diff options
author | Srikant Patnaik | 2015-01-13 15:08:24 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-13 15:08:24 +0530 |
commit | 97327692361306d1e6259021bc425e32832fdb50 (patch) | |
tree | fe9088f3248ec61e24f404f21b9793cb644b7f01 /drivers/net/wireless/ath/ath5k/phy.c | |
parent | 2d05a8f663478a44e088d122e0d62109bbc801d0 (diff) | |
parent | a3a8b90b61e21be3dde9101c4e86c881e0f06210 (diff) | |
download | FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.gz FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.bz2 FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.zip |
dirty fix to merging
Diffstat (limited to 'drivers/net/wireless/ath/ath5k/phy.c')
-rw-r--r-- | drivers/net/wireless/ath/ath5k/phy.c | 3950 |
1 files changed, 3950 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath/ath5k/phy.c b/drivers/net/wireless/ath/ath5k/phy.c new file mode 100644 index 00000000..3a284548 --- /dev/null +++ b/drivers/net/wireless/ath/ath5k/phy.c @@ -0,0 +1,3950 @@ +/* + * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> + * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> + * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> + * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + * + */ + +/***********************\ +* PHY related functions * +\***********************/ + +#include <linux/delay.h> +#include <linux/slab.h> +#include <asm/unaligned.h> + +#include "ath5k.h" +#include "reg.h" +#include "rfbuffer.h" +#include "rfgain.h" +#include "../regd.h" + + +/** + * DOC: PHY related functions + * + * Here we handle the low-level functions related to baseband + * and analog frontend (RF) parts. This is by far the most complex + * part of the hw code so make sure you know what you are doing. + * + * Here is a list of what this is all about: + * + * - Channel setting/switching + * + * - Automatic Gain Control (AGC) calibration + * + * - Noise Floor calibration + * + * - I/Q imbalance calibration (QAM correction) + * + * - Calibration due to thermal changes (gain_F) + * + * - Spur noise mitigation + * + * - RF/PHY initialization for the various operating modes and bwmodes + * + * - Antenna control + * + * - TX power control per channel/rate/packet type + * + * Also have in mind we never got documentation for most of these + * functions, what we have comes mostly from Atheros's code, reverse + * engineering and patent docs/presentations etc. + */ + + +/******************\ +* Helper functions * +\******************/ + +/** + * ath5k_hw_radio_revision() - Get the PHY Chip revision + * @ah: The &struct ath5k_hw + * @band: One of enum ieee80211_band + * + * Returns the revision number of a 2GHz, 5GHz or single chip + * radio. + */ +u16 +ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band) +{ + unsigned int i; + u32 srev; + u16 ret; + + /* + * Set the radio chip access register + */ + switch (band) { + case IEEE80211_BAND_2GHZ: + ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); + break; + case IEEE80211_BAND_5GHZ: + ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); + break; + default: + return 0; + } + + usleep_range(2000, 2500); + + /* ...wait until PHY is ready and read the selected radio revision */ + ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); + + for (i = 0; i < 8; i++) + ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); + + if (ah->ah_version == AR5K_AR5210) { + srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; + ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; + } else { + srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; + ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | + ((srev & 0x0f) << 4), 8); + } + + /* Reset to the 5GHz mode */ + ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); + + return ret; +} + +/** + * ath5k_channel_ok() - Check if a channel is supported by the hw + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * Note: We don't do any regulatory domain checks here, it's just + * a sanity check. + */ +bool +ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) +{ + u16 freq = channel->center_freq; + + /* Check if the channel is in our supported range */ + if (channel->band == IEEE80211_BAND_2GHZ) { + if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && + (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) + return true; + } else if (channel->band == IEEE80211_BAND_5GHZ) + if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && + (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) + return true; + + return false; +} + +/** + * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + */ +bool +ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + u8 refclk_freq; + + if ((ah->ah_radio == AR5K_RF5112) || + (ah->ah_radio == AR5K_RF5413) || + (ah->ah_radio == AR5K_RF2413) || + (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) + refclk_freq = 40; + else + refclk_freq = 32; + + if ((channel->center_freq % refclk_freq != 0) && + ((channel->center_freq % refclk_freq < 10) || + (channel->center_freq % refclk_freq > 22))) + return true; + else + return false; +} + +/** + * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer + * @ah: The &struct ath5k_hw + * @rf_regs: The struct ath5k_rf_reg + * @val: New value + * @reg_id: RF register ID + * @set: Indicate we need to swap data + * + * This is an internal function used to modify RF Banks before + * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more + * infos. + */ +static unsigned int +ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, + u32 val, u8 reg_id, bool set) +{ + const struct ath5k_rf_reg *rfreg = NULL; + u8 offset, bank, num_bits, col, position; + u16 entry; + u32 mask, data, last_bit, bits_shifted, first_bit; + u32 *rfb; + s32 bits_left; + int i; + + data = 0; + rfb = ah->ah_rf_banks; + + for (i = 0; i < ah->ah_rf_regs_count; i++) { + if (rf_regs[i].index == reg_id) { + rfreg = &rf_regs[i]; + break; + } + } + + if (rfb == NULL || rfreg == NULL) { + ATH5K_PRINTF("Rf register not found!\n"); + /* should not happen */ + return 0; + } + + bank = rfreg->bank; + num_bits = rfreg->field.len; + first_bit = rfreg->field.pos; + col = rfreg->field.col; + + /* first_bit is an offset from bank's + * start. Since we have all banks on + * the same array, we use this offset + * to mark each bank's start */ + offset = ah->ah_offset[bank]; + + /* Boundary check */ + if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { + ATH5K_PRINTF("invalid values at offset %u\n", offset); + return 0; + } + + entry = ((first_bit - 1) / 8) + offset; + position = (first_bit - 1) % 8; + + if (set) + data = ath5k_hw_bitswap(val, num_bits); + + for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; + position = 0, entry++) { + + last_bit = (position + bits_left > 8) ? 8 : + position + bits_left; + + mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << + (col * 8); + + if (set) { + rfb[entry] &= ~mask; + rfb[entry] |= ((data << position) << (col * 8)) & mask; + data >>= (8 - position); + } else { + data |= (((rfb[entry] & mask) >> (col * 8)) >> position) + << bits_shifted; + bits_shifted += last_bit - position; + } + + bits_left -= 8 - position; + } + + data = set ? 1 : ath5k_hw_bitswap(data, num_bits); + + return data; +} + +/** + * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212 + * @ah: the &struct ath5k_hw + * @channel: the currently set channel upon reset + * + * Write the delta slope coefficient (used on pilot tracking ?) for OFDM + * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. + * + * Since delta slope is floating point we split it on its exponent and + * mantissa and provide these values on hw. + * + * For more infos i think this patent is related + * "http://www.freepatentsonline.com/7184495.html" + */ +static inline int +ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + /* Get exponent and mantissa and set it */ + u32 coef_scaled, coef_exp, coef_man, + ds_coef_exp, ds_coef_man, clock; + + BUG_ON(!(ah->ah_version == AR5K_AR5212) || + (channel->hw_value == AR5K_MODE_11B)); + + /* Get coefficient + * ALGO: coef = (5 * clock / carrier_freq) / 2 + * we scale coef by shifting clock value by 24 for + * better precision since we use integers */ + switch (ah->ah_bwmode) { + case AR5K_BWMODE_40MHZ: + clock = 40 * 2; + break; + case AR5K_BWMODE_10MHZ: + clock = 40 / 2; + break; + case AR5K_BWMODE_5MHZ: + clock = 40 / 4; + break; + default: + clock = 40; + break; + } + coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; + + /* Get exponent + * ALGO: coef_exp = 14 - highest set bit position */ + coef_exp = ilog2(coef_scaled); + + /* Doesn't make sense if it's zero*/ + if (!coef_scaled || !coef_exp) + return -EINVAL; + + /* Note: we've shifted coef_scaled by 24 */ + coef_exp = 14 - (coef_exp - 24); + + + /* Get mantissa (significant digits) + * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ + coef_man = coef_scaled + + (1 << (24 - coef_exp - 1)); + + /* Calculate delta slope coefficient exponent + * and mantissa (remove scaling) and set them on hw */ + ds_coef_man = coef_man >> (24 - coef_exp); + ds_coef_exp = coef_exp - 16; + + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, + AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, + AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); + + return 0; +} + +/** + * ath5k_hw_phy_disable() - Disable PHY + * @ah: The &struct ath5k_hw + */ +int ath5k_hw_phy_disable(struct ath5k_hw *ah) +{ + /*Just a try M.F.*/ + ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); + + return 0; +} + +/** + * ath5k_hw_wait_for_synth() - Wait for synth to settle + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + */ +static void +ath5k_hw_wait_for_synth(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + /* + * On 5211+ read activation -> rx delay + * and use it (100ns steps). + */ + if (ah->ah_version != AR5K_AR5210) { + u32 delay; + delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & + AR5K_PHY_RX_DELAY_M; + delay = (channel->hw_value == AR5K_MODE_11B) ? + ((delay << 2) / 22) : (delay / 10); + if (ah->ah_bwmode == AR5K_BWMODE_10MHZ) + delay = delay << 1; + if (ah->ah_bwmode == AR5K_BWMODE_5MHZ) + delay = delay << 2; + /* XXX: /2 on turbo ? Let's be safe + * for now */ + usleep_range(100 + delay, 100 + (2 * delay)); + } else { + usleep_range(1000, 1500); + } +} + + +/**********************\ +* RF Gain optimization * +\**********************/ + +/** + * DOC: RF Gain optimization + * + * This code is used to optimize RF gain on different environments + * (temperature mostly) based on feedback from a power detector. + * + * It's only used on RF5111 and RF5112, later RF chips seem to have + * auto adjustment on hw -notice they have a much smaller BANK 7 and + * no gain optimization ladder-. + * + * For more infos check out this patent doc + * "http://www.freepatentsonline.com/7400691.html" + * + * This paper describes power drops as seen on the receiver due to + * probe packets + * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues + * %20of%20Power%20Control.pdf" + * + * And this is the MadWiFi bug entry related to the above + * "http://madwifi-project.org/ticket/1659" + * with various measurements and diagrams + */ + +/** + * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach + * @ah: The &struct ath5k_hw + */ +int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) +{ + /* Initialize the gain optimization values */ + switch (ah->ah_radio) { + case AR5K_RF5111: + ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; + ah->ah_gain.g_low = 20; + ah->ah_gain.g_high = 35; + ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; + break; + case AR5K_RF5112: + ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; + ah->ah_gain.g_low = 20; + ah->ah_gain.g_high = 85; + ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; + break; + default: + return -EINVAL; + } + + return 0; +} + +/** + * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet + * @ah: The &struct ath5k_hw + * + * Schedules a gain probe check on the next transmitted packet. + * That means our next packet is going to be sent with lower + * tx power and a Peak to Average Power Detector (PAPD) will try + * to measure the gain. + * + * TODO: Force a tx packet (bypassing PCU arbitrator etc) + * just after we enable the probe so that we don't mess with + * standard traffic. + */ +static void +ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) +{ + + /* Skip if gain calibration is inactive or + * we already handle a probe request */ + if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) + return; + + /* Send the packet with 2dB below max power as + * patent doc suggest */ + ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, + AR5K_PHY_PAPD_PROBE_TXPOWER) | + AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); + + ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; + +} + +/** + * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction + * @ah: The &struct ath5k_hw + * + * Calculate Gain_F measurement correction + * based on the current step for RF5112 rev. 2 + */ +static u32 +ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) +{ + u32 mix, step; + u32 *rf; + const struct ath5k_gain_opt *go; + const struct ath5k_gain_opt_step *g_step; + const struct ath5k_rf_reg *rf_regs; + + /* Only RF5112 Rev. 2 supports it */ + if ((ah->ah_radio != AR5K_RF5112) || + (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) + return 0; + + go = &rfgain_opt_5112; + rf_regs = rf_regs_5112a; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); + + g_step = &go->go_step[ah->ah_gain.g_step_idx]; + + if (ah->ah_rf_banks == NULL) + return 0; + + rf = ah->ah_rf_banks; + ah->ah_gain.g_f_corr = 0; + + /* No VGA (Variable Gain Amplifier) override, skip */ + if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) + return 0; + + /* Mix gain stepping */ + step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); + + /* Mix gain override */ + mix = g_step->gos_param[0]; + + switch (mix) { + case 3: + ah->ah_gain.g_f_corr = step * 2; + break; + case 2: + ah->ah_gain.g_f_corr = (step - 5) * 2; + break; + case 1: + ah->ah_gain.g_f_corr = step; + break; + default: + ah->ah_gain.g_f_corr = 0; + break; + } + + return ah->ah_gain.g_f_corr; +} + +/** + * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector + * @ah: The &struct ath5k_hw + * + * Check if current gain_F measurement is in the range of our + * power detector windows. If we get a measurement outside range + * we know it's not accurate (detectors can't measure anything outside + * their detection window) so we must ignore it. + * + * Returns true if readback was O.K. or false on failure + */ +static bool +ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) +{ + const struct ath5k_rf_reg *rf_regs; + u32 step, mix_ovr, level[4]; + u32 *rf; + + if (ah->ah_rf_banks == NULL) + return false; + + rf = ah->ah_rf_banks; + + if (ah->ah_radio == AR5K_RF5111) { + + rf_regs = rf_regs_5111; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); + + step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, + false); + + level[0] = 0; + level[1] = (step == 63) ? 50 : step + 4; + level[2] = (step != 63) ? 64 : level[0]; + level[3] = level[2] + 50; + + ah->ah_gain.g_high = level[3] - + (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); + ah->ah_gain.g_low = level[0] + + (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); + } else { + + rf_regs = rf_regs_5112; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); + + mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, + false); + + level[0] = level[2] = 0; + + if (mix_ovr == 1) { + level[1] = level[3] = 83; + } else { + level[1] = level[3] = 107; + ah->ah_gain.g_high = 55; + } + } + + return (ah->ah_gain.g_current >= level[0] && + ah->ah_gain.g_current <= level[1]) || + (ah->ah_gain.g_current >= level[2] && + ah->ah_gain.g_current <= level[3]); +} + +/** + * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment + * @ah: The &struct ath5k_hw + * + * Choose the right target gain based on current gain + * and RF gain optimization ladder + */ +static s8 +ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) +{ + const struct ath5k_gain_opt *go; + const struct ath5k_gain_opt_step *g_step; + int ret = 0; + + switch (ah->ah_radio) { + case AR5K_RF5111: + go = &rfgain_opt_5111; + break; + case AR5K_RF5112: + go = &rfgain_opt_5112; + break; + default: + return 0; + } + + g_step = &go->go_step[ah->ah_gain.g_step_idx]; + + if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { + + /* Reached maximum */ + if (ah->ah_gain.g_step_idx == 0) + return -1; + + for (ah->ah_gain.g_target = ah->ah_gain.g_current; + ah->ah_gain.g_target >= ah->ah_gain.g_high && + ah->ah_gain.g_step_idx > 0; + g_step = &go->go_step[ah->ah_gain.g_step_idx]) + ah->ah_gain.g_target -= 2 * + (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - + g_step->gos_gain); + + ret = 1; + goto done; + } + + if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { + + /* Reached minimum */ + if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) + return -2; + + for (ah->ah_gain.g_target = ah->ah_gain.g_current; + ah->ah_gain.g_target <= ah->ah_gain.g_low && + ah->ah_gain.g_step_idx < go->go_steps_count - 1; + g_step = &go->go_step[ah->ah_gain.g_step_idx]) + ah->ah_gain.g_target -= 2 * + (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - + g_step->gos_gain); + + ret = 2; + goto done; + } + +done: + ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, + "ret %d, gain step %u, current gain %u, target gain %u\n", + ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, + ah->ah_gain.g_target); + + return ret; +} + +/** + * ath5k_hw_gainf_calibrate() - Do a gain_F calibration + * @ah: The &struct ath5k_hw + * + * Main callback for thermal RF gain calibration engine + * Check for a new gain reading and schedule an adjustment + * if needed. + * + * Returns one of enum ath5k_rfgain codes + */ +enum ath5k_rfgain +ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) +{ + u32 data, type; + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + + if (ah->ah_rf_banks == NULL || + ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) + return AR5K_RFGAIN_INACTIVE; + + /* No check requested, either engine is inactive + * or an adjustment is already requested */ + if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) + goto done; + + /* Read the PAPD (Peak to Average Power Detector) + * register */ + data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); + + /* No probe is scheduled, read gain_F measurement */ + if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { + ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; + type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); + + /* If tx packet is CCK correct the gain_F measurement + * by cck ofdm gain delta */ + if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { + if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) + ah->ah_gain.g_current += + ee->ee_cck_ofdm_gain_delta; + else + ah->ah_gain.g_current += + AR5K_GAIN_CCK_PROBE_CORR; + } + + /* Further correct gain_F measurement for + * RF5112A radios */ + if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { + ath5k_hw_rf_gainf_corr(ah); + ah->ah_gain.g_current = + ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? + (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) : + 0; + } + + /* Check if measurement is ok and if we need + * to adjust gain, schedule a gain adjustment, + * else switch back to the active state */ + if (ath5k_hw_rf_check_gainf_readback(ah) && + AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && + ath5k_hw_rf_gainf_adjust(ah)) { + ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; + } else { + ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; + } + } + +done: + return ah->ah_gain.g_state; +} + +/** + * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw + * @ah: The &struct ath5k_hw + * @band: One of enum ieee80211_band + * + * Write initial RF gain table to set the RF sensitivity. + * + * NOTE: This one works on all RF chips and has nothing to do + * with Gain_F calibration + */ +static int +ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band) +{ + const struct ath5k_ini_rfgain *ath5k_rfg; + unsigned int i, size, index; + + switch (ah->ah_radio) { + case AR5K_RF5111: + ath5k_rfg = rfgain_5111; + size = ARRAY_SIZE(rfgain_5111); + break; + case AR5K_RF5112: + ath5k_rfg = rfgain_5112; + size = ARRAY_SIZE(rfgain_5112); + break; + case AR5K_RF2413: + ath5k_rfg = rfgain_2413; + size = ARRAY_SIZE(rfgain_2413); + break; + case AR5K_RF2316: + ath5k_rfg = rfgain_2316; + size = ARRAY_SIZE(rfgain_2316); + break; + case AR5K_RF5413: + ath5k_rfg = rfgain_5413; + size = ARRAY_SIZE(rfgain_5413); + break; + case AR5K_RF2317: + case AR5K_RF2425: + ath5k_rfg = rfgain_2425; + size = ARRAY_SIZE(rfgain_2425); + break; + default: + return -EINVAL; + } + + index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0; + + for (i = 0; i < size; i++) { + AR5K_REG_WAIT(i); + ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], + (u32)ath5k_rfg[i].rfg_register); + } + + return 0; +} + + +/********************\ +* RF Registers setup * +\********************/ + +/** + * ath5k_hw_rfregs_init() - Initialize RF register settings + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * @mode: One of enum ath5k_driver_mode + * + * Setup RF registers by writing RF buffer on hw. For + * more infos on this, check out rfbuffer.h + */ +static int +ath5k_hw_rfregs_init(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + unsigned int mode) +{ + const struct ath5k_rf_reg *rf_regs; + const struct ath5k_ini_rfbuffer *ini_rfb; + const struct ath5k_gain_opt *go = NULL; + const struct ath5k_gain_opt_step *g_step; + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + u8 ee_mode = 0; + u32 *rfb; + int i, obdb = -1, bank = -1; + + switch (ah->ah_radio) { + case AR5K_RF5111: + rf_regs = rf_regs_5111; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); + ini_rfb = rfb_5111; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); + go = &rfgain_opt_5111; + break; + case AR5K_RF5112: + if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { + rf_regs = rf_regs_5112a; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); + ini_rfb = rfb_5112a; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); + } else { + rf_regs = rf_regs_5112; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); + ini_rfb = rfb_5112; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); + } + go = &rfgain_opt_5112; + break; + case AR5K_RF2413: + rf_regs = rf_regs_2413; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); + ini_rfb = rfb_2413; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); + break; + case AR5K_RF2316: + rf_regs = rf_regs_2316; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); + ini_rfb = rfb_2316; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); + break; + case AR5K_RF5413: + rf_regs = rf_regs_5413; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); + ini_rfb = rfb_5413; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); + break; + case AR5K_RF2317: + rf_regs = rf_regs_2425; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); + ini_rfb = rfb_2317; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); + break; + case AR5K_RF2425: + rf_regs = rf_regs_2425; + ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); + if (ah->ah_mac_srev < AR5K_SREV_AR2417) { + ini_rfb = rfb_2425; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); + } else { + ini_rfb = rfb_2417; + ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); + } + break; + default: + return -EINVAL; + } + + /* If it's the first time we set RF buffer, allocate + * ah->ah_rf_banks based on ah->ah_rf_banks_size + * we set above */ + if (ah->ah_rf_banks == NULL) { + ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size, + GFP_KERNEL); + if (ah->ah_rf_banks == NULL) { + ATH5K_ERR(ah, "out of memory\n"); + return -ENOMEM; + } + } + + /* Copy values to modify them */ + rfb = ah->ah_rf_banks; + + for (i = 0; i < ah->ah_rf_banks_size; i++) { + if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { + ATH5K_ERR(ah, "invalid bank\n"); + return -EINVAL; + } + + /* Bank changed, write down the offset */ + if (bank != ini_rfb[i].rfb_bank) { + bank = ini_rfb[i].rfb_bank; + ah->ah_offset[bank] = i; + } + + rfb[i] = ini_rfb[i].rfb_mode_data[mode]; + } + + /* Set Output and Driver bias current (OB/DB) */ + if (channel->band == IEEE80211_BAND_2GHZ) { + + if (channel->hw_value == AR5K_MODE_11B) + ee_mode = AR5K_EEPROM_MODE_11B; + else + ee_mode = AR5K_EEPROM_MODE_11G; + + /* For RF511X/RF211X combination we + * use b_OB and b_DB parameters stored + * in eeprom on ee->ee_ob[ee_mode][0] + * + * For all other chips we use OB/DB for 2GHz + * stored in the b/g modal section just like + * 802.11a on ee->ee_ob[ee_mode][1] */ + if ((ah->ah_radio == AR5K_RF5111) || + (ah->ah_radio == AR5K_RF5112)) + obdb = 0; + else + obdb = 1; + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], + AR5K_RF_OB_2GHZ, true); + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], + AR5K_RF_DB_2GHZ, true); + + /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ + } else if ((channel->band == IEEE80211_BAND_5GHZ) || + (ah->ah_radio == AR5K_RF5111)) { + + /* For 11a, Turbo and XR we need to choose + * OB/DB based on frequency range */ + ee_mode = AR5K_EEPROM_MODE_11A; + obdb = channel->center_freq >= 5725 ? 3 : + (channel->center_freq >= 5500 ? 2 : + (channel->center_freq >= 5260 ? 1 : + (channel->center_freq > 4000 ? 0 : -1))); + + if (obdb < 0) + return -EINVAL; + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], + AR5K_RF_OB_5GHZ, true); + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], + AR5K_RF_DB_5GHZ, true); + } + + g_step = &go->go_step[ah->ah_gain.g_step_idx]; + + /* Set turbo mode (N/A on RF5413) */ + if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && + (ah->ah_radio != AR5K_RF5413)) + ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false); + + /* Bank Modifications (chip-specific) */ + if (ah->ah_radio == AR5K_RF5111) { + + /* Set gain_F settings according to current step */ + if (channel->hw_value != AR5K_MODE_11B) { + + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, + AR5K_PHY_FRAME_CTL_TX_CLIP, + g_step->gos_param[0]); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], + AR5K_RF_PWD_90, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], + AR5K_RF_PWD_84, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], + AR5K_RF_RFGAIN_SEL, true); + + /* We programmed gain_F parameters, switch back + * to active state */ + ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; + + } + + /* Bank 6/7 setup */ + + ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], + AR5K_RF_PWD_XPD, true); + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], + AR5K_RF_XPD_GAIN, true); + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], + AR5K_RF_GAIN_I, true); + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], + AR5K_RF_PLO_SEL, true); + + /* Tweak power detectors for half/quarter rate support */ + if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || + ah->ah_bwmode == AR5K_BWMODE_10MHZ) { + u8 wait_i; + + ath5k_hw_rfb_op(ah, rf_regs, 0x1f, + AR5K_RF_WAIT_S, true); + + wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? + 0x1f : 0x10; + + ath5k_hw_rfb_op(ah, rf_regs, wait_i, + AR5K_RF_WAIT_I, true); + ath5k_hw_rfb_op(ah, rf_regs, 3, + AR5K_RF_MAX_TIME, true); + + } + } + + if (ah->ah_radio == AR5K_RF5112) { + + /* Set gain_F settings according to current step */ + if (channel->hw_value != AR5K_MODE_11B) { + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], + AR5K_RF_MIXGAIN_OVR, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], + AR5K_RF_PWD_138, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], + AR5K_RF_PWD_137, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], + AR5K_RF_PWD_136, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], + AR5K_RF_PWD_132, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], + AR5K_RF_PWD_131, true); + + ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], + AR5K_RF_PWD_130, true); + + /* We programmed gain_F parameters, switch back + * to active state */ + ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; + } + + /* Bank 6/7 setup */ + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], + AR5K_RF_XPD_SEL, true); + + if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { + /* Rev. 1 supports only one xpd */ + ath5k_hw_rfb_op(ah, rf_regs, + ee->ee_x_gain[ee_mode], + AR5K_RF_XPD_GAIN, true); + + } else { + u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; + if (ee->ee_pd_gains[ee_mode] > 1) { + ath5k_hw_rfb_op(ah, rf_regs, + pdg_curve_to_idx[0], + AR5K_RF_PD_GAIN_LO, true); + ath5k_hw_rfb_op(ah, rf_regs, + pdg_curve_to_idx[1], + AR5K_RF_PD_GAIN_HI, true); + } else { + ath5k_hw_rfb_op(ah, rf_regs, + pdg_curve_to_idx[0], + AR5K_RF_PD_GAIN_LO, true); + ath5k_hw_rfb_op(ah, rf_regs, + pdg_curve_to_idx[0], + AR5K_RF_PD_GAIN_HI, true); + } + + /* Lower synth voltage on Rev 2 */ + if (ah->ah_radio == AR5K_RF5112 && + (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) { + ath5k_hw_rfb_op(ah, rf_regs, 2, + AR5K_RF_HIGH_VC_CP, true); + + ath5k_hw_rfb_op(ah, rf_regs, 2, + AR5K_RF_MID_VC_CP, true); + + ath5k_hw_rfb_op(ah, rf_regs, 2, + AR5K_RF_LOW_VC_CP, true); + + ath5k_hw_rfb_op(ah, rf_regs, 2, + AR5K_RF_PUSH_UP, true); + } + + /* Decrease power consumption on 5213+ BaseBand */ + if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { + ath5k_hw_rfb_op(ah, rf_regs, 1, + AR5K_RF_PAD2GND, true); + + ath5k_hw_rfb_op(ah, rf_regs, 1, + AR5K_RF_XB2_LVL, true); + + ath5k_hw_rfb_op(ah, rf_regs, 1, + AR5K_RF_XB5_LVL, true); + + ath5k_hw_rfb_op(ah, rf_regs, 1, + AR5K_RF_PWD_167, true); + + ath5k_hw_rfb_op(ah, rf_regs, 1, + AR5K_RF_PWD_166, true); + } + } + + ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], + AR5K_RF_GAIN_I, true); + + /* Tweak power detector for half/quarter rates */ + if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || + ah->ah_bwmode == AR5K_BWMODE_10MHZ) { + u8 pd_delay; + + pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? + 0xf : 0x8; + + ath5k_hw_rfb_op(ah, rf_regs, pd_delay, + AR5K_RF_PD_PERIOD_A, true); + ath5k_hw_rfb_op(ah, rf_regs, 0xf, + AR5K_RF_PD_DELAY_A, true); + + } + } + + if (ah->ah_radio == AR5K_RF5413 && + channel->band == IEEE80211_BAND_2GHZ) { + + ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, + true); + + /* Set optimum value for early revisions (on pci-e chips) */ + if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && + ah->ah_mac_srev < AR5K_SREV_AR5413) + ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), + AR5K_RF_PWD_ICLOBUF_2G, true); + + } + + /* Write RF banks on hw */ + for (i = 0; i < ah->ah_rf_banks_size; i++) { + AR5K_REG_WAIT(i); + ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); + } + + return 0; +} + + +/**************************\ + PHY/RF channel functions +\**************************/ + +/** + * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110 + * @channel: The &struct ieee80211_channel + * + * Map channel frequency to IEEE channel number and convert it + * to an internal channel value used by the RF5110 chipset. + */ +static u32 +ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) +{ + u32 athchan; + + athchan = (ath5k_hw_bitswap( + (ieee80211_frequency_to_channel( + channel->center_freq) - 24) / 2, 5) + << 1) | (1 << 6) | 0x1; + return athchan; +} + +/** + * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110 + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + */ +static int +ath5k_hw_rf5110_channel(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + u32 data; + + /* + * Set the channel and wait + */ + data = ath5k_hw_rf5110_chan2athchan(channel); + ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); + ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); + usleep_range(1000, 1500); + + return 0; +} + +/** + * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111 + * @ieee: IEEE channel number + * @athchan: The &struct ath5k_athchan_2ghz + * + * In order to enable the RF2111 frequency converter on RF5111/2111 setups + * we need to add some offsets and extra flags to the data values we pass + * on to the PHY. So for every 2GHz channel this function gets called + * to do the conversion. + */ +static int +ath5k_hw_rf5111_chan2athchan(unsigned int ieee, + struct ath5k_athchan_2ghz *athchan) +{ + int channel; + + /* Cast this value to catch negative channel numbers (>= -19) */ + channel = (int)ieee; + + /* + * Map 2GHz IEEE channel to 5GHz Atheros channel + */ + if (channel <= 13) { + athchan->a2_athchan = 115 + channel; + athchan->a2_flags = 0x46; + } else if (channel == 14) { + athchan->a2_athchan = 124; + athchan->a2_flags = 0x44; + } else if (channel >= 15 && channel <= 26) { + athchan->a2_athchan = ((channel - 14) * 4) + 132; + athchan->a2_flags = 0x46; + } else + return -EINVAL; + + return 0; +} + +/** + * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111 + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + */ +static int +ath5k_hw_rf5111_channel(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + struct ath5k_athchan_2ghz ath5k_channel_2ghz; + unsigned int ath5k_channel = + ieee80211_frequency_to_channel(channel->center_freq); + u32 data0, data1, clock; + int ret; + + /* + * Set the channel on the RF5111 radio + */ + data0 = data1 = 0; + + if (channel->band == IEEE80211_BAND_2GHZ) { + /* Map 2GHz channel to 5GHz Atheros channel ID */ + ret = ath5k_hw_rf5111_chan2athchan( + ieee80211_frequency_to_channel(channel->center_freq), + &ath5k_channel_2ghz); + if (ret) + return ret; + + ath5k_channel = ath5k_channel_2ghz.a2_athchan; + data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) + << 5) | (1 << 4); + } + + if (ath5k_channel < 145 || !(ath5k_channel & 1)) { + clock = 1; + data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | + (clock << 1) | (1 << 10) | 1; + } else { + clock = 0; + data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) + << 2) | (clock << 1) | (1 << 10) | 1; + } + + ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), + AR5K_RF_BUFFER); + ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), + AR5K_RF_BUFFER_CONTROL_3); + + return 0; +} + +/** + * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * On RF5112/2112 and newer we don't need to do any conversion. + * We pass the frequency value after a few modifications to the + * chip directly. + * + * NOTE: Make sure channel frequency given is within our range or else + * we might damage the chip ! Use ath5k_channel_ok before calling this one. + */ +static int +ath5k_hw_rf5112_channel(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + u32 data, data0, data1, data2; + u16 c; + + data = data0 = data1 = data2 = 0; + c = channel->center_freq; + + /* My guess based on code: + * 2GHz RF has 2 synth modes, one with a Local Oscillator + * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz + * (3040/2). data0 is used to set the PLL divider and data1 + * selects synth mode. */ + if (c < 4800) { + /* Channel 14 and all frequencies with 2Hz spacing + * below/above (non-standard channels) */ + if (!((c - 2224) % 5)) { + /* Same as (c - 2224) / 5 */ + data0 = ((2 * (c - 704)) - 3040) / 10; + data1 = 1; + /* Channel 1 and all frequencies with 5Hz spacing + * below/above (standard channels without channel 14) */ + } else if (!((c - 2192) % 5)) { + /* Same as (c - 2192) / 5 */ + data0 = ((2 * (c - 672)) - 3040) / 10; + data1 = 0; + } else + return -EINVAL; + + data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); + /* This is more complex, we have a single synthesizer with + * 4 reference clock settings (?) based on frequency spacing + * and set using data2. LO is at 4800Hz and data0 is again used + * to set some divider. + * + * NOTE: There is an old atheros presentation at Stanford + * that mentions a method called dual direct conversion + * with 1GHz sliding IF for RF5110. Maybe that's what we + * have here, or an updated version. */ + } else if ((c % 5) != 2 || c > 5435) { + if (!(c % 20) && c >= 5120) { + data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); + data2 = ath5k_hw_bitswap(3, 2); + } else if (!(c % 10)) { + data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); + data2 = ath5k_hw_bitswap(2, 2); + } else if (!(c % 5)) { + data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); + data2 = ath5k_hw_bitswap(1, 2); + } else + return -EINVAL; + } else { + data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); + data2 = ath5k_hw_bitswap(0, 2); + } + + data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; + + ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); + ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); + + return 0; +} + +/** + * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425 + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * AR2425/2417 have a different 2GHz RF so code changes + * a little bit from RF5112. + */ +static int +ath5k_hw_rf2425_channel(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + u32 data, data0, data2; + u16 c; + + data = data0 = data2 = 0; + c = channel->center_freq; + + if (c < 4800) { + data0 = ath5k_hw_bitswap((c - 2272), 8); + data2 = 0; + /* ? 5GHz ? */ + } else if ((c % 5) != 2 || c > 5435) { + if (!(c % 20) && c < 5120) + data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); + else if (!(c % 10)) + data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); + else if (!(c % 5)) + data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); + else + return -EINVAL; + data2 = ath5k_hw_bitswap(1, 2); + } else { + data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); + data2 = ath5k_hw_bitswap(0, 2); + } + + data = (data0 << 4) | data2 << 2 | 0x1001; + + ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); + ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); + + return 0; +} + +/** + * ath5k_hw_channel() - Set a channel on the radio chip + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * This is the main function called to set a channel on the + * radio chip based on the radio chip version. + */ +static int +ath5k_hw_channel(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + int ret; + /* + * Check bounds supported by the PHY (we don't care about regulatory + * restrictions at this point). + */ + if (!ath5k_channel_ok(ah, channel)) { + ATH5K_ERR(ah, + "channel frequency (%u MHz) out of supported " + "band range\n", + channel->center_freq); + return -EINVAL; + } + + /* + * Set the channel and wait + */ + switch (ah->ah_radio) { + case AR5K_RF5110: + ret = ath5k_hw_rf5110_channel(ah, channel); + break; + case AR5K_RF5111: + ret = ath5k_hw_rf5111_channel(ah, channel); + break; + case AR5K_RF2317: + case AR5K_RF2425: + ret = ath5k_hw_rf2425_channel(ah, channel); + break; + default: + ret = ath5k_hw_rf5112_channel(ah, channel); + break; + } + + if (ret) + return ret; + + /* Set JAPAN setting for channel 14 */ + if (channel->center_freq == 2484) { + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, + AR5K_PHY_CCKTXCTL_JAPAN); + } else { + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, + AR5K_PHY_CCKTXCTL_WORLD); + } + + ah->ah_current_channel = channel; + + return 0; +} + + +/*****************\ + PHY calibration +\*****************/ + +/** + * DOC: PHY Calibration routines + * + * Noise floor calibration: When we tell the hardware to + * perform a noise floor calibration by setting the + * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically + * sample-and-hold the minimum noise level seen at the antennas. + * This value is then stored in a ring buffer of recently measured + * noise floor values so we have a moving window of the last few + * samples. The median of the values in the history is then loaded + * into the hardware for its own use for RSSI and CCA measurements. + * This type of calibration doesn't interfere with traffic. + * + * AGC calibration: When we tell the hardware to perform + * an AGC (Automatic Gain Control) calibration by setting the + * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does + * a calibration on the DC offsets of ADCs. During this period + * rx/tx gets disabled so we have to deal with it on the driver + * part. + * + * I/Q calibration: When we tell the hardware to perform + * an I/Q calibration, it tries to correct I/Q imbalance and + * fix QAM constellation by sampling data from rxed frames. + * It doesn't interfere with traffic. + * + * For more infos on AGC and I/Q calibration check out patent doc + * #03/094463. + */ + +/** + * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw + * @ah: The &struct ath5k_hw + */ +static s32 +ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) +{ + s32 val; + + val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); + return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); +} + +/** + * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer + * @ah: The &struct ath5k_hw + */ +void +ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) +{ + int i; + + ah->ah_nfcal_hist.index = 0; + for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) + ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; +} + +/** + * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer + * @ah: The &struct ath5k_hw + * @noise_floor: The NF we got from hw + */ +static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) +{ + struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; + hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); + hist->nfval[hist->index] = noise_floor; +} + +/** + * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer + * @ah: The &struct ath5k_hw + */ +static s16 +ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) +{ + s16 sort[ATH5K_NF_CAL_HIST_MAX]; + s16 tmp; + int i, j; + + memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); + for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { + for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { + if (sort[j] > sort[j - 1]) { + tmp = sort[j]; + sort[j] = sort[j - 1]; + sort[j - 1] = tmp; + } + } + } + for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { + ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, + "cal %d:%d\n", i, sort[i]); + } + return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; +} + +/** + * ath5k_hw_update_noise_floor() - Update NF on hardware + * @ah: The &struct ath5k_hw + * + * This is the main function we call to perform a NF calibration, + * it reads NF from hardware, calculates the median and updates + * NF on hw. + */ +void +ath5k_hw_update_noise_floor(struct ath5k_hw *ah) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + u32 val; + s16 nf, threshold; + u8 ee_mode; + + /* keep last value if calibration hasn't completed */ + if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { + ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, + "NF did not complete in calibration window\n"); + + return; + } + + ah->ah_cal_mask |= AR5K_CALIBRATION_NF; + + ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel); + + /* completed NF calibration, test threshold */ + nf = ath5k_hw_read_measured_noise_floor(ah); + threshold = ee->ee_noise_floor_thr[ee_mode]; + + if (nf > threshold) { + ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, + "noise floor failure detected; " + "read %d, threshold %d\n", + nf, threshold); + + nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE; + } + + ath5k_hw_update_nfcal_hist(ah, nf); + nf = ath5k_hw_get_median_noise_floor(ah); + + /* load noise floor (in .5 dBm) so the hardware will use it */ + val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M; + val |= (nf * 2) & AR5K_PHY_NF_M; + ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); + + AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, + ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE)); + + ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, + 0, false); + + /* + * Load a high max CCA Power value (-50 dBm in .5 dBm units) + * so that we're not capped by the median we just loaded. + * This will be used as the initial value for the next noise + * floor calibration. + */ + val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M); + ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_NF_EN | + AR5K_PHY_AGCCTL_NF_NOUPDATE | + AR5K_PHY_AGCCTL_NF); + + ah->ah_noise_floor = nf; + + ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; + + ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, + "noise floor calibrated: %d\n", nf); +} + +/** + * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110 + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110 + */ +static int +ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + u32 phy_sig, phy_agc, phy_sat, beacon; + int ret; + + if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) + return 0; + + /* + * Disable beacons and RX/TX queues, wait + */ + AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, + AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); + beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); + ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); + + usleep_range(2000, 2500); + + /* + * Set the channel (with AGC turned off) + */ + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); + udelay(10); + ret = ath5k_hw_channel(ah, channel); + + /* + * Activate PHY and wait + */ + ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); + usleep_range(1000, 1500); + + AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); + + if (ret) + return ret; + + /* + * Calibrate the radio chip + */ + + /* Remember normal state */ + phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); + phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); + phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); + + /* Update radio registers */ + ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | + AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); + + ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | + AR5K_PHY_AGCCOARSE_LO)) | + AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | + AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); + + ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | + AR5K_PHY_ADCSAT_THR)) | + AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | + AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); + + udelay(20); + + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); + udelay(10); + ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); + AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); + + usleep_range(1000, 1500); + + /* + * Enable calibration and wait until completion + */ + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); + + ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_CAL, 0, false); + + /* Reset to normal state */ + ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); + ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); + ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); + + if (ret) { + ATH5K_ERR(ah, "calibration timeout (%uMHz)\n", + channel->center_freq); + return ret; + } + + /* + * Re-enable RX/TX and beacons + */ + AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, + AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); + ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); + + return 0; +} + +/** + * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer + * @ah: The &struct ath5k_hw + */ +static int +ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) +{ + u32 i_pwr, q_pwr; + s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; + int i; + + /* Skip if I/Q calibration is not needed or if it's still running */ + if (!ah->ah_iq_cal_needed) + return -EINVAL; + else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) { + ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, + "I/Q calibration still running"); + return -EBUSY; + } + + /* Calibration has finished, get the results and re-run */ + + /* Work around for empty results which can apparently happen on 5212: + * Read registers up to 10 times until we get both i_pr and q_pwr */ + for (i = 0; i <= 10; i++) { + iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); + i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); + q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); + ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, + "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr); + if (i_pwr && q_pwr) + break; + } + + i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; + + if (ah->ah_version == AR5K_AR5211) + q_coffd = q_pwr >> 6; + else + q_coffd = q_pwr >> 7; + + /* In case i_coffd became zero, cancel calibration + * not only it's too small, it'll also result a divide + * by zero later on. */ + if (i_coffd == 0 || q_coffd < 2) + return -ECANCELED; + + /* Protect against loss of sign bits */ + + i_coff = (-iq_corr) / i_coffd; + i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */ + + if (ah->ah_version == AR5K_AR5211) + q_coff = (i_pwr / q_coffd) - 64; + else + q_coff = (i_pwr / q_coffd) - 128; + q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */ + + ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, + "new I:%d Q:%d (i_coffd:%x q_coffd:%x)", + i_coff, q_coff, i_coffd, q_coffd); + + /* Commit new I/Q values (set enable bit last to match HAL sources) */ + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff); + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); + + /* Re-enable calibration -if we don't we'll commit + * the same values again and again */ + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, + AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); + + return 0; +} + +/** + * ath5k_hw_phy_calibrate() - Perform a PHY calibration + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * The main function we call from above to perform + * a short or full PHY calibration based on RF chip + * and current channel + */ +int +ath5k_hw_phy_calibrate(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + int ret; + + if (ah->ah_radio == AR5K_RF5110) + return ath5k_hw_rf5110_calibrate(ah, channel); + + ret = ath5k_hw_rf511x_iq_calibrate(ah); + if (ret) { + ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, + "No I/Q correction performed (%uMHz)\n", + channel->center_freq); + + /* Happens all the time if there is not much + * traffic, consider it normal behaviour. */ + ret = 0; + } + + /* On full calibration request a PAPD probe for + * gainf calibration if needed */ + if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && + (ah->ah_radio == AR5K_RF5111 || + ah->ah_radio == AR5K_RF5112) && + channel->hw_value != AR5K_MODE_11B) + ath5k_hw_request_rfgain_probe(ah); + + /* Update noise floor */ + if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF)) + ath5k_hw_update_noise_floor(ah); + + return ret; +} + + +/***************************\ +* Spur mitigation functions * +\***************************/ + +/** + * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * This function gets called during PHY initialization to + * configure the spur filter for the given channel. Spur is noise + * generated due to "reflection" effects, for more information on this + * method check out patent US7643810 + */ +static void +ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + u32 mag_mask[4] = {0, 0, 0, 0}; + u32 pilot_mask[2] = {0, 0}; + /* Note: fbin values are scaled up by 2 */ + u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window; + s32 spur_delta_phase, spur_freq_sigma_delta; + s32 spur_offset, num_symbols_x16; + u8 num_symbol_offsets, i, freq_band; + + /* Convert current frequency to fbin value (the same way channels + * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale + * up by 2 so we can compare it later */ + if (channel->band == IEEE80211_BAND_2GHZ) { + chan_fbin = (channel->center_freq - 2300) * 10; + freq_band = AR5K_EEPROM_BAND_2GHZ; + } else { + chan_fbin = (channel->center_freq - 4900) * 10; + freq_band = AR5K_EEPROM_BAND_5GHZ; + } + + /* Check if any spur_chan_fbin from EEPROM is + * within our current channel's spur detection range */ + spur_chan_fbin = AR5K_EEPROM_NO_SPUR; + spur_detection_window = AR5K_SPUR_CHAN_WIDTH; + /* XXX: Half/Quarter channels ?*/ + if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) + spur_detection_window *= 2; + + for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { + spur_chan_fbin = ee->ee_spur_chans[i][freq_band]; + + /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag + * so it's zero if we got nothing from EEPROM */ + if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) { + spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; + break; + } + + if ((chan_fbin - spur_detection_window <= + (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) && + (chan_fbin + spur_detection_window >= + (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) { + spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; + break; + } + } + + /* We need to enable spur filter for this channel */ + if (spur_chan_fbin) { + spur_offset = spur_chan_fbin - chan_fbin; + /* + * Calculate deltas: + * spur_freq_sigma_delta -> spur_offset / sample_freq << 21 + * spur_delta_phase -> spur_offset / chip_freq << 11 + * Note: Both values have 100Hz resolution + */ + switch (ah->ah_bwmode) { + case AR5K_BWMODE_40MHZ: + /* Both sample_freq and chip_freq are 80MHz */ + spur_delta_phase = (spur_offset << 16) / 25; + spur_freq_sigma_delta = (spur_delta_phase >> 10); + symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2; + break; + case AR5K_BWMODE_10MHZ: + /* Both sample_freq and chip_freq are 20MHz (?) */ + spur_delta_phase = (spur_offset << 18) / 25; + spur_freq_sigma_delta = (spur_delta_phase >> 10); + symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2; + case AR5K_BWMODE_5MHZ: + /* Both sample_freq and chip_freq are 10MHz (?) */ + spur_delta_phase = (spur_offset << 19) / 25; + spur_freq_sigma_delta = (spur_delta_phase >> 10); + symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4; + default: + if (channel->band == IEEE80211_BAND_5GHZ) { + /* Both sample_freq and chip_freq are 40MHz */ + spur_delta_phase = (spur_offset << 17) / 25; + spur_freq_sigma_delta = + (spur_delta_phase >> 10); + symbol_width = + AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; + } else { + /* sample_freq -> 40MHz chip_freq -> 44MHz + * (for b compatibility) */ + spur_delta_phase = (spur_offset << 17) / 25; + spur_freq_sigma_delta = + (spur_offset << 8) / 55; + symbol_width = + AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; + } + break; + } + + /* Calculate pilot and magnitude masks */ + + /* Scale up spur_offset by 1000 to switch to 100HZ resolution + * and divide by symbol_width to find how many symbols we have + * Note: number of symbols is scaled up by 16 */ + num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width; + + /* Spur is on a symbol if num_symbols_x16 % 16 is zero */ + if (!(num_symbols_x16 & 0xF)) + /* _X_ */ + num_symbol_offsets = 3; + else + /* _xx_ */ + num_symbol_offsets = 4; + + for (i = 0; i < num_symbol_offsets; i++) { + + /* Calculate pilot mask */ + s32 curr_sym_off = + (num_symbols_x16 / 16) + i + 25; + + /* Pilot magnitude mask seems to be a way to + * declare the boundaries for our detection + * window or something, it's 2 for the middle + * value(s) where the symbol is expected to be + * and 1 on the boundary values */ + u8 plt_mag_map = + (i == 0 || i == (num_symbol_offsets - 1)) + ? 1 : 2; + + if (curr_sym_off >= 0 && curr_sym_off <= 32) { + if (curr_sym_off <= 25) + pilot_mask[0] |= 1 << curr_sym_off; + else if (curr_sym_off >= 27) + pilot_mask[0] |= 1 << (curr_sym_off - 1); + } else if (curr_sym_off >= 33 && curr_sym_off <= 52) + pilot_mask[1] |= 1 << (curr_sym_off - 33); + + /* Calculate magnitude mask (for viterbi decoder) */ + if (curr_sym_off >= -1 && curr_sym_off <= 14) + mag_mask[0] |= + plt_mag_map << (curr_sym_off + 1) * 2; + else if (curr_sym_off >= 15 && curr_sym_off <= 30) + mag_mask[1] |= + plt_mag_map << (curr_sym_off - 15) * 2; + else if (curr_sym_off >= 31 && curr_sym_off <= 46) + mag_mask[2] |= + plt_mag_map << (curr_sym_off - 31) * 2; + else if (curr_sym_off >= 47 && curr_sym_off <= 53) + mag_mask[3] |= + plt_mag_map << (curr_sym_off - 47) * 2; + + } + + /* Write settings on hw to enable spur filter */ + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, + AR5K_PHY_BIN_MASK_CTL_RATE, 0xff); + /* XXX: Self correlator also ? */ + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, + AR5K_PHY_IQ_PILOT_MASK_EN | + AR5K_PHY_IQ_CHAN_MASK_EN | + AR5K_PHY_IQ_SPUR_FILT_EN); + + /* Set delta phase and freq sigma delta */ + ath5k_hw_reg_write(ah, + AR5K_REG_SM(spur_delta_phase, + AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) | + AR5K_REG_SM(spur_freq_sigma_delta, + AR5K_PHY_TIMING_11_SPUR_FREQ_SD) | + AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC, + AR5K_PHY_TIMING_11); + + /* Write pilot masks */ + ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, + AR5K_PHY_TIMING_8_PILOT_MASK_2, + pilot_mask[1]); + + ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, + AR5K_PHY_TIMING_10_PILOT_MASK_2, + pilot_mask[1]); + + /* Write magnitude masks */ + ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1); + ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2); + ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, + AR5K_PHY_BIN_MASK_CTL_MASK_4, + mag_mask[3]); + + ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1); + ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2); + ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, + AR5K_PHY_BIN_MASK2_4_MASK_4, + mag_mask[3]); + + } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & + AR5K_PHY_IQ_SPUR_FILT_EN) { + /* Clean up spur mitigation settings and disable filter */ + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, + AR5K_PHY_BIN_MASK_CTL_RATE, 0); + AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ, + AR5K_PHY_IQ_PILOT_MASK_EN | + AR5K_PHY_IQ_CHAN_MASK_EN | + AR5K_PHY_IQ_SPUR_FILT_EN); + ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11); + + /* Clear pilot masks */ + ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, + AR5K_PHY_TIMING_8_PILOT_MASK_2, + 0); + + ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, + AR5K_PHY_TIMING_10_PILOT_MASK_2, + 0); + + /* Clear magnitude masks */ + ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1); + ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2); + ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, + AR5K_PHY_BIN_MASK_CTL_MASK_4, + 0); + + ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1); + ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2); + ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3); + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, + AR5K_PHY_BIN_MASK2_4_MASK_4, + 0); + } +} + + +/*****************\ +* Antenna control * +\*****************/ + +/** + * DOC: Antenna control + * + * Hw supports up to 14 antennas ! I haven't found any card that implements + * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2 + * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX) + * omnidirectional or sectorial and antennas 3-14 sectorial (or directional). + * + * We can have a single antenna for RX and multiple antennas for TX. + * RX antenna is our "default" antenna (usually antenna 1) set on + * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor + * (0 for automatic selection, 1 - 14 antenna number). + * + * We can let hw do all the work doing fast antenna diversity for both + * tx and rx or we can do things manually. Here are the options we have + * (all are bits of STA_ID1 register): + * + * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX + * control descriptor, use the default antenna to transmit or else use the last + * antenna on which we received an ACK. + * + * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to + * the antenna on which we got the ACK for that frame. + * + * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the + * one on the TX descriptor. + * + * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames + * (ACKs etc), or else use current antenna (the one we just used for TX). + * + * Using the above we support the following scenarios: + * + * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically + * + * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present + * + * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present + * + * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap + * + * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc + * + * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc + * + * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx- + * + * Also note that when setting antenna to F on tx descriptor card inverts + * current tx antenna. + */ + +/** + * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer + * @ah: The &struct ath5k_hw + * @ant: Antenna number + */ +static void +ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) +{ + if (ah->ah_version != AR5K_AR5210) + ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); +} + +/** + * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity + * @ah: The &struct ath5k_hw + * @ee_mode: One of enum ath5k_driver_mode + * @enable: True to enable, false to disable + */ +static void +ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) +{ + switch (ee_mode) { + case AR5K_EEPROM_MODE_11G: + /* XXX: This is set to + * disabled on initvals !!! */ + case AR5K_EEPROM_MODE_11A: + if (enable) + AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_OFDM_DIV_DIS); + else + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_OFDM_DIV_DIS); + break; + case AR5K_EEPROM_MODE_11B: + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_OFDM_DIV_DIS); + break; + default: + return; + } + + if (enable) { + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, + AR5K_PHY_RESTART_DIV_GC, 4); + + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, + AR5K_PHY_FAST_ANT_DIV_EN); + } else { + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, + AR5K_PHY_RESTART_DIV_GC, 0); + + AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, + AR5K_PHY_FAST_ANT_DIV_EN); + } +} + +/** + * ath5k_hw_set_antenna_switch() - Set up antenna switch table + * @ah: The &struct ath5k_hw + * @ee_mode: One of enum ath5k_driver_mode + * + * Switch table comes from EEPROM and includes information on controlling + * the 2 antenna RX attenuators + */ +void +ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) +{ + u8 ant0, ant1; + + /* + * In case a fixed antenna was set as default + * use the same switch table twice. + */ + if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A) + ant0 = ant1 = AR5K_ANT_SWTABLE_A; + else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B) + ant0 = ant1 = AR5K_ANT_SWTABLE_B; + else { + ant0 = AR5K_ANT_SWTABLE_A; + ant1 = AR5K_ANT_SWTABLE_B; + } + + /* Set antenna idle switch table */ + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, + AR5K_PHY_ANT_CTL_SWTABLE_IDLE, + (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] | + AR5K_PHY_ANT_CTL_TXRX_EN)); + + /* Set antenna switch tables */ + ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], + AR5K_PHY_ANT_SWITCH_TABLE_0); + ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], + AR5K_PHY_ANT_SWITCH_TABLE_1); +} + +/** + * ath5k_hw_set_antenna_mode() - Set antenna operating mode + * @ah: The &struct ath5k_hw + * @ant_mode: One of enum ath5k_ant_mode + */ +void +ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) +{ + struct ieee80211_channel *channel = ah->ah_current_channel; + bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; + bool use_def_for_sg; + int ee_mode; + u8 def_ant, tx_ant; + u32 sta_id1 = 0; + + /* if channel is not initialized yet we can't set the antennas + * so just store the mode. it will be set on the next reset */ + if (channel == NULL) { + ah->ah_ant_mode = ant_mode; + return; + } + + def_ant = ah->ah_def_ant; + + ee_mode = ath5k_eeprom_mode_from_channel(channel); + if (ee_mode < 0) { + ATH5K_ERR(ah, + "invalid channel: %d\n", channel->center_freq); + return; + } + + switch (ant_mode) { + case AR5K_ANTMODE_DEFAULT: + tx_ant = 0; + use_def_for_tx = false; + update_def_on_tx = false; + use_def_for_rts = false; + use_def_for_sg = false; + fast_div = true; + break; + case AR5K_ANTMODE_FIXED_A: + def_ant = 1; + tx_ant = 1; + use_def_for_tx = true; + update_def_on_tx = false; + use_def_for_rts = true; + use_def_for_sg = true; + fast_div = false; + break; + case AR5K_ANTMODE_FIXED_B: + def_ant = 2; + tx_ant = 2; + use_def_for_tx = true; + update_def_on_tx = false; + use_def_for_rts = true; + use_def_for_sg = true; + fast_div = false; + break; + case AR5K_ANTMODE_SINGLE_AP: + def_ant = 1; /* updated on tx */ + tx_ant = 0; + use_def_for_tx = true; + update_def_on_tx = true; + use_def_for_rts = true; + use_def_for_sg = true; + fast_div = true; + break; + case AR5K_ANTMODE_SECTOR_AP: + tx_ant = 1; /* variable */ + use_def_for_tx = false; + update_def_on_tx = false; + use_def_for_rts = true; + use_def_for_sg = false; + fast_div = false; + break; + case AR5K_ANTMODE_SECTOR_STA: + tx_ant = 1; /* variable */ + use_def_for_tx = true; + update_def_on_tx = false; + use_def_for_rts = true; + use_def_for_sg = false; + fast_div = true; + break; + case AR5K_ANTMODE_DEBUG: + def_ant = 1; + tx_ant = 2; + use_def_for_tx = false; + update_def_on_tx = false; + use_def_for_rts = false; + use_def_for_sg = false; + fast_div = false; + break; + default: + return; + } + + ah->ah_tx_ant = tx_ant; + ah->ah_ant_mode = ant_mode; + ah->ah_def_ant = def_ant; + + sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0; + sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0; + sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0; + sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0; + + AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS); + + if (sta_id1) + AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1); + + ath5k_hw_set_antenna_switch(ah, ee_mode); + /* Note: set diversity before default antenna + * because it won't work correctly */ + ath5k_hw_set_fast_div(ah, ee_mode, fast_div); + ath5k_hw_set_def_antenna(ah, def_ant); +} + + +/****************\ +* TX power setup * +\****************/ + +/* + * Helper functions + */ + +/** + * ath5k_get_interpolated_value() - Get interpolated Y val between two points + * @target: X value of the middle point + * @x_left: X value of the left point + * @x_right: X value of the right point + * @y_left: Y value of the left point + * @y_right: Y value of the right point + */ +static s16 +ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, + s16 y_left, s16 y_right) +{ + s16 ratio, result; + + /* Avoid divide by zero and skip interpolation + * if we have the same point */ + if ((x_left == x_right) || (y_left == y_right)) + return y_left; + + /* + * Since we use ints and not fps, we need to scale up in + * order to get a sane ratio value (or else we 'll eg. get + * always 1 instead of 1.25, 1.75 etc). We scale up by 100 + * to have some accuracy both for 0.5 and 0.25 steps. + */ + ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); + + /* Now scale down to be in range */ + result = y_left + (ratio * (target - x_left) / 100); + + return result; +} + +/** + * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the + * linear PCDAC curve + * @stepL: Left array with y values (pcdac steps) + * @stepR: Right array with y values (pcdac steps) + * @pwrL: Left array with x values (power steps) + * @pwrR: Right array with x values (power steps) + * + * Since we have the top of the curve and we draw the line below + * until we reach 1 (1 pcdac step) we need to know which point + * (x value) that is so that we don't go below x axis and have negative + * pcdac values when creating the curve, or fill the table with zeros. + */ +static s16 +ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, + const s16 *pwrL, const s16 *pwrR) +{ + s8 tmp; + s16 min_pwrL, min_pwrR; + s16 pwr_i; + + /* Some vendors write the same pcdac value twice !!! */ + if (stepL[0] == stepL[1] || stepR[0] == stepR[1]) + return max(pwrL[0], pwrR[0]); + + if (pwrL[0] == pwrL[1]) + min_pwrL = pwrL[0]; + else { + pwr_i = pwrL[0]; + do { + pwr_i--; + tmp = (s8) ath5k_get_interpolated_value(pwr_i, + pwrL[0], pwrL[1], + stepL[0], stepL[1]); + } while (tmp > 1); + + min_pwrL = pwr_i; + } + + if (pwrR[0] == pwrR[1]) + min_pwrR = pwrR[0]; + else { + pwr_i = pwrR[0]; + do { + pwr_i--; + tmp = (s8) ath5k_get_interpolated_value(pwr_i, + pwrR[0], pwrR[1], + stepR[0], stepR[1]); + } while (tmp > 1); + + min_pwrR = pwr_i; + } + + /* Keep the right boundary so that it works for both curves */ + return max(min_pwrL, min_pwrR); +} + +/** + * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve + * @pmin: Minimum power value (xmin) + * @pmax: Maximum power value (xmax) + * @pwr: Array of power steps (x values) + * @vpd: Array of matching PCDAC/PDADC steps (y values) + * @num_points: Number of provided points + * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values) + * @type: One of enum ath5k_powertable_type (eeprom.h) + * + * Interpolate (pwr,vpd) points to create a Power to PDADC or a + * Power to PCDAC curve. + * + * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC + * steps (offsets) on y axis. Power can go up to 31.5dB and max + * PCDAC/PDADC step for each curve is 64 but we can write more than + * one curves on hw so we can go up to 128 (which is the max step we + * can write on the final table). + * + * We write y values (PCDAC/PDADC steps) on hw. + */ +static void +ath5k_create_power_curve(s16 pmin, s16 pmax, + const s16 *pwr, const u8 *vpd, + u8 num_points, + u8 *vpd_table, u8 type) +{ + u8 idx[2] = { 0, 1 }; + s16 pwr_i = 2 * pmin; + int i; + + if (num_points < 2) + return; + + /* We want the whole line, so adjust boundaries + * to cover the entire power range. Note that + * power values are already 0.25dB so no need + * to multiply pwr_i by 2 */ + if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { + pwr_i = pmin; + pmin = 0; + pmax = 63; + } + + /* Find surrounding turning points (TPs) + * and interpolate between them */ + for (i = 0; (i <= (u16) (pmax - pmin)) && + (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { + + /* We passed the right TP, move to the next set of TPs + * if we pass the last TP, extrapolate above using the last + * two TPs for ratio */ + if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { + idx[0]++; + idx[1]++; + } + + vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, + pwr[idx[0]], pwr[idx[1]], + vpd[idx[0]], vpd[idx[1]]); + + /* Increase by 0.5dB + * (0.25 dB units) */ + pwr_i += 2; + } +} + +/** + * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers + * for a given channel. + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier + * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier + * + * Get the surrounding per-channel power calibration piers + * for a given frequency so that we can interpolate between + * them and come up with an appropriate dataset for our current + * channel. + */ +static void +ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + struct ath5k_chan_pcal_info **pcinfo_l, + struct ath5k_chan_pcal_info **pcinfo_r) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_chan_pcal_info *pcinfo; + u8 idx_l, idx_r; + u8 mode, max, i; + u32 target = channel->center_freq; + + idx_l = 0; + idx_r = 0; + + switch (channel->hw_value) { + case AR5K_EEPROM_MODE_11A: + pcinfo = ee->ee_pwr_cal_a; + mode = AR5K_EEPROM_MODE_11A; + break; + case AR5K_EEPROM_MODE_11B: + pcinfo = ee->ee_pwr_cal_b; + mode = AR5K_EEPROM_MODE_11B; + break; + case AR5K_EEPROM_MODE_11G: + default: + pcinfo = ee->ee_pwr_cal_g; + mode = AR5K_EEPROM_MODE_11G; + break; + } + max = ee->ee_n_piers[mode] - 1; + + /* Frequency is below our calibrated + * range. Use the lowest power curve + * we have */ + if (target < pcinfo[0].freq) { + idx_l = idx_r = 0; + goto done; + } + + /* Frequency is above our calibrated + * range. Use the highest power curve + * we have */ + if (target > pcinfo[max].freq) { + idx_l = idx_r = max; + goto done; + } + + /* Frequency is inside our calibrated + * channel range. Pick the surrounding + * calibration piers so that we can + * interpolate */ + for (i = 0; i <= max; i++) { + + /* Frequency matches one of our calibration + * piers, no need to interpolate, just use + * that calibration pier */ + if (pcinfo[i].freq == target) { + idx_l = idx_r = i; + goto done; + } + + /* We found a calibration pier that's above + * frequency, use this pier and the previous + * one to interpolate */ + if (target < pcinfo[i].freq) { + idx_r = i; + idx_l = idx_r - 1; + goto done; + } + } + +done: + *pcinfo_l = &pcinfo[idx_l]; + *pcinfo_r = &pcinfo[idx_r]; +} + +/** + * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power + * calibration data + * @ah: The &struct ath5k_hw *ah, + * @channel: The &struct ieee80211_channel + * @rates: The &struct ath5k_rate_pcal_info to fill + * + * Get the surrounding per-rate power calibration data + * for a given frequency and interpolate between power + * values to set max target power supported by hw for + * each rate on this frequency. + */ +static void +ath5k_get_rate_pcal_data(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + struct ath5k_rate_pcal_info *rates) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_rate_pcal_info *rpinfo; + u8 idx_l, idx_r; + u8 mode, max, i; + u32 target = channel->center_freq; + + idx_l = 0; + idx_r = 0; + + switch (channel->hw_value) { + case AR5K_MODE_11A: + rpinfo = ee->ee_rate_tpwr_a; + mode = AR5K_EEPROM_MODE_11A; + break; + case AR5K_MODE_11B: + rpinfo = ee->ee_rate_tpwr_b; + mode = AR5K_EEPROM_MODE_11B; + break; + case AR5K_MODE_11G: + default: + rpinfo = ee->ee_rate_tpwr_g; + mode = AR5K_EEPROM_MODE_11G; + break; + } + max = ee->ee_rate_target_pwr_num[mode] - 1; + + /* Get the surrounding calibration + * piers - same as above */ + if (target < rpinfo[0].freq) { + idx_l = idx_r = 0; + goto done; + } + + if (target > rpinfo[max].freq) { + idx_l = idx_r = max; + goto done; + } + + for (i = 0; i <= max; i++) { + + if (rpinfo[i].freq == target) { + idx_l = idx_r = i; + goto done; + } + + if (target < rpinfo[i].freq) { + idx_r = i; + idx_l = idx_r - 1; + goto done; + } + } + +done: + /* Now interpolate power value, based on the frequency */ + rates->freq = target; + + rates->target_power_6to24 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_6to24, + rpinfo[idx_r].target_power_6to24); + + rates->target_power_36 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_36, + rpinfo[idx_r].target_power_36); + + rates->target_power_48 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_48, + rpinfo[idx_r].target_power_48); + + rates->target_power_54 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_54, + rpinfo[idx_r].target_power_54); +} + +/** + * ath5k_get_max_ctl_power() - Get max edge power for a given frequency + * @ah: the &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * + * Get the max edge power for this channel if + * we have such data from EEPROM's Conformance Test + * Limits (CTL), and limit max power if needed. + */ +static void +ath5k_get_max_ctl_power(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_edge_power *rep = ee->ee_ctl_pwr; + u8 *ctl_val = ee->ee_ctl; + s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; + s16 edge_pwr = 0; + u8 rep_idx; + u8 i, ctl_mode; + u8 ctl_idx = 0xFF; + u32 target = channel->center_freq; + + ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band); + + switch (channel->hw_value) { + case AR5K_MODE_11A: + if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) + ctl_mode |= AR5K_CTL_TURBO; + else + ctl_mode |= AR5K_CTL_11A; + break; + case AR5K_MODE_11G: + if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) + ctl_mode |= AR5K_CTL_TURBOG; + else + ctl_mode |= AR5K_CTL_11G; + break; + case AR5K_MODE_11B: + ctl_mode |= AR5K_CTL_11B; + break; + default: + return; + } + + for (i = 0; i < ee->ee_ctls; i++) { + if (ctl_val[i] == ctl_mode) { + ctl_idx = i; + break; + } + } + + /* If we have a CTL dataset available grab it and find the + * edge power for our frequency */ + if (ctl_idx == 0xFF) + return; + + /* Edge powers are sorted by frequency from lower + * to higher. Each CTL corresponds to 8 edge power + * measurements. */ + rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; + + /* Don't do boundaries check because we + * might have more that one bands defined + * for this mode */ + + /* Get the edge power that's closer to our + * frequency */ + for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { + rep_idx += i; + if (target <= rep[rep_idx].freq) + edge_pwr = (s16) rep[rep_idx].edge; + } + + if (edge_pwr) + ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); +} + + +/* + * Power to PCDAC table functions + */ + +/** + * DOC: Power to PCDAC table functions + * + * For RF5111 we have an XPD -eXternal Power Detector- curve + * for each calibrated channel. Each curve has 0,5dB Power steps + * on x axis and PCDAC steps (offsets) on y axis and looks like an + * exponential function. To recreate the curve we read 11 points + * from eeprom (eeprom.c) and interpolate here. + * + * For RF5112 we have 4 XPD -eXternal Power Detector- curves + * for each calibrated channel on 0, -6, -12 and -18dBm but we only + * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB + * power steps on x axis and PCDAC steps on y axis and looks like a + * linear function. To recreate the curve and pass the power values + * on hw, we get 4 points for xpd 0 (lower gain -> max power) + * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c) + * and interpolate here. + * + * For a given channel we get the calibrated points (piers) for it or + * -if we don't have calibration data for this specific channel- from the + * available surrounding channels we have calibration data for, after we do a + * linear interpolation between them. Then since we have our calibrated points + * for this channel, we do again a linear interpolation between them to get the + * whole curve. + * + * We finally write the Y values of the curve(s) (the PCDAC values) on hw + */ + +/** + * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111 + * @ah: The &struct ath5k_hw + * @table_min: Minimum power (x min) + * @table_max: Maximum power (x max) + * + * No further processing is needed for RF5111, the only thing we have to + * do is fill the values below and above calibration range since eeprom data + * may not cover the entire PCDAC table. + */ +static void +ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, + s16 *table_max) +{ + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; + u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; + s16 min_pwr, max_pwr; + + /* Get table boundaries */ + min_pwr = table_min[0]; + pcdac_0 = pcdac_tmp[0]; + + max_pwr = table_max[0]; + pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; + + /* Extrapolate below minimum using pcdac_0 */ + pcdac_i = 0; + for (i = 0; i < min_pwr; i++) + pcdac_out[pcdac_i++] = pcdac_0; + + /* Copy values from pcdac_tmp */ + pwr_idx = min_pwr; + for (i = 0; pwr_idx <= max_pwr && + pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { + pcdac_out[pcdac_i++] = pcdac_tmp[i]; + pwr_idx++; + } + + /* Extrapolate above maximum */ + while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) + pcdac_out[pcdac_i++] = pcdac_n; + +} + +/** + * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves + * @ah: The &struct ath5k_hw + * @table_min: Minimum power (x min) + * @table_max: Maximum power (x max) + * @pdcurves: Number of pd curves + * + * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112 + * RFX112 can have up to 2 curves (one for low txpower range and one for + * higher txpower range). We need to put them both on pcdac_out and place + * them in the correct location. In case we only have one curve available + * just fit it on pcdac_out (it's supposed to cover the entire range of + * available pwr levels since it's always the higher power curve). Extrapolate + * below and above final table if needed. + */ +static void +ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, + s16 *table_max, u8 pdcurves) +{ + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + u8 *pcdac_low_pwr; + u8 *pcdac_high_pwr; + u8 *pcdac_tmp; + u8 pwr; + s16 max_pwr_idx; + s16 min_pwr_idx; + s16 mid_pwr_idx = 0; + /* Edge flag turns on the 7nth bit on the PCDAC + * to declare the higher power curve (force values + * to be greater than 64). If we only have one curve + * we don't need to set this, if we have 2 curves and + * fill the table backwards this can also be used to + * switch from higher power curve to lower power curve */ + u8 edge_flag; + int i; + + /* When we have only one curve available + * that's the higher power curve. If we have + * two curves the first is the high power curve + * and the next is the low power curve. */ + if (pdcurves > 1) { + pcdac_low_pwr = ah->ah_txpower.tmpL[1]; + pcdac_high_pwr = ah->ah_txpower.tmpL[0]; + mid_pwr_idx = table_max[1] - table_min[1] - 1; + max_pwr_idx = (table_max[0] - table_min[0]) / 2; + + /* If table size goes beyond 31.5dB, keep the + * upper 31.5dB range when setting tx power. + * Note: 126 = 31.5 dB in quarter dB steps */ + if (table_max[0] - table_min[1] > 126) + min_pwr_idx = table_max[0] - 126; + else + min_pwr_idx = table_min[1]; + + /* Since we fill table backwards + * start from high power curve */ + pcdac_tmp = pcdac_high_pwr; + + edge_flag = 0x40; + } else { + pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ + pcdac_high_pwr = ah->ah_txpower.tmpL[0]; + min_pwr_idx = table_min[0]; + max_pwr_idx = (table_max[0] - table_min[0]) / 2; + pcdac_tmp = pcdac_high_pwr; + edge_flag = 0; + } + + /* This is used when setting tx power*/ + ah->ah_txpower.txp_min_idx = min_pwr_idx / 2; + + /* Fill Power to PCDAC table backwards */ + pwr = max_pwr_idx; + for (i = 63; i >= 0; i--) { + /* Entering lower power range, reset + * edge flag and set pcdac_tmp to lower + * power curve.*/ + if (edge_flag == 0x40 && + (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { + edge_flag = 0x00; + pcdac_tmp = pcdac_low_pwr; + pwr = mid_pwr_idx / 2; + } + + /* Don't go below 1, extrapolate below if we have + * already switched to the lower power curve -or + * we only have one curve and edge_flag is zero + * anyway */ + if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { + while (i >= 0) { + pcdac_out[i] = pcdac_out[i + 1]; + i--; + } + break; + } + + pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; + + /* Extrapolate above if pcdac is greater than + * 126 -this can happen because we OR pcdac_out + * value with edge_flag on high power curve */ + if (pcdac_out[i] > 126) + pcdac_out[i] = 126; + + /* Decrease by a 0.5dB step */ + pwr--; + } +} + +/** + * ath5k_write_pcdac_table() - Write the PCDAC values on hw + * @ah: The &struct ath5k_hw + */ +static void +ath5k_write_pcdac_table(struct ath5k_hw *ah) +{ + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + int i; + + /* + * Write TX power values + */ + for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { + ath5k_hw_reg_write(ah, + (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) | + (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16), + AR5K_PHY_PCDAC_TXPOWER(i)); + } +} + + +/* + * Power to PDADC table functions + */ + +/** + * DOC: Power to PDADC table functions + * + * For RF2413 and later we have a Power to PDADC table (Power Detector) + * instead of a PCDAC (Power Control) and 4 pd gain curves for each + * calibrated channel. Each curve has power on x axis in 0.5 db steps and + * PDADC steps on y axis and looks like an exponential function like the + * RF5111 curve. + * + * To recreate the curves we read the points from eeprom (eeprom.c) + * and interpolate here. Note that in most cases only 2 (higher and lower) + * curves are used (like RF5112) but vendors have the opportunity to include + * all 4 curves on eeprom. The final curve (higher power) has an extra + * point for better accuracy like RF5112. + * + * The process is similar to what we do above for RF5111/5112 + */ + +/** + * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves + * @ah: The &struct ath5k_hw + * @pwr_min: Minimum power (x min) + * @pwr_max: Maximum power (x max) + * @pdcurves: Number of available curves + * + * Combine the various pd curves and create the final Power to PDADC table + * We can have up to 4 pd curves, we need to do a similar process + * as we do for RF5112. This time we don't have an edge_flag but we + * set the gain boundaries on a separate register. + */ +static void +ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, + s16 *pwr_min, s16 *pwr_max, u8 pdcurves) +{ + u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; + u8 *pdadc_out = ah->ah_txpower.txp_pd_table; + u8 *pdadc_tmp; + s16 pdadc_0; + u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; + u8 pd_gain_overlap; + + /* Note: Register value is initialized on initvals + * there is no feedback from hw. + * XXX: What about pd_gain_overlap from EEPROM ? */ + pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & + AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; + + /* Create final PDADC table */ + for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { + pdadc_tmp = ah->ah_txpower.tmpL[pdg]; + + if (pdg == pdcurves - 1) + /* 2 dB boundary stretch for last + * (higher power) curve */ + gain_boundaries[pdg] = pwr_max[pdg] + 4; + else + /* Set gain boundary in the middle + * between this curve and the next one */ + gain_boundaries[pdg] = + (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; + + /* Sanity check in case our 2 db stretch got out of + * range. */ + if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) + gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; + + /* For the first curve (lower power) + * start from 0 dB */ + if (pdg == 0) + pdadc_0 = 0; + else + /* For the other curves use the gain overlap */ + pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - + pd_gain_overlap; + + /* Force each power step to be at least 0.5 dB */ + if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) + pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; + else + pwr_step = 1; + + /* If pdadc_0 is negative, we need to extrapolate + * below this pdgain by a number of pwr_steps */ + while ((pdadc_0 < 0) && (pdadc_i < 128)) { + s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; + pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; + pdadc_0++; + } + + /* Set last pwr level, using gain boundaries */ + pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; + /* Limit it to be inside pwr range */ + table_size = pwr_max[pdg] - pwr_min[pdg]; + max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; + + /* Fill pdadc_out table */ + while (pdadc_0 < max_idx && pdadc_i < 128) + pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; + + /* Need to extrapolate above this pdgain? */ + if (pdadc_n <= max_idx) + continue; + + /* Force each power step to be at least 0.5 dB */ + if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) + pwr_step = pdadc_tmp[table_size - 1] - + pdadc_tmp[table_size - 2]; + else + pwr_step = 1; + + /* Extrapolate above */ + while ((pdadc_0 < (s16) pdadc_n) && + (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { + s16 tmp = pdadc_tmp[table_size - 1] + + (pdadc_0 - max_idx) * pwr_step; + pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; + pdadc_0++; + } + } + + while (pdg < AR5K_EEPROM_N_PD_GAINS) { + gain_boundaries[pdg] = gain_boundaries[pdg - 1]; + pdg++; + } + + while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { + pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; + pdadc_i++; + } + + /* Set gain boundaries */ + ath5k_hw_reg_write(ah, + AR5K_REG_SM(pd_gain_overlap, + AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | + AR5K_REG_SM(gain_boundaries[0], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | + AR5K_REG_SM(gain_boundaries[1], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | + AR5K_REG_SM(gain_boundaries[2], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | + AR5K_REG_SM(gain_boundaries[3], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), + AR5K_PHY_TPC_RG5); + + /* Used for setting rate power table */ + ah->ah_txpower.txp_min_idx = pwr_min[0]; + +} + +/** + * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw + * @ah: The &struct ath5k_hw + * @ee_mode: One of enum ath5k_driver_mode + */ +static void +ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + u8 *pdadc_out = ah->ah_txpower.txp_pd_table; + u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; + u8 pdcurves = ee->ee_pd_gains[ee_mode]; + u32 reg; + u8 i; + + /* Select the right pdgain curves */ + + /* Clear current settings */ + reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); + reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | + AR5K_PHY_TPC_RG1_PDGAIN_2 | + AR5K_PHY_TPC_RG1_PDGAIN_3 | + AR5K_PHY_TPC_RG1_NUM_PD_GAIN); + + /* + * Use pd_gains curve from eeprom + * + * This overrides the default setting from initvals + * in case some vendors (e.g. Zcomax) don't use the default + * curves. If we don't honor their settings we 'll get a + * 5dB (1 * gain overlap ?) drop. + */ + reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); + + switch (pdcurves) { + case 3: + reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); + /* Fall through */ + case 2: + reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); + /* Fall through */ + case 1: + reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); + break; + } + ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); + + /* + * Write TX power values + */ + for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { + u32 val = get_unaligned_le32(&pdadc_out[4 * i]); + ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i)); + } +} + + +/* + * Common code for PCDAC/PDADC tables + */ + +/** + * ath5k_setup_channel_powertable() - Set up power table for this channel + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * @ee_mode: One of enum ath5k_driver_mode + * @type: One of enum ath5k_powertable_type (eeprom.h) + * + * This is the main function that uses all of the above + * to set PCDAC/PDADC table on hw for the current channel. + * This table is used for tx power calibration on the baseband, + * without it we get weird tx power levels and in some cases + * distorted spectral mask + */ +static int +ath5k_setup_channel_powertable(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + u8 ee_mode, u8 type) +{ + struct ath5k_pdgain_info *pdg_L, *pdg_R; + struct ath5k_chan_pcal_info *pcinfo_L; + struct ath5k_chan_pcal_info *pcinfo_R; + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; + s16 table_min[AR5K_EEPROM_N_PD_GAINS]; + s16 table_max[AR5K_EEPROM_N_PD_GAINS]; + u8 *tmpL; + u8 *tmpR; + u32 target = channel->center_freq; + int pdg, i; + + /* Get surrounding freq piers for this channel */ + ath5k_get_chan_pcal_surrounding_piers(ah, channel, + &pcinfo_L, + &pcinfo_R); + + /* Loop over pd gain curves on + * surrounding freq piers by index */ + for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { + + /* Fill curves in reverse order + * from lower power (max gain) + * to higher power. Use curve -> idx + * backmapping we did on eeprom init */ + u8 idx = pdg_curve_to_idx[pdg]; + + /* Grab the needed curves by index */ + pdg_L = &pcinfo_L->pd_curves[idx]; + pdg_R = &pcinfo_R->pd_curves[idx]; + + /* Initialize the temp tables */ + tmpL = ah->ah_txpower.tmpL[pdg]; + tmpR = ah->ah_txpower.tmpR[pdg]; + + /* Set curve's x boundaries and create + * curves so that they cover the same + * range (if we don't do that one table + * will have values on some range and the + * other one won't have any so interpolation + * will fail) */ + table_min[pdg] = min(pdg_L->pd_pwr[0], + pdg_R->pd_pwr[0]) / 2; + + table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], + pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; + + /* Now create the curves on surrounding channels + * and interpolate if needed to get the final + * curve for this gain on this channel */ + switch (type) { + case AR5K_PWRTABLE_LINEAR_PCDAC: + /* Override min/max so that we don't loose + * accuracy (don't divide by 2) */ + table_min[pdg] = min(pdg_L->pd_pwr[0], + pdg_R->pd_pwr[0]); + + table_max[pdg] = + max(pdg_L->pd_pwr[pdg_L->pd_points - 1], + pdg_R->pd_pwr[pdg_R->pd_points - 1]); + + /* Override minimum so that we don't get + * out of bounds while extrapolating + * below. Don't do this when we have 2 + * curves and we are on the high power curve + * because table_min is ok in this case */ + if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { + + table_min[pdg] = + ath5k_get_linear_pcdac_min(pdg_L->pd_step, + pdg_R->pd_step, + pdg_L->pd_pwr, + pdg_R->pd_pwr); + + /* Don't go too low because we will + * miss the upper part of the curve. + * Note: 126 = 31.5dB (max power supported) + * in 0.25dB units */ + if (table_max[pdg] - table_min[pdg] > 126) + table_min[pdg] = table_max[pdg] - 126; + } + + /* Fall through */ + case AR5K_PWRTABLE_PWR_TO_PCDAC: + case AR5K_PWRTABLE_PWR_TO_PDADC: + + ath5k_create_power_curve(table_min[pdg], + table_max[pdg], + pdg_L->pd_pwr, + pdg_L->pd_step, + pdg_L->pd_points, tmpL, type); + + /* We are in a calibration + * pier, no need to interpolate + * between freq piers */ + if (pcinfo_L == pcinfo_R) + continue; + + ath5k_create_power_curve(table_min[pdg], + table_max[pdg], + pdg_R->pd_pwr, + pdg_R->pd_step, + pdg_R->pd_points, tmpR, type); + break; + default: + return -EINVAL; + } + + /* Interpolate between curves + * of surrounding freq piers to + * get the final curve for this + * pd gain. Re-use tmpL for interpolation + * output */ + for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && + (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { + tmpL[i] = (u8) ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + (s16) tmpL[i], + (s16) tmpR[i]); + } + } + + /* Now we have a set of curves for this + * channel on tmpL (x range is table_max - table_min + * and y values are tmpL[pdg][]) sorted in the same + * order as EEPROM (because we've used the backmapping). + * So for RF5112 it's from higher power to lower power + * and for RF2413 it's from lower power to higher power. + * For RF5111 we only have one curve. */ + + /* Fill min and max power levels for this + * channel by interpolating the values on + * surrounding channels to complete the dataset */ + ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + pcinfo_L->min_pwr, pcinfo_R->min_pwr); + + ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + pcinfo_L->max_pwr, pcinfo_R->max_pwr); + + /* Fill PCDAC/PDADC table */ + switch (type) { + case AR5K_PWRTABLE_LINEAR_PCDAC: + /* For RF5112 we can have one or two curves + * and each curve covers a certain power lvl + * range so we need to do some more processing */ + ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, + ee->ee_pd_gains[ee_mode]); + + /* Set txp.offset so that we can + * match max power value with max + * table index */ + ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); + break; + case AR5K_PWRTABLE_PWR_TO_PCDAC: + /* We are done for RF5111 since it has only + * one curve, just fit the curve on the table */ + ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); + + /* No rate powertable adjustment for RF5111 */ + ah->ah_txpower.txp_min_idx = 0; + ah->ah_txpower.txp_offset = 0; + break; + case AR5K_PWRTABLE_PWR_TO_PDADC: + /* Set PDADC boundaries and fill + * final PDADC table */ + ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, + ee->ee_pd_gains[ee_mode]); + + /* Set txp.offset, note that table_min + * can be negative */ + ah->ah_txpower.txp_offset = table_min[0]; + break; + default: + return -EINVAL; + } + + ah->ah_txpower.txp_setup = true; + + return 0; +} + +/** + * ath5k_write_channel_powertable() - Set power table for current channel on hw + * @ah: The &struct ath5k_hw + * @ee_mode: One of enum ath5k_driver_mode + * @type: One of enum ath5k_powertable_type (eeprom.h) + */ +static void +ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) +{ + if (type == AR5K_PWRTABLE_PWR_TO_PDADC) + ath5k_write_pwr_to_pdadc_table(ah, ee_mode); + else + ath5k_write_pcdac_table(ah); +} + + +/** + * DOC: Per-rate tx power setting + * + * This is the code that sets the desired tx power limit (below + * maximum) on hw for each rate (we also have TPC that sets + * power per packet type). We do that by providing an index on the + * PCDAC/PDADC table we set up above, for each rate. + * + * For now we only limit txpower based on maximum tx power + * supported by hw (what's inside rate_info) + conformance test + * limits. We need to limit this even more, based on regulatory domain + * etc to be safe. Normally this is done from above so we don't care + * here, all we care is that the tx power we set will be O.K. + * for the hw (e.g. won't create noise on PA etc). + * + * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps - + * x values) and is indexed as follows: + * rates[0] - rates[7] -> OFDM rates + * rates[8] - rates[14] -> CCK rates + * rates[15] -> XR rates (they all have the same power) + */ + +/** + * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power + * @ah: The &struct ath5k_hw + * @max_pwr: The maximum tx power requested in 0.5dB steps + * @rate_info: The &struct ath5k_rate_pcal_info to fill + * @ee_mode: One of enum ath5k_driver_mode + */ +static void +ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, + struct ath5k_rate_pcal_info *rate_info, + u8 ee_mode) +{ + unsigned int i; + u16 *rates; + + /* max_pwr is power level we got from driver/user in 0.5dB + * units, switch to 0.25dB units so we can compare */ + max_pwr *= 2; + max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; + + /* apply rate limits */ + rates = ah->ah_txpower.txp_rates_power_table; + + /* OFDM rates 6 to 24Mb/s */ + for (i = 0; i < 5; i++) + rates[i] = min(max_pwr, rate_info->target_power_6to24); + + /* Rest OFDM rates */ + rates[5] = min(rates[0], rate_info->target_power_36); + rates[6] = min(rates[0], rate_info->target_power_48); + rates[7] = min(rates[0], rate_info->target_power_54); + + /* CCK rates */ + /* 1L */ + rates[8] = min(rates[0], rate_info->target_power_6to24); + /* 2L */ + rates[9] = min(rates[0], rate_info->target_power_36); + /* 2S */ + rates[10] = min(rates[0], rate_info->target_power_36); + /* 5L */ + rates[11] = min(rates[0], rate_info->target_power_48); + /* 5S */ + rates[12] = min(rates[0], rate_info->target_power_48); + /* 11L */ + rates[13] = min(rates[0], rate_info->target_power_54); + /* 11S */ + rates[14] = min(rates[0], rate_info->target_power_54); + + /* XR rates */ + rates[15] = min(rates[0], rate_info->target_power_6to24); + + /* CCK rates have different peak to average ratio + * so we have to tweak their power so that gainf + * correction works ok. For this we use OFDM to + * CCK delta from eeprom */ + if ((ee_mode == AR5K_EEPROM_MODE_11G) && + (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) + for (i = 8; i <= 15; i++) + rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; + + /* Now that we have all rates setup use table offset to + * match the power range set by user with the power indices + * on PCDAC/PDADC table */ + for (i = 0; i < 16; i++) { + rates[i] += ah->ah_txpower.txp_offset; + /* Don't get out of bounds */ + if (rates[i] > 63) + rates[i] = 63; + } + + /* Min/max in 0.25dB units */ + ah->ah_txpower.txp_min_pwr = 2 * rates[7]; + ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; + ah->ah_txpower.txp_ofdm = rates[7]; +} + + +/** + * ath5k_hw_txpower() - Set transmission power limit for a given channel + * @ah: The &struct ath5k_hw + * @channel: The &struct ieee80211_channel + * @txpower: Requested tx power in 0.5dB steps + * + * Combines all of the above to set the requested tx power limit + * on hw. + */ +static int +ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, + u8 txpower) +{ + struct ath5k_rate_pcal_info rate_info; + struct ieee80211_channel *curr_channel = ah->ah_current_channel; + int ee_mode; + u8 type; + int ret; + + if (txpower > AR5K_TUNE_MAX_TXPOWER) { + ATH5K_ERR(ah, "invalid tx power: %u\n", txpower); + return -EINVAL; + } + + ee_mode = ath5k_eeprom_mode_from_channel(channel); + if (ee_mode < 0) { + ATH5K_ERR(ah, + "invalid channel: %d\n", channel->center_freq); + return -EINVAL; + } + + /* Initialize TX power table */ + switch (ah->ah_radio) { + case AR5K_RF5110: + /* TODO */ + return 0; + case AR5K_RF5111: + type = AR5K_PWRTABLE_PWR_TO_PCDAC; + break; + case AR5K_RF5112: + type = AR5K_PWRTABLE_LINEAR_PCDAC; + break; + case AR5K_RF2413: + case AR5K_RF5413: + case AR5K_RF2316: + case AR5K_RF2317: + case AR5K_RF2425: + type = AR5K_PWRTABLE_PWR_TO_PDADC; + break; + default: + return -EINVAL; + } + + /* + * If we don't change channel/mode skip tx powertable calculation + * and use the cached one. + */ + if (!ah->ah_txpower.txp_setup || + (channel->hw_value != curr_channel->hw_value) || + (channel->center_freq != curr_channel->center_freq)) { + /* Reset TX power values */ + memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); + ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; + + /* Calculate the powertable */ + ret = ath5k_setup_channel_powertable(ah, channel, + ee_mode, type); + if (ret) + return ret; + } + + /* Write table on hw */ + ath5k_write_channel_powertable(ah, ee_mode, type); + + /* Limit max power if we have a CTL available */ + ath5k_get_max_ctl_power(ah, channel); + + /* FIXME: Antenna reduction stuff */ + + /* FIXME: Limit power on turbo modes */ + + /* FIXME: TPC scale reduction */ + + /* Get surrounding channels for per-rate power table + * calibration */ + ath5k_get_rate_pcal_data(ah, channel, &rate_info); + + /* Setup rate power table */ + ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); + + /* Write rate power table on hw */ + ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | + AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | + AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); + + ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | + AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | + AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); + + ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | + AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | + AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); + + ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | + AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | + AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); + + /* FIXME: TPC support */ + if (ah->ah_txpower.txp_tpc) { + ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | + AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); + + ath5k_hw_reg_write(ah, + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), + AR5K_TPC); + } else { + ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | + AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); + } + + return 0; +} + +/** + * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel + * @ah: The &struct ath5k_hw + * @txpower: The requested tx power limit in 0.5dB steps + * + * This function provides access to ath5k_hw_txpower to the driver in + * case user or an application changes it while PHY is running. + */ +int +ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) +{ + ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, + "changing txpower to %d\n", txpower); + + return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); +} + + +/*************\ + Init function +\*************/ + +/** + * ath5k_hw_phy_init() - Initialize PHY + * @ah: The &struct ath5k_hw + * @channel: The @struct ieee80211_channel + * @mode: One of enum ath5k_driver_mode + * @fast: Try a fast channel switch instead + * + * This is the main function used during reset to initialize PHY + * or do a fast channel change if possible. + * + * NOTE: Do not call this one from the driver, it assumes PHY is in a + * warm reset state ! + */ +int +ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, + u8 mode, bool fast) +{ + struct ieee80211_channel *curr_channel; + int ret, i; + u32 phy_tst1; + ret = 0; + + /* + * Sanity check for fast flag + * Don't try fast channel change when changing modulation + * mode/band. We check for chip compatibility on + * ath5k_hw_reset. + */ + curr_channel = ah->ah_current_channel; + if (fast && (channel->hw_value != curr_channel->hw_value)) + return -EINVAL; + + /* + * On fast channel change we only set the synth parameters + * while PHY is running, enable calibration and skip the rest. + */ + if (fast) { + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, + AR5K_PHY_RFBUS_REQ_REQUEST); + for (i = 0; i < 100; i++) { + if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT)) + break; + udelay(5); + } + /* Failed */ + if (i >= 100) + return -EIO; + + /* Set channel and wait for synth */ + ret = ath5k_hw_channel(ah, channel); + if (ret) + return ret; + + ath5k_hw_wait_for_synth(ah, channel); + } + + /* + * Set TX power + * + * Note: We need to do that before we set + * RF buffer settings on 5211/5212+ so that we + * properly set curve indices. + */ + ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ? + ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER); + if (ret) + return ret; + + /* Write OFDM timings on 5212*/ + if (ah->ah_version == AR5K_AR5212 && + channel->hw_value != AR5K_MODE_11B) { + + ret = ath5k_hw_write_ofdm_timings(ah, channel); + if (ret) + return ret; + + /* Spur info is available only from EEPROM versions + * greater than 5.3, but the EEPROM routines will use + * static values for older versions */ + if (ah->ah_mac_srev >= AR5K_SREV_AR5424) + ath5k_hw_set_spur_mitigation_filter(ah, + channel); + } + + /* If we used fast channel switching + * we are done, release RF bus and + * fire up NF calibration. + * + * Note: Only NF calibration due to + * channel change, not AGC calibration + * since AGC is still running ! + */ + if (fast) { + /* + * Release RF Bus grant + */ + AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, + AR5K_PHY_RFBUS_REQ_REQUEST); + + /* + * Start NF calibration + */ + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_NF); + + return ret; + } + + /* + * For 5210 we do all initialization using + * initvals, so we don't have to modify + * any settings (5210 also only supports + * a/aturbo modes) + */ + if (ah->ah_version != AR5K_AR5210) { + + /* + * Write initial RF gain settings + * This should work for both 5111/5112 + */ + ret = ath5k_hw_rfgain_init(ah, channel->band); + if (ret) + return ret; + + usleep_range(1000, 1500); + + /* + * Write RF buffer + */ + ret = ath5k_hw_rfregs_init(ah, channel, mode); + if (ret) + return ret; + + /*Enable/disable 802.11b mode on 5111 + (enable 2111 frequency converter + CCK)*/ + if (ah->ah_radio == AR5K_RF5111) { + if (mode == AR5K_MODE_11B) + AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, + AR5K_TXCFG_B_MODE); + else + AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, + AR5K_TXCFG_B_MODE); + } + + } else if (ah->ah_version == AR5K_AR5210) { + usleep_range(1000, 1500); + /* Disable phy and wait */ + ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); + usleep_range(1000, 1500); + } + + /* Set channel on PHY */ + ret = ath5k_hw_channel(ah, channel); + if (ret) + return ret; + + /* + * Enable the PHY and wait until completion + * This includes BaseBand and Synthesizer + * activation. + */ + ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); + + ath5k_hw_wait_for_synth(ah, channel); + + /* + * Perform ADC test to see if baseband is ready + * Set tx hold and check adc test register + */ + phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); + ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); + for (i = 0; i <= 20; i++) { + if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) + break; + usleep_range(200, 250); + } + ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); + + /* + * Start automatic gain control calibration + * + * During AGC calibration RX path is re-routed to + * a power detector so we don't receive anything. + * + * This method is used to calibrate some static offsets + * used together with on-the fly I/Q calibration (the + * one performed via ath5k_hw_phy_calibrate), which doesn't + * interrupt rx path. + * + * While rx path is re-routed to the power detector we also + * start a noise floor calibration to measure the + * card's noise floor (the noise we measure when we are not + * transmitting or receiving anything). + * + * If we are in a noisy environment, AGC calibration may time + * out and/or noise floor calibration might timeout. + */ + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF); + + /* At the same time start I/Q calibration for QAM constellation + * -no need for CCK- */ + ah->ah_iq_cal_needed = false; + if (!(mode == AR5K_MODE_11B)) { + ah->ah_iq_cal_needed = true; + AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, + AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); + AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, + AR5K_PHY_IQ_RUN); + } + + /* Wait for gain calibration to finish (we check for I/Q calibration + * during ath5k_phy_calibrate) */ + if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, + AR5K_PHY_AGCCTL_CAL, 0, false)) { + ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", + channel->center_freq); + } + + /* Restore antenna mode */ + ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode); + + return ret; +} |