the range */
+int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
+ u64 end, u64 *length)
+{
+ struct btrfs_key key;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_dev_extent *dev_extent;
+ struct btrfs_path *path;
+ u64 extent_end;
+ int ret;
+ int slot;
+ struct extent_buffer *l;
+
+ *length = 0;
+
+ if (start >= device->total_bytes)
+ return 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = 2;
+
+ key.objectid = device->devid;
+ key.offset = start;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = btrfs_previous_item(root, path, key.objectid, key.type);
+ if (ret < 0)
+ goto out;
+ }
+
+ while (1) {
+ l = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(l)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto out;
+
+ break;
+ }
+ btrfs_item_key_to_cpu(l, &key, slot);
+
+ if (key.objectid < device->devid)
+ goto next;
+
+ if (key.objectid > device->devid)
+ break;
+
+ if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
+ goto next;
+
+ dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+ extent_end = key.offset + btrfs_dev_extent_length(l,
+ dev_extent);
+ if (key.offset <= start && extent_end > end) {
+ *length = end - start + 1;
+ break;
+ } else if (key.offset <= start && extent_end > start)
+ *length += extent_end - start;
+ else if (key.offset > start && extent_end <= end)
+ *length += extent_end - key.offset;
+ else if (key.offset > start && key.offset <= end) {
+ *length += end - key.offset + 1;
+ break;
+ } else if (key.offset > end)
+ break;
+
+next:
+ path->slots[0]++;
+ }
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * find_free_dev_extent - find free space in the specified device
+ * @device: the device which we search the free space in
+ * @num_bytes: the size of the free space that we need
+ * @start: store the start of the free space.
+ * @len: the size of the free space. that we find, or the size of the max
+ * free space if we don't find suitable free space
+ *
+ * this uses a pretty simple search, the expectation is that it is
+ * called very infrequently and that a given device has a small number
+ * of extents
+ *
+ * @start is used to store the start of the free space if we find. But if we
+ * don't find suitable free space, it will be used to store the start position
+ * of the max free space.
+ *
+ * @len is used to store the size of the free space that we find.
+ * But if we don't find suitable free space, it is used to store the size of
+ * the max free space.
+ */
+int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
+ u64 *start, u64 *len)
+{
+ struct btrfs_key key;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_dev_extent *dev_extent;
+ struct btrfs_path *path;
+ u64 hole_size;
+ u64 max_hole_start;
+ u64 max_hole_size;
+ u64 extent_end;
+ u64 search_start;
+ u64 search_end = device->total_bytes;
+ int ret;
+ int slot;
+ struct extent_buffer *l;
+
+ /* FIXME use last free of some kind */
+
+ /* we don't want to overwrite the superblock on the drive,
+ * so we make sure to start at an offset of at least 1MB
+ */
+ search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
+
+ max_hole_start = search_start;
+ max_hole_size = 0;
+ hole_size = 0;
+
+ if (search_start >= search_end) {
+ ret = -ENOSPC;
+ goto error;
+ }
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto error;
+ }
+ path->reada = 2;
+
+ key.objectid = device->devid;
+ key.offset = search_start;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = btrfs_previous_item(root, path, key.objectid, key.type);
+ if (ret < 0)
+ goto out;
+ }
+
+ while (1) {
+ l = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(l)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto out;
+
+ break;
+ }
+ btrfs_item_key_to_cpu(l, &key, slot);
+
+ if (key.objectid < device->devid)
+ goto next;
+
+ if (key.objectid > device->devid)
+ break;
+
+ if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
+ goto next;
+
+ if (key.offset > search_start) {
+ hole_size = key.offset - search_start;
+
+ if (hole_size > max_hole_size) {
+ max_hole_start = search_start;
+ max_hole_size = hole_size;
+ }
+
+ /*
+ * If this free space is greater than which we need,
+ * it must be the max free space that we have found
+ * until now, so max_hole_start must point to the start
+ * of this free space and the length of this free space
+ * is stored in max_hole_size. Thus, we return
+ * max_hole_start and max_hole_size and go back to the
+ * caller.
+ */
+ if (hole_size >= num_bytes) {
+ ret = 0;
+ goto out;
+ }
+ }
+
+ dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+ extent_end = key.offset + btrfs_dev_extent_length(l,
+ dev_extent);
+ if (extent_end > search_start)
+ search_start = extent_end;
+next:
+ path->slots[0]++;
+ cond_resched();
+ }
+
+ /*
+ * At this point, search_start should be the end of
+ * allocated dev extents, and when shrinking the device,
+ * search_end may be smaller than search_start.
+ */
+ if (search_end > search_start)
+ hole_size = search_end - search_start;
+
+ if (hole_size > max_hole_size) {
+ max_hole_start = search_start;
+ max_hole_size = hole_size;
+ }
+
+ /* See above. */
+ if (hole_size < num_bytes)
+ ret = -ENOSPC;
+ else
+ ret = 0;
+
+out:
+ btrfs_free_path(path);
+error:
+ *start = max_hole_start;
+ if (len)
+ *len = max_hole_size;
+ return ret;
+}
+
+static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device,
+ u64 start)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct extent_buffer *leaf = NULL;
+ struct btrfs_dev_extent *extent = NULL;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = device->devid;
+ key.offset = start;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+again:
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret > 0) {
+ ret = btrfs_previous_item(root, path, key.objectid,
+ BTRFS_DEV_EXTENT_KEY);
+ if (ret)
+ goto out;
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+ extent = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_dev_extent);
+ BUG_ON(found_key.offset > start || found_key.offset +
+ btrfs_dev_extent_length(leaf, extent) < start);
+ key = found_key;
+ btrfs_release_path(path);
+ goto again;
+ } else if (ret == 0) {
+ leaf = path->nodes[0];
+ extent = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_dev_extent);
+ } else {
+ btrfs_error(root->fs_info, ret, "Slot search failed");
+ goto out;
+ }
+
+ if (device->bytes_used > 0) {
+ u64 len = btrfs_dev_extent_length(leaf, extent);
+ device->bytes_used -= len;
+ spin_lock(&root->fs_info->free_chunk_lock);
+ root->fs_info->free_chunk_space += len;
+ spin_unlock(&root->fs_info->free_chunk_lock);
+ }
+ ret = btrfs_del_item(trans, root, path);
+ if (ret) {
+ btrfs_error(root->fs_info, ret,
+ "Failed to remove dev extent item");
+ }
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device,
+ u64 chunk_tree, u64 chunk_objectid,
+ u64 chunk_offset, u64 start, u64 num_bytes)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_dev_extent *extent;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+
+ WARN_ON(!device->in_fs_metadata);
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = device->devid;
+ key.offset = start;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ sizeof(*extent));
+ if (ret)
+ goto out;
+
+ leaf = path->nodes[0];
+ extent = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_dev_extent);
+ btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
+ btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
+ btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
+
+ write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
+ (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
+ BTRFS_UUID_SIZE);
+
+ btrfs_set_dev_extent_length(leaf, extent, num_bytes);
+ btrfs_mark_buffer_dirty(leaf);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static noinline int find_next_chunk(struct btrfs_root *root,
+ u64 objectid, u64 *offset)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_chunk *chunk;
+ struct btrfs_key found_key;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = objectid;
+ key.offset = (u64)-1;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+
+ BUG_ON(ret == 0); /* Corruption */
+
+ ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
+ if (ret) {
+ *offset = 0;
+ } else {
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+ if (found_key.objectid != objectid)
+ *offset = 0;
+ else {
+ chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_chunk);
+ *offset = found_key.offset +
+ btrfs_chunk_length(path->nodes[0], chunk);
+ }
+ }
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
+{
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_path *path;
+
+ root = root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.type = BTRFS_DEV_ITEM_KEY;
+ key.offset = (u64)-1;
+
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+
+ BUG_ON(ret == 0); /* Corruption */
+
+ ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
+ BTRFS_DEV_ITEM_KEY);
+ if (ret) {
+ *objectid = 1;
+ } else {
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+ *objectid = found_key.offset + 1;
+ }
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * the device information is stored in the chunk root
+ * the btrfs_device struct should be fully filled in
+ */
+int btrfs_add_device(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_device *device)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_dev_item *dev_item;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ unsigned long ptr;
+
+ root = root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.type = BTRFS_DEV_ITEM_KEY;
+ key.offset = device->devid;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ sizeof(*dev_item));
+ if (ret)
+ goto out;
+
+ leaf = path->nodes[0];
+ dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
+
+ btrfs_set_device_id(leaf, dev_item, device->devid);
+ btrfs_set_device_generation(leaf, dev_item, 0);
+ btrfs_set_device_type(leaf, dev_item, device->type);
+ btrfs_set_device_io_align(leaf, dev_item, device->io_align);
+ btrfs_set_device_io_width(leaf, dev_item, device->io_width);
+ btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
+ btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
+ btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
+ btrfs_set_device_group(leaf, dev_item, 0);
+ btrfs_set_device_seek_speed(leaf, dev_item, 0);
+ btrfs_set_device_bandwidth(leaf, dev_item, 0);
+ btrfs_set_device_start_offset(leaf, dev_item, 0);
+
+ ptr = (unsigned long)btrfs_device_uuid(dev_item);
+ write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
+ ptr = (unsigned long)btrfs_device_fsid(dev_item);
+ write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
+ btrfs_mark_buffer_dirty(leaf);
+
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int btrfs_rm_dev_item(struct btrfs_root *root,
+ struct btrfs_device *device)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_trans_handle *trans;
+
+ root = root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ btrfs_free_path(path);
+ return PTR_ERR(trans);
+ }
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.type = BTRFS_DEV_ITEM_KEY;
+ key.offset = device->devid;
+ lock_chunks(root);
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0)
+ goto out;
+
+ if (ret > 0) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ ret = btrfs_del_item(trans, root, path);
+ if (ret)
+ goto out;
+out:
+ btrfs_free_path(path);
+ unlock_chunks(root);
+ btrfs_commit_transaction(trans, root);
+ return ret;
+}
+
+int btrfs_rm_device(struct btrfs_root *root, char *device_path)
+{
+ struct btrfs_device *device;
+ struct btrfs_device *next_device;
+ struct block_device *bdev;
+ struct buffer_head *bh = NULL;
+ struct btrfs_super_block *disk_super;
+ struct btrfs_fs_devices *cur_devices;
+ u64 all_avail;
+ u64 devid;
+ u64 num_devices;
+ u8 *dev_uuid;
+ int ret = 0;
+ bool clear_super = false;
+
+ mutex_lock(&uuid_mutex);
+
+ all_avail = root->fs_info->avail_data_alloc_bits |
+ root->fs_info->avail_system_alloc_bits |
+ root->fs_info->avail_metadata_alloc_bits;
+
+ if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
+ root->fs_info->fs_devices->num_devices <= 4) {
+ printk(KERN_ERR "btrfs: unable to go below four devices "
+ "on raid10\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
+ root->fs_info->fs_devices->num_devices <= 2) {
+ printk(KERN_ERR "btrfs: unable to go below two "
+ "devices on raid1\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (strcmp(device_path, "missing") == 0) {
+ struct list_head *devices;
+ struct btrfs_device *tmp;
+
+ device = NULL;
+ devices = &root->fs_info->fs_devices->devices;
+ /*
+ * It is safe to read the devices since the volume_mutex
+ * is held.
+ */
+ list_for_each_entry(tmp, devices, dev_list) {
+ if (tmp->in_fs_metadata && !tmp->bdev) {
+ device = tmp;
+ break;
+ }
+ }
+ bdev = NULL;
+ bh = NULL;
+ disk_super = NULL;
+ if (!device) {
+ printk(KERN_ERR "btrfs: no missing devices found to "
+ "remove\n");
+ goto out;
+ }
+ } else {
+ bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
+ root->fs_info->bdev_holder);
+ if (IS_ERR(bdev)) {
+ ret = PTR_ERR(bdev);
+ goto out;
+ }
+
+ set_blocksize(bdev, 4096);
+ invalidate_bdev(bdev);
+ bh = btrfs_read_dev_super(bdev);
+ if (!bh) {
+ ret = -EINVAL;
+ goto error_close;
+ }
+ disk_super = (struct btrfs_super_block *)bh->b_data;
+ devid = btrfs_stack_device_id(&disk_super->dev_item);
+ dev_uuid = disk_super->dev_item.uuid;
+ device = btrfs_find_device(root, devid, dev_uuid,
+ disk_super->fsid);
+ if (!device) {
+ ret = -ENOENT;
+ goto error_brelse;
+ }
+ }
+
+ if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
+ printk(KERN_ERR "btrfs: unable to remove the only writeable "
+ "device\n");
+ ret = -EINVAL;
+ goto error_brelse;
+ }
+
+ if (device->writeable) {
+ lock_chunks(root);
+ list_del_init(&device->dev_alloc_list);
+ unlock_chunks(root);
+ root->fs_info->fs_devices->rw_devices--;
+ clear_super = true;
+ }
+
+ ret = btrfs_shrink_device(device, 0);
+ if (ret)
+ goto error_undo;
+
+ ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
+ if (ret)
+ goto error_undo;
+
+ spin_lock(&root->fs_info->free_chunk_lock);
+ root->fs_info->free_chunk_space = device->total_bytes -
+ device->bytes_used;
+ spin_unlock(&root->fs_info->free_chunk_lock);
+
+ device->in_fs_metadata = 0;
+ btrfs_scrub_cancel_dev(root, device);
+
+ /*
+ * the device list mutex makes sure that we don't change
+ * the device list while someone else is writing out all
+ * the device supers.
+ */
+
+ cur_devices = device->fs_devices;
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ list_del_rcu(&device->dev_list);
+
+ device->fs_devices->num_devices--;
+
+ if (device->missing)
+ root->fs_info->fs_devices->missing_devices--;
+
+ next_device = list_entry(root->fs_info->fs_devices->devices.next,
+ struct btrfs_device, dev_list);
+ if (device->bdev == root->fs_info->sb->s_bdev)
+ root->fs_info->sb->s_bdev = next_device->bdev;
+ if (device->bdev == root->fs_info->fs_devices->latest_bdev)
+ root->fs_info->fs_devices->latest_bdev = next_device->bdev;
+
+ if (device->bdev)
+ device->fs_devices->open_devices--;
+
+ call_rcu(&device->rcu, free_device);
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+ num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
+ btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
+
+ if (cur_devices->open_devices == 0) {
+ struct btrfs_fs_devices *fs_devices;
+ fs_devices = root->fs_info->fs_devices;
+ while (fs_devices) {
+ if (fs_devices->seed == cur_devices)
+ break;
+ fs_devices = fs_devices->seed;
+ }
+ fs_devices->seed = cur_devices->seed;
+ cur_devices->seed = NULL;
+ lock_chunks(root);
+ __btrfs_close_devices(cur_devices);
+ unlock_chunks(root);
+ free_fs_devices(cur_devices);
+ }
+
+ /*
+ * at this point, the device is zero sized. We want to
+ * remove it from the devices list and zero out the old super
+ */
+ if (clear_super) {
+ /* make sure this device isn't detected as part of
+ * the FS anymore
+ */
+ memset(&disk_super->magic, 0, sizeof(disk_super->magic));
+ set_buffer_dirty(bh);
+ sync_dirty_buffer(bh);
+ }
+
+ ret = 0;
+
+error_brelse:
+ brelse(bh);
+error_close:
+ if (bdev)
+ blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
+out:
+ mutex_unlock(&uuid_mutex);
+ return ret;
+error_undo:
+ if (device->writeable) {
+ lock_chunks(root);
+ list_add(&device->dev_alloc_list,
+ &root->fs_info->fs_devices->alloc_list);
+ unlock_chunks(root);
+ root->fs_info->fs_devices->rw_devices++;
+ }
+ goto error_brelse;
+}
+
+/*
+ * does all the dirty work required for changing file system's UUID.
+ */
+static int btrfs_prepare_sprout(struct btrfs_root *root)
+{
+ struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+ struct btrfs_fs_devices *old_devices;
+ struct btrfs_fs_devices *seed_devices;
+ struct btrfs_super_block *disk_super = root->fs_info->super_copy;
+ struct btrfs_device *device;
+ u64 super_flags;
+
+ BUG_ON(!mutex_is_locked(&uuid_mutex));
+ if (!fs_devices->seeding)
+ return -EINVAL;
+
+ seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
+ if (!seed_devices)
+ return -ENOMEM;
+
+ old_devices = clone_fs_devices(fs_devices);
+ if (IS_ERR(old_devices)) {
+ kfree(seed_devices);
+ return PTR_ERR(old_devices);
+ }
+
+ list_add(&old_devices->list, &fs_uuids);
+
+ memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
+ seed_devices->opened = 1;
+ INIT_LIST_HEAD(&seed_devices->devices);
+ INIT_LIST_HEAD(&seed_devices->alloc_list);
+ mutex_init(&seed_devices->device_list_mutex);
+
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
+ synchronize_rcu);
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+ list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
+ list_for_each_entry(device, &seed_devices->devices, dev_list) {
+ device->fs_devices = seed_devices;
+ }
+
+ fs_devices->seeding = 0;
+ fs_devices->num_devices = 0;
+ fs_devices->open_devices = 0;
+ fs_devices->seed = seed_devices;
+
+ generate_random_uuid(fs_devices->fsid);
+ memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
+ memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
+ super_flags = btrfs_super_flags(disk_super) &
+ ~BTRFS_SUPER_FLAG_SEEDING;
+ btrfs_set_super_flags(disk_super, super_flags);
+
+ return 0;
+}
+
+/*
+ * strore the expected generation for seed devices in device items.
+ */
+static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_dev_item *dev_item;
+ struct btrfs_device *device;
+ struct btrfs_key key;
+ u8 fs_uuid[BTRFS_UUID_SIZE];
+ u8 dev_uuid[BTRFS_UUID_SIZE];
+ u64 devid;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ root = root->fs_info->chunk_root;
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.offset = 0;
+ key.type = BTRFS_DEV_ITEM_KEY;
+
+ while (1) {
+ ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+ if (ret < 0)
+ goto error;
+
+ leaf = path->nodes[0];
+next_slot:
+ if (path->slots[0] >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret > 0)
+ break;
+ if (ret < 0)
+ goto error;
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ btrfs_release_path(path);
+ continue;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
+ key.type != BTRFS_DEV_ITEM_KEY)
+ break;
+
+ dev_item = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_dev_item);
+ devid = btrfs_device_id(leaf, dev_item);
+ read_extent_buffer(leaf, dev_uuid,
+ (unsigned long)btrfs_device_uuid(dev_item),
+ BTRFS_UUID_SIZE);
+ read_extent_buffer(leaf, fs_uuid,
+ (unsigned long)btrfs_device_fsid(dev_item),
+ BTRFS_UUID_SIZE);
+ device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
+ BUG_ON(!device); /* Logic error */
+
+ if (device->fs_devices->seeding) {
+ btrfs_set_device_generation(leaf, dev_item,
+ device->generation);
+ btrfs_mark_buffer_dirty(leaf);
+ }
+
+ path->slots[0]++;
+ goto next_slot;
+ }
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
+{
+ struct request_queue *q;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_device *device;
+ struct block_device *bdev;
+ struct list_head *devices;
+ struct super_block *sb = root->fs_info->sb;
+ u64 total_bytes;
+ int seeding_dev = 0;
+ int ret = 0;
+
+ if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
+ return -EINVAL;
+
+ bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
+ root->fs_info->bdev_holder);
+ if (IS_ERR(bdev))
+ return PTR_ERR(bdev);
+
+ if (root->fs_info->fs_devices->seeding) {
+ seeding_dev = 1;
+ down_write(&sb->s_umount);
+ mutex_lock(&uuid_mutex);
+ }
+
+ filemap_write_and_wait(bdev->bd_inode->i_mapping);
+
+ devices = &root->fs_info->fs_devices->devices;
+ /*
+ * we have the volume lock, so we don't need the extra
+ * device list mutex while reading the list here.
+ */
+ list_for_each_entry(device, devices, dev_list) {
+ if (device->bdev == bdev) {
+ ret = -EEXIST;
+ goto error;
+ }
+ }
+
+ device = kzalloc(sizeof(*device), GFP_NOFS);
+ if (!device) {
+ /* we can safely leave the fs_devices entry around */
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ device->name = kstrdup(device_path, GFP_NOFS);
+ if (!device->name) {
+ kfree(device);
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ ret = find_next_devid(root, &device->devid);
+ if (ret) {
+ kfree(device->name);
+ kfree(device);
+ goto error;
+ }
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ kfree(device->name);
+ kfree(device);
+ ret = PTR_ERR(trans);
+ goto error;
+ }
+
+ lock_chunks(root);
+
+ q = bdev_get_queue(bdev);
+ if (blk_queue_discard(q))
+ device->can_discard = 1;
+ device->writeable = 1;
+ device->work.func = pending_bios_fn;
+ generate_random_uuid(device->uuid);
+ spin_lock_init(&device->io_lock);
+ device->generation = trans->transid;
+ device->io_width = root->sectorsize;
+ device->io_align = root->sectorsize;
+ device->sector_size = root->sectorsize;
+ device->total_bytes = i_size_read(bdev->bd_inode);
+ device->disk_total_bytes = device->total_bytes;
+ device->dev_root = root->fs_info->dev_root;
+ device->bdev = bdev;
+ device->in_fs_metadata = 1;
+ device->mode = FMODE_EXCL;
+ set_blocksize(device->bdev, 4096);
+
+ if (seeding_dev) {
+ sb->s_flags &= ~MS_RDONLY;
+ ret = btrfs_prepare_sprout(root);
+ BUG_ON(ret); /* -ENOMEM */
+ }
+
+ device->fs_devices = root->fs_info->fs_devices;
+
+ /*
+ * we don't want write_supers to jump in here with our device
+ * half setup
+ */
+ mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+ list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
+ list_add(&device->dev_alloc_list,
+ &root->fs_info->fs_devices->alloc_list);
+ root->fs_info->fs_devices->num_devices++;
+ root->fs_info->fs_devices->open_devices++;
+ root->fs_info->fs_devices->rw_devices++;
+ if (device->can_discard)
+ root->fs_info->fs_devices->num_can_discard++;
+ root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
+
+ spin_lock(&root->fs_info->free_chunk_lock);
+ root->fs_info->free_chunk_space += device->total_bytes;
+ spin_unlock(&root->fs_info->free_chunk_lock);
+
+ if (!blk_queue_nonrot(bdev_get_queue(bdev)))
+ root->fs_info->fs_devices->rotating = 1;
+
+ total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
+ btrfs_set_super_total_bytes(root->fs_info->super_copy,
+ total_bytes + device->total_bytes);
+
+ total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
+ btrfs_set_super_num_devices(root->fs_info->super_copy,
+ total_bytes + 1);
+ mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+
+ if (seeding_dev) {
+ ret = init_first_rw_device(trans, root, device);
+ if (ret)
+ goto error_trans;
+ ret = btrfs_finish_sprout(trans, root);
+ if (ret)
+ goto error_trans;
+ } else {
+ ret = btrfs_add_device(trans, root, device);
+ if (ret)
+ goto error_trans;
+ }
+
+ /*
+ * we've got more storage, clear any full flags on the space
+ * infos
+ */
+ btrfs_clear_space_info_full(root->fs_info);
+
+ unlock_chunks(root);
+ ret = btrfs_commit_transaction(trans, root);
+
+ if (seeding_dev) {
+ mutex_unlock(&uuid_mutex);
+ up_write(&sb->s_umount);
+
+ if (ret) /* transaction commit */
+ return ret;
+
+ ret = btrfs_relocate_sys_chunks(root);
+ if (ret < 0)
+ btrfs_error(root->fs_info, ret,
+ "Failed to relocate sys chunks after "
+ "device initialization. This can be fixed "
+ "using the \"btrfs balance\" command.");
+ }
+
+ return ret;
+
+error_trans:
+ unlock_chunks(root);
+ btrfs_abort_transaction(trans, root, ret);
+ btrfs_end_transaction(trans, root);
+ kfree(device->name);
+ kfree(device);
+error:
+ blkdev_put(bdev, FMODE_EXCL);
+ if (seeding_dev) {
+ mutex_unlock(&uuid_mutex);
+ up_write(&sb->s_umount);
+ }
+ return ret;
+}
+
+static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_root *root;
+ struct btrfs_dev_item *dev_item;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+
+ root = device->dev_root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.type = BTRFS_DEV_ITEM_KEY;
+ key.offset = device->devid;
+
+ ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
+ if (ret < 0)
+ goto out;
+
+ if (ret > 0) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
+
+ btrfs_set_device_id(leaf, dev_item, device->devid);
+ btrfs_set_device_type(leaf, dev_item, device->type);
+ btrfs_set_device_io_align(leaf, dev_item, device->io_align);
+ btrfs_set_device_io_width(leaf, dev_item, device->io_width);
+ btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
+ btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
+ btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
+ btrfs_mark_buffer_dirty(leaf);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device, u64 new_size)
+{
+ struct btrfs_super_block *super_copy =
+ device->dev_root->fs_info->super_copy;
+ u64 old_total = btrfs_super_total_bytes(super_copy);
+ u64 diff = new_size - device->total_bytes;
+
+ if (!device->writeable)
+ return -EACCES;
+ if (new_size <= device->total_bytes)
+ return -EINVAL;
+
+ btrfs_set_super_total_bytes(super_copy, old_total + diff);
+ device->fs_devices->total_rw_bytes += diff;
+
+ device->total_bytes = new_size;
+ device->disk_total_bytes = new_size;
+ btrfs_clear_space_info_full(device->dev_root->fs_info);
+
+ return btrfs_update_device(trans, device);
+}
+
+int btrfs_grow_device(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device, u64 new_size)
+{
+ int ret;
+ lock_chunks(device->dev_root);
+ ret = __btrfs_grow_device(trans, device, new_size);
+ unlock_chunks(device->dev_root);
+ return ret;
+}
+
+static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ u64 chunk_tree, u64 chunk_objectid,
+ u64 chunk_offset)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+
+ root = root->fs_info->chunk_root;
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = chunk_objectid;
+ key.offset = chunk_offset;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0)
+ goto out;
+ else if (ret > 0) { /* Logic error or corruption */
+ btrfs_error(root->fs_info, -ENOENT,
+ "Failed lookup while freeing chunk.");
+ ret = -ENOENT;
+ goto out;
+ }
+
+ ret = btrfs_del_item(trans, root, path);
+ if (ret < 0)
+ btrfs_error(root->fs_info, ret,
+ "Failed to delete chunk item.");
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
+ chunk_offset)
+{
+ struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+ struct btrfs_disk_key *disk_key;
+ struct btrfs_chunk *chunk;
+ u8 *ptr;
+ int ret = 0;
+ u32 num_stripes;
+ u32 array_size;
+ u32 len = 0;
+ u32 cur;
+ struct btrfs_key key;
+
+ array_size = btrfs_super_sys_array_size(super_copy);
+
+ ptr = super_copy->sys_chunk_array;
+ cur = 0;
+
+ while (cur < array_size) {
+ disk_key = (struct btrfs_disk_key *)ptr;
+ btrfs_disk_key_to_cpu(&key, disk_key);
+
+ len = sizeof(*disk_key);
+
+ if (key.type == BTRFS_CHUNK_ITEM_KEY) {
+ chunk = (struct btrfs_chunk *)(ptr + len);
+ num_stripes = btrfs_stack_chunk_num_stripes(chunk);
+ len += btrfs_chunk_item_size(num_stripes);
+ } else {
+ ret = -EIO;
+ break;
+ }
+ if (key.objectid == chunk_objectid &&
+ key.offset == chunk_offset) {
+ memmove(ptr, ptr + len, array_size - (cur + len));
+ array_size -= len;
+ btrfs_set_super_sys_array_size(super_copy, array_size);
+ } else {
+ ptr += len;
+ cur += len;
+ }
+ }
+ return ret;
+}
+
+static int btrfs_relocate_chunk(struct btrfs_root *root,
+ u64 chunk_tree, u64 chunk_objectid,
+ u64 chunk_offset)
+{
+ struct extent_map_tree *em_tree;
+ struct btrfs_root *extent_root;
+ struct btrfs_trans_handle *trans;
+ struct extent_map *em;
+ struct map_lookup *map;
+ int ret;
+ int i;
+
+ root = root->fs_info->chunk_root;
+ extent_root = root->fs_info->extent_root;
+ em_tree = &root->fs_info->mapping_tree.map_tree;
+
+ ret = btrfs_can_relocate(extent_root, chunk_offset);
+ if (ret)
+ return -ENOSPC;
+
+ /* step one, relocate all the extents inside this chunk */
+ ret = btrfs_relocate_block_group(extent_root, chunk_offset);
+ if (ret)
+ return ret;
+
+ trans = btrfs_start_transaction(root, 0);
+ BUG_ON(IS_ERR(trans));
+
+ lock_chunks(root);
+
+ /*
+ * step two, delete the device extents and the
+ * chunk tree entries
+ */
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, chunk_offset, 1);
+ read_unlock(&em_tree->lock);
+
+ BUG_ON(!em || em->start > chunk_offset ||
+ em->start + em->len < chunk_offset);
+ map = (struct map_lookup *)em->bdev;
+
+ for (i = 0; i < map->num_stripes; i++) {
+ ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
+ map->stripes[i].physical);
+ BUG_ON(ret);
+
+ if (map->stripes[i].dev) {
+ ret = btrfs_update_device(trans, map->stripes[i].dev);
+ BUG_ON(ret);
+ }
+ }
+ ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
+ chunk_offset);
+
+ BUG_ON(ret);
+
+ trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
+
+ if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
+ ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
+ BUG_ON(ret);
+ }
+
+ ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
+ BUG_ON(ret);
+
+ write_lock(&em_tree->lock);
+ remove_extent_mapping(em_tree, em);
+ write_unlock(&em_tree->lock);
+
+ kfree(map);
+ em->bdev = NULL;
+
+ /* once for the tree */
+ free_extent_map(em);
+ /* once for us */
+ free_extent_map(em);
+
+ unlock_chunks(root);
+ btrfs_end_transaction(trans, root);
+ return 0;
+}
+
+static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
+{
+ struct btrfs_root *chunk_root = root->fs_info->chunk_root;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_chunk *chunk;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ u64 chunk_tree = chunk_root->root_key.objectid;
+ u64 chunk_type;
+ bool retried = false;
+ int failed = 0;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+again:
+ key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+ key.offset = (u64)-1;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+ BUG_ON(ret == 0); /* Corruption */
+
+ ret = btrfs_previous_item(chunk_root, path, key.objectid,
+ key.type);
+ if (ret < 0)
+ goto error;
+ if (ret > 0)
+ break;
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
+
+ chunk = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_chunk);
+ chunk_type = btrfs_chunk_type(leaf, chunk);
+ btrfs_release_path(path);
+
+ if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
+ ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
+ found_key.objectid,
+ found_key.offset);
+ if (ret == -ENOSPC)
+ failed++;
+ else if (ret)
+ BUG();
+ }
+
+ if (found_key.offset == 0)
+ break;
+ key.offset = found_key.offset - 1;
+ }
+ ret = 0;
+ if (failed && !retried) {
+ failed = 0;
+ retried = true;
+ goto again;
+ } else if (failed && retried) {
+ WARN_ON(1);
+ ret = -ENOSPC;
+ }
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int insert_balance_item(struct btrfs_root *root,
+ struct btrfs_balance_control *bctl)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_balance_item *item;
+ struct btrfs_disk_balance_args disk_bargs;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ int ret, err;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ btrfs_free_path(path);
+ return PTR_ERR(trans);
+ }
+
+ key.objectid = BTRFS_BALANCE_OBJECTID;
+ key.type = BTRFS_BALANCE_ITEM_KEY;
+ key.offset = 0;
+
+ ret = btrfs_insert_empty_item(trans, root, path, &key,
+ sizeof(*item));
+ if (ret)
+ goto out;
+
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
+
+ memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
+
+ btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
+ btrfs_set_balance_data(leaf, item, &disk_bargs);
+ btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
+ btrfs_set_balance_meta(leaf, item, &disk_bargs);
+ btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
+ btrfs_set_balance_sys(leaf, item, &disk_bargs);
+
+ btrfs_set_balance_flags(leaf, item, bctl->flags);
+
+ btrfs_mark_buffer_dirty(leaf);
+out:
+ btrfs_free_path(path);
+ err = btrfs_commit_transaction(trans, root);
+ if (err && !ret)
+ ret = err;
+ return ret;
+}
+
+static int del_balance_item(struct btrfs_root *root)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret, err;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ btrfs_free_path(path);
+ return PTR_ERR(trans);
+ }
+
+ key.objectid = BTRFS_BALANCE_OBJECTID;
+ key.type = BTRFS_BALANCE_ITEM_KEY;
+ key.offset = 0;
+
+ ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
+ if (ret < 0)
+ goto out;
+ if (ret > 0) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ ret = btrfs_del_item(trans, root, path);
+out:
+ btrfs_free_path(path);
+ err = btrfs_commit_transaction(trans, root);
+ if (err && !ret)
+ ret = err;
+ return ret;
+}
+
+/*
+ * This is a heuristic used to reduce the number of chunks balanced on
+ * resume after balance was interrupted.
+ */
+static void update_balance_args(struct btrfs_balance_control *bctl)
+{
+ /*
+ * Turn on soft mode for chunk types that were being converted.
+ */
+ if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
+ bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
+ if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
+ bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
+ if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
+ bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
+
+ /*
+ * Turn on usage filter if is not already used. The idea is
+ * that chunks that we have already balanced should be
+ * reasonably full. Don't do it for chunks that are being
+ * converted - that will keep us from relocating unconverted
+ * (albeit full) chunks.
+ */
+ if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
+ !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
+ bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
+ bctl->data.usage = 90;
+ }
+ if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
+ !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
+ bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
+ bctl->sys.usage = 90;
+ }
+ if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
+ !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
+ bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
+ bctl->meta.usage = 90;
+ }
+}
+
+/*
+ * Should be called with both balance and volume mutexes held to
+ * serialize other volume operations (add_dev/rm_dev/resize) with
+ * restriper. Same goes for unset_balance_control.
+ */
+static void set_balance_control(struct btrfs_balance_control *bctl)
+{
+ struct btrfs_fs_info *fs_info = bctl->fs_info;
+
+ BUG_ON(fs_info->balance_ctl);
+
+ spin_lock(&fs_info->balance_lock);
+ fs_info->balance_ctl = bctl;
+ spin_unlock(&fs_info->balance_lock);
+}
+
+static void unset_balance_control(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+
+ BUG_ON(!fs_info->balance_ctl);
+
+ spin_lock(&fs_info->balance_lock);
+ fs_info->balance_ctl = NULL;
+ spin_unlock(&fs_info->balance_lock);
+
+ kfree(bctl);
+}
+
+/*
+ * Balance filters. Return 1 if chunk should be filtered out
+ * (should not be balanced).
+ */
+static int chunk_profiles_filter(u64 chunk_type,
+ struct btrfs_balance_args *bargs)
+{
+ chunk_type = chunk_to_extended(chunk_type) &
+ BTRFS_EXTENDED_PROFILE_MASK;
+
+ if (bargs->profiles & chunk_type)
+ return 0;
+
+ return 1;
+}
+
+static u64 div_factor_fine(u64 num, int factor)
+{
+ if (factor <= 0)
+ return 0;
+ if (factor >= 100)
+ return num;
+
+ num *= factor;
+ do_div(num, 100);
+ return num;
+}
+
+static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
+ struct btrfs_balance_args *bargs)
+{
+ struct btrfs_block_group_cache *cache;
+ u64 chunk_used, user_thresh;
+ int ret = 1;
+
+ cache = btrfs_lookup_block_group(fs_info, chunk_offset);
+ chunk_used = btrfs_block_group_used(&cache->item);
+
+ user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
+ if (chunk_used < user_thresh)
+ ret = 0;
+
+ btrfs_put_block_group(cache);
+ return ret;
+}
+
+static int chunk_devid_filter(struct extent_buffer *leaf,
+ struct btrfs_chunk *chunk,
+ struct btrfs_balance_args *bargs)
+{
+ struct btrfs_stripe *stripe;
+ int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+ int i;
+
+ for (i = 0; i < num_stripes; i++) {
+ stripe = btrfs_stripe_nr(chunk, i);
+ if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
+ return 0;
+ }
+
+ return 1;
+}
+
+/* [pstart, pend) */
+static int chunk_drange_filter(struct extent_buffer *leaf,
+ struct btrfs_chunk *chunk,
+ u64 chunk_offset,
+ struct btrfs_balance_args *bargs)
+{
+ struct btrfs_stripe *stripe;
+ int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+ u64 stripe_offset;
+ u64 stripe_length;
+ int factor;
+ int i;
+
+ if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
+ return 0;
+
+ if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
+ BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
+ factor = 2;
+ else
+ factor = 1;
+ factor = num_stripes / factor;
+
+ for (i = 0; i < num_stripes; i++) {
+ stripe = btrfs_stripe_nr(chunk, i);
+ if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
+ continue;
+
+ stripe_offset = btrfs_stripe_offset(leaf, stripe);
+ stripe_length = btrfs_chunk_length(leaf, chunk);
+ do_div(stripe_length, factor);
+
+ if (stripe_offset < bargs->pend &&
+ stripe_offset + stripe_length > bargs->pstart)
+ return 0;
+ }
+
+ return 1;
+}
+
+/* [vstart, vend) */
+static int chunk_vrange_filter(struct extent_buffer *leaf,
+ struct btrfs_chunk *chunk,
+ u64 chunk_offset,
+ struct btrfs_balance_args *bargs)
+{
+ if (chunk_offset < bargs->vend &&
+ chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
+ /* at least part of the chunk is inside this vrange */
+ return 0;
+
+ return 1;
+}
+
+static int chunk_soft_convert_filter(u64 chunk_type,
+ struct btrfs_balance_args *bargs)
+{
+ if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
+ return 0;
+
+ chunk_type = chunk_to_extended(chunk_type) &
+ BTRFS_EXTENDED_PROFILE_MASK;
+
+ if (bargs->target == chunk_type)
+ return 1;
+
+ return 0;
+}
+
+static int should_balance_chunk(struct btrfs_root *root,
+ struct extent_buffer *leaf,
+ struct btrfs_chunk *chunk, u64 chunk_offset)
+{
+ struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
+ struct btrfs_balance_args *bargs = NULL;
+ u64 chunk_type = btrfs_chunk_type(leaf, chunk);
+
+ /* type filter */
+ if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
+ (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
+ return 0;
+ }
+
+ if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
+ bargs = &bctl->data;
+ else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
+ bargs = &bctl->sys;
+ else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
+ bargs = &bctl->meta;
+
+ /* profiles filter */
+ if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
+ chunk_profiles_filter(chunk_type, bargs)) {
+ return 0;
+ }
+
+ /* usage filter */
+ if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
+ chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
+ return 0;
+ }
+
+ /* devid filter */
+ if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
+ chunk_devid_filter(leaf, chunk, bargs)) {
+ return 0;
+ }
+
+ /* drange filter, makes sense only with devid filter */
+ if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
+ chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
+ return 0;
+ }
+
+ /* vrange filter */
+ if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
+ chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
+ return 0;
+ }
+
+ /* soft profile changing mode */
+ if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
+ chunk_soft_convert_filter(chunk_type, bargs)) {
+ return 0;
+ }
+
+ return 1;
+}
+
+static u64 div_factor(u64 num, int factor)
+{
+ if (factor == 10)
+ return num;
+ num *= factor;
+ do_div(num, 10);
+ return num;
+}
+
+static int __btrfs_balance(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_balance_control *bctl = fs_info->balance_ctl;
+ struct btrfs_root *chunk_root = fs_info->chunk_root;
+ struct btrfs_root *dev_root = fs_info->dev_root;
+ struct list_head *devices;
+ struct btrfs_device *device;
+ u64 old_size;
+ u64 size_to_free;
+ struct btrfs_chunk *chunk;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_trans_handle *trans;
+ struct extent_buffer *leaf;
+ int slot;
+ int ret;
+ int enospc_errors = 0;
+ bool counting = true;
+
+ /* step one make some room on all the devices */
+ devices = &fs_info->fs_devices->devices;
+ list_for_each_entry(device, devices, dev_list) {
+ old_size = device->total_bytes;
+ size_to_free = div_factor(old_size, 1);
+ size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
+ if (!device->writeable ||
+ device->total_bytes - device->bytes_used > size_to_free)
+ continue;
+
+ ret = btrfs_shrink_device(device, old_size - size_to_free);
+ if (ret == -ENOSPC)
+ break;
+ BUG_ON(ret);
+
+ trans = btrfs_start_transaction(dev_root, 0);
+ BUG_ON(IS_ERR(trans));
+
+ ret = btrfs_grow_device(trans, device, old_size);
+ BUG_ON(ret);
+
+ btrfs_end_transaction(trans, dev_root);
+ }
+
+ /* step two, relocate all the chunks */
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ /* zero out stat counters */
+ spin_lock(&fs_info->balance_lock);
+ memset(&bctl->stat, 0, sizeof(bctl->stat));
+ spin_unlock(&fs_info->balance_lock);
+again:
+ key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+ key.offset = (u64)-1;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+
+ while (1) {
+ if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
+ atomic_read(&fs_info->balance_cancel_req)) {
+ ret = -ECANCELED;
+ goto error;
+ }
+
+ ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+
+ /*
+ * this shouldn't happen, it means the last relocate
+ * failed
+ */
+ if (ret == 0)
+ BUG(); /* FIXME break ? */
+
+ ret = btrfs_previous_item(chunk_root, path, 0,
+ BTRFS_CHUNK_ITEM_KEY);
+ if (ret) {
+ ret = 0;
+ break;
+ }
+
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+ if (found_key.objectid != key.objectid)
+ break;
+
+ /* chunk zero is special */
+ if (found_key.offset == 0)
+ break;
+
+ chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
+
+ if (!counting) {
+ spin_lock(&fs_info->balance_lock);
+ bctl->stat.considered++;
+ spin_unlock(&fs_info->balance_lock);
+ }
+
+ ret = should_balance_chunk(chunk_root, leaf, chunk,
+ found_key.offset);
+ btrfs_release_path(path);
+ if (!ret)
+ goto loop;
+
+ if (counting) {
+ spin_lock(&fs_info->balance_lock);
+ bctl->stat.expected++;
+ spin_unlock(&fs_info->balance_lock);
+ goto loop;
+ }
+
+ ret = btrfs_relocate_chunk(chunk_root,
+ chunk_root->root_key.objectid,
+ found_key.objectid,
+ found_key.offset);
+ if (ret && ret != -ENOSPC)
+ goto error;
+ if (ret == -ENOSPC) {
+ enospc_errors++;
+ } else {
+ spin_lock(&fs_info->balance_lock);
+ bctl->stat.completed++;
+ spin_unlock(&fs_info->balance_lock);
+ }
+loop:
+ key.offset = found_key.offset - 1;
+ }
+
+ if (counting) {
+ btrfs_release_path(path);
+ counting = false;
+ goto again;
+ }
+error:
+ btrfs_free_path(path);
+ if (enospc_errors) {
+ printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
+ enospc_errors);
+ if (!ret)
+ ret = -ENOSPC;
+ }
+
+ return ret;
+}
+
+/**
+ * alloc_profile_is_valid - see if a given profile is valid and reduced
+ * @flags: profile to validate
+ * @extended: if true @flags is treated as an extended profile
+ */
+static int alloc_profile_is_valid(u64 flags, int extended)
+{
+ u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
+ BTRFS_BLOCK_GROUP_PROFILE_MASK);
+
+ flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
+
+ /* 1) check that all other bits are zeroed */
+ if (flags & ~mask)
+ return 0;
+
+ /* 2) see if profile is reduced */
+ if (flags == 0)
+ return !extended; /* "0" is valid for usual profiles */
+
+ /* true if exactly one bit set */
+ return (flags & (flags - 1)) == 0;
+}
+
+static inline int balance_need_close(struct btrfs_fs_info *fs_info)
+{
+ /* cancel requested || normal exit path */
+ return atomic_read(&fs_info->balance_cancel_req) ||
+ (atomic_read(&fs_info->balance_pause_req) == 0 &&
+ atomic_read(&fs_info->balance_cancel_req) == 0);
+}
+
+static void __cancel_balance(struct btrfs_fs_info *fs_info)
+{
+ int ret;
+
+ unset_balance_control(fs_info);
+ ret = del_balance_item(fs_info->tree_root);
+ BUG_ON(ret);
+}
+
+void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
+ struct btrfs_ioctl_balance_args *bargs);
+
+/*
+ * Should be called with both balance and volume mutexes held
+ */
+int btrfs_balance(struct btrfs_balance_control *bctl,
+ struct btrfs_ioctl_balance_args *bargs)
+{
+ struct btrfs_fs_info *fs_info = bctl->fs_info;
+ u64 allowed;
+ int mixed = 0;
+ int ret;
+
+ if (btrfs_fs_closing(fs_info) ||
+ atomic_read(&fs_info->balance_pause_req) ||
+ atomic_read(&fs_info->balance_cancel_req)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ allowed = btrfs_super_incompat_flags(fs_info->super_copy);
+ if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
+ mixed = 1;
+
+ /*
+ * In case of mixed groups both data and meta should be picked,
+ * and identical options should be given for both of them.
+ */
+ allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
+ if (mixed && (bctl->flags & allowed)) {
+ if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
+ !(bctl->flags & BTRFS_BALANCE_METADATA) ||
+ memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
+ printk(KERN_ERR "btrfs: with mixed groups data and "
+ "metadata balance options must be the same\n");
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+
+ allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+ if (fs_info->fs_devices->num_devices == 1)
+ allowed |= BTRFS_BLOCK_GROUP_DUP;
+ else if (fs_info->fs_devices->num_devices < 4)
+ allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
+ else
+ allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10);
+
+ if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+ (!alloc_profile_is_valid(bctl->data.target, 1) ||
+ (bctl->data.target & ~allowed))) {
+ printk(KERN_ERR "btrfs: unable to start balance with target "
+ "data profile %llu\n",
+ (unsigned long long)bctl->data.target);
+ ret = -EINVAL;
+ goto out;
+ }
+ if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+ (!alloc_profile_is_valid(bctl->meta.target, 1) ||
+ (bctl->meta.target & ~allowed))) {
+ printk(KERN_ERR "btrfs: unable to start balance with target "
+ "metadata profile %llu\n",
+ (unsigned long long)bctl->meta.target);
+ ret = -EINVAL;
+ goto out;
+ }
+ if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+ (!alloc_profile_is_valid(bctl->sys.target, 1) ||
+ (bctl->sys.target & ~allowed))) {
+ printk(KERN_ERR "btrfs: unable to start balance with target "
+ "system profile %llu\n",
+ (unsigned long long)bctl->sys.target);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* allow dup'ed data chunks only in mixed mode */
+ if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+ (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
+ printk(KERN_ERR "btrfs: dup for data is not allowed\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* allow to reduce meta or sys integrity only if force set */
+ allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10;
+ if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+ (fs_info->avail_system_alloc_bits & allowed) &&
+ !(bctl->sys.target & allowed)) ||
+ ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
+ (fs_info->avail_metadata_alloc_bits & allowed) &&
+ !(bctl->meta.target & allowed))) {
+ if (bctl->flags & BTRFS_BALANCE_FORCE) {
+ printk(KERN_INFO "btrfs: force reducing metadata "
+ "integrity\n");
+ } else {
+ printk(KERN_ERR "btrfs: balance will reduce metadata "
+ "integrity, use force if you want this\n");
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+
+ ret = insert_balance_item(fs_info->tree_root, bctl);
+ if (ret && ret != -EEXIST)
+ goto out;
+
+ if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
+ BUG_ON(ret == -EEXIST);
+ set_balance_control(bctl);
+ } else {
+ BUG_ON(ret != -EEXIST);
+ spin_lock(&fs_info->balance_lock);
+ update_balance_args(bctl);
+ spin_unlock(&fs_info->balance_lock);
+ }
+
+ atomic_inc(&fs_info->balance_running);
+ mutex_unlock(&fs_info->balance_mutex);
+
+ ret = __btrfs_balance(fs_info);
+
+ mutex_lock(&fs_info->balance_mutex);
+ atomic_dec(&fs_info->balance_running);
+
+ if (bargs) {
+ memset(bargs, 0, sizeof(*bargs));
+ update_ioctl_balance_args(fs_info, 0, bargs);
+ }
+
+ if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
+ balance_need_close(fs_info)) {
+ __cancel_balance(fs_info);
+ }
+
+ wake_up(&fs_info->balance_wait_q);
+
+ return ret;
+out:
+ if (bctl->flags & BTRFS_BALANCE_RESUME)
+ __cancel_balance(fs_info);
+ else
+ kfree(bctl);
+ return ret;
+}
+
+static int balance_kthread(void *data)
+{
+ struct btrfs_balance_control *bctl =
+ (struct btrfs_balance_control *)data;
+ struct btrfs_fs_info *fs_info = bctl->fs_info;
+ int ret = 0;
+
+ mutex_lock(&fs_info->volume_mutex);
+ mutex_lock(&fs_info->balance_mutex);
+
+ set_balance_control(bctl);
+
+ if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
+ printk(KERN_INFO "btrfs: force skipping balance\n");
+ } else {
+ printk(KERN_INFO "btrfs: continuing balance\n");
+ ret = btrfs_balance(bctl, NULL);
+ }
+
+ mutex_unlock(&fs_info->balance_mutex);
+ mutex_unlock(&fs_info->volume_mutex);
+ return ret;
+}
+
+int btrfs_recover_balance(struct btrfs_root *tree_root)
+{
+ struct task_struct *tsk;
+ struct btrfs_balance_control *bctl;
+ struct btrfs_balance_item *item;
+ struct btrfs_disk_balance_args disk_bargs;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ int ret;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
+ if (!bctl) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ key.objectid = BTRFS_BALANCE_OBJECTID;
+ key.type = BTRFS_BALANCE_ITEM_KEY;
+ key.offset = 0;
+
+ ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out_bctl;
+ if (ret > 0) { /* ret = -ENOENT; */
+ ret = 0;
+ goto out_bctl;
+ }
+
+ leaf = path->nodes[0];
+ item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
+
+ bctl->fs_info = tree_root->fs_info;
+ bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
+
+ btrfs_balance_data(leaf, item, &disk_bargs);
+ btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
+ btrfs_balance_meta(leaf, item, &disk_bargs);
+ btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
+ btrfs_balance_sys(leaf, item, &disk_bargs);
+ btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
+
+ tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
+ if (IS_ERR(tsk))
+ ret = PTR_ERR(tsk);
+ else
+ goto out;
+
+out_bctl:
+ kfree(bctl);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
+{
+ int ret = 0;
+
+ mutex_lock(&fs_info->balance_mutex);
+ if (!fs_info->balance_ctl) {
+ mutex_unlock(&fs_info->balance_mutex);
+ return -ENOTCONN;
+ }
+
+ if (atomic_read(&fs_info->balance_running)) {
+ atomic_inc(&fs_info->balance_pause_req);
+ mutex_unlock(&fs_info->balance_mutex);
+
+ wait_event(fs_info->balance_wait_q,
+ atomic_read(&fs_info->balance_running) == 0);
+
+ mutex_lock(&fs_info->balance_mutex);
+ /* we are good with balance_ctl ripped off from under us */
+ BUG_ON(atomic_read(&fs_info->balance_running));
+ atomic_dec(&fs_info->balance_pause_req);
+ } else {
+ ret = -ENOTCONN;
+ }
+
+ mutex_unlock(&fs_info->balance_mutex);
+ return ret;
+}
+
+int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
+{
+ mutex_lock(&fs_info->balance_mutex);
+ if (!fs_info->balance_ctl) {
+ mutex_unlock(&fs_info->balance_mutex);
+ return -ENOTCONN;
+ }
+
+ atomic_inc(&fs_info->balance_cancel_req);
+ /*
+ * if we are running just wait and return, balance item is
+ * deleted in btrfs_balance in this case
+ */
+ if (atomic_read(&fs_info->balance_running)) {
+ mutex_unlock(&fs_info->balance_mutex);
+ wait_event(fs_info->balance_wait_q,
+ atomic_read(&fs_info->balance_running) == 0);
+ mutex_lock(&fs_info->balance_mutex);
+ } else {
+ /* __cancel_balance needs volume_mutex */
+ mutex_unlock(&fs_info->balance_mutex);
+ mutex_lock(&fs_info->volume_mutex);
+ mutex_lock(&fs_info->balance_mutex);
+
+ if (fs_info->balance_ctl)
+ __cancel_balance(fs_info);
+
+ mutex_unlock(&fs_info->volume_mutex);
+ }
+
+ BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
+ atomic_dec(&fs_info->balance_cancel_req);
+ mutex_unlock(&fs_info->balance_mutex);
+ return 0;
+}
+
+/*
+ * shrinking a device means finding all of the device extents past
+ * the new size, and then following the back refs to the chunks.
+ * The chunk relocation code actually frees the device extent
+ */
+int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
+{
+ struct btrfs_trans_handle *trans;
+ struct btrfs_root *root = device->dev_root;
+ struct btrfs_dev_extent *dev_extent = NULL;
+ struct btrfs_path *path;
+ u64 length;
+ u64 chunk_tree;
+ u64 chunk_objectid;
+ u64 chunk_offset;
+ int ret;
+ int slot;
+ int failed = 0;
+ bool retried = false;
+ struct extent_buffer *l;
+ struct btrfs_key key;
+ struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+ u64 old_total = btrfs_super_total_bytes(super_copy);
+ u64 old_size = device->total_bytes;
+ u64 diff = device->total_bytes - new_size;
+
+ if (new_size >= device->total_bytes)
+ return -EINVAL;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ path->reada = 2;
+
+ lock_chunks(root);
+
+ device->total_bytes = new_size;
+ if (device->writeable) {
+ device->fs_devices->total_rw_bytes -= diff;
+ spin_lock(&root->fs_info->free_chunk_lock);
+ root->fs_info->free_chunk_space -= diff;
+ spin_unlock(&root->fs_info->free_chunk_lock);
+ }
+ unlock_chunks(root);
+
+again:
+ key.objectid = device->devid;
+ key.offset = (u64)-1;
+ key.type = BTRFS_DEV_EXTENT_KEY;
+
+ do {
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto done;
+
+ ret = btrfs_previous_item(root, path, 0, key.type);
+ if (ret < 0)
+ goto done;
+ if (ret) {
+ ret = 0;
+ btrfs_release_path(path);
+ break;
+ }
+
+ l = path->nodes[0];
+ slot = path->slots[0];
+ btrfs_item_key_to_cpu(l, &key, path->slots[0]);
+
+ if (key.objectid != device->devid) {
+ btrfs_release_path(path);
+ break;
+ }
+
+ dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
+ length = btrfs_dev_extent_length(l, dev_extent);
+
+ if (key.offset + length <= new_size) {
+ btrfs_release_path(path);
+ break;
+ }
+
+ chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
+ chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
+ chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
+ btrfs_release_path(path);
+
+ ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
+ chunk_offset);
+ if (ret && ret != -ENOSPC)
+ goto done;
+ if (ret == -ENOSPC)
+ failed++;
+ } while (key.offset-- > 0);
+
+ if (failed && !retried) {
+ failed = 0;
+ retried = true;
+ goto again;
+ } else if (failed && retried) {
+ ret = -ENOSPC;
+ lock_chunks(root);
+
+ device->total_bytes = old_size;
+ if (device->writeable)
+ device->fs_devices->total_rw_bytes += diff;
+ spin_lock(&root->fs_info->free_chunk_lock);
+ root->fs_info->free_chunk_space += diff;
+ spin_unlock(&root->fs_info->free_chunk_lock);
+ unlock_chunks(root);
+ goto done;
+ }
+
+ /* Shrinking succeeded, else we would be at "done". */
+ trans = btrfs_start_transaction(root, 0);
+ if (IS_ERR(trans)) {
+ ret = PTR_ERR(trans);
+ goto done;
+ }
+
+ lock_chunks(root);
+
+ device->disk_total_bytes = new_size;
+ /* Now btrfs_update_device() will change the on-disk size. */
+ ret = btrfs_update_device(trans, device);
+ if (ret) {
+ unlock_chunks(root);
+ btrfs_end_transaction(trans, root);
+ goto done;
+ }
+ WARN_ON(diff > old_total);
+ btrfs_set_super_total_bytes(super_copy, old_total - diff);
+ unlock_chunks(root);
+ btrfs_end_transaction(trans, root);
+done:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int btrfs_add_system_chunk(struct btrfs_root *root,
+ struct btrfs_key *key,
+ struct btrfs_chunk *chunk, int item_size)
+{
+ struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+ struct btrfs_disk_key disk_key;
+ u32 array_size;
+ u8 *ptr;
+
+ array_size = btrfs_super_sys_array_size(super_copy);
+ if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
+ return -EFBIG;
+
+ ptr = super_copy->sys_chunk_array + array_size;
+ btrfs_cpu_key_to_disk(&disk_key, key);
+ memcpy(ptr, &disk_key, sizeof(disk_key));
+ ptr += sizeof(disk_key);
+ memcpy(ptr, chunk, item_size);
+ item_size += sizeof(disk_key);
+ btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
+ return 0;
+}
+
+/*
+ * sort the devices in descending order by max_avail, total_avail
+ */
+static int btrfs_cmp_device_info(const void *a, const void *b)
+{
+ const struct btrfs_device_info *di_a = a;
+ const struct btrfs_device_info *di_b = b;
+
+ if (di_a->max_avail > di_b->max_avail)
+ return -1;
+ if (di_a->max_avail < di_b->max_avail)
+ return 1;
+ if (di_a->total_avail > di_b->total_avail)
+ return -1;
+ if (di_a->total_avail < di_b->total_avail)
+ return 1;
+ return 0;
+}
+
+static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root,
+ struct map_lookup **map_ret,
+ u64 *num_bytes_out, u64 *stripe_size_out,
+ u64 start, u64 type)
+{
+ struct btrfs_fs_info *info = extent_root->fs_info;
+ struct btrfs_fs_devices *fs_devices = info->fs_devices;
+ struct list_head *cur;
+ struct map_lookup *map = NULL;
+ struct extent_map_tree *em_tree;
+ struct extent_map *em;
+ struct btrfs_device_info *devices_info = NULL;
+ u64 total_avail;
+ int num_stripes; /* total number of stripes to allocate */
+ int sub_stripes; /* sub_stripes info for map */
+ int dev_stripes; /* stripes per dev */
+ int devs_max; /* max devs to use */
+ int devs_min; /* min devs needed */
+ int devs_increment; /* ndevs has to be a multiple of this */
+ int ncopies; /* how many copies to data has */
+ int ret;
+ u64 max_stripe_size;
+ u64 max_chunk_size;
+ u64 stripe_size;
+ u64 num_bytes;
+ int ndevs;
+ int i;
+ int j;
+
+ BUG_ON(!alloc_profile_is_valid(type, 0));
+
+ if (list_empty(&fs_devices->alloc_list))
+ return -ENOSPC;
+
+ sub_stripes = 1;
+ dev_stripes = 1;
+ devs_increment = 1;
+ ncopies = 1;
+ devs_max = 0; /* 0 == as many as possible */
+ devs_min = 1;
+
+ /*
+ * define the properties of each RAID type.
+ * FIXME: move this to a global table and use it in all RAID
+ * calculation code
+ */
+ if (type & (BTRFS_BLOCK_GROUP_DUP)) {
+ dev_stripes = 2;
+ ncopies = 2;
+ devs_max = 1;
+ } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
+ devs_min = 2;
+ } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
+ devs_increment = 2;
+ ncopies = 2;
+ devs_max = 2;
+ devs_min = 2;
+ } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
+ sub_stripes = 2;
+ devs_increment = 2;
+ ncopies = 2;
+ devs_min = 4;
+ } else {
+ devs_max = 1;
+ }
+
+ if (type & BTRFS_BLOCK_GROUP_DATA) {
+ max_stripe_size = 1024 * 1024 * 1024;
+ max_chunk_size = 10 * max_stripe_size;
+ } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
+ /* for larger filesystems, use larger metadata chunks */
+ if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
+ max_stripe_size = 1024 * 1024 * 1024;
+ else
+ max_stripe_size = 256 * 1024 * 1024;
+ max_chunk_size = max_stripe_size;
+ } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
+ max_stripe_size = 32 * 1024 * 1024;
+ max_chunk_size = 2 * max_stripe_size;
+ } else {
+ printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
+ type);
+ BUG_ON(1);
+ }
+
+ /* we don't want a chunk larger than 10% of writeable space */
+ max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
+ max_chunk_size);
+
+ devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
+ GFP_NOFS);
+ if (!devices_info)
+ return -ENOMEM;
+
+ cur = fs_devices->alloc_list.next;
+
+ /*
+ * in the first pass through the devices list, we gather information
+ * about the available holes on each device.
+ */
+ ndevs = 0;
+ while (cur != &fs_devices->alloc_list) {
+ struct btrfs_device *device;
+ u64 max_avail;
+ u64 dev_offset;
+
+ device = list_entry(cur, struct btrfs_device, dev_alloc_list);
+
+ cur = cur->next;
+
+ if (!device->writeable) {
+ printk(KERN_ERR
+ "btrfs: read-only device in alloc_list\n");
+ WARN_ON(1);
+ continue;
+ }
+
+ if (!device->in_fs_metadata)
+ continue;
+
+ if (device->total_bytes > device->bytes_used)
+ total_avail = device->total_bytes - device->bytes_used;
+ else
+ total_avail = 0;
+
+ /* If there is no space on this device, skip it. */
+ if (total_avail == 0)
+ continue;
+
+ ret = find_free_dev_extent(device,
+ max_stripe_size * dev_stripes,
+ &dev_offset, &max_avail);
+ if (ret && ret != -ENOSPC)
+ goto error;
+
+ if (ret == 0)
+ max_avail = max_stripe_size * dev_stripes;
+
+ if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
+ continue;
+
+ devices_info[ndevs].dev_offset = dev_offset;
+ devices_info[ndevs].max_avail = max_avail;
+ devices_info[ndevs].total_avail = total_avail;
+ devices_info[ndevs].dev = device;
+ ++ndevs;
+ }
+
+ /*
+ * now sort the devices by hole size / available space
+ */
+ sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
+ btrfs_cmp_device_info, NULL);
+
+ /* round down to number of usable stripes */
+ ndevs -= ndevs % devs_increment;
+
+ if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
+ ret = -ENOSPC;
+ goto error;
+ }
+
+ if (devs_max && ndevs > devs_max)
+ ndevs = devs_max;
+ /*
+ * the primary goal is to maximize the number of stripes, so use as many
+ * devices as possible, even if the stripes are not maximum sized.
+ */
+ stripe_size = devices_info[ndevs-1].max_avail;
+ num_stripes = ndevs * dev_stripes;
+
+ if (stripe_size * ndevs > max_chunk_size * ncopies) {
+ stripe_size = max_chunk_size * ncopies;
+ do_div(stripe_size, ndevs);
+ }
+
+ do_div(stripe_size, dev_stripes);
+
+ /* align to BTRFS_STRIPE_LEN */
+ do_div(stripe_size, BTRFS_STRIPE_LEN);
+ stripe_size *= BTRFS_STRIPE_LEN;
+
+ map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
+ if (!map) {
+ ret = -ENOMEM;
+ goto error;
+ }
+ map->num_stripes = num_stripes;
+
+ for (i = 0; i < ndevs; ++i) {
+ for (j = 0; j < dev_stripes; ++j) {
+ int s = i * dev_stripes + j;
+ map->stripes[s].dev = devices_info[i].dev;
+ map->stripes[s].physical = devices_info[i].dev_offset +
+ j * stripe_size;
+ }
+ }
+ map->sector_size = extent_root->sectorsize;
+ map->stripe_len = BTRFS_STRIPE_LEN;
+ map->io_align = BTRFS_STRIPE_LEN;
+ map->io_width = BTRFS_STRIPE_LEN;
+ map->type = type;
+ map->sub_stripes = sub_stripes;
+
+ *map_ret = map;
+ num_bytes = stripe_size * (num_stripes / ncopies);
+
+ *stripe_size_out = stripe_size;
+ *num_bytes_out = num_bytes;
+
+ trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
+
+ em = alloc_extent_map();
+ if (!em) {
+ ret = -ENOMEM;
+ goto error;
+ }
+ em->bdev = (struct block_device *)map;
+ em->start = start;
+ em->len = num_bytes;
+ em->block_start = 0;
+ em->block_len = em->len;
+
+ em_tree = &extent_root->fs_info->mapping_tree.map_tree;
+ write_lock(&em_tree->lock);
+ ret = add_extent_mapping(em_tree, em);
+ write_unlock(&em_tree->lock);
+ free_extent_map(em);
+ if (ret)
+ goto error;
+
+ ret = btrfs_make_block_group(trans, extent_root, 0, type,
+ BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+ start, num_bytes);
+ if (ret)
+ goto error;
+
+ for (i = 0; i < map->num_stripes; ++i) {
+ struct btrfs_device *device;
+ u64 dev_offset;
+
+ device = map->stripes[i].dev;
+ dev_offset = map->stripes[i].physical;
+
+ ret = btrfs_alloc_dev_extent(trans, device,
+ info->chunk_root->root_key.objectid,
+ BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+ start, dev_offset, stripe_size);
+ if (ret) {
+ btrfs_abort_transaction(trans, extent_root, ret);
+ goto error;
+ }
+ }
+
+ kfree(devices_info);
+ return 0;
+
+error:
+ kfree(map);
+ kfree(devices_info);
+ return ret;
+}
+
+static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root,
+ struct map_lookup *map, u64 chunk_offset,
+ u64 chunk_size, u64 stripe_size)
+{
+ u64 dev_offset;
+ struct btrfs_key key;
+ struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
+ struct btrfs_device *device;
+ struct btrfs_chunk *chunk;
+ struct btrfs_stripe *stripe;
+ size_t item_size = btrfs_chunk_item_size(map->num_stripes);
+ int index = 0;
+ int ret;
+
+ chunk = kzalloc(item_size, GFP_NOFS);
+ if (!chunk)
+ return -ENOMEM;
+
+ index = 0;
+ while (index < map->num_stripes) {
+ device = map->stripes[index].dev;
+ device->bytes_used += stripe_size;
+ ret = btrfs_update_device(trans, device);
+ if (ret)
+ goto out_free;
+ index++;
+ }
+
+ spin_lock(&extent_root->fs_info->free_chunk_lock);
+ extent_root->fs_info->free_chunk_space -= (stripe_size *
+ map->num_stripes);
+ spin_unlock(&extent_root->fs_info->free_chunk_lock);
+
+ index = 0;
+ stripe = &chunk->stripe;
+ while (index < map->num_stripes) {
+ device = map->stripes[index].dev;
+ dev_offset = map->stripes[index].physical;
+
+ btrfs_set_stack_stripe_devid(stripe, device->devid);
+ btrfs_set_stack_stripe_offset(stripe, dev_offset);
+ memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
+ stripe++;
+ index++;
+ }
+
+ btrfs_set_stack_chunk_length(chunk, chunk_size);
+ btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
+ btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
+ btrfs_set_stack_chunk_type(chunk, map->type);
+ btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
+ btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
+ btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
+ btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
+ btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
+
+ key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
+ key.type = BTRFS_CHUNK_ITEM_KEY;
+ key.offset = chunk_offset;
+
+ ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
+
+ if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
+ /*
+ * TODO: Cleanup of inserted chunk root in case of
+ * failure.
+ */
+ ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
+ item_size);
+ }
+
+out_free:
+ kfree(chunk);
+ return ret;
+}
+
+/*
+ * Chunk allocation falls into two parts. The first part does works
+ * that make the new allocated chunk useable, but not do any operation
+ * that modifies the chunk tree. The second part does the works that
+ * require modifying the chunk tree. This division is important for the
+ * bootstrap process of adding storage to a seed btrfs.
+ */
+int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root, u64 type)
+{
+ u64 chunk_offset;
+ u64 chunk_size;
+ u64 stripe_size;
+ struct map_lookup *map;
+ struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
+ int ret;
+
+ ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
+ &chunk_offset);
+ if (ret)
+ return ret;
+
+ ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
+ &stripe_size, chunk_offset, type);
+ if (ret)
+ return ret;
+
+ ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
+ chunk_size, stripe_size);
+ if (ret)
+ return ret;
+ return 0;
+}
+
+static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_device *device)
+{
+ u64 chunk_offset;
+ u64 sys_chunk_offset;
+ u64 chunk_size;
+ u64 sys_chunk_size;
+ u64 stripe_size;
+ u64 sys_stripe_size;
+ u64 alloc_profile;
+ struct map_lookup *map;
+ struct map_lookup *sys_map;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_root *extent_root = fs_info->extent_root;
+ int ret;
+
+ ret = find_next_chunk(fs_info->chunk_root,
+ BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
+ if (ret)
+ return ret;
+
+ alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
+ fs_info->avail_metadata_alloc_bits;
+ alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
+
+ ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
+ &stripe_size, chunk_offset, alloc_profile);
+ if (ret)
+ return ret;
+
+ sys_chunk_offset = chunk_offset + chunk_size;
+
+ alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
+ fs_info->avail_system_alloc_bits;
+ alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
+
+ ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
+ &sys_chunk_size, &sys_stripe_size,
+ sys_chunk_offset, alloc_profile);
+ if (ret)
+ goto abort;
+
+ ret = btrfs_add_device(trans, fs_info->chunk_root, device);
+ if (ret)
+ goto abort;
+
+ /*
+ * Modifying chunk tree needs allocating new blocks from both
+ * system block group and metadata block group. So we only can
+ * do operations require modifying the chunk tree after both
+ * block groups were created.
+ */
+ ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
+ chunk_size, stripe_size);
+ if (ret)
+ goto abort;
+
+ ret = __finish_chunk_alloc(trans, extent_root, sys_map,
+ sys_chunk_offset, sys_chunk_size,
+ sys_stripe_size);
+ if (ret)
+ goto abort;
+
+ return 0;
+
+abort:
+ btrfs_abort_transaction(trans, root, ret);
+ return ret;
+}
+
+int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
+{
+ struct extent_map *em;
+ struct map_lookup *map;
+ struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+ int readonly = 0;
+ int i;
+
+ read_lock(&map_tree->map_tree.lock);
+ em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
+ read_unlock(&map_tree->map_tree.lock);
+ if (!em)
+ return 1;
+
+ if (btrfs_test_opt(root, DEGRADED)) {
+ free_extent_map(em);
+ return 0;
+ }
+
+ map = (struct map_lookup *)em->bdev;
+ for (i = 0; i < map->num_stripes; i++) {
+ if (!map->stripes[i].dev->writeable) {
+ readonly = 1;
+ break;
+ }
+ }
+ free_extent_map(em);
+ return readonly;
+}
+
+void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
+{
+ extent_map_tree_init(&tree->map_tree);
+}
+
+void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
+{
+ struct extent_map *em;
+
+ while (1) {
+ write_lock(&tree->map_tree.lock);
+ em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
+ if (em)
+ remove_extent_mapping(&tree->map_tree, em);
+ write_unlock(&tree->map_tree.lock);
+ if (!em)
+ break;
+ kfree(em->bdev);
+ /* once for us */
+ free_extent_map(em);
+ /* once for the tree */
+ free_extent_map(em);
+ }
+}
+
+int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
+{
+ struct extent_map *em;
+ struct map_lookup *map;
+ struct extent_map_tree *em_tree = &map_tree->map_tree;
+ int ret;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, logical, len);
+ read_unlock(&em_tree->lock);
+ BUG_ON(!em);
+
+ BUG_ON(em->start > logical || em->start + em->len < logical);
+ map = (struct map_lookup *)em->bdev;
+ if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
+ ret = map->num_stripes;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
+ ret = map->sub_stripes;
+ else
+ ret = 1;
+ free_extent_map(em);
+ return ret;
+}
+
+static int find_live_mirror(struct map_lookup *map, int first, int num,
+ int optimal)
+{
+ int i;
+ if (map->stripes[optimal].dev->bdev)
+ return optimal;
+ for (i = first; i < first + num; i++) {
+ if (map->stripes[i].dev->bdev)
+ return i;
+ }
+ /* we couldn't find one that doesn't fail. Just return something
+ * and the io error handling code will clean up eventually
+ */
+ return optimal;
+}
+
+static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
+ u64 logical, u64 *length,
+ struct btrfs_bio **bbio_ret,
+ int mirror_num)
+{
+ struct extent_map *em;
+ struct map_lookup *map;
+ struct extent_map_tree *em_tree = &map_tree->map_tree;
+ u64 offset;
+ u64 stripe_offset;
+ u64 stripe_end_offset;
+ u64 stripe_nr;
+ u64 stripe_nr_orig;
+ u64 stripe_nr_end;
+ int stripe_index;
+ int i;
+ int ret = 0;
+ int num_stripes;
+ int max_errors = 0;
+ struct btrfs_bio *bbio = NULL;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, logical, *length);
+ read_unlock(&em_tree->lock);
+
+ if (!em) {
+ printk(KERN_CRIT "unable to find logical %llu len %llu\n",
+ (unsigned long long)logical,
+ (unsigned long long)*length);
+ BUG();
+ }
+
+ BUG_ON(em->start > logical || em->start + em->len < logical);
+ map = (struct map_lookup *)em->bdev;
+ offset = logical - em->start;
+
+ if (mirror_num > map->num_stripes)
+ mirror_num = 0;
+
+ stripe_nr = offset;
+ /*
+ * stripe_nr counts the total number of stripes we have to stride
+ * to get to this block
+ */
+ do_div(stripe_nr, map->stripe_len);
+
+ stripe_offset = stripe_nr * map->stripe_len;
+ BUG_ON(offset < stripe_offset);
+
+ /* stripe_offset is the offset of this block in its stripe*/
+ stripe_offset = offset - stripe_offset;
+
+ if (rw & REQ_DISCARD)
+ *length = min_t(u64, em->len - offset, *length);
+ else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
+ /* we limit the length of each bio to what fits in a stripe */
+ *length = min_t(u64, em->len - offset,
+ map->stripe_len - stripe_offset);
+ } else {
+ *length = em->len - offset;
+ }
+
+ if (!bbio_ret)
+ goto out;
+
+ num_stripes = 1;
+ stripe_index = 0;
+ stripe_nr_orig = stripe_nr;
+ stripe_nr_end = (offset + *length + map->stripe_len - 1) &
+ (~(map->stripe_len - 1));
+ do_div(stripe_nr_end, map->stripe_len);
+ stripe_end_offset = stripe_nr_end * map->stripe_len -
+ (offset + *length);
+ if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
+ if (rw & REQ_DISCARD)
+ num_stripes = min_t(u64, map->num_stripes,
+ stripe_nr_end - stripe_nr_orig);
+ stripe_index = do_div(stripe_nr, map->num_stripes);
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
+ if (rw & (REQ_WRITE | REQ_DISCARD))
+ num_stripes = map->num_stripes;
+ else if (mirror_num)
+ stripe_index = mirror_num - 1;
+ else {
+ stripe_index = find_live_mirror(map, 0,
+ map->num_stripes,
+ current->pid % map->num_stripes);
+ mirror_num = stripe_index + 1;
+ }
+
+ } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
+ if (rw & (REQ_WRITE | REQ_DISCARD)) {
+ num_stripes = map->num_stripes;
+ } else if (mirror_num) {
+ stripe_index = mirror_num - 1;
+ } else {
+ mirror_num = 1;
+ }
+
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+ int factor = map->num_stripes / map->sub_stripes;
+
+ stripe_index = do_div(stripe_nr, factor);
+ stripe_index *= map->sub_stripes;
+
+ if (rw & REQ_WRITE)
+ num_stripes = map->sub_stripes;
+ else if (rw & REQ_DISCARD)
+ num_stripes = min_t(u64, map->sub_stripes *
+ (stripe_nr_end - stripe_nr_orig),
+ map->num_stripes);
+ else if (mirror_num)
+ stripe_index += mirror_num - 1;
+ else {
+ int old_stripe_index = stripe_index;
+ stripe_index = find_live_mirror(map, stripe_index,
+ map->sub_stripes, stripe_index +
+ current->pid % map->sub_stripes);
+ mirror_num = stripe_index - old_stripe_index + 1;
+ }
+ } else {
+ /*
+ * after this do_div call, stripe_nr is the number of stripes
+ * on this device we have to walk to find the data, and
+ * stripe_index is the number of our device in the stripe array
+ */
+ stripe_index = do_div(stripe_nr, map->num_stripes);
+ mirror_num = stripe_index + 1;
+ }
+ BUG_ON(stripe_index >= map->num_stripes);
+
+ bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
+ if (!bbio) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ atomic_set(&bbio->error, 0);
+
+ if (rw & REQ_DISCARD) {
+ int factor = 0;
+ int sub_stripes = 0;
+ u64 stripes_per_dev = 0;
+ u32 remaining_stripes = 0;
+ u32 last_stripe = 0;
+
+ if (map->type &
+ (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
+ if (map->type & BTRFS_BLOCK_GROUP_RAID0)
+ sub_stripes = 1;
+ else
+ sub_stripes = map->sub_stripes;
+
+ factor = map->num_stripes / sub_stripes;
+ stripes_per_dev = div_u64_rem(stripe_nr_end -
+ stripe_nr_orig,
+ factor,
+ &remaining_stripes);
+ div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
+ last_stripe *= sub_stripes;
+ }
+
+ for (i = 0; i < num_stripes; i++) {
+ bbio->stripes[i].physical =
+ map->stripes[stripe_index].physical +
+ stripe_offset + stripe_nr * map->stripe_len;
+ bbio->stripes[i].dev = map->stripes[stripe_index].dev;
+
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID10)) {
+ bbio->stripes[i].length = stripes_per_dev *
+ map->stripe_len;
+
+ if (i / sub_stripes < remaining_stripes)
+ bbio->stripes[i].length +=
+ map->stripe_len;
+
+ /*
+ * Special for the first stripe and
+ * the last stripe:
+ *
+ * |-------|...|-------|
+ * |----------|
+ * off end_off
+ */
+ if (i < sub_stripes)
+ bbio->stripes[i].length -=
+ stripe_offset;
+
+ if (stripe_index >= last_stripe &&
+ stripe_index <= (last_stripe +
+ sub_stripes - 1))
+ bbio->stripes[i].length -=
+ stripe_end_offset;
+
+ if (i == sub_stripes - 1)
+ stripe_offset = 0;
+ } else
+ bbio->stripes[i].length = *length;
+
+ stripe_index++;
+ if (stripe_index == map->num_stripes) {
+ /* This could only happen for RAID0/10 */
+ stripe_index = 0;
+ stripe_nr++;
+ }
+ }
+ } else {
+ for (i = 0; i < num_stripes; i++) {
+ bbio->stripes[i].physical =
+ map->stripes[stripe_index].physical +
+ stripe_offset +
+ stripe_nr * map->stripe_len;
+ bbio->stripes[i].dev =
+ map->stripes[stripe_index].dev;
+ stripe_index++;
+ }
+ }
+
+ if (rw & REQ_WRITE) {
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_DUP)) {
+ max_errors = 1;
+ }
+ }
+
+ *bbio_ret = bbio;
+ bbio->num_stripes = num_stripes;
+ bbio->max_errors = max_errors;
+ bbio->mirror_num = mirror_num;
+out:
+ free_extent_map(em);
+ return ret;
+}
+
+int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
+ u64 logical, u64 *length,
+ struct btrfs_bio **bbio_ret, int mirror_num)
+{
+ return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
+ mirror_num);
+}
+
+int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
+ u64 chunk_start, u64 physical, u64 devid,
+ u64 **logical, int *naddrs, int *stripe_len)
+{
+ struct extent_map_tree *em_tree = &map_tree->map_tree;
+ struct extent_map *em;
+ struct map_lookup *map;
+ u64 *buf;
+ u64 bytenr;
+ u64 length;
+ u64 stripe_nr;
+ int i, j, nr = 0;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, chunk_start, 1);
+ read_unlock(&em_tree->lock);
+
+ BUG_ON(!em || em->start != chunk_start);
+ map = (struct map_lookup *)em->bdev;
+
+ length = em->len;
+ if (map->type & BTRFS_BLOCK_GROUP_RAID10)
+ do_div(length, map->num_stripes / map->sub_stripes);
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
+ do_div(length, map->num_stripes);
+
+ buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
+ BUG_ON(!buf); /* -ENOMEM */
+
+ for (i = 0; i < map->num_stripes; i++) {
+ if (devid && map->stripes[i].dev->devid != devid)
+ continue;
+ if (map->stripes[i].physical > physical ||
+ map->stripes[i].physical + length <= physical)
+ continue;
+
+ stripe_nr = physical - map->stripes[i].physical;
+ do_div(stripe_nr, map->stripe_len);
+
+ if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
+ stripe_nr = stripe_nr * map->num_stripes + i;
+ do_div(stripe_nr, map->sub_stripes);
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
+ stripe_nr = stripe_nr * map->num_stripes + i;
+ }
+ bytenr = chunk_start + stripe_nr * map->stripe_len;
+ WARN_ON(nr >= map->num_stripes);
+ for (j = 0; j < nr; j++) {
+ if (buf[j] == bytenr)
+ break;
+ }
+ if (j == nr) {
+ WARN_ON(nr >= map->num_stripes);
+ buf[nr++] = bytenr;
+ }
+ }
+
+ *logical = buf;
+ *naddrs = nr;
+ *stripe_len = map->stripe_len;
+
+ free_extent_map(em);
+ return 0;
+}
+
+static void btrfs_end_bio(struct bio *bio, int err)
+{
+ struct btrfs_bio *bbio = bio->bi_private;
+ int is_orig_bio = 0;
+
+ if (err)
+ atomic_inc(&bbio->error);
+
+ if (bio == bbio->orig_bio)
+ is_orig_bio = 1;
+
+ if (atomic_dec_and_test(&bbio->stripes_pending)) {
+ if (!is_orig_bio) {
+ bio_put(bio);
+ bio = bbio->orig_bio;
+ }
+ bio->bi_private = bbio->private;
+ bio->bi_end_io = bbio->end_io;
+ bio->bi_bdev = (struct block_device *)
+ (unsigned long)bbio->mirror_num;
+ /* only send an error to the higher layers if it is
+ * beyond the tolerance of the multi-bio
+ */
+ if (atomic_read(&bbio->error) > bbio->max_errors) {
+ err = -EIO;
+ } else {
+ /*
+ * this bio is actually up to date, we didn't
+ * go over the max number of errors
+ */
+ set_bit(BIO_UPTODATE, &bio->bi_flags);
+ err = 0;
+ }
+ kfree(bbio);
+
+ bio_endio(bio, err);
+ } else if (!is_orig_bio) {
+ bio_put(bio);
+ }
+}
+
+struct async_sched {
+ struct bio *bio;
+ int rw;
+ struct btrfs_fs_info *info;
+ struct btrfs_work work;
+};
+
+/*
+ * see run_scheduled_bios for a description of why bios are collected for
+ * async submit.
+ *
+ * This will add one bio to the pending list for a device and make sure
+ * the work struct is scheduled.
+ */
+static noinline void schedule_bio(struct btrfs_root *root,
+ struct btrfs_device *device,
+ int rw, struct bio *bio)
+{
+ int should_queue = 1;
+ struct btrfs_pending_bios *pending_bios;
+
+ /* don't bother with additional async steps for reads, right now */
+ if (!(rw & REQ_WRITE)) {
+ bio_get(bio);
+ btrfsic_submit_bio(rw, bio);
+ bio_put(bio);
+ return;
+ }
+
+ /*
+ * nr_async_bios allows us to reliably return congestion to the
+ * higher layers. Otherwise, the async bio makes it appear we have
+ * made progress against dirty pages when we've really just put it
+ * on a queue for later
+ */
+ atomic_inc(&root->fs_info->nr_async_bios);
+ WARN_ON(bio->bi_next);
+ bio->bi_next = NULL;
+ bio->bi_rw |= rw;
+
+ spin_lock(&device->io_lock);
+ if (bio->bi_rw & REQ_SYNC)
+ pending_bios = &device->pending_sync_bios;
+ else
+ pending_bios = &device->pending_bios;
+
+ if (pending_bios->tail)
+ pending_bios->tail->bi_next = bio;
+
+ pending_bios->tail = bio;
+ if (!pending_bios->head)
+ pending_bios->head = bio;
+ if (device->running_pending)
+ should_queue = 0;
+
+ spin_unlock(&device->io_lock);
+
+ if (should_queue)
+ btrfs_queue_worker(&root->fs_info->submit_workers,
+ &device->work);
+}
+
+int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
+ int mirror_num, int async_submit)
+{
+ struct btrfs_mapping_tree *map_tree;
+ struct btrfs_device *dev;
+ struct bio *first_bio = bio;
+ u64 logical = (u64)bio->bi_sector << 9;
+ u64 length = 0;
+ u64 map_length;
+ int ret;
+ int dev_nr = 0;
+ int total_devs = 1;
+ struct btrfs_bio *bbio = NULL;
+
+ length = bio->bi_size;
+ map_tree = &root->fs_info->mapping_tree;
+ map_length = length;
+
+ ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
+ mirror_num);
+ if (ret) /* -ENOMEM */
+ return ret;
+
+ total_devs = bbio->num_stripes;
+ if (map_length < length) {
+ printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
+ "len %llu\n", (unsigned long long)logical,
+ (unsigned long long)length,
+ (unsigned long long)map_length);
+ BUG();
+ }
+
+ bbio->orig_bio = first_bio;
+ bbio->private = first_bio->bi_private;
+ bbio->end_io = first_bio->bi_end_io;
+ atomic_set(&bbio->stripes_pending, bbio->num_stripes);
+
+ while (dev_nr < total_devs) {
+ if (dev_nr < total_devs - 1) {
+ bio = bio_clone(first_bio, GFP_NOFS);
+ BUG_ON(!bio); /* -ENOMEM */
+ } else {
+ bio = first_bio;
+ }
+ bio->bi_private = bbio;
+ bio->bi_end_io = btrfs_end_bio;
+ bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
+ dev = bbio->stripes[dev_nr].dev;
+ if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
+ pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
+ "(%s id %llu), size=%u\n", rw,
+ (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
+ dev->name, dev->devid, bio->bi_size);
+ bio->bi_bdev = dev->bdev;
+ if (async_submit)
+ schedule_bio(root, dev, rw, bio);
+ else
+ btrfsic_submit_bio(rw, bio);
+ } else {
+ bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
+ bio->bi_sector = logical >> 9;
+ bio_endio(bio, -EIO);
+ }
+ dev_nr++;
+ }
+ return 0;
+}
+
+struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
+ u8 *uuid, u8 *fsid)
+{
+ struct btrfs_device *device;
+ struct btrfs_fs_devices *cur_devices;
+
+ cur_devices = root->fs_info->fs_devices;
+ while (cur_devices) {
+ if (!fsid ||
+ !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
+ device = __find_device(&cur_devices->devices,
+ devid, uuid);
+ if (device)
+ return device;
+ }
+ cur_devices = cur_devices->seed;
+ }
+ return NULL;
+}
+
+static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
+ u64 devid, u8 *dev_uuid)
+{
+ struct btrfs_device *device;
+ struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+
+ device = kzalloc(sizeof(*device), GFP_NOFS);
+ if (!device)
+ return NULL;
+ list_add(&device->dev_list,
+ &fs_devices->devices);
+ device->dev_root = root->fs_info->dev_root;
+ device->devid = devid;
+ device->work.func = pending_bios_fn;
+ device->fs_devices = fs_devices;
+ device->missing = 1;
+ fs_devices->num_devices++;
+ fs_devices->missing_devices++;
+ spin_lock_init(&device->io_lock);
+ INIT_LIST_HEAD(&device->dev_alloc_list);
+ memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
+ return device;
+}
+
+static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
+ struct extent_buffer *leaf,
+ struct btrfs_chunk *chunk)
+{
+ struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
+ struct map_lookup *map;
+ struct extent_map *em;
+ u64 logical;
+ u64 length;
+ u64 devid;
+ u8 uuid[BTRFS_UUID_SIZE];
+ int num_stripes;
+ int ret;
+ int i;
+
+ logical = key->offset;
+ length = btrfs_chunk_length(leaf, chunk);
+
+ read_lock(&map_tree->map_tree.lock);
+ em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
+ read_unlock(&map_tree->map_tree.lock);
+
+ /* already mapped? */
+ if (em && em->start <= logical && em->start + em->len > logical) {
+ free_extent_map(em);
+ return 0;
+ } else if (em) {
+ free_extent_map(em);
+ }
+
+ em = alloc_extent_map();
+ if (!em)
+ return -ENOMEM;
+ num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
+ map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
+ if (!map) {
+ free_extent_map(em);
+ return -ENOMEM;
+ }
+
+ em->bdev = (struct block_device *)map;
+ em->start = logical;
+ em->len = length;
+ em->block_start = 0;
+ em->block_len = em->len;
+
+ map->num_stripes = num_stripes;
+ map->io_width = btrfs_chunk_io_width(leaf, chunk);
+ map->io_align = btrfs_chunk_io_align(leaf, chunk);
+ map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
+ map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
+ map->type = btrfs_chunk_type(leaf, chunk);
+ map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
+ for (i = 0; i < num_stripes; i++) {
+ map->stripes[i].physical =
+ btrfs_stripe_offset_nr(leaf, chunk, i);
+ devid = btrfs_stripe_devid_nr(leaf, chunk, i);
+ read_extent_buffer(leaf, uuid, (unsigned long)
+ btrfs_stripe_dev_uuid_nr(chunk, i),
+ BTRFS_UUID_SIZE);
+ map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
+ NULL);
+ if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
+ kfree(map);
+ free_extent_map(em);
+ return -EIO;
+ }
+ if (!map->stripes[i].dev) {
+ map->stripes[i].dev =
+ add_missing_dev(root, devid, uuid);
+ if (!map->stripes[i].dev) {
+ kfree(map);
+ free_extent_map(em);
+ return -EIO;
+ }
+ }
+ map->stripes[i].dev->in_fs_metadata = 1;
+ }
+
+ write_lock(&map_tree->map_tree.lock);
+ ret = add_extent_mapping(&map_tree->map_tree, em);
+ write_unlock(&map_tree->map_tree.lock);
+ BUG_ON(ret); /* Tree corruption */
+ free_extent_map(em);
+
+ return 0;
+}
+
+static void fill_device_from_item(struct extent_buffer *leaf,
+ struct btrfs_dev_item *dev_item,
+ struct btrfs_device *device)
+{
+ unsigned long ptr;
+
+ device->devid = btrfs_device_id(leaf, dev_item);
+ device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
+ device->total_bytes = device->disk_total_bytes;
+ device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
+ device->type = btrfs_device_type(leaf, dev_item);
+ device->io_align = btrfs_device_io_align(leaf, dev_item);
+ device->io_width = btrfs_device_io_width(leaf, dev_item);
+ device->sector_size = btrfs_device_sector_size(leaf, dev_item);
+
+ ptr = (unsigned long)btrfs_device_uuid(dev_item);
+ read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
+}
+
+static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
+{
+ struct btrfs_fs_devices *fs_devices;
+ int ret;
+
+ BUG_ON(!mutex_is_locked(&uuid_mutex));
+
+ fs_devices = root->fs_info->fs_devices->seed;
+ while (fs_devices) {
+ if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
+ ret = 0;
+ goto out;
+ }
+ fs_devices = fs_devices->seed;
+ }
+
+ fs_devices = find_fsid(fsid);
+ if (!fs_devices) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ fs_devices = clone_fs_devices(fs_devices);
+ if (IS_ERR(fs_devices)) {
+ ret = PTR_ERR(fs_devices);
+ goto out;
+ }
+
+ ret = __btrfs_open_devices(fs_devices, FMODE_READ,
+ root->fs_info->bdev_holder);
+ if (ret) {
+ free_fs_devices(fs_devices);
+ goto out;
+ }
+
+ if (!fs_devices->seeding) {
+ __btrfs_close_devices(fs_devices);
+ free_fs_devices(fs_devices);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ fs_devices->seed = root->fs_info->fs_devices->seed;
+ root->fs_info->fs_devices->seed = fs_devices;
+out:
+ return ret;
+}
+
+static int read_one_dev(struct btrfs_root *root,
+ struct extent_buffer *leaf,
+ struct btrfs_dev_item *dev_item)
+{
+ struct btrfs_device *device;
+ u64 devid;
+ int ret;
+ u8 fs_uuid[BTRFS_UUID_SIZE];
+ u8 dev_uuid[BTRFS_UUID_SIZE];
+
+ devid = btrfs_device_id(leaf, dev_item);
+ read_extent_buffer(leaf, dev_uuid,
+ (unsigned long)btrfs_device_uuid(dev_item),
+ BTRFS_UUID_SIZE);
+ read_extent_buffer(leaf, fs_uuid,
+ (unsigned long)btrfs_device_fsid(dev_item),
+ BTRFS_UUID_SIZE);
+
+ if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
+ ret = open_seed_devices(root, fs_uuid);
+ if (ret && !btrfs_test_opt(root, DEGRADED))
+ return ret;
+ }
+
+ device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
+ if (!device || !device->bdev) {
+ if (!btrfs_test_opt(root, DEGRADED))
+ return -EIO;
+
+ if (!device) {
+ printk(KERN_WARNING "warning devid %llu missing\n",
+ (unsigned long long)devid);
+ device = add_missing_dev(root, devid, dev_uuid);
+ if (!device)
+ return -ENOMEM;
+ } else if (!device->missing) {
+ /*
+ * this happens when a device that was properly setup
+ * in the device info lists suddenly goes bad.
+ * device->bdev is NULL, and so we have to set
+ * device->missing to one here
+ */
+ root->fs_info->fs_devices->missing_devices++;
+ device->missing = 1;
+ }
+ }
+
+ if (device->fs_devices != root->fs_info->fs_devices) {
+ BUG_ON(device->writeable);
+ if (device->generation !=
+ btrfs_device_generation(leaf, dev_item))
+ return -EINVAL;
+ }
+
+ fill_device_from_item(leaf, dev_item, device);
+ device->dev_root = root->fs_info->dev_root;
+ device->in_fs_metadata = 1;
+ if (device->writeable) {
+ device->fs_devices->total_rw_bytes += device->total_bytes;
+ spin_lock(&root->fs_info->free_chunk_lock);
+ root->fs_info->free_chunk_space += device->total_bytes -
+ device->bytes_used;
+ spin_unlock(&root->fs_info->free_chunk_lock);
+ }
+ ret = 0;
+ return ret;
+}
+
+int btrfs_read_sys_array(struct btrfs_root *root)
+{
+ struct btrfs_super_block *super_copy = root->fs_info->super_copy;
+ struct extent_buffer *sb;
+ struct btrfs_disk_key *disk_key;
+ struct btrfs_chunk *chunk;
+ u8 *ptr;
+ unsigned long sb_ptr;
+ int ret = 0;
+ u32 num_stripes;
+ u32 array_size;
+ u32 len = 0;
+ u32 cur;
+ struct btrfs_key key;
+
+ sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
+ BTRFS_SUPER_INFO_SIZE);
+ if (!sb)
+ return -ENOMEM;
+ btrfs_set_buffer_uptodate(sb);
+ btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
+ /*
+ * The sb extent buffer is artifical and just used to read the system array.
+ * btrfs_set_buffer_uptodate() call does not properly mark all it's
+ * pages up-to-date when the page is larger: extent does not cover the
+ * whole page and consequently check_page_uptodate does not find all
+ * the page's extents up-to-date (the hole beyond sb),
+ * write_extent_buffer then triggers a WARN_ON.
+ *
+ * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
+ * but sb spans only this function. Add an explicit SetPageUptodate call
+ * to silence the warning eg. on PowerPC 64.
+ */
+ if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
+ SetPageUptodate(sb->pages[0]);
+
+ write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
+ array_size = btrfs_super_sys_array_size(super_copy);
+
+ ptr = super_copy->sys_chunk_array;
+ sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
+ cur = 0;
+
+ while (cur < array_size) {
+ disk_key = (struct btrfs_disk_key *)ptr;
+ btrfs_disk_key_to_cpu(&key, disk_key);
+
+ len = sizeof(*disk_key); ptr += len;
+ sb_ptr += len;
+ cur += len;
+
+ if (key.type == BTRFS_CHUNK_ITEM_KEY) {
+ chunk = (struct btrfs_chunk *)sb_ptr;
+ ret = read_one_chunk(root, &key, sb, chunk);
+ if (ret)
+ break;
+ num_stripes = btrfs_chunk_num_stripes(sb, chunk);
+ len = btrfs_chunk_item_size(num_stripes);
+ } else {
+ ret = -EIO;
+ break;
+ }
+ ptr += len;
+ sb_ptr += len;
+ cur += len;
+ }
+ free_extent_buffer(sb);
+ return ret;
+}
+
+int btrfs_read_chunk_tree(struct btrfs_root *root)
+{
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ int ret;
+ int slot;
+
+ root = root->fs_info->chunk_root;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ mutex_lock(&uuid_mutex);
+ lock_chunks(root);
+
+ /* first we search for all of the device items, and then we
+ * read in all of the chunk items. This way we can create chunk
+ * mappings that reference all of the devices that are afound
+ */
+ key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
+ key.offset = 0;
+ key.type = 0;
+again:
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+ while (1) {
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret == 0)
+ continue;
+ if (ret < 0)
+ goto error;
+ break;
+ }
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+ if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
+ if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
+ break;
+ if (found_key.type == BTRFS_DEV_ITEM_KEY) {
+ struct btrfs_dev_item *dev_item;
+ dev_item = btrfs_item_ptr(leaf, slot,
+ struct btrfs_dev_item);
+ ret = read_one_dev(root, leaf, dev_item);
+ if (ret)
+ goto error;
+ }
+ } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
+ struct btrfs_chunk *chunk;
+ chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
+ ret = read_one_chunk(root, &found_key, leaf, chunk);
+ if (ret)
+ goto error;
+ }
+ path->slots[0]++;
+ }
+ if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
+ key.objectid = 0;
+ btrfs_release_path(path);
+ goto again;
+ }
+ ret = 0;
+error:
+ unlock_chunks(root);
+ mutex_unlock(&uuid_mutex);
+
+ btrfs_free_path(path);
+ return ret;
+}
diff --git a/fs/btrfs/volumes.h b/fs/btrfs/volumes.h
new file mode 100644
index 00000000..bb6b03f9
--- /dev/null
+++ b/fs/btrfs/volumes.h
@@ -0,0 +1,284 @@
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_VOLUMES_
+#define __BTRFS_VOLUMES_
+
+#include <linux/bio.h>
+#include <linux/sort.h>
+#include "async-thread.h"
+
+#define BTRFS_STRIPE_LEN (64 * 1024)
+
+struct buffer_head;
+struct btrfs_pending_bios {
+ struct bio *head;
+ struct bio *tail;
+};
+
+struct btrfs_device {
+ struct list_head dev_list;
+ struct list_head dev_alloc_list;
+ struct btrfs_fs_devices *fs_devices;
+ struct btrfs_root *dev_root;
+
+ /* regular prio bios */
+ struct btrfs_pending_bios pending_bios;
+ /* WRITE_SYNC bios */
+ struct btrfs_pending_bios pending_sync_bios;
+
+ int running_pending;
+ u64 generation;
+
+ int writeable;
+ int in_fs_metadata;
+ int missing;
+ int can_discard;
+
+ spinlock_t io_lock;
+
+ struct block_device *bdev;
+
+ /* the mode sent to blkdev_get */
+ fmode_t mode;
+
+ char *name;
+
+ /* the internal btrfs device id */
+ u64 devid;
+
+ /* size of the device */
+ u64 total_bytes;
+
+ /* size of the disk */
+ u64 disk_total_bytes;
+
+ /* bytes used */
+ u64 bytes_used;
+
+ /* optimal io alignment for this device */
+ u32 io_align;
+
+ /* optimal io width for this device */
+ u32 io_width;
+
+ /* minimal io size for this device */
+ u32 sector_size;
+
+ /* type and info about this device */
+ u64 type;
+
+ /* physical drive uuid (or lvm uuid) */
+ u8 uuid[BTRFS_UUID_SIZE];
+
+ /* per-device scrub information */
+ struct scrub_dev *scrub_device;
+
+ struct btrfs_work work;
+ struct rcu_head rcu;
+ struct work_struct rcu_work;
+
+ /* readahead state */
+ spinlock_t reada_lock;
+ atomic_t reada_in_flight;
+ u64 reada_next;
+ struct reada_zone *reada_curr_zone;
+ struct radix_tree_root reada_zones;
+ struct radix_tree_root reada_extents;
+
+ /* for sending down flush barriers */
+ struct bio *flush_bio;
+ struct completion flush_wait;
+ int nobarriers;
+
+};
+
+struct btrfs_fs_devices {
+ u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
+
+ /* the device with this id has the most recent copy of the super */
+ u64 latest_devid;
+ u64 latest_trans;
+ u64 num_devices;
+ u64 open_devices;
+ u64 rw_devices;
+ u64 missing_devices;
+ u64 total_rw_bytes;
+ u64 num_can_discard;
+ struct block_device *latest_bdev;
+
+ /* all of the devices in the FS, protected by a mutex
+ * so we can safely walk it to write out the supers without
+ * worrying about add/remove by the multi-device code
+ */
+ struct mutex device_list_mutex;
+ struct list_head devices;
+
+ /* devices not currently being allocated */
+ struct list_head alloc_list;
+ struct list_head list;
+
+ struct btrfs_fs_devices *seed;
+ int seeding;
+
+ int opened;
+
+ /* set when we find or add a device that doesn't have the
+ * nonrot flag set
+ */
+ int rotating;
+};
+
+struct btrfs_bio_stripe {
+ struct btrfs_device *dev;
+ u64 physical;
+ u64 length; /* only used for discard mappings */
+};
+
+struct btrfs_bio;
+typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
+
+struct btrfs_bio {
+ atomic_t stripes_pending;
+ bio_end_io_t *end_io;
+ struct bio *orig_bio;
+ void *private;
+ atomic_t error;
+ int max_errors;
+ int num_stripes;
+ int mirror_num;
+ struct btrfs_bio_stripe stripes[];
+};
+
+struct btrfs_device_info {
+ struct btrfs_device *dev;
+ u64 dev_offset;
+ u64 max_avail;
+ u64 total_avail;
+};
+
+struct map_lookup {
+ u64 type;
+ int io_align;
+ int io_width;
+ int stripe_len;
+ int sector_size;
+ int num_stripes;
+ int sub_stripes;
+ struct btrfs_bio_stripe stripes[];
+};
+
+#define map_lookup_size(n) (sizeof(struct map_lookup) + \
+ (sizeof(struct btrfs_bio_stripe) * (n)))
+
+/*
+ * Restriper's general type filter
+ */
+#define BTRFS_BALANCE_DATA (1ULL << 0)
+#define BTRFS_BALANCE_SYSTEM (1ULL << 1)
+#define BTRFS_BALANCE_METADATA (1ULL << 2)
+
+#define BTRFS_BALANCE_TYPE_MASK (BTRFS_BALANCE_DATA | \
+ BTRFS_BALANCE_SYSTEM | \
+ BTRFS_BALANCE_METADATA)
+
+#define BTRFS_BALANCE_FORCE (1ULL << 3)
+#define BTRFS_BALANCE_RESUME (1ULL << 4)
+
+/*
+ * Balance filters
+ */
+#define BTRFS_BALANCE_ARGS_PROFILES (1ULL << 0)
+#define BTRFS_BALANCE_ARGS_USAGE (1ULL << 1)
+#define BTRFS_BALANCE_ARGS_DEVID (1ULL << 2)
+#define BTRFS_BALANCE_ARGS_DRANGE (1ULL << 3)
+#define BTRFS_BALANCE_ARGS_VRANGE (1ULL << 4)
+
+/*
+ * Profile changing flags. When SOFT is set we won't relocate chunk if
+ * it already has the target profile (even though it may be
+ * half-filled).
+ */
+#define BTRFS_BALANCE_ARGS_CONVERT (1ULL << 8)
+#define BTRFS_BALANCE_ARGS_SOFT (1ULL << 9)
+
+struct btrfs_balance_args;
+struct btrfs_balance_progress;
+struct btrfs_balance_control {
+ struct btrfs_fs_info *fs_info;
+
+ struct btrfs_balance_args data;
+ struct btrfs_balance_args meta;
+ struct btrfs_balance_args sys;
+
+ u64 flags;
+
+ struct btrfs_balance_progress stat;
+};
+
+int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
+ u64 end, u64 *length);
+
+#define btrfs_bio_size(n) (sizeof(struct btrfs_bio) + \
+ (sizeof(struct btrfs_bio_stripe) * (n)))
+
+int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device,
+ u64 chunk_tree, u64 chunk_objectid,
+ u64 chunk_offset, u64 start, u64 num_bytes);
+int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
+ u64 logical, u64 *length,
+ struct btrfs_bio **bbio_ret, int mirror_num);
+int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
+ u64 chunk_start, u64 physical, u64 devid,
+ u64 **logical, int *naddrs, int *stripe_len);
+int btrfs_read_sys_array(struct btrfs_root *root);
+int btrfs_read_chunk_tree(struct btrfs_root *root);
+int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
+ struct btrfs_root *extent_root, u64 type);
+void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
+void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
+int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
+ int mirror_num, int async_submit);
+int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
+ fmode_t flags, void *holder);
+int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
+ struct btrfs_fs_devices **fs_devices_ret);
+int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
+void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices);
+int btrfs_add_device(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root,
+ struct btrfs_device *device);
+int btrfs_rm_device(struct btrfs_root *root, char *device_path);
+void btrfs_cleanup_fs_uuids(void);
+int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len);
+int btrfs_grow_device(struct btrfs_trans_handle *trans,
+ struct btrfs_device *device, u64 new_size);
+struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
+ u8 *uuid, u8 *fsid);
+int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
+int btrfs_init_new_device(struct btrfs_root *root, char *path);
+int btrfs_balance(struct btrfs_balance_control *bctl,
+ struct btrfs_ioctl_balance_args *bargs);
+int btrfs_recover_balance(struct btrfs_root *tree_root);
+int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
+int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
+int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset);
+int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
+ u64 *start, u64 *max_avail);
+#endif
diff --git a/fs/btrfs/xattr.c b/fs/btrfs/xattr.c
new file mode 100644
index 00000000..e7a56590
--- /dev/null
+++ b/fs/btrfs/xattr.c
@@ -0,0 +1,429 @@
+/*
+ * Copyright (C) 2007 Red Hat. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/rwsem.h>
+#include <linux/xattr.h>
+#include <linux/security.h>
+#include "ctree.h"
+#include "btrfs_inode.h"
+#include "transaction.h"
+#include "xattr.h"
+#include "disk-io.h"
+
+
+ssize_t __btrfs_getxattr(struct inode *inode, const char *name,
+ void *buffer, size_t size)
+{
+ struct btrfs_dir_item *di;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ int ret = 0;
+ unsigned long data_ptr;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ /* lookup the xattr by name */
+ di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(inode), name,
+ strlen(name), 0);
+ if (!di) {
+ ret = -ENODATA;
+ goto out;
+ } else if (IS_ERR(di)) {
+ ret = PTR_ERR(di);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ /* if size is 0, that means we want the size of the attr */
+ if (!size) {
+ ret = btrfs_dir_data_len(leaf, di);
+ goto out;
+ }
+
+ /* now get the data out of our dir_item */
+ if (btrfs_dir_data_len(leaf, di) > size) {
+ ret = -ERANGE;
+ goto out;
+ }
+
+ /*
+ * The way things are packed into the leaf is like this
+ * |struct btrfs_dir_item|name|data|
+ * where name is the xattr name, so security.foo, and data is the
+ * content of the xattr. data_ptr points to the location in memory
+ * where the data starts in the in memory leaf
+ */
+ data_ptr = (unsigned long)((char *)(di + 1) +
+ btrfs_dir_name_len(leaf, di));
+ read_extent_buffer(leaf, buffer, data_ptr,
+ btrfs_dir_data_len(leaf, di));
+ ret = btrfs_dir_data_len(leaf, di);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int do_setxattr(struct btrfs_trans_handle *trans,
+ struct inode *inode, const char *name,
+ const void *value, size_t size, int flags)
+{
+ struct btrfs_dir_item *di;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_path *path;
+ size_t name_len = strlen(name);
+ int ret = 0;
+
+ if (name_len + size > BTRFS_MAX_XATTR_SIZE(root))
+ return -ENOSPC;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ if (flags & XATTR_REPLACE) {
+ di = btrfs_lookup_xattr(trans, root, path, btrfs_ino(inode), name,
+ name_len, -1);
+ if (IS_ERR(di)) {
+ ret = PTR_ERR(di);
+ goto out;
+ } else if (!di) {
+ ret = -ENODATA;
+ goto out;
+ }
+ ret = btrfs_delete_one_dir_name(trans, root, path, di);
+ if (ret)
+ goto out;
+ btrfs_release_path(path);
+
+ /*
+ * remove the attribute
+ */
+ if (!value)
+ goto out;
+ }
+
+again:
+ ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(inode),
+ name, name_len, value, size);
+ /*
+ * If we're setting an xattr to a new value but the new value is say
+ * exactly BTRFS_MAX_XATTR_SIZE, we could end up with EOVERFLOW getting
+ * back from split_leaf. This is because it thinks we'll be extending
+ * the existing item size, but we're asking for enough space to add the
+ * item itself. So if we get EOVERFLOW just set ret to EEXIST and let
+ * the rest of the function figure it out.
+ */
+ if (ret == -EOVERFLOW)
+ ret = -EEXIST;
+
+ if (ret == -EEXIST) {
+ if (flags & XATTR_CREATE)
+ goto out;
+ /*
+ * We can't use the path we already have since we won't have the
+ * proper locking for a delete, so release the path and
+ * re-lookup to delete the thing.
+ */
+ btrfs_release_path(path);
+ di = btrfs_lookup_xattr(trans, root, path, btrfs_ino(inode),
+ name, name_len, -1);
+ if (IS_ERR(di)) {
+ ret = PTR_ERR(di);
+ goto out;
+ } else if (!di) {
+ /* Shouldn't happen but just in case... */
+ btrfs_release_path(path);
+ goto again;
+ }
+
+ ret = btrfs_delete_one_dir_name(trans, root, path, di);
+ if (ret)
+ goto out;
+
+ /*
+ * We have a value to set, so go back and try to insert it now.
+ */
+ if (value) {
+ btrfs_release_path(path);
+ goto again;
+ }
+ }
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * @value: "" makes the attribute to empty, NULL removes it
+ */
+int __btrfs_setxattr(struct btrfs_trans_handle *trans,
+ struct inode *inode, const char *name,
+ const void *value, size_t size, int flags)
+{
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ int ret;
+
+ if (trans)
+ return do_setxattr(trans, inode, name, value, size, flags);
+
+ trans = btrfs_start_transaction(root, 2);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+
+ ret = do_setxattr(trans, inode, name, value, size, flags);
+ if (ret)
+ goto out;
+
+ inode->i_ctime = CURRENT_TIME;
+ ret = btrfs_update_inode(trans, root, inode);
+ BUG_ON(ret);
+out:
+ btrfs_end_transaction(trans, root);
+ return ret;
+}
+
+ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
+{
+ struct btrfs_key key, found_key;
+ struct inode *inode = dentry->d_inode;
+ struct btrfs_root *root = BTRFS_I(inode)->root;
+ struct btrfs_path *path;
+ struct extent_buffer *leaf;
+ struct btrfs_dir_item *di;
+ int ret = 0, slot;
+ size_t total_size = 0, size_left = size;
+ unsigned long name_ptr;
+ size_t name_len;
+
+ /*
+ * ok we want all objects associated with this id.
+ * NOTE: we set key.offset = 0; because we want to start with the
+ * first xattr that we find and walk forward
+ */
+ key.objectid = btrfs_ino(inode);
+ btrfs_set_key_type(&key, BTRFS_XATTR_ITEM_KEY);
+ key.offset = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+ path->reada = 2;
+
+ /* search for our xattrs */
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto err;
+
+ while (1) {
+ leaf = path->nodes[0];
+ slot = path->slots[0];
+
+ /* this is where we start walking through the path */
+ if (slot >= btrfs_header_nritems(leaf)) {
+ /*
+ * if we've reached the last slot in this leaf we need
+ * to go to the next leaf and reset everything
+ */
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ goto err;
+ else if (ret > 0)
+ break;
+ continue;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &found_key, slot);
+
+ /* check to make sure this item is what we want */
+ if (found_key.objectid != key.objectid)
+ break;
+ if (btrfs_key_type(&found_key) != BTRFS_XATTR_ITEM_KEY)
+ break;
+
+ di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
+ if (verify_dir_item(root, leaf, di))
+ continue;
+
+ name_len = btrfs_dir_name_len(leaf, di);
+ total_size += name_len + 1;
+
+ /* we are just looking for how big our buffer needs to be */
+ if (!size)
+ goto next;
+
+ if (!buffer || (name_len + 1) > size_left) {
+ ret = -ERANGE;
+ goto err;
+ }
+
+ name_ptr = (unsigned long)(di + 1);
+ read_extent_buffer(leaf, buffer, name_ptr, name_len);
+ buffer[name_len] = '\0';
+
+ size_left -= name_len + 1;
+ buffer += name_len + 1;
+next:
+ path->slots[0]++;
+ }
+ ret = total_size;
+
+err:
+ btrfs_free_path(path);
+
+ return ret;
+}
+
+/*
+ * List of handlers for synthetic system.* attributes. All real ondisk
+ * attributes are handled directly.
+ */
+const struct xattr_handler *btrfs_xattr_handlers[] = {
+#ifdef CONFIG_BTRFS_FS_POSIX_ACL
+ &btrfs_xattr_acl_access_handler,
+ &btrfs_xattr_acl_default_handler,
+#endif
+ NULL,
+};
+
+/*
+ * Check if the attribute is in a supported namespace.
+ *
+ * This applied after the check for the synthetic attributes in the system
+ * namespace.
+ */
+static bool btrfs_is_valid_xattr(const char *name)
+{
+ return !strncmp(name, XATTR_SECURITY_PREFIX,
+ XATTR_SECURITY_PREFIX_LEN) ||
+ !strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN) ||
+ !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
+ !strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN);
+}
+
+ssize_t btrfs_getxattr(struct dentry *dentry, const char *name,
+ void *buffer, size_t size)
+{
+ /*
+ * If this is a request for a synthetic attribute in the system.*
+ * namespace use the generic infrastructure to resolve a handler
+ * for it via sb->s_xattr.
+ */
+ if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
+ return generic_getxattr(dentry, name, buffer, size);
+
+ if (!btrfs_is_valid_xattr(name))
+ return -EOPNOTSUPP;
+ return __btrfs_getxattr(dentry->d_inode, name, buffer, size);
+}
+
+int btrfs_setxattr(struct dentry *dentry, const char *name, const void *value,
+ size_t size, int flags)
+{
+ struct btrfs_root *root = BTRFS_I(dentry->d_inode)->root;
+
+ /*
+ * The permission on security.* and system.* is not checked
+ * in permission().
+ */
+ if (btrfs_root_readonly(root))
+ return -EROFS;
+
+ /*
+ * If this is a request for a synthetic attribute in the system.*
+ * namespace use the generic infrastructure to resolve a handler
+ * for it via sb->s_xattr.
+ */
+ if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
+ return generic_setxattr(dentry, name, value, size, flags);
+
+ if (!btrfs_is_valid_xattr(name))
+ return -EOPNOTSUPP;
+
+ if (size == 0)
+ value = ""; /* empty EA, do not remove */
+
+ return __btrfs_setxattr(NULL, dentry->d_inode, name, value, size,
+ flags);
+}
+
+int btrfs_removexattr(struct dentry *dentry, const char *name)
+{
+ struct btrfs_root *root = BTRFS_I(dentry->d_inode)->root;
+
+ /*
+ * The permission on security.* and system.* is not checked
+ * in permission().
+ */
+ if (btrfs_root_readonly(root))
+ return -EROFS;
+
+ /*
+ * If this is a request for a synthetic attribute in the system.*
+ * namespace use the generic infrastructure to resolve a handler
+ * for it via sb->s_xattr.
+ */
+ if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
+ return generic_removexattr(dentry, name);
+
+ if (!btrfs_is_valid_xattr(name))
+ return -EOPNOTSUPP;
+
+ return __btrfs_setxattr(NULL, dentry->d_inode, name, NULL, 0,
+ XATTR_REPLACE);
+}
+
+int btrfs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
+ void *fs_info)
+{
+ const struct xattr *xattr;
+ struct btrfs_trans_handle *trans = fs_info;
+ char *name;
+ int err = 0;
+
+ for (xattr = xattr_array; xattr->name != NULL; xattr++) {
+ name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
+ strlen(xattr->name) + 1, GFP_NOFS);
+ if (!name) {
+ err = -ENOMEM;
+ break;
+ }
+ strcpy(name, XATTR_SECURITY_PREFIX);
+ strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
+ err = __btrfs_setxattr(trans, inode, name,
+ xattr->value, xattr->value_len, 0);
+ kfree(name);
+ if (err < 0)
+ break;
+ }
+ return err;
+}
+
+int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *dir,
+ const struct qstr *qstr)
+{
+ return security_inode_init_security(inode, dir, qstr,
+ &btrfs_initxattrs, trans);
+}
diff --git a/fs/btrfs/xattr.h b/fs/btrfs/xattr.h
new file mode 100644
index 00000000..b3cc8039
--- /dev/null
+++ b/fs/btrfs/xattr.h
@@ -0,0 +1,43 @@
+/*
+ * Copyright (C) 2007 Red Hat. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __XATTR__
+#define __XATTR__
+
+#include <linux/xattr.h>
+
+extern const struct xattr_handler btrfs_xattr_acl_access_handler;
+extern const struct xattr_handler btrfs_xattr_acl_default_handler;
+extern const struct xattr_handler *btrfs_xattr_handlers[];
+
+extern ssize_t __btrfs_getxattr(struct inode *inode, const char *name,
+ void *buffer, size_t size);
+extern int __btrfs_setxattr(struct btrfs_trans_handle *trans,
+ struct inode *inode, const char *name,
+ const void *value, size_t size, int flags);
+extern ssize_t btrfs_getxattr(struct dentry *dentry, const char *name,
+ void *buffer, size_t size);
+extern int btrfs_setxattr(struct dentry *dentry, const char *name,
+ const void *value, size_t size, int flags);
+extern int btrfs_removexattr(struct dentry *dentry, const char *name);
+
+extern int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
+ struct inode *inode, struct inode *dir,
+ const struct qstr *qstr);
+
+#endif /* __XATTR__ */
diff --git a/fs/btrfs/zlib.c b/fs/btrfs/zlib.c
new file mode 100644
index 00000000..92c20654
--- /dev/null
+++ b/fs/btrfs/zlib.c
@@ -0,0 +1,399 @@
+/*
+ * Copyright (C) 2008 Oracle. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ *
+ * Based on jffs2 zlib code:
+ * Copyright © 2001-2007 Red Hat, Inc.
+ * Created by David Woodhouse <dwmw2@infradead.org>
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/zlib.h>
+#include <linux/zutil.h>
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/pagemap.h>
+#include <linux/bio.h>
+#include "compression.h"
+
+struct workspace {
+ z_stream inf_strm;
+ z_stream def_strm;
+ char *buf;
+ struct list_head list;
+};
+
+static void zlib_free_workspace(struct list_head *ws)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+
+ vfree(workspace->def_strm.workspace);
+ vfree(workspace->inf_strm.workspace);
+ kfree(workspace->buf);
+ kfree(workspace);
+}
+
+static struct list_head *zlib_alloc_workspace(void)
+{
+ struct workspace *workspace;
+
+ workspace = kzalloc(sizeof(*workspace), GFP_NOFS);
+ if (!workspace)
+ return ERR_PTR(-ENOMEM);
+
+ workspace->def_strm.workspace = vmalloc(zlib_deflate_workspacesize(
+ MAX_WBITS, MAX_MEM_LEVEL));
+ workspace->inf_strm.workspace = vmalloc(zlib_inflate_workspacesize());
+ workspace->buf = kmalloc(PAGE_CACHE_SIZE, GFP_NOFS);
+ if (!workspace->def_strm.workspace ||
+ !workspace->inf_strm.workspace || !workspace->buf)
+ goto fail;
+
+ INIT_LIST_HEAD(&workspace->list);
+
+ return &workspace->list;
+fail:
+ zlib_free_workspace(&workspace->list);
+ return ERR_PTR(-ENOMEM);
+}
+
+static int zlib_compress_pages(struct list_head *ws,
+ struct address_space *mapping,
+ u64 start, unsigned long len,
+ struct page **pages,
+ unsigned long nr_dest_pages,
+ unsigned long *out_pages,
+ unsigned long *total_in,
+ unsigned long *total_out,
+ unsigned long max_out)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+ int ret;
+ char *data_in;
+ char *cpage_out;
+ int nr_pages = 0;
+ struct page *in_page = NULL;
+ struct page *out_page = NULL;
+ unsigned long bytes_left;
+
+ *out_pages = 0;
+ *total_out = 0;
+ *total_in = 0;
+
+ if (Z_OK != zlib_deflateInit(&workspace->def_strm, 3)) {
+ printk(KERN_WARNING "deflateInit failed\n");
+ ret = -1;
+ goto out;
+ }
+
+ workspace->def_strm.total_in = 0;
+ workspace->def_strm.total_out = 0;
+
+ in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
+ data_in = kmap(in_page);
+
+ out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
+ if (out_page == NULL) {
+ ret = -1;
+ goto out;
+ }
+ cpage_out = kmap(out_page);
+ pages[0] = out_page;
+ nr_pages = 1;
+
+ workspace->def_strm.next_in = data_in;
+ workspace->def_strm.next_out = cpage_out;
+ workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
+ workspace->def_strm.avail_in = min(len, PAGE_CACHE_SIZE);
+
+ while (workspace->def_strm.total_in < len) {
+ ret = zlib_deflate(&workspace->def_strm, Z_SYNC_FLUSH);
+ if (ret != Z_OK) {
+ printk(KERN_DEBUG "btrfs deflate in loop returned %d\n",
+ ret);
+ zlib_deflateEnd(&workspace->def_strm);
+ ret = -1;
+ goto out;
+ }
+
+ /* we're making it bigger, give up */
+ if (workspace->def_strm.total_in > 8192 &&
+ workspace->def_strm.total_in <
+ workspace->def_strm.total_out) {
+ ret = -1;
+ goto out;
+ }
+ /* we need another page for writing out. Test this
+ * before the total_in so we will pull in a new page for
+ * the stream end if required
+ */
+ if (workspace->def_strm.avail_out == 0) {
+ kunmap(out_page);
+ if (nr_pages == nr_dest_pages) {
+ out_page = NULL;
+ ret = -1;
+ goto out;
+ }
+ out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
+ if (out_page == NULL) {
+ ret = -1;
+ goto out;
+ }
+ cpage_out = kmap(out_page);
+ pages[nr_pages] = out_page;
+ nr_pages++;
+ workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
+ workspace->def_strm.next_out = cpage_out;
+ }
+ /* we're all done */
+ if (workspace->def_strm.total_in >= len)
+ break;
+
+ /* we've read in a full page, get a new one */
+ if (workspace->def_strm.avail_in == 0) {
+ if (workspace->def_strm.total_out > max_out)
+ break;
+
+ bytes_left = len - workspace->def_strm.total_in;
+ kunmap(in_page);
+ page_cache_release(in_page);
+
+ start += PAGE_CACHE_SIZE;
+ in_page = find_get_page(mapping,
+ start >> PAGE_CACHE_SHIFT);
+ data_in = kmap(in_page);
+ workspace->def_strm.avail_in = min(bytes_left,
+ PAGE_CACHE_SIZE);
+ workspace->def_strm.next_in = data_in;
+ }
+ }
+ workspace->def_strm.avail_in = 0;
+ ret = zlib_deflate(&workspace->def_strm, Z_FINISH);
+ zlib_deflateEnd(&workspace->def_strm);
+
+ if (ret != Z_STREAM_END) {
+ ret = -1;
+ goto out;
+ }
+
+ if (workspace->def_strm.total_out >= workspace->def_strm.total_in) {
+ ret = -1;
+ goto out;
+ }
+
+ ret = 0;
+ *total_out = workspace->def_strm.total_out;
+ *total_in = workspace->def_strm.total_in;
+out:
+ *out_pages = nr_pages;
+ if (out_page)
+ kunmap(out_page);
+
+ if (in_page) {
+ kunmap(in_page);
+ page_cache_release(in_page);
+ }
+ return ret;
+}
+
+static int zlib_decompress_biovec(struct list_head *ws, struct page **pages_in,
+ u64 disk_start,
+ struct bio_vec *bvec,
+ int vcnt,
+ size_t srclen)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+ int ret = 0, ret2;
+ int wbits = MAX_WBITS;
+ char *data_in;
+ size_t total_out = 0;
+ unsigned long page_in_index = 0;
+ unsigned long page_out_index = 0;
+ unsigned long total_pages_in = (srclen + PAGE_CACHE_SIZE - 1) /
+ PAGE_CACHE_SIZE;
+ unsigned long buf_start;
+ unsigned long pg_offset;
+
+ data_in = kmap(pages_in[page_in_index]);
+ workspace->inf_strm.next_in = data_in;
+ workspace->inf_strm.avail_in = min_t(size_t, srclen, PAGE_CACHE_SIZE);
+ workspace->inf_strm.total_in = 0;
+
+ workspace->inf_strm.total_out = 0;
+ workspace->inf_strm.next_out = workspace->buf;
+ workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
+ pg_offset = 0;
+
+ /* If it's deflate, and it's got no preset dictionary, then
+ we can tell zlib to skip the adler32 check. */
+ if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
+ ((data_in[0] & 0x0f) == Z_DEFLATED) &&
+ !(((data_in[0]<<8) + data_in[1]) % 31)) {
+
+ wbits = -((data_in[0] >> 4) + 8);
+ workspace->inf_strm.next_in += 2;
+ workspace->inf_strm.avail_in -= 2;
+ }
+
+ if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
+ printk(KERN_WARNING "inflateInit failed\n");
+ return -1;
+ }
+ while (workspace->inf_strm.total_in < srclen) {
+ ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
+ if (ret != Z_OK && ret != Z_STREAM_END)
+ break;
+
+ buf_start = total_out;
+ total_out = workspace->inf_strm.total_out;
+
+ /* we didn't make progress in this inflate call, we're done */
+ if (buf_start == total_out)
+ break;
+
+ ret2 = btrfs_decompress_buf2page(workspace->buf, buf_start,
+ total_out, disk_start,
+ bvec, vcnt,
+ &page_out_index, &pg_offset);
+ if (ret2 == 0) {
+ ret = 0;
+ goto done;
+ }
+
+ workspace->inf_strm.next_out = workspace->buf;
+ workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
+
+ if (workspace->inf_strm.avail_in == 0) {
+ unsigned long tmp;
+ kunmap(pages_in[page_in_index]);
+ page_in_index++;
+ if (page_in_index >= total_pages_in) {
+ data_in = NULL;
+ break;
+ }
+ data_in = kmap(pages_in[page_in_index]);
+ workspace->inf_strm.next_in = data_in;
+ tmp = srclen - workspace->inf_strm.total_in;
+ workspace->inf_strm.avail_in = min(tmp,
+ PAGE_CACHE_SIZE);
+ }
+ }
+ if (ret != Z_STREAM_END)
+ ret = -1;
+ else
+ ret = 0;
+done:
+ zlib_inflateEnd(&workspace->inf_strm);
+ if (data_in)
+ kunmap(pages_in[page_in_index]);
+ return ret;
+}
+
+static int zlib_decompress(struct list_head *ws, unsigned char *data_in,
+ struct page *dest_page,
+ unsigned long start_byte,
+ size_t srclen, size_t destlen)
+{
+ struct workspace *workspace = list_entry(ws, struct workspace, list);
+ int ret = 0;
+ int wbits = MAX_WBITS;
+ unsigned long bytes_left = destlen;
+ unsigned long total_out = 0;
+ char *kaddr;
+
+ workspace->inf_strm.next_in = data_in;
+ workspace->inf_strm.avail_in = srclen;
+ workspace->inf_strm.total_in = 0;
+
+ workspace->inf_strm.next_out = workspace->buf;
+ workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
+ workspace->inf_strm.total_out = 0;
+ /* If it's deflate, and it's got no preset dictionary, then
+ we can tell zlib to skip the adler32 check. */
+ if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
+ ((data_in[0] & 0x0f) == Z_DEFLATED) &&
+ !(((data_in[0]<<8) + data_in[1]) % 31)) {
+
+ wbits = -((data_in[0] >> 4) + 8);
+ workspace->inf_strm.next_in += 2;
+ workspace->inf_strm.avail_in -= 2;
+ }
+
+ if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
+ printk(KERN_WARNING "inflateInit failed\n");
+ return -1;
+ }
+
+ while (bytes_left > 0) {
+ unsigned long buf_start;
+ unsigned long buf_offset;
+ unsigned long bytes;
+ unsigned long pg_offset = 0;
+
+ ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
+ if (ret != Z_OK && ret != Z_STREAM_END)
+ break;
+
+ buf_start = total_out;
+ total_out = workspace->inf_strm.total_out;
+
+ if (total_out == buf_start) {
+ ret = -1;
+ break;
+ }
+
+ if (total_out <= start_byte)
+ goto next;
+
+ if (total_out > start_byte && buf_start < start_byte)
+ buf_offset = start_byte - buf_start;
+ else
+ buf_offset = 0;
+
+ bytes = min(PAGE_CACHE_SIZE - pg_offset,
+ PAGE_CACHE_SIZE - buf_offset);
+ bytes = min(bytes, bytes_left);
+
+ kaddr = kmap_atomic(dest_page);
+ memcpy(kaddr + pg_offset, workspace->buf + buf_offset, bytes);
+ kunmap_atomic(kaddr);
+
+ pg_offset += bytes;
+ bytes_left -= bytes;
+next:
+ workspace->inf_strm.next_out = workspace->buf;
+ workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
+ }
+
+ if (ret != Z_STREAM_END && bytes_left != 0)
+ ret = -1;
+ else
+ ret = 0;
+
+ zlib_inflateEnd(&workspace->inf_strm);
+ return ret;
+}
+
+struct btrfs_compress_op btrfs_zlib_compress = {
+ .alloc_workspace = zlib_alloc_workspace,
+ .free_workspace = zlib_free_workspace,
+ .compress_pages = zlib_compress_pages,
+ .decompress_biovec = zlib_decompress_biovec,
+ .decompress = zlib_decompress,
+};