summaryrefslogtreecommitdiff
path: root/drivers/scsi/aic7xxx/aic79xx.seq
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-13 15:08:24 +0530
committerSrikant Patnaik2015-01-13 15:08:24 +0530
commit97327692361306d1e6259021bc425e32832fdb50 (patch)
treefe9088f3248ec61e24f404f21b9793cb644b7f01 /drivers/scsi/aic7xxx/aic79xx.seq
parent2d05a8f663478a44e088d122e0d62109bbc801d0 (diff)
parenta3a8b90b61e21be3dde9101c4e86c881e0f06210 (diff)
downloadFOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.gz
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.bz2
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.zip
dirty fix to merging
Diffstat (limited to 'drivers/scsi/aic7xxx/aic79xx.seq')
-rw-r--r--drivers/scsi/aic7xxx/aic79xx.seq2290
1 files changed, 2290 insertions, 0 deletions
diff --git a/drivers/scsi/aic7xxx/aic79xx.seq b/drivers/scsi/aic7xxx/aic79xx.seq
new file mode 100644
index 00000000..3a36d936
--- /dev/null
+++ b/drivers/scsi/aic7xxx/aic79xx.seq
@@ -0,0 +1,2290 @@
+/*
+ * Adaptec U320 device driver firmware for Linux and FreeBSD.
+ *
+ * Copyright (c) 1994-2001, 2004 Justin T. Gibbs.
+ * Copyright (c) 2000-2002 Adaptec Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions, and the following disclaimer,
+ * without modification.
+ * 2. Redistributions in binary form must reproduce at minimum a disclaimer
+ * substantially similar to the "NO WARRANTY" disclaimer below
+ * ("Disclaimer") and any redistribution must be conditioned upon
+ * including a substantially similar Disclaimer requirement for further
+ * binary redistribution.
+ * 3. Neither the names of the above-listed copyright holders nor the names
+ * of any contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * Alternatively, this software may be distributed under the terms of the
+ * GNU General Public License ("GPL") version 2 as published by the Free
+ * Software Foundation.
+ *
+ * NO WARRANTY
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
+ * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGES.
+ *
+ * $FreeBSD$
+ */
+
+VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#120 $"
+PATCH_ARG_LIST = "struct ahd_softc *ahd"
+PREFIX = "ahd_"
+
+#include "aic79xx.reg"
+#include "scsi_message.h"
+
+restart:
+if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
+ test SEQINTCODE, 0xFF jz idle_loop;
+ SET_SEQINTCODE(NO_SEQINT)
+}
+
+idle_loop:
+
+ if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
+ /*
+ * Convert ERROR status into a sequencer
+ * interrupt to handle the case of an
+ * interrupt collision on the hardware
+ * setting of HWERR.
+ */
+ test ERROR, 0xFF jz no_error_set;
+ SET_SEQINTCODE(SAW_HWERR)
+no_error_set:
+ }
+ SET_MODE(M_SCSI, M_SCSI)
+ test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
+ test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list;
+ /*
+ * If the kernel has caught up with us, thaw the queue.
+ */
+ mov A, KERNEL_QFREEZE_COUNT;
+ cmp QFREEZE_COUNT, A jne check_frozen_completions;
+ mov A, KERNEL_QFREEZE_COUNT[1];
+ cmp QFREEZE_COUNT[1], A jne check_frozen_completions;
+ and SEQ_FLAGS2, ~SELECTOUT_QFROZEN;
+ jmp check_waiting_list;
+check_frozen_completions:
+ test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus;
+BEGIN_CRITICAL;
+ /*
+ * If we have completions stalled waiting for the qfreeze
+ * to take effect, move them over to the complete_scb list
+ * now that no selections are pending.
+ */
+ cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus;
+ /*
+ * Find the end of the qfreeze list. The first element has
+ * to be treated specially.
+ */
+ bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2;
+ cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists;
+ /*
+ * Now the normal loop.
+ */
+ bmov SCBPTR, SCB_NEXT_COMPLETE, 2;
+ cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1;
+join_lists:
+ bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
+ bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2;
+ mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL;
+ jmp idle_loop_checkbus;
+check_waiting_list:
+ cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
+ /*
+ * ENSELO is cleared by a SELDO, so we must test for SELDO
+ * one last time.
+ */
+ test SSTAT0, SELDO jnz select_out;
+ call start_selection;
+idle_loop_checkbus:
+ test SSTAT0, SELDO jnz select_out;
+END_CRITICAL;
+ test SSTAT0, SELDI jnz select_in;
+ test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
+ test SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
+ call unexpected_nonpkt_phase_find_ctxt;
+idle_loop_check_nonpackreq:
+ test SSTAT2, NONPACKREQ jz . + 2;
+ call unexpected_nonpkt_phase_find_ctxt;
+ if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
+ /*
+ * On Rev A. hardware, the busy LED is only
+ * turned on automaically during selections
+ * and re-selections. Make the LED status
+ * more useful by forcing it to be on so
+ * long as one of our data FIFOs is active.
+ */
+ and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
+ cmp A, FIFO0FREE|FIFO1FREE jne . + 3;
+ and SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
+ jmp . + 2;
+ or SBLKCTL, DIAGLEDEN|DIAGLEDON;
+ }
+ call idle_loop_gsfifo_in_scsi_mode;
+ call idle_loop_service_fifos;
+ call idle_loop_cchan;
+ jmp idle_loop;
+
+idle_loop_gsfifo:
+ SET_MODE(M_SCSI, M_SCSI)
+BEGIN_CRITICAL;
+idle_loop_gsfifo_in_scsi_mode:
+ test LQISTAT2, LQIGSAVAIL jz return;
+ /*
+ * We have received good status for this transaction. There may
+ * still be data in our FIFOs draining to the host. Complete
+ * the SCB only if all data has transferred to the host.
+ */
+good_status_IU_done:
+ bmov SCBPTR, GSFIFO, 2;
+ clr SCB_SCSI_STATUS;
+ /*
+ * If a command completed before an attempted task management
+ * function completed, notify the host after disabling any
+ * pending select-outs.
+ */
+ test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
+ test SSTAT0, SELDO|SELINGO jnz . + 2;
+ and SCSISEQ0, ~ENSELO;
+ SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
+gsfifo_complete_normally:
+ or SCB_CONTROL, STATUS_RCVD;
+
+ /*
+ * Since this status did not consume a FIFO, we have to
+ * be a bit more dilligent in how we check for FIFOs pertaining
+ * to this transaction. There are two states that a FIFO still
+ * transferring data may be in.
+ *
+ * 1) Configured and draining to the host, with a FIFO handler.
+ * 2) Pending cfg4data, fifo not empty.
+ *
+ * Case 1 can be detected by noticing a non-zero FIFO active
+ * count in the SCB. In this case, we allow the routine servicing
+ * the FIFO to complete the SCB.
+ *
+ * Case 2 implies either a pending or yet to occur save data
+ * pointers for this same context in the other FIFO. So, if
+ * we detect case 1, we will properly defer the post of the SCB
+ * and achieve the desired result. The pending cfg4data will
+ * notice that status has been received and complete the SCB.
+ */
+ test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
+ call complete;
+END_CRITICAL;
+ jmp idle_loop_gsfifo_in_scsi_mode;
+
+idle_loop_service_fifos:
+ SET_MODE(M_DFF0, M_DFF0)
+BEGIN_CRITICAL;
+ test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
+ call longjmp;
+END_CRITICAL;
+idle_loop_next_fifo:
+ SET_MODE(M_DFF1, M_DFF1)
+BEGIN_CRITICAL;
+ test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
+END_CRITICAL;
+return:
+ ret;
+
+idle_loop_cchan:
+ SET_MODE(M_CCHAN, M_CCHAN)
+ test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty;
+ or QOFF_CTLSTA, HS_MAILBOX_ACT;
+ mov LOCAL_HS_MAILBOX, HS_MAILBOX;
+hs_mailbox_empty:
+BEGIN_CRITICAL;
+ test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
+ test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
+ test CCSCBCTL, CCSCBDONE jz return;
+ /* FALLTHROUGH */
+scbdma_tohost_done:
+ test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
+ /*
+ * An SCB has been successfully uploaded to the host.
+ * If the SCB was uploaded for some reason other than
+ * bad SCSI status (currently only for underruns), we
+ * queue the SCB for normal completion. Otherwise, we
+ * wait until any select-out activity has halted, and
+ * then queue the completion.
+ */
+ and CCSCBCTL, ~(CCARREN|CCSCBEN);
+ bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
+ cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2;
+ mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL;
+ test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion;
+ bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2;
+ bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret;
+scbdma_queue_completion:
+ bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
+ bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
+fill_qoutfifo_dmadone:
+ and CCSCBCTL, ~(CCARREN|CCSCBEN);
+ call qoutfifo_updated;
+ mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
+ bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
+ test QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
+ bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
+ xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
+END_CRITICAL;
+
+qoutfifo_updated:
+ /*
+ * If there are more commands waiting to be dma'ed
+ * to the host, always coalesce. Otherwise honor the
+ * host's wishes.
+ */
+ cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
+ cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
+ test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
+
+ /*
+ * If we have relatively few commands outstanding, don't
+ * bother waiting for another command to complete.
+ */
+ test CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
+ /* Add -1 so that jnc means <= not just < */
+ add A, -1, INT_COALESCING_MINCMDS;
+ add NONE, A, CMDS_PENDING;
+ jnc issue_cmdcmplt;
+
+ /*
+ * If coalescing, only coalesce up to the limit
+ * provided by the host driver.
+ */
+coalesce_by_count:
+ mov A, INT_COALESCING_MAXCMDS;
+ add NONE, A, INT_COALESCING_CMDCOUNT;
+ jc issue_cmdcmplt;
+ /*
+ * If the timer is not currently active,
+ * fire it up.
+ */
+ test INTCTL, SWTMINTMASK jz return;
+ bmov SWTIMER, INT_COALESCING_TIMER, 2;
+ mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
+ or INTCTL, SWTMINTEN|SWTIMER_START;
+ and INTCTL, ~SWTMINTMASK ret;
+
+issue_cmdcmplt:
+ mvi INTSTAT, CMDCMPLT;
+ clr INT_COALESCING_CMDCOUNT;
+ or INTCTL, SWTMINTMASK ret;
+
+BEGIN_CRITICAL;
+fetch_new_scb_inprog:
+ test CCSCBCTL, ARRDONE jz return;
+fetch_new_scb_done:
+ and CCSCBCTL, ~(CCARREN|CCSCBEN);
+ clr A;
+ add CMDS_PENDING, 1;
+ adc CMDS_PENDING[1], A;
+ if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
+ /*
+ * "Short Luns" are not placed into outgoing LQ
+ * packets in the correct byte order. Use a full
+ * sized lun field instead and fill it with the
+ * one byte of lun information we support.
+ */
+ mov SCB_PKT_LUN[6], SCB_LUN;
+ }
+ /*
+ * The FIFO use count field is shared with the
+ * tag set by the host so that our SCB dma engine
+ * knows the correct location to store the SCB.
+ * Set it to zero before processing the SCB.
+ */
+ clr SCB_FIFO_USE_COUNT;
+ /* Update the next SCB address to download. */
+ bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
+ /*
+ * NULL out the SCB links since these fields
+ * occupy the same location as SCB_NEXT_SCB_BUSADDR.
+ */
+ mvi SCB_NEXT[1], SCB_LIST_NULL;
+ mvi SCB_NEXT2[1], SCB_LIST_NULL;
+ /* Increment our position in the QINFIFO. */
+ mov NONE, SNSCB_QOFF;
+
+ /*
+ * Save SCBID of this SCB in REG0 since
+ * SCBPTR will be clobbered during target
+ * list updates. We also record the SCB's
+ * flags so that we can refer to them even
+ * after SCBPTR has been changed.
+ */
+ bmov REG0, SCBPTR, 2;
+ mov A, SCB_CONTROL;
+
+ /*
+ * Find the tail SCB of the execution queue
+ * for this target.
+ */
+ shr SINDEX, 3, SCB_SCSIID;
+ and SINDEX, ~0x1;
+ mvi SINDEX[1], (WAITING_SCB_TAILS >> 8);
+ bmov DINDEX, SINDEX, 2;
+ bmov SCBPTR, SINDIR, 2;
+
+ /*
+ * Update the tail to point to the new SCB.
+ */
+ bmov DINDIR, REG0, 2;
+
+ /*
+ * If the queue was empty, queue this SCB as
+ * the first for this target.
+ */
+ cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
+
+ /*
+ * SCBs that want to send messages must always be
+ * at the head of their per-target queue so that
+ * ATN can be asserted even if the current
+ * negotiation agreement is packetized. If the
+ * target queue is empty, the SCB can be queued
+ * immediately. If the queue is not empty, we must
+ * wait for it to empty before entering this SCB
+ * into the waiting for selection queue. Otherwise
+ * our batching and round-robin selection scheme
+ * could allow commands to be queued out of order.
+ * To simplify the implementation, we stop pulling
+ * new commands from the host until the MK_MESSAGE
+ * SCB can be queued to the waiting for selection
+ * list.
+ */
+ test A, MK_MESSAGE jz batch_scb;
+
+ /*
+ * If the last SCB is also a MK_MESSAGE SCB, then
+ * order is preserved even if we batch.
+ */
+ test SCB_CONTROL, MK_MESSAGE jz batch_scb;
+
+ /*
+ * Defer this SCB and stop fetching new SCBs until
+ * it can be queued. Since the SCB_SCSIID of the
+ * tail SCB must be the same as that of the newly
+ * queued SCB, there is no need to restore the SCBID
+ * here.
+ */
+ or SEQ_FLAGS2, PENDING_MK_MESSAGE;
+ bmov MK_MESSAGE_SCB, REG0, 2;
+ mov MK_MESSAGE_SCSIID, SCB_SCSIID ret;
+
+batch_scb:
+ /*
+ * Otherwise just update the previous tail SCB to
+ * point to the new tail.
+ */
+ bmov SCB_NEXT, REG0, 2 ret;
+
+first_new_target_scb:
+ /*
+ * Append SCB to the tail of the waiting for
+ * selection list.
+ */
+ cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
+ bmov SCBPTR, WAITING_TID_TAIL, 2;
+ bmov SCB_NEXT2, REG0, 2;
+ bmov WAITING_TID_TAIL, REG0, 2 ret;
+first_new_scb:
+ /*
+ * Whole list is empty, so the head of
+ * the list must be initialized too.
+ */
+ bmov WAITING_TID_HEAD, REG0, 2;
+ bmov WAITING_TID_TAIL, REG0, 2 ret;
+END_CRITICAL;
+
+scbdma_idle:
+ /*
+ * Don't bother downloading new SCBs to execute
+ * if select-outs are currently frozen or we have
+ * a MK_MESSAGE SCB waiting to enter the queue.
+ */
+ test SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE
+ jnz scbdma_no_new_scbs;
+BEGIN_CRITICAL;
+ test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
+scbdma_no_new_scbs:
+ cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
+ cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
+ /* FALLTHROUGH */
+fill_qoutfifo:
+ /*
+ * Keep track of the SCBs we are dmaing just
+ * in case the DMA fails or is aborted.
+ */
+ bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
+ mvi CCSCBCTL, CCSCBRESET;
+ bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
+ mov A, QOUTFIFO_NEXT_ADDR;
+ bmov SCBPTR, COMPLETE_SCB_HEAD, 2;
+fill_qoutfifo_loop:
+ bmov CCSCBRAM, SCBPTR, 2;
+ mov CCSCBRAM, SCB_SGPTR[0];
+ mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG;
+ mov NONE, SDSCB_QOFF;
+ inc INT_COALESCING_CMDCOUNT;
+ add CMDS_PENDING, -1;
+ adc CMDS_PENDING[1], -1;
+ cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
+ cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
+ test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
+ /*
+ * Don't cross an ADB or Cachline boundary when DMA'ing
+ * completion entries. In PCI mode, at least in 32/33
+ * configurations, the SCB DMA engine may lose its place
+ * in the data-stream should the target force a retry on
+ * something other than an 8byte aligned boundary. In
+ * PCI-X mode, we do this to avoid split transactions since
+ * many chipsets seem to be unable to format proper split
+ * completions to continue the data transfer.
+ */
+ add SINDEX, A, CCSCBADDR;
+ test SINDEX, CACHELINE_MASK jz fill_qoutfifo_done;
+ bmov SCBPTR, SCB_NEXT_COMPLETE, 2;
+ jmp fill_qoutfifo_loop;
+fill_qoutfifo_done:
+ mov SCBHCNT, CCSCBADDR;
+ mvi CCSCBCTL, CCSCBEN|CCSCBRESET;
+ bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
+ mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
+
+fetch_new_scb:
+ bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
+ mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
+dma_complete_scb:
+ bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
+ bmov SCBHADDR, SCB_BUSADDR, 4;
+ mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
+
+/*
+ * Either post or fetch an SCB from host memory. The caller
+ * is responsible for polling for transfer completion.
+ *
+ * Prerequisits: Mode == M_CCHAN
+ * SINDEX contains CCSCBCTL flags
+ * SCBHADDR set to Host SCB address
+ * SCBPTR set to SCB src location on "push" operations
+ */
+SET_SRC_MODE M_CCHAN;
+SET_DST_MODE M_CCHAN;
+dma_scb:
+ mvi SCBHCNT, SCB_TRANSFER_SIZE;
+ mov CCSCBCTL, SINDEX ret;
+
+setjmp:
+ /*
+ * At least on the A, a return in the same
+ * instruction as the bmov results in a return
+ * to the caller, not to the new address at the
+ * top of the stack. Since we want the latter
+ * (we use setjmp to register a handler from an
+ * interrupt context but not invoke that handler
+ * until we return to our idle loop), use a
+ * separate ret instruction.
+ */
+ bmov LONGJMP_ADDR, STACK, 2;
+ ret;
+setjmp_inline:
+ bmov LONGJMP_ADDR, STACK, 2;
+longjmp:
+ bmov STACK, LONGJMP_ADDR, 2 ret;
+END_CRITICAL;
+
+/*************************** Chip Bug Work Arounds ****************************/
+/*
+ * Must disable interrupts when setting the mode pointer
+ * register as an interrupt occurring mid update will
+ * fail to store the new mode value for restoration on
+ * an iret.
+ */
+if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
+set_mode_work_around:
+ mvi SEQINTCTL, INTVEC1DSL;
+ mov MODE_PTR, SINDEX;
+ clr SEQINTCTL ret;
+}
+
+
+if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
+set_seqint_work_around:
+ mov SEQINTCODE, SINDEX;
+ mvi SEQINTCODE, NO_SEQINT ret;
+}
+
+/************************ Packetized LongJmp Routines *************************/
+SET_SRC_MODE M_SCSI;
+SET_DST_MODE M_SCSI;
+start_selection:
+BEGIN_CRITICAL;
+ if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
+ /*
+ * Razor #494
+ * Rev A hardware fails to update LAST/CURR/NEXTSCB
+ * correctly after a packetized selection in several
+ * situations:
+ *
+ * 1) If only one command existed in the queue, the
+ * LAST/CURR/NEXTSCB are unchanged.
+ *
+ * 2) In a non QAS, protocol allowed phase change,
+ * the queue is shifted 1 too far. LASTSCB is
+ * the last SCB that was correctly processed.
+ *
+ * 3) In the QAS case, if the full list of commands
+ * was successfully sent, NEXTSCB is NULL and neither
+ * CURRSCB nor LASTSCB can be trusted. We must
+ * manually walk the list counting MAXCMDCNT elements
+ * to find the last SCB that was sent correctly.
+ *
+ * To simplify the workaround for this bug in SELDO
+ * handling, we initialize LASTSCB prior to enabling
+ * selection so we can rely on it even for case #1 above.
+ */
+ bmov LASTSCB, WAITING_TID_HEAD, 2;
+ }
+ bmov CURRSCB, WAITING_TID_HEAD, 2;
+ bmov SCBPTR, WAITING_TID_HEAD, 2;
+ shr SELOID, 4, SCB_SCSIID;
+ /*
+ * If we want to send a message to the device, ensure
+ * we are selecting with atn regardless of our packetized
+ * agreement. Since SPI4 only allows target reset or PPR
+ * messages if this is a packetized connection, the change
+ * to our negotiation table entry for this selection will
+ * be cleared when the message is acted on.
+ */
+ test SCB_CONTROL, MK_MESSAGE jz . + 3;
+ mov NEGOADDR, SELOID;
+ or NEGCONOPTS, ENAUTOATNO;
+ or SCSISEQ0, ENSELO ret;
+END_CRITICAL;
+
+/*
+ * Allocate a FIFO for a non-packetized transaction.
+ * In RevA hardware, both FIFOs must be free before we
+ * can allocate a FIFO for a non-packetized transaction.
+ */
+allocate_fifo_loop:
+ /*
+ * Do whatever work is required to free a FIFO.
+ */
+ call idle_loop_service_fifos;
+ SET_MODE(M_SCSI, M_SCSI)
+allocate_fifo:
+ if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
+ and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
+ cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
+ } else {
+ test DFFSTAT, FIFO1FREE jnz allocate_fifo1;
+ test DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
+ mvi DFFSTAT, B_CURRFIFO_0;
+ SET_MODE(M_DFF0, M_DFF0)
+ bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
+ }
+SET_SRC_MODE M_SCSI;
+SET_DST_MODE M_SCSI;
+allocate_fifo1:
+ mvi DFFSTAT, CURRFIFO_1;
+ SET_MODE(M_DFF1, M_DFF1)
+ bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
+
+/*
+ * We have been reselected as an initiator
+ * or selected as a target.
+ */
+SET_SRC_MODE M_SCSI;
+SET_DST_MODE M_SCSI;
+select_in:
+ if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
+ /*
+ * On Rev A. hardware, the busy LED is only
+ * turned on automaically during selections
+ * and re-selections. Make the LED status
+ * more useful by forcing it to be on from
+ * the point of selection until our idle
+ * loop determines that neither of our FIFOs
+ * are busy. This handles the non-packetized
+ * case nicely as we will not return to the
+ * idle loop until the busfree at the end of
+ * each transaction.
+ */
+ or SBLKCTL, DIAGLEDEN|DIAGLEDON;
+ }
+ if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
+ /*
+ * Test to ensure that the bus has not
+ * already gone free prior to clearing
+ * any stale busfree status. This avoids
+ * a window whereby a busfree just after
+ * a selection could be missed.
+ */
+ test SCSISIGI, BSYI jz . + 2;
+ mvi CLRSINT1,CLRBUSFREE;
+ or SIMODE1, ENBUSFREE;
+ }
+ or SXFRCTL0, SPIOEN;
+ and SAVED_SCSIID, SELID_MASK, SELID;
+ and A, OID, IOWNID;
+ or SAVED_SCSIID, A;
+ mvi CLRSINT0, CLRSELDI;
+ jmp ITloop;
+
+/*
+ * We have successfully selected out.
+ *
+ * Clear SELDO.
+ * Dequeue all SCBs sent from the waiting queue
+ * Requeue all SCBs *not* sent to the tail of the waiting queue
+ * Take Razor #494 into account for above.
+ *
+ * In Packetized Mode:
+ * Return to the idle loop. Our interrupt handler will take
+ * care of any incoming L_Qs.
+ *
+ * In Non-Packetize Mode:
+ * Continue to our normal state machine.
+ */
+SET_SRC_MODE M_SCSI;
+SET_DST_MODE M_SCSI;
+select_out:
+BEGIN_CRITICAL;
+ if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
+ /*
+ * On Rev A. hardware, the busy LED is only
+ * turned on automaically during selections
+ * and re-selections. Make the LED status
+ * more useful by forcing it to be on from
+ * the point of re-selection until our idle
+ * loop determines that neither of our FIFOs
+ * are busy. This handles the non-packetized
+ * case nicely as we will not return to the
+ * idle loop until the busfree at the end of
+ * each transaction.
+ */
+ or SBLKCTL, DIAGLEDEN|DIAGLEDON;
+ }
+ /* Clear out all SCBs that have been successfully sent. */
+ if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
+ /*
+ * For packetized, the LQO manager clears ENSELO on
+ * the assertion of SELDO. If we are non-packetized,
+ * LASTSCB and CURRSCB are accurate.
+ */
+ test SCSISEQ0, ENSELO jnz use_lastscb;
+
+ /*
+ * The update is correct for LQOSTAT1 errors. All
+ * but LQOBUSFREE are handled by kernel interrupts.
+ * If we see LQOBUSFREE, return to the idle loop.
+ * Once we are out of the select_out critical section,
+ * the kernel will cleanup the LQOBUSFREE and we will
+ * eventually restart the selection if appropriate.
+ */
+ test LQOSTAT1, LQOBUSFREE jnz idle_loop;
+
+ /*
+ * On a phase change oustside of packet boundaries,
+ * LASTSCB points to the currently active SCB context
+ * on the bus.
+ */
+ test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
+
+ /*
+ * If the hardware has traversed the whole list, NEXTSCB
+ * will be NULL, CURRSCB and LASTSCB cannot be trusted,
+ * but MAXCMDCNT is accurate. If we stop part way through
+ * the list or only had one command to issue, NEXTSCB[1] is
+ * not NULL and LASTSCB is the last command to go out.
+ */
+ cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
+
+ /*
+ * Brute force walk.
+ */
+ bmov SCBPTR, WAITING_TID_HEAD, 2;
+ mvi SEQINTCTL, INTVEC1DSL;
+ mvi MODE_PTR, MK_MODE(M_CFG, M_CFG);
+ mov A, MAXCMDCNT;
+ mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
+ clr SEQINTCTL;
+find_lastscb_loop:
+ dec A;
+ test A, 0xFF jz found_last_sent_scb;
+ bmov SCBPTR, SCB_NEXT, 2;
+ jmp find_lastscb_loop;
+use_lastscb:
+ bmov SCBPTR, LASTSCB, 2;
+found_last_sent_scb:
+ bmov CURRSCB, SCBPTR, 2;
+curscb_ww_done:
+ } else {
+ bmov SCBPTR, CURRSCB, 2;
+ }
+
+ /*
+ * The whole list made it. Clear our tail pointer to indicate
+ * that the per-target selection queue is now empty.
+ */
+ cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail;
+
+ /*
+ * Requeue any SCBs not sent, to the tail of the waiting Q.
+ * We know that neither the per-TID list nor the list of
+ * TIDs is empty. Use this knowledge to our advantage and
+ * queue the remainder to the tail of the global execution
+ * queue.
+ */
+ bmov REG0, SCB_NEXT, 2;
+select_out_queue_remainder:
+ bmov SCBPTR, WAITING_TID_TAIL, 2;
+ bmov SCB_NEXT2, REG0, 2;
+ bmov WAITING_TID_TAIL, REG0, 2;
+ jmp select_out_inc_tid_q;
+
+select_out_clear_tail:
+ /*
+ * Queue any pending MK_MESSAGE SCB for this target now
+ * that the queue is empty.
+ */
+ test SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb;
+ mov A, MK_MESSAGE_SCSIID;
+ cmp SCB_SCSIID, A jne select_out_no_mk_message_scb;
+ and SEQ_FLAGS2, ~PENDING_MK_MESSAGE;
+ bmov REG0, MK_MESSAGE_SCB, 2;
+ jmp select_out_queue_remainder;
+
+select_out_no_mk_message_scb:
+ /*
+ * Clear this target's execution tail and increment the queue.
+ */
+ shr DINDEX, 3, SCB_SCSIID;
+ or DINDEX, 1; /* Want only the second byte */
+ mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
+ mvi DINDIR, SCB_LIST_NULL;
+select_out_inc_tid_q:
+ bmov SCBPTR, WAITING_TID_HEAD, 2;
+ bmov WAITING_TID_HEAD, SCB_NEXT2, 2;
+ cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
+ mvi WAITING_TID_TAIL[1], SCB_LIST_NULL;
+ bmov SCBPTR, CURRSCB, 2;
+ mvi CLRSINT0, CLRSELDO;
+ test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared;
+ test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared;
+
+ /*
+ * If this is a packetized connection, return to our
+ * idle_loop and let our interrupt handler deal with
+ * any connection setup/teardown issues. The only
+ * exceptions are the case of MK_MESSAGE and task management
+ * SCBs.
+ */
+ if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
+ /*
+ * In the A, the LQO manager transitions to LQOSTOP0 even if
+ * we have selected out with ATN asserted and the target
+ * REQs in a non-packet phase.
+ */
+ test SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
+ test SCSISIGO, ATNO jnz select_out_non_packetized;
+select_out_no_message:
+ }
+ test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
+ test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
+ SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
+ jmp idle_loop;
+
+select_out_non_packetized:
+ /* Non packetized request. */
+ and SCSISEQ0, ~ENSELO;
+ if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
+ /*
+ * Test to ensure that the bus has not
+ * already gone free prior to clearing
+ * any stale busfree status. This avoids
+ * a window whereby a busfree just after
+ * a selection could be missed.
+ */
+ test SCSISIGI, BSYI jz . + 2;
+ mvi CLRSINT1,CLRBUSFREE;
+ or SIMODE1, ENBUSFREE;
+ }
+ mov SAVED_SCSIID, SCB_SCSIID;
+ mov SAVED_LUN, SCB_LUN;
+ mvi SEQ_FLAGS, NO_CDB_SENT;
+END_CRITICAL;
+ or SXFRCTL0, SPIOEN;
+
+ /*
+ * As soon as we get a successful selection, the target
+ * should go into the message out phase since we have ATN
+ * asserted.
+ */
+ mvi MSG_OUT, MSG_IDENTIFYFLAG;
+
+ /*
+ * Main loop for information transfer phases. Wait for the
+ * target to assert REQ before checking MSG, C/D and I/O for
+ * the bus phase.
+ */
+mesgin_phasemis:
+ITloop:
+ call phase_lock;
+
+ mov A, LASTPHASE;
+
+ test A, ~P_DATAIN_DT jz p_data;
+ cmp A,P_COMMAND je p_command;
+ cmp A,P_MESGOUT je p_mesgout;
+ cmp A,P_STATUS je p_status;
+ cmp A,P_MESGIN je p_mesgin;
+
+ SET_SEQINTCODE(BAD_PHASE)
+ jmp ITloop; /* Try reading the bus again. */
+
+/*
+ * Command phase. Set up the DMA registers and let 'er rip.
+ */
+p_command:
+ test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
+ SET_SEQINTCODE(PROTO_VIOLATION)
+p_command_okay:
+ test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
+ jnz p_command_allocate_fifo;
+ /*
+ * Command retry. Free our current FIFO and
+ * re-allocate a FIFO so transfer state is
+ * reset.
+ */
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+ mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
+ SET_MODE(M_SCSI, M_SCSI)
+p_command_allocate_fifo:
+ bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
+ call allocate_fifo;
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+ add NONE, -17, SCB_CDB_LEN;
+ jnc p_command_embedded;
+p_command_from_host:
+ bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
+ mvi SG_CACHE_PRE, LAST_SEG;
+ mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
+ jmp p_command_xfer;
+p_command_embedded:
+ bmov SHCNT[0], SCB_CDB_LEN, 1;
+ bmov DFDAT, SCB_CDB_STORE, 16;
+ mvi DFCNTRL, SCSIEN;
+p_command_xfer:
+ and SEQ_FLAGS, ~NO_CDB_SENT;
+ if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) {
+ /*
+ * To speed up CDB delivery in Rev B, all CDB acks
+ * are "released" to the output sync as soon as the
+ * command phase starts. There is only one problem
+ * with this approach. If the target changes phase
+ * before all data are sent, we have left over acks
+ * that can go out on the bus in a data phase. Due
+ * to other chip contraints, this only happens if
+ * the target goes to data-in, but if the acks go
+ * out before we can test SDONE, we'll think that
+ * the transfer has completed successfully. Work
+ * around this by taking advantage of the 400ns or
+ * 800ns dead time between command phase and the REQ
+ * of the new phase. If the transfer has completed
+ * successfully, SCSIEN should fall *long* before we
+ * see a phase change. We thus treat any phasemiss
+ * that occurs before SCSIEN falls as an incomplete
+ * transfer.
+ */
+ test SSTAT1, PHASEMIS jnz p_command_xfer_failed;
+ test DFCNTRL, SCSIEN jnz . - 1;
+ } else {
+ test DFCNTRL, SCSIEN jnz .;
+ }
+ /*
+ * DMA Channel automatically disabled.
+ * Don't allow a data phase if the command
+ * was not fully transferred.
+ */
+ test SSTAT2, SDONE jnz ITloop;
+p_command_xfer_failed:
+ or SEQ_FLAGS, NO_CDB_SENT;
+ jmp ITloop;
+
+
+/*
+ * Status phase. Wait for the data byte to appear, then read it
+ * and store it into the SCB.
+ */
+SET_SRC_MODE M_SCSI;
+SET_DST_MODE M_SCSI;
+p_status:
+ test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
+p_status_okay:
+ mov SCB_SCSI_STATUS, SCSIDAT;
+ or SCB_CONTROL, STATUS_RCVD;
+ jmp ITloop;
+
+/*
+ * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full
+ * indentify message sequence and send it to the target. The host may
+ * override this behavior by setting the MK_MESSAGE bit in the SCB
+ * control byte. This will cause us to interrupt the host and allow
+ * it to handle the message phase completely on its own. If the bit
+ * associated with this target is set, we will also interrupt the host,
+ * thereby allowing it to send a message on the next selection regardless
+ * of the transaction being sent.
+ *
+ * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
+ * This is done to allow the host to send messages outside of an identify
+ * sequence while protecting the seqencer from testing the MK_MESSAGE bit
+ * on an SCB that might not be for the current nexus. (For example, a
+ * BDR message in response to a bad reselection would leave us pointed to
+ * an SCB that doesn't have anything to do with the current target).
+ *
+ * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
+ * bus device reset).
+ *
+ * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
+ * in case the target decides to put us in this phase for some strange
+ * reason.
+ */
+p_mesgout_retry:
+ /* Turn on ATN for the retry */
+ mvi SCSISIGO, ATNO;
+p_mesgout:
+ mov SINDEX, MSG_OUT;
+ cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
+ test SCB_CONTROL,MK_MESSAGE jnz host_message_loop;
+p_mesgout_identify:
+ or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
+ test SCB_CONTROL, DISCENB jnz . + 2;
+ and SINDEX, ~DISCENB;
+/*
+ * Send a tag message if TAG_ENB is set in the SCB control block.
+ * Use SCB_NONPACKET_TAG as the tag value.
+ */
+p_mesgout_tag:
+ test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte;
+ mov SCSIDAT, SINDEX; /* Send the identify message */
+ call phase_lock;
+ cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
+ and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
+ call phase_lock;
+ cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
+ mov SCBPTR jmp p_mesgout_onebyte;
+/*
+ * Interrupt the driver, and allow it to handle this message
+ * phase and any required retries.
+ */
+p_mesgout_from_host:
+ cmp SINDEX, HOST_MSG jne p_mesgout_onebyte;
+ jmp host_message_loop;
+
+p_mesgout_onebyte:
+ mvi CLRSINT1, CLRATNO;
+ mov SCSIDAT, SINDEX;
+
+/*
+ * If the next bus phase after ATN drops is message out, it means
+ * that the target is requesting that the last message(s) be resent.
+ */
+ call phase_lock;
+ cmp LASTPHASE, P_MESGOUT je p_mesgout_retry;
+
+p_mesgout_done:
+ mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */
+ mov LAST_MSG, MSG_OUT;
+ mvi MSG_OUT, MSG_NOOP; /* No message left */
+ jmp ITloop;
+
+/*
+ * Message in phase. Bytes are read using Automatic PIO mode.
+ */
+p_mesgin:
+ /* read the 1st message byte */
+ mvi ACCUM call inb_first;
+
+ test A,MSG_IDENTIFYFLAG jnz mesgin_identify;
+ cmp A,MSG_DISCONNECT je mesgin_disconnect;
+ cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs;
+ cmp ALLZEROS,A je mesgin_complete;
+ cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs;
+ cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue;
+ cmp A,MSG_NOOP je mesgin_done;
+
+/*
+ * Pushed message loop to allow the kernel to
+ * run it's own message state engine. To avoid an
+ * extra nop instruction after signaling the kernel,
+ * we perform the phase_lock before checking to see
+ * if we should exit the loop and skip the phase_lock
+ * in the ITloop. Performing back to back phase_locks
+ * shouldn't hurt, but why do it twice...
+ */
+host_message_loop:
+ call phase_lock; /* Benign the first time through. */
+ SET_SEQINTCODE(HOST_MSG_LOOP)
+ cmp RETURN_1, EXIT_MSG_LOOP je ITloop;
+ cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3;
+ mov SCSIDAT, RETURN_2;
+ jmp host_message_loop;
+ /* Must be CONT_MSG_LOOP_READ */
+ mov NONE, SCSIDAT; /* ACK Byte */
+ jmp host_message_loop;
+
+mesgin_ign_wide_residue:
+ mov SAVED_MODE, MODE_PTR;
+ SET_MODE(M_SCSI, M_SCSI)
+ shr NEGOADDR, 4, SAVED_SCSIID;
+ mov A, NEGCONOPTS;
+ RESTORE_MODE(SAVED_MODE)
+ test A, WIDEXFER jz mesgin_reject;
+ /* Pull the residue byte */
+ mvi REG0 call inb_next;
+ cmp REG0, 0x01 jne mesgin_reject;
+ test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
+ test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
+ SET_SEQINTCODE(IGN_WIDE_RES)
+ jmp mesgin_done;
+
+mesgin_proto_violation:
+ SET_SEQINTCODE(PROTO_VIOLATION)
+ jmp mesgin_done;
+mesgin_reject:
+ mvi MSG_MESSAGE_REJECT call mk_mesg;
+mesgin_done:
+ mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
+ jmp ITloop;
+
+#define INDEX_DISC_LIST(scsiid, lun) \
+ and A, 0xC0, scsiid; \
+ or SCBPTR, A, lun; \
+ clr SCBPTR[1]; \
+ and SINDEX, 0x30, scsiid; \
+ shr SINDEX, 3; /* Multiply by 2 */ \
+ add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \
+ mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
+
+mesgin_identify:
+ /*
+ * Determine whether a target is using tagged or non-tagged
+ * transactions by first looking at the transaction stored in
+ * the per-device, disconnected array. If there is no untagged
+ * transaction for this target, this must be a tagged transaction.
+ */
+ and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
+ INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
+ bmov DINDEX, SINDEX, 2;
+ bmov REG0, SINDIR, 2;
+ cmp REG0[1], SCB_LIST_NULL je snoop_tag;
+ /* Untagged. Clear the busy table entry and setup the SCB. */
+ bmov DINDIR, ALLONES, 2;
+ bmov SCBPTR, REG0, 2;
+ jmp setup_SCB;
+
+/*
+ * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
+ * If we get one, we use the tag returned to find the proper
+ * SCB. After receiving the tag, look for the SCB at SCB locations tag and
+ * tag + 256.
+ */
+snoop_tag:
+ if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
+ or SEQ_FLAGS, 0x80;
+ }
+ mov NONE, SCSIDAT; /* ACK Identify MSG */
+ call phase_lock;
+ if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
+ or SEQ_FLAGS, 0x1;
+ }
+ cmp LASTPHASE, P_MESGIN jne not_found_ITloop;
+ if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
+ or SEQ_FLAGS, 0x2;
+ }
+ cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
+get_tag:
+ clr SCBPTR[1];
+ mvi SCBPTR call inb_next; /* tag value */
+verify_scb:
+ test SCB_CONTROL,DISCONNECTED jz verify_other_scb;
+ mov A, SAVED_SCSIID;
+ cmp SCB_SCSIID, A jne verify_other_scb;
+ mov A, SAVED_LUN;
+ cmp SCB_LUN, A je setup_SCB_disconnected;
+verify_other_scb:
+ xor SCBPTR[1], 1;
+ test SCBPTR[1], 0xFF jnz verify_scb;
+ jmp not_found;
+
+/*
+ * Ensure that the SCB the tag points to is for
+ * an SCB transaction to the reconnecting target.
+ */
+setup_SCB:
+ if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
+ or SEQ_FLAGS, 0x10;
+ }
+ test SCB_CONTROL,DISCONNECTED jz not_found;
+setup_SCB_disconnected:
+ and SCB_CONTROL,~DISCONNECTED;
+ clr SEQ_FLAGS; /* make note of IDENTIFY */
+ test SCB_SGPTR, SG_LIST_NULL jnz . + 3;
+ bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
+ call allocate_fifo;
+ /* See if the host wants to send a message upon reconnection */
+ test SCB_CONTROL, MK_MESSAGE jz mesgin_done;
+ mvi HOST_MSG call mk_mesg;
+ jmp mesgin_done;
+
+not_found:
+ SET_SEQINTCODE(NO_MATCH)
+ jmp mesgin_done;
+
+not_found_ITloop:
+ SET_SEQINTCODE(NO_MATCH)
+ jmp ITloop;
+
+/*
+ * We received a "command complete" message. Put the SCB on the complete
+ * queue and trigger a completion interrupt via the idle loop. Before doing
+ * so, check to see if there is a residual or the status byte is something
+ * other than STATUS_GOOD (0). In either of these conditions, we upload the
+ * SCB back to the host so it can process this information.
+ */
+mesgin_complete:
+
+ /*
+ * If ATN is raised, we still want to give the target a message.
+ * Perhaps there was a parity error on this last message byte.
+ * Either way, the target should take us to message out phase
+ * and then attempt to complete the command again. We should use a
+ * critical section here to guard against a timeout triggering
+ * for this command and setting ATN while we are still processing
+ * the completion.
+ test SCSISIGI, ATNI jnz mesgin_done;
+ */
+
+ /*
+ * If we are identified and have successfully sent the CDB,
+ * any status will do. Optimize this fast path.
+ */
+ test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
+ test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
+
+ /*
+ * If the target never sent an identify message but instead went
+ * to mesgin to give an invalid message, let the host abort us.
+ */
+ test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
+
+ /*
+ * If we recevied good status but never successfully sent the
+ * cdb, abort the command.
+ */
+ test SCB_SCSI_STATUS,0xff jnz complete_accepted;
+ test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
+complete_accepted:
+
+ /*
+ * See if we attempted to deliver a message but the target ingnored us.
+ */
+ test SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
+ SET_SEQINTCODE(MKMSG_FAILED)
+complete_nomsg:
+ call queue_scb_completion;
+ jmp await_busfree;
+
+BEGIN_CRITICAL;
+freeze_queue:
+ /* Cancel any pending select-out. */
+ test SSTAT0, SELDO|SELINGO jnz . + 2;
+ and SCSISEQ0, ~ENSELO;
+ mov ACCUM_SAVE, A;
+ clr A;
+ add QFREEZE_COUNT, 1;
+ adc QFREEZE_COUNT[1], A;
+ or SEQ_FLAGS2, SELECTOUT_QFROZEN;
+ mov A, ACCUM_SAVE ret;
+END_CRITICAL;
+
+/*
+ * Complete the current FIFO's SCB if data for this same
+ * SCB is not transferring in the other FIFO.
+ */
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+pkt_complete_scb_if_fifos_idle:
+ bmov ARG_1, SCBPTR, 2;
+ mvi DFFSXFRCTL, CLRCHN;
+ SET_MODE(M_SCSI, M_SCSI)
+ bmov SCBPTR, ARG_1, 2;
+ test SCB_FIFO_USE_COUNT, 0xFF jnz return;
+queue_scb_completion:
+ test SCB_SCSI_STATUS,0xff jnz bad_status;
+ /*
+ * Check for residuals
+ */
+ test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */
+ test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
+ test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
+complete:
+BEGIN_CRITICAL;
+ bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
+ bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
+END_CRITICAL;
+bad_status:
+ cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
+ call freeze_queue;
+upload_scb:
+ /*
+ * Restore SCB TAG since we reuse this field
+ * in the sequencer. We don't want to corrupt
+ * it on the host.
+ */
+ bmov SCB_TAG, SCBPTR, 2;
+BEGIN_CRITICAL;
+ or SCB_SGPTR, SG_STATUS_VALID;
+ mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL;
+ cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail;
+ bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
+ bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret;
+add_dma_scb_tail:
+ bmov REG0, SCBPTR, 2;
+ bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2;
+ bmov SCB_NEXT_COMPLETE, REG0, 2;
+ bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret;
+END_CRITICAL;
+
+/*
+ * Is it a disconnect message? Set a flag in the SCB to remind us
+ * and await the bus going free. If this is an untagged transaction
+ * store the SCB id for it in our untagged target table for lookup on
+ * a reselection.
+ */
+mesgin_disconnect:
+ /*
+ * If ATN is raised, we still want to give the target a message.
+ * Perhaps there was a parity error on this last message byte
+ * or we want to abort this command. Either way, the target
+ * should take us to message out phase and then attempt to
+ * disconnect again.
+ * XXX - Wait for more testing.
+ test SCSISIGI, ATNI jnz mesgin_done;
+ */
+ test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
+ jnz mesgin_proto_violation;
+ or SCB_CONTROL,DISCONNECTED;
+ test SCB_CONTROL, TAG_ENB jnz await_busfree;
+queue_disc_scb:
+ bmov REG0, SCBPTR, 2;
+ INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
+ bmov DINDEX, SINDEX, 2;
+ bmov DINDIR, REG0, 2;
+ bmov SCBPTR, REG0, 2;
+ /* FALLTHROUGH */
+await_busfree:
+ and SIMODE1, ~ENBUSFREE;
+ if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
+ /*
+ * In the BUSFREEREV_BUG case, the
+ * busfree status was cleared at the
+ * beginning of the connection.
+ */
+ mvi CLRSINT1,CLRBUSFREE;
+ }
+ mov NONE, SCSIDAT; /* Ack the last byte */
+ test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
+ jnz await_busfree_not_m_dff;
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+await_busfree_clrchn:
+ mvi DFFSXFRCTL, CLRCHN;
+await_busfree_not_m_dff:
+ /* clear target specific flags */
+ mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT;
+ test SSTAT1,REQINIT|BUSFREE jz .;
+ /*
+ * We only set BUSFREE status once either a new
+ * phase has been detected or we are really
+ * BUSFREE. This allows the driver to know
+ * that we are active on the bus even though
+ * no identified transaction exists should a
+ * timeout occur while awaiting busfree.
+ */
+ mvi LASTPHASE, P_BUSFREE;
+ test SSTAT1, BUSFREE jnz idle_loop;
+ SET_SEQINTCODE(MISSED_BUSFREE)
+
+
+/*
+ * Save data pointers message:
+ * Copying RAM values back to SCB, for Save Data Pointers message, but
+ * only if we've actually been into a data phase to change them. This
+ * protects against bogus data in scratch ram and the residual counts
+ * since they are only initialized when we go into data_in or data_out.
+ * Ack the message as soon as possible.
+ */
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+mesgin_sdptrs:
+ mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
+ test SEQ_FLAGS, DPHASE jz ITloop;
+ call save_pointers;
+ jmp ITloop;
+
+save_pointers:
+ /*
+ * If we are asked to save our position at the end of the
+ * transfer, just mark us at the end rather than perform a
+ * full save.
+ */
+ test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
+ or SCB_SGPTR, SG_LIST_NULL ret;
+
+save_pointers_full:
+ /*
+ * The SCB_DATAPTR becomes the current SHADDR.
+ * All other information comes directly from our residual
+ * state.
+ */
+ bmov SCB_DATAPTR, SHADDR, 8;
+ bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
+
+/*
+ * Restore pointers message? Data pointers are recopied from the
+ * SCB anytime we enter a data phase for the first time, so all
+ * we need to do is clear the DPHASE flag and let the data phase
+ * code do the rest. We also reset/reallocate the FIFO to make
+ * sure we have a clean start for the next data or command phase.
+ */
+mesgin_rdptrs:
+ and SEQ_FLAGS, ~DPHASE;
+ test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
+ mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
+ SET_MODE(M_SCSI, M_SCSI)
+msgin_rdptrs_get_fifo:
+ call allocate_fifo;
+ jmp mesgin_done;
+
+phase_lock:
+ if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
+ /*
+ * Don't ignore persistent REQ assertions just because
+ * they were asserted within the bus settle delay window.
+ * This allows us to tolerate devices like the GEM318
+ * that violate the SCSI spec. We are careful not to
+ * count REQ while we are waiting for it to fall during
+ * an async phase due to our asserted ACK. Each
+ * sequencer instruction takes ~25ns, so the REQ must
+ * last at least 100ns in order to be counted as a true
+ * REQ.
+ */
+ test SCSIPHASE, 0xFF jnz phase_locked;
+ test SCSISIGI, ACKI jnz phase_lock;
+ test SCSISIGI, REQI jz phase_lock;
+ test SCSIPHASE, 0xFF jnz phase_locked;
+ test SCSISIGI, ACKI jnz phase_lock;
+ test SCSISIGI, REQI jz phase_lock;
+phase_locked:
+ } else {
+ test SCSIPHASE, 0xFF jz .;
+ }
+ test SSTAT1, SCSIPERR jnz phase_lock;
+phase_lock_latch_phase:
+ and LASTPHASE, PHASE_MASK, SCSISIGI ret;
+
+/*
+ * Functions to read data in Automatic PIO mode.
+ *
+ * An ACK is not sent on input from the target until SCSIDATL is read from.
+ * So we wait until SCSIDATL is latched (the usual way), then read the data
+ * byte directly off the bus using SCSIBUSL. When we have pulled the ATN
+ * line, or we just want to acknowledge the byte, then we do a dummy read
+ * from SCISDATL. The SCSI spec guarantees that the target will hold the
+ * data byte on the bus until we send our ACK.
+ *
+ * The assumption here is that these are called in a particular sequence,
+ * and that REQ is already set when inb_first is called. inb_{first,next}
+ * use the same calling convention as inb.
+ */
+inb_next:
+ mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
+inb_next_wait:
+ /*
+ * If there is a parity error, wait for the kernel to
+ * see the interrupt and prepare our message response
+ * before continuing.
+ */
+ test SCSIPHASE, 0xFF jz .;
+ test SSTAT1, SCSIPERR jnz inb_next_wait;
+inb_next_check_phase:
+ and LASTPHASE, PHASE_MASK, SCSISIGI;
+ cmp LASTPHASE, P_MESGIN jne mesgin_phasemis;
+inb_first:
+ clr DINDEX[1];
+ mov DINDEX,SINDEX;
+ mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/
+inb_last:
+ mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/
+
+mk_mesg:
+ mvi SCSISIGO, ATNO;
+ mov MSG_OUT,SINDEX ret;
+
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+disable_ccsgen:
+ test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
+ clr CCSGCTL;
+disable_ccsgen_fetch_done:
+ clr SG_STATE ret;
+
+service_fifo:
+ /*
+ * Do we have any prefetch left???
+ */
+ test SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
+
+ /*
+ * Can this FIFO have access to the S/G cache yet?
+ */
+ test CCSGCTL, SG_CACHE_AVAIL jz return;
+
+ /* Did we just finish fetching segs? */
+ test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
+
+ /* Are we actively fetching segments? */
+ test CCSGCTL, CCSGENACK jnz return;
+
+ /*
+ * Should the other FIFO get the S/G cache first? If
+ * both FIFOs have been allocated since we last checked
+ * any FIFO, it is important that we service a FIFO
+ * that is not actively on the bus first. This guarantees
+ * that a FIFO will be freed to handle snapshot requests for
+ * any FIFO that is still on the bus. Chips with RTI do not
+ * perform snapshots, so don't bother with this test there.
+ */
+ if ((ahd->features & AHD_RTI) == 0) {
+ /*
+ * If we're not still receiving SCSI data,
+ * it is safe to allocate the S/G cache to
+ * this FIFO.
+ */
+ test DFCNTRL, SCSIEN jz idle_sgfetch_start;
+
+ /*
+ * Switch to the other FIFO. Non-RTI chips
+ * also have the "set mode" bug, so we must
+ * disable interrupts during the switch.
+ */
+ mvi SEQINTCTL, INTVEC1DSL;
+ xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
+
+ /*
+ * If the other FIFO needs loading, then it
+ * must not have claimed the S/G cache yet
+ * (SG_CACHE_AVAIL would have been cleared in
+ * the original FIFO mode and we test this above).
+ * Return to the idle loop so we can process the
+ * FIFO not currently on the bus first.
+ */
+ test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay;
+ clr SEQINTCTL ret;
+idle_sgfetch_okay:
+ xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
+ clr SEQINTCTL;
+ }
+
+idle_sgfetch_start:
+ /*
+ * We fetch a "cacheline aligned" and sized amount of data
+ * so we don't end up referencing a non-existent page.
+ * Cacheline aligned is in quotes because the kernel will
+ * set the prefetch amount to a reasonable level if the
+ * cacheline size is unknown.
+ */
+ bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4;
+ mvi SGHCNT, SG_PREFETCH_CNT;
+ if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
+ /*
+ * Need two instructions between "touches" of SGHADDR.
+ */
+ nop;
+ }
+ and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
+ mvi CCSGCTL, CCSGEN|CCSGRESET;
+ or SG_STATE, FETCH_INPROG ret;
+idle_sgfetch_complete:
+ /*
+ * Guard against SG_CACHE_AVAIL activating during sg fetch
+ * request in the other FIFO.
+ */
+ test SG_STATE, FETCH_INPROG jz return;
+ clr CCSGCTL;
+ and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
+ mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
+idle_sg_avail:
+ /* Does the hardware have space for another SG entry? */
+ test DFSTATUS, PRELOAD_AVAIL jz return;
+ /*
+ * On the A, preloading a segment before HDMAENACK
+ * comes true can clobber the shadow address of the
+ * first segment in the S/G FIFO. Wait until it is
+ * safe to proceed.
+ */
+ if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
+ test DFCNTRL, HDMAENACK jz return;
+ }
+ if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
+ bmov HADDR, CCSGRAM, 8;
+ } else {
+ bmov HADDR, CCSGRAM, 4;
+ }
+ bmov HCNT, CCSGRAM, 3;
+ bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
+ if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
+ and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
+ }
+ if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
+ /* Skip 4 bytes of pad. */
+ add CCSGADDR, 4;
+ }
+sg_advance:
+ clr A; /* add sizeof(struct scatter) */
+ add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
+ adc SCB_RESIDUAL_SGPTR[1],A;
+ adc SCB_RESIDUAL_SGPTR[2],A;
+ adc SCB_RESIDUAL_SGPTR[3],A;
+ mov SINDEX, SCB_RESIDUAL_SGPTR[0];
+ test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
+ or SINDEX, LAST_SEG;
+ clr SG_STATE;
+ mov SG_CACHE_PRE, SINDEX;
+ if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
+ /*
+ * Use SCSIENWRDIS so that SCSIEN is never
+ * modified by this operation.
+ */
+ or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
+ } else {
+ or DFCNTRL, PRELOADEN|HDMAEN;
+ }
+ /*
+ * Do we have another segment in the cache?
+ */
+ add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
+ jnc return;
+ and SG_STATE, ~SEGS_AVAIL ret;
+
+/*
+ * Initialize the DMA address and counter from the SCB.
+ */
+load_first_seg:
+ bmov HADDR, SCB_DATAPTR, 11;
+ and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
+ test SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
+ or REG_ISR, LAST_SEG;
+ mov SG_CACHE_PRE, REG_ISR;
+ mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
+ /*
+ * Since we've are entering a data phase, we will
+ * rely on the SCB_RESID* fields. Initialize the
+ * residual and clear the full residual flag.
+ */
+ and SCB_SGPTR[0], ~SG_FULL_RESID;
+ bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
+ /* If we need more S/G elements, tell the idle loop */
+ test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
+ mvi SG_STATE, LOADING_NEEDED ret;
+ clr SG_STATE ret;
+
+p_data_handle_xfer:
+ call setjmp;
+ test SG_STATE, LOADING_NEEDED jnz service_fifo;
+p_data_clear_handler:
+ or LONGJMP_ADDR[1], INVALID_ADDR ret;
+
+p_data:
+ test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed;
+ SET_SEQINTCODE(PROTO_VIOLATION)
+p_data_allowed:
+
+ test SEQ_FLAGS, DPHASE jz data_phase_initialize;
+
+ /*
+ * If we re-enter the data phase after going through another
+ * phase, our transfer location has almost certainly been
+ * corrupted by the interveining, non-data, transfers. Ask
+ * the host driver to fix us up based on the transfer residual
+ * unless we already know that we should be bitbucketing.
+ */
+ test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
+ SET_SEQINTCODE(PDATA_REINIT)
+ jmp data_phase_inbounds;
+
+p_data_bitbucket:
+ /*
+ * Turn on `Bit Bucket' mode, wait until the target takes
+ * us to another phase, and then notify the host.
+ */
+ mov SAVED_MODE, MODE_PTR;
+ test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
+ jnz bitbucket_not_m_dff;
+ /*
+ * Ensure that any FIFO contents are cleared out and the
+ * FIFO free'd prior to starting the BITBUCKET. BITBUCKET
+ * doesn't discard data already in the FIFO.
+ */
+ mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
+ SET_MODE(M_SCSI, M_SCSI)
+bitbucket_not_m_dff:
+ or SXFRCTL1,BITBUCKET;
+ /* Wait for non-data phase. */
+ test SCSIPHASE, ~DATA_PHASE_MASK jz .;
+ and SXFRCTL1, ~BITBUCKET;
+ RESTORE_MODE(SAVED_MODE)
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+ SET_SEQINTCODE(DATA_OVERRUN)
+ jmp ITloop;
+
+data_phase_initialize:
+ test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
+ call load_first_seg;
+data_phase_inbounds:
+ /* We have seen a data phase at least once. */
+ or SEQ_FLAGS, DPHASE;
+ mov SAVED_MODE, MODE_PTR;
+ test SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
+ call p_data_handle_xfer;
+data_group_dma_loop:
+ /*
+ * The transfer is complete if either the last segment
+ * completes or the target changes phase. Both conditions
+ * will clear SCSIEN.
+ */
+ call idle_loop_service_fifos;
+ call idle_loop_cchan;
+ call idle_loop_gsfifo;
+ RESTORE_MODE(SAVED_MODE)
+ test DFCNTRL, SCSIEN jnz data_group_dma_loop;
+
+data_group_dmafinish:
+ /*
+ * The transfer has terminated either due to a phase
+ * change, and/or the completion of the last segment.
+ * We have two goals here. Do as much other work
+ * as possible while the data fifo drains on a read
+ * and respond as quickly as possible to the standard
+ * messages (save data pointers/disconnect and command
+ * complete) that usually follow a data phase.
+ */
+ call calc_residual;
+
+ /*
+ * Go ahead and shut down the DMA engine now.
+ */
+ test DFCNTRL, DIRECTION jnz data_phase_finish;
+data_group_fifoflush:
+ if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
+ or DFCNTRL, FIFOFLUSH;
+ }
+ /*
+ * We have enabled the auto-ack feature. This means
+ * that the controller may have already transferred
+ * some overrun bytes into the data FIFO and acked them
+ * on the bus. The only way to detect this situation is
+ * to wait for LAST_SEG_DONE to come true on a completed
+ * transfer and then test to see if the data FIFO is
+ * non-empty. We know there is more data yet to transfer
+ * if SG_LIST_NULL is not yet set, thus there cannot be
+ * an overrun.
+ */
+ test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
+ test SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
+ test DFSTATUS, FIFOEMP jnz data_phase_finish;
+ /* Overrun */
+ jmp p_data;
+data_phase_finish:
+ /*
+ * If the target has left us in data phase, loop through
+ * the dma code again. We will only loop if there is a
+ * data overrun.
+ */
+ if ((ahd->flags & AHD_TARGETROLE) != 0) {
+ test SSTAT0, TARGET jnz data_phase_done;
+ }
+ if ((ahd->flags & AHD_INITIATORROLE) != 0) {
+ test SSTAT1, REQINIT jz .;
+ test SCSIPHASE, DATA_PHASE_MASK jnz p_data;
+ }
+
+data_phase_done:
+ /* Kill off any pending prefetch */
+ call disable_ccsgen;
+ or LONGJMP_ADDR[1], INVALID_ADDR;
+
+ if ((ahd->flags & AHD_TARGETROLE) != 0) {
+ test SEQ_FLAGS, DPHASE_PENDING jz ITloop;
+ /*
+ and SEQ_FLAGS, ~DPHASE_PENDING;
+ * For data-in phases, wait for any pending acks from the
+ * initiator before changing phase. We only need to
+ * send Ignore Wide Residue messages for data-in phases.
+ test DFCNTRL, DIRECTION jz target_ITloop;
+ test SSTAT1, REQINIT jnz .;
+ test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
+ SET_MODE(M_SCSI, M_SCSI)
+ test NEGCONOPTS, WIDEXFER jz target_ITloop;
+ */
+ /*
+ * Issue an Ignore Wide Residue Message.
+ mvi P_MESGIN|BSYO call change_phase;
+ mvi MSG_IGN_WIDE_RESIDUE call target_outb;
+ mvi 1 call target_outb;
+ jmp target_ITloop;
+ */
+ } else {
+ jmp ITloop;
+ }
+
+/*
+ * We assume that, even though data may still be
+ * transferring to the host, that the SCSI side of
+ * the DMA engine is now in a static state. This
+ * allows us to update our notion of where we are
+ * in this transfer.
+ *
+ * If, by chance, we stopped before being able
+ * to fetch additional segments for this transfer,
+ * yet the last S/G was completely exhausted,
+ * call our idle loop until it is able to load
+ * another segment. This will allow us to immediately
+ * pickup on the next segment on the next data phase.
+ *
+ * If we happened to stop on the last segment, then
+ * our residual information is still correct from
+ * the idle loop and there is no need to perform
+ * any fixups.
+ */
+residual_before_last_seg:
+ test MDFFSTAT, SHVALID jnz sgptr_fixup;
+ /*
+ * Can never happen from an interrupt as the packetized
+ * hardware will only interrupt us once SHVALID or
+ * LAST_SEG_DONE.
+ */
+ call idle_loop_service_fifos;
+ RESTORE_MODE(SAVED_MODE)
+ /* FALLTHROUGH */
+calc_residual:
+ test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
+ /* Record if we've consumed all S/G entries */
+ test MDFFSTAT, SHVALID jz . + 2;
+ bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
+ or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
+
+sgptr_fixup:
+ /*
+ * Fixup the residual next S/G pointer. The S/G preload
+ * feature of the chip allows us to load two elements
+ * in addition to the currently active element. We
+ * store the bottom byte of the next S/G pointer in
+ * the SG_CACHE_PTR register so we can restore the
+ * correct value when the DMA completes. If the next
+ * sg ptr value has advanced to the point where higher
+ * bytes in the address have been affected, fix them
+ * too.
+ */
+ test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
+ test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
+ add SCB_RESIDUAL_SGPTR[1], -1;
+ adc SCB_RESIDUAL_SGPTR[2], -1;
+ adc SCB_RESIDUAL_SGPTR[3], -1;
+sgptr_fixup_done:
+ and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
+ clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
+ bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
+
+export timer_isr:
+ call issue_cmdcmplt;
+ mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
+ if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
+ /*
+ * In H2A4, the mode pointer is not saved
+ * for intvec2, but is restored on iret.
+ * This can lead to the restoration of a
+ * bogus mode ptr. Manually clear the
+ * intmask bits and do a normal return
+ * to compensate.
+ */
+ and SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
+ } else {
+ or SEQINTCTL, IRET ret;
+ }
+
+export seq_isr:
+ if ((ahd->features & AHD_RTI) == 0) {
+ /*
+ * On RevA Silicon, if the target returns us to data-out
+ * after we have already trained for data-out, it is
+ * possible for us to transition the free running clock to
+ * data-valid before the required 100ns P1 setup time (8 P1
+ * assertions in fast-160 mode). This will only happen if
+ * this L-Q is a continuation of a data transfer for which
+ * we have already prefetched data into our FIFO (LQ/Data
+ * followed by LQ/Data for the same write transaction).
+ * This can cause some target implementations to miss the
+ * first few data transfers on the bus. We detect this
+ * situation by noticing that this is the first data transfer
+ * after an LQ (LQIWORKONLQ true), that the data transfer is
+ * a continuation of a transfer already setup in our FIFO
+ * (SAVEPTRS interrupt), and that the transaction is a write
+ * (DIRECTION set in DFCNTRL). The delay is performed by
+ * disabling SCSIEN until we see the first REQ from the
+ * target.
+ *
+ * First instruction in an ISR cannot be a branch on
+ * Rev A. Snapshot LQISTAT2 so the status is not missed
+ * and deffer the test by one instruction.
+ */
+ mov REG_ISR, LQISTAT2;
+ test REG_ISR, LQIWORKONLQ jz main_isr;
+ test SEQINTSRC, SAVEPTRS jz main_isr;
+ test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
+ /*
+ * Switch to the active FIFO after clearing the snapshot
+ * savepointer in the current FIFO. We do this so that
+ * a pending CTXTDONE or SAVEPTR is visible in the active
+ * FIFO. This status is the only way we can detect if we
+ * have lost the race (e.g. host paused us) and our attempts
+ * to disable the channel occurred after all REQs were
+ * already seen and acked (REQINIT never comes true).
+ */
+ mvi DFFSXFRCTL, CLRCHN;
+ xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
+ test DFCNTRL, DIRECTION jz interrupt_return;
+ and DFCNTRL, ~SCSIEN;
+snapshot_wait_data_valid:
+ test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return;
+ test SSTAT1, REQINIT jz snapshot_wait_data_valid;
+snapshot_data_valid:
+ or DFCNTRL, SCSIEN;
+ or SEQINTCTL, IRET ret;
+snapshot_saveptr:
+ mvi DFFSXFRCTL, CLRCHN;
+ or SEQINTCTL, IRET ret;
+main_isr:
+ }
+ test SEQINTSRC, CFG4DATA jnz cfg4data_intr;
+ test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr;
+ test SEQINTSRC, SAVEPTRS jnz saveptr_intr;
+ test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr;
+ SET_SEQINTCODE(INVALID_SEQINT)
+
+/*
+ * There are two types of save pointers interrupts:
+ * The first is a snapshot save pointers where the current FIFO is not
+ * active and contains a snapshot of the current poniter information.
+ * This happens between packets in a stream for a single L_Q. Since we
+ * are not performing a pointer save, we can safely clear the channel
+ * so it can be used for other transactions. On RTI capable controllers,
+ * where snapshots can, and are, disabled, the code to handle this type
+ * of snapshot is not active.
+ *
+ * The second case is a save pointers on an active FIFO which occurs
+ * if the target changes to a new L_Q or busfrees/QASes and the transfer
+ * has a residual. This should occur coincident with a ctxtdone. We
+ * disable the interrupt and allow our active routine to handle the
+ * save.
+ */
+saveptr_intr:
+ if ((ahd->features & AHD_RTI) == 0) {
+ test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
+ }
+saveptr_active_fifo:
+ and SEQIMODE, ~ENSAVEPTRS;
+ or SEQINTCTL, IRET ret;
+
+cfg4data_intr:
+ test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
+ call load_first_seg;
+ call pkt_handle_xfer;
+ inc SCB_FIFO_USE_COUNT;
+interrupt_return:
+ or SEQINTCTL, IRET ret;
+
+cfg4istat_intr:
+ call freeze_queue;
+ add NONE, -13, SCB_CDB_LEN;
+ jnc cfg4istat_have_sense_addr;
+ test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
+ /*
+ * Host sets up address/count and enables transfer.
+ */
+ SET_SEQINTCODE(CFG4ISTAT_INTR)
+ jmp cfg4istat_setup_handler;
+cfg4istat_have_sense_addr:
+ bmov HADDR, SCB_SENSE_BUSADDR, 4;
+ mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
+ mvi SG_CACHE_PRE, LAST_SEG;
+ mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
+cfg4istat_setup_handler:
+ /*
+ * Status pkt is transferring to host.
+ * Wait in idle loop for transfer to complete.
+ * If a command completed before an attempted
+ * task management function completed, notify the host.
+ */
+ test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
+ SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
+cfg4istat_no_taskmgmt_func:
+ call pkt_handle_status;
+ or SEQINTCTL, IRET ret;
+
+cfg4icmd_intr:
+ /*
+ * In the case of DMAing a CDB from the host, the normal
+ * CDB buffer is formatted with an 8 byte address followed
+ * by a 1 byte count.
+ */
+ bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
+ mvi SG_CACHE_PRE, LAST_SEG;
+ mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
+ call pkt_handle_cdb;
+ or SEQINTCTL, IRET ret;
+
+/*
+ * See if the target has gone on in this context creating an
+ * overrun condition. For the write case, the hardware cannot
+ * ack bytes until data are provided. So, if the target begins
+ * another packet without changing contexts, implying we are
+ * not sitting on a packet boundary, we are in an overrun
+ * situation. For the read case, the hardware will continue to
+ * ack bytes into the FIFO, and may even ack the last overrun packet
+ * into the FIFO. If the FIFO should become non-empty, we are in
+ * a read overrun case.
+ */
+#define check_overrun \
+ /* Not on a packet boundary. */ \
+ test MDFFSTAT, DLZERO jz pkt_handle_overrun; \
+ test DFSTATUS, FIFOEMP jz pkt_handle_overrun
+
+pkt_handle_xfer:
+ test SG_STATE, LOADING_NEEDED jz pkt_last_seg;
+ call setjmp;
+ test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
+ test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
+ test SCSISIGO, ATNO jnz . + 2;
+ test SSTAT2, NONPACKREQ jz pkt_service_fifo;
+ /*
+ * Defer handling of this NONPACKREQ until we
+ * can be sure it pertains to this FIFO. SAVEPTRS
+ * will not be asserted if the NONPACKREQ is for us,
+ * so we must simulate it if shadow is valid. If
+ * shadow is not valid, keep running this FIFO until we
+ * have satisfied the transfer by loading segments and
+ * waiting for either shadow valid or last_seg_done.
+ */
+ test MDFFSTAT, SHVALID jnz pkt_saveptrs;
+pkt_service_fifo:
+ test SG_STATE, LOADING_NEEDED jnz service_fifo;
+pkt_last_seg:
+ call setjmp;
+ test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
+ test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
+ test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
+ test SCSISIGO, ATNO jnz . + 2;
+ test SSTAT2, NONPACKREQ jz return;
+ test MDFFSTAT, SHVALID jz return;
+ /* FALLTHROUGH */
+
+/*
+ * Either a SAVEPTRS interrupt condition is pending for this FIFO
+ * or we have a pending NONPACKREQ for this FIFO. We differentiate
+ * between the two by capturing the state of the SAVEPTRS interrupt
+ * prior to clearing this status and executing the common code for
+ * these two cases.
+ */
+pkt_saveptrs:
+BEGIN_CRITICAL;
+ if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
+ or DFCNTRL, FIFOFLUSH;
+ }
+ mov REG0, SEQINTSRC;
+ call calc_residual;
+ call save_pointers;
+ mvi CLRSEQINTSRC, CLRSAVEPTRS;
+ call disable_ccsgen;
+ or SEQIMODE, ENSAVEPTRS;
+ test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
+ test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
+ /*
+ * Keep a handler around for this FIFO until it drains
+ * to the host to guarantee that we don't complete the
+ * command to the host before the data arrives.
+ */
+pkt_saveptrs_wait_fifoemp:
+ call setjmp;
+ test DFSTATUS, FIFOEMP jz return;
+pkt_saveptrs_check_status:
+ or LONGJMP_ADDR[1], INVALID_ADDR;
+ test REG0, SAVEPTRS jz unexpected_nonpkt_phase;
+ dec SCB_FIFO_USE_COUNT;
+ test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
+ mvi DFFSXFRCTL, CLRCHN ret;
+
+/*
+ * LAST_SEG_DONE status has been seen in the current FIFO.
+ * This indicates that all of the allowed data for this
+ * command has transferred across the SCSI and host buses.
+ * Check for overrun and see if we can complete this command.
+ */
+pkt_last_seg_done:
+ /*
+ * Mark transfer as completed.
+ */
+ or SCB_SGPTR, SG_LIST_NULL;
+
+ /*
+ * Wait for the current context to finish to verify that
+ * no overrun condition has occurred.
+ */
+ test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
+ call setjmp;
+pkt_wait_ctxt_done_loop:
+ test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
+ /*
+ * A sufficiently large overrun or a NONPACKREQ may
+ * prevent CTXTDONE from ever asserting, so we must
+ * poll for these statuses too.
+ */
+ check_overrun;
+ test SSTAT2, NONPACKREQ jz return;
+ test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
+ /* FALLTHROUGH */
+
+pkt_ctxt_done:
+ check_overrun;
+ or LONGJMP_ADDR[1], INVALID_ADDR;
+ /*
+ * If status has been received, it is safe to skip
+ * the check to see if another FIFO is active because
+ * LAST_SEG_DONE has been observed. However, we check
+ * the FIFO anyway since it costs us only one extra
+ * instruction to leverage common code to perform the
+ * SCB completion.
+ */
+ dec SCB_FIFO_USE_COUNT;
+ test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
+ mvi DFFSXFRCTL, CLRCHN ret;
+END_CRITICAL;
+
+/*
+ * Must wait until CDB xfer is over before issuing the
+ * clear channel.
+ */
+pkt_handle_cdb:
+ call setjmp;
+ test SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
+ or LONGJMP_ADDR[1], INVALID_ADDR;
+ mvi DFFSXFRCTL, CLRCHN ret;
+
+/*
+ * Watch over the status transfer. Our host sense buffer is
+ * large enough to take the maximum allowed status packet.
+ * None-the-less, we must still catch and report overruns to
+ * the host. Additionally, properly catch unexpected non-packet
+ * phases that are typically caused by CRC errors in status packet
+ * transmission.
+ */
+pkt_handle_status:
+ call setjmp;
+ test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
+ test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
+ test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
+pkt_status_IU_done:
+ if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
+ or DFCNTRL, FIFOFLUSH;
+ }
+ test DFSTATUS, FIFOEMP jz return;
+BEGIN_CRITICAL;
+ or LONGJMP_ADDR[1], INVALID_ADDR;
+ mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE;
+ or SCB_CONTROL, STATUS_RCVD;
+ jmp pkt_complete_scb_if_fifos_idle;
+END_CRITICAL;
+pkt_status_check_overrun:
+ /*
+ * Status PKT overruns are uncerimoniously recovered with a
+ * bus reset. If we've overrun, let the host know so that
+ * recovery can be performed.
+ *
+ * LAST_SEG_DONE has been observed. If either CTXTDONE or
+ * a NONPACKREQ phase change have occurred and the FIFO is
+ * empty, there is no overrun.
+ */
+ test DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
+ test SEQINTSRC, CTXTDONE jz . + 2;
+ test DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
+ test SCSIPHASE, ~DATA_PHASE_MASK jz return;
+ test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
+pkt_status_report_overrun:
+ SET_SEQINTCODE(STATUS_OVERRUN)
+ /* SEQUENCER RESTARTED */
+pkt_status_check_nonpackreq:
+ /*
+ * CTXTDONE may be held off if a NONPACKREQ is associated with
+ * the current context. If a NONPACKREQ is observed, decide
+ * if it is for the current context. If it is for the current
+ * context, we must defer NONPACKREQ processing until all data
+ * has transferred to the host.
+ */
+ test SCSIPHASE, ~DATA_PHASE_MASK jz return;
+ test SCSISIGO, ATNO jnz . + 2;
+ test SSTAT2, NONPACKREQ jz return;
+ test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
+ test DFSTATUS, FIFOEMP jz return;
+ /*
+ * The unexpected nonpkt phase handler assumes that any
+ * data channel use will have a FIFO reference count. It
+ * turns out that the status handler doesn't need a references
+ * count since the status received flag, and thus completion
+ * processing, cannot be set until the handler is finished.
+ * We increment the count here to make the nonpkt handler
+ * happy.
+ */
+ inc SCB_FIFO_USE_COUNT;
+ /* FALLTHROUGH */
+
+/*
+ * Nonpackreq is a polled status. It can come true in three situations:
+ * we have received an L_Q, we have sent one or more L_Qs, or there is no
+ * L_Q context associated with this REQ (REQ occurs immediately after a
+ * (re)selection). Routines that know that the context responsible for this
+ * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the
+ * top level idle loop, we exhaust all active contexts prior to determining that
+ * we simply do not have the full I_T_L_Q for this phase.
+ */
+unexpected_nonpkt_phase_find_ctxt:
+ /*
+ * This nonpackreq is most likely associated with one of the tags
+ * in a FIFO or an outgoing LQ. Only treat it as an I_T only
+ * nonpackreq if we've cleared out the FIFOs and handled any
+ * pending SELDO.
+ */
+SET_SRC_MODE M_SCSI;
+SET_DST_MODE M_SCSI;
+ and A, FIFO1FREE|FIFO0FREE, DFFSTAT;
+ cmp A, FIFO1FREE|FIFO0FREE jne return;
+ test SSTAT0, SELDO jnz return;
+ mvi SCBPTR[1], SCB_LIST_NULL;
+unexpected_nonpkt_phase:
+ test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
+ jnz unexpected_nonpkt_mode_cleared;
+SET_SRC_MODE M_DFF0;
+SET_DST_MODE M_DFF0;
+ or LONGJMP_ADDR[1], INVALID_ADDR;
+ dec SCB_FIFO_USE_COUNT;
+ mvi DFFSXFRCTL, CLRCHN;
+unexpected_nonpkt_mode_cleared:
+ mvi CLRSINT2, CLRNONPACKREQ;
+ if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
+ /*
+ * Test to ensure that the bus has not
+ * already gone free prior to clearing
+ * any stale busfree status. This avoids
+ * a window whereby a busfree just after
+ * a selection could be missed.
+ */
+ test SCSISIGI, BSYI jz . + 2;
+ mvi CLRSINT1,CLRBUSFREE;
+ or SIMODE1, ENBUSFREE;
+ }
+ test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
+ SET_SEQINTCODE(ENTERING_NONPACK)
+ jmp ITloop;
+
+illegal_phase:
+ SET_SEQINTCODE(ILLEGAL_PHASE)
+ jmp ITloop;
+
+/*
+ * We have entered an overrun situation. If we have working
+ * BITBUCKET, flip that on and let the hardware eat any overrun
+ * data. Otherwise use an overrun buffer in the host to simulate
+ * BITBUCKET.
+ */
+pkt_handle_overrun_inc_use_count:
+ inc SCB_FIFO_USE_COUNT;
+pkt_handle_overrun:
+ SET_SEQINTCODE(CFG4OVERRUN)
+ call freeze_queue;
+ if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
+ or DFFSXFRCTL, DFFBITBUCKET;
+SET_SRC_MODE M_DFF1;
+SET_DST_MODE M_DFF1;
+ } else {
+ call load_overrun_buf;
+ mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
+ }
+ call setjmp;
+ if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
+ test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
+ call load_overrun_buf;
+ or DFCNTRL, PRELOADEN;
+overrun_load_done:
+ test SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
+ } else {
+ test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
+ }
+ test SSTAT2, NONPACKREQ jz return;
+pkt_overrun_end:
+ or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
+ test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
+ dec SCB_FIFO_USE_COUNT;
+ or LONGJMP_ADDR[1], INVALID_ADDR;
+ test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
+ mvi DFFSXFRCTL, CLRCHN ret;
+
+if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
+load_overrun_buf:
+ /*
+ * Load a dummy segment if preload space is available.
+ */
+ mov HADDR[0], SHARED_DATA_ADDR;
+ add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
+ mov ACCUM_SAVE, A;
+ clr A;
+ adc HADDR[2], A, SHARED_DATA_ADDR[2];
+ adc HADDR[3], A, SHARED_DATA_ADDR[3];
+ mov A, ACCUM_SAVE;
+ bmov HADDR[4], ALLZEROS, 4;
+ /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
+ clr HCNT[0];
+ mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
+ clr HCNT[2] ret;
+}