diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /drivers/net/ethernet/intel/e1000e | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e')
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/80003es2lan.c | 1486 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/82571.c | 2094 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/Makefile | 38 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/defines.h | 854 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/e1000.h | 743 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/ethtool.c | 2060 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/hw.h | 991 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/ich8lan.c | 4142 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/mac.c | 1709 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/manage.c | 367 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/netdev.c | 6604 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/nvm.c | 643 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/param.c | 523 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/phy.c | 3324 |
14 files changed, 25578 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/80003es2lan.c b/drivers/net/ethernet/intel/e1000e/80003es2lan.c new file mode 100644 index 00000000..bac9dda3 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/80003es2lan.c @@ -0,0 +1,1486 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* + * 80003ES2LAN Gigabit Ethernet Controller (Copper) + * 80003ES2LAN Gigabit Ethernet Controller (Serdes) + */ + +#include "e1000.h" + +#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 +#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 +#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 +#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F + +#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 +#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 +#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 + +#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 +#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 +#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 + +#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C +#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 + +#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ +#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 + +#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 +#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 + +/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ +#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ +#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 +#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ +#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ +#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ + +/* PHY Specific Control Register 2 (Page 0, Register 26) */ +#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 + /* 1=Reverse Auto-Negotiation */ + +/* MAC Specific Control Register (Page 2, Register 21) */ +/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ +#define GG82563_MSCR_TX_CLK_MASK 0x0007 +#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 +#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 +#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 + +#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ + +/* DSP Distance Register (Page 5, Register 26) */ +#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M + 1 = 50-80M + 2 = 80-110M + 3 = 110-140M + 4 = >140M */ + +/* Kumeran Mode Control Register (Page 193, Register 16) */ +#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 + +/* Max number of times Kumeran read/write should be validated */ +#define GG82563_MAX_KMRN_RETRY 0x5 + +/* Power Management Control Register (Page 193, Register 20) */ +#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 + /* 1=Enable SERDES Electrical Idle */ + +/* In-Band Control Register (Page 194, Register 18) */ +#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ + +/* + * A table for the GG82563 cable length where the range is defined + * with a lower bound at "index" and the upper bound at + * "index + 5". + */ +static const u16 e1000_gg82563_cable_length_table[] = { + 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; +#define GG82563_CABLE_LENGTH_TABLE_SIZE \ + ARRAY_SIZE(e1000_gg82563_cable_length_table) + +static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); +static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); +static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); +static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); +static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); +static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); +static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); +static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 data); +static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + return 0; + } else { + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + phy->type = e1000_phy_gg82563; + + /* This can only be done after all function pointers are setup. */ + ret_val = e1000e_get_phy_id(hw); + + /* Verify phy id */ + if (phy->id != GG82563_E_PHY_ID) + return -E1000_ERR_PHY; + + return ret_val; +} + +/** + * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + u16 size; + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + nvm->type = e1000_nvm_eeprom_spi; + + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + + return 0; +} + +/** + * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + /* Set media type and media-dependent function pointers */ + switch (hw->adapter->pdev->device) { + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + hw->phy.media_type = e1000_media_type_internal_serdes; + mac->ops.check_for_link = e1000e_check_for_serdes_link; + mac->ops.setup_physical_interface = + e1000e_setup_fiber_serdes_link; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + mac->ops.check_for_link = e1000e_check_for_copper_link; + mac->ops.setup_physical_interface = + e1000_setup_copper_link_80003es2lan; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* FWSM register */ + mac->has_fwsm = true; + /* ARC supported; valid only if manageability features are enabled. */ + mac->arc_subsystem_valid = + (er32(FWSM) & E1000_FWSM_MODE_MASK) + ? true : false; + /* Adaptive IFS not supported */ + mac->adaptive_ifs = false; + + /* set lan id for port to determine which phy lock to use */ + hw->mac.ops.set_lan_id(hw); + + return 0; +} + +static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + s32 rc; + + rc = e1000_init_mac_params_80003es2lan(hw); + if (rc) + return rc; + + rc = e1000_init_nvm_params_80003es2lan(hw); + if (rc) + return rc; + + rc = e1000_init_phy_params_80003es2lan(hw); + if (rc) + return rc; + + return 0; +} + +/** + * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to acquire access rights to the correct PHY. + **/ +static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + return e1000_acquire_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_release_phy_80003es2lan - Release rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to release access rights to the correct PHY. + **/ +static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; + e1000_release_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register + * @hw: pointer to the HW structure + * + * Acquire the semaphore to access the Kumeran interface. + * + **/ +static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + mask = E1000_SWFW_CSR_SM; + + return e1000_acquire_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register + * @hw: pointer to the HW structure + * + * Release the semaphore used to access the Kumeran interface + **/ +static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) +{ + u16 mask; + + mask = E1000_SWFW_CSR_SM; + + e1000_release_swfw_sync_80003es2lan(hw, mask); +} + +/** + * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM + * @hw: pointer to the HW structure + * + * Acquire the semaphore to access the EEPROM. + **/ +static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + + ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); + if (ret_val) + return ret_val; + + ret_val = e1000e_acquire_nvm(hw); + + if (ret_val) + e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); + + return ret_val; +} + +/** + * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM + * @hw: pointer to the HW structure + * + * Release the semaphore used to access the EEPROM. + **/ +static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) +{ + e1000e_release_nvm(hw); + e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 i = 0; + s32 timeout = 50; + + while (i < timeout) { + if (e1000e_get_hw_semaphore(hw)) + return -E1000_ERR_SWFW_SYNC; + + swfw_sync = er32(SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000e_put_hw_semaphore(hw); + mdelay(5); + i++; + } + + if (i == timeout) { + e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); + return -E1000_ERR_SWFW_SYNC; + } + + swfw_sync |= swmask; + ew32(SW_FW_SYNC, swfw_sync); + + e1000e_put_hw_semaphore(hw); + + return 0; +} + +/** + * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + while (e1000e_get_hw_semaphore(hw) != 0) + ; /* Empty */ + + swfw_sync = er32(SW_FW_SYNC); + swfw_sync &= ~mask; + ew32(SW_FW_SYNC, swfw_sync); + + e1000e_put_hw_semaphore(hw); +} + +/** + * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: pointer to the data returned from the operation + * + * Read the GG82563 PHY register. + **/ +static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 *data) +{ + s32 ret_val; + u32 page_select; + u16 temp; + + ret_val = e1000_acquire_phy_80003es2lan(hw); + if (ret_val) + return ret_val; + + /* Select Configuration Page */ + if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + page_select = GG82563_PHY_PAGE_SELECT; + } else { + /* + * Use Alternative Page Select register to access + * registers 30 and 31 + */ + page_select = GG82563_PHY_PAGE_SELECT_ALT; + } + + temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); + ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); + if (ret_val) { + e1000_release_phy_80003es2lan(hw); + return ret_val; + } + + if (hw->dev_spec.e80003es2lan.mdic_wa_enable) { + /* + * The "ready" bit in the MDIC register may be incorrectly set + * before the device has completed the "Page Select" MDI + * transaction. So we wait 200us after each MDI command... + */ + udelay(200); + + /* ...and verify the command was successful. */ + ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); + + if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { + e1000_release_phy_80003es2lan(hw); + return -E1000_ERR_PHY; + } + + udelay(200); + + ret_val = e1000e_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + udelay(200); + } else { + ret_val = e1000e_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + } + + e1000_release_phy_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: value to write to the register + * + * Write to the GG82563 PHY register. + **/ +static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 data) +{ + s32 ret_val; + u32 page_select; + u16 temp; + + ret_val = e1000_acquire_phy_80003es2lan(hw); + if (ret_val) + return ret_val; + + /* Select Configuration Page */ + if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { + page_select = GG82563_PHY_PAGE_SELECT; + } else { + /* + * Use Alternative Page Select register to access + * registers 30 and 31 + */ + page_select = GG82563_PHY_PAGE_SELECT_ALT; + } + + temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); + ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); + if (ret_val) { + e1000_release_phy_80003es2lan(hw); + return ret_val; + } + + if (hw->dev_spec.e80003es2lan.mdic_wa_enable) { + /* + * The "ready" bit in the MDIC register may be incorrectly set + * before the device has completed the "Page Select" MDI + * transaction. So we wait 200us after each MDI command... + */ + udelay(200); + + /* ...and verify the command was successful. */ + ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); + + if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { + e1000_release_phy_80003es2lan(hw); + return -E1000_ERR_PHY; + } + + udelay(200); + + ret_val = e1000e_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + + udelay(200); + } else { + ret_val = e1000e_write_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + } + + e1000_release_phy_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_write_nvm_80003es2lan - Write to ESB2 NVM + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @words: number of words to write + * @data: buffer of data to write to the NVM + * + * Write "words" of data to the ESB2 NVM. + **/ +static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + return e1000e_write_nvm_spi(hw, offset, words, data); +} + +/** + * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete + * @hw: pointer to the HW structure + * + * Wait a specific amount of time for manageability processes to complete. + * This is a function pointer entry point called by the phy module. + **/ +static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + if (hw->bus.func == 1) + mask = E1000_NVM_CFG_DONE_PORT_1; + + while (timeout) { + if (er32(EEMNGCTL) & mask) + break; + usleep_range(1000, 2000); + timeout--; + } + if (!timeout) { + e_dbg("MNG configuration cycle has not completed.\n"); + return -E1000_ERR_RESET; + } + + return 0; +} + +/** + * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex + * @hw: pointer to the HW structure + * + * Force the speed and duplex settings onto the PHY. This is a + * function pointer entry point called by the phy module. + **/ +static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + bool link; + + /* + * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; + ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + e_dbg("GG82563 PSCR: %X\n", phy_data); + + ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000e_phy_force_speed_duplex_setup(hw, &phy_data); + + /* Reset the phy to commit changes. */ + phy_data |= MII_CR_RESET; + + ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + udelay(1); + + if (hw->phy.autoneg_wait_to_complete) { + e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n"); + + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) { + /* + * We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = e1000e_phy_reset_dsp(hw); + if (ret_val) + return ret_val; + } + + /* Try once more */ + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* + * Resetting the phy means we need to verify the TX_CLK corresponds + * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. + */ + phy_data &= ~GG82563_MSCR_TX_CLK_MASK; + if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) + phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; + else + phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; + + /* + * In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); + + return ret_val; +} + +/** + * e1000_get_cable_length_80003es2lan - Set approximate cable length + * @hw: pointer to the HW structure + * + * Find the approximate cable length as measured by the GG82563 PHY. + * This is a function pointer entry point called by the phy module. + **/ +static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = 0; + u16 phy_data, index; + + ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); + if (ret_val) + return ret_val; + + index = phy_data & GG82563_DSPD_CABLE_LENGTH; + + if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_gg82563_cable_length_table[index]; + phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return 0; +} + +/** + * e1000_get_link_up_info_80003es2lan - Report speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to speed buffer + * @duplex: pointer to duplex buffer + * + * Retrieve the current speed and duplex configuration. + **/ +static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + if (hw->phy.media_type == e1000_media_type_copper) { + ret_val = e1000e_get_speed_and_duplex_copper(hw, + speed, + duplex); + hw->phy.ops.cfg_on_link_up(hw); + } else { + ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, + speed, + duplex); + } + + return ret_val; +} + +/** + * e1000_reset_hw_80003es2lan - Reset the ESB2 controller + * @hw: pointer to the HW structure + * + * Perform a global reset to the ESB2 controller. + **/ +static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000e_disable_pcie_master(hw); + if (ret_val) + e_dbg("PCI-E Master disable polling has failed.\n"); + + e_dbg("Masking off all interrupts\n"); + ew32(IMC, 0xffffffff); + + ew32(RCTL, 0); + ew32(TCTL, E1000_TCTL_PSP); + e1e_flush(); + + usleep_range(10000, 20000); + + ctrl = er32(CTRL); + + ret_val = e1000_acquire_phy_80003es2lan(hw); + e_dbg("Issuing a global reset to MAC\n"); + ew32(CTRL, ctrl | E1000_CTRL_RST); + e1000_release_phy_80003es2lan(hw); + + ret_val = e1000e_get_auto_rd_done(hw); + if (ret_val) + /* We don't want to continue accessing MAC registers. */ + return ret_val; + + /* Clear any pending interrupt events. */ + ew32(IMC, 0xffffffff); + er32(ICR); + + return e1000_check_alt_mac_addr_generic(hw); +} + +/** + * e1000_init_hw_80003es2lan - Initialize the ESB2 controller + * @hw: pointer to the HW structure + * + * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. + **/ +static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg_data; + s32 ret_val; + u16 kum_reg_data; + u16 i; + + e1000_initialize_hw_bits_80003es2lan(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) + e_dbg("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + + /* Disabling VLAN filtering */ + e_dbg("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + e1000e_init_rx_addrs(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + e_dbg("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Disable IBIST slave mode (far-end loopback) */ + e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, + &kum_reg_data); + kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; + e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, + kum_reg_data); + + /* Set the transmit descriptor write-back policy */ + reg_data = er32(TXDCTL(0)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; + ew32(TXDCTL(0), reg_data); + + /* ...for both queues. */ + reg_data = er32(TXDCTL(1)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; + ew32(TXDCTL(1), reg_data); + + /* Enable retransmit on late collisions */ + reg_data = er32(TCTL); + reg_data |= E1000_TCTL_RTLC; + ew32(TCTL, reg_data); + + /* Configure Gigabit Carry Extend Padding */ + reg_data = er32(TCTL_EXT); + reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; + reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; + ew32(TCTL_EXT, reg_data); + + /* Configure Transmit Inter-Packet Gap */ + reg_data = er32(TIPG); + reg_data &= ~E1000_TIPG_IPGT_MASK; + reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; + ew32(TIPG, reg_data); + + reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); + reg_data &= ~0x00100000; + E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); + + /* default to true to enable the MDIC W/A */ + hw->dev_spec.e80003es2lan.mdic_wa_enable = true; + + ret_val = e1000_read_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET >> + E1000_KMRNCTRLSTA_OFFSET_SHIFT, + &i); + if (!ret_val) { + if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == + E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) + hw->dev_spec.e80003es2lan.mdic_wa_enable = false; + } + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 + * @hw: pointer to the HW structure + * + * Initializes required hardware-dependent bits needed for normal operation. + **/ +static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) +{ + u32 reg; + + /* Transmit Descriptor Control 0 */ + reg = er32(TXDCTL(0)); + reg |= (1 << 22); + ew32(TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = er32(TXDCTL(1)); + reg |= (1 << 22); + ew32(TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = er32(TARC(0)); + reg &= ~(0xF << 27); /* 30:27 */ + if (hw->phy.media_type != e1000_media_type_copper) + reg &= ~(1 << 20); + ew32(TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = er32(TARC(1)); + if (er32(TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + ew32(TARC(1), reg); +} + +/** + * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link + * @hw: pointer to the HW structure + * + * Setup some GG82563 PHY registers for obtaining link + **/ +static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u32 ctrl_ext; + u16 data; + + ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); + if (ret_val) + return ret_val; + + data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ + data |= GG82563_MSCR_TX_CLK_1000MBPS_25; + + ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data); + if (ret_val) + return ret_val; + + /* + * Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; + + switch (phy->mdix) { + case 1: + data |= GG82563_PSCR_CROSSOVER_MODE_MDI; + break; + case 2: + data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; + break; + case 0: + default: + data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; + break; + } + + /* + * Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + if (phy->disable_polarity_correction) + data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + + ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); + if (ret_val) + return ret_val; + + /* SW Reset the PHY so all changes take effect */ + ret_val = e1000e_commit_phy(hw); + if (ret_val) { + e_dbg("Error Resetting the PHY\n"); + return ret_val; + } + + /* Bypass Rx and Tx FIFO's */ + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, + E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | + E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); + if (ret_val) + return ret_val; + + ret_val = e1000_read_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, + &data); + if (ret_val) + return ret_val; + data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, + data); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); + if (ret_val) + return ret_val; + + data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; + ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); + if (ret_val) + return ret_val; + + ctrl_ext = er32(CTRL_EXT); + ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); + ew32(CTRL_EXT, ctrl_ext); + + ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); + if (ret_val) + return ret_val; + + /* + * Do not init these registers when the HW is in IAMT mode, since the + * firmware will have already initialized them. We only initialize + * them if the HW is not in IAMT mode. + */ + if (!hw->mac.ops.check_mng_mode(hw)) { + /* Enable Electrical Idle on the PHY */ + data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; + ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); + if (ret_val) + return ret_val; + } + + /* + * Workaround: Disable padding in Kumeran interface in the MAC + * and in the PHY to avoid CRC errors. + */ + ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); + if (ret_val) + return ret_val; + + data |= GG82563_ICR_DIS_PADDING; + ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); + if (ret_val) + return ret_val; + + return 0; +} + +/** + * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 + * @hw: pointer to the HW structure + * + * Essentially a wrapper for setting up all things "copper" related. + * This is a function pointer entry point called by the mac module. + **/ +static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 reg_data; + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ew32(CTRL, ctrl); + + /* + * Set the mac to wait the maximum time between each + * iteration and increase the max iterations when + * polling the phy; this fixes erroneous timeouts at 10Mbps. + */ + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), + 0xFFFF); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), + ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), + reg_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, + ®_data); + if (ret_val) + return ret_val; + reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, + reg_data); + if (ret_val) + return ret_val; + + ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); + if (ret_val) + return ret_val; + + return e1000e_setup_copper_link(hw); +} + +/** + * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up + * @hw: pointer to the HW structure + * @duplex: current duplex setting + * + * Configure the KMRN interface by applying last minute quirks for + * 10/100 operation. + **/ +static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 speed; + u16 duplex; + + if (hw->phy.media_type == e1000_media_type_copper) { + ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed, + &duplex); + if (ret_val) + return ret_val; + + if (speed == SPEED_1000) + ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); + else + ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); + } + + return ret_val; +} + +/** + * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation + * @hw: pointer to the HW structure + * @duplex: current duplex setting + * + * Configure the KMRN interface by applying last minute quirks for + * 10/100 operation. + **/ +static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) +{ + s32 ret_val; + u32 tipg; + u32 i = 0; + u16 reg_data, reg_data2; + + reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = er32(TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; + ew32(TIPG, tipg); + + do { + ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); + if (ret_val) + return ret_val; + i++; + } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); + + if (duplex == HALF_DUPLEX) + reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; + else + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); +} + +/** + * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation + * @hw: pointer to the HW structure + * + * Configure the KMRN interface by applying last minute quirks for + * gigabit operation. + **/ +static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 reg_data, reg_data2; + u32 tipg; + u32 i = 0; + + reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; + ret_val = e1000_write_kmrn_reg_80003es2lan(hw, + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, + reg_data); + if (ret_val) + return ret_val; + + /* Configure Transmit Inter-Packet Gap */ + tipg = er32(TIPG); + tipg &= ~E1000_TIPG_IPGT_MASK; + tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; + ew32(TIPG, tipg); + + do { + ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); + if (ret_val) + return ret_val; + i++; + } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); + + reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; + + return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); +} + +/** + * e1000_read_kmrn_reg_80003es2lan - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquire semaphore, then read the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release the semaphore before exiting. + **/ +static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + u32 kmrnctrlsta; + s32 ret_val = 0; + + ret_val = e1000_acquire_mac_csr_80003es2lan(hw); + if (ret_val) + return ret_val; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + ew32(KMRNCTRLSTA, kmrnctrlsta); + e1e_flush(); + + udelay(2); + + kmrnctrlsta = er32(KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + e1000_release_mac_csr_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_write_kmrn_reg_80003es2lan - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquire semaphore, then write the data to PHY register + * at the offset using the kumeran interface. Release semaphore + * before exiting. + **/ +static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 data) +{ + u32 kmrnctrlsta; + s32 ret_val = 0; + + ret_val = e1000_acquire_mac_csr_80003es2lan(hw); + if (ret_val) + return ret_val; + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + ew32(KMRNCTRLSTA, kmrnctrlsta); + e1e_flush(); + + udelay(2); + + e1000_release_mac_csr_80003es2lan(hw); + + return ret_val; +} + +/** + * e1000_read_mac_addr_80003es2lan - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + + /* + * If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(hw->mac.ops.check_mng_mode(hw) || + hw->phy.ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); +} + +/** + * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) +{ + e1000e_clear_hw_cntrs_base(hw); + + er32(PRC64); + er32(PRC127); + er32(PRC255); + er32(PRC511); + er32(PRC1023); + er32(PRC1522); + er32(PTC64); + er32(PTC127); + er32(PTC255); + er32(PTC511); + er32(PTC1023); + er32(PTC1522); + + er32(ALGNERRC); + er32(RXERRC); + er32(TNCRS); + er32(CEXTERR); + er32(TSCTC); + er32(TSCTFC); + + er32(MGTPRC); + er32(MGTPDC); + er32(MGTPTC); + + er32(IAC); + er32(ICRXOC); + + er32(ICRXPTC); + er32(ICRXATC); + er32(ICTXPTC); + er32(ICTXATC); + er32(ICTXQEC); + er32(ICTXQMTC); + er32(ICRXDMTC); +} + +static const struct e1000_mac_operations es2_mac_ops = { + .read_mac_addr = e1000_read_mac_addr_80003es2lan, + .id_led_init = e1000e_id_led_init_generic, + .blink_led = e1000e_blink_led_generic, + .check_mng_mode = e1000e_check_mng_mode_generic, + /* check_for_link dependent on media type */ + .cleanup_led = e1000e_cleanup_led_generic, + .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, + .get_bus_info = e1000e_get_bus_info_pcie, + .set_lan_id = e1000_set_lan_id_multi_port_pcie, + .get_link_up_info = e1000_get_link_up_info_80003es2lan, + .led_on = e1000e_led_on_generic, + .led_off = e1000e_led_off_generic, + .update_mc_addr_list = e1000e_update_mc_addr_list_generic, + .write_vfta = e1000_write_vfta_generic, + .clear_vfta = e1000_clear_vfta_generic, + .reset_hw = e1000_reset_hw_80003es2lan, + .init_hw = e1000_init_hw_80003es2lan, + .setup_link = e1000e_setup_link_generic, + /* setup_physical_interface dependent on media type */ + .setup_led = e1000e_setup_led_generic, + .config_collision_dist = e1000e_config_collision_dist_generic, +}; + +static const struct e1000_phy_operations es2_phy_ops = { + .acquire = e1000_acquire_phy_80003es2lan, + .check_polarity = e1000_check_polarity_m88, + .check_reset_block = e1000e_check_reset_block_generic, + .commit = e1000e_phy_sw_reset, + .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, + .get_cfg_done = e1000_get_cfg_done_80003es2lan, + .get_cable_length = e1000_get_cable_length_80003es2lan, + .get_info = e1000e_get_phy_info_m88, + .read_reg = e1000_read_phy_reg_gg82563_80003es2lan, + .release = e1000_release_phy_80003es2lan, + .reset = e1000e_phy_hw_reset_generic, + .set_d0_lplu_state = NULL, + .set_d3_lplu_state = e1000e_set_d3_lplu_state, + .write_reg = e1000_write_phy_reg_gg82563_80003es2lan, + .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan, +}; + +static const struct e1000_nvm_operations es2_nvm_ops = { + .acquire = e1000_acquire_nvm_80003es2lan, + .read = e1000e_read_nvm_eerd, + .release = e1000_release_nvm_80003es2lan, + .reload = e1000e_reload_nvm_generic, + .update = e1000e_update_nvm_checksum_generic, + .valid_led_default = e1000e_valid_led_default, + .validate = e1000e_validate_nvm_checksum_generic, + .write = e1000_write_nvm_80003es2lan, +}; + +const struct e1000_info e1000_es2_info = { + .mac = e1000_80003es2lan, + .flags = FLAG_HAS_HW_VLAN_FILTER + | FLAG_HAS_JUMBO_FRAMES + | FLAG_HAS_WOL + | FLAG_APME_IN_CTRL3 + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_RX_NEEDS_RESTART /* errata */ + | FLAG_TARC_SET_BIT_ZERO /* errata */ + | FLAG_APME_CHECK_PORT_B + | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */ + .flags2 = FLAG2_DMA_BURST, + .pba = 38, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_80003es2lan, + .mac_ops = &es2_mac_ops, + .phy_ops = &es2_phy_ops, + .nvm_ops = &es2_nvm_ops, +}; + diff --git a/drivers/net/ethernet/intel/e1000e/82571.c b/drivers/net/ethernet/intel/e1000e/82571.c new file mode 100644 index 00000000..c6d95f20 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/82571.c @@ -0,0 +1,2094 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* + * 82571EB Gigabit Ethernet Controller + * 82571EB Gigabit Ethernet Controller (Copper) + * 82571EB Gigabit Ethernet Controller (Fiber) + * 82571EB Dual Port Gigabit Mezzanine Adapter + * 82571EB Quad Port Gigabit Mezzanine Adapter + * 82571PT Gigabit PT Quad Port Server ExpressModule + * 82572EI Gigabit Ethernet Controller (Copper) + * 82572EI Gigabit Ethernet Controller (Fiber) + * 82572EI Gigabit Ethernet Controller + * 82573V Gigabit Ethernet Controller (Copper) + * 82573E Gigabit Ethernet Controller (Copper) + * 82573L Gigabit Ethernet Controller + * 82574L Gigabit Network Connection + * 82583V Gigabit Network Connection + */ + +#include "e1000.h" + +#define ID_LED_RESERVED_F746 0xF746 +#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_OFF1_ON2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 +#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */ +#define E1000_BASE1000T_STATUS 10 +#define E1000_IDLE_ERROR_COUNT_MASK 0xFF +#define E1000_RECEIVE_ERROR_COUNTER 21 +#define E1000_RECEIVE_ERROR_MAX 0xFFFF + +#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ + +static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); +static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); +static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); +static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); +static s32 e1000_setup_link_82571(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); +static void e1000_clear_vfta_82571(struct e1000_hw *hw); +static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); +static s32 e1000_led_on_82574(struct e1000_hw *hw); +static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); +static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); +static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); +static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); +static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); +static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); + +/** + * e1000_init_phy_params_82571 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + return 0; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82571; + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + phy->type = e1000_phy_igp_2; + break; + case e1000_82573: + phy->type = e1000_phy_m88; + break; + case e1000_82574: + case e1000_82583: + phy->type = e1000_phy_bm; + phy->ops.acquire = e1000_get_hw_semaphore_82574; + phy->ops.release = e1000_put_hw_semaphore_82574; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; + break; + default: + return -E1000_ERR_PHY; + break; + } + + /* This can only be done after all function pointers are setup. */ + ret_val = e1000_get_phy_id_82571(hw); + if (ret_val) { + e_dbg("Error getting PHY ID\n"); + return ret_val; + } + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + if (phy->id != IGP01E1000_I_PHY_ID) + ret_val = -E1000_ERR_PHY; + break; + case e1000_82573: + if (phy->id != M88E1111_I_PHY_ID) + ret_val = -E1000_ERR_PHY; + break; + case e1000_82574: + case e1000_82583: + if (phy->id != BME1000_E_PHY_ID_R2) + ret_val = -E1000_ERR_PHY; + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); + + return ret_val; +} + +/** + * e1000_init_nvm_params_82571 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + u16 size; + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (((eecd >> 15) & 0x3) == 0x3) { + nvm->type = e1000_nvm_flash_hw; + nvm->word_size = 2048; + /* + * Autonomous Flash update bit must be cleared due + * to Flash update issue. + */ + eecd &= ~E1000_EECD_AUPDEN; + ew32(EECD, eecd); + break; + } + /* Fall Through */ + default: + nvm->type = e1000_nvm_eeprom_spi; + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + break; + } + + /* Function Pointers */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + nvm->ops.acquire = e1000_get_hw_semaphore_82574; + nvm->ops.release = e1000_put_hw_semaphore_82574; + break; + default: + break; + } + + return 0; +} + +/** + * e1000_init_mac_params_82571 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 swsm = 0; + u32 swsm2 = 0; + bool force_clear_smbi = false; + + /* Set media type and media-dependent function pointers */ + switch (hw->adapter->pdev->device) { + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_82571; + mac->ops.check_for_link = e1000e_check_for_fiber_link; + mac->ops.get_link_up_info = + e1000e_get_speed_and_duplex_fiber_serdes; + break; + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82572EI_SERDES: + hw->phy.media_type = e1000_media_type_internal_serdes; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_82571; + mac->ops.check_for_link = e1000_check_for_serdes_link_82571; + mac->ops.get_link_up_info = + e1000e_get_speed_and_duplex_fiber_serdes; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + mac->ops.setup_physical_interface = + e1000_setup_copper_link_82571; + mac->ops.check_for_link = e1000e_check_for_copper_link; + mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Adaptive IFS supported */ + mac->adaptive_ifs = true; + + /* MAC-specific function pointers */ + switch (hw->mac.type) { + case e1000_82573: + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; + mac->ops.led_on = e1000e_led_on_generic; + mac->ops.blink_led = e1000e_blink_led_generic; + + /* FWSM register */ + mac->has_fwsm = true; + /* + * ARC supported; valid only if manageability features are + * enabled. + */ + mac->arc_subsystem_valid = + (er32(FWSM) & E1000_FWSM_MODE_MASK) + ? true : false; + break; + case e1000_82574: + case e1000_82583: + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + mac->ops.check_mng_mode = e1000_check_mng_mode_82574; + mac->ops.led_on = e1000_led_on_82574; + break; + default: + mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; + mac->ops.led_on = e1000e_led_on_generic; + mac->ops.blink_led = e1000e_blink_led_generic; + + /* FWSM register */ + mac->has_fwsm = true; + break; + } + + /* + * Ensure that the inter-port SWSM.SMBI lock bit is clear before + * first NVM or PHY access. This should be done for single-port + * devices, and for one port only on dual-port devices so that + * for those devices we can still use the SMBI lock to synchronize + * inter-port accesses to the PHY & NVM. + */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + swsm2 = er32(SWSM2); + + if (!(swsm2 & E1000_SWSM2_LOCK)) { + /* Only do this for the first interface on this card */ + ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK); + force_clear_smbi = true; + } else { + force_clear_smbi = false; + } + break; + default: + force_clear_smbi = true; + break; + } + + if (force_clear_smbi) { + /* Make sure SWSM.SMBI is clear */ + swsm = er32(SWSM); + if (swsm & E1000_SWSM_SMBI) { + /* This bit should not be set on a first interface, and + * indicates that the bootagent or EFI code has + * improperly left this bit enabled + */ + e_dbg("Please update your 82571 Bootagent\n"); + } + ew32(SWSM, swsm & ~E1000_SWSM_SMBI); + } + + /* + * Initialize device specific counter of SMBI acquisition + * timeouts. + */ + hw->dev_spec.e82571.smb_counter = 0; + + return 0; +} + +static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + static int global_quad_port_a; /* global port a indication */ + struct pci_dev *pdev = adapter->pdev; + int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; + s32 rc; + + rc = e1000_init_mac_params_82571(hw); + if (rc) + return rc; + + rc = e1000_init_nvm_params_82571(hw); + if (rc) + return rc; + + rc = e1000_init_phy_params_82571(hw); + if (rc) + return rc; + + /* tag quad port adapters first, it's used below */ + switch (pdev->device) { + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: + case E1000_DEV_ID_82571PT_QUAD_COPPER: + adapter->flags |= FLAG_IS_QUAD_PORT; + /* mark the first port */ + if (global_quad_port_a == 0) + adapter->flags |= FLAG_IS_QUAD_PORT_A; + /* Reset for multiple quad port adapters */ + global_quad_port_a++; + if (global_quad_port_a == 4) + global_quad_port_a = 0; + break; + default: + break; + } + + switch (adapter->hw.mac.type) { + case e1000_82571: + /* these dual ports don't have WoL on port B at all */ + if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || + (pdev->device == E1000_DEV_ID_82571EB_SERDES) || + (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && + (is_port_b)) + adapter->flags &= ~FLAG_HAS_WOL; + /* quad ports only support WoL on port A */ + if (adapter->flags & FLAG_IS_QUAD_PORT && + (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) + adapter->flags &= ~FLAG_HAS_WOL; + /* Does not support WoL on any port */ + if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) + adapter->flags &= ~FLAG_HAS_WOL; + break; + case e1000_82573: + if (pdev->device == E1000_DEV_ID_82573L) { + adapter->flags |= FLAG_HAS_JUMBO_FRAMES; + adapter->max_hw_frame_size = DEFAULT_JUMBO; + } + break; + default: + break; + } + + return 0; +} + +/** + * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_id = 0; + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* + * The 82571 firmware may still be configuring the PHY. + * In this case, we cannot access the PHY until the + * configuration is done. So we explicitly set the + * PHY ID. + */ + phy->id = IGP01E1000_I_PHY_ID; + break; + case e1000_82573: + return e1000e_get_phy_id(hw); + break; + case e1000_82574: + case e1000_82583: + ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); + if (ret_val) + return ret_val; + + phy->id = (u32)(phy_id << 16); + udelay(20); + ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); + if (ret_val) + return ret_val; + + phy->id |= (u32)(phy_id); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + break; + default: + return -E1000_ERR_PHY; + break; + } + + return 0; +} + +/** + * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + s32 sw_timeout = hw->nvm.word_size + 1; + s32 fw_timeout = hw->nvm.word_size + 1; + s32 i = 0; + + /* + * If we have timedout 3 times on trying to acquire + * the inter-port SMBI semaphore, there is old code + * operating on the other port, and it is not + * releasing SMBI. Modify the number of times that + * we try for the semaphore to interwork with this + * older code. + */ + if (hw->dev_spec.e82571.smb_counter > 2) + sw_timeout = 1; + + /* Get the SW semaphore */ + while (i < sw_timeout) { + swsm = er32(SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + udelay(50); + i++; + } + + if (i == sw_timeout) { + e_dbg("Driver can't access device - SMBI bit is set.\n"); + hw->dev_spec.e82571.smb_counter++; + } + /* Get the FW semaphore. */ + for (i = 0; i < fw_timeout; i++) { + swsm = er32(SWSM); + ew32(SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (er32(SWSM) & E1000_SWSM_SWESMBI) + break; + + udelay(50); + } + + if (i == fw_timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_82571(hw); + e_dbg("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000_put_hw_semaphore_82571 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + + swsm = er32(SWSM); + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + ew32(SWSM, swsm); +} +/** + * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore during reset. + * + **/ +static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + s32 i = 0; + + extcnf_ctrl = er32(EXTCNF_CTRL); + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + do { + ew32(EXTCNF_CTRL, extcnf_ctrl); + extcnf_ctrl = er32(EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + break; + + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + + usleep_range(2000, 4000); + i++; + } while (i < MDIO_OWNERSHIP_TIMEOUT); + + if (i == MDIO_OWNERSHIP_TIMEOUT) { + /* Release semaphores */ + e1000_put_hw_semaphore_82573(hw); + e_dbg("Driver can't access the PHY\n"); + return -E1000_ERR_PHY; + } + + return 0; +} + +/** + * e1000_put_hw_semaphore_82573 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used during reset. + * + **/ +static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + + extcnf_ctrl = er32(EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + ew32(EXTCNF_CTRL, extcnf_ctrl); +} + +static DEFINE_MUTEX(swflag_mutex); + +/** + * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM. + * + **/ +static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) +{ + s32 ret_val; + + mutex_lock(&swflag_mutex); + ret_val = e1000_get_hw_semaphore_82573(hw); + if (ret_val) + mutex_unlock(&swflag_mutex); + return ret_val; +} + +/** + * e1000_put_hw_semaphore_82574 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + * + **/ +static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) +{ + e1000_put_hw_semaphore_82573(hw); + mutex_unlock(&swflag_mutex); +} + +/** + * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. + * LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) +{ + u16 data = er32(POEMB); + + if (active) + data |= E1000_PHY_CTRL_D0A_LPLU; + else + data &= ~E1000_PHY_CTRL_D0A_LPLU; + + ew32(POEMB, data); + return 0; +} + +/** + * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * The low power link up (lplu) state is set to the power management level D3 + * when active is true, else clear lplu for D3. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) +{ + u16 data = er32(POEMB); + + if (!active) { + data &= ~E1000_PHY_CTRL_NOND0A_LPLU; + } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || + (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= E1000_PHY_CTRL_NOND0A_LPLU; + } + + ew32(POEMB, data); + return 0; +} + +/** + * e1000_acquire_nvm_82571 - Request for access to the EEPROM + * @hw: pointer to the HW structure + * + * To gain access to the EEPROM, first we must obtain a hardware semaphore. + * Then for non-82573 hardware, set the EEPROM access request bit and wait + * for EEPROM access grant bit. If the access grant bit is not set, release + * hardware semaphore. + **/ +static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) +{ + s32 ret_val; + + ret_val = e1000_get_hw_semaphore_82571(hw); + if (ret_val) + return ret_val; + + switch (hw->mac.type) { + case e1000_82573: + break; + default: + ret_val = e1000e_acquire_nvm(hw); + break; + } + + if (ret_val) + e1000_put_hw_semaphore_82571(hw); + + return ret_val; +} + +/** + * e1000_release_nvm_82571 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +static void e1000_release_nvm_82571(struct e1000_hw *hw) +{ + e1000e_release_nvm(hw); + e1000_put_hw_semaphore_82571(hw); +} + +/** + * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * For non-82573 silicon, write data to EEPROM at offset using SPI interface. + * + * If e1000e_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 ret_val; + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); + break; + case e1000_82571: + case e1000_82572: + ret_val = e1000e_write_nvm_spi(hw, offset, words, data); + break; + default: + ret_val = -E1000_ERR_NVM; + break; + } + + return ret_val; +} + +/** + * e1000_update_nvm_checksum_82571 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) +{ + u32 eecd; + s32 ret_val; + u16 i; + + ret_val = e1000e_update_nvm_checksum_generic(hw); + if (ret_val) + return ret_val; + + /* + * If our nvm is an EEPROM, then we're done + * otherwise, commit the checksum to the flash NVM. + */ + if (hw->nvm.type != e1000_nvm_flash_hw) + return 0; + + /* Check for pending operations. */ + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + usleep_range(1000, 2000); + if ((er32(EECD) & E1000_EECD_FLUPD) == 0) + break; + } + + if (i == E1000_FLASH_UPDATES) + return -E1000_ERR_NVM; + + /* Reset the firmware if using STM opcode. */ + if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { + /* + * The enabling of and the actual reset must be done + * in two write cycles. + */ + ew32(HICR, E1000_HICR_FW_RESET_ENABLE); + e1e_flush(); + ew32(HICR, E1000_HICR_FW_RESET); + } + + /* Commit the write to flash */ + eecd = er32(EECD) | E1000_EECD_FLUPD; + ew32(EECD, eecd); + + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + usleep_range(1000, 2000); + if ((er32(EECD) & E1000_EECD_FLUPD) == 0) + break; + } + + if (i == E1000_FLASH_UPDATES) + return -E1000_ERR_NVM; + + return 0; +} + +/** + * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) +{ + if (hw->nvm.type == e1000_nvm_flash_hw) + e1000_fix_nvm_checksum_82571(hw); + + return e1000e_validate_nvm_checksum_generic(hw); +} + +/** + * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * After checking for invalid values, poll the EEPROM to ensure the previous + * command has completed before trying to write the next word. After write + * poll for completion. + * + * If e1000e_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eewr = 0; + s32 ret_val = 0; + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + e_dbg("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + for (i = 0; i < words; i++) { + eewr = (data[i] << E1000_NVM_RW_REG_DATA) | + ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | + E1000_NVM_RW_REG_START; + + ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + + ew32(EEWR, eewr); + + ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + } + + return ret_val; +} + +/** + * e1000_get_cfg_done_82571 - Poll for configuration done + * @hw: pointer to the HW structure + * + * Reads the management control register for the config done bit to be set. + **/ +static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + + while (timeout) { + if (er32(EEMNGCTL) & + E1000_NVM_CFG_DONE_PORT_0) + break; + usleep_range(1000, 2000); + timeout--; + } + if (!timeout) { + e_dbg("MNG configuration cycle has not completed.\n"); + return -E1000_ERR_RESET; + } + + return 0; +} + +/** + * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When activating LPLU + * this function also disables smart speed and vice versa. LPLU will not be + * activated unless the device autonegotiation advertisement meets standards + * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function + * pointer entry point only called by PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + return ret_val; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); + if (ret_val) + return ret_val; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); + if (ret_val) + return ret_val; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } + + return 0; +} + +/** + * e1000_reset_hw_82571 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82571(struct e1000_hw *hw) +{ + u32 ctrl, ctrl_ext; + s32 ret_val; + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000e_disable_pcie_master(hw); + if (ret_val) + e_dbg("PCI-E Master disable polling has failed.\n"); + + e_dbg("Masking off all interrupts\n"); + ew32(IMC, 0xffffffff); + + ew32(RCTL, 0); + ew32(TCTL, E1000_TCTL_PSP); + e1e_flush(); + + usleep_range(10000, 20000); + + /* + * Must acquire the MDIO ownership before MAC reset. + * Ownership defaults to firmware after a reset. + */ + switch (hw->mac.type) { + case e1000_82573: + ret_val = e1000_get_hw_semaphore_82573(hw); + break; + case e1000_82574: + case e1000_82583: + ret_val = e1000_get_hw_semaphore_82574(hw); + break; + default: + break; + } + if (ret_val) + e_dbg("Cannot acquire MDIO ownership\n"); + + ctrl = er32(CTRL); + + e_dbg("Issuing a global reset to MAC\n"); + ew32(CTRL, ctrl | E1000_CTRL_RST); + + /* Must release MDIO ownership and mutex after MAC reset. */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + e1000_put_hw_semaphore_82574(hw); + break; + default: + break; + } + + if (hw->nvm.type == e1000_nvm_flash_hw) { + udelay(10); + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); + } + + ret_val = e1000e_get_auto_rd_done(hw); + if (ret_val) + /* We don't want to continue accessing MAC registers. */ + return ret_val; + + /* + * Phy configuration from NVM just starts after EECD_AUTO_RD is set. + * Need to wait for Phy configuration completion before accessing + * NVM and Phy. + */ + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + msleep(25); + break; + default: + break; + } + + /* Clear any pending interrupt events. */ + ew32(IMC, 0xffffffff); + er32(ICR); + + if (hw->mac.type == e1000_82571) { + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + + e1000e_set_laa_state_82571(hw, true); + } + + /* Reinitialize the 82571 serdes link state machine */ + if (hw->phy.media_type == e1000_media_type_internal_serdes) + hw->mac.serdes_link_state = e1000_serdes_link_down; + + return 0; +} + +/** + * e1000_init_hw_82571 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg_data; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + e1000_initialize_hw_bits_82571(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) + e_dbg("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + + /* Disabling VLAN filtering */ + e_dbg("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. */ + /* + * If, however, a locally administered address was assigned to the + * 82571, we must reserve a RAR for it to work around an issue where + * resetting one port will reload the MAC on the other port. + */ + if (e1000e_get_laa_state_82571(hw)) + rar_count--; + e1000e_init_rx_addrs(hw, rar_count); + + /* Zero out the Multicast HASH table */ + e_dbg("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + reg_data = er32(TXDCTL(0)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | + E1000_TXDCTL_COUNT_DESC; + ew32(TXDCTL(0), reg_data); + + /* ...for both queues. */ + switch (mac->type) { + case e1000_82573: + e1000e_enable_tx_pkt_filtering(hw); + /* fall through */ + case e1000_82574: + case e1000_82583: + reg_data = er32(GCR); + reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; + ew32(GCR, reg_data); + break; + default: + reg_data = er32(TXDCTL(1)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | + E1000_TXDCTL_COUNT_DESC; + ew32(TXDCTL(1), reg_data); + break; + } + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82571(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits + * @hw: pointer to the HW structure + * + * Initializes required hardware-dependent bits needed for normal operation. + **/ +static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) +{ + u32 reg; + + /* Transmit Descriptor Control 0 */ + reg = er32(TXDCTL(0)); + reg |= (1 << 22); + ew32(TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = er32(TXDCTL(1)); + reg |= (1 << 22); + ew32(TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = er32(TARC(0)); + reg &= ~(0xF << 27); /* 30:27 */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); + break; + case e1000_82574: + case e1000_82583: + reg |= (1 << 26); + break; + default: + break; + } + ew32(TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = er32(TARC(1)); + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg &= ~((1 << 29) | (1 << 30)); + reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); + if (er32(TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + ew32(TARC(1), reg); + break; + default: + break; + } + + /* Device Control */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + reg = er32(CTRL); + reg &= ~(1 << 29); + ew32(CTRL, reg); + break; + default: + break; + } + + /* Extended Device Control */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + reg = er32(CTRL_EXT); + reg &= ~(1 << 23); + reg |= (1 << 22); + ew32(CTRL_EXT, reg); + break; + default: + break; + } + + if (hw->mac.type == e1000_82571) { + reg = er32(PBA_ECC); + reg |= E1000_PBA_ECC_CORR_EN; + ew32(PBA_ECC, reg); + } + + /* + * Workaround for hardware errata. + * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 + */ + if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { + reg = er32(CTRL_EXT); + reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; + ew32(CTRL_EXT, reg); + } + + /* PCI-Ex Control Registers */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + reg = er32(GCR); + reg |= (1 << 22); + ew32(GCR, reg); + + /* + * Workaround for hardware errata. + * apply workaround for hardware errata documented in errata + * docs Fixes issue where some error prone or unreliable PCIe + * completions are occurring, particularly with ASPM enabled. + * Without fix, issue can cause Tx timeouts. + */ + reg = er32(GCR2); + reg |= 1; + ew32(GCR2, reg); + break; + default: + break; + } +} + +/** + * e1000_clear_vfta_82571 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +static void e1000_clear_vfta_82571(struct e1000_hw *hw) +{ + u32 offset; + u32 vfta_value = 0; + u32 vfta_offset = 0; + u32 vfta_bit_in_reg = 0; + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (hw->mng_cookie.vlan_id != 0) { + /* + * The VFTA is a 4096b bit-field, each identifying + * a single VLAN ID. The following operations + * determine which 32b entry (i.e. offset) into the + * array we want to set the VLAN ID (i.e. bit) of + * the manageability unit. + */ + vfta_offset = (hw->mng_cookie.vlan_id >> + E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK; + vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & + E1000_VFTA_ENTRY_BIT_SHIFT_MASK); + } + break; + default: + break; + } + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* + * If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of + * the manageability unit. + */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); + e1e_flush(); + } +} + +/** + * e1000_check_mng_mode_82574 - Check manageability is enabled + * @hw: pointer to the HW structure + * + * Reads the NVM Initialization Control Word 2 and returns true + * (>0) if any manageability is enabled, else false (0). + **/ +static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) +{ + u16 data; + + e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); + return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; +} + +/** + * e1000_led_on_82574 - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +static s32 e1000_led_on_82574(struct e1000_hw *hw) +{ + u32 ctrl; + u32 i; + + ctrl = hw->mac.ledctl_mode2; + if (!(E1000_STATUS_LU & er32(STATUS))) { + /* + * If no link, then turn LED on by setting the invert bit + * for each LED that's "on" (0x0E) in ledctl_mode2. + */ + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); + } + ew32(LEDCTL, ctrl); + + return 0; +} + +/** + * e1000_check_phy_82574 - check 82574 phy hung state + * @hw: pointer to the HW structure + * + * Returns whether phy is hung or not + **/ +bool e1000_check_phy_82574(struct e1000_hw *hw) +{ + u16 status_1kbt = 0; + u16 receive_errors = 0; + s32 ret_val = 0; + + /* + * Read PHY Receive Error counter first, if its is max - all F's then + * read the Base1000T status register If both are max then PHY is hung. + */ + ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); + if (ret_val) + return false; + if (receive_errors == E1000_RECEIVE_ERROR_MAX) { + ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); + if (ret_val) + return false; + if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == + E1000_IDLE_ERROR_COUNT_MASK) + return true; + } + + return false; +} + +/** + * e1000_setup_link_82571 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82571(struct e1000_hw *hw) +{ + /* + * 82573 does not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (hw->fc.requested_mode == e1000_fc_default) + hw->fc.requested_mode = e1000_fc_full; + break; + default: + break; + } + + return e1000e_setup_link_generic(hw); +} + +/** + * e1000_setup_copper_link_82571 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ew32(CTRL, ctrl); + + switch (hw->phy.type) { + case e1000_phy_m88: + case e1000_phy_bm: + ret_val = e1000e_copper_link_setup_m88(hw); + break; + case e1000_phy_igp_2: + ret_val = e1000e_copper_link_setup_igp(hw); + break; + default: + return -E1000_ERR_PHY; + break; + } + + if (ret_val) + return ret_val; + + return e1000e_setup_copper_link(hw); +} + +/** + * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes links. + * Upon successful setup, poll for link. + **/ +static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) +{ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* + * If SerDes loopback mode is entered, there is no form + * of reset to take the adapter out of that mode. So we + * have to explicitly take the adapter out of loopback + * mode. This prevents drivers from twiddling their thumbs + * if another tool failed to take it out of loopback mode. + */ + ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); + break; + default: + break; + } + + return e1000e_setup_fiber_serdes_link(hw); +} + +/** + * e1000_check_for_serdes_link_82571 - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Reports the link state as up or down. + * + * If autonegotiation is supported by the link partner, the link state is + * determined by the result of autonegotiation. This is the most likely case. + * If autonegotiation is not supported by the link partner, and the link + * has a valid signal, force the link up. + * + * The link state is represented internally here by 4 states: + * + * 1) down + * 2) autoneg_progress + * 3) autoneg_complete (the link successfully autonegotiated) + * 4) forced_up (the link has been forced up, it did not autonegotiate) + * + **/ +static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + u32 txcw; + u32 i; + s32 ret_val = 0; + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { + + /* Receiver is synchronized with no invalid bits. */ + switch (mac->serdes_link_state) { + case e1000_serdes_link_autoneg_complete: + if (!(status & E1000_STATUS_LU)) { + /* + * We have lost link, retry autoneg before + * reporting link failure + */ + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + e_dbg("AN_UP -> AN_PROG\n"); + } else { + mac->serdes_has_link = true; + } + break; + + case e1000_serdes_link_forced_up: + /* + * If we are receiving /C/ ordered sets, re-enable + * auto-negotiation in the TXCW register and disable + * forced link in the Device Control register in an + * attempt to auto-negotiate with our link partner. + * If the partner code word is null, stop forcing + * and restart auto negotiation. + */ + if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) { + /* Enable autoneg, and unforce link up */ + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + e_dbg("FORCED_UP -> AN_PROG\n"); + } else { + mac->serdes_has_link = true; + } + break; + + case e1000_serdes_link_autoneg_progress: + if (rxcw & E1000_RXCW_C) { + /* + * We received /C/ ordered sets, meaning the + * link partner has autonegotiated, and we can + * trust the Link Up (LU) status bit. + */ + if (status & E1000_STATUS_LU) { + mac->serdes_link_state = + e1000_serdes_link_autoneg_complete; + e_dbg("AN_PROG -> AN_UP\n"); + mac->serdes_has_link = true; + } else { + /* Autoneg completed, but failed. */ + mac->serdes_link_state = + e1000_serdes_link_down; + e_dbg("AN_PROG -> DOWN\n"); + } + } else { + /* + * The link partner did not autoneg. + * Force link up and full duplex, and change + * state to forced. + */ + ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after link up. */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error config flow control\n"); + break; + } + mac->serdes_link_state = + e1000_serdes_link_forced_up; + mac->serdes_has_link = true; + e_dbg("AN_PROG -> FORCED_UP\n"); + } + break; + + case e1000_serdes_link_down: + default: + /* + * The link was down but the receiver has now gained + * valid sync, so lets see if we can bring the link + * up. + */ + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + e_dbg("DOWN -> AN_PROG\n"); + break; + } + } else { + if (!(rxcw & E1000_RXCW_SYNCH)) { + mac->serdes_has_link = false; + mac->serdes_link_state = e1000_serdes_link_down; + e_dbg("ANYSTATE -> DOWN\n"); + } else { + /* + * Check several times, if Sync and Config + * both are consistently 1 then simply ignore + * the Invalid bit and restart Autoneg + */ + for (i = 0; i < AN_RETRY_COUNT; i++) { + udelay(10); + rxcw = er32(RXCW); + if ((rxcw & E1000_RXCW_IV) && + !((rxcw & E1000_RXCW_SYNCH) && + (rxcw & E1000_RXCW_C))) { + mac->serdes_has_link = false; + mac->serdes_link_state = + e1000_serdes_link_down; + e_dbg("ANYSTATE -> DOWN\n"); + break; + } + } + + if (i == AN_RETRY_COUNT) { + txcw = er32(TXCW); + txcw |= E1000_TXCW_ANE; + ew32(TXCW, txcw); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = false; + e_dbg("ANYSTATE -> AN_PROG\n"); + } + } + } + + return ret_val; +} + +/** + * e1000_valid_led_default_82571 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (*data == ID_LED_RESERVED_F746) + *data = ID_LED_DEFAULT_82573; + break; + default: + if (*data == ID_LED_RESERVED_0000 || + *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + break; + } + + return 0; +} + +/** + * e1000e_get_laa_state_82571 - Get locally administered address state + * @hw: pointer to the HW structure + * + * Retrieve and return the current locally administered address state. + **/ +bool e1000e_get_laa_state_82571(struct e1000_hw *hw) +{ + if (hw->mac.type != e1000_82571) + return false; + + return hw->dev_spec.e82571.laa_is_present; +} + +/** + * e1000e_set_laa_state_82571 - Set locally administered address state + * @hw: pointer to the HW structure + * @state: enable/disable locally administered address + * + * Enable/Disable the current locally administered address state. + **/ +void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) +{ + if (hw->mac.type != e1000_82571) + return; + + hw->dev_spec.e82571.laa_is_present = state; + + /* If workaround is activated... */ + if (state) + /* + * Hold a copy of the LAA in RAR[14] This is done so that + * between the time RAR[0] gets clobbered and the time it + * gets fixed, the actual LAA is in one of the RARs and no + * incoming packets directed to this port are dropped. + * Eventually the LAA will be in RAR[0] and RAR[14]. + */ + e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); +} + +/** + * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum + * @hw: pointer to the HW structure + * + * Verifies that the EEPROM has completed the update. After updating the + * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If + * the checksum fix is not implemented, we need to set the bit and update + * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, + * we need to return bad checksum. + **/ +static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u16 data; + + if (nvm->type != e1000_nvm_flash_hw) + return 0; + + /* + * Check bit 4 of word 10h. If it is 0, firmware is done updating + * 10h-12h. Checksum may need to be fixed. + */ + ret_val = e1000_read_nvm(hw, 0x10, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & 0x10)) { + /* + * Read 0x23 and check bit 15. This bit is a 1 + * when the checksum has already been fixed. If + * the checksum is still wrong and this bit is a + * 1, we need to return bad checksum. Otherwise, + * we need to set this bit to a 1 and update the + * checksum. + */ + ret_val = e1000_read_nvm(hw, 0x23, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & 0x8000)) { + data |= 0x8000; + ret_val = e1000_write_nvm(hw, 0x23, 1, &data); + if (ret_val) + return ret_val; + ret_val = e1000e_update_nvm_checksum(hw); + } + } + + return 0; +} + +/** + * e1000_read_mac_addr_82571 - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) +{ + if (hw->mac.type == e1000_82571) { + s32 ret_val = 0; + + /* + * If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + } + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_power_down_phy_copper_82571 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_mac_info *mac = &hw->mac; + + if (!phy->ops.check_reset_block) + return; + + /* If the management interface is not enabled, then power down */ + if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); +} + +/** + * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) +{ + e1000e_clear_hw_cntrs_base(hw); + + er32(PRC64); + er32(PRC127); + er32(PRC255); + er32(PRC511); + er32(PRC1023); + er32(PRC1522); + er32(PTC64); + er32(PTC127); + er32(PTC255); + er32(PTC511); + er32(PTC1023); + er32(PTC1522); + + er32(ALGNERRC); + er32(RXERRC); + er32(TNCRS); + er32(CEXTERR); + er32(TSCTC); + er32(TSCTFC); + + er32(MGTPRC); + er32(MGTPDC); + er32(MGTPTC); + + er32(IAC); + er32(ICRXOC); + + er32(ICRXPTC); + er32(ICRXATC); + er32(ICTXPTC); + er32(ICTXATC); + er32(ICTXQEC); + er32(ICTXQMTC); + er32(ICRXDMTC); +} + +static const struct e1000_mac_operations e82571_mac_ops = { + /* .check_mng_mode: mac type dependent */ + /* .check_for_link: media type dependent */ + .id_led_init = e1000e_id_led_init_generic, + .cleanup_led = e1000e_cleanup_led_generic, + .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, + .get_bus_info = e1000e_get_bus_info_pcie, + .set_lan_id = e1000_set_lan_id_multi_port_pcie, + /* .get_link_up_info: media type dependent */ + /* .led_on: mac type dependent */ + .led_off = e1000e_led_off_generic, + .update_mc_addr_list = e1000e_update_mc_addr_list_generic, + .write_vfta = e1000_write_vfta_generic, + .clear_vfta = e1000_clear_vfta_82571, + .reset_hw = e1000_reset_hw_82571, + .init_hw = e1000_init_hw_82571, + .setup_link = e1000_setup_link_82571, + /* .setup_physical_interface: media type dependent */ + .setup_led = e1000e_setup_led_generic, + .config_collision_dist = e1000e_config_collision_dist_generic, + .read_mac_addr = e1000_read_mac_addr_82571, +}; + +static const struct e1000_phy_operations e82_phy_ops_igp = { + .acquire = e1000_get_hw_semaphore_82571, + .check_polarity = e1000_check_polarity_igp, + .check_reset_block = e1000e_check_reset_block_generic, + .commit = NULL, + .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, + .get_cfg_done = e1000_get_cfg_done_82571, + .get_cable_length = e1000e_get_cable_length_igp_2, + .get_info = e1000e_get_phy_info_igp, + .read_reg = e1000e_read_phy_reg_igp, + .release = e1000_put_hw_semaphore_82571, + .reset = e1000e_phy_hw_reset_generic, + .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, + .set_d3_lplu_state = e1000e_set_d3_lplu_state, + .write_reg = e1000e_write_phy_reg_igp, + .cfg_on_link_up = NULL, +}; + +static const struct e1000_phy_operations e82_phy_ops_m88 = { + .acquire = e1000_get_hw_semaphore_82571, + .check_polarity = e1000_check_polarity_m88, + .check_reset_block = e1000e_check_reset_block_generic, + .commit = e1000e_phy_sw_reset, + .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, + .get_cfg_done = e1000e_get_cfg_done, + .get_cable_length = e1000e_get_cable_length_m88, + .get_info = e1000e_get_phy_info_m88, + .read_reg = e1000e_read_phy_reg_m88, + .release = e1000_put_hw_semaphore_82571, + .reset = e1000e_phy_hw_reset_generic, + .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, + .set_d3_lplu_state = e1000e_set_d3_lplu_state, + .write_reg = e1000e_write_phy_reg_m88, + .cfg_on_link_up = NULL, +}; + +static const struct e1000_phy_operations e82_phy_ops_bm = { + .acquire = e1000_get_hw_semaphore_82571, + .check_polarity = e1000_check_polarity_m88, + .check_reset_block = e1000e_check_reset_block_generic, + .commit = e1000e_phy_sw_reset, + .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, + .get_cfg_done = e1000e_get_cfg_done, + .get_cable_length = e1000e_get_cable_length_m88, + .get_info = e1000e_get_phy_info_m88, + .read_reg = e1000e_read_phy_reg_bm2, + .release = e1000_put_hw_semaphore_82571, + .reset = e1000e_phy_hw_reset_generic, + .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, + .set_d3_lplu_state = e1000e_set_d3_lplu_state, + .write_reg = e1000e_write_phy_reg_bm2, + .cfg_on_link_up = NULL, +}; + +static const struct e1000_nvm_operations e82571_nvm_ops = { + .acquire = e1000_acquire_nvm_82571, + .read = e1000e_read_nvm_eerd, + .release = e1000_release_nvm_82571, + .reload = e1000e_reload_nvm_generic, + .update = e1000_update_nvm_checksum_82571, + .valid_led_default = e1000_valid_led_default_82571, + .validate = e1000_validate_nvm_checksum_82571, + .write = e1000_write_nvm_82571, +}; + +const struct e1000_info e1000_82571_info = { + .mac = e1000_82571, + .flags = FLAG_HAS_HW_VLAN_FILTER + | FLAG_HAS_JUMBO_FRAMES + | FLAG_HAS_WOL + | FLAG_APME_IN_CTRL3 + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_HAS_SMART_POWER_DOWN + | FLAG_RESET_OVERWRITES_LAA /* errata */ + | FLAG_TARC_SPEED_MODE_BIT /* errata */ + | FLAG_APME_CHECK_PORT_B, + .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ + | FLAG2_DMA_BURST, + .pba = 38, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_82571, + .mac_ops = &e82571_mac_ops, + .phy_ops = &e82_phy_ops_igp, + .nvm_ops = &e82571_nvm_ops, +}; + +const struct e1000_info e1000_82572_info = { + .mac = e1000_82572, + .flags = FLAG_HAS_HW_VLAN_FILTER + | FLAG_HAS_JUMBO_FRAMES + | FLAG_HAS_WOL + | FLAG_APME_IN_CTRL3 + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_TARC_SPEED_MODE_BIT, /* errata */ + .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ + | FLAG2_DMA_BURST, + .pba = 38, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_82571, + .mac_ops = &e82571_mac_ops, + .phy_ops = &e82_phy_ops_igp, + .nvm_ops = &e82571_nvm_ops, +}; + +const struct e1000_info e1000_82573_info = { + .mac = e1000_82573, + .flags = FLAG_HAS_HW_VLAN_FILTER + | FLAG_HAS_WOL + | FLAG_APME_IN_CTRL3 + | FLAG_HAS_SMART_POWER_DOWN + | FLAG_HAS_AMT + | FLAG_HAS_SWSM_ON_LOAD, + .flags2 = FLAG2_DISABLE_ASPM_L1 + | FLAG2_DISABLE_ASPM_L0S, + .pba = 20, + .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, + .get_variants = e1000_get_variants_82571, + .mac_ops = &e82571_mac_ops, + .phy_ops = &e82_phy_ops_m88, + .nvm_ops = &e82571_nvm_ops, +}; + +const struct e1000_info e1000_82574_info = { + .mac = e1000_82574, + .flags = FLAG_HAS_HW_VLAN_FILTER + | FLAG_HAS_MSIX + | FLAG_HAS_JUMBO_FRAMES + | FLAG_HAS_WOL + | FLAG_APME_IN_CTRL3 + | FLAG_HAS_SMART_POWER_DOWN + | FLAG_HAS_AMT + | FLAG_HAS_CTRLEXT_ON_LOAD, + .flags2 = FLAG2_CHECK_PHY_HANG + | FLAG2_DISABLE_ASPM_L0S + | FLAG2_DISABLE_ASPM_L1 + | FLAG2_NO_DISABLE_RX, + .pba = 32, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_82571, + .mac_ops = &e82571_mac_ops, + .phy_ops = &e82_phy_ops_bm, + .nvm_ops = &e82571_nvm_ops, +}; + +const struct e1000_info e1000_82583_info = { + .mac = e1000_82583, + .flags = FLAG_HAS_HW_VLAN_FILTER + | FLAG_HAS_WOL + | FLAG_APME_IN_CTRL3 + | FLAG_HAS_SMART_POWER_DOWN + | FLAG_HAS_AMT + | FLAG_HAS_JUMBO_FRAMES + | FLAG_HAS_CTRLEXT_ON_LOAD, + .flags2 = FLAG2_DISABLE_ASPM_L0S + | FLAG2_NO_DISABLE_RX, + .pba = 32, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_82571, + .mac_ops = &e82571_mac_ops, + .phy_ops = &e82_phy_ops_bm, + .nvm_ops = &e82571_nvm_ops, +}; + diff --git a/drivers/net/ethernet/intel/e1000e/Makefile b/drivers/net/ethernet/intel/e1000e/Makefile new file mode 100644 index 00000000..591b7132 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/Makefile @@ -0,0 +1,38 @@ +################################################################################ +# +# Intel PRO/1000 Linux driver +# Copyright(c) 1999 - 2012 Intel Corporation. +# +# This program is free software; you can redistribute it and/or modify it +# under the terms and conditions of the GNU General Public License, +# version 2, as published by the Free Software Foundation. +# +# This program is distributed in the hope it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +# more details. +# +# You should have received a copy of the GNU General Public License along with +# this program; if not, write to the Free Software Foundation, Inc., +# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. +# +# The full GNU General Public License is included in this distribution in +# the file called "COPYING". +# +# Contact Information: +# Linux NICS <linux.nics@intel.com> +# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> +# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 +# +################################################################################ + +# +# Makefile for the Intel(R) PRO/1000 ethernet driver +# + +obj-$(CONFIG_E1000E) += e1000e.o + +e1000e-objs := 82571.o ich8lan.o 80003es2lan.o \ + mac.o manage.o nvm.o phy.o \ + param.o ethtool.o netdev.o + diff --git a/drivers/net/ethernet/intel/e1000e/defines.h b/drivers/net/ethernet/intel/e1000e/defines.h new file mode 100644 index 00000000..eb84fe7b --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/defines.h @@ -0,0 +1,854 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#ifndef _E1000_DEFINES_H_ +#define _E1000_DEFINES_H_ + +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ + +/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC E1000_WUFC_LNKC +#define E1000_WUS_MAG E1000_WUFC_MAG +#define E1000_WUS_EX E1000_WUFC_EX +#define E1000_WUS_MC E1000_WUFC_MC +#define E1000_WUS_BC E1000_WUFC_BC + +/* Extended Device Control */ +#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 +#define E1000_CTRL_EXT_EIAME 0x01000000 +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ +#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ +#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ +#define E1000_CTRL_EXT_LSECCK 0x00001000 +#define E1000_CTRL_EXT_PHYPDEN 0x00100000 + +/* Receive Descriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ + +#define E1000_RXDEXT_STATERR_CE 0x01000000 +#define E1000_RXDEXT_STATERR_SE 0x02000000 +#define E1000_RXDEXT_STATERR_SEQ 0x04000000 +#define E1000_RXDEXT_STATERR_CXE 0x10000000 +#define E1000_RXDEXT_STATERR_RXE 0x80000000 + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Same mask, but for extended and packet split descriptors */ +#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ + E1000_RXDEXT_STATERR_CE | \ + E1000_RXDEXT_STATERR_SE | \ + E1000_RXDEXT_STATERR_SEQ | \ + E1000_RXDEXT_STATERR_CXE | \ + E1000_RXDEXT_STATERR_RXE) + +#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 +#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 +#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 + +#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +/* Enable MAC address filtering */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 +/* Enable MNG packets to host memory */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 + +#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ +#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ +#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ +#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ + +/* Receive Control */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* Discard Pause Frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ + +/* + * Use byte values for the following shift parameters + * Usage: + * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & + * E1000_PSRCTL_BSIZE0_MASK) | + * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & + * E1000_PSRCTL_BSIZE1_MASK) | + * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & + * E1000_PSRCTL_BSIZE2_MASK) | + * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; + * E1000_PSRCTL_BSIZE3_MASK)) + * where value0 = [128..16256], default=256 + * value1 = [1024..64512], default=4096 + * value2 = [0..64512], default=4096 + * value3 = [0..64512], default=0 + */ + +#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F +#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 +#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 +#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 + +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ + +/* SWFW_SYNC Definitions */ +#define E1000_SWFW_EEP_SM 0x1 +#define E1000_SWFW_PHY0_SM 0x2 +#define E1000_SWFW_PHY1_SM 0x4 +#define E1000_SWFW_CSR_SM 0x8 + +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */ +#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ + +/* + * Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_SHIFT 2 +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */ +#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ + +/* Constants used to interpret the masked PCI-X bus speed. */ + +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + + +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ +#define ADVERTISE_1000_FULL 0x0020 + +/* 1000/H is not supported, nor spec-compliant. */ +#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ + ADVERTISE_1000_FULL) +#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ + ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) +#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) + +#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX + +/* LED Control */ +#define E1000_PHY_LED0_MODE_MASK 0x00000007 +#define E1000_PHY_LED0_IVRT 0x00000008 +#define E1000_PHY_LED0_MASK 0x0000001F + +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 + +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ + +/* Transmit Control */ +#define E1000_TCTL_EN 0x00000002 /* enable Tx */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ + +/* Transmit Arbitration Count */ + +/* SerDes Control */ +#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 + +/* Receive Checksum Control */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ + +/* Header split receive */ +#define E1000_RFCTL_NFSW_DIS 0x00000040 +#define E1000_RFCTL_NFSR_DIS 0x00000080 +#define E1000_RFCTL_ACK_DIS 0x00001000 +#define E1000_RFCTL_EXTEN 0x00008000 +#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 +#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLD_SHIFT 12 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF + +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 + +#define MAX_JUMBO_FRAME_SIZE 0x3F00 + +/* Extended Configuration Control and Size */ +#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 +#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 + +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 + +/* PBA constants */ +#define E1000_PBA_8K 0x0008 /* 8KB */ +#define E1000_PBA_16K 0x0010 /* 16KB */ + +#define E1000_PBS_16K E1000_PBA_16K + +#define IFS_MAX 80 +#define IFS_MIN 40 +#define IFS_RATIO 4 +#define IFS_STEP 10 +#define MIN_NUM_XMITS 1000 + +/* SW Semaphore Register */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ +#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ +#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ +#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ +#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ +#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ +#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ +#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ + +/* PBA ECC Register */ +#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */ +#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */ +#define E1000_PBA_ECC_CORR_EN 0x00000001 /* ECC correction enable */ +#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */ +#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 for ECC */ + +/* + * This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ +#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ +#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ +#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ +#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ +#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ + +/* Interrupt Cause Set */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ +/* Enable the counting of desc. still to be processed. */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* 802.1q VLAN Packet Size */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + +/* Receive Address */ +/* + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * Technically, we have 16 spots. However, we reserve one of these spots + * (RAR[15]) for our directed address used by controllers with + * manageability enabled, allowing us room for 15 multicast addresses. + */ +#define E1000_RAR_ENTRIES 15 +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ +#define E1000_RAL_MAC_ADDR_LEN 4 +#define E1000_RAH_MAC_ADDR_LEN 2 + +/* Error Codes */ +#define E1000_ERR_NVM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_INIT 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 +#define E1000_NOT_IMPLEMENTED 14 +#define E1000_ERR_INVALID_ARGUMENT 16 +#define E1000_ERR_NO_SPACE 17 +#define E1000_ERR_NVM_PBA_SECTION 18 + +/* Loop limit on how long we wait for auto-negotiation to complete */ +#define FIBER_LINK_UP_LIMIT 50 +#define COPPER_LINK_UP_LIMIT 10 +#define PHY_AUTO_NEG_LIMIT 45 +#define PHY_FORCE_LIMIT 20 +/* Number of 100 microseconds we wait for PCI Express master disable */ +#define MASTER_DISABLE_TIMEOUT 800 +/* Number of milliseconds we wait for PHY configuration done after MAC reset */ +#define PHY_CFG_TIMEOUT 100 +/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ +#define MDIO_OWNERSHIP_TIMEOUT 10 +/* Number of milliseconds for NVM auto read done after MAC reset. */ +#define AUTO_READ_DONE_TIMEOUT 10 + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ + +/* PCI Express Control */ +#define E1000_GCR_RXD_NO_SNOOP 0x00000001 +#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 +#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 +#define E1000_GCR_TXD_NO_SNOOP 0x00000008 +#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 +#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 + +#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ + E1000_GCR_RXDSCW_NO_SNOOP | \ + E1000_GCR_RXDSCR_NO_SNOOP | \ + E1000_GCR_TXD_NO_SNOOP | \ + E1000_GCR_TXDSCW_NO_SNOOP | \ + E1000_GCR_TXDSCR_NO_SNOOP) + +/* PHY Control Register */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 + +/* PHY Status Register */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ + + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CONTROL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Register */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ + +/* NVM Control */ +#define E1000_EECD_SK 0x00000001 /* NVM Clock */ +#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* NVM Data In */ +#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ +#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* NVM Present */ +#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ +/* NVM Addressing bits based on type (0-small, 1-large) */ +#define E1000_EECD_ADDR_BITS 0x00000400 +#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ +#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) + +#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */ +#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_NVM_RW_REG_START 1 /* Start operation */ +#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_FLASH_UPDATES 2000 + +/* NVM Word Offsets */ +#define NVM_COMPAT 0x0003 +#define NVM_ID_LED_SETTINGS 0x0004 +#define NVM_INIT_CONTROL2_REG 0x000F +#define NVM_INIT_CONTROL3_PORT_B 0x0014 +#define NVM_INIT_3GIO_3 0x001A +#define NVM_INIT_CONTROL3_PORT_A 0x0024 +#define NVM_CFG 0x0012 +#define NVM_ALT_MAC_ADDR_PTR 0x0037 +#define NVM_CHECKSUM_REG 0x003F + +#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ + +#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */ +#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */ + +/* Mask bits for fields in Word 0x0f of the NVM */ +#define NVM_WORD0F_PAUSE_MASK 0x3000 +#define NVM_WORD0F_PAUSE 0x1000 +#define NVM_WORD0F_ASM_DIR 0x2000 + +/* Mask bits for fields in Word 0x1a of the NVM */ +#define NVM_WORD1A_ASPM_MASK 0x000C + +/* Mask bits for fields in Word 0x03 of the EEPROM */ +#define NVM_COMPAT_LOM 0x0800 + +/* length of string needed to store PBA number */ +#define E1000_PBANUM_LENGTH 11 + +/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ +#define NVM_SUM 0xBABA + +/* PBA (printed board assembly) number words */ +#define NVM_PBA_OFFSET_0 8 +#define NVM_PBA_OFFSET_1 9 +#define NVM_PBA_PTR_GUARD 0xFAFA +#define NVM_WORD_SIZE_BASE_SHIFT 6 + +/* NVM Commands - SPI */ +#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ +#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ +#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ + +/* SPI NVM Status Register */ +#define NVM_STATUS_RDY_SPI 0x01 + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + +/* PCI/PCI-X/PCI-EX Config space */ +#define PCI_HEADER_TYPE_REGISTER 0x0E +#define PCIE_LINK_STATUS 0x12 + +#define PCI_HEADER_TYPE_MULTIFUNC 0x80 +#define PCIE_LINK_WIDTH_MASK 0x3F0 +#define PCIE_LINK_WIDTH_SHIFT 4 + +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF + +/* Bit definitions for valid PHY IDs. */ +/* + * I = Integrated + * E = External + */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define GG82563_E_PHY_ID 0x01410CA0 +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 +#define BME1000_E_PHY_ID 0x01410CB0 +#define BME1000_E_PHY_ID_R2 0x01410CB1 +#define I82577_E_PHY_ID 0x01540050 +#define I82578_E_PHY_ID 0x004DD040 +#define I82579_E_PHY_ID 0x01540090 + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ + +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 +/* Auto crossover enabled all speeds */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 +/* + * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold) + * 0=Normal 10BASE-T Rx Threshold + */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* + * Number of times we will attempt to autonegotiate before downshifting if we + * are the master + */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +/* + * Number of times we will attempt to autonegotiate before downshifting if we + * are the slave + */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ + +/* M88EC018 Rev 2 specific DownShift settings */ +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 + +#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020 +#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C + +/* BME1000 PHY Specific Control Register */ +#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ + + +#define PHY_PAGE_SHIFT 5 +#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ + ((reg) & MAX_PHY_REG_ADDRESS)) + +/* + * Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 + +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL \ + GG82563_REG(0, 16) /* PHY Specific Control */ +#define GG82563_PHY_PAGE_SELECT \ + GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 \ + GG82563_REG(0, 26) /* PHY Specific Control 2 */ +#define GG82563_PHY_PAGE_SELECT_ALT \ + GG82563_REG(0, 29) /* Alternate Page Select */ + +#define GG82563_PHY_MAC_SPEC_CTRL \ + GG82563_REG(2, 21) /* MAC Specific Control Register */ + +#define GG82563_PHY_DSP_DISTANCE \ + GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +#define GG82563_PHY_KMRN_MODE_CTRL \ + GG82563_REG(193, 16) /* Kumeran Mode Control */ +#define GG82563_PHY_PWR_MGMT_CTRL \ + GG82563_REG(193, 20) /* Power Management Control */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_INBAND_CTRL \ + GG82563_REG(194, 18) /* Inband Control */ + +/* MDI Control */ +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_ERROR 0x40000000 + +/* SerDes Control */ +#define E1000_GEN_POLL_TIMEOUT 640 + +#endif /* _E1000_DEFINES_H_ */ diff --git a/drivers/net/ethernet/intel/e1000e/e1000.h b/drivers/net/ethernet/intel/e1000e/e1000.h new file mode 100644 index 00000000..b83897f7 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/e1000.h @@ -0,0 +1,743 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* Linux PRO/1000 Ethernet Driver main header file */ + +#ifndef _E1000_H_ +#define _E1000_H_ + +#include <linux/bitops.h> +#include <linux/types.h> +#include <linux/timer.h> +#include <linux/workqueue.h> +#include <linux/io.h> +#include <linux/netdevice.h> +#include <linux/pci.h> +#include <linux/pci-aspm.h> +#include <linux/crc32.h> +#include <linux/if_vlan.h> + +#include "hw.h" + +struct e1000_info; + +#define e_dbg(format, arg...) \ + netdev_dbg(hw->adapter->netdev, format, ## arg) +#define e_err(format, arg...) \ + netdev_err(adapter->netdev, format, ## arg) +#define e_info(format, arg...) \ + netdev_info(adapter->netdev, format, ## arg) +#define e_warn(format, arg...) \ + netdev_warn(adapter->netdev, format, ## arg) +#define e_notice(format, arg...) \ + netdev_notice(adapter->netdev, format, ## arg) + + +/* Interrupt modes, as used by the IntMode parameter */ +#define E1000E_INT_MODE_LEGACY 0 +#define E1000E_INT_MODE_MSI 1 +#define E1000E_INT_MODE_MSIX 2 + +/* Tx/Rx descriptor defines */ +#define E1000_DEFAULT_TXD 256 +#define E1000_MAX_TXD 4096 +#define E1000_MIN_TXD 64 + +#define E1000_DEFAULT_RXD 256 +#define E1000_MAX_RXD 4096 +#define E1000_MIN_RXD 64 + +#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ +#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ + +/* Early Receive defines */ +#define E1000_ERT_2048 0x100 + +#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ + +/* How many Tx Descriptors do we need to call netif_wake_queue ? */ +/* How many Rx Buffers do we bundle into one write to the hardware ? */ +#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ + +#define AUTO_ALL_MODES 0 +#define E1000_EEPROM_APME 0x0400 + +#define E1000_MNG_VLAN_NONE (-1) + +/* Number of packet split data buffers (not including the header buffer) */ +#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) + +#define DEFAULT_JUMBO 9234 + +/* BM/HV Specific Registers */ +#define BM_PORT_CTRL_PAGE 769 + +#define PHY_UPPER_SHIFT 21 +#define BM_PHY_REG(page, reg) \ + (((reg) & MAX_PHY_REG_ADDRESS) |\ + (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\ + (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT))) + +/* PHY Wakeup Registers and defines */ +#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17) +#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0) +#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) +#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) +#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) +#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2))) +#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2))) +#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2))) +#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2))) +#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1))) + +#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */ +#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */ +#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */ +#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */ +#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */ +#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */ +#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */ + +#define HV_STATS_PAGE 778 +#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */ +#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17) +#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */ +#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19) +#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */ +#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21) +#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */ +#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24) +#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */ +#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26) +#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */ +#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28) +#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */ +#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30) + +#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */ + +/* BM PHY Copper Specific Status */ +#define BM_CS_STATUS 17 +#define BM_CS_STATUS_LINK_UP 0x0400 +#define BM_CS_STATUS_RESOLVED 0x0800 +#define BM_CS_STATUS_SPEED_MASK 0xC000 +#define BM_CS_STATUS_SPEED_1000 0x8000 + +/* 82577 Mobile Phy Status Register */ +#define HV_M_STATUS 26 +#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000 +#define HV_M_STATUS_SPEED_MASK 0x0300 +#define HV_M_STATUS_SPEED_1000 0x0200 +#define HV_M_STATUS_LINK_UP 0x0040 + +#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */ +#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000 + +/* Time to wait before putting the device into D3 if there's no link (in ms). */ +#define LINK_TIMEOUT 100 + +/* + * Count for polling __E1000_RESET condition every 10-20msec. + * Experimentation has shown the reset can take approximately 210msec. + */ +#define E1000_CHECK_RESET_COUNT 25 + +#define DEFAULT_RDTR 0 +#define DEFAULT_RADV 8 +#define BURST_RDTR 0x20 +#define BURST_RADV 0x20 + +/* + * in the case of WTHRESH, it appears at least the 82571/2 hardware + * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when + * WTHRESH=4, and since we want 64 bytes at a time written back, set + * it to 5 + */ +#define E1000_TXDCTL_DMA_BURST_ENABLE \ + (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \ + E1000_TXDCTL_COUNT_DESC | \ + (5 << 16) | /* wthresh must be +1 more than desired */\ + (1 << 8) | /* hthresh */ \ + 0x1f) /* pthresh */ + +#define E1000_RXDCTL_DMA_BURST_ENABLE \ + (0x01000000 | /* set descriptor granularity */ \ + (4 << 16) | /* set writeback threshold */ \ + (4 << 8) | /* set prefetch threshold */ \ + 0x20) /* set hthresh */ + +#define E1000_TIDV_FPD (1 << 31) +#define E1000_RDTR_FPD (1 << 31) + +enum e1000_boards { + board_82571, + board_82572, + board_82573, + board_82574, + board_82583, + board_80003es2lan, + board_ich8lan, + board_ich9lan, + board_ich10lan, + board_pchlan, + board_pch2lan, +}; + +struct e1000_ps_page { + struct page *page; + u64 dma; /* must be u64 - written to hw */ +}; + +/* + * wrappers around a pointer to a socket buffer, + * so a DMA handle can be stored along with the buffer + */ +struct e1000_buffer { + dma_addr_t dma; + struct sk_buff *skb; + union { + /* Tx */ + struct { + unsigned long time_stamp; + u16 length; + u16 next_to_watch; + unsigned int segs; + unsigned int bytecount; + u16 mapped_as_page; + }; + /* Rx */ + struct { + /* arrays of page information for packet split */ + struct e1000_ps_page *ps_pages; + struct page *page; + }; + }; +}; + +struct e1000_ring { + struct e1000_adapter *adapter; /* back pointer to adapter */ + void *desc; /* pointer to ring memory */ + dma_addr_t dma; /* phys address of ring */ + unsigned int size; /* length of ring in bytes */ + unsigned int count; /* number of desc. in ring */ + + u16 next_to_use; + u16 next_to_clean; + + void __iomem *head; + void __iomem *tail; + + /* array of buffer information structs */ + struct e1000_buffer *buffer_info; + + char name[IFNAMSIZ + 5]; + u32 ims_val; + u32 itr_val; + void __iomem *itr_register; + int set_itr; + + struct sk_buff *rx_skb_top; +}; + +/* PHY register snapshot values */ +struct e1000_phy_regs { + u16 bmcr; /* basic mode control register */ + u16 bmsr; /* basic mode status register */ + u16 advertise; /* auto-negotiation advertisement */ + u16 lpa; /* link partner ability register */ + u16 expansion; /* auto-negotiation expansion reg */ + u16 ctrl1000; /* 1000BASE-T control register */ + u16 stat1000; /* 1000BASE-T status register */ + u16 estatus; /* extended status register */ +}; + +/* board specific private data structure */ +struct e1000_adapter { + struct timer_list watchdog_timer; + struct timer_list phy_info_timer; + struct timer_list blink_timer; + + struct work_struct reset_task; + struct work_struct watchdog_task; + + const struct e1000_info *ei; + + unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; + u32 bd_number; + u32 rx_buffer_len; + u16 mng_vlan_id; + u16 link_speed; + u16 link_duplex; + u16 eeprom_vers; + + /* track device up/down/testing state */ + unsigned long state; + + /* Interrupt Throttle Rate */ + u32 itr; + u32 itr_setting; + u16 tx_itr; + u16 rx_itr; + + /* + * Tx + */ + struct e1000_ring *tx_ring /* One per active queue */ + ____cacheline_aligned_in_smp; + + struct napi_struct napi; + + unsigned int restart_queue; + u32 txd_cmd; + + bool detect_tx_hung; + bool tx_hang_recheck; + u8 tx_timeout_factor; + + u32 tx_int_delay; + u32 tx_abs_int_delay; + + unsigned int total_tx_bytes; + unsigned int total_tx_packets; + unsigned int total_rx_bytes; + unsigned int total_rx_packets; + + /* Tx stats */ + u64 tpt_old; + u64 colc_old; + u32 gotc; + u64 gotc_old; + u32 tx_timeout_count; + u32 tx_fifo_head; + u32 tx_head_addr; + u32 tx_fifo_size; + u32 tx_dma_failed; + + /* + * Rx + */ + bool (*clean_rx) (struct e1000_ring *ring, int *work_done, + int work_to_do) ____cacheline_aligned_in_smp; + void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count, + gfp_t gfp); + struct e1000_ring *rx_ring; + + u32 rx_int_delay; + u32 rx_abs_int_delay; + + /* Rx stats */ + u64 hw_csum_err; + u64 hw_csum_good; + u64 rx_hdr_split; + u32 gorc; + u64 gorc_old; + u32 alloc_rx_buff_failed; + u32 rx_dma_failed; + + unsigned int rx_ps_pages; + u16 rx_ps_bsize0; + u32 max_frame_size; + u32 min_frame_size; + + /* OS defined structs */ + struct net_device *netdev; + struct pci_dev *pdev; + + /* structs defined in e1000_hw.h */ + struct e1000_hw hw; + + spinlock_t stats64_lock; + struct e1000_hw_stats stats; + struct e1000_phy_info phy_info; + struct e1000_phy_stats phy_stats; + + /* Snapshot of PHY registers */ + struct e1000_phy_regs phy_regs; + + struct e1000_ring test_tx_ring; + struct e1000_ring test_rx_ring; + u32 test_icr; + + u32 msg_enable; + unsigned int num_vectors; + struct msix_entry *msix_entries; + int int_mode; + u32 eiac_mask; + + u32 eeprom_wol; + u32 wol; + u32 pba; + u32 max_hw_frame_size; + + bool fc_autoneg; + + unsigned int flags; + unsigned int flags2; + struct work_struct downshift_task; + struct work_struct update_phy_task; + struct work_struct print_hang_task; + + bool idle_check; + int phy_hang_count; + + u16 tx_ring_count; + u16 rx_ring_count; +}; + +struct e1000_info { + enum e1000_mac_type mac; + unsigned int flags; + unsigned int flags2; + u32 pba; + u32 max_hw_frame_size; + s32 (*get_variants)(struct e1000_adapter *); + const struct e1000_mac_operations *mac_ops; + const struct e1000_phy_operations *phy_ops; + const struct e1000_nvm_operations *nvm_ops; +}; + +/* hardware capability, feature, and workaround flags */ +#define FLAG_HAS_AMT (1 << 0) +#define FLAG_HAS_FLASH (1 << 1) +#define FLAG_HAS_HW_VLAN_FILTER (1 << 2) +#define FLAG_HAS_WOL (1 << 3) +/* reserved bit4 */ +#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5) +#define FLAG_HAS_SWSM_ON_LOAD (1 << 6) +#define FLAG_HAS_JUMBO_FRAMES (1 << 7) +#define FLAG_READ_ONLY_NVM (1 << 8) +#define FLAG_IS_ICH (1 << 9) +#define FLAG_HAS_MSIX (1 << 10) +#define FLAG_HAS_SMART_POWER_DOWN (1 << 11) +#define FLAG_IS_QUAD_PORT_A (1 << 12) +#define FLAG_IS_QUAD_PORT (1 << 13) +/* reserved bit14 */ +#define FLAG_APME_IN_WUC (1 << 15) +#define FLAG_APME_IN_CTRL3 (1 << 16) +#define FLAG_APME_CHECK_PORT_B (1 << 17) +#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18) +#define FLAG_NO_WAKE_UCAST (1 << 19) +#define FLAG_MNG_PT_ENABLED (1 << 20) +#define FLAG_RESET_OVERWRITES_LAA (1 << 21) +#define FLAG_TARC_SPEED_MODE_BIT (1 << 22) +#define FLAG_TARC_SET_BIT_ZERO (1 << 23) +#define FLAG_RX_NEEDS_RESTART (1 << 24) +#define FLAG_LSC_GIG_SPEED_DROP (1 << 25) +#define FLAG_SMART_POWER_DOWN (1 << 26) +#define FLAG_MSI_ENABLED (1 << 27) +/* reserved (1 << 28) */ +#define FLAG_TSO_FORCE (1 << 29) +#define FLAG_RX_RESTART_NOW (1 << 30) +#define FLAG_MSI_TEST_FAILED (1 << 31) + +#define FLAG2_CRC_STRIPPING (1 << 0) +#define FLAG2_HAS_PHY_WAKEUP (1 << 1) +#define FLAG2_IS_DISCARDING (1 << 2) +#define FLAG2_DISABLE_ASPM_L1 (1 << 3) +#define FLAG2_HAS_PHY_STATS (1 << 4) +#define FLAG2_HAS_EEE (1 << 5) +#define FLAG2_DMA_BURST (1 << 6) +#define FLAG2_DISABLE_ASPM_L0S (1 << 7) +#define FLAG2_DISABLE_AIM (1 << 8) +#define FLAG2_CHECK_PHY_HANG (1 << 9) +#define FLAG2_NO_DISABLE_RX (1 << 10) +#define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11) +#define FLAG2_DFLT_CRC_STRIPPING (1 << 12) + +#define E1000_RX_DESC_PS(R, i) \ + (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) +#define E1000_RX_DESC_EXT(R, i) \ + (&(((union e1000_rx_desc_extended *)((R).desc))[i])) +#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) +#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) +#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) + +enum e1000_state_t { + __E1000_TESTING, + __E1000_RESETTING, + __E1000_ACCESS_SHARED_RESOURCE, + __E1000_DOWN +}; + +enum latency_range { + lowest_latency = 0, + low_latency = 1, + bulk_latency = 2, + latency_invalid = 255 +}; + +extern char e1000e_driver_name[]; +extern const char e1000e_driver_version[]; + +extern void e1000e_check_options(struct e1000_adapter *adapter); +extern void e1000e_set_ethtool_ops(struct net_device *netdev); + +extern int e1000e_up(struct e1000_adapter *adapter); +extern void e1000e_down(struct e1000_adapter *adapter); +extern void e1000e_reinit_locked(struct e1000_adapter *adapter); +extern void e1000e_reset(struct e1000_adapter *adapter); +extern void e1000e_power_up_phy(struct e1000_adapter *adapter); +extern int e1000e_setup_rx_resources(struct e1000_ring *ring); +extern int e1000e_setup_tx_resources(struct e1000_ring *ring); +extern void e1000e_free_rx_resources(struct e1000_ring *ring); +extern void e1000e_free_tx_resources(struct e1000_ring *ring); +extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, + struct rtnl_link_stats64 + *stats); +extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter); +extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter); +extern void e1000e_get_hw_control(struct e1000_adapter *adapter); +extern void e1000e_release_hw_control(struct e1000_adapter *adapter); + +extern unsigned int copybreak; + +extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw); + +extern const struct e1000_info e1000_82571_info; +extern const struct e1000_info e1000_82572_info; +extern const struct e1000_info e1000_82573_info; +extern const struct e1000_info e1000_82574_info; +extern const struct e1000_info e1000_82583_info; +extern const struct e1000_info e1000_ich8_info; +extern const struct e1000_info e1000_ich9_info; +extern const struct e1000_info e1000_ich10_info; +extern const struct e1000_info e1000_pch_info; +extern const struct e1000_info e1000_pch2_info; +extern const struct e1000_info e1000_es2_info; + +extern s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size); + +extern s32 e1000e_commit_phy(struct e1000_hw *hw); + +extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw); + +extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw); +extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state); + +extern void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw); +extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state); +extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); +extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); +extern void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw); +extern void e1000_resume_workarounds_pchlan(struct e1000_hw *hw); +extern s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable); +extern s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable); +extern void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw); + +extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw); +extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw); +extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw); +extern s32 e1000e_setup_led_generic(struct e1000_hw *hw); +extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw); +extern s32 e1000e_led_on_generic(struct e1000_hw *hw); +extern s32 e1000e_led_off_generic(struct e1000_hw *hw); +extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw); +extern void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); +extern void e1000_set_lan_id_single_port(struct e1000_hw *hw); +extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex); +extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex); +extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw); +extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw); +extern s32 e1000e_id_led_init_generic(struct e1000_hw *hw); +extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw); +extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw); +extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw); +extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw); +extern s32 e1000e_setup_link_generic(struct e1000_hw *hw); +extern void e1000_clear_vfta_generic(struct e1000_hw *hw); +extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count); +extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, + u32 mc_addr_count); +extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); +extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw); +extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop); +extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw); +extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data); +extern void e1000e_config_collision_dist_generic(struct e1000_hw *hw); +extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw); +extern s32 e1000e_force_mac_fc(struct e1000_hw *hw); +extern s32 e1000e_blink_led_generic(struct e1000_hw *hw); +extern void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); +extern s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); +extern void e1000e_reset_adaptive(struct e1000_hw *hw); +extern void e1000e_update_adaptive(struct e1000_hw *hw); + +extern s32 e1000e_setup_copper_link(struct e1000_hw *hw); +extern s32 e1000e_get_phy_id(struct e1000_hw *hw); +extern void e1000e_put_hw_semaphore(struct e1000_hw *hw); +extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw); +extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw); +extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw); +extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw); +extern s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page); +extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); +extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, + u16 *data); +extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw); +extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active); +extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); +extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, + u16 data); +extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw); +extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw); +extern s32 e1000e_get_cfg_done(struct e1000_hw *hw); +extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw); +extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw); +extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); +extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); +extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw); +extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id); +extern s32 e1000e_determine_phy_address(struct e1000_hw *hw); +extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data); +extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data); +extern s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, + u16 *phy_reg); +extern s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, + u16 *phy_reg); +extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data); +extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data); +extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); +extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); +extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, + u16 data); +extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); +extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, + u16 *data); +extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success); +extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw); +extern void e1000_power_up_phy_copper(struct e1000_hw *hw); +extern void e1000_power_down_phy_copper(struct e1000_hw *hw); +extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); +extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); +extern s32 e1000e_check_downshift(struct e1000_hw *hw); +extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data); +extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, + u16 *data); +extern s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, + u16 *data); +extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data); +extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, + u16 data); +extern s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, + u16 data); +extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw); +extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); +extern s32 e1000_check_polarity_82577(struct e1000_hw *hw); +extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw); +extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); +extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw); + +extern s32 e1000_check_polarity_m88(struct e1000_hw *hw); +extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw); +extern s32 e1000_check_polarity_ife(struct e1000_hw *hw); +extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); +extern s32 e1000_check_polarity_igp(struct e1000_hw *hw); +extern bool e1000_check_phy_82574(struct e1000_hw *hw); + +static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw) +{ + return hw->phy.ops.reset(hw); +} + +static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return hw->phy.ops.read_reg(hw, offset, data); +} + +static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data) +{ + return hw->phy.ops.write_reg(hw, offset, data); +} + +static inline s32 e1000_get_cable_length(struct e1000_hw *hw) +{ + return hw->phy.ops.get_cable_length(hw); +} + +extern s32 e1000e_acquire_nvm(struct e1000_hw *hw); +extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw); +extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); +extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw); +extern void e1000e_release_nvm(struct e1000_hw *hw); +extern void e1000e_reload_nvm_generic(struct e1000_hw *hw); +extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); + +static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw) +{ + if (hw->mac.ops.read_mac_addr) + return hw->mac.ops.read_mac_addr(hw); + + return e1000_read_mac_addr_generic(hw); +} + +static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) +{ + return hw->nvm.ops.validate(hw); +} + +static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw) +{ + return hw->nvm.ops.update(hw); +} + +static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + return hw->nvm.ops.read(hw, offset, words, data); +} + +static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + return hw->nvm.ops.write(hw, offset, words, data); +} + +static inline s32 e1000_get_phy_info(struct e1000_hw *hw) +{ + return hw->phy.ops.get_info(hw); +} + +extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw); +extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw); +extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); + +static inline u32 __er32(struct e1000_hw *hw, unsigned long reg) +{ + return readl(hw->hw_addr + reg); +} + +static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) +{ + writel(val, hw->hw_addr + reg); +} + +#endif /* _E1000_H_ */ diff --git a/drivers/net/ethernet/intel/e1000e/ethtool.c b/drivers/net/ethernet/intel/e1000e/ethtool.c new file mode 100644 index 00000000..e48f2d26 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/ethtool.c @@ -0,0 +1,2060 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* ethtool support for e1000 */ + +#include <linux/netdevice.h> +#include <linux/interrupt.h> +#include <linux/ethtool.h> +#include <linux/pci.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/vmalloc.h> + +#include "e1000.h" + +enum {NETDEV_STATS, E1000_STATS}; + +struct e1000_stats { + char stat_string[ETH_GSTRING_LEN]; + int type; + int sizeof_stat; + int stat_offset; +}; + +#define E1000_STAT(str, m) { \ + .stat_string = str, \ + .type = E1000_STATS, \ + .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ + .stat_offset = offsetof(struct e1000_adapter, m) } +#define E1000_NETDEV_STAT(str, m) { \ + .stat_string = str, \ + .type = NETDEV_STATS, \ + .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ + .stat_offset = offsetof(struct rtnl_link_stats64, m) } + +static const struct e1000_stats e1000_gstrings_stats[] = { + E1000_STAT("rx_packets", stats.gprc), + E1000_STAT("tx_packets", stats.gptc), + E1000_STAT("rx_bytes", stats.gorc), + E1000_STAT("tx_bytes", stats.gotc), + E1000_STAT("rx_broadcast", stats.bprc), + E1000_STAT("tx_broadcast", stats.bptc), + E1000_STAT("rx_multicast", stats.mprc), + E1000_STAT("tx_multicast", stats.mptc), + E1000_NETDEV_STAT("rx_errors", rx_errors), + E1000_NETDEV_STAT("tx_errors", tx_errors), + E1000_NETDEV_STAT("tx_dropped", tx_dropped), + E1000_STAT("multicast", stats.mprc), + E1000_STAT("collisions", stats.colc), + E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), + E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), + E1000_STAT("rx_crc_errors", stats.crcerrs), + E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), + E1000_STAT("rx_no_buffer_count", stats.rnbc), + E1000_STAT("rx_missed_errors", stats.mpc), + E1000_STAT("tx_aborted_errors", stats.ecol), + E1000_STAT("tx_carrier_errors", stats.tncrs), + E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), + E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), + E1000_STAT("tx_window_errors", stats.latecol), + E1000_STAT("tx_abort_late_coll", stats.latecol), + E1000_STAT("tx_deferred_ok", stats.dc), + E1000_STAT("tx_single_coll_ok", stats.scc), + E1000_STAT("tx_multi_coll_ok", stats.mcc), + E1000_STAT("tx_timeout_count", tx_timeout_count), + E1000_STAT("tx_restart_queue", restart_queue), + E1000_STAT("rx_long_length_errors", stats.roc), + E1000_STAT("rx_short_length_errors", stats.ruc), + E1000_STAT("rx_align_errors", stats.algnerrc), + E1000_STAT("tx_tcp_seg_good", stats.tsctc), + E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), + E1000_STAT("rx_flow_control_xon", stats.xonrxc), + E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), + E1000_STAT("tx_flow_control_xon", stats.xontxc), + E1000_STAT("tx_flow_control_xoff", stats.xofftxc), + E1000_STAT("rx_long_byte_count", stats.gorc), + E1000_STAT("rx_csum_offload_good", hw_csum_good), + E1000_STAT("rx_csum_offload_errors", hw_csum_err), + E1000_STAT("rx_header_split", rx_hdr_split), + E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), + E1000_STAT("tx_smbus", stats.mgptc), + E1000_STAT("rx_smbus", stats.mgprc), + E1000_STAT("dropped_smbus", stats.mgpdc), + E1000_STAT("rx_dma_failed", rx_dma_failed), + E1000_STAT("tx_dma_failed", tx_dma_failed), +}; + +#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) +#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) +static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { + "Register test (offline)", "Eeprom test (offline)", + "Interrupt test (offline)", "Loopback test (offline)", + "Link test (on/offline)" +}; +#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) + +static int e1000_get_settings(struct net_device *netdev, + struct ethtool_cmd *ecmd) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 speed; + + if (hw->phy.media_type == e1000_media_type_copper) { + + ecmd->supported = (SUPPORTED_10baseT_Half | + SUPPORTED_10baseT_Full | + SUPPORTED_100baseT_Half | + SUPPORTED_100baseT_Full | + SUPPORTED_1000baseT_Full | + SUPPORTED_Autoneg | + SUPPORTED_TP); + if (hw->phy.type == e1000_phy_ife) + ecmd->supported &= ~SUPPORTED_1000baseT_Full; + ecmd->advertising = ADVERTISED_TP; + + if (hw->mac.autoneg == 1) { + ecmd->advertising |= ADVERTISED_Autoneg; + /* the e1000 autoneg seems to match ethtool nicely */ + ecmd->advertising |= hw->phy.autoneg_advertised; + } + + ecmd->port = PORT_TP; + ecmd->phy_address = hw->phy.addr; + ecmd->transceiver = XCVR_INTERNAL; + + } else { + ecmd->supported = (SUPPORTED_1000baseT_Full | + SUPPORTED_FIBRE | + SUPPORTED_Autoneg); + + ecmd->advertising = (ADVERTISED_1000baseT_Full | + ADVERTISED_FIBRE | + ADVERTISED_Autoneg); + + ecmd->port = PORT_FIBRE; + ecmd->transceiver = XCVR_EXTERNAL; + } + + speed = -1; + ecmd->duplex = -1; + + if (netif_running(netdev)) { + if (netif_carrier_ok(netdev)) { + speed = adapter->link_speed; + ecmd->duplex = adapter->link_duplex - 1; + } + } else { + u32 status = er32(STATUS); + if (status & E1000_STATUS_LU) { + if (status & E1000_STATUS_SPEED_1000) + speed = SPEED_1000; + else if (status & E1000_STATUS_SPEED_100) + speed = SPEED_100; + else + speed = SPEED_10; + + if (status & E1000_STATUS_FD) + ecmd->duplex = DUPLEX_FULL; + else + ecmd->duplex = DUPLEX_HALF; + } + } + + ethtool_cmd_speed_set(ecmd, speed); + ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || + hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; + + /* MDI-X => 2; MDI =>1; Invalid =>0 */ + if ((hw->phy.media_type == e1000_media_type_copper) && + netif_carrier_ok(netdev)) + ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : + ETH_TP_MDI; + else + ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; + + return 0; +} + +static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) +{ + struct e1000_mac_info *mac = &adapter->hw.mac; + + mac->autoneg = 0; + + /* Make sure dplx is at most 1 bit and lsb of speed is not set + * for the switch() below to work */ + if ((spd & 1) || (dplx & ~1)) + goto err_inval; + + /* Fiber NICs only allow 1000 gbps Full duplex */ + if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && + spd != SPEED_1000 && + dplx != DUPLEX_FULL) { + goto err_inval; + } + + switch (spd + dplx) { + case SPEED_10 + DUPLEX_HALF: + mac->forced_speed_duplex = ADVERTISE_10_HALF; + break; + case SPEED_10 + DUPLEX_FULL: + mac->forced_speed_duplex = ADVERTISE_10_FULL; + break; + case SPEED_100 + DUPLEX_HALF: + mac->forced_speed_duplex = ADVERTISE_100_HALF; + break; + case SPEED_100 + DUPLEX_FULL: + mac->forced_speed_duplex = ADVERTISE_100_FULL; + break; + case SPEED_1000 + DUPLEX_FULL: + mac->autoneg = 1; + adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; + break; + case SPEED_1000 + DUPLEX_HALF: /* not supported */ + default: + goto err_inval; + } + return 0; + +err_inval: + e_err("Unsupported Speed/Duplex configuration\n"); + return -EINVAL; +} + +static int e1000_set_settings(struct net_device *netdev, + struct ethtool_cmd *ecmd) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + + /* + * When SoL/IDER sessions are active, autoneg/speed/duplex + * cannot be changed + */ + if (hw->phy.ops.check_reset_block && + hw->phy.ops.check_reset_block(hw)) { + e_err("Cannot change link characteristics when SoL/IDER is " + "active.\n"); + return -EINVAL; + } + + while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) + usleep_range(1000, 2000); + + if (ecmd->autoneg == AUTONEG_ENABLE) { + hw->mac.autoneg = 1; + if (hw->phy.media_type == e1000_media_type_fiber) + hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | + ADVERTISED_FIBRE | + ADVERTISED_Autoneg; + else + hw->phy.autoneg_advertised = ecmd->advertising | + ADVERTISED_TP | + ADVERTISED_Autoneg; + ecmd->advertising = hw->phy.autoneg_advertised; + if (adapter->fc_autoneg) + hw->fc.requested_mode = e1000_fc_default; + } else { + u32 speed = ethtool_cmd_speed(ecmd); + if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { + clear_bit(__E1000_RESETTING, &adapter->state); + return -EINVAL; + } + } + + /* reset the link */ + + if (netif_running(adapter->netdev)) { + e1000e_down(adapter); + e1000e_up(adapter); + } else { + e1000e_reset(adapter); + } + + clear_bit(__E1000_RESETTING, &adapter->state); + return 0; +} + +static void e1000_get_pauseparam(struct net_device *netdev, + struct ethtool_pauseparam *pause) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + + pause->autoneg = + (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); + + if (hw->fc.current_mode == e1000_fc_rx_pause) { + pause->rx_pause = 1; + } else if (hw->fc.current_mode == e1000_fc_tx_pause) { + pause->tx_pause = 1; + } else if (hw->fc.current_mode == e1000_fc_full) { + pause->rx_pause = 1; + pause->tx_pause = 1; + } +} + +static int e1000_set_pauseparam(struct net_device *netdev, + struct ethtool_pauseparam *pause) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + int retval = 0; + + adapter->fc_autoneg = pause->autoneg; + + while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) + usleep_range(1000, 2000); + + if (adapter->fc_autoneg == AUTONEG_ENABLE) { + hw->fc.requested_mode = e1000_fc_default; + if (netif_running(adapter->netdev)) { + e1000e_down(adapter); + e1000e_up(adapter); + } else { + e1000e_reset(adapter); + } + } else { + if (pause->rx_pause && pause->tx_pause) + hw->fc.requested_mode = e1000_fc_full; + else if (pause->rx_pause && !pause->tx_pause) + hw->fc.requested_mode = e1000_fc_rx_pause; + else if (!pause->rx_pause && pause->tx_pause) + hw->fc.requested_mode = e1000_fc_tx_pause; + else if (!pause->rx_pause && !pause->tx_pause) + hw->fc.requested_mode = e1000_fc_none; + + hw->fc.current_mode = hw->fc.requested_mode; + + if (hw->phy.media_type == e1000_media_type_fiber) { + retval = hw->mac.ops.setup_link(hw); + /* implicit goto out */ + } else { + retval = e1000e_force_mac_fc(hw); + if (retval) + goto out; + e1000e_set_fc_watermarks(hw); + } + } + +out: + clear_bit(__E1000_RESETTING, &adapter->state); + return retval; +} + +static u32 e1000_get_msglevel(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + return adapter->msg_enable; +} + +static void e1000_set_msglevel(struct net_device *netdev, u32 data) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + adapter->msg_enable = data; +} + +static int e1000_get_regs_len(struct net_device *netdev) +{ +#define E1000_REGS_LEN 32 /* overestimate */ + return E1000_REGS_LEN * sizeof(u32); +} + +static void e1000_get_regs(struct net_device *netdev, + struct ethtool_regs *regs, void *p) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 *regs_buff = p; + u16 phy_data; + + memset(p, 0, E1000_REGS_LEN * sizeof(u32)); + + regs->version = (1 << 24) | (adapter->pdev->revision << 16) | + adapter->pdev->device; + + regs_buff[0] = er32(CTRL); + regs_buff[1] = er32(STATUS); + + regs_buff[2] = er32(RCTL); + regs_buff[3] = er32(RDLEN); + regs_buff[4] = er32(RDH); + regs_buff[5] = er32(RDT); + regs_buff[6] = er32(RDTR); + + regs_buff[7] = er32(TCTL); + regs_buff[8] = er32(TDLEN); + regs_buff[9] = er32(TDH); + regs_buff[10] = er32(TDT); + regs_buff[11] = er32(TIDV); + + regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ + + /* ethtool doesn't use anything past this point, so all this + * code is likely legacy junk for apps that may or may not + * exist */ + if (hw->phy.type == e1000_phy_m88) { + e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + regs_buff[13] = (u32)phy_data; /* cable length */ + regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ + regs_buff[18] = regs_buff[13]; /* cable polarity */ + regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ + regs_buff[20] = regs_buff[17]; /* polarity correction */ + /* phy receive errors */ + regs_buff[22] = adapter->phy_stats.receive_errors; + regs_buff[23] = regs_buff[13]; /* mdix mode */ + } + regs_buff[21] = 0; /* was idle_errors */ + e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); + regs_buff[24] = (u32)phy_data; /* phy local receiver status */ + regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ +} + +static int e1000_get_eeprom_len(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + return adapter->hw.nvm.word_size * 2; +} + +static int e1000_get_eeprom(struct net_device *netdev, + struct ethtool_eeprom *eeprom, u8 *bytes) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u16 *eeprom_buff; + int first_word; + int last_word; + int ret_val = 0; + u16 i; + + if (eeprom->len == 0) + return -EINVAL; + + eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); + + first_word = eeprom->offset >> 1; + last_word = (eeprom->offset + eeprom->len - 1) >> 1; + + eeprom_buff = kmalloc(sizeof(u16) * + (last_word - first_word + 1), GFP_KERNEL); + if (!eeprom_buff) + return -ENOMEM; + + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + ret_val = e1000_read_nvm(hw, first_word, + last_word - first_word + 1, + eeprom_buff); + } else { + for (i = 0; i < last_word - first_word + 1; i++) { + ret_val = e1000_read_nvm(hw, first_word + i, 1, + &eeprom_buff[i]); + if (ret_val) + break; + } + } + + if (ret_val) { + /* a read error occurred, throw away the result */ + memset(eeprom_buff, 0xff, sizeof(u16) * + (last_word - first_word + 1)); + } else { + /* Device's eeprom is always little-endian, word addressable */ + for (i = 0; i < last_word - first_word + 1; i++) + le16_to_cpus(&eeprom_buff[i]); + } + + memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); + kfree(eeprom_buff); + + return ret_val; +} + +static int e1000_set_eeprom(struct net_device *netdev, + struct ethtool_eeprom *eeprom, u8 *bytes) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u16 *eeprom_buff; + void *ptr; + int max_len; + int first_word; + int last_word; + int ret_val = 0; + u16 i; + + if (eeprom->len == 0) + return -EOPNOTSUPP; + + if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) + return -EFAULT; + + if (adapter->flags & FLAG_READ_ONLY_NVM) + return -EINVAL; + + max_len = hw->nvm.word_size * 2; + + first_word = eeprom->offset >> 1; + last_word = (eeprom->offset + eeprom->len - 1) >> 1; + eeprom_buff = kmalloc(max_len, GFP_KERNEL); + if (!eeprom_buff) + return -ENOMEM; + + ptr = (void *)eeprom_buff; + + if (eeprom->offset & 1) { + /* need read/modify/write of first changed EEPROM word */ + /* only the second byte of the word is being modified */ + ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); + ptr++; + } + if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) + /* need read/modify/write of last changed EEPROM word */ + /* only the first byte of the word is being modified */ + ret_val = e1000_read_nvm(hw, last_word, 1, + &eeprom_buff[last_word - first_word]); + + if (ret_val) + goto out; + + /* Device's eeprom is always little-endian, word addressable */ + for (i = 0; i < last_word - first_word + 1; i++) + le16_to_cpus(&eeprom_buff[i]); + + memcpy(ptr, bytes, eeprom->len); + + for (i = 0; i < last_word - first_word + 1; i++) + cpu_to_le16s(&eeprom_buff[i]); + + ret_val = e1000_write_nvm(hw, first_word, + last_word - first_word + 1, eeprom_buff); + + if (ret_val) + goto out; + + /* + * Update the checksum over the first part of the EEPROM if needed + * and flush shadow RAM for applicable controllers + */ + if ((first_word <= NVM_CHECKSUM_REG) || + (hw->mac.type == e1000_82583) || + (hw->mac.type == e1000_82574) || + (hw->mac.type == e1000_82573)) + ret_val = e1000e_update_nvm_checksum(hw); + +out: + kfree(eeprom_buff); + return ret_val; +} + +static void e1000_get_drvinfo(struct net_device *netdev, + struct ethtool_drvinfo *drvinfo) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + strlcpy(drvinfo->driver, e1000e_driver_name, + sizeof(drvinfo->driver)); + strlcpy(drvinfo->version, e1000e_driver_version, + sizeof(drvinfo->version)); + + /* + * EEPROM image version # is reported as firmware version # for + * PCI-E controllers + */ + snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), + "%d.%d-%d", + (adapter->eeprom_vers & 0xF000) >> 12, + (adapter->eeprom_vers & 0x0FF0) >> 4, + (adapter->eeprom_vers & 0x000F)); + + strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), + sizeof(drvinfo->bus_info)); + drvinfo->regdump_len = e1000_get_regs_len(netdev); + drvinfo->eedump_len = e1000_get_eeprom_len(netdev); +} + +static void e1000_get_ringparam(struct net_device *netdev, + struct ethtool_ringparam *ring) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + ring->rx_max_pending = E1000_MAX_RXD; + ring->tx_max_pending = E1000_MAX_TXD; + ring->rx_pending = adapter->rx_ring_count; + ring->tx_pending = adapter->tx_ring_count; +} + +static int e1000_set_ringparam(struct net_device *netdev, + struct ethtool_ringparam *ring) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; + int err = 0, size = sizeof(struct e1000_ring); + bool set_tx = false, set_rx = false; + u16 new_rx_count, new_tx_count; + + if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) + return -EINVAL; + + new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, + E1000_MAX_RXD); + new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); + + new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, + E1000_MAX_TXD); + new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); + + if ((new_tx_count == adapter->tx_ring_count) && + (new_rx_count == adapter->rx_ring_count)) + /* nothing to do */ + return 0; + + while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) + usleep_range(1000, 2000); + + if (!netif_running(adapter->netdev)) { + /* Set counts now and allocate resources during open() */ + adapter->tx_ring->count = new_tx_count; + adapter->rx_ring->count = new_rx_count; + adapter->tx_ring_count = new_tx_count; + adapter->rx_ring_count = new_rx_count; + goto clear_reset; + } + + set_tx = (new_tx_count != adapter->tx_ring_count); + set_rx = (new_rx_count != adapter->rx_ring_count); + + /* Allocate temporary storage for ring updates */ + if (set_tx) { + temp_tx = vmalloc(size); + if (!temp_tx) { + err = -ENOMEM; + goto free_temp; + } + } + if (set_rx) { + temp_rx = vmalloc(size); + if (!temp_rx) { + err = -ENOMEM; + goto free_temp; + } + } + + e1000e_down(adapter); + + /* + * We can't just free everything and then setup again, because the + * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring + * structs. First, attempt to allocate new resources... + */ + if (set_tx) { + memcpy(temp_tx, adapter->tx_ring, size); + temp_tx->count = new_tx_count; + err = e1000e_setup_tx_resources(temp_tx); + if (err) + goto err_setup; + } + if (set_rx) { + memcpy(temp_rx, adapter->rx_ring, size); + temp_rx->count = new_rx_count; + err = e1000e_setup_rx_resources(temp_rx); + if (err) + goto err_setup_rx; + } + + /* ...then free the old resources and copy back any new ring data */ + if (set_tx) { + e1000e_free_tx_resources(adapter->tx_ring); + memcpy(adapter->tx_ring, temp_tx, size); + adapter->tx_ring_count = new_tx_count; + } + if (set_rx) { + e1000e_free_rx_resources(adapter->rx_ring); + memcpy(adapter->rx_ring, temp_rx, size); + adapter->rx_ring_count = new_rx_count; + } + +err_setup_rx: + if (err && set_tx) + e1000e_free_tx_resources(temp_tx); +err_setup: + e1000e_up(adapter); +free_temp: + vfree(temp_tx); + vfree(temp_rx); +clear_reset: + clear_bit(__E1000_RESETTING, &adapter->state); + return err; +} + +static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, + int reg, int offset, u32 mask, u32 write) +{ + u32 pat, val; + static const u32 test[] = { + 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; + for (pat = 0; pat < ARRAY_SIZE(test); pat++) { + E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, + (test[pat] & write)); + val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); + if (val != (test[pat] & write & mask)) { + e_err("pattern test reg %04X failed: got 0x%08X " + "expected 0x%08X\n", reg + offset, val, + (test[pat] & write & mask)); + *data = reg; + return 1; + } + } + return 0; +} + +static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, + int reg, u32 mask, u32 write) +{ + u32 val; + __ew32(&adapter->hw, reg, write & mask); + val = __er32(&adapter->hw, reg); + if ((write & mask) != (val & mask)) { + e_err("set/check reg %04X test failed: got 0x%08X " + "expected 0x%08X\n", reg, (val & mask), (write & mask)); + *data = reg; + return 1; + } + return 0; +} +#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ + do { \ + if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ + return 1; \ + } while (0) +#define REG_PATTERN_TEST(reg, mask, write) \ + REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) + +#define REG_SET_AND_CHECK(reg, mask, write) \ + do { \ + if (reg_set_and_check(adapter, data, reg, mask, write)) \ + return 1; \ + } while (0) + +static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_mac_info *mac = &adapter->hw.mac; + u32 value; + u32 before; + u32 after; + u32 i; + u32 toggle; + u32 mask; + + /* + * The status register is Read Only, so a write should fail. + * Some bits that get toggled are ignored. + */ + switch (mac->type) { + /* there are several bits on newer hardware that are r/w */ + case e1000_82571: + case e1000_82572: + case e1000_80003es2lan: + toggle = 0x7FFFF3FF; + break; + default: + toggle = 0x7FFFF033; + break; + } + + before = er32(STATUS); + value = (er32(STATUS) & toggle); + ew32(STATUS, toggle); + after = er32(STATUS) & toggle; + if (value != after) { + e_err("failed STATUS register test got: 0x%08X expected: " + "0x%08X\n", after, value); + *data = 1; + return 1; + } + /* restore previous status */ + ew32(STATUS, before); + + if (!(adapter->flags & FLAG_IS_ICH)) { + REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); + } + + REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF); + REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); + REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); + REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF); + + REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); + + before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); + REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); + REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); + + REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); + if (!(adapter->flags & FLAG_IS_ICH)) + REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); + REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); + REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); + mask = 0x8003FFFF; + switch (mac->type) { + case e1000_ich10lan: + case e1000_pchlan: + case e1000_pch2lan: + mask |= (1 << 18); + break; + default: + break; + } + for (i = 0; i < mac->rar_entry_count; i++) + REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), + mask, 0xFFFFFFFF); + + for (i = 0; i < mac->mta_reg_count; i++) + REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); + + *data = 0; + return 0; +} + +static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) +{ + u16 temp; + u16 checksum = 0; + u16 i; + + *data = 0; + /* Read and add up the contents of the EEPROM */ + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { + *data = 1; + return *data; + } + checksum += temp; + } + + /* If Checksum is not Correct return error else test passed */ + if ((checksum != (u16) NVM_SUM) && !(*data)) + *data = 2; + + return *data; +} + +static irqreturn_t e1000_test_intr(int irq, void *data) +{ + struct net_device *netdev = (struct net_device *) data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + + adapter->test_icr |= er32(ICR); + + return IRQ_HANDLED; +} + +static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + u32 mask; + u32 shared_int = 1; + u32 irq = adapter->pdev->irq; + int i; + int ret_val = 0; + int int_mode = E1000E_INT_MODE_LEGACY; + + *data = 0; + + /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ + if (adapter->int_mode == E1000E_INT_MODE_MSIX) { + int_mode = adapter->int_mode; + e1000e_reset_interrupt_capability(adapter); + adapter->int_mode = E1000E_INT_MODE_LEGACY; + e1000e_set_interrupt_capability(adapter); + } + /* Hook up test interrupt handler just for this test */ + if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, + netdev)) { + shared_int = 0; + } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, + netdev->name, netdev)) { + *data = 1; + ret_val = -1; + goto out; + } + e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); + + /* Disable all the interrupts */ + ew32(IMC, 0xFFFFFFFF); + e1e_flush(); + usleep_range(10000, 20000); + + /* Test each interrupt */ + for (i = 0; i < 10; i++) { + /* Interrupt to test */ + mask = 1 << i; + + if (adapter->flags & FLAG_IS_ICH) { + switch (mask) { + case E1000_ICR_RXSEQ: + continue; + case 0x00000100: + if (adapter->hw.mac.type == e1000_ich8lan || + adapter->hw.mac.type == e1000_ich9lan) + continue; + break; + default: + break; + } + } + + if (!shared_int) { + /* + * Disable the interrupt to be reported in + * the cause register and then force the same + * interrupt and see if one gets posted. If + * an interrupt was posted to the bus, the + * test failed. + */ + adapter->test_icr = 0; + ew32(IMC, mask); + ew32(ICS, mask); + e1e_flush(); + usleep_range(10000, 20000); + + if (adapter->test_icr & mask) { + *data = 3; + break; + } + } + + /* + * Enable the interrupt to be reported in + * the cause register and then force the same + * interrupt and see if one gets posted. If + * an interrupt was not posted to the bus, the + * test failed. + */ + adapter->test_icr = 0; + ew32(IMS, mask); + ew32(ICS, mask); + e1e_flush(); + usleep_range(10000, 20000); + + if (!(adapter->test_icr & mask)) { + *data = 4; + break; + } + + if (!shared_int) { + /* + * Disable the other interrupts to be reported in + * the cause register and then force the other + * interrupts and see if any get posted. If + * an interrupt was posted to the bus, the + * test failed. + */ + adapter->test_icr = 0; + ew32(IMC, ~mask & 0x00007FFF); + ew32(ICS, ~mask & 0x00007FFF); + e1e_flush(); + usleep_range(10000, 20000); + + if (adapter->test_icr) { + *data = 5; + break; + } + } + } + + /* Disable all the interrupts */ + ew32(IMC, 0xFFFFFFFF); + e1e_flush(); + usleep_range(10000, 20000); + + /* Unhook test interrupt handler */ + free_irq(irq, netdev); + +out: + if (int_mode == E1000E_INT_MODE_MSIX) { + e1000e_reset_interrupt_capability(adapter); + adapter->int_mode = int_mode; + e1000e_set_interrupt_capability(adapter); + } + + return ret_val; +} + +static void e1000_free_desc_rings(struct e1000_adapter *adapter) +{ + struct e1000_ring *tx_ring = &adapter->test_tx_ring; + struct e1000_ring *rx_ring = &adapter->test_rx_ring; + struct pci_dev *pdev = adapter->pdev; + int i; + + if (tx_ring->desc && tx_ring->buffer_info) { + for (i = 0; i < tx_ring->count; i++) { + if (tx_ring->buffer_info[i].dma) + dma_unmap_single(&pdev->dev, + tx_ring->buffer_info[i].dma, + tx_ring->buffer_info[i].length, + DMA_TO_DEVICE); + if (tx_ring->buffer_info[i].skb) + dev_kfree_skb(tx_ring->buffer_info[i].skb); + } + } + + if (rx_ring->desc && rx_ring->buffer_info) { + for (i = 0; i < rx_ring->count; i++) { + if (rx_ring->buffer_info[i].dma) + dma_unmap_single(&pdev->dev, + rx_ring->buffer_info[i].dma, + 2048, DMA_FROM_DEVICE); + if (rx_ring->buffer_info[i].skb) + dev_kfree_skb(rx_ring->buffer_info[i].skb); + } + } + + if (tx_ring->desc) { + dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, + tx_ring->dma); + tx_ring->desc = NULL; + } + if (rx_ring->desc) { + dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, + rx_ring->dma); + rx_ring->desc = NULL; + } + + kfree(tx_ring->buffer_info); + tx_ring->buffer_info = NULL; + kfree(rx_ring->buffer_info); + rx_ring->buffer_info = NULL; +} + +static int e1000_setup_desc_rings(struct e1000_adapter *adapter) +{ + struct e1000_ring *tx_ring = &adapter->test_tx_ring; + struct e1000_ring *rx_ring = &adapter->test_rx_ring; + struct pci_dev *pdev = adapter->pdev; + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + int i; + int ret_val; + + /* Setup Tx descriptor ring and Tx buffers */ + + if (!tx_ring->count) + tx_ring->count = E1000_DEFAULT_TXD; + + tx_ring->buffer_info = kcalloc(tx_ring->count, + sizeof(struct e1000_buffer), + GFP_KERNEL); + if (!tx_ring->buffer_info) { + ret_val = 1; + goto err_nomem; + } + + tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); + tx_ring->size = ALIGN(tx_ring->size, 4096); + tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, + &tx_ring->dma, GFP_KERNEL); + if (!tx_ring->desc) { + ret_val = 2; + goto err_nomem; + } + tx_ring->next_to_use = 0; + tx_ring->next_to_clean = 0; + + ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); + ew32(TDBAH, ((u64) tx_ring->dma >> 32)); + ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc)); + ew32(TDH, 0); + ew32(TDT, 0); + ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | + E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | + E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); + + for (i = 0; i < tx_ring->count; i++) { + struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); + struct sk_buff *skb; + unsigned int skb_size = 1024; + + skb = alloc_skb(skb_size, GFP_KERNEL); + if (!skb) { + ret_val = 3; + goto err_nomem; + } + skb_put(skb, skb_size); + tx_ring->buffer_info[i].skb = skb; + tx_ring->buffer_info[i].length = skb->len; + tx_ring->buffer_info[i].dma = + dma_map_single(&pdev->dev, skb->data, skb->len, + DMA_TO_DEVICE); + if (dma_mapping_error(&pdev->dev, + tx_ring->buffer_info[i].dma)) { + ret_val = 4; + goto err_nomem; + } + tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); + tx_desc->lower.data = cpu_to_le32(skb->len); + tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | + E1000_TXD_CMD_IFCS | + E1000_TXD_CMD_RS); + tx_desc->upper.data = 0; + } + + /* Setup Rx descriptor ring and Rx buffers */ + + if (!rx_ring->count) + rx_ring->count = E1000_DEFAULT_RXD; + + rx_ring->buffer_info = kcalloc(rx_ring->count, + sizeof(struct e1000_buffer), + GFP_KERNEL); + if (!rx_ring->buffer_info) { + ret_val = 5; + goto err_nomem; + } + + rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); + rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, + &rx_ring->dma, GFP_KERNEL); + if (!rx_ring->desc) { + ret_val = 6; + goto err_nomem; + } + rx_ring->next_to_use = 0; + rx_ring->next_to_clean = 0; + + rctl = er32(RCTL); + if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) + ew32(RCTL, rctl & ~E1000_RCTL_EN); + ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF)); + ew32(RDBAH, ((u64) rx_ring->dma >> 32)); + ew32(RDLEN, rx_ring->size); + ew32(RDH, 0); + ew32(RDT, 0); + rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | + E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | + E1000_RCTL_SBP | E1000_RCTL_SECRC | + E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | + (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + ew32(RCTL, rctl); + + for (i = 0; i < rx_ring->count; i++) { + union e1000_rx_desc_extended *rx_desc; + struct sk_buff *skb; + + skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); + if (!skb) { + ret_val = 7; + goto err_nomem; + } + skb_reserve(skb, NET_IP_ALIGN); + rx_ring->buffer_info[i].skb = skb; + rx_ring->buffer_info[i].dma = + dma_map_single(&pdev->dev, skb->data, 2048, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, + rx_ring->buffer_info[i].dma)) { + ret_val = 8; + goto err_nomem; + } + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + rx_desc->read.buffer_addr = + cpu_to_le64(rx_ring->buffer_info[i].dma); + memset(skb->data, 0x00, skb->len); + } + + return 0; + +err_nomem: + e1000_free_desc_rings(adapter); + return ret_val; +} + +static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) +{ + /* Write out to PHY registers 29 and 30 to disable the Receiver. */ + e1e_wphy(&adapter->hw, 29, 0x001F); + e1e_wphy(&adapter->hw, 30, 0x8FFC); + e1e_wphy(&adapter->hw, 29, 0x001A); + e1e_wphy(&adapter->hw, 30, 0x8FF0); +} + +static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl_reg = 0; + u16 phy_reg = 0; + s32 ret_val = 0; + + hw->mac.autoneg = 0; + + if (hw->phy.type == e1000_phy_ife) { + /* force 100, set loopback */ + e1e_wphy(hw, PHY_CONTROL, 0x6100); + + /* Now set up the MAC to the same speed/duplex as the PHY. */ + ctrl_reg = er32(CTRL); + ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ + ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ + E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ + E1000_CTRL_SPD_100 |/* Force Speed to 100 */ + E1000_CTRL_FD); /* Force Duplex to FULL */ + + ew32(CTRL, ctrl_reg); + e1e_flush(); + udelay(500); + + return 0; + } + + /* Specific PHY configuration for loopback */ + switch (hw->phy.type) { + case e1000_phy_m88: + /* Auto-MDI/MDIX Off */ + e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); + /* reset to update Auto-MDI/MDIX */ + e1e_wphy(hw, PHY_CONTROL, 0x9140); + /* autoneg off */ + e1e_wphy(hw, PHY_CONTROL, 0x8140); + break; + case e1000_phy_gg82563: + e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); + break; + case e1000_phy_bm: + /* Set Default MAC Interface speed to 1GB */ + e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); + phy_reg &= ~0x0007; + phy_reg |= 0x006; + e1e_wphy(hw, PHY_REG(2, 21), phy_reg); + /* Assert SW reset for above settings to take effect */ + e1000e_commit_phy(hw); + mdelay(1); + /* Force Full Duplex */ + e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); + e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); + /* Set Link Up (in force link) */ + e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); + e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); + /* Force Link */ + e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); + e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); + /* Set Early Link Enable */ + e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); + e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); + break; + case e1000_phy_82577: + case e1000_phy_82578: + /* Workaround: K1 must be disabled for stable 1Gbps operation */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + e_err("Cannot setup 1Gbps loopback.\n"); + return ret_val; + } + e1000_configure_k1_ich8lan(hw, false); + hw->phy.ops.release(hw); + break; + case e1000_phy_82579: + /* Disable PHY energy detect power down */ + e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); + e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); + /* Disable full chip energy detect */ + e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); + e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); + /* Enable loopback on the PHY */ +#define I82577_PHY_LBK_CTRL 19 + e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); + break; + default: + break; + } + + /* force 1000, set loopback */ + e1e_wphy(hw, PHY_CONTROL, 0x4140); + mdelay(250); + + /* Now set up the MAC to the same speed/duplex as the PHY. */ + ctrl_reg = er32(CTRL); + ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ + ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ + E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ + E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ + E1000_CTRL_FD); /* Force Duplex to FULL */ + + if (adapter->flags & FLAG_IS_ICH) + ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ + + if (hw->phy.media_type == e1000_media_type_copper && + hw->phy.type == e1000_phy_m88) { + ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ + } else { + /* + * Set the ILOS bit on the fiber Nic if half duplex link is + * detected. + */ + if ((er32(STATUS) & E1000_STATUS_FD) == 0) + ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); + } + + ew32(CTRL, ctrl_reg); + + /* + * Disable the receiver on the PHY so when a cable is plugged in, the + * PHY does not begin to autoneg when a cable is reconnected to the NIC. + */ + if (hw->phy.type == e1000_phy_m88) + e1000_phy_disable_receiver(adapter); + + udelay(500); + + return 0; +} + +static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl = er32(CTRL); + int link = 0; + + /* special requirements for 82571/82572 fiber adapters */ + + /* + * jump through hoops to make sure link is up because serdes + * link is hardwired up + */ + ctrl |= E1000_CTRL_SLU; + ew32(CTRL, ctrl); + + /* disable autoneg */ + ctrl = er32(TXCW); + ctrl &= ~(1 << 31); + ew32(TXCW, ctrl); + + link = (er32(STATUS) & E1000_STATUS_LU); + + if (!link) { + /* set invert loss of signal */ + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_ILOS; + ew32(CTRL, ctrl); + } + + /* + * special write to serdes control register to enable SerDes analog + * loopback + */ +#define E1000_SERDES_LB_ON 0x410 + ew32(SCTL, E1000_SERDES_LB_ON); + e1e_flush(); + usleep_range(10000, 20000); + + return 0; +} + +/* only call this for fiber/serdes connections to es2lan */ +static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrlext = er32(CTRL_EXT); + u32 ctrl = er32(CTRL); + + /* + * save CTRL_EXT to restore later, reuse an empty variable (unused + * on mac_type 80003es2lan) + */ + adapter->tx_fifo_head = ctrlext; + + /* clear the serdes mode bits, putting the device into mac loopback */ + ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; + ew32(CTRL_EXT, ctrlext); + + /* force speed to 1000/FD, link up */ + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | + E1000_CTRL_SPD_1000 | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* set mac loopback */ + ctrl = er32(RCTL); + ctrl |= E1000_RCTL_LBM_MAC; + ew32(RCTL, ctrl); + + /* set testing mode parameters (no need to reset later) */ +#define KMRNCTRLSTA_OPMODE (0x1F << 16) +#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 + ew32(KMRNCTRLSTA, + (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); + + return 0; +} + +static int e1000_setup_loopback_test(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) { + switch (hw->mac.type) { + case e1000_80003es2lan: + return e1000_set_es2lan_mac_loopback(adapter); + break; + case e1000_82571: + case e1000_82572: + return e1000_set_82571_fiber_loopback(adapter); + break; + default: + rctl = er32(RCTL); + rctl |= E1000_RCTL_LBM_TCVR; + ew32(RCTL, rctl); + return 0; + } + } else if (hw->phy.media_type == e1000_media_type_copper) { + return e1000_integrated_phy_loopback(adapter); + } + + return 7; +} + +static void e1000_loopback_cleanup(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + u16 phy_reg; + + rctl = er32(RCTL); + rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); + ew32(RCTL, rctl); + + switch (hw->mac.type) { + case e1000_80003es2lan: + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) { + /* restore CTRL_EXT, stealing space from tx_fifo_head */ + ew32(CTRL_EXT, adapter->tx_fifo_head); + adapter->tx_fifo_head = 0; + } + /* fall through */ + case e1000_82571: + case e1000_82572: + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) { +#define E1000_SERDES_LB_OFF 0x400 + ew32(SCTL, E1000_SERDES_LB_OFF); + e1e_flush(); + usleep_range(10000, 20000); + break; + } + /* Fall Through */ + default: + hw->mac.autoneg = 1; + if (hw->phy.type == e1000_phy_gg82563) + e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); + e1e_rphy(hw, PHY_CONTROL, &phy_reg); + if (phy_reg & MII_CR_LOOPBACK) { + phy_reg &= ~MII_CR_LOOPBACK; + e1e_wphy(hw, PHY_CONTROL, phy_reg); + e1000e_commit_phy(hw); + } + break; + } +} + +static void e1000_create_lbtest_frame(struct sk_buff *skb, + unsigned int frame_size) +{ + memset(skb->data, 0xFF, frame_size); + frame_size &= ~1; + memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); + memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); + memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); +} + +static int e1000_check_lbtest_frame(struct sk_buff *skb, + unsigned int frame_size) +{ + frame_size &= ~1; + if (*(skb->data + 3) == 0xFF) + if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && + (*(skb->data + frame_size / 2 + 12) == 0xAF)) + return 0; + return 13; +} + +static int e1000_run_loopback_test(struct e1000_adapter *adapter) +{ + struct e1000_ring *tx_ring = &adapter->test_tx_ring; + struct e1000_ring *rx_ring = &adapter->test_rx_ring; + struct pci_dev *pdev = adapter->pdev; + struct e1000_hw *hw = &adapter->hw; + int i, j, k, l; + int lc; + int good_cnt; + int ret_val = 0; + unsigned long time; + + ew32(RDT, rx_ring->count - 1); + + /* + * Calculate the loop count based on the largest descriptor ring + * The idea is to wrap the largest ring a number of times using 64 + * send/receive pairs during each loop + */ + + if (rx_ring->count <= tx_ring->count) + lc = ((tx_ring->count / 64) * 2) + 1; + else + lc = ((rx_ring->count / 64) * 2) + 1; + + k = 0; + l = 0; + for (j = 0; j <= lc; j++) { /* loop count loop */ + for (i = 0; i < 64; i++) { /* send the packets */ + e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb, + 1024); + dma_sync_single_for_device(&pdev->dev, + tx_ring->buffer_info[k].dma, + tx_ring->buffer_info[k].length, + DMA_TO_DEVICE); + k++; + if (k == tx_ring->count) + k = 0; + } + ew32(TDT, k); + e1e_flush(); + msleep(200); + time = jiffies; /* set the start time for the receive */ + good_cnt = 0; + do { /* receive the sent packets */ + dma_sync_single_for_cpu(&pdev->dev, + rx_ring->buffer_info[l].dma, 2048, + DMA_FROM_DEVICE); + + ret_val = e1000_check_lbtest_frame( + rx_ring->buffer_info[l].skb, 1024); + if (!ret_val) + good_cnt++; + l++; + if (l == rx_ring->count) + l = 0; + /* + * time + 20 msecs (200 msecs on 2.4) is more than + * enough time to complete the receives, if it's + * exceeded, break and error off + */ + } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); + if (good_cnt != 64) { + ret_val = 13; /* ret_val is the same as mis-compare */ + break; + } + if (jiffies >= (time + 20)) { + ret_val = 14; /* error code for time out error */ + break; + } + } /* end loop count loop */ + return ret_val; +} + +static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) +{ + struct e1000_hw *hw = &adapter->hw; + + /* + * PHY loopback cannot be performed if SoL/IDER + * sessions are active + */ + if (hw->phy.ops.check_reset_block && + hw->phy.ops.check_reset_block(hw)) { + e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); + *data = 0; + goto out; + } + + *data = e1000_setup_desc_rings(adapter); + if (*data) + goto out; + + *data = e1000_setup_loopback_test(adapter); + if (*data) + goto err_loopback; + + *data = e1000_run_loopback_test(adapter); + e1000_loopback_cleanup(adapter); + +err_loopback: + e1000_free_desc_rings(adapter); +out: + return *data; +} + +static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) +{ + struct e1000_hw *hw = &adapter->hw; + + *data = 0; + if (hw->phy.media_type == e1000_media_type_internal_serdes) { + int i = 0; + hw->mac.serdes_has_link = false; + + /* + * On some blade server designs, link establishment + * could take as long as 2-3 minutes + */ + do { + hw->mac.ops.check_for_link(hw); + if (hw->mac.serdes_has_link) + return *data; + msleep(20); + } while (i++ < 3750); + + *data = 1; + } else { + hw->mac.ops.check_for_link(hw); + if (hw->mac.autoneg) + /* + * On some Phy/switch combinations, link establishment + * can take a few seconds more than expected. + */ + msleep(5000); + + if (!(er32(STATUS) & E1000_STATUS_LU)) + *data = 1; + } + return *data; +} + +static int e1000e_get_sset_count(struct net_device *netdev, int sset) +{ + switch (sset) { + case ETH_SS_TEST: + return E1000_TEST_LEN; + case ETH_SS_STATS: + return E1000_STATS_LEN; + default: + return -EOPNOTSUPP; + } +} + +static void e1000_diag_test(struct net_device *netdev, + struct ethtool_test *eth_test, u64 *data) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + u16 autoneg_advertised; + u8 forced_speed_duplex; + u8 autoneg; + bool if_running = netif_running(netdev); + + set_bit(__E1000_TESTING, &adapter->state); + + if (!if_running) { + /* Get control of and reset hardware */ + if (adapter->flags & FLAG_HAS_AMT) + e1000e_get_hw_control(adapter); + + e1000e_power_up_phy(adapter); + + adapter->hw.phy.autoneg_wait_to_complete = 1; + e1000e_reset(adapter); + adapter->hw.phy.autoneg_wait_to_complete = 0; + } + + if (eth_test->flags == ETH_TEST_FL_OFFLINE) { + /* Offline tests */ + + /* save speed, duplex, autoneg settings */ + autoneg_advertised = adapter->hw.phy.autoneg_advertised; + forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; + autoneg = adapter->hw.mac.autoneg; + + e_info("offline testing starting\n"); + + if (if_running) + /* indicate we're in test mode */ + dev_close(netdev); + + if (e1000_reg_test(adapter, &data[0])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + e1000e_reset(adapter); + if (e1000_eeprom_test(adapter, &data[1])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + e1000e_reset(adapter); + if (e1000_intr_test(adapter, &data[2])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + e1000e_reset(adapter); + if (e1000_loopback_test(adapter, &data[3])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + /* force this routine to wait until autoneg complete/timeout */ + adapter->hw.phy.autoneg_wait_to_complete = 1; + e1000e_reset(adapter); + adapter->hw.phy.autoneg_wait_to_complete = 0; + + if (e1000_link_test(adapter, &data[4])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + /* restore speed, duplex, autoneg settings */ + adapter->hw.phy.autoneg_advertised = autoneg_advertised; + adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; + adapter->hw.mac.autoneg = autoneg; + e1000e_reset(adapter); + + clear_bit(__E1000_TESTING, &adapter->state); + if (if_running) + dev_open(netdev); + } else { + /* Online tests */ + + e_info("online testing starting\n"); + + /* register, eeprom, intr and loopback tests not run online */ + data[0] = 0; + data[1] = 0; + data[2] = 0; + data[3] = 0; + + if (e1000_link_test(adapter, &data[4])) + eth_test->flags |= ETH_TEST_FL_FAILED; + + clear_bit(__E1000_TESTING, &adapter->state); + } + + if (!if_running) { + e1000e_reset(adapter); + + if (adapter->flags & FLAG_HAS_AMT) + e1000e_release_hw_control(adapter); + } + + msleep_interruptible(4 * 1000); +} + +static void e1000_get_wol(struct net_device *netdev, + struct ethtool_wolinfo *wol) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + wol->supported = 0; + wol->wolopts = 0; + + if (!(adapter->flags & FLAG_HAS_WOL) || + !device_can_wakeup(&adapter->pdev->dev)) + return; + + wol->supported = WAKE_UCAST | WAKE_MCAST | + WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; + + /* apply any specific unsupported masks here */ + if (adapter->flags & FLAG_NO_WAKE_UCAST) { + wol->supported &= ~WAKE_UCAST; + + if (adapter->wol & E1000_WUFC_EX) + e_err("Interface does not support directed (unicast) " + "frame wake-up packets\n"); + } + + if (adapter->wol & E1000_WUFC_EX) + wol->wolopts |= WAKE_UCAST; + if (adapter->wol & E1000_WUFC_MC) + wol->wolopts |= WAKE_MCAST; + if (adapter->wol & E1000_WUFC_BC) + wol->wolopts |= WAKE_BCAST; + if (adapter->wol & E1000_WUFC_MAG) + wol->wolopts |= WAKE_MAGIC; + if (adapter->wol & E1000_WUFC_LNKC) + wol->wolopts |= WAKE_PHY; +} + +static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (!(adapter->flags & FLAG_HAS_WOL) || + !device_can_wakeup(&adapter->pdev->dev) || + (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | + WAKE_MAGIC | WAKE_PHY))) + return -EOPNOTSUPP; + + /* these settings will always override what we currently have */ + adapter->wol = 0; + + if (wol->wolopts & WAKE_UCAST) + adapter->wol |= E1000_WUFC_EX; + if (wol->wolopts & WAKE_MCAST) + adapter->wol |= E1000_WUFC_MC; + if (wol->wolopts & WAKE_BCAST) + adapter->wol |= E1000_WUFC_BC; + if (wol->wolopts & WAKE_MAGIC) + adapter->wol |= E1000_WUFC_MAG; + if (wol->wolopts & WAKE_PHY) + adapter->wol |= E1000_WUFC_LNKC; + + device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); + + return 0; +} + +static int e1000_set_phys_id(struct net_device *netdev, + enum ethtool_phys_id_state state) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + + switch (state) { + case ETHTOOL_ID_ACTIVE: + if (!hw->mac.ops.blink_led) + return 2; /* cycle on/off twice per second */ + + hw->mac.ops.blink_led(hw); + break; + + case ETHTOOL_ID_INACTIVE: + if (hw->phy.type == e1000_phy_ife) + e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); + hw->mac.ops.led_off(hw); + hw->mac.ops.cleanup_led(hw); + break; + + case ETHTOOL_ID_ON: + hw->mac.ops.led_on(hw); + break; + + case ETHTOOL_ID_OFF: + hw->mac.ops.led_off(hw); + break; + } + return 0; +} + +static int e1000_get_coalesce(struct net_device *netdev, + struct ethtool_coalesce *ec) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (adapter->itr_setting <= 4) + ec->rx_coalesce_usecs = adapter->itr_setting; + else + ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; + + return 0; +} + +static int e1000_set_coalesce(struct net_device *netdev, + struct ethtool_coalesce *ec) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + + if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || + ((ec->rx_coalesce_usecs > 4) && + (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || + (ec->rx_coalesce_usecs == 2)) + return -EINVAL; + + if (ec->rx_coalesce_usecs == 4) { + adapter->itr = adapter->itr_setting = 4; + } else if (ec->rx_coalesce_usecs <= 3) { + adapter->itr = 20000; + adapter->itr_setting = ec->rx_coalesce_usecs; + } else { + adapter->itr = (1000000 / ec->rx_coalesce_usecs); + adapter->itr_setting = adapter->itr & ~3; + } + + if (adapter->itr_setting != 0) + ew32(ITR, 1000000000 / (adapter->itr * 256)); + else + ew32(ITR, 0); + + return 0; +} + +static int e1000_nway_reset(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (!netif_running(netdev)) + return -EAGAIN; + + if (!adapter->hw.mac.autoneg) + return -EINVAL; + + e1000e_reinit_locked(adapter); + + return 0; +} + +static void e1000_get_ethtool_stats(struct net_device *netdev, + struct ethtool_stats *stats, + u64 *data) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct rtnl_link_stats64 net_stats; + int i; + char *p = NULL; + + e1000e_get_stats64(netdev, &net_stats); + for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { + switch (e1000_gstrings_stats[i].type) { + case NETDEV_STATS: + p = (char *) &net_stats + + e1000_gstrings_stats[i].stat_offset; + break; + case E1000_STATS: + p = (char *) adapter + + e1000_gstrings_stats[i].stat_offset; + break; + default: + data[i] = 0; + continue; + } + + data[i] = (e1000_gstrings_stats[i].sizeof_stat == + sizeof(u64)) ? *(u64 *)p : *(u32 *)p; + } +} + +static void e1000_get_strings(struct net_device *netdev, u32 stringset, + u8 *data) +{ + u8 *p = data; + int i; + + switch (stringset) { + case ETH_SS_TEST: + memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); + break; + case ETH_SS_STATS: + for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { + memcpy(p, e1000_gstrings_stats[i].stat_string, + ETH_GSTRING_LEN); + p += ETH_GSTRING_LEN; + } + break; + } +} + +static int e1000_get_rxnfc(struct net_device *netdev, + struct ethtool_rxnfc *info, u32 *rule_locs) +{ + info->data = 0; + + switch (info->cmd) { + case ETHTOOL_GRXFH: { + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 mrqc = er32(MRQC); + + if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) + return 0; + + switch (info->flow_type) { + case TCP_V4_FLOW: + if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) + info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; + /* fall through */ + case UDP_V4_FLOW: + case SCTP_V4_FLOW: + case AH_ESP_V4_FLOW: + case IPV4_FLOW: + if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) + info->data |= RXH_IP_SRC | RXH_IP_DST; + break; + case TCP_V6_FLOW: + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) + info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; + /* fall through */ + case UDP_V6_FLOW: + case SCTP_V6_FLOW: + case AH_ESP_V6_FLOW: + case IPV6_FLOW: + if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) + info->data |= RXH_IP_SRC | RXH_IP_DST; + break; + default: + break; + } + return 0; + } + default: + return -EOPNOTSUPP; + } +} + +static const struct ethtool_ops e1000_ethtool_ops = { + .get_settings = e1000_get_settings, + .set_settings = e1000_set_settings, + .get_drvinfo = e1000_get_drvinfo, + .get_regs_len = e1000_get_regs_len, + .get_regs = e1000_get_regs, + .get_wol = e1000_get_wol, + .set_wol = e1000_set_wol, + .get_msglevel = e1000_get_msglevel, + .set_msglevel = e1000_set_msglevel, + .nway_reset = e1000_nway_reset, + .get_link = ethtool_op_get_link, + .get_eeprom_len = e1000_get_eeprom_len, + .get_eeprom = e1000_get_eeprom, + .set_eeprom = e1000_set_eeprom, + .get_ringparam = e1000_get_ringparam, + .set_ringparam = e1000_set_ringparam, + .get_pauseparam = e1000_get_pauseparam, + .set_pauseparam = e1000_set_pauseparam, + .self_test = e1000_diag_test, + .get_strings = e1000_get_strings, + .set_phys_id = e1000_set_phys_id, + .get_ethtool_stats = e1000_get_ethtool_stats, + .get_sset_count = e1000e_get_sset_count, + .get_coalesce = e1000_get_coalesce, + .set_coalesce = e1000_set_coalesce, + .get_rxnfc = e1000_get_rxnfc, +}; + +void e1000e_set_ethtool_ops(struct net_device *netdev) +{ + SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); +} diff --git a/drivers/net/ethernet/intel/e1000e/hw.h b/drivers/net/ethernet/intel/e1000e/hw.h new file mode 100644 index 00000000..f82ecf53 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/hw.h @@ -0,0 +1,991 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#ifndef _E1000_HW_H_ +#define _E1000_HW_H_ + +#include <linux/types.h> + +struct e1000_hw; +struct e1000_adapter; + +#include "defines.h" + +#define er32(reg) __er32(hw, E1000_##reg) +#define ew32(reg,val) __ew32(hw, E1000_##reg, (val)) +#define e1e_flush() er32(STATUS) + +#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ + (writel((value), ((a)->hw_addr + reg + ((offset) << 2)))) + +#define E1000_READ_REG_ARRAY(a, reg, offset) \ + (readl((a)->hw_addr + reg + ((offset) << 2))) + +enum e1e_registers { + E1000_CTRL = 0x00000, /* Device Control - RW */ + E1000_STATUS = 0x00008, /* Device Status - RO */ + E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */ + E1000_EERD = 0x00014, /* EEPROM Read - RW */ + E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */ + E1000_FLA = 0x0001C, /* Flash Access - RW */ + E1000_MDIC = 0x00020, /* MDI Control - RW */ + E1000_SCTL = 0x00024, /* SerDes Control - RW */ + E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */ + E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */ + E1000_FEXTNVM4 = 0x00024, /* Future Extended NVM 4 - RW */ + E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */ + E1000_FCT = 0x00030, /* Flow Control Type - RW */ + E1000_VET = 0x00038, /* VLAN Ether Type - RW */ + E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */ + E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */ + E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */ + E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */ + E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */ + E1000_EIAC_82574 = 0x000DC, /* Ext. Interrupt Auto Clear - RW */ + E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */ + E1000_IVAR = 0x000E4, /* Interrupt Vector Allocation - RW */ + E1000_EITR_82574_BASE = 0x000E8, /* Interrupt Throttling - RW */ +#define E1000_EITR_82574(_n) (E1000_EITR_82574_BASE + (_n << 2)) + E1000_RCTL = 0x00100, /* Rx Control - RW */ + E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */ + E1000_TXCW = 0x00178, /* Tx Configuration Word - RW */ + E1000_RXCW = 0x00180, /* Rx Configuration Word - RO */ + E1000_TCTL = 0x00400, /* Tx Control - RW */ + E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */ + E1000_TIPG = 0x00410, /* Tx Inter-packet gap -RW */ + E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */ + E1000_LEDCTL = 0x00E00, /* LED Control - RW */ + E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */ + E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */ + E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */ +#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */ + E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */ + E1000_PBS = 0x01008, /* Packet Buffer Size */ + E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */ + E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */ + E1000_FLOP = 0x0103C, /* FLASH Opcode Register */ + E1000_PBA_ECC = 0x01100, /* PBA ECC Register */ + E1000_ERT = 0x02008, /* Early Rx Threshold - RW */ + E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */ + E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */ + E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */ + E1000_RDBAL = 0x02800, /* Rx Descriptor Base Address Low - RW */ + E1000_RDBAH = 0x02804, /* Rx Descriptor Base Address High - RW */ + E1000_RDLEN = 0x02808, /* Rx Descriptor Length - RW */ + E1000_RDH = 0x02810, /* Rx Descriptor Head - RW */ + E1000_RDT = 0x02818, /* Rx Descriptor Tail - RW */ + E1000_RDTR = 0x02820, /* Rx Delay Timer - RW */ + E1000_RXDCTL_BASE = 0x02828, /* Rx Descriptor Control - RW */ +#define E1000_RXDCTL(_n) (E1000_RXDCTL_BASE + (_n << 8)) + E1000_RADV = 0x0282C, /* Rx Interrupt Absolute Delay Timer - RW */ + +/* Convenience macros + * + * Note: "_n" is the queue number of the register to be written to. + * + * Example usage: + * E1000_RDBAL_REG(current_rx_queue) + * + */ +#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8)) + E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */ + E1000_TDBAL = 0x03800, /* Tx Descriptor Base Address Low - RW */ + E1000_TDBAH = 0x03804, /* Tx Descriptor Base Address High - RW */ + E1000_TDLEN = 0x03808, /* Tx Descriptor Length - RW */ + E1000_TDH = 0x03810, /* Tx Descriptor Head - RW */ + E1000_TDT = 0x03818, /* Tx Descriptor Tail - RW */ + E1000_TIDV = 0x03820, /* Tx Interrupt Delay Value - RW */ + E1000_TXDCTL_BASE = 0x03828, /* Tx Descriptor Control - RW */ +#define E1000_TXDCTL(_n) (E1000_TXDCTL_BASE + (_n << 8)) + E1000_TADV = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */ + E1000_TARC_BASE = 0x03840, /* Tx Arbitration Count (0) */ +#define E1000_TARC(_n) (E1000_TARC_BASE + (_n << 8)) + E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */ + E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */ + E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */ + E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */ + E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */ + E1000_SCC = 0x04014, /* Single Collision Count - R/clr */ + E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */ + E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */ + E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */ + E1000_COLC = 0x04028, /* Collision Count - R/clr */ + E1000_DC = 0x04030, /* Defer Count - R/clr */ + E1000_TNCRS = 0x04034, /* Tx-No CRS - R/clr */ + E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */ + E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */ + E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */ + E1000_XONRXC = 0x04048, /* XON Rx Count - R/clr */ + E1000_XONTXC = 0x0404C, /* XON Tx Count - R/clr */ + E1000_XOFFRXC = 0x04050, /* XOFF Rx Count - R/clr */ + E1000_XOFFTXC = 0x04054, /* XOFF Tx Count - R/clr */ + E1000_FCRUC = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */ + E1000_PRC64 = 0x0405C, /* Packets Rx (64 bytes) - R/clr */ + E1000_PRC127 = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */ + E1000_PRC255 = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */ + E1000_PRC511 = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */ + E1000_PRC1023 = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */ + E1000_PRC1522 = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */ + E1000_GPRC = 0x04074, /* Good Packets Rx Count - R/clr */ + E1000_BPRC = 0x04078, /* Broadcast Packets Rx Count - R/clr */ + E1000_MPRC = 0x0407C, /* Multicast Packets Rx Count - R/clr */ + E1000_GPTC = 0x04080, /* Good Packets Tx Count - R/clr */ + E1000_GORCL = 0x04088, /* Good Octets Rx Count Low - R/clr */ + E1000_GORCH = 0x0408C, /* Good Octets Rx Count High - R/clr */ + E1000_GOTCL = 0x04090, /* Good Octets Tx Count Low - R/clr */ + E1000_GOTCH = 0x04094, /* Good Octets Tx Count High - R/clr */ + E1000_RNBC = 0x040A0, /* Rx No Buffers Count - R/clr */ + E1000_RUC = 0x040A4, /* Rx Undersize Count - R/clr */ + E1000_RFC = 0x040A8, /* Rx Fragment Count - R/clr */ + E1000_ROC = 0x040AC, /* Rx Oversize Count - R/clr */ + E1000_RJC = 0x040B0, /* Rx Jabber Count - R/clr */ + E1000_MGTPRC = 0x040B4, /* Management Packets Rx Count - R/clr */ + E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */ + E1000_MGTPTC = 0x040BC, /* Management Packets Tx Count - R/clr */ + E1000_TORL = 0x040C0, /* Total Octets Rx Low - R/clr */ + E1000_TORH = 0x040C4, /* Total Octets Rx High - R/clr */ + E1000_TOTL = 0x040C8, /* Total Octets Tx Low - R/clr */ + E1000_TOTH = 0x040CC, /* Total Octets Tx High - R/clr */ + E1000_TPR = 0x040D0, /* Total Packets Rx - R/clr */ + E1000_TPT = 0x040D4, /* Total Packets Tx - R/clr */ + E1000_PTC64 = 0x040D8, /* Packets Tx (64 bytes) - R/clr */ + E1000_PTC127 = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */ + E1000_PTC255 = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */ + E1000_PTC511 = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */ + E1000_PTC1023 = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */ + E1000_PTC1522 = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */ + E1000_MPTC = 0x040F0, /* Multicast Packets Tx Count - R/clr */ + E1000_BPTC = 0x040F4, /* Broadcast Packets Tx Count - R/clr */ + E1000_TSCTC = 0x040F8, /* TCP Segmentation Context Tx - R/clr */ + E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */ + E1000_IAC = 0x04100, /* Interrupt Assertion Count */ + E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */ + E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */ + E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */ + E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */ + E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */ + E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */ + E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */ + E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */ + E1000_RXCSUM = 0x05000, /* Rx Checksum Control - RW */ + E1000_RFCTL = 0x05008, /* Receive Filter Control */ + E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */ + E1000_RAL_BASE = 0x05400, /* Receive Address Low - RW */ +#define E1000_RAL(_n) (E1000_RAL_BASE + ((_n) * 8)) +#define E1000_RA (E1000_RAL(0)) + E1000_RAH_BASE = 0x05404, /* Receive Address High - RW */ +#define E1000_RAH(_n) (E1000_RAH_BASE + ((_n) * 8)) + E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */ + E1000_WUC = 0x05800, /* Wakeup Control - RW */ + E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */ + E1000_WUS = 0x05810, /* Wakeup Status - RO */ + E1000_MRQC = 0x05818, /* Multiple Receive Control - RW */ + E1000_MANC = 0x05820, /* Management Control - RW */ + E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */ + E1000_HOST_IF = 0x08800, /* Host Interface */ + + E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */ + E1000_MANC2H = 0x05860, /* Management Control To Host - RW */ + E1000_MDEF_BASE = 0x05890, /* Management Decision Filters */ +#define E1000_MDEF(_n) (E1000_MDEF_BASE + ((_n) * 4)) + E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */ + E1000_GCR = 0x05B00, /* PCI-Ex Control */ + E1000_GCR2 = 0x05B64, /* PCI-Ex Control #2 */ + E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */ + E1000_SWSM = 0x05B50, /* SW Semaphore */ + E1000_FWSM = 0x05B54, /* FW Semaphore */ + E1000_SWSM2 = 0x05B58, /* Driver-only SW semaphore */ + E1000_RETA_BASE = 0x05C00, /* Redirection Table - RW */ +#define E1000_RETA(_n) (E1000_RETA_BASE + ((_n) * 4)) + E1000_RSSRK_BASE = 0x05C80, /* RSS Random Key - RW */ +#define E1000_RSSRK(_n) (E1000_RSSRK_BASE + ((_n) * 4)) + E1000_FFLT_DBG = 0x05F04, /* Debug Register */ + E1000_PCH_RAICC_BASE = 0x05F50, /* Receive Address Initial CRC */ +#define E1000_PCH_RAICC(_n) (E1000_PCH_RAICC_BASE + ((_n) * 4)) +#define E1000_CRC_OFFSET E1000_PCH_RAICC_BASE + E1000_HICR = 0x08F00, /* Host Interface Control */ +}; + +#define E1000_MAX_PHY_ADDR 4 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ +#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ +#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ +#define IGP_PAGE_SHIFT 5 +#define PHY_REG_MASK 0x1F + +#define BM_WUC_PAGE 800 +#define BM_WUC_ADDRESS_OPCODE 0x11 +#define BM_WUC_DATA_OPCODE 0x12 +#define BM_WUC_ENABLE_PAGE 769 +#define BM_WUC_ENABLE_REG 17 +#define BM_WUC_ENABLE_BIT (1 << 2) +#define BM_WUC_HOST_WU_BIT (1 << 4) +#define BM_WUC_ME_WU_BIT (1 << 5) + +#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) +#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) +#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) + +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_POLARITY_MASK 0x0078 + +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ + +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 + +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ + +#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 + +#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 +#define IGP01E1000_PSSR_MDIX 0x0800 +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 +#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 + +#define IGP02E1000_PHY_CHANNEL_NUM 4 +#define IGP02E1000_PHY_AGC_A 0x11B1 +#define IGP02E1000_PHY_AGC_B 0x12B1 +#define IGP02E1000_PHY_AGC_C 0x14B1 +#define IGP02E1000_PHY_AGC_D 0x18B1 + +#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ +#define IGP02E1000_AGC_LENGTH_MASK 0x7F +#define IGP02E1000_AGC_RANGE 15 + +/* manage.c */ +#define E1000_VFTA_ENTRY_SHIFT 5 +#define E1000_VFTA_ENTRY_MASK 0x7F +#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F + +#define E1000_HICR_EN 0x01 /* Enable bit - RO */ +/* Driver sets this bit when done to put command in RAM */ +#define E1000_HICR_C 0x02 +#define E1000_HICR_FW_RESET_ENABLE 0x40 +#define E1000_HICR_FW_RESET 0x80 + +#define E1000_FWSM_MODE_MASK 0xE +#define E1000_FWSM_MODE_SHIFT 1 + +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 +#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 + +/* nvm.c */ +#define E1000_STM_OPCODE 0xDB00 + +#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 +#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 +#define E1000_KMRNCTRLSTA_REN 0x00200000 +#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */ +#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ +#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ +#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ +#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */ +#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ +#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7 +#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 +#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */ + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ + +/* IFE PHY Extended Status Control */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 + +/* IFE PHY Special Control */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 +#define IFE_PSC_FORCE_POLARITY 0x0020 + +/* IFE PHY Special Control and LED Control */ +#define IFE_PSCL_PROBE_MODE 0x0020 +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +/* IFE PHY MDIX Control */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */ + +#define E1000_CABLE_LENGTH_UNDEFINED 0xFF + +#define E1000_DEV_ID_82571EB_COPPER 0x105E +#define E1000_DEV_ID_82571EB_FIBER 0x105F +#define E1000_DEV_ID_82571EB_SERDES 0x1060 +#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 +#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 +#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 +#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC +#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 +#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA +#define E1000_DEV_ID_82572EI_COPPER 0x107D +#define E1000_DEV_ID_82572EI_FIBER 0x107E +#define E1000_DEV_ID_82572EI_SERDES 0x107F +#define E1000_DEV_ID_82572EI 0x10B9 +#define E1000_DEV_ID_82573E 0x108B +#define E1000_DEV_ID_82573E_IAMT 0x108C +#define E1000_DEV_ID_82573L 0x109A +#define E1000_DEV_ID_82574L 0x10D3 +#define E1000_DEV_ID_82574LA 0x10F6 +#define E1000_DEV_ID_82583V 0x150C + +#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 +#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 +#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA +#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB + +#define E1000_DEV_ID_ICH8_82567V_3 0x1501 +#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 +#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A +#define E1000_DEV_ID_ICH8_IGP_C 0x104B +#define E1000_DEV_ID_ICH8_IFE 0x104C +#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 +#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 +#define E1000_DEV_ID_ICH8_IGP_M 0x104D +#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD +#define E1000_DEV_ID_ICH9_BM 0x10E5 +#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 +#define E1000_DEV_ID_ICH9_IGP_M 0x10BF +#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB +#define E1000_DEV_ID_ICH9_IGP_C 0x294C +#define E1000_DEV_ID_ICH9_IFE 0x10C0 +#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 +#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 +#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC +#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD +#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE +#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE +#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF +#define E1000_DEV_ID_ICH10_D_BM_V 0x1525 +#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA +#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB +#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF +#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0 +#define E1000_DEV_ID_PCH2_LV_LM 0x1502 +#define E1000_DEV_ID_PCH2_LV_V 0x1503 + +#define E1000_REVISION_4 4 + +#define E1000_FUNC_1 1 + +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 + +enum e1000_mac_type { + e1000_82571, + e1000_82572, + e1000_82573, + e1000_82574, + e1000_82583, + e1000_80003es2lan, + e1000_ich8lan, + e1000_ich9lan, + e1000_ich10lan, + e1000_pchlan, + e1000_pch2lan, +}; + +enum e1000_media_type { + e1000_media_type_unknown = 0, + e1000_media_type_copper = 1, + e1000_media_type_fiber = 2, + e1000_media_type_internal_serdes = 3, + e1000_num_media_types +}; + +enum e1000_nvm_type { + e1000_nvm_unknown = 0, + e1000_nvm_none, + e1000_nvm_eeprom_spi, + e1000_nvm_flash_hw, + e1000_nvm_flash_sw +}; + +enum e1000_nvm_override { + e1000_nvm_override_none = 0, + e1000_nvm_override_spi_small, + e1000_nvm_override_spi_large +}; + +enum e1000_phy_type { + e1000_phy_unknown = 0, + e1000_phy_none, + e1000_phy_m88, + e1000_phy_igp, + e1000_phy_igp_2, + e1000_phy_gg82563, + e1000_phy_igp_3, + e1000_phy_ife, + e1000_phy_bm, + e1000_phy_82578, + e1000_phy_82577, + e1000_phy_82579, +}; + +enum e1000_bus_width { + e1000_bus_width_unknown = 0, + e1000_bus_width_pcie_x1, + e1000_bus_width_pcie_x2, + e1000_bus_width_pcie_x4 = 4, + e1000_bus_width_32, + e1000_bus_width_64, + e1000_bus_width_reserved +}; + +enum e1000_1000t_rx_status { + e1000_1000t_rx_status_not_ok = 0, + e1000_1000t_rx_status_ok, + e1000_1000t_rx_status_undefined = 0xFF +}; + +enum e1000_rev_polarity{ + e1000_rev_polarity_normal = 0, + e1000_rev_polarity_reversed, + e1000_rev_polarity_undefined = 0xFF +}; + +enum e1000_fc_mode { + e1000_fc_none = 0, + e1000_fc_rx_pause, + e1000_fc_tx_pause, + e1000_fc_full, + e1000_fc_default = 0xFF +}; + +enum e1000_ms_type { + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto +}; + +enum e1000_smart_speed { + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off +}; + +enum e1000_serdes_link_state { + e1000_serdes_link_down = 0, + e1000_serdes_link_autoneg_progress, + e1000_serdes_link_autoneg_complete, + e1000_serdes_link_forced_up +}; + +/* Receive Descriptor */ +struct e1000_rx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + __le16 length; /* Length of data DMAed into data buffer */ + __le16 csum; /* Packet checksum */ + u8 status; /* Descriptor status */ + u8 errors; /* Descriptor Errors */ + __le16 special; +}; + +/* Receive Descriptor - Extended */ +union e1000_rx_desc_extended { + struct { + __le64 buffer_addr; + __le64 reserved; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define MAX_PS_BUFFERS 4 +/* Receive Descriptor - Packet Split */ +union e1000_rx_desc_packet_split { + struct { + /* one buffer for protocol header(s), three data buffers */ + __le64 buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length0; /* length of buffer 0 */ + __le16 vlan; /* VLAN tag */ + } middle; + struct { + __le16 header_status; + __le16 length[3]; /* length of buffers 1-3 */ + } upper; + __le64 reserved; + } wb; /* writeback */ +}; + +/* Transmit Descriptor */ +struct e1000_tx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 cso; /* Checksum offset */ + u8 cmd; /* Descriptor control */ + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 css; /* Checksum start */ + __le16 special; + } fields; + } upper; +}; + +/* Offload Context Descriptor */ +struct e1000_context_desc { + union { + __le32 ip_config; + struct { + u8 ipcss; /* IP checksum start */ + u8 ipcso; /* IP checksum offset */ + __le16 ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + __le32 tcp_config; + struct { + u8 tucss; /* TCP checksum start */ + u8 tucso; /* TCP checksum offset */ + __le16 tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + __le32 cmd_and_length; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 hdr_len; /* Header length */ + __le16 mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct e1000_data_desc { + __le64 buffer_addr; /* Address of the descriptor's buffer address */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 typ_len_ext; + u8 cmd; + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 popts; /* Packet Options */ + __le16 special; /* */ + } fields; + } upper; +}; + +/* Statistics counters collected by the MAC */ +struct e1000_hw_stats { + u64 crcerrs; + u64 algnerrc; + u64 symerrs; + u64 rxerrc; + u64 mpc; + u64 scc; + u64 ecol; + u64 mcc; + u64 latecol; + u64 colc; + u64 dc; + u64 tncrs; + u64 sec; + u64 cexterr; + u64 rlec; + u64 xonrxc; + u64 xontxc; + u64 xoffrxc; + u64 xofftxc; + u64 fcruc; + u64 prc64; + u64 prc127; + u64 prc255; + u64 prc511; + u64 prc1023; + u64 prc1522; + u64 gprc; + u64 bprc; + u64 mprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 rnbc; + u64 ruc; + u64 rfc; + u64 roc; + u64 rjc; + u64 mgprc; + u64 mgpdc; + u64 mgptc; + u64 tor; + u64 tot; + u64 tpr; + u64 tpt; + u64 ptc64; + u64 ptc127; + u64 ptc255; + u64 ptc511; + u64 ptc1023; + u64 ptc1522; + u64 mptc; + u64 bptc; + u64 tsctc; + u64 tsctfc; + u64 iac; + u64 icrxptc; + u64 icrxatc; + u64 ictxptc; + u64 ictxatc; + u64 ictxqec; + u64 ictxqmtc; + u64 icrxdmtc; + u64 icrxoc; +}; + +struct e1000_phy_stats { + u32 idle_errors; + u32 receive_errors; +}; + +struct e1000_host_mng_dhcp_cookie { + u32 signature; + u8 status; + u8 reserved0; + u16 vlan_id; + u32 reserved1; + u16 reserved2; + u8 reserved3; + u8 checksum; +}; + +/* Host Interface "Rev 1" */ +struct e1000_host_command_header { + u8 command_id; + u8 command_length; + u8 command_options; + u8 checksum; +}; + +#define E1000_HI_MAX_DATA_LENGTH 252 +struct e1000_host_command_info { + struct e1000_host_command_header command_header; + u8 command_data[E1000_HI_MAX_DATA_LENGTH]; +}; + +/* Host Interface "Rev 2" */ +struct e1000_host_mng_command_header { + u8 command_id; + u8 checksum; + u16 reserved1; + u16 reserved2; + u16 command_length; +}; + +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 +struct e1000_host_mng_command_info { + struct e1000_host_mng_command_header command_header; + u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; +}; + +/* Function pointers and static data for the MAC. */ +struct e1000_mac_operations { + s32 (*id_led_init)(struct e1000_hw *); + s32 (*blink_led)(struct e1000_hw *); + bool (*check_mng_mode)(struct e1000_hw *); + s32 (*check_for_link)(struct e1000_hw *); + s32 (*cleanup_led)(struct e1000_hw *); + void (*clear_hw_cntrs)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + void (*set_lan_id)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + s32 (*led_on)(struct e1000_hw *); + s32 (*led_off)(struct e1000_hw *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); + s32 (*reset_hw)(struct e1000_hw *); + s32 (*init_hw)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); + s32 (*setup_physical_interface)(struct e1000_hw *); + s32 (*setup_led)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + void (*config_collision_dist)(struct e1000_hw *); + s32 (*read_mac_addr)(struct e1000_hw *); +}; + +/* + * When to use various PHY register access functions: + * + * Func Caller + * Function Does Does When to use + * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * X_reg L,P,A n/a for simple PHY reg accesses + * X_reg_locked P,A L for multiple accesses of different regs + * on different pages + * X_reg_page A L,P for multiple accesses of different regs + * on the same page + * + * Where X=[read|write], L=locking, P=sets page, A=register access + * + */ +struct e1000_phy_operations { + s32 (*acquire)(struct e1000_hw *); + s32 (*cfg_on_link_up)(struct e1000_hw *); + s32 (*check_polarity)(struct e1000_hw *); + s32 (*check_reset_block)(struct e1000_hw *); + s32 (*commit)(struct e1000_hw *); + s32 (*force_speed_duplex)(struct e1000_hw *); + s32 (*get_cfg_done)(struct e1000_hw *hw); + s32 (*get_cable_length)(struct e1000_hw *); + s32 (*get_info)(struct e1000_hw *); + s32 (*set_page)(struct e1000_hw *, u16); + s32 (*read_reg)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); + void (*release)(struct e1000_hw *); + s32 (*reset)(struct e1000_hw *); + s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); + s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); + s32 (*write_reg)(struct e1000_hw *, u32, u16); + s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); + s32 (*write_reg_page)(struct e1000_hw *, u32, u16); + void (*power_up)(struct e1000_hw *); + void (*power_down)(struct e1000_hw *); +}; + +/* Function pointers for the NVM. */ +struct e1000_nvm_operations { + s32 (*acquire)(struct e1000_hw *); + s32 (*read)(struct e1000_hw *, u16, u16, u16 *); + void (*release)(struct e1000_hw *); + void (*reload)(struct e1000_hw *); + s32 (*update)(struct e1000_hw *); + s32 (*valid_led_default)(struct e1000_hw *, u16 *); + s32 (*validate)(struct e1000_hw *); + s32 (*write)(struct e1000_hw *, u16, u16, u16 *); +}; + +struct e1000_mac_info { + struct e1000_mac_operations ops; + u8 addr[ETH_ALEN]; + u8 perm_addr[ETH_ALEN]; + + enum e1000_mac_type type; + + u32 collision_delta; + u32 ledctl_default; + u32 ledctl_mode1; + u32 ledctl_mode2; + u32 mc_filter_type; + u32 tx_packet_delta; + u32 txcw; + + u16 current_ifs_val; + u16 ifs_max_val; + u16 ifs_min_val; + u16 ifs_ratio; + u16 ifs_step_size; + u16 mta_reg_count; + + /* Maximum size of the MTA register table in all supported adapters */ + #define MAX_MTA_REG 128 + u32 mta_shadow[MAX_MTA_REG]; + u16 rar_entry_count; + + u8 forced_speed_duplex; + + bool adaptive_ifs; + bool has_fwsm; + bool arc_subsystem_valid; + bool autoneg; + bool autoneg_failed; + bool get_link_status; + bool in_ifs_mode; + bool serdes_has_link; + bool tx_pkt_filtering; + enum e1000_serdes_link_state serdes_link_state; +}; + +struct e1000_phy_info { + struct e1000_phy_operations ops; + + enum e1000_phy_type type; + + enum e1000_1000t_rx_status local_rx; + enum e1000_1000t_rx_status remote_rx; + enum e1000_ms_type ms_type; + enum e1000_ms_type original_ms_type; + enum e1000_rev_polarity cable_polarity; + enum e1000_smart_speed smart_speed; + + u32 addr; + u32 id; + u32 reset_delay_us; /* in usec */ + u32 revision; + + enum e1000_media_type media_type; + + u16 autoneg_advertised; + u16 autoneg_mask; + u16 cable_length; + u16 max_cable_length; + u16 min_cable_length; + + u8 mdix; + + bool disable_polarity_correction; + bool is_mdix; + bool polarity_correction; + bool speed_downgraded; + bool autoneg_wait_to_complete; +}; + +struct e1000_nvm_info { + struct e1000_nvm_operations ops; + + enum e1000_nvm_type type; + enum e1000_nvm_override override; + + u32 flash_bank_size; + u32 flash_base_addr; + + u16 word_size; + u16 delay_usec; + u16 address_bits; + u16 opcode_bits; + u16 page_size; +}; + +struct e1000_bus_info { + enum e1000_bus_width width; + + u16 func; +}; + +struct e1000_fc_info { + u32 high_water; /* Flow control high-water mark */ + u32 low_water; /* Flow control low-water mark */ + u16 pause_time; /* Flow control pause timer */ + u16 refresh_time; /* Flow control refresh timer */ + bool send_xon; /* Flow control send XON */ + bool strict_ieee; /* Strict IEEE mode */ + enum e1000_fc_mode current_mode; /* FC mode in effect */ + enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ +}; + +struct e1000_dev_spec_82571 { + bool laa_is_present; + u32 smb_counter; +}; + +struct e1000_dev_spec_80003es2lan { + bool mdic_wa_enable; +}; + +struct e1000_shadow_ram { + u16 value; + bool modified; +}; + +#define E1000_ICH8_SHADOW_RAM_WORDS 2048 + +struct e1000_dev_spec_ich8lan { + bool kmrn_lock_loss_workaround_enabled; + struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS]; + bool nvm_k1_enabled; + bool eee_disable; +}; + +struct e1000_hw { + struct e1000_adapter *adapter; + + void __iomem *hw_addr; + void __iomem *flash_address; + + struct e1000_mac_info mac; + struct e1000_fc_info fc; + struct e1000_phy_info phy; + struct e1000_nvm_info nvm; + struct e1000_bus_info bus; + struct e1000_host_mng_dhcp_cookie mng_cookie; + + union { + struct e1000_dev_spec_82571 e82571; + struct e1000_dev_spec_80003es2lan e80003es2lan; + struct e1000_dev_spec_ich8lan ich8lan; + } dev_spec; +}; + +#endif diff --git a/drivers/net/ethernet/intel/e1000e/ich8lan.c b/drivers/net/ethernet/intel/e1000e/ich8lan.c new file mode 100644 index 00000000..b461c249 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/ich8lan.c @@ -0,0 +1,4142 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* + * 82562G 10/100 Network Connection + * 82562G-2 10/100 Network Connection + * 82562GT 10/100 Network Connection + * 82562GT-2 10/100 Network Connection + * 82562V 10/100 Network Connection + * 82562V-2 10/100 Network Connection + * 82566DC-2 Gigabit Network Connection + * 82566DC Gigabit Network Connection + * 82566DM-2 Gigabit Network Connection + * 82566DM Gigabit Network Connection + * 82566MC Gigabit Network Connection + * 82566MM Gigabit Network Connection + * 82567LM Gigabit Network Connection + * 82567LF Gigabit Network Connection + * 82567V Gigabit Network Connection + * 82567LM-2 Gigabit Network Connection + * 82567LF-2 Gigabit Network Connection + * 82567V-2 Gigabit Network Connection + * 82567LF-3 Gigabit Network Connection + * 82567LM-3 Gigabit Network Connection + * 82567LM-4 Gigabit Network Connection + * 82577LM Gigabit Network Connection + * 82577LC Gigabit Network Connection + * 82578DM Gigabit Network Connection + * 82578DC Gigabit Network Connection + * 82579LM Gigabit Network Connection + * 82579V Gigabit Network Connection + */ + +#include "e1000.h" + +#define ICH_FLASH_GFPREG 0x0000 +#define ICH_FLASH_HSFSTS 0x0004 +#define ICH_FLASH_HSFCTL 0x0006 +#define ICH_FLASH_FADDR 0x0008 +#define ICH_FLASH_FDATA0 0x0010 +#define ICH_FLASH_PR0 0x0074 + +#define ICH_FLASH_READ_COMMAND_TIMEOUT 500 +#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 +#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 +#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF +#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 + +#define ICH_CYCLE_READ 0 +#define ICH_CYCLE_WRITE 2 +#define ICH_CYCLE_ERASE 3 + +#define FLASH_GFPREG_BASE_MASK 0x1FFF +#define FLASH_SECTOR_ADDR_SHIFT 12 + +#define ICH_FLASH_SEG_SIZE_256 256 +#define ICH_FLASH_SEG_SIZE_4K 4096 +#define ICH_FLASH_SEG_SIZE_8K 8192 +#define ICH_FLASH_SEG_SIZE_64K 65536 + + +#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ +/* FW established a valid mode */ +#define E1000_ICH_FWSM_FW_VALID 0x00008000 + +#define E1000_ICH_MNG_IAMT_MODE 0x2 + +#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_OFF2 << 8) | \ + (ID_LED_DEF1_ON2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_ICH_NVM_SIG_WORD 0x13 +#define E1000_ICH_NVM_SIG_MASK 0xC000 +#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 +#define E1000_ICH_NVM_SIG_VALUE 0x80 + +#define E1000_ICH8_LAN_INIT_TIMEOUT 1500 + +#define E1000_FEXTNVM_SW_CONFIG 1 +#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ + +#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 +#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 +#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 + +#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL + +#define E1000_ICH_RAR_ENTRIES 7 + +#define PHY_PAGE_SHIFT 5 +#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ + ((reg) & MAX_PHY_REG_ADDRESS)) +#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ +#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ + +#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 +#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 +#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 + +#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ + +#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ + +/* SMBus Address Phy Register */ +#define HV_SMB_ADDR PHY_REG(768, 26) +#define HV_SMB_ADDR_MASK 0x007F +#define HV_SMB_ADDR_PEC_EN 0x0200 +#define HV_SMB_ADDR_VALID 0x0080 + +/* PHY Power Management Control */ +#define HV_PM_CTRL PHY_REG(770, 17) + +/* PHY Low Power Idle Control */ +#define I82579_LPI_CTRL PHY_REG(772, 20) +#define I82579_LPI_CTRL_ENABLE_MASK 0x6000 +#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80 + +/* EMI Registers */ +#define I82579_EMI_ADDR 0x10 +#define I82579_EMI_DATA 0x11 +#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ +#define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */ +#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */ + +/* Strapping Option Register - RO */ +#define E1000_STRAP 0x0000C +#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 +#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 + +/* OEM Bits Phy Register */ +#define HV_OEM_BITS PHY_REG(768, 25) +#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ +#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ +#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ + +#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ +#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ + +/* KMRN Mode Control */ +#define HV_KMRN_MODE_CTRL PHY_REG(769, 16) +#define HV_KMRN_MDIO_SLOW 0x0400 + +/* KMRN FIFO Control and Status */ +#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) +#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 +#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 + +/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ +/* Offset 04h HSFSTS */ +union ich8_hws_flash_status { + struct ich8_hsfsts { + u16 flcdone :1; /* bit 0 Flash Cycle Done */ + u16 flcerr :1; /* bit 1 Flash Cycle Error */ + u16 dael :1; /* bit 2 Direct Access error Log */ + u16 berasesz :2; /* bit 4:3 Sector Erase Size */ + u16 flcinprog :1; /* bit 5 flash cycle in Progress */ + u16 reserved1 :2; /* bit 13:6 Reserved */ + u16 reserved2 :6; /* bit 13:6 Reserved */ + u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ + u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ + } hsf_status; + u16 regval; +}; + +/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ +/* Offset 06h FLCTL */ +union ich8_hws_flash_ctrl { + struct ich8_hsflctl { + u16 flcgo :1; /* 0 Flash Cycle Go */ + u16 flcycle :2; /* 2:1 Flash Cycle */ + u16 reserved :5; /* 7:3 Reserved */ + u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ + u16 flockdn :6; /* 15:10 Reserved */ + } hsf_ctrl; + u16 regval; +}; + +/* ICH Flash Region Access Permissions */ +union ich8_hws_flash_regacc { + struct ich8_flracc { + u32 grra :8; /* 0:7 GbE region Read Access */ + u32 grwa :8; /* 8:15 GbE region Write Access */ + u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ + u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ + } hsf_flregacc; + u16 regval; +}; + +/* ICH Flash Protected Region */ +union ich8_flash_protected_range { + struct ich8_pr { + u32 base:13; /* 0:12 Protected Range Base */ + u32 reserved1:2; /* 13:14 Reserved */ + u32 rpe:1; /* 15 Read Protection Enable */ + u32 limit:13; /* 16:28 Protected Range Limit */ + u32 reserved2:2; /* 29:30 Reserved */ + u32 wpe:1; /* 31 Write Protection Enable */ + } range; + u32 regval; +}; + +static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); +static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); +static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); +static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte); +static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 *data); +static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 *data); +static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); +static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); +static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); +static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); +static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); +static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); +static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); +static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); +static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); +static s32 e1000_led_on_pchlan(struct e1000_hw *hw); +static s32 e1000_led_off_pchlan(struct e1000_hw *hw); +static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); +static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); +static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); +static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); +static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); +static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); +static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); +static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); +static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); + +static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) +{ + return readw(hw->flash_address + reg); +} + +static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) +{ + return readl(hw->flash_address + reg); +} + +static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) +{ + writew(val, hw->flash_address + reg); +} + +static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) +{ + writel(val, hw->flash_address + reg); +} + +#define er16flash(reg) __er16flash(hw, (reg)) +#define er32flash(reg) __er32flash(hw, (reg)) +#define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) +#define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) + +static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw) +{ + u32 ctrl; + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; + ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; + ew32(CTRL, ctrl); + e1e_flush(); + udelay(10); + ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; + ew32(CTRL, ctrl); +} + +/** + * e1000_init_phy_params_pchlan - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific PHY parameters and function pointers. + **/ +static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = 0; + + phy->addr = 1; + phy->reset_delay_us = 100; + + phy->ops.set_page = e1000_set_page_igp; + phy->ops.read_reg = e1000_read_phy_reg_hv; + phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; + phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; + phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; + phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; + phy->ops.write_reg = e1000_write_phy_reg_hv; + phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; + phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + if (!hw->phy.ops.check_reset_block(hw)) { + u32 fwsm = er32(FWSM); + + /* + * The MAC-PHY interconnect may still be in SMBus mode after + * Sx->S0. If resetting the PHY is not blocked, toggle the + * LANPHYPC Value bit to force the interconnect to PCIe mode. + */ + e1000_toggle_lanphypc_value_ich8lan(hw); + msleep(50); + + /* + * Gate automatic PHY configuration by hardware on + * non-managed 82579 + */ + if ((hw->mac.type == e1000_pch2lan) && + !(fwsm & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, true); + + /* + * Reset the PHY before any access to it. Doing so, ensures + * that the PHY is in a known good state before we read/write + * PHY registers. The generic reset is sufficient here, + * because we haven't determined the PHY type yet. + */ + ret_val = e1000e_phy_hw_reset_generic(hw); + if (ret_val) + return ret_val; + + /* Ungate automatic PHY configuration on non-managed 82579 */ + if ((hw->mac.type == e1000_pch2lan) && + !(fwsm & E1000_ICH_FWSM_FW_VALID)) { + usleep_range(10000, 20000); + e1000_gate_hw_phy_config_ich8lan(hw, false); + } + } + + phy->id = e1000_phy_unknown; + switch (hw->mac.type) { + default: + ret_val = e1000e_get_phy_id(hw); + if (ret_val) + return ret_val; + if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) + break; + /* fall-through */ + case e1000_pch2lan: + /* + * In case the PHY needs to be in mdio slow mode, + * set slow mode and try to get the PHY id again. + */ + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + ret_val = e1000e_get_phy_id(hw); + if (ret_val) + return ret_val; + break; + } + phy->type = e1000e_get_phy_type_from_id(phy->id); + + switch (phy->type) { + case e1000_phy_82577: + case e1000_phy_82579: + phy->ops.check_polarity = e1000_check_polarity_82577; + phy->ops.force_speed_duplex = + e1000_phy_force_speed_duplex_82577; + phy->ops.get_cable_length = e1000_get_cable_length_82577; + phy->ops.get_info = e1000_get_phy_info_82577; + phy->ops.commit = e1000e_phy_sw_reset; + break; + case e1000_phy_82578: + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000e_get_cable_length_m88; + phy->ops.get_info = e1000e_get_phy_info_m88; + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + return ret_val; +} + +/** + * e1000_init_phy_params_ich8lan - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific PHY parameters and function pointers. + **/ +static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 i = 0; + + phy->addr = 1; + phy->reset_delay_us = 100; + + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; + + /* + * We may need to do this twice - once for IGP and if that fails, + * we'll set BM func pointers and try again + */ + ret_val = e1000e_determine_phy_address(hw); + if (ret_val) { + phy->ops.write_reg = e1000e_write_phy_reg_bm; + phy->ops.read_reg = e1000e_read_phy_reg_bm; + ret_val = e1000e_determine_phy_address(hw); + if (ret_val) { + e_dbg("Cannot determine PHY addr. Erroring out\n"); + return ret_val; + } + } + + phy->id = 0; + while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && + (i++ < 100)) { + usleep_range(1000, 2000); + ret_val = e1000e_get_phy_id(hw); + if (ret_val) + return ret_val; + } + + /* Verify phy id */ + switch (phy->id) { + case IGP03E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; + phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; + phy->ops.get_info = e1000e_get_phy_info_igp; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy->type = e1000_phy_ife; + phy->autoneg_mask = E1000_ALL_NOT_GIG; + phy->ops.get_info = e1000_get_phy_info_ife; + phy->ops.check_polarity = e1000_check_polarity_ife; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; + break; + case BME1000_E_PHY_ID: + phy->type = e1000_phy_bm; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->ops.read_reg = e1000e_read_phy_reg_bm; + phy->ops.write_reg = e1000e_write_phy_reg_bm; + phy->ops.commit = e1000e_phy_sw_reset; + phy->ops.get_info = e1000e_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; + break; + default: + return -E1000_ERR_PHY; + break; + } + + return 0; +} + +/** + * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific NVM parameters and function + * pointers. + **/ +static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 gfpreg, sector_base_addr, sector_end_addr; + u16 i; + + /* Can't read flash registers if the register set isn't mapped. */ + if (!hw->flash_address) { + e_dbg("ERROR: Flash registers not mapped\n"); + return -E1000_ERR_CONFIG; + } + + nvm->type = e1000_nvm_flash_sw; + + gfpreg = er32flash(ICH_FLASH_GFPREG); + + /* + * sector_X_addr is a "sector"-aligned address (4096 bytes) + * Add 1 to sector_end_addr since this sector is included in + * the overall size. + */ + sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; + sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; + + /* flash_base_addr is byte-aligned */ + nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; + + /* + * find total size of the NVM, then cut in half since the total + * size represents two separate NVM banks. + */ + nvm->flash_bank_size = (sector_end_addr - sector_base_addr) + << FLASH_SECTOR_ADDR_SHIFT; + nvm->flash_bank_size /= 2; + /* Adjust to word count */ + nvm->flash_bank_size /= sizeof(u16); + + nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; + + /* Clear shadow ram */ + for (i = 0; i < nvm->word_size; i++) { + dev_spec->shadow_ram[i].modified = false; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + + return 0; +} + +/** + * e1000_init_mac_params_ich8lan - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific MAC parameters and function + * pointers. + **/ +static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + /* Set media type function pointer */ + hw->phy.media_type = e1000_media_type_copper; + + /* Set mta register count */ + mac->mta_reg_count = 32; + /* Set rar entry count */ + mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; + if (mac->type == e1000_ich8lan) + mac->rar_entry_count--; + /* FWSM register */ + mac->has_fwsm = true; + /* ARC subsystem not supported */ + mac->arc_subsystem_valid = false; + /* Adaptive IFS supported */ + mac->adaptive_ifs = true; + + /* LED operations */ + switch (mac->type) { + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; + /* ID LED init */ + mac->ops.id_led_init = e1000e_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000e_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000e_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_ich8lan; + mac->ops.led_off = e1000_led_off_ich8lan; + break; + case e1000_pchlan: + case e1000_pch2lan: + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_pchlan; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_pchlan; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_pchlan; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_pchlan; + mac->ops.led_off = e1000_led_off_pchlan; + break; + default: + break; + } + + /* Enable PCS Lock-loss workaround for ICH8 */ + if (mac->type == e1000_ich8lan) + e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); + + /* Gate automatic PHY configuration by hardware on managed 82579 */ + if ((mac->type == e1000_pch2lan) && + (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, true); + + return 0; +} + +/** + * e1000_set_eee_pchlan - Enable/disable EEE support + * @hw: pointer to the HW structure + * + * Enable/disable EEE based on setting in dev_spec structure. The bits in + * the LPI Control register will remain set only if/when link is up. + **/ +static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 phy_reg; + + if (hw->phy.type != e1000_phy_82579) + return 0; + + ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); + if (ret_val) + return ret_val; + + if (hw->dev_spec.ich8lan.eee_disable) + phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; + else + phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; + + return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); +} + +/** + * e1000_check_for_copper_link_ich8lan - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + u16 phy_reg; + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return 0; + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (hw->mac.type == e1000_pchlan) { + ret_val = e1000_k1_gig_workaround_hv(hw, link); + if (ret_val) + return ret_val; + } + + if (!link) + return 0; /* No link detected */ + + mac->get_link_status = false; + + switch (hw->mac.type) { + case e1000_pch2lan: + ret_val = e1000_k1_workaround_lv(hw); + if (ret_val) + return ret_val; + /* fall-thru */ + case e1000_pchlan: + if (hw->phy.type == e1000_phy_82578) { + ret_val = e1000_link_stall_workaround_hv(hw); + if (ret_val) + return ret_val; + } + + /* + * Workaround for PCHx parts in half-duplex: + * Set the number of preambles removed from the packet + * when it is passed from the PHY to the MAC to prevent + * the MAC from misinterpreting the packet type. + */ + e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); + phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; + + if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) + phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); + + e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); + break; + default: + break; + } + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000e_check_downshift(hw); + + /* Enable/Disable EEE after link up */ + ret_val = e1000_set_eee_pchlan(hw); + if (ret_val) + return ret_val; + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) + return -E1000_ERR_CONFIG; + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) + e_dbg("Error configuring flow control\n"); + + return ret_val; +} + +static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + s32 rc; + + rc = e1000_init_mac_params_ich8lan(hw); + if (rc) + return rc; + + rc = e1000_init_nvm_params_ich8lan(hw); + if (rc) + return rc; + + switch (hw->mac.type) { + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + rc = e1000_init_phy_params_ich8lan(hw); + break; + case e1000_pchlan: + case e1000_pch2lan: + rc = e1000_init_phy_params_pchlan(hw); + break; + default: + break; + } + if (rc) + return rc; + + /* + * Disable Jumbo Frame support on parts with Intel 10/100 PHY or + * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). + */ + if ((adapter->hw.phy.type == e1000_phy_ife) || + ((adapter->hw.mac.type >= e1000_pch2lan) && + (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { + adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; + adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; + + hw->mac.ops.blink_led = NULL; + } + + if ((adapter->hw.mac.type == e1000_ich8lan) && + (adapter->hw.phy.type != e1000_phy_ife)) + adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; + + /* Enable workaround for 82579 w/ ME enabled */ + if ((adapter->hw.mac.type == e1000_pch2lan) && + (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) + adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; + + /* Disable EEE by default until IEEE802.3az spec is finalized */ + if (adapter->flags2 & FLAG2_HAS_EEE) + adapter->hw.dev_spec.ich8lan.eee_disable = true; + + return 0; +} + +static DEFINE_MUTEX(nvm_mutex); + +/** + * e1000_acquire_nvm_ich8lan - Acquire NVM mutex + * @hw: pointer to the HW structure + * + * Acquires the mutex for performing NVM operations. + **/ +static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) +{ + mutex_lock(&nvm_mutex); + + return 0; +} + +/** + * e1000_release_nvm_ich8lan - Release NVM mutex + * @hw: pointer to the HW structure + * + * Releases the mutex used while performing NVM operations. + **/ +static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) +{ + mutex_unlock(&nvm_mutex); +} + +/** + * e1000_acquire_swflag_ich8lan - Acquire software control flag + * @hw: pointer to the HW structure + * + * Acquires the software control flag for performing PHY and select + * MAC CSR accesses. + **/ +static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; + s32 ret_val = 0; + + if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, + &hw->adapter->state)) { + e_dbg("contention for Phy access\n"); + return -E1000_ERR_PHY; + } + + while (timeout) { + extcnf_ctrl = er32(EXTCNF_CTRL); + if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) + break; + + mdelay(1); + timeout--; + } + + if (!timeout) { + e_dbg("SW has already locked the resource.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + timeout = SW_FLAG_TIMEOUT; + + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + ew32(EXTCNF_CTRL, extcnf_ctrl); + + while (timeout) { + extcnf_ctrl = er32(EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + + mdelay(1); + timeout--; + } + + if (!timeout) { + e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", + er32(FWSM), extcnf_ctrl); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + ew32(EXTCNF_CTRL, extcnf_ctrl); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +out: + if (ret_val) + clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); + + return ret_val; +} + +/** + * e1000_release_swflag_ich8lan - Release software control flag + * @hw: pointer to the HW structure + * + * Releases the software control flag for performing PHY and select + * MAC CSR accesses. + **/ +static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + + extcnf_ctrl = er32(EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + ew32(EXTCNF_CTRL, extcnf_ctrl); + } else { + e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); + } + + clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); +} + +/** + * e1000_check_mng_mode_ich8lan - Checks management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has any manageability enabled. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + + fwsm = er32(FWSM); + return (fwsm & E1000_ICH_FWSM_FW_VALID) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_check_mng_mode_pchlan - Checks management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has iAMT enabled. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) +{ + u32 fwsm; + + fwsm = er32(FWSM); + return (fwsm & E1000_ICH_FWSM_FW_VALID) && + (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Checks if firmware is blocking the reset of the PHY. + * This is a function pointer entry point only called by + * reset routines. + **/ +static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + + fwsm = er32(FWSM); + + return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; +} + +/** + * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states + * @hw: pointer to the HW structure + * + * Assumes semaphore already acquired. + * + **/ +static s32 e1000_write_smbus_addr(struct e1000_hw *hw) +{ + u16 phy_data; + u32 strap = er32(STRAP); + s32 ret_val = 0; + + strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; + + ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~HV_SMB_ADDR_MASK; + phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); + phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; + + return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); +} + +/** + * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration + * @hw: pointer to the HW structure + * + * SW should configure the LCD from the NVM extended configuration region + * as a workaround for certain parts. + **/ +static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; + s32 ret_val = 0; + u16 word_addr, reg_data, reg_addr, phy_page = 0; + + /* + * Initialize the PHY from the NVM on ICH platforms. This + * is needed due to an issue where the NVM configuration is + * not properly autoloaded after power transitions. + * Therefore, after each PHY reset, we will load the + * configuration data out of the NVM manually. + */ + switch (hw->mac.type) { + case e1000_ich8lan: + if (phy->type != e1000_phy_igp_3) + return ret_val; + + if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || + (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; + break; + } + /* Fall-thru */ + case e1000_pchlan: + case e1000_pch2lan: + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; + break; + default: + return ret_val; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + data = er32(FEXTNVM); + if (!(data & sw_cfg_mask)) + goto release; + + /* + * Make sure HW does not configure LCD from PHY + * extended configuration before SW configuration + */ + data = er32(EXTCNF_CTRL); + if (!(hw->mac.type == e1000_pch2lan)) { + if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) + goto release; + } + + cnf_size = er32(EXTCNF_SIZE); + cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; + cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; + if (!cnf_size) + goto release; + + cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; + cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; + + if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && + (hw->mac.type == e1000_pchlan)) || + (hw->mac.type == e1000_pch2lan)) { + /* + * HW configures the SMBus address and LEDs when the + * OEM and LCD Write Enable bits are set in the NVM. + * When both NVM bits are cleared, SW will configure + * them instead. + */ + ret_val = e1000_write_smbus_addr(hw); + if (ret_val) + goto release; + + data = er32(LEDCTL); + ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, + (u16)data); + if (ret_val) + goto release; + } + + /* Configure LCD from extended configuration region. */ + + /* cnf_base_addr is in DWORD */ + word_addr = (u16)(cnf_base_addr << 1); + + for (i = 0; i < cnf_size; i++) { + ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, + ®_data); + if (ret_val) + goto release; + + ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), + 1, ®_addr); + if (ret_val) + goto release; + + /* Save off the PHY page for future writes. */ + if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { + phy_page = reg_data; + continue; + } + + reg_addr &= PHY_REG_MASK; + reg_addr |= phy_page; + + ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, + reg_data); + if (ret_val) + goto release; + } + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_k1_gig_workaround_hv - K1 Si workaround + * @hw: pointer to the HW structure + * @link: link up bool flag + * + * If K1 is enabled for 1Gbps, the MAC might stall when transitioning + * from a lower speed. This workaround disables K1 whenever link is at 1Gig + * If link is down, the function will restore the default K1 setting located + * in the NVM. + **/ +static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) +{ + s32 ret_val = 0; + u16 status_reg = 0; + bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; + + if (hw->mac.type != e1000_pchlan) + return 0; + + /* Wrap the whole flow with the sw flag */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ + if (link) { + if (hw->phy.type == e1000_phy_82578) { + ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, + &status_reg); + if (ret_val) + goto release; + + status_reg &= BM_CS_STATUS_LINK_UP | + BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_MASK; + + if (status_reg == (BM_CS_STATUS_LINK_UP | + BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_1000)) + k1_enable = false; + } + + if (hw->phy.type == e1000_phy_82577) { + ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, + &status_reg); + if (ret_val) + goto release; + + status_reg &= HV_M_STATUS_LINK_UP | + HV_M_STATUS_AUTONEG_COMPLETE | + HV_M_STATUS_SPEED_MASK; + + if (status_reg == (HV_M_STATUS_LINK_UP | + HV_M_STATUS_AUTONEG_COMPLETE | + HV_M_STATUS_SPEED_1000)) + k1_enable = false; + } + + /* Link stall fix for link up */ + ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), + 0x0100); + if (ret_val) + goto release; + + } else { + /* Link stall fix for link down */ + ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), + 0x4100); + if (ret_val) + goto release; + } + + ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); + +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_configure_k1_ich8lan - Configure K1 power state + * @hw: pointer to the HW structure + * @enable: K1 state to configure + * + * Configure the K1 power state based on the provided parameter. + * Assumes semaphore already acquired. + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + **/ +s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) +{ + s32 ret_val = 0; + u32 ctrl_reg = 0; + u32 ctrl_ext = 0; + u32 reg = 0; + u16 kmrn_reg = 0; + + ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + &kmrn_reg); + if (ret_val) + return ret_val; + + if (k1_enable) + kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; + else + kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; + + ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + kmrn_reg); + if (ret_val) + return ret_val; + + udelay(20); + ctrl_ext = er32(CTRL_EXT); + ctrl_reg = er32(CTRL); + + reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + reg |= E1000_CTRL_FRCSPD; + ew32(CTRL, reg); + + ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); + e1e_flush(); + udelay(20); + ew32(CTRL, ctrl_reg); + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); + udelay(20); + + return 0; +} + +/** + * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration + * @hw: pointer to the HW structure + * @d0_state: boolean if entering d0 or d3 device state + * + * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are + * collectively called OEM bits. The OEM Write Enable bit and SW Config bit + * in NVM determines whether HW should configure LPLU and Gbe Disable. + **/ +static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) +{ + s32 ret_val = 0; + u32 mac_reg; + u16 oem_reg; + + if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) + return ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + if (!(hw->mac.type == e1000_pch2lan)) { + mac_reg = er32(EXTCNF_CTRL); + if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) + goto release; + } + + mac_reg = er32(FEXTNVM); + if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) + goto release; + + mac_reg = er32(PHY_CTRL); + + ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); + if (ret_val) + goto release; + + oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); + + if (d0_state) { + if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) + oem_reg |= HV_OEM_BITS_GBE_DIS; + + if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) + oem_reg |= HV_OEM_BITS_LPLU; + } else { + if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) + oem_reg |= HV_OEM_BITS_GBE_DIS; + + if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | + E1000_PHY_CTRL_NOND0A_LPLU)) + oem_reg |= HV_OEM_BITS_LPLU; + } + + /* Set Restart auto-neg to activate the bits */ + if ((d0_state || (hw->mac.type != e1000_pchlan)) && + !hw->phy.ops.check_reset_block(hw)) + oem_reg |= HV_OEM_BITS_RESTART_AN; + + ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); + +release: + hw->phy.ops.release(hw); + + return ret_val; +} + + +/** + * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode + * @hw: pointer to the HW structure + **/ +static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) +{ + s32 ret_val; + u16 data; + + ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); + if (ret_val) + return ret_val; + + data |= HV_KMRN_MDIO_SLOW; + + ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); + + return ret_val; +} + +/** + * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be + * done after every PHY reset. + **/ +static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 phy_data; + + if (hw->mac.type != e1000_pchlan) + return 0; + + /* Set MDIO slow mode before any other MDIO access */ + if (hw->phy.type == e1000_phy_82577) { + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + } + + if (((hw->phy.type == e1000_phy_82577) && + ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || + ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { + /* Disable generation of early preamble */ + ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); + if (ret_val) + return ret_val; + + /* Preamble tuning for SSC */ + ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); + if (ret_val) + return ret_val; + } + + if (hw->phy.type == e1000_phy_82578) { + /* + * Return registers to default by doing a soft reset then + * writing 0x3140 to the control register. + */ + if (hw->phy.revision < 2) { + e1000e_phy_sw_reset(hw); + ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); + } + } + + /* Select page 0 */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + hw->phy.addr = 1; + ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); + hw->phy.ops.release(hw); + if (ret_val) + return ret_val; + + /* + * Configure the K1 Si workaround during phy reset assuming there is + * link so that it disables K1 if link is in 1Gbps. + */ + ret_val = e1000_k1_gig_workaround_hv(hw, true); + if (ret_val) + return ret_val; + + /* Workaround for link disconnects on a busy hub in half duplex */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); + if (ret_val) + goto release; + ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, + phy_data & 0x00FF); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY + * @hw: pointer to the HW structure + **/ +void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) +{ + u32 mac_reg; + u16 i, phy_reg = 0; + s32 ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) + goto release; + + /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ + for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { + mac_reg = er32(RAL(i)); + hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), + (u16)((mac_reg >> 16) & 0xFFFF)); + + mac_reg = er32(RAH(i)); + hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), + (u16)((mac_reg & E1000_RAH_AV) + >> 16)); + } + + e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + +release: + hw->phy.ops.release(hw); +} + +/** + * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation + * with 82579 PHY + * @hw: pointer to the HW structure + * @enable: flag to enable/disable workaround when enabling/disabling jumbos + **/ +s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) +{ + s32 ret_val = 0; + u16 phy_reg, data; + u32 mac_reg; + u16 i; + + if (hw->mac.type != e1000_pch2lan) + return 0; + + /* disable Rx path while enabling/disabling workaround */ + e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); + ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); + if (ret_val) + return ret_val; + + if (enable) { + /* + * Write Rx addresses (rar_entry_count for RAL/H, +4 for + * SHRAL/H) and initial CRC values to the MAC + */ + for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { + u8 mac_addr[ETH_ALEN] = {0}; + u32 addr_high, addr_low; + + addr_high = er32(RAH(i)); + if (!(addr_high & E1000_RAH_AV)) + continue; + addr_low = er32(RAL(i)); + mac_addr[0] = (addr_low & 0xFF); + mac_addr[1] = ((addr_low >> 8) & 0xFF); + mac_addr[2] = ((addr_low >> 16) & 0xFF); + mac_addr[3] = ((addr_low >> 24) & 0xFF); + mac_addr[4] = (addr_high & 0xFF); + mac_addr[5] = ((addr_high >> 8) & 0xFF); + + ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); + } + + /* Write Rx addresses to the PHY */ + e1000_copy_rx_addrs_to_phy_ich8lan(hw); + + /* Enable jumbo frame workaround in the MAC */ + mac_reg = er32(FFLT_DBG); + mac_reg &= ~(1 << 14); + mac_reg |= (7 << 15); + ew32(FFLT_DBG, mac_reg); + + mac_reg = er32(RCTL); + mac_reg |= E1000_RCTL_SECRC; + ew32(RCTL, mac_reg); + + ret_val = e1000e_read_kmrn_reg(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + &data); + if (ret_val) + return ret_val; + ret_val = e1000e_write_kmrn_reg(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + data | (1 << 0)); + if (ret_val) + return ret_val; + ret_val = e1000e_read_kmrn_reg(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + &data); + if (ret_val) + return ret_val; + data &= ~(0xF << 8); + data |= (0xB << 8); + ret_val = e1000e_write_kmrn_reg(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + data); + if (ret_val) + return ret_val; + + /* Enable jumbo frame workaround in the PHY */ + e1e_rphy(hw, PHY_REG(769, 23), &data); + data &= ~(0x7F << 5); + data |= (0x37 << 5); + ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); + if (ret_val) + return ret_val; + e1e_rphy(hw, PHY_REG(769, 16), &data); + data &= ~(1 << 13); + ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); + if (ret_val) + return ret_val; + e1e_rphy(hw, PHY_REG(776, 20), &data); + data &= ~(0x3FF << 2); + data |= (0x1A << 2); + ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); + if (ret_val) + return ret_val; + ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); + if (ret_val) + return ret_val; + e1e_rphy(hw, HV_PM_CTRL, &data); + ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); + if (ret_val) + return ret_val; + } else { + /* Write MAC register values back to h/w defaults */ + mac_reg = er32(FFLT_DBG); + mac_reg &= ~(0xF << 14); + ew32(FFLT_DBG, mac_reg); + + mac_reg = er32(RCTL); + mac_reg &= ~E1000_RCTL_SECRC; + ew32(RCTL, mac_reg); + + ret_val = e1000e_read_kmrn_reg(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + &data); + if (ret_val) + return ret_val; + ret_val = e1000e_write_kmrn_reg(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + data & ~(1 << 0)); + if (ret_val) + return ret_val; + ret_val = e1000e_read_kmrn_reg(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + &data); + if (ret_val) + return ret_val; + data &= ~(0xF << 8); + data |= (0xB << 8); + ret_val = e1000e_write_kmrn_reg(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + data); + if (ret_val) + return ret_val; + + /* Write PHY register values back to h/w defaults */ + e1e_rphy(hw, PHY_REG(769, 23), &data); + data &= ~(0x7F << 5); + ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); + if (ret_val) + return ret_val; + e1e_rphy(hw, PHY_REG(769, 16), &data); + data |= (1 << 13); + ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); + if (ret_val) + return ret_val; + e1e_rphy(hw, PHY_REG(776, 20), &data); + data &= ~(0x3FF << 2); + data |= (0x8 << 2); + ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); + if (ret_val) + return ret_val; + ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); + if (ret_val) + return ret_val; + e1e_rphy(hw, HV_PM_CTRL, &data); + ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); + if (ret_val) + return ret_val; + } + + /* re-enable Rx path after enabling/disabling workaround */ + return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); +} + +/** + * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be + * done after every PHY reset. + **/ +static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + + if (hw->mac.type != e1000_pch2lan) + return 0; + + /* Set MDIO slow mode before any other MDIO access */ + ret_val = e1000_set_mdio_slow_mode_hv(hw); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, + I82579_MSE_THRESHOLD); + if (ret_val) + goto release; + /* set MSE higher to enable link to stay up when noise is high */ + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034); + if (ret_val) + goto release; + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, + I82579_MSE_LINK_DOWN); + if (ret_val) + goto release; + /* drop link after 5 times MSE threshold was reached */ + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_k1_gig_workaround_lv - K1 Si workaround + * @hw: pointer to the HW structure + * + * Workaround to set the K1 beacon duration for 82579 parts + **/ +static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 status_reg = 0; + u32 mac_reg; + u16 phy_reg; + + if (hw->mac.type != e1000_pch2lan) + return 0; + + /* Set K1 beacon duration based on 1Gbps speed or otherwise */ + ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); + if (ret_val) + return ret_val; + + if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) + == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { + mac_reg = er32(FEXTNVM4); + mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; + + ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); + if (ret_val) + return ret_val; + + if (status_reg & HV_M_STATUS_SPEED_1000) { + mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; + phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; + } else { + mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; + phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; + } + ew32(FEXTNVM4, mac_reg); + ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); + } + + return ret_val; +} + +/** + * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware + * @hw: pointer to the HW structure + * @gate: boolean set to true to gate, false to ungate + * + * Gate/ungate the automatic PHY configuration via hardware; perform + * the configuration via software instead. + **/ +static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) +{ + u32 extcnf_ctrl; + + if (hw->mac.type != e1000_pch2lan) + return; + + extcnf_ctrl = er32(EXTCNF_CTRL); + + if (gate) + extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; + else + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; + + ew32(EXTCNF_CTRL, extcnf_ctrl); +} + +/** + * e1000_lan_init_done_ich8lan - Check for PHY config completion + * @hw: pointer to the HW structure + * + * Check the appropriate indication the MAC has finished configuring the + * PHY after a software reset. + **/ +static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) +{ + u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; + + /* Wait for basic configuration completes before proceeding */ + do { + data = er32(STATUS); + data &= E1000_STATUS_LAN_INIT_DONE; + udelay(100); + } while ((!data) && --loop); + + /* + * If basic configuration is incomplete before the above loop + * count reaches 0, loading the configuration from NVM will + * leave the PHY in a bad state possibly resulting in no link. + */ + if (loop == 0) + e_dbg("LAN_INIT_DONE not set, increase timeout\n"); + + /* Clear the Init Done bit for the next init event */ + data = er32(STATUS); + data &= ~E1000_STATUS_LAN_INIT_DONE; + ew32(STATUS, data); +} + +/** + * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset + * @hw: pointer to the HW structure + **/ +static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 reg; + + if (hw->phy.ops.check_reset_block(hw)) + return 0; + + /* Allow time for h/w to get to quiescent state after reset */ + usleep_range(10000, 20000); + + /* Perform any necessary post-reset workarounds */ + switch (hw->mac.type) { + case e1000_pchlan: + ret_val = e1000_hv_phy_workarounds_ich8lan(hw); + if (ret_val) + return ret_val; + break; + case e1000_pch2lan: + ret_val = e1000_lv_phy_workarounds_ich8lan(hw); + if (ret_val) + return ret_val; + break; + default: + break; + } + + /* Clear the host wakeup bit after lcd reset */ + if (hw->mac.type >= e1000_pchlan) { + e1e_rphy(hw, BM_PORT_GEN_CFG, ®); + reg &= ~BM_WUC_HOST_WU_BIT; + e1e_wphy(hw, BM_PORT_GEN_CFG, reg); + } + + /* Configure the LCD with the extended configuration region in NVM */ + ret_val = e1000_sw_lcd_config_ich8lan(hw); + if (ret_val) + return ret_val; + + /* Configure the LCD with the OEM bits in NVM */ + ret_val = e1000_oem_bits_config_ich8lan(hw, true); + + if (hw->mac.type == e1000_pch2lan) { + /* Ungate automatic PHY configuration on non-managed 82579 */ + if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { + usleep_range(10000, 20000); + e1000_gate_hw_phy_config_ich8lan(hw, false); + } + + /* Set EEE LPI Update Timer to 200usec */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, + I82579_LPI_UPDATE_TIMER); + if (!ret_val) + ret_val = hw->phy.ops.write_reg_locked(hw, + I82579_EMI_DATA, + 0x1387); + hw->phy.ops.release(hw); + } + + return ret_val; +} + +/** + * e1000_phy_hw_reset_ich8lan - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY + * This is a function pointer entry point called by drivers + * or other shared routines. + **/ +static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + + /* Gate automatic PHY configuration by hardware on non-managed 82579 */ + if ((hw->mac.type == e1000_pch2lan) && + !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, true); + + ret_val = e1000e_phy_hw_reset_generic(hw); + if (ret_val) + return ret_val; + + return e1000_post_phy_reset_ich8lan(hw); +} + +/** + * e1000_set_lplu_state_pchlan - Set Low Power Link Up state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU state according to the active flag. For PCH, if OEM write + * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set + * the phy speed. This function will manually set the LPLU bit and restart + * auto-neg as hw would do. D3 and D0 LPLU will call the same function + * since it configures the same bit. + **/ +static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) +{ + s32 ret_val = 0; + u16 oem_reg; + + ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); + if (ret_val) + return ret_val; + + if (active) + oem_reg |= HV_OEM_BITS_LPLU; + else + oem_reg &= ~HV_OEM_BITS_LPLU; + + if (!hw->phy.ops.check_reset_block(hw)) + oem_reg |= HV_OEM_BITS_RESTART_AN; + + return e1e_wphy(hw, HV_OEM_BITS, oem_reg); +} + +/** + * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = 0; + u16 data; + + if (phy->type == e1000_phy_ife) + return 0; + + phy_ctrl = er32(PHY_CTRL); + + if (active) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + ew32(PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return 0; + + /* + * Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000e_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); + if (ret_val) + return ret_val; + } else { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + ew32(PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return 0; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } + + return 0; +} + +/** + * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state + * @hw: pointer to the HW structure + * @active: true to enable LPLU, false to disable + * + * Sets the LPLU D3 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = 0; + u16 data; + + phy_ctrl = er32(PHY_CTRL); + + if (!active) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + ew32(PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return 0; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + ew32(PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return 0; + + /* + * Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000e_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); + } + + return ret_val; +} + +/** + * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 + * @hw: pointer to the HW structure + * @bank: pointer to the variable that returns the active bank + * + * Reads signature byte from the NVM using the flash access registers. + * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. + **/ +static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) +{ + u32 eecd; + struct e1000_nvm_info *nvm = &hw->nvm; + u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); + u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; + u8 sig_byte = 0; + s32 ret_val; + + switch (hw->mac.type) { + case e1000_ich8lan: + case e1000_ich9lan: + eecd = er32(EECD); + if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == + E1000_EECD_SEC1VAL_VALID_MASK) { + if (eecd & E1000_EECD_SEC1VAL) + *bank = 1; + else + *bank = 0; + + return 0; + } + e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); + /* fall-thru */ + default: + /* set bank to 0 in case flash read fails */ + *bank = 0; + + /* Check bank 0 */ + ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, + &sig_byte); + if (ret_val) + return ret_val; + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 0; + return 0; + } + + /* Check bank 1 */ + ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + + bank1_offset, + &sig_byte); + if (ret_val) + return ret_val; + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 1; + return 0; + } + + e_dbg("ERROR: No valid NVM bank present\n"); + return -E1000_ERR_NVM; + } +} + +/** + * e1000_read_nvm_ich8lan - Read word(s) from the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to read. + * @words: Size of data to read in words + * @data: Pointer to the word(s) to read at offset. + * + * Reads a word(s) from the NVM using the flash access registers. + **/ +static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 act_offset; + s32 ret_val = 0; + u32 bank = 0; + u16 i, word; + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + e_dbg("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + nvm->ops.acquire(hw); + + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val) { + e_dbg("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + act_offset = (bank) ? nvm->flash_bank_size : 0; + act_offset += offset; + + ret_val = 0; + for (i = 0; i < words; i++) { + if (dev_spec->shadow_ram[offset+i].modified) { + data[i] = dev_spec->shadow_ram[offset+i].value; + } else { + ret_val = e1000_read_flash_word_ich8lan(hw, + act_offset + i, + &word); + if (ret_val) + break; + data[i] = word; + } + } + + nvm->ops.release(hw); + +out: + if (ret_val) + e_dbg("NVM read error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_flash_cycle_init_ich8lan - Initialize flash + * @hw: pointer to the HW structure + * + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + **/ +static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + s32 ret_val = -E1000_ERR_NVM; + + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + + /* Check if the flash descriptor is valid */ + if (hsfsts.hsf_status.fldesvalid == 0) { + e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); + return -E1000_ERR_NVM; + } + + /* Clear FCERR and DAEL in hw status by writing 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); + + /* + * Either we should have a hardware SPI cycle in progress + * bit to check against, in order to start a new cycle or + * FDONE bit should be changed in the hardware so that it + * is 1 after hardware reset, which can then be used as an + * indication whether a cycle is in progress or has been + * completed. + */ + + if (hsfsts.hsf_status.flcinprog == 0) { + /* + * There is no cycle running at present, + * so we can start a cycle. + * Begin by setting Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); + ret_val = 0; + } else { + s32 i; + + /* + * Otherwise poll for sometime so the current + * cycle has a chance to end before giving up. + */ + for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcinprog == 0) { + ret_val = 0; + break; + } + udelay(1); + } + if (!ret_val) { + /* + * Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); + } else { + e_dbg("Flash controller busy, cannot get access\n"); + } + } + + return ret_val; +} + +/** + * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) + * @hw: pointer to the HW structure + * @timeout: maximum time to wait for completion + * + * This function starts a flash cycle and waits for its completion. + **/ +static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + u32 i = 0; + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone == 1) + break; + udelay(1); + } while (i++ < timeout); + + if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) + return 0; + + return -E1000_ERR_NVM; +} + +/** + * e1000_read_flash_word_ich8lan - Read word from flash + * @hw: pointer to the HW structure + * @offset: offset to data location + * @data: pointer to the location for storing the data + * + * Reads the flash word at offset into data. Offset is converted + * to bytes before read. + **/ +static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + /* Must convert offset into bytes. */ + offset <<= 1; + + return e1000_read_flash_data_ich8lan(hw, offset, 2, data); +} + +/** + * e1000_read_flash_byte_ich8lan - Read byte from flash + * @hw: pointer to the HW structure + * @offset: The offset of the byte to read. + * @data: Pointer to a byte to store the value read. + * + * Reads a single byte from the NVM using the flash access registers. + **/ +static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 *data) +{ + s32 ret_val; + u16 word = 0; + + ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); + if (ret_val) + return ret_val; + + *data = (u8)word; + + return 0; +} + +/** + * e1000_read_flash_data_ich8lan - Read byte or word from NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte or word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: Pointer to the word to store the value read. + * + * Reads a byte or word from the NVM using the flash access registers. + **/ +static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 *data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val = -E1000_ERR_NVM; + u8 count = 0; + + if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + + flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr; + + do { + udelay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val) + break; + + hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; + ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); + + ew32flash(ICH_FLASH_FADDR, flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_READ_COMMAND_TIMEOUT); + + /* + * Check if FCERR is set to 1, if set to 1, clear it + * and try the whole sequence a few more times, else + * read in (shift in) the Flash Data0, the order is + * least significant byte first msb to lsb + */ + if (!ret_val) { + flash_data = er32flash(ICH_FLASH_FDATA0); + if (size == 1) + *data = (u8)(flash_data & 0x000000FF); + else if (size == 2) + *data = (u16)(flash_data & 0x0000FFFF); + break; + } else { + /* + * If we've gotten here, then things are probably + * completely hosed, but if the error condition is + * detected, it won't hurt to give it another try... + * ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) { + /* Repeat for some time before giving up. */ + continue; + } else if (hsfsts.hsf_status.flcdone == 0) { + e_dbg("Timeout error - flash cycle did not complete.\n"); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** + * e1000_write_nvm_ich8lan - Write word(s) to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to write. + * @words: Size of data to write in words + * @data: Pointer to the word(s) to write at offset. + * + * Writes a byte or word to the NVM using the flash access registers. + **/ +static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u16 i; + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + e_dbg("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + nvm->ops.acquire(hw); + + for (i = 0; i < words; i++) { + dev_spec->shadow_ram[offset+i].modified = true; + dev_spec->shadow_ram[offset+i].value = data[i]; + } + + nvm->ops.release(hw); + + return 0; +} + +/** + * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM + * @hw: pointer to the HW structure + * + * The NVM checksum is updated by calling the generic update_nvm_checksum, + * which writes the checksum to the shadow ram. The changes in the shadow + * ram are then committed to the EEPROM by processing each bank at a time + * checking for the modified bit and writing only the pending changes. + * After a successful commit, the shadow ram is cleared and is ready for + * future writes. + **/ +static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 i, act_offset, new_bank_offset, old_bank_offset, bank; + s32 ret_val; + u16 data; + + ret_val = e1000e_update_nvm_checksum_generic(hw); + if (ret_val) + goto out; + + if (nvm->type != e1000_nvm_flash_sw) + goto out; + + nvm->ops.acquire(hw); + + /* + * We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written + */ + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val) { + e_dbg("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + if (bank == 0) { + new_bank_offset = nvm->flash_bank_size; + old_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); + if (ret_val) + goto release; + } else { + old_bank_offset = nvm->flash_bank_size; + new_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); + if (ret_val) + goto release; + } + + for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { + /* + * Determine whether to write the value stored + * in the other NVM bank or a modified value stored + * in the shadow RAM + */ + if (dev_spec->shadow_ram[i].modified) { + data = dev_spec->shadow_ram[i].value; + } else { + ret_val = e1000_read_flash_word_ich8lan(hw, i + + old_bank_offset, + &data); + if (ret_val) + break; + } + + /* + * If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress + */ + if (i == E1000_ICH_NVM_SIG_WORD) + data |= E1000_ICH_NVM_SIG_MASK; + + /* Convert offset to bytes. */ + act_offset = (i + new_bank_offset) << 1; + + udelay(100); + /* Write the bytes to the new bank. */ + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset, + (u8)data); + if (ret_val) + break; + + udelay(100); + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset + 1, + (u8)(data >> 8)); + if (ret_val) + break; + } + + /* + * Don't bother writing the segment valid bits if sector + * programming failed. + */ + if (ret_val) { + /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ + e_dbg("Flash commit failed.\n"); + goto release; + } + + /* + * Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b + */ + act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; + ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); + if (ret_val) + goto release; + + data &= 0xBFFF; + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset * 2 + 1, + (u8)(data >> 8)); + if (ret_val) + goto release; + + /* + * And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase + */ + act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); + if (ret_val) + goto release; + + /* Great! Everything worked, we can now clear the cached entries. */ + for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { + dev_spec->shadow_ram[i].modified = false; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + +release: + nvm->ops.release(hw); + + /* + * Reload the EEPROM, or else modifications will not appear + * until after the next adapter reset. + */ + if (!ret_val) { + nvm->ops.reload(hw); + usleep_range(10000, 20000); + } + +out: + if (ret_val) + e_dbg("NVM update error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. + * If the bit is 0, that the EEPROM had been modified, but the checksum was not + * calculated, in which case we need to calculate the checksum and set bit 6. + **/ +static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 data; + + /* + * Read 0x19 and check bit 6. If this bit is 0, the checksum + * needs to be fixed. This bit is an indication that the NVM + * was prepared by OEM software and did not calculate the + * checksum...a likely scenario. + */ + ret_val = e1000_read_nvm(hw, 0x19, 1, &data); + if (ret_val) + return ret_val; + + if ((data & 0x40) == 0) { + data |= 0x40; + ret_val = e1000_write_nvm(hw, 0x19, 1, &data); + if (ret_val) + return ret_val; + ret_val = e1000e_update_nvm_checksum(hw); + if (ret_val) + return ret_val; + } + + return e1000e_validate_nvm_checksum_generic(hw); +} + +/** + * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only + * @hw: pointer to the HW structure + * + * To prevent malicious write/erase of the NVM, set it to be read-only + * so that the hardware ignores all write/erase cycles of the NVM via + * the flash control registers. The shadow-ram copy of the NVM will + * still be updated, however any updates to this copy will not stick + * across driver reloads. + **/ +void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + union ich8_flash_protected_range pr0; + union ich8_hws_flash_status hsfsts; + u32 gfpreg; + + nvm->ops.acquire(hw); + + gfpreg = er32flash(ICH_FLASH_GFPREG); + + /* Write-protect GbE Sector of NVM */ + pr0.regval = er32flash(ICH_FLASH_PR0); + pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; + pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); + pr0.range.wpe = true; + ew32flash(ICH_FLASH_PR0, pr0.regval); + + /* + * Lock down a subset of GbE Flash Control Registers, e.g. + * PR0 to prevent the write-protection from being lifted. + * Once FLOCKDN is set, the registers protected by it cannot + * be written until FLOCKDN is cleared by a hardware reset. + */ + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + hsfsts.hsf_status.flockdn = true; + ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); + + nvm->ops.release(hw); +} + +/** + * e1000_write_flash_data_ich8lan - Writes bytes to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte/word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: The byte(s) to write to the NVM. + * + * Writes one/two bytes to the NVM using the flash access registers. + **/ +static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val; + u8 count = 0; + + if (size < 1 || size > 2 || data > size * 0xff || + offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + + flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr; + + do { + udelay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val) + break; + + hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size -1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; + ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); + + ew32flash(ICH_FLASH_FADDR, flash_linear_addr); + + if (size == 1) + flash_data = (u32)data & 0x00FF; + else + flash_data = (u32)data; + + ew32flash(ICH_FLASH_FDATA0, flash_data); + + /* + * check if FCERR is set to 1 , if set to 1, clear it + * and try the whole sequence a few more times else done + */ + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_WRITE_COMMAND_TIMEOUT); + if (!ret_val) + break; + + /* + * If we're here, then things are most likely + * completely hosed, but if the error condition + * is detected, it won't hurt to give it another + * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) + /* Repeat for some time before giving up. */ + continue; + if (hsfsts.hsf_status.flcdone == 0) { + e_dbg("Timeout error - flash cycle did not complete.\n"); + break; + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** + * e1000_write_flash_byte_ich8lan - Write a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The index of the byte to read. + * @data: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + **/ +static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 data) +{ + u16 word = (u16)data; + + return e1000_write_flash_data_ich8lan(hw, offset, 1, word); +} + +/** + * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The offset of the byte to write. + * @byte: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + * Goes through a retry algorithm before giving up. + **/ +static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte) +{ + s32 ret_val; + u16 program_retries; + + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (!ret_val) + return ret_val; + + for (program_retries = 0; program_retries < 100; program_retries++) { + e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); + udelay(100); + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (!ret_val) + break; + } + if (program_retries == 100) + return -E1000_ERR_NVM; + + return 0; +} + +/** + * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM + * @hw: pointer to the HW structure + * @bank: 0 for first bank, 1 for second bank, etc. + * + * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. + * bank N is 4096 * N + flash_reg_addr. + **/ +static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + /* bank size is in 16bit words - adjust to bytes */ + u32 flash_bank_size = nvm->flash_bank_size * 2; + s32 ret_val; + s32 count = 0; + s32 j, iteration, sector_size; + + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + + /* + * Determine HW Sector size: Read BERASE bits of hw flash status + * register + * 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector + * can be calculated as = bank * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as = bank * 4096 + * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 + * (ich9 only, otherwise error condition) + * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 + */ + switch (hsfsts.hsf_status.berasesz) { + case 0: + /* Hw sector size 256 */ + sector_size = ICH_FLASH_SEG_SIZE_256; + iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; + break; + case 1: + sector_size = ICH_FLASH_SEG_SIZE_4K; + iteration = 1; + break; + case 2: + sector_size = ICH_FLASH_SEG_SIZE_8K; + iteration = 1; + break; + case 3: + sector_size = ICH_FLASH_SEG_SIZE_64K; + iteration = 1; + break; + default: + return -E1000_ERR_NVM; + } + + /* Start with the base address, then add the sector offset. */ + flash_linear_addr = hw->nvm.flash_base_addr; + flash_linear_addr += (bank) ? flash_bank_size : 0; + + for (j = 0; j < iteration ; j++) { + do { + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val) + return ret_val; + + /* + * Write a value 11 (block Erase) in Flash + * Cycle field in hw flash control + */ + hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; + ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); + + /* + * Write the last 24 bits of an index within the + * block into Flash Linear address field in Flash + * Address. + */ + flash_linear_addr += (j * sector_size); + ew32flash(ICH_FLASH_FADDR, flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_ERASE_COMMAND_TIMEOUT); + if (!ret_val) + break; + + /* + * Check if FCERR is set to 1. If 1, + * clear it and try the whole sequence + * a few more times else Done + */ + hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr == 1) + /* repeat for some time before giving up */ + continue; + else if (hsfsts.hsf_status.flcdone == 0) + return ret_val; + } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); + } + + return 0; +} + +/** + * e1000_valid_led_default_ich8lan - Set the default LED settings + * @hw: pointer to the HW structure + * @data: Pointer to the LED settings + * + * Reads the LED default settings from the NVM to data. If the NVM LED + * settings is all 0's or F's, set the LED default to a valid LED default + * setting. + **/ +static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || + *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT_ICH8LAN; + + return 0; +} + +/** + * e1000_id_led_init_pchlan - store LED configurations + * @hw: pointer to the HW structure + * + * PCH does not control LEDs via the LEDCTL register, rather it uses + * the PHY LED configuration register. + * + * PCH also does not have an "always on" or "always off" mode which + * complicates the ID feature. Instead of using the "on" mode to indicate + * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), + * use "link_up" mode. The LEDs will still ID on request if there is no + * link based on logic in e1000_led_[on|off]_pchlan(). + **/ +static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; + const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; + u16 data, i, temp, shift; + + /* Get default ID LED modes */ + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = er32(LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; + shift = (i * 5); + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode1 |= (ledctl_on << shift); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode1 |= (ledctl_off << shift); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode2 |= (ledctl_on << shift); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode2 |= (ledctl_off << shift); + break; + default: + /* Do nothing */ + break; + } + } + + return 0; +} + +/** + * e1000_get_bus_info_ich8lan - Get/Set the bus type and width + * @hw: pointer to the HW structure + * + * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability + * register, so the the bus width is hard coded. + **/ +static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + + ret_val = e1000e_get_bus_info_pcie(hw); + + /* + * ICH devices are "PCI Express"-ish. They have + * a configuration space, but do not contain + * PCI Express Capability registers, so bus width + * must be hardcoded. + */ + if (bus->width == e1000_bus_width_unknown) + bus->width = e1000_bus_width_pcie_x1; + + return ret_val; +} + +/** + * e1000_reset_hw_ich8lan - Reset the hardware + * @hw: pointer to the HW structure + * + * Does a full reset of the hardware which includes a reset of the PHY and + * MAC. + **/ +static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u16 reg; + u32 ctrl, kab; + s32 ret_val; + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000e_disable_pcie_master(hw); + if (ret_val) + e_dbg("PCI-E Master disable polling has failed.\n"); + + e_dbg("Masking off all interrupts\n"); + ew32(IMC, 0xffffffff); + + /* + * Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC + * with the global reset. + */ + ew32(RCTL, 0); + ew32(TCTL, E1000_TCTL_PSP); + e1e_flush(); + + usleep_range(10000, 20000); + + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac.type == e1000_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + ew32(PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + ew32(PBS, E1000_PBS_16K); + } + + if (hw->mac.type == e1000_pchlan) { + /* Save the NVM K1 bit setting*/ + ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); + if (ret_val) + return ret_val; + + if (reg & E1000_NVM_K1_ENABLE) + dev_spec->nvm_k1_enabled = true; + else + dev_spec->nvm_k1_enabled = false; + } + + ctrl = er32(CTRL); + + if (!hw->phy.ops.check_reset_block(hw)) { + /* + * Full-chip reset requires MAC and PHY reset at the same + * time to make sure the interface between MAC and the + * external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + + /* + * Gate automatic PHY configuration by hardware on + * non-managed 82579 + */ + if ((hw->mac.type == e1000_pch2lan) && + !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, true); + } + ret_val = e1000_acquire_swflag_ich8lan(hw); + e_dbg("Issuing a global reset to ich8lan\n"); + ew32(CTRL, (ctrl | E1000_CTRL_RST)); + /* cannot issue a flush here because it hangs the hardware */ + msleep(20); + + if (!ret_val) + clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); + + if (ctrl & E1000_CTRL_PHY_RST) { + ret_val = hw->phy.ops.get_cfg_done(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_post_phy_reset_ich8lan(hw); + if (ret_val) + return ret_val; + } + + /* + * For PCH, this write will make sure that any noise + * will be detected as a CRC error and be dropped rather than show up + * as a bad packet to the DMA engine. + */ + if (hw->mac.type == e1000_pchlan) + ew32(CRC_OFFSET, 0x65656565); + + ew32(IMC, 0xffffffff); + er32(ICR); + + kab = er32(KABGTXD); + kab |= E1000_KABGTXD_BGSQLBIAS; + ew32(KABGTXD, kab); + + return 0; +} + +/** + * e1000_init_hw_ich8lan - Initialize the hardware + * @hw: pointer to the HW structure + * + * Prepares the hardware for transmit and receive by doing the following: + * - initialize hardware bits + * - initialize LED identification + * - setup receive address registers + * - setup flow control + * - setup transmit descriptors + * - clear statistics + **/ +static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl_ext, txdctl, snoop; + s32 ret_val; + u16 i; + + e1000_initialize_hw_bits_ich8lan(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) + e_dbg("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + + /* Setup the receive address. */ + e1000e_init_rx_addrs(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + e_dbg("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* + * The 82578 Rx buffer will stall if wakeup is enabled in host and + * the ME. Disable wakeup by clearing the host wakeup bit. + * Reset the phy after disabling host wakeup to reset the Rx buffer. + */ + if (hw->phy.type == e1000_phy_82578) { + e1e_rphy(hw, BM_PORT_GEN_CFG, &i); + i &= ~BM_WUC_HOST_WU_BIT; + e1e_wphy(hw, BM_PORT_GEN_CFG, i); + ret_val = e1000_phy_hw_reset_ich8lan(hw); + if (ret_val) + return ret_val; + } + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy for both queues */ + txdctl = er32(TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH; + ew32(TXDCTL(0), txdctl); + txdctl = er32(TXDCTL(1)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH; + ew32(TXDCTL(1), txdctl); + + /* + * ICH8 has opposite polarity of no_snoop bits. + * By default, we should use snoop behavior. + */ + if (mac->type == e1000_ich8lan) + snoop = PCIE_ICH8_SNOOP_ALL; + else + snoop = (u32) ~(PCIE_NO_SNOOP_ALL); + e1000e_set_pcie_no_snoop(hw, snoop); + + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + ew32(CTRL_EXT, ctrl_ext); + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_ich8lan(hw); + + return ret_val; +} +/** + * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits + * @hw: pointer to the HW structure + * + * Sets/Clears required hardware bits necessary for correctly setting up the + * hardware for transmit and receive. + **/ +static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + + /* Extended Device Control */ + reg = er32(CTRL_EXT); + reg |= (1 << 22); + /* Enable PHY low-power state when MAC is at D3 w/o WoL */ + if (hw->mac.type >= e1000_pchlan) + reg |= E1000_CTRL_EXT_PHYPDEN; + ew32(CTRL_EXT, reg); + + /* Transmit Descriptor Control 0 */ + reg = er32(TXDCTL(0)); + reg |= (1 << 22); + ew32(TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = er32(TXDCTL(1)); + reg |= (1 << 22); + ew32(TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = er32(TARC(0)); + if (hw->mac.type == e1000_ich8lan) + reg |= (1 << 28) | (1 << 29); + reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); + ew32(TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = er32(TARC(1)); + if (er32(TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + reg |= (1 << 24) | (1 << 26) | (1 << 30); + ew32(TARC(1), reg); + + /* Device Status */ + if (hw->mac.type == e1000_ich8lan) { + reg = er32(STATUS); + reg &= ~(1 << 31); + ew32(STATUS, reg); + } + + /* + * work-around descriptor data corruption issue during nfs v2 udp + * traffic, just disable the nfs filtering capability + */ + reg = er32(RFCTL); + reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); + ew32(RFCTL, reg); +} + +/** + * e1000_setup_link_ich8lan - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + + if (hw->phy.ops.check_reset_block(hw)) + return 0; + + /* + * ICH parts do not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + if (hw->fc.requested_mode == e1000_fc_default) { + /* Workaround h/w hang when Tx flow control enabled */ + if (hw->mac.type == e1000_pchlan) + hw->fc.requested_mode = e1000_fc_rx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + } + + /* + * Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + e_dbg("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Continue to configure the copper link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + ew32(FCTTV, hw->fc.pause_time); + if ((hw->phy.type == e1000_phy_82578) || + (hw->phy.type == e1000_phy_82579) || + (hw->phy.type == e1000_phy_82577)) { + ew32(FCRTV_PCH, hw->fc.refresh_time); + + ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), + hw->fc.pause_time); + if (ret_val) + return ret_val; + } + + return e1000e_set_fc_watermarks(hw); +} + +/** + * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface + * @hw: pointer to the HW structure + * + * Configures the kumeran interface to the PHY to wait the appropriate time + * when polling the PHY, then call the generic setup_copper_link to finish + * configuring the copper link. + **/ +static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 reg_data; + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ew32(CTRL, ctrl); + + /* + * Set the mac to wait the maximum time between each iteration + * and increase the max iterations when polling the phy; + * this fixes erroneous timeouts at 10Mbps. + */ + ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); + if (ret_val) + return ret_val; + ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, + ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, + reg_data); + if (ret_val) + return ret_val; + + switch (hw->phy.type) { + case e1000_phy_igp_3: + ret_val = e1000e_copper_link_setup_igp(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_bm: + case e1000_phy_82578: + ret_val = e1000e_copper_link_setup_m88(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_82577: + case e1000_phy_82579: + ret_val = e1000_copper_link_setup_82577(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_ife: + ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); + if (ret_val) + return ret_val; + + reg_data &= ~IFE_PMC_AUTO_MDIX; + + switch (hw->phy.mdix) { + case 1: + reg_data &= ~IFE_PMC_FORCE_MDIX; + break; + case 2: + reg_data |= IFE_PMC_FORCE_MDIX; + break; + case 0: + default: + reg_data |= IFE_PMC_AUTO_MDIX; + break; + } + ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); + if (ret_val) + return ret_val; + break; + default: + break; + } + + return e1000e_setup_copper_link(hw); +} + +/** + * e1000_get_link_up_info_ich8lan - Get current link speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to store current link speed + * @duplex: pointer to store the current link duplex + * + * Calls the generic get_speed_and_duplex to retrieve the current link + * information and then calls the Kumeran lock loss workaround for links at + * gigabit speeds. + **/ +static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); + if (ret_val) + return ret_val; + + if ((hw->mac.type == e1000_ich8lan) && + (hw->phy.type == e1000_phy_igp_3) && + (*speed == SPEED_1000)) { + ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); + } + + return ret_val; +} + +/** + * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround + * @hw: pointer to the HW structure + * + * Work-around for 82566 Kumeran PCS lock loss: + * On link status change (i.e. PCI reset, speed change) and link is up and + * speed is gigabit- + * 0) if workaround is optionally disabled do nothing + * 1) wait 1ms for Kumeran link to come up + * 2) check Kumeran Diagnostic register PCS lock loss bit + * 3) if not set the link is locked (all is good), otherwise... + * 4) reset the PHY + * 5) repeat up to 10 times + * Note: this is only called for IGP3 copper when speed is 1gb. + **/ +static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 phy_ctrl; + s32 ret_val; + u16 i, data; + bool link; + + if (!dev_spec->kmrn_lock_loss_workaround_enabled) + return 0; + + /* + * Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouled up link + * stability + */ + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (!link) + return 0; + + for (i = 0; i < 10; i++) { + /* read once to clear */ + ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return 0; + + /* Issue PHY reset */ + e1000_phy_hw_reset(hw); + mdelay(5); + } + /* Disable GigE link negotiation */ + phy_ctrl = er32(PHY_CTRL); + phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + ew32(PHY_CTRL, phy_ctrl); + + /* + * Call gig speed drop workaround on Gig disable before accessing + * any PHY registers + */ + e1000e_gig_downshift_workaround_ich8lan(hw); + + /* unable to acquire PCS lock */ + return -E1000_ERR_PHY; +} + +/** + * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state + * @hw: pointer to the HW structure + * @state: boolean value used to set the current Kumeran workaround state + * + * If ICH8, set the current Kumeran workaround state (enabled - true + * /disabled - false). + **/ +void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + + if (hw->mac.type != e1000_ich8lan) { + e_dbg("Workaround applies to ICH8 only.\n"); + return; + } + + dev_spec->kmrn_lock_loss_workaround_enabled = state; +} + +/** + * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 + * @hw: pointer to the HW structure + * + * Workaround for 82566 power-down on D3 entry: + * 1) disable gigabit link + * 2) write VR power-down enable + * 3) read it back + * Continue if successful, else issue LCD reset and repeat + **/ +void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + u16 data; + u8 retry = 0; + + if (hw->phy.type != e1000_phy_igp_3) + return; + + /* Try the workaround twice (if needed) */ + do { + /* Disable link */ + reg = er32(PHY_CTRL); + reg |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + ew32(PHY_CTRL, reg); + + /* + * Call gig speed drop workaround on Gig disable before + * accessing any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000e_gig_downshift_workaround_ich8lan(hw); + + /* Write VR power-down enable */ + e1e_rphy(hw, IGP3_VR_CTRL, &data); + data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); + + /* Read it back and test */ + e1e_rphy(hw, IGP3_VR_CTRL, &data); + data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = er32(CTRL); + ew32(CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); +} + +/** + * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working + * @hw: pointer to the HW structure + * + * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), + * LPLU, Gig disable, MDIC PHY reset): + * 1) Set Kumeran Near-end loopback + * 2) Clear Kumeran Near-end loopback + * Should only be called for ICH8[m] devices with any 1G Phy. + **/ +void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 reg_data; + + if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) + return; + + ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + ®_data); + if (ret_val) + return; + reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; + ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); + if (ret_val) + return; + reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; + ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); +} + +/** + * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx + * @hw: pointer to the HW structure + * + * During S0 to Sx transition, it is possible the link remains at gig + * instead of negotiating to a lower speed. Before going to Sx, set + * 'Gig Disable' to force link speed negotiation to a lower speed based on + * the LPLU setting in the NVM or custom setting. For PCH and newer parts, + * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also + * needs to be written. + **/ +void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) +{ + u32 phy_ctrl; + s32 ret_val; + + phy_ctrl = er32(PHY_CTRL); + phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; + ew32(PHY_CTRL, phy_ctrl); + + if (hw->mac.type == e1000_ich8lan) + e1000e_gig_downshift_workaround_ich8lan(hw); + + if (hw->mac.type >= e1000_pchlan) { + e1000_oem_bits_config_ich8lan(hw, false); + + /* Reset PHY to activate OEM bits on 82577/8 */ + if (hw->mac.type == e1000_pchlan) + e1000e_phy_hw_reset_generic(hw); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + e1000_write_smbus_addr(hw); + hw->phy.ops.release(hw); + } +} + +/** + * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 + * @hw: pointer to the HW structure + * + * During Sx to S0 transitions on non-managed devices or managed devices + * on which PHY resets are not blocked, if the PHY registers cannot be + * accessed properly by the s/w toggle the LANPHYPC value to power cycle + * the PHY. + **/ +void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) +{ + u16 phy_id1, phy_id2; + s32 ret_val; + + if ((hw->mac.type != e1000_pch2lan) || + hw->phy.ops.check_reset_block(hw)) + return; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + e_dbg("Failed to acquire PHY semaphore in resume\n"); + return; + } + + /* Test access to the PHY registers by reading the ID regs */ + ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1); + if (ret_val) + goto release; + ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2); + if (ret_val) + goto release; + + if (hw->phy.id == ((u32)(phy_id1 << 16) | + (u32)(phy_id2 & PHY_REVISION_MASK))) + goto release; + + e1000_toggle_lanphypc_value_ich8lan(hw); + + hw->phy.ops.release(hw); + msleep(50); + e1000_phy_hw_reset(hw); + msleep(50); + return; + +release: + hw->phy.ops.release(hw); +} + +/** + * e1000_cleanup_led_ich8lan - Restore the default LED operation + * @hw: pointer to the HW structure + * + * Return the LED back to the default configuration. + **/ +static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) +{ + if (hw->phy.type == e1000_phy_ife) + return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); + + ew32(LEDCTL, hw->mac.ledctl_default); + return 0; +} + +/** + * e1000_led_on_ich8lan - Turn LEDs on + * @hw: pointer to the HW structure + * + * Turn on the LEDs. + **/ +static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) +{ + if (hw->phy.type == e1000_phy_ife) + return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); + + ew32(LEDCTL, hw->mac.ledctl_mode2); + return 0; +} + +/** + * e1000_led_off_ich8lan - Turn LEDs off + * @hw: pointer to the HW structure + * + * Turn off the LEDs. + **/ +static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) +{ + if (hw->phy.type == e1000_phy_ife) + return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | + IFE_PSCL_PROBE_LEDS_OFF)); + + ew32(LEDCTL, hw->mac.ledctl_mode1); + return 0; +} + +/** + * e1000_setup_led_pchlan - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use. + **/ +static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) +{ + return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); +} + +/** + * e1000_cleanup_led_pchlan - Restore the default LED operation + * @hw: pointer to the HW structure + * + * Return the LED back to the default configuration. + **/ +static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) +{ + return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); +} + +/** + * e1000_led_on_pchlan - Turn LEDs on + * @hw: pointer to the HW structure + * + * Turn on the LEDs. + **/ +static s32 e1000_led_on_pchlan(struct e1000_hw *hw) +{ + u16 data = (u16)hw->mac.ledctl_mode2; + u32 i, led; + + /* + * If no link, then turn LED on by setting the invert bit + * for each LED that's mode is "link_up" in ledctl_mode2. + */ + if (!(er32(STATUS) & E1000_STATUS_LU)) { + for (i = 0; i < 3; i++) { + led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; + if ((led & E1000_PHY_LED0_MODE_MASK) != + E1000_LEDCTL_MODE_LINK_UP) + continue; + if (led & E1000_PHY_LED0_IVRT) + data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); + else + data |= (E1000_PHY_LED0_IVRT << (i * 5)); + } + } + + return e1e_wphy(hw, HV_LED_CONFIG, data); +} + +/** + * e1000_led_off_pchlan - Turn LEDs off + * @hw: pointer to the HW structure + * + * Turn off the LEDs. + **/ +static s32 e1000_led_off_pchlan(struct e1000_hw *hw) +{ + u16 data = (u16)hw->mac.ledctl_mode1; + u32 i, led; + + /* + * If no link, then turn LED off by clearing the invert bit + * for each LED that's mode is "link_up" in ledctl_mode1. + */ + if (!(er32(STATUS) & E1000_STATUS_LU)) { + for (i = 0; i < 3; i++) { + led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; + if ((led & E1000_PHY_LED0_MODE_MASK) != + E1000_LEDCTL_MODE_LINK_UP) + continue; + if (led & E1000_PHY_LED0_IVRT) + data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); + else + data |= (E1000_PHY_LED0_IVRT << (i * 5)); + } + } + + return e1e_wphy(hw, HV_LED_CONFIG, data); +} + +/** + * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset + * @hw: pointer to the HW structure + * + * Read appropriate register for the config done bit for completion status + * and configure the PHY through s/w for EEPROM-less parts. + * + * NOTE: some silicon which is EEPROM-less will fail trying to read the + * config done bit, so only an error is logged and continues. If we were + * to return with error, EEPROM-less silicon would not be able to be reset + * or change link. + **/ +static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u32 bank = 0; + u32 status; + + e1000e_get_cfg_done(hw); + + /* Wait for indication from h/w that it has completed basic config */ + if (hw->mac.type >= e1000_ich10lan) { + e1000_lan_init_done_ich8lan(hw); + } else { + ret_val = e1000e_get_auto_rd_done(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + e_dbg("Auto Read Done did not complete\n"); + ret_val = 0; + } + } + + /* Clear PHY Reset Asserted bit */ + status = er32(STATUS); + if (status & E1000_STATUS_PHYRA) + ew32(STATUS, status & ~E1000_STATUS_PHYRA); + else + e_dbg("PHY Reset Asserted not set - needs delay\n"); + + /* If EEPROM is not marked present, init the IGP 3 PHY manually */ + if (hw->mac.type <= e1000_ich9lan) { + if (((er32(EECD) & E1000_EECD_PRES) == 0) && + (hw->phy.type == e1000_phy_igp_3)) { + e1000e_phy_init_script_igp3(hw); + } + } else { + if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { + /* Maybe we should do a basic PHY config */ + e_dbg("EEPROM not present\n"); + ret_val = -E1000_ERR_CONFIG; + } + } + + return ret_val; +} + +/** + * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(hw->mac.ops.check_mng_mode(hw) || + hw->phy.ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); +} + +/** + * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters + * @hw: pointer to the HW structure + * + * Clears hardware counters specific to the silicon family and calls + * clear_hw_cntrs_generic to clear all general purpose counters. + **/ +static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) +{ + u16 phy_data; + s32 ret_val; + + e1000e_clear_hw_cntrs_base(hw); + + er32(ALGNERRC); + er32(RXERRC); + er32(TNCRS); + er32(CEXTERR); + er32(TSCTC); + er32(TSCTFC); + + er32(MGTPRC); + er32(MGTPDC); + er32(MGTPTC); + + er32(IAC); + er32(ICRXOC); + + /* Clear PHY statistics registers */ + if ((hw->phy.type == e1000_phy_82578) || + (hw->phy.type == e1000_phy_82579) || + (hw->phy.type == e1000_phy_82577)) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + ret_val = hw->phy.ops.set_page(hw, + HV_STATS_PAGE << IGP_PAGE_SHIFT); + if (ret_val) + goto release; + hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); +release: + hw->phy.ops.release(hw); + } +} + +static const struct e1000_mac_operations ich8_mac_ops = { + /* check_mng_mode dependent on mac type */ + .check_for_link = e1000_check_for_copper_link_ich8lan, + /* cleanup_led dependent on mac type */ + .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, + .get_bus_info = e1000_get_bus_info_ich8lan, + .set_lan_id = e1000_set_lan_id_single_port, + .get_link_up_info = e1000_get_link_up_info_ich8lan, + /* led_on dependent on mac type */ + /* led_off dependent on mac type */ + .update_mc_addr_list = e1000e_update_mc_addr_list_generic, + .reset_hw = e1000_reset_hw_ich8lan, + .init_hw = e1000_init_hw_ich8lan, + .setup_link = e1000_setup_link_ich8lan, + .setup_physical_interface= e1000_setup_copper_link_ich8lan, + /* id_led_init dependent on mac type */ + .config_collision_dist = e1000e_config_collision_dist_generic, +}; + +static const struct e1000_phy_operations ich8_phy_ops = { + .acquire = e1000_acquire_swflag_ich8lan, + .check_reset_block = e1000_check_reset_block_ich8lan, + .commit = NULL, + .get_cfg_done = e1000_get_cfg_done_ich8lan, + .get_cable_length = e1000e_get_cable_length_igp_2, + .read_reg = e1000e_read_phy_reg_igp, + .release = e1000_release_swflag_ich8lan, + .reset = e1000_phy_hw_reset_ich8lan, + .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, + .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, + .write_reg = e1000e_write_phy_reg_igp, +}; + +static const struct e1000_nvm_operations ich8_nvm_ops = { + .acquire = e1000_acquire_nvm_ich8lan, + .read = e1000_read_nvm_ich8lan, + .release = e1000_release_nvm_ich8lan, + .reload = e1000e_reload_nvm_generic, + .update = e1000_update_nvm_checksum_ich8lan, + .valid_led_default = e1000_valid_led_default_ich8lan, + .validate = e1000_validate_nvm_checksum_ich8lan, + .write = e1000_write_nvm_ich8lan, +}; + +const struct e1000_info e1000_ich8_info = { + .mac = e1000_ich8lan, + .flags = FLAG_HAS_WOL + | FLAG_IS_ICH + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_HAS_AMT + | FLAG_HAS_FLASH + | FLAG_APME_IN_WUC, + .pba = 8, + .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, + .get_variants = e1000_get_variants_ich8lan, + .mac_ops = &ich8_mac_ops, + .phy_ops = &ich8_phy_ops, + .nvm_ops = &ich8_nvm_ops, +}; + +const struct e1000_info e1000_ich9_info = { + .mac = e1000_ich9lan, + .flags = FLAG_HAS_JUMBO_FRAMES + | FLAG_IS_ICH + | FLAG_HAS_WOL + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_HAS_AMT + | FLAG_HAS_FLASH + | FLAG_APME_IN_WUC, + .pba = 18, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_ich8lan, + .mac_ops = &ich8_mac_ops, + .phy_ops = &ich8_phy_ops, + .nvm_ops = &ich8_nvm_ops, +}; + +const struct e1000_info e1000_ich10_info = { + .mac = e1000_ich10lan, + .flags = FLAG_HAS_JUMBO_FRAMES + | FLAG_IS_ICH + | FLAG_HAS_WOL + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_HAS_AMT + | FLAG_HAS_FLASH + | FLAG_APME_IN_WUC, + .pba = 18, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_ich8lan, + .mac_ops = &ich8_mac_ops, + .phy_ops = &ich8_phy_ops, + .nvm_ops = &ich8_nvm_ops, +}; + +const struct e1000_info e1000_pch_info = { + .mac = e1000_pchlan, + .flags = FLAG_IS_ICH + | FLAG_HAS_WOL + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_HAS_AMT + | FLAG_HAS_FLASH + | FLAG_HAS_JUMBO_FRAMES + | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ + | FLAG_APME_IN_WUC, + .flags2 = FLAG2_HAS_PHY_STATS, + .pba = 26, + .max_hw_frame_size = 4096, + .get_variants = e1000_get_variants_ich8lan, + .mac_ops = &ich8_mac_ops, + .phy_ops = &ich8_phy_ops, + .nvm_ops = &ich8_nvm_ops, +}; + +const struct e1000_info e1000_pch2_info = { + .mac = e1000_pch2lan, + .flags = FLAG_IS_ICH + | FLAG_HAS_WOL + | FLAG_HAS_CTRLEXT_ON_LOAD + | FLAG_HAS_AMT + | FLAG_HAS_FLASH + | FLAG_HAS_JUMBO_FRAMES + | FLAG_APME_IN_WUC, + .flags2 = FLAG2_HAS_PHY_STATS + | FLAG2_HAS_EEE, + .pba = 26, + .max_hw_frame_size = DEFAULT_JUMBO, + .get_variants = e1000_get_variants_ich8lan, + .mac_ops = &ich8_mac_ops, + .phy_ops = &ich8_phy_ops, + .nvm_ops = &ich8_nvm_ops, +}; diff --git a/drivers/net/ethernet/intel/e1000e/mac.c b/drivers/net/ethernet/intel/e1000e/mac.c new file mode 100644 index 00000000..efecb509 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/mac.c @@ -0,0 +1,1709 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000.h" + +/** + * e1000e_get_bus_info_pcie - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + struct e1000_adapter *adapter = hw->adapter; + u16 pcie_link_status, cap_offset; + + cap_offset = adapter->pdev->pcie_cap; + if (!cap_offset) { + bus->width = e1000_bus_width_unknown; + } else { + pci_read_config_word(adapter->pdev, + cap_offset + PCIE_LINK_STATUS, + &pcie_link_status); + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCIE_LINK_WIDTH_MASK) >> + PCIE_LINK_WIDTH_SHIFT); + } + + mac->ops.set_lan_id(hw); + + return 0; +} + +/** + * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices + * + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading memory-mapped registers + * and swaps the port value if requested. + **/ +void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u32 reg; + + /* + * The status register reports the correct function number + * for the device regardless of function swap state. + */ + reg = er32(STATUS); + bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; +} + +/** + * e1000_set_lan_id_single_port - Set LAN id for a single port device + * @hw: pointer to the HW structure + * + * Sets the LAN function id to zero for a single port device. + **/ +void e1000_set_lan_id_single_port(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + bus->func = 0; +} + +/** + * e1000_clear_vfta_generic - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_generic(struct e1000_hw *hw) +{ + u32 offset; + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + e1e_flush(); + } +} + +/** + * e1000_write_vfta_generic - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) +{ + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + e1e_flush(); +} + +/** + * e1000e_init_rx_addrs - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setup the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + u8 mac_addr[ETH_ALEN] = { 0 }; + + /* Setup the receive address */ + e_dbg("Programming MAC Address into RAR[0]\n"); + + e1000e_rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + e_dbg("Clearing RAR[1-%u]\n", rar_count - 1); + for (i = 1; i < rar_count; i++) + e1000e_rar_set(hw, mac_addr, i); +} + +/** + * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr + * @hw: pointer to the HW structure + * + * Checks the nvm for an alternate MAC address. An alternate MAC address + * can be setup by pre-boot software and must be treated like a permanent + * address and must override the actual permanent MAC address. If an + * alternate MAC address is found it is programmed into RAR0, replacing + * the permanent address that was installed into RAR0 by the Si on reset. + * This function will return SUCCESS unless it encounters an error while + * reading the EEPROM. + **/ +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) +{ + u32 i; + s32 ret_val = 0; + u16 offset, nvm_alt_mac_addr_offset, nvm_data; + u8 alt_mac_addr[ETH_ALEN]; + + ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); + if (ret_val) + return ret_val; + + /* not supported on 82573 */ + if (hw->mac.type == e1000_82573) + return 0; + + ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, + &nvm_alt_mac_addr_offset); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if ((nvm_alt_mac_addr_offset == 0xFFFF) || + (nvm_alt_mac_addr_offset == 0x0000)) + /* There is no Alternate MAC Address */ + return 0; + + if (hw->bus.func == E1000_FUNC_1) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; + for (i = 0; i < ETH_ALEN; i += 2) { + offset = nvm_alt_mac_addr_offset + (i >> 1); + ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + alt_mac_addr[i] = (u8)(nvm_data & 0xFF); + alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); + } + + /* if multicast bit is set, the alternate address will not be used */ + if (is_multicast_ether_addr(alt_mac_addr)) { + e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); + return 0; + } + + /* + * We have a valid alternate MAC address, and we want to treat it the + * same as the normal permanent MAC address stored by the HW into the + * RAR. Do this by mapping this address into RAR0. + */ + e1000e_rar_set(hw, alt_mac_addr, 0); + + return 0; +} + +/** + * e1000e_rar_set - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + /* + * HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | + ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); + + rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + /* + * Some bridges will combine consecutive 32-bit writes into + * a single burst write, which will malfunction on some parts. + * The flushes avoid this. + */ + ew32(RAL(index), rar_low); + e1e_flush(); + ew32(RAH(index), rar_high); + e1e_flush(); +} + +/** + * e1000_hash_mc_addr - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. + **/ +static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* + * For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* + * The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + * + * For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16)mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * e1000e_update_mc_addr_list_generic - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 hash_value, hash_bit, hash_reg; + int i; + + /* clear mta_shadow */ + memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); + + /* update mta_shadow from mc_addr_list */ + for (i = 0; (u32)i < mc_addr_count; i++) { + hash_value = e1000_hash_mc_addr(hw, mc_addr_list); + + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); + mc_addr_list += (ETH_ALEN); + } + + /* replace the entire MTA table */ + for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); + e1e_flush(); +} + +/** + * e1000e_clear_hw_cntrs_base - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) +{ + er32(CRCERRS); + er32(SYMERRS); + er32(MPC); + er32(SCC); + er32(ECOL); + er32(MCC); + er32(LATECOL); + er32(COLC); + er32(DC); + er32(SEC); + er32(RLEC); + er32(XONRXC); + er32(XONTXC); + er32(XOFFRXC); + er32(XOFFTXC); + er32(FCRUC); + er32(GPRC); + er32(BPRC); + er32(MPRC); + er32(GPTC); + er32(GORCL); + er32(GORCH); + er32(GOTCL); + er32(GOTCH); + er32(RNBC); + er32(RUC); + er32(RFC); + er32(ROC); + er32(RJC); + er32(TORL); + er32(TORH); + er32(TOTL); + er32(TOTH); + er32(TPR); + er32(TPT); + er32(MPTC); + er32(BPTC); +} + +/** + * e1000e_check_for_copper_link - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 e1000e_check_for_copper_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + /* + * We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return 0; + + /* + * First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) + return 0; /* No link detected */ + + mac->get_link_status = false; + + /* + * Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000e_check_downshift(hw); + + /* + * If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) + return -E1000_ERR_CONFIG; + + /* + * Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) + e_dbg("Error configuring flow control\n"); + + return ret_val; +} + +/** + * e1000e_check_for_fiber_link - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && + !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return 0; + } + e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } + + return 0; +} + +/** + * e1000e_check_for_serdes_link - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = true; + return 0; + } + e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = true; + } else if (!(E1000_TXCW_ANE & er32(TXCW))) { + /* + * If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + udelay(10); + rxcw = er32(RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + e_dbg("SERDES: Link up - forced.\n"); + } + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & er32(TXCW)) { + status = er32(STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + udelay(10); + rxcw = er32(RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = true; + e_dbg("SERDES: Link up - autoneg completed successfully.\n"); + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n"); + } + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - no sync.\n"); + } + } else { + mac->serdes_has_link = false; + e_dbg("SERDES: Link down - autoneg failed\n"); + } + } + + return 0; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 nvm_data; + + /* + * Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); + + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) + hw->fc.requested_mode = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) + hw->fc.requested_mode = e1000_fc_tx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + + return 0; +} + +/** + * e1000e_setup_link_generic - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 e1000e_setup_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + + /* + * In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) + return 0; + + /* + * If requested flow control is set to default, set flow control + * based on the EEPROM flow control settings. + */ + if (hw->fc.requested_mode == e1000_fc_default) { + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + return ret_val; + } + + /* + * Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + /* + * Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + e_dbg("Initializing the Flow Control address, type and timer regs\n"); + ew32(FCT, FLOW_CONTROL_TYPE); + ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); + ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); + + ew32(FCTTV, hw->fc.pause_time); + + return e1000e_set_fc_watermarks(hw); +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; + + /* + * Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* + * Rx Flow control is enabled and Tx Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric Rx + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* + * Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* + * Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + ew32(TXCW, txcw); + mac->txcw = txcw; + + return 0; +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val; + + /* + * If we have a signal (the cable is plugged in, or assumed true for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + usleep_range(10000, 20000); + status = er32(STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + e_dbg("Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = true; + /* + * AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = mac->ops.check_for_link(hw); + if (ret_val) { + e_dbg("Error while checking for link\n"); + return ret_val; + } + mac->autoneg_failed = false; + } else { + mac->autoneg_failed = false; + e_dbg("Valid Link Found\n"); + } + + return 0; +} + +/** + * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + ctrl = er32(CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + hw->mac.ops.config_collision_dist(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + return ret_val; + + /* + * Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + e_dbg("Auto-negotiation enabled\n"); + + ew32(CTRL, ctrl); + e1e_flush(); + usleep_range(1000, 2000); + + /* + * For these adapters, the SW definable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->phy.media_type == e1000_media_type_internal_serdes || + (er32(CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + e_dbg("No signal detected\n"); + } + + return ret_val; +} + +/** + * e1000e_config_collision_dist_generic - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +void e1000e_config_collision_dist_generic(struct e1000_hw *hw) +{ + u32 tctl; + + tctl = er32(TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + ew32(TCTL, tctl); + e1e_flush(); +} + +/** + * e1000e_set_fc_watermarks - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * transmission as well. + **/ +s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) +{ + u32 fcrtl = 0, fcrth = 0; + + /* + * Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (hw->fc.current_mode & e1000_fc_tx_pause) { + /* + * We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = hw->fc.low_water; + if (hw->fc.send_xon) + fcrtl |= E1000_FCRTL_XONE; + + fcrth = hw->fc.high_water; + } + ew32(FCRTL, fcrtl); + ew32(FCRTH, fcrth); + + return 0; +} + +/** + * e1000e_force_mac_fc - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 e1000e_force_mac_fc(struct e1000_hw *hw) +{ + u32 ctrl; + + ctrl = er32(CTRL); + + /* + * Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc.current_mode" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and Tx flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); + + switch (hw->fc.current_mode) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ew32(CTRL, ctrl); + + return 0; +} + +/** + * e1000e_config_fc_after_link_up - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = 0; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + /* + * Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = e1000e_force_mac_fc(hw); + } else { + if (hw->phy.media_type == e1000_media_type_copper) + ret_val = e1000e_force_mac_fc(hw); + } + + if (ret_val) { + e_dbg("Error forcing flow control settings\n"); + return ret_val; + } + + /* + * Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { + /* + * Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + e_dbg("Copper PHY and Auto Neg has not completed.\n"); + return ret_val; + } + + /* + * The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = + e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* + * Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* + * Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + e_dbg("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + e_dbg("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* + * For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + e_dbg("Flow Control = Tx PAUSE frames only.\n"); + } + /* + * For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + e_dbg("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* + * Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + e_dbg("Flow Control = NONE.\n"); + } + + /* + * Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + e_dbg("Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + hw->fc.current_mode = e1000_fc_none; + + /* + * Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000e_force_mac_fc(hw); + if (ret_val) { + e_dbg("Error forcing flow control settings\n"); + return ret_val; + } + } + + return 0; +} + +/** + * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + u32 status; + + status = er32(STATUS); + if (status & E1000_STATUS_SPEED_1000) + *speed = SPEED_1000; + else if (status & E1000_STATUS_SPEED_100) + *speed = SPEED_100; + else + *speed = SPEED_10; + + if (status & E1000_STATUS_FD) + *duplex = FULL_DUPLEX; + else + *duplex = HALF_DUPLEX; + + e_dbg("%u Mbps, %s Duplex\n", + *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, + *duplex == FULL_DUPLEX ? "Full" : "Half"); + + return 0; +} + +/** + * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return 0; +} + +/** + * e1000e_get_hw_semaphore - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = er32(SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + udelay(50); + i++; + } + + if (i == timeout) { + e_dbg("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = er32(SWSM); + ew32(SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (er32(SWSM) & E1000_SWSM_SWESMBI) + break; + + udelay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000e_put_hw_semaphore(hw); + e_dbg("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000e_put_hw_semaphore - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void e1000e_put_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + + swsm = er32(SWSM); + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + ew32(SWSM, swsm); +} + +/** + * e1000e_get_auto_rd_done - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) +{ + s32 i = 0; + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (er32(EECD) & E1000_EECD_AUTO_RD) + break; + usleep_range(1000, 2000); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + e_dbg("Auto read by HW from NVM has not completed.\n"); + return -E1000_ERR_RESET; + } + + return 0; +} + +/** + * e1000e_valid_led_default - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + + return 0; +} + +/** + * e1000e_id_led_init_generic - + * @hw: pointer to the HW structure + * + **/ +s32 e1000e_id_led_init_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = er32(LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + + return 0; +} + +/** + * e1000e_setup_led_generic - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +s32 e1000e_setup_led_generic(struct e1000_hw *hw) +{ + u32 ledctl; + + if (hw->mac.ops.setup_led != e1000e_setup_led_generic) + return -E1000_ERR_CONFIG; + + if (hw->phy.media_type == e1000_media_type_fiber) { + ledctl = er32(LEDCTL); + hw->mac.ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + ew32(LEDCTL, ledctl); + } else if (hw->phy.media_type == e1000_media_type_copper) { + ew32(LEDCTL, hw->mac.ledctl_mode1); + } + + return 0; +} + +/** + * e1000e_cleanup_led_generic - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) +{ + ew32(LEDCTL, hw->mac.ledctl_default); + return 0; +} + +/** + * e1000e_blink_led_generic - Blink LED + * @hw: pointer to the HW structure + * + * Blink the LEDs which are set to be on. + **/ +s32 e1000e_blink_led_generic(struct e1000_hw *hw) +{ + u32 ledctl_blink = 0; + u32 i; + + if (hw->phy.media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* + * set the blink bit for each LED that's "on" (0x0E) + * in ledctl_mode2 + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << + (i * 8)); + } + + ew32(LEDCTL, ledctl_blink); + + return 0; +} + +/** + * e1000e_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000e_led_on_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = er32(CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + ew32(CTRL, ctrl); + break; + case e1000_media_type_copper: + ew32(LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return 0; +} + +/** + * e1000e_led_off_generic - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 e1000e_led_off_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + ew32(CTRL, ctrl); + break; + case e1000_media_type_copper: + ew32(LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return 0; +} + +/** + * e1000e_set_pcie_no_snoop - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + if (no_snoop) { + gcr = er32(GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + ew32(GCR, gcr); + } +} + +/** + * e1000e_disable_pcie_master - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns 0 if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 e1000e_disable_pcie_master(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + ew32(CTRL, ctrl); + + while (timeout) { + if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) + break; + udelay(100); + timeout--; + } + + if (!timeout) { + e_dbg("Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; + } + + return 0; +} + +/** + * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000e_reset_adaptive(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + if (!mac->adaptive_ifs) { + e_dbg("Not in Adaptive IFS mode!\n"); + return; + } + + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + + mac->in_ifs_mode = false; + ew32(AIT, 0); +} + +/** + * e1000e_update_adaptive - Update Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000e_update_adaptive(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + if (!mac->adaptive_ifs) { + e_dbg("Not in Adaptive IFS mode!\n"); + return; + } + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = true; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + ew32(AIT, mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = false; + ew32(AIT, 0); + } + } +} diff --git a/drivers/net/ethernet/intel/e1000e/manage.c b/drivers/net/ethernet/intel/e1000e/manage.c new file mode 100644 index 00000000..473f8e71 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/manage.c @@ -0,0 +1,367 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000.h" + +enum e1000_mng_mode { + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_if_only +}; + +#define E1000_FACTPS_MNGCG 0x20000000 + +/* Intel(R) Active Management Technology signature */ +#define E1000_IAMT_SIGNATURE 0x544D4149 + +/** + * e1000_calculate_checksum - Calculate checksum for buffer + * @buffer: pointer to EEPROM + * @length: size of EEPROM to calculate a checksum for + * + * Calculates the checksum for some buffer on a specified length. The + * checksum calculated is returned. + **/ +static u8 e1000_calculate_checksum(u8 *buffer, u32 length) +{ + u32 i; + u8 sum = 0; + + if (!buffer) + return 0; + + for (i = 0; i < length; i++) + sum += buffer[i]; + + return (u8)(0 - sum); +} + +/** + * e1000_mng_enable_host_if - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) +{ + u32 hicr; + u8 i; + + if (!hw->mac.arc_subsystem_valid) { + e_dbg("ARC subsystem not valid.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Check that the host interface is enabled. */ + hicr = er32(HICR); + if ((hicr & E1000_HICR_EN) == 0) { + e_dbg("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = er32(HICR); + if (!(hicr & E1000_HICR_C)) + break; + mdelay(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + e_dbg("Previous command timeout failed .\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return 0; +} + +/** + * e1000e_check_mng_mode_generic - Generic check management mode + * @hw: pointer to the HW structure + * + * Reads the firmware semaphore register and returns true (>0) if + * manageability is enabled, else false (0). + **/ +bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) +{ + u32 fwsm = er32(FWSM); + + return (fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); +} + +/** + * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + **/ +bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) +{ + struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; + u32 *buffer = (u32 *)&hw->mng_cookie; + u32 offset; + s32 ret_val, hdr_csum, csum; + u8 i, len; + + hw->mac.tx_pkt_filtering = true; + + /* No manageability, no filtering */ + if (!hw->mac.ops.check_mng_mode(hw)) { + hw->mac.tx_pkt_filtering = false; + return hw->mac.tx_pkt_filtering; + } + + /* + * If we can't read from the host interface for whatever + * reason, disable filtering. + */ + ret_val = e1000_mng_enable_host_if(hw); + if (ret_val) { + hw->mac.tx_pkt_filtering = false; + return hw->mac.tx_pkt_filtering; + } + + /* Read in the header. Length and offset are in dwords. */ + len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; + offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; + for (i = 0; i < len; i++) + *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, + offset + i); + hdr_csum = hdr->checksum; + hdr->checksum = 0; + csum = e1000_calculate_checksum((u8 *)hdr, + E1000_MNG_DHCP_COOKIE_LENGTH); + /* + * If either the checksums or signature don't match, then + * the cookie area isn't considered valid, in which case we + * take the safe route of assuming Tx filtering is enabled. + */ + if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { + hw->mac.tx_pkt_filtering = true; + return hw->mac.tx_pkt_filtering; + } + + /* Cookie area is valid, make the final check for filtering. */ + if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) + hw->mac.tx_pkt_filtering = false; + + return hw->mac.tx_pkt_filtering; +} + +/** + * e1000_mng_write_cmd_header - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + u16 i, length = sizeof(struct e1000_host_mng_command_header); + + /* Write the whole command header structure with new checksum. */ + + hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); + + length >>= 2; + /* Write the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, *((u32 *)hdr + i)); + e1e_flush(); + } + + return 0; +} + +/** + * e1000_mng_host_if_write - Write to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum) +{ + u8 *tmp; + u8 *bufptr = buffer; + u32 data = 0; + u16 remaining, i, j, prev_bytes; + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) + return -E1000_ERR_PARAM; + + tmp = (u8 *)&data; + prev_bytes = offset & 0x3; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); + for (j = prev_bytes; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* + * The device driver writes the relevant command block into the + * ram area. + */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); + } + if (remaining) { + for (j = 0; j < sizeof(u32); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); + } + + return 0; +} + +/** + * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) +{ + struct e1000_host_mng_command_header hdr; + s32 ret_val; + u32 hicr; + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + /* Enable the host interface */ + ret_val = e1000_mng_enable_host_if(hw); + if (ret_val) + return ret_val; + + /* Populate the host interface with the contents of "buffer". */ + ret_val = e1000_mng_host_if_write(hw, buffer, length, + sizeof(hdr), &(hdr.checksum)); + if (ret_val) + return ret_val; + + /* Write the manageability command header */ + ret_val = e1000_mng_write_cmd_header(hw, &hdr); + if (ret_val) + return ret_val; + + /* Tell the ARC a new command is pending. */ + hicr = er32(HICR); + ew32(HICR, hicr | E1000_HICR_C); + + return 0; +} + +/** + * e1000e_enable_mng_pass_thru - Check if management passthrough is needed + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to leave interface enabled so that frames can + * be directed to and from the management interface. + **/ +bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + + manc = er32(MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN)) + return false; + + if (hw->mac.has_fwsm) { + fwsm = er32(FWSM); + factps = er32(FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) + return true; + } else if ((hw->mac.type == e1000_82574) || + (hw->mac.type == e1000_82583)) { + u16 data; + + factps = er32(FACTPS); + e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((data & E1000_NVM_INIT_CTRL2_MNGM) == + (e1000_mng_mode_pt << 13))) + return true; + } else if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + return true; + } + + return false; +} diff --git a/drivers/net/ethernet/intel/e1000e/netdev.c b/drivers/net/ethernet/intel/e1000e/netdev.c new file mode 100644 index 00000000..5621d5b2 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/netdev.c @@ -0,0 +1,6604 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/init.h> +#include <linux/pci.h> +#include <linux/vmalloc.h> +#include <linux/pagemap.h> +#include <linux/delay.h> +#include <linux/netdevice.h> +#include <linux/interrupt.h> +#include <linux/tcp.h> +#include <linux/ipv6.h> +#include <linux/slab.h> +#include <net/checksum.h> +#include <net/ip6_checksum.h> +#include <linux/mii.h> +#include <linux/ethtool.h> +#include <linux/if_vlan.h> +#include <linux/cpu.h> +#include <linux/smp.h> +#include <linux/pm_qos.h> +#include <linux/pm_runtime.h> +#include <linux/aer.h> +#include <linux/prefetch.h> + +#include "e1000.h" + +#define DRV_EXTRAVERSION "-k" + +#define DRV_VERSION "1.9.5" DRV_EXTRAVERSION +char e1000e_driver_name[] = "e1000e"; +const char e1000e_driver_version[] = DRV_VERSION; + +#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) +static int debug = -1; +module_param(debug, int, 0); +MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); + +static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state); + +static const struct e1000_info *e1000_info_tbl[] = { + [board_82571] = &e1000_82571_info, + [board_82572] = &e1000_82572_info, + [board_82573] = &e1000_82573_info, + [board_82574] = &e1000_82574_info, + [board_82583] = &e1000_82583_info, + [board_80003es2lan] = &e1000_es2_info, + [board_ich8lan] = &e1000_ich8_info, + [board_ich9lan] = &e1000_ich9_info, + [board_ich10lan] = &e1000_ich10_info, + [board_pchlan] = &e1000_pch_info, + [board_pch2lan] = &e1000_pch2_info, +}; + +struct e1000_reg_info { + u32 ofs; + char *name; +}; + +#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ +#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ +#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ +#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ +#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ + +#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ + +static const struct e1000_reg_info e1000_reg_info_tbl[] = { + + /* General Registers */ + {E1000_CTRL, "CTRL"}, + {E1000_STATUS, "STATUS"}, + {E1000_CTRL_EXT, "CTRL_EXT"}, + + /* Interrupt Registers */ + {E1000_ICR, "ICR"}, + + /* Rx Registers */ + {E1000_RCTL, "RCTL"}, + {E1000_RDLEN, "RDLEN"}, + {E1000_RDH, "RDH"}, + {E1000_RDT, "RDT"}, + {E1000_RDTR, "RDTR"}, + {E1000_RXDCTL(0), "RXDCTL"}, + {E1000_ERT, "ERT"}, + {E1000_RDBAL, "RDBAL"}, + {E1000_RDBAH, "RDBAH"}, + {E1000_RDFH, "RDFH"}, + {E1000_RDFT, "RDFT"}, + {E1000_RDFHS, "RDFHS"}, + {E1000_RDFTS, "RDFTS"}, + {E1000_RDFPC, "RDFPC"}, + + /* Tx Registers */ + {E1000_TCTL, "TCTL"}, + {E1000_TDBAL, "TDBAL"}, + {E1000_TDBAH, "TDBAH"}, + {E1000_TDLEN, "TDLEN"}, + {E1000_TDH, "TDH"}, + {E1000_TDT, "TDT"}, + {E1000_TIDV, "TIDV"}, + {E1000_TXDCTL(0), "TXDCTL"}, + {E1000_TADV, "TADV"}, + {E1000_TARC(0), "TARC"}, + {E1000_TDFH, "TDFH"}, + {E1000_TDFT, "TDFT"}, + {E1000_TDFHS, "TDFHS"}, + {E1000_TDFTS, "TDFTS"}, + {E1000_TDFPC, "TDFPC"}, + + /* List Terminator */ + {0, NULL} +}; + +/* + * e1000_regdump - register printout routine + */ +static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) +{ + int n = 0; + char rname[16]; + u32 regs[8]; + + switch (reginfo->ofs) { + case E1000_RXDCTL(0): + for (n = 0; n < 2; n++) + regs[n] = __er32(hw, E1000_RXDCTL(n)); + break; + case E1000_TXDCTL(0): + for (n = 0; n < 2; n++) + regs[n] = __er32(hw, E1000_TXDCTL(n)); + break; + case E1000_TARC(0): + for (n = 0; n < 2; n++) + regs[n] = __er32(hw, E1000_TARC(n)); + break; + default: + pr_info("%-15s %08x\n", + reginfo->name, __er32(hw, reginfo->ofs)); + return; + } + + snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); + pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); +} + +/* + * e1000e_dump - Print registers, Tx-ring and Rx-ring + */ +static void e1000e_dump(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + struct e1000_reg_info *reginfo; + struct e1000_ring *tx_ring = adapter->tx_ring; + struct e1000_tx_desc *tx_desc; + struct my_u0 { + __le64 a; + __le64 b; + } *u0; + struct e1000_buffer *buffer_info; + struct e1000_ring *rx_ring = adapter->rx_ring; + union e1000_rx_desc_packet_split *rx_desc_ps; + union e1000_rx_desc_extended *rx_desc; + struct my_u1 { + __le64 a; + __le64 b; + __le64 c; + __le64 d; + } *u1; + u32 staterr; + int i = 0; + + if (!netif_msg_hw(adapter)) + return; + + /* Print netdevice Info */ + if (netdev) { + dev_info(&adapter->pdev->dev, "Net device Info\n"); + pr_info("Device Name state trans_start last_rx\n"); + pr_info("%-15s %016lX %016lX %016lX\n", + netdev->name, netdev->state, netdev->trans_start, + netdev->last_rx); + } + + /* Print Registers */ + dev_info(&adapter->pdev->dev, "Register Dump\n"); + pr_info(" Register Name Value\n"); + for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; + reginfo->name; reginfo++) { + e1000_regdump(hw, reginfo); + } + + /* Print Tx Ring Summary */ + if (!netdev || !netif_running(netdev)) + return; + + dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); + pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); + buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; + pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", + 0, tx_ring->next_to_use, tx_ring->next_to_clean, + (unsigned long long)buffer_info->dma, + buffer_info->length, + buffer_info->next_to_watch, + (unsigned long long)buffer_info->time_stamp); + + /* Print Tx Ring */ + if (!netif_msg_tx_done(adapter)) + goto rx_ring_summary; + + dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); + + /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) + * + * Legacy Transmit Descriptor + * +--------------------------------------------------------------+ + * 0 | Buffer Address [63:0] (Reserved on Write Back) | + * +--------------------------------------------------------------+ + * 8 | Special | CSS | Status | CMD | CSO | Length | + * +--------------------------------------------------------------+ + * 63 48 47 36 35 32 31 24 23 16 15 0 + * + * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload + * 63 48 47 40 39 32 31 16 15 8 7 0 + * +----------------------------------------------------------------+ + * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | + * +----------------------------------------------------------------+ + * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | + * +----------------------------------------------------------------+ + * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 + * + * Extended Data Descriptor (DTYP=0x1) + * +----------------------------------------------------------------+ + * 0 | Buffer Address [63:0] | + * +----------------------------------------------------------------+ + * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | + * +----------------------------------------------------------------+ + * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 + */ + pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); + pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); + pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); + for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { + const char *next_desc; + tx_desc = E1000_TX_DESC(*tx_ring, i); + buffer_info = &tx_ring->buffer_info[i]; + u0 = (struct my_u0 *)tx_desc; + if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) + next_desc = " NTC/U"; + else if (i == tx_ring->next_to_use) + next_desc = " NTU"; + else if (i == tx_ring->next_to_clean) + next_desc = " NTC"; + else + next_desc = ""; + pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", + (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : + ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), + i, + (unsigned long long)le64_to_cpu(u0->a), + (unsigned long long)le64_to_cpu(u0->b), + (unsigned long long)buffer_info->dma, + buffer_info->length, buffer_info->next_to_watch, + (unsigned long long)buffer_info->time_stamp, + buffer_info->skb, next_desc); + + if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, + 16, 1, phys_to_virt(buffer_info->dma), + buffer_info->length, true); + } + + /* Print Rx Ring Summary */ +rx_ring_summary: + dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); + pr_info("Queue [NTU] [NTC]\n"); + pr_info(" %5d %5X %5X\n", + 0, rx_ring->next_to_use, rx_ring->next_to_clean); + + /* Print Rx Ring */ + if (!netif_msg_rx_status(adapter)) + return; + + dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); + switch (adapter->rx_ps_pages) { + case 1: + case 2: + case 3: + /* [Extended] Packet Split Receive Descriptor Format + * + * +-----------------------------------------------------+ + * 0 | Buffer Address 0 [63:0] | + * +-----------------------------------------------------+ + * 8 | Buffer Address 1 [63:0] | + * +-----------------------------------------------------+ + * 16 | Buffer Address 2 [63:0] | + * +-----------------------------------------------------+ + * 24 | Buffer Address 3 [63:0] | + * +-----------------------------------------------------+ + */ + pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); + /* [Extended] Receive Descriptor (Write-Back) Format + * + * 63 48 47 32 31 13 12 8 7 4 3 0 + * +------------------------------------------------------+ + * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | + * | Checksum | Ident | | Queue | | Type | + * +------------------------------------------------------+ + * 8 | VLAN Tag | Length | Extended Error | Extended Status | + * +------------------------------------------------------+ + * 63 48 47 32 31 20 19 0 + */ + pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); + for (i = 0; i < rx_ring->count; i++) { + const char *next_desc; + buffer_info = &rx_ring->buffer_info[i]; + rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); + u1 = (struct my_u1 *)rx_desc_ps; + staterr = + le32_to_cpu(rx_desc_ps->wb.middle.status_error); + + if (i == rx_ring->next_to_use) + next_desc = " NTU"; + else if (i == rx_ring->next_to_clean) + next_desc = " NTC"; + else + next_desc = ""; + + if (staterr & E1000_RXD_STAT_DD) { + /* Descriptor Done */ + pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", + "RWB", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + (unsigned long long)le64_to_cpu(u1->c), + (unsigned long long)le64_to_cpu(u1->d), + buffer_info->skb, next_desc); + } else { + pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", + "R ", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + (unsigned long long)le64_to_cpu(u1->c), + (unsigned long long)le64_to_cpu(u1->d), + (unsigned long long)buffer_info->dma, + buffer_info->skb, next_desc); + + if (netif_msg_pktdata(adapter)) + print_hex_dump(KERN_INFO, "", + DUMP_PREFIX_ADDRESS, 16, 1, + phys_to_virt(buffer_info->dma), + adapter->rx_ps_bsize0, true); + } + } + break; + default: + case 0: + /* Extended Receive Descriptor (Read) Format + * + * +-----------------------------------------------------+ + * 0 | Buffer Address [63:0] | + * +-----------------------------------------------------+ + * 8 | Reserved | + * +-----------------------------------------------------+ + */ + pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); + /* Extended Receive Descriptor (Write-Back) Format + * + * 63 48 47 32 31 24 23 4 3 0 + * +------------------------------------------------------+ + * | RSS Hash | | | | + * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | + * | Packet | IP | | | Type | + * | Checksum | Ident | | | | + * +------------------------------------------------------+ + * 8 | VLAN Tag | Length | Extended Error | Extended Status | + * +------------------------------------------------------+ + * 63 48 47 32 31 20 19 0 + */ + pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); + + for (i = 0; i < rx_ring->count; i++) { + const char *next_desc; + + buffer_info = &rx_ring->buffer_info[i]; + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + u1 = (struct my_u1 *)rx_desc; + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + + if (i == rx_ring->next_to_use) + next_desc = " NTU"; + else if (i == rx_ring->next_to_clean) + next_desc = " NTC"; + else + next_desc = ""; + + if (staterr & E1000_RXD_STAT_DD) { + /* Descriptor Done */ + pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", + "RWB", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + buffer_info->skb, next_desc); + } else { + pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", + "R ", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + (unsigned long long)buffer_info->dma, + buffer_info->skb, next_desc); + + if (netif_msg_pktdata(adapter)) + print_hex_dump(KERN_INFO, "", + DUMP_PREFIX_ADDRESS, 16, + 1, + phys_to_virt + (buffer_info->dma), + adapter->rx_buffer_len, + true); + } + } + } +} + +/** + * e1000_desc_unused - calculate if we have unused descriptors + **/ +static int e1000_desc_unused(struct e1000_ring *ring) +{ + if (ring->next_to_clean > ring->next_to_use) + return ring->next_to_clean - ring->next_to_use - 1; + + return ring->count + ring->next_to_clean - ring->next_to_use - 1; +} + +/** + * e1000_receive_skb - helper function to handle Rx indications + * @adapter: board private structure + * @status: descriptor status field as written by hardware + * @vlan: descriptor vlan field as written by hardware (no le/be conversion) + * @skb: pointer to sk_buff to be indicated to stack + **/ +static void e1000_receive_skb(struct e1000_adapter *adapter, + struct net_device *netdev, struct sk_buff *skb, + u8 status, __le16 vlan) +{ + u16 tag = le16_to_cpu(vlan); + skb->protocol = eth_type_trans(skb, netdev); + + if (status & E1000_RXD_STAT_VP) + __vlan_hwaccel_put_tag(skb, tag); + + napi_gro_receive(&adapter->napi, skb); +} + +/** + * e1000_rx_checksum - Receive Checksum Offload + * @adapter: board private structure + * @status_err: receive descriptor status and error fields + * @csum: receive descriptor csum field + * @sk_buff: socket buffer with received data + **/ +static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, + struct sk_buff *skb) +{ + u16 status = (u16)status_err; + u8 errors = (u8)(status_err >> 24); + + skb_checksum_none_assert(skb); + + /* Rx checksum disabled */ + if (!(adapter->netdev->features & NETIF_F_RXCSUM)) + return; + + /* Ignore Checksum bit is set */ + if (status & E1000_RXD_STAT_IXSM) + return; + + /* TCP/UDP checksum error bit or IP checksum error bit is set */ + if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { + /* let the stack verify checksum errors */ + adapter->hw_csum_err++; + return; + } + + /* TCP/UDP Checksum has not been calculated */ + if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) + return; + + /* It must be a TCP or UDP packet with a valid checksum */ + skb->ip_summed = CHECKSUM_UNNECESSARY; + adapter->hw_csum_good++; +} + +/** + * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa() + * @hw: pointer to the HW structure + * @tail: address of tail descriptor register + * @i: value to write to tail descriptor register + * + * When updating the tail register, the ME could be accessing Host CSR + * registers at the same time. Normally, this is handled in h/w by an + * arbiter but on some parts there is a bug that acknowledges Host accesses + * later than it should which could result in the descriptor register to + * have an incorrect value. Workaround this by checking the FWSM register + * which has bit 24 set while ME is accessing Host CSR registers, wait + * if it is set and try again a number of times. + **/ +static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail, + unsigned int i) +{ + unsigned int j = 0; + + while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) && + (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI)) + udelay(50); + + writel(i, tail); + + if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail))) + return E1000_ERR_SWFW_SYNC; + + return 0; +} + +static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_hw *hw = &adapter->hw; + + if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) { + u32 rctl = er32(RCTL); + ew32(RCTL, rctl & ~E1000_RCTL_EN); + e_err("ME firmware caused invalid RDT - resetting\n"); + schedule_work(&adapter->reset_task); + } +} + +static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_hw *hw = &adapter->hw; + + if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) { + u32 tctl = er32(TCTL); + ew32(TCTL, tctl & ~E1000_TCTL_EN); + e_err("ME firmware caused invalid TDT - resetting\n"); + schedule_work(&adapter->reset_task); + } +} + +/** + * e1000_alloc_rx_buffers - Replace used receive buffers + * @rx_ring: Rx descriptor ring + **/ +static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, + int cleaned_count, gfp_t gfp) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_extended *rx_desc; + struct e1000_buffer *buffer_info; + struct sk_buff *skb; + unsigned int i; + unsigned int bufsz = adapter->rx_buffer_len; + + i = rx_ring->next_to_use; + buffer_info = &rx_ring->buffer_info[i]; + + while (cleaned_count--) { + skb = buffer_info->skb; + if (skb) { + skb_trim(skb, 0); + goto map_skb; + } + + skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); + if (!skb) { + /* Better luck next round */ + adapter->alloc_rx_buff_failed++; + break; + } + + buffer_info->skb = skb; +map_skb: + buffer_info->dma = dma_map_single(&pdev->dev, skb->data, + adapter->rx_buffer_len, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { + dev_err(&pdev->dev, "Rx DMA map failed\n"); + adapter->rx_dma_failed++; + break; + } + + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); + + if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { + /* + * Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_rdt_wa(rx_ring, i); + else + writel(i, rx_ring->tail); + } + i++; + if (i == rx_ring->count) + i = 0; + buffer_info = &rx_ring->buffer_info[i]; + } + + rx_ring->next_to_use = i; +} + +/** + * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split + * @rx_ring: Rx descriptor ring + **/ +static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, + int cleaned_count, gfp_t gfp) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_packet_split *rx_desc; + struct e1000_buffer *buffer_info; + struct e1000_ps_page *ps_page; + struct sk_buff *skb; + unsigned int i, j; + + i = rx_ring->next_to_use; + buffer_info = &rx_ring->buffer_info[i]; + + while (cleaned_count--) { + rx_desc = E1000_RX_DESC_PS(*rx_ring, i); + + for (j = 0; j < PS_PAGE_BUFFERS; j++) { + ps_page = &buffer_info->ps_pages[j]; + if (j >= adapter->rx_ps_pages) { + /* all unused desc entries get hw null ptr */ + rx_desc->read.buffer_addr[j + 1] = + ~cpu_to_le64(0); + continue; + } + if (!ps_page->page) { + ps_page->page = alloc_page(gfp); + if (!ps_page->page) { + adapter->alloc_rx_buff_failed++; + goto no_buffers; + } + ps_page->dma = dma_map_page(&pdev->dev, + ps_page->page, + 0, PAGE_SIZE, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, + ps_page->dma)) { + dev_err(&adapter->pdev->dev, + "Rx DMA page map failed\n"); + adapter->rx_dma_failed++; + goto no_buffers; + } + } + /* + * Refresh the desc even if buffer_addrs + * didn't change because each write-back + * erases this info. + */ + rx_desc->read.buffer_addr[j + 1] = + cpu_to_le64(ps_page->dma); + } + + skb = __netdev_alloc_skb_ip_align(netdev, + adapter->rx_ps_bsize0, + gfp); + + if (!skb) { + adapter->alloc_rx_buff_failed++; + break; + } + + buffer_info->skb = skb; + buffer_info->dma = dma_map_single(&pdev->dev, skb->data, + adapter->rx_ps_bsize0, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { + dev_err(&pdev->dev, "Rx DMA map failed\n"); + adapter->rx_dma_failed++; + /* cleanup skb */ + dev_kfree_skb_any(skb); + buffer_info->skb = NULL; + break; + } + + rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); + + if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { + /* + * Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_rdt_wa(rx_ring, i << 1); + else + writel(i << 1, rx_ring->tail); + } + + i++; + if (i == rx_ring->count) + i = 0; + buffer_info = &rx_ring->buffer_info[i]; + } + +no_buffers: + rx_ring->next_to_use = i; +} + +/** + * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers + * @rx_ring: Rx descriptor ring + * @cleaned_count: number of buffers to allocate this pass + **/ + +static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, + int cleaned_count, gfp_t gfp) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_extended *rx_desc; + struct e1000_buffer *buffer_info; + struct sk_buff *skb; + unsigned int i; + unsigned int bufsz = 256 - 16 /* for skb_reserve */; + + i = rx_ring->next_to_use; + buffer_info = &rx_ring->buffer_info[i]; + + while (cleaned_count--) { + skb = buffer_info->skb; + if (skb) { + skb_trim(skb, 0); + goto check_page; + } + + skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); + if (unlikely(!skb)) { + /* Better luck next round */ + adapter->alloc_rx_buff_failed++; + break; + } + + buffer_info->skb = skb; +check_page: + /* allocate a new page if necessary */ + if (!buffer_info->page) { + buffer_info->page = alloc_page(gfp); + if (unlikely(!buffer_info->page)) { + adapter->alloc_rx_buff_failed++; + break; + } + } + + if (!buffer_info->dma) + buffer_info->dma = dma_map_page(&pdev->dev, + buffer_info->page, 0, + PAGE_SIZE, + DMA_FROM_DEVICE); + + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); + + if (unlikely(++i == rx_ring->count)) + i = 0; + buffer_info = &rx_ring->buffer_info[i]; + } + + if (likely(rx_ring->next_to_use != i)) { + rx_ring->next_to_use = i; + if (unlikely(i-- == 0)) + i = (rx_ring->count - 1); + + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). */ + wmb(); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_rdt_wa(rx_ring, i); + else + writel(i, rx_ring->tail); + } +} + +static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, + struct sk_buff *skb) +{ + if (netdev->features & NETIF_F_RXHASH) + skb->rxhash = le32_to_cpu(rss); +} + +/** + * e1000_clean_rx_irq - Send received data up the network stack + * @rx_ring: Rx descriptor ring + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, + int work_to_do) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + struct e1000_hw *hw = &adapter->hw; + union e1000_rx_desc_extended *rx_desc, *next_rxd; + struct e1000_buffer *buffer_info, *next_buffer; + u32 length, staterr; + unsigned int i; + int cleaned_count = 0; + bool cleaned = false; + unsigned int total_rx_bytes = 0, total_rx_packets = 0; + + i = rx_ring->next_to_clean; + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + buffer_info = &rx_ring->buffer_info[i]; + + while (staterr & E1000_RXD_STAT_DD) { + struct sk_buff *skb; + + if (*work_done >= work_to_do) + break; + (*work_done)++; + rmb(); /* read descriptor and rx_buffer_info after status DD */ + + skb = buffer_info->skb; + buffer_info->skb = NULL; + + prefetch(skb->data - NET_IP_ALIGN); + + i++; + if (i == rx_ring->count) + i = 0; + next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); + prefetch(next_rxd); + + next_buffer = &rx_ring->buffer_info[i]; + + cleaned = true; + cleaned_count++; + dma_unmap_single(&pdev->dev, + buffer_info->dma, + adapter->rx_buffer_len, + DMA_FROM_DEVICE); + buffer_info->dma = 0; + + length = le16_to_cpu(rx_desc->wb.upper.length); + + /* + * !EOP means multiple descriptors were used to store a single + * packet, if that's the case we need to toss it. In fact, we + * need to toss every packet with the EOP bit clear and the + * next frame that _does_ have the EOP bit set, as it is by + * definition only a frame fragment + */ + if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) + adapter->flags2 |= FLAG2_IS_DISCARDING; + + if (adapter->flags2 & FLAG2_IS_DISCARDING) { + /* All receives must fit into a single buffer */ + e_dbg("Receive packet consumed multiple buffers\n"); + /* recycle */ + buffer_info->skb = skb; + if (staterr & E1000_RXD_STAT_EOP) + adapter->flags2 &= ~FLAG2_IS_DISCARDING; + goto next_desc; + } + + if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && + !(netdev->features & NETIF_F_RXALL))) { + /* recycle */ + buffer_info->skb = skb; + goto next_desc; + } + + /* adjust length to remove Ethernet CRC */ + if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { + /* If configured to store CRC, don't subtract FCS, + * but keep the FCS bytes out of the total_rx_bytes + * counter + */ + if (netdev->features & NETIF_F_RXFCS) + total_rx_bytes -= 4; + else + length -= 4; + } + + total_rx_bytes += length; + total_rx_packets++; + + /* + * code added for copybreak, this should improve + * performance for small packets with large amounts + * of reassembly being done in the stack + */ + if (length < copybreak) { + struct sk_buff *new_skb = + netdev_alloc_skb_ip_align(netdev, length); + if (new_skb) { + skb_copy_to_linear_data_offset(new_skb, + -NET_IP_ALIGN, + (skb->data - + NET_IP_ALIGN), + (length + + NET_IP_ALIGN)); + /* save the skb in buffer_info as good */ + buffer_info->skb = skb; + skb = new_skb; + } + /* else just continue with the old one */ + } + /* end copybreak code */ + skb_put(skb, length); + + /* Receive Checksum Offload */ + e1000_rx_checksum(adapter, staterr, skb); + + e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); + + e1000_receive_skb(adapter, netdev, skb, staterr, + rx_desc->wb.upper.vlan); + +next_desc: + rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); + + /* return some buffers to hardware, one at a time is too slow */ + if (cleaned_count >= E1000_RX_BUFFER_WRITE) { + adapter->alloc_rx_buf(rx_ring, cleaned_count, + GFP_ATOMIC); + cleaned_count = 0; + } + + /* use prefetched values */ + rx_desc = next_rxd; + buffer_info = next_buffer; + + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + } + rx_ring->next_to_clean = i; + + cleaned_count = e1000_desc_unused(rx_ring); + if (cleaned_count) + adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); + + adapter->total_rx_bytes += total_rx_bytes; + adapter->total_rx_packets += total_rx_packets; + return cleaned; +} + +static void e1000_put_txbuf(struct e1000_ring *tx_ring, + struct e1000_buffer *buffer_info) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + + if (buffer_info->dma) { + if (buffer_info->mapped_as_page) + dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, + buffer_info->length, DMA_TO_DEVICE); + else + dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, + buffer_info->length, DMA_TO_DEVICE); + buffer_info->dma = 0; + } + if (buffer_info->skb) { + dev_kfree_skb_any(buffer_info->skb); + buffer_info->skb = NULL; + } + buffer_info->time_stamp = 0; +} + +static void e1000_print_hw_hang(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, + print_hang_task); + struct net_device *netdev = adapter->netdev; + struct e1000_ring *tx_ring = adapter->tx_ring; + unsigned int i = tx_ring->next_to_clean; + unsigned int eop = tx_ring->buffer_info[i].next_to_watch; + struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); + struct e1000_hw *hw = &adapter->hw; + u16 phy_status, phy_1000t_status, phy_ext_status; + u16 pci_status; + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + if (!adapter->tx_hang_recheck && + (adapter->flags2 & FLAG2_DMA_BURST)) { + /* May be block on write-back, flush and detect again + * flush pending descriptor writebacks to memory + */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + /* execute the writes immediately */ + e1e_flush(); + /* + * Due to rare timing issues, write to TIDV again to ensure + * the write is successful + */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + /* execute the writes immediately */ + e1e_flush(); + adapter->tx_hang_recheck = true; + return; + } + /* Real hang detected */ + adapter->tx_hang_recheck = false; + netif_stop_queue(netdev); + + e1e_rphy(hw, PHY_STATUS, &phy_status); + e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); + e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); + + pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); + + /* detected Hardware unit hang */ + e_err("Detected Hardware Unit Hang:\n" + " TDH <%x>\n" + " TDT <%x>\n" + " next_to_use <%x>\n" + " next_to_clean <%x>\n" + "buffer_info[next_to_clean]:\n" + " time_stamp <%lx>\n" + " next_to_watch <%x>\n" + " jiffies <%lx>\n" + " next_to_watch.status <%x>\n" + "MAC Status <%x>\n" + "PHY Status <%x>\n" + "PHY 1000BASE-T Status <%x>\n" + "PHY Extended Status <%x>\n" + "PCI Status <%x>\n", + readl(tx_ring->head), + readl(tx_ring->tail), + tx_ring->next_to_use, + tx_ring->next_to_clean, + tx_ring->buffer_info[eop].time_stamp, + eop, + jiffies, + eop_desc->upper.fields.status, + er32(STATUS), + phy_status, + phy_1000t_status, + phy_ext_status, + pci_status); +} + +/** + * e1000_clean_tx_irq - Reclaim resources after transmit completes + * @tx_ring: Tx descriptor ring + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + struct e1000_tx_desc *tx_desc, *eop_desc; + struct e1000_buffer *buffer_info; + unsigned int i, eop; + unsigned int count = 0; + unsigned int total_tx_bytes = 0, total_tx_packets = 0; + unsigned int bytes_compl = 0, pkts_compl = 0; + + i = tx_ring->next_to_clean; + eop = tx_ring->buffer_info[i].next_to_watch; + eop_desc = E1000_TX_DESC(*tx_ring, eop); + + while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && + (count < tx_ring->count)) { + bool cleaned = false; + rmb(); /* read buffer_info after eop_desc */ + for (; !cleaned; count++) { + tx_desc = E1000_TX_DESC(*tx_ring, i); + buffer_info = &tx_ring->buffer_info[i]; + cleaned = (i == eop); + + if (cleaned) { + total_tx_packets += buffer_info->segs; + total_tx_bytes += buffer_info->bytecount; + if (buffer_info->skb) { + bytes_compl += buffer_info->skb->len; + pkts_compl++; + } + } + + e1000_put_txbuf(tx_ring, buffer_info); + tx_desc->upper.data = 0; + + i++; + if (i == tx_ring->count) + i = 0; + } + + if (i == tx_ring->next_to_use) + break; + eop = tx_ring->buffer_info[i].next_to_watch; + eop_desc = E1000_TX_DESC(*tx_ring, eop); + } + + tx_ring->next_to_clean = i; + + netdev_completed_queue(netdev, pkts_compl, bytes_compl); + +#define TX_WAKE_THRESHOLD 32 + if (count && netif_carrier_ok(netdev) && + e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { + /* Make sure that anybody stopping the queue after this + * sees the new next_to_clean. + */ + smp_mb(); + + if (netif_queue_stopped(netdev) && + !(test_bit(__E1000_DOWN, &adapter->state))) { + netif_wake_queue(netdev); + ++adapter->restart_queue; + } + } + + if (adapter->detect_tx_hung) { + /* + * Detect a transmit hang in hardware, this serializes the + * check with the clearing of time_stamp and movement of i + */ + adapter->detect_tx_hung = false; + if (tx_ring->buffer_info[i].time_stamp && + time_after(jiffies, tx_ring->buffer_info[i].time_stamp + + (adapter->tx_timeout_factor * HZ)) && + !(er32(STATUS) & E1000_STATUS_TXOFF)) + schedule_work(&adapter->print_hang_task); + else + adapter->tx_hang_recheck = false; + } + adapter->total_tx_bytes += total_tx_bytes; + adapter->total_tx_packets += total_tx_packets; + return count < tx_ring->count; +} + +/** + * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split + * @rx_ring: Rx descriptor ring + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, + int work_to_do) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_hw *hw = &adapter->hw; + union e1000_rx_desc_packet_split *rx_desc, *next_rxd; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + struct e1000_buffer *buffer_info, *next_buffer; + struct e1000_ps_page *ps_page; + struct sk_buff *skb; + unsigned int i, j; + u32 length, staterr; + int cleaned_count = 0; + bool cleaned = false; + unsigned int total_rx_bytes = 0, total_rx_packets = 0; + + i = rx_ring->next_to_clean; + rx_desc = E1000_RX_DESC_PS(*rx_ring, i); + staterr = le32_to_cpu(rx_desc->wb.middle.status_error); + buffer_info = &rx_ring->buffer_info[i]; + + while (staterr & E1000_RXD_STAT_DD) { + if (*work_done >= work_to_do) + break; + (*work_done)++; + skb = buffer_info->skb; + rmb(); /* read descriptor and rx_buffer_info after status DD */ + + /* in the packet split case this is header only */ + prefetch(skb->data - NET_IP_ALIGN); + + i++; + if (i == rx_ring->count) + i = 0; + next_rxd = E1000_RX_DESC_PS(*rx_ring, i); + prefetch(next_rxd); + + next_buffer = &rx_ring->buffer_info[i]; + + cleaned = true; + cleaned_count++; + dma_unmap_single(&pdev->dev, buffer_info->dma, + adapter->rx_ps_bsize0, DMA_FROM_DEVICE); + buffer_info->dma = 0; + + /* see !EOP comment in other Rx routine */ + if (!(staterr & E1000_RXD_STAT_EOP)) + adapter->flags2 |= FLAG2_IS_DISCARDING; + + if (adapter->flags2 & FLAG2_IS_DISCARDING) { + e_dbg("Packet Split buffers didn't pick up the full packet\n"); + dev_kfree_skb_irq(skb); + if (staterr & E1000_RXD_STAT_EOP) + adapter->flags2 &= ~FLAG2_IS_DISCARDING; + goto next_desc; + } + + if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && + !(netdev->features & NETIF_F_RXALL))) { + dev_kfree_skb_irq(skb); + goto next_desc; + } + + length = le16_to_cpu(rx_desc->wb.middle.length0); + + if (!length) { + e_dbg("Last part of the packet spanning multiple descriptors\n"); + dev_kfree_skb_irq(skb); + goto next_desc; + } + + /* Good Receive */ + skb_put(skb, length); + + { + /* + * this looks ugly, but it seems compiler issues make + * it more efficient than reusing j + */ + int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); + + /* + * page alloc/put takes too long and effects small + * packet throughput, so unsplit small packets and + * save the alloc/put only valid in softirq (napi) + * context to call kmap_* + */ + if (l1 && (l1 <= copybreak) && + ((length + l1) <= adapter->rx_ps_bsize0)) { + u8 *vaddr; + + ps_page = &buffer_info->ps_pages[0]; + + /* + * there is no documentation about how to call + * kmap_atomic, so we can't hold the mapping + * very long + */ + dma_sync_single_for_cpu(&pdev->dev, + ps_page->dma, + PAGE_SIZE, + DMA_FROM_DEVICE); + vaddr = kmap_atomic(ps_page->page); + memcpy(skb_tail_pointer(skb), vaddr, l1); + kunmap_atomic(vaddr); + dma_sync_single_for_device(&pdev->dev, + ps_page->dma, + PAGE_SIZE, + DMA_FROM_DEVICE); + + /* remove the CRC */ + if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { + if (!(netdev->features & NETIF_F_RXFCS)) + l1 -= 4; + } + + skb_put(skb, l1); + goto copydone; + } /* if */ + } + + for (j = 0; j < PS_PAGE_BUFFERS; j++) { + length = le16_to_cpu(rx_desc->wb.upper.length[j]); + if (!length) + break; + + ps_page = &buffer_info->ps_pages[j]; + dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, + DMA_FROM_DEVICE); + ps_page->dma = 0; + skb_fill_page_desc(skb, j, ps_page->page, 0, length); + ps_page->page = NULL; + skb->len += length; + skb->data_len += length; + skb->truesize += PAGE_SIZE; + } + + /* strip the ethernet crc, problem is we're using pages now so + * this whole operation can get a little cpu intensive + */ + if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { + if (!(netdev->features & NETIF_F_RXFCS)) + pskb_trim(skb, skb->len - 4); + } + +copydone: + total_rx_bytes += skb->len; + total_rx_packets++; + + e1000_rx_checksum(adapter, staterr, skb); + + e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); + + if (rx_desc->wb.upper.header_status & + cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) + adapter->rx_hdr_split++; + + e1000_receive_skb(adapter, netdev, skb, + staterr, rx_desc->wb.middle.vlan); + +next_desc: + rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); + buffer_info->skb = NULL; + + /* return some buffers to hardware, one at a time is too slow */ + if (cleaned_count >= E1000_RX_BUFFER_WRITE) { + adapter->alloc_rx_buf(rx_ring, cleaned_count, + GFP_ATOMIC); + cleaned_count = 0; + } + + /* use prefetched values */ + rx_desc = next_rxd; + buffer_info = next_buffer; + + staterr = le32_to_cpu(rx_desc->wb.middle.status_error); + } + rx_ring->next_to_clean = i; + + cleaned_count = e1000_desc_unused(rx_ring); + if (cleaned_count) + adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); + + adapter->total_rx_bytes += total_rx_bytes; + adapter->total_rx_packets += total_rx_packets; + return cleaned; +} + +/** + * e1000_consume_page - helper function + **/ +static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, + u16 length) +{ + bi->page = NULL; + skb->len += length; + skb->data_len += length; + skb->truesize += PAGE_SIZE; +} + +/** + * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy + * @adapter: board private structure + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, + int work_to_do) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_extended *rx_desc, *next_rxd; + struct e1000_buffer *buffer_info, *next_buffer; + u32 length, staterr; + unsigned int i; + int cleaned_count = 0; + bool cleaned = false; + unsigned int total_rx_bytes=0, total_rx_packets=0; + + i = rx_ring->next_to_clean; + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + buffer_info = &rx_ring->buffer_info[i]; + + while (staterr & E1000_RXD_STAT_DD) { + struct sk_buff *skb; + + if (*work_done >= work_to_do) + break; + (*work_done)++; + rmb(); /* read descriptor and rx_buffer_info after status DD */ + + skb = buffer_info->skb; + buffer_info->skb = NULL; + + ++i; + if (i == rx_ring->count) + i = 0; + next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); + prefetch(next_rxd); + + next_buffer = &rx_ring->buffer_info[i]; + + cleaned = true; + cleaned_count++; + dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, + DMA_FROM_DEVICE); + buffer_info->dma = 0; + + length = le16_to_cpu(rx_desc->wb.upper.length); + + /* errors is only valid for DD + EOP descriptors */ + if (unlikely((staterr & E1000_RXD_STAT_EOP) && + ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && + !(netdev->features & NETIF_F_RXALL)))) { + /* recycle both page and skb */ + buffer_info->skb = skb; + /* an error means any chain goes out the window too */ + if (rx_ring->rx_skb_top) + dev_kfree_skb_irq(rx_ring->rx_skb_top); + rx_ring->rx_skb_top = NULL; + goto next_desc; + } + +#define rxtop (rx_ring->rx_skb_top) + if (!(staterr & E1000_RXD_STAT_EOP)) { + /* this descriptor is only the beginning (or middle) */ + if (!rxtop) { + /* this is the beginning of a chain */ + rxtop = skb; + skb_fill_page_desc(rxtop, 0, buffer_info->page, + 0, length); + } else { + /* this is the middle of a chain */ + skb_fill_page_desc(rxtop, + skb_shinfo(rxtop)->nr_frags, + buffer_info->page, 0, length); + /* re-use the skb, only consumed the page */ + buffer_info->skb = skb; + } + e1000_consume_page(buffer_info, rxtop, length); + goto next_desc; + } else { + if (rxtop) { + /* end of the chain */ + skb_fill_page_desc(rxtop, + skb_shinfo(rxtop)->nr_frags, + buffer_info->page, 0, length); + /* re-use the current skb, we only consumed the + * page */ + buffer_info->skb = skb; + skb = rxtop; + rxtop = NULL; + e1000_consume_page(buffer_info, skb, length); + } else { + /* no chain, got EOP, this buf is the packet + * copybreak to save the put_page/alloc_page */ + if (length <= copybreak && + skb_tailroom(skb) >= length) { + u8 *vaddr; + vaddr = kmap_atomic(buffer_info->page); + memcpy(skb_tail_pointer(skb), vaddr, + length); + kunmap_atomic(vaddr); + /* re-use the page, so don't erase + * buffer_info->page */ + skb_put(skb, length); + } else { + skb_fill_page_desc(skb, 0, + buffer_info->page, 0, + length); + e1000_consume_page(buffer_info, skb, + length); + } + } + } + + /* Receive Checksum Offload */ + e1000_rx_checksum(adapter, staterr, skb); + + e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); + + /* probably a little skewed due to removing CRC */ + total_rx_bytes += skb->len; + total_rx_packets++; + + /* eth type trans needs skb->data to point to something */ + if (!pskb_may_pull(skb, ETH_HLEN)) { + e_err("pskb_may_pull failed.\n"); + dev_kfree_skb_irq(skb); + goto next_desc; + } + + e1000_receive_skb(adapter, netdev, skb, staterr, + rx_desc->wb.upper.vlan); + +next_desc: + rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); + + /* return some buffers to hardware, one at a time is too slow */ + if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { + adapter->alloc_rx_buf(rx_ring, cleaned_count, + GFP_ATOMIC); + cleaned_count = 0; + } + + /* use prefetched values */ + rx_desc = next_rxd; + buffer_info = next_buffer; + + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + } + rx_ring->next_to_clean = i; + + cleaned_count = e1000_desc_unused(rx_ring); + if (cleaned_count) + adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); + + adapter->total_rx_bytes += total_rx_bytes; + adapter->total_rx_packets += total_rx_packets; + return cleaned; +} + +/** + * e1000_clean_rx_ring - Free Rx Buffers per Queue + * @rx_ring: Rx descriptor ring + **/ +static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_buffer *buffer_info; + struct e1000_ps_page *ps_page; + struct pci_dev *pdev = adapter->pdev; + unsigned int i, j; + + /* Free all the Rx ring sk_buffs */ + for (i = 0; i < rx_ring->count; i++) { + buffer_info = &rx_ring->buffer_info[i]; + if (buffer_info->dma) { + if (adapter->clean_rx == e1000_clean_rx_irq) + dma_unmap_single(&pdev->dev, buffer_info->dma, + adapter->rx_buffer_len, + DMA_FROM_DEVICE); + else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) + dma_unmap_page(&pdev->dev, buffer_info->dma, + PAGE_SIZE, + DMA_FROM_DEVICE); + else if (adapter->clean_rx == e1000_clean_rx_irq_ps) + dma_unmap_single(&pdev->dev, buffer_info->dma, + adapter->rx_ps_bsize0, + DMA_FROM_DEVICE); + buffer_info->dma = 0; + } + + if (buffer_info->page) { + put_page(buffer_info->page); + buffer_info->page = NULL; + } + + if (buffer_info->skb) { + dev_kfree_skb(buffer_info->skb); + buffer_info->skb = NULL; + } + + for (j = 0; j < PS_PAGE_BUFFERS; j++) { + ps_page = &buffer_info->ps_pages[j]; + if (!ps_page->page) + break; + dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, + DMA_FROM_DEVICE); + ps_page->dma = 0; + put_page(ps_page->page); + ps_page->page = NULL; + } + } + + /* there also may be some cached data from a chained receive */ + if (rx_ring->rx_skb_top) { + dev_kfree_skb(rx_ring->rx_skb_top); + rx_ring->rx_skb_top = NULL; + } + + /* Zero out the descriptor ring */ + memset(rx_ring->desc, 0, rx_ring->size); + + rx_ring->next_to_clean = 0; + rx_ring->next_to_use = 0; + adapter->flags2 &= ~FLAG2_IS_DISCARDING; + + writel(0, rx_ring->head); + writel(0, rx_ring->tail); +} + +static void e1000e_downshift_workaround(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, downshift_task); + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); +} + +/** + * e1000_intr_msi - Interrupt Handler + * @irq: interrupt number + * @data: pointer to a network interface device structure + **/ +static irqreturn_t e1000_intr_msi(int irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 icr = er32(ICR); + + /* + * read ICR disables interrupts using IAM + */ + + if (icr & E1000_ICR_LSC) { + hw->mac.get_link_status = true; + /* + * ICH8 workaround-- Call gig speed drop workaround on cable + * disconnect (LSC) before accessing any PHY registers + */ + if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && + (!(er32(STATUS) & E1000_STATUS_LU))) + schedule_work(&adapter->downshift_task); + + /* + * 80003ES2LAN workaround-- For packet buffer work-around on + * link down event; disable receives here in the ISR and reset + * adapter in watchdog + */ + if (netif_carrier_ok(netdev) && + adapter->flags & FLAG_RX_NEEDS_RESTART) { + /* disable receives */ + u32 rctl = er32(RCTL); + ew32(RCTL, rctl & ~E1000_RCTL_EN); + adapter->flags |= FLAG_RX_RESTART_NOW; + } + /* guard against interrupt when we're going down */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, jiffies + 1); + } + + if (napi_schedule_prep(&adapter->napi)) { + adapter->total_tx_bytes = 0; + adapter->total_tx_packets = 0; + adapter->total_rx_bytes = 0; + adapter->total_rx_packets = 0; + __napi_schedule(&adapter->napi); + } + + return IRQ_HANDLED; +} + +/** + * e1000_intr - Interrupt Handler + * @irq: interrupt number + * @data: pointer to a network interface device structure + **/ +static irqreturn_t e1000_intr(int irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 rctl, icr = er32(ICR); + + if (!icr || test_bit(__E1000_DOWN, &adapter->state)) + return IRQ_NONE; /* Not our interrupt */ + + /* + * IMS will not auto-mask if INT_ASSERTED is not set, and if it is + * not set, then the adapter didn't send an interrupt + */ + if (!(icr & E1000_ICR_INT_ASSERTED)) + return IRQ_NONE; + + /* + * Interrupt Auto-Mask...upon reading ICR, + * interrupts are masked. No need for the + * IMC write + */ + + if (icr & E1000_ICR_LSC) { + hw->mac.get_link_status = true; + /* + * ICH8 workaround-- Call gig speed drop workaround on cable + * disconnect (LSC) before accessing any PHY registers + */ + if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && + (!(er32(STATUS) & E1000_STATUS_LU))) + schedule_work(&adapter->downshift_task); + + /* + * 80003ES2LAN workaround-- + * For packet buffer work-around on link down event; + * disable receives here in the ISR and + * reset adapter in watchdog + */ + if (netif_carrier_ok(netdev) && + (adapter->flags & FLAG_RX_NEEDS_RESTART)) { + /* disable receives */ + rctl = er32(RCTL); + ew32(RCTL, rctl & ~E1000_RCTL_EN); + adapter->flags |= FLAG_RX_RESTART_NOW; + } + /* guard against interrupt when we're going down */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, jiffies + 1); + } + + if (napi_schedule_prep(&adapter->napi)) { + adapter->total_tx_bytes = 0; + adapter->total_tx_packets = 0; + adapter->total_rx_bytes = 0; + adapter->total_rx_packets = 0; + __napi_schedule(&adapter->napi); + } + + return IRQ_HANDLED; +} + +static irqreturn_t e1000_msix_other(int irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 icr = er32(ICR); + + if (!(icr & E1000_ICR_INT_ASSERTED)) { + if (!test_bit(__E1000_DOWN, &adapter->state)) + ew32(IMS, E1000_IMS_OTHER); + return IRQ_NONE; + } + + if (icr & adapter->eiac_mask) + ew32(ICS, (icr & adapter->eiac_mask)); + + if (icr & E1000_ICR_OTHER) { + if (!(icr & E1000_ICR_LSC)) + goto no_link_interrupt; + hw->mac.get_link_status = true; + /* guard against interrupt when we're going down */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, jiffies + 1); + } + +no_link_interrupt: + if (!test_bit(__E1000_DOWN, &adapter->state)) + ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); + + return IRQ_HANDLED; +} + + +static irqreturn_t e1000_intr_msix_tx(int irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *tx_ring = adapter->tx_ring; + + + adapter->total_tx_bytes = 0; + adapter->total_tx_packets = 0; + + if (!e1000_clean_tx_irq(tx_ring)) + /* Ring was not completely cleaned, so fire another interrupt */ + ew32(ICS, tx_ring->ims_val); + + return IRQ_HANDLED; +} + +static irqreturn_t e1000_intr_msix_rx(int irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_ring *rx_ring = adapter->rx_ring; + + /* Write the ITR value calculated at the end of the + * previous interrupt. + */ + if (rx_ring->set_itr) { + writel(1000000000 / (rx_ring->itr_val * 256), + rx_ring->itr_register); + rx_ring->set_itr = 0; + } + + if (napi_schedule_prep(&adapter->napi)) { + adapter->total_rx_bytes = 0; + adapter->total_rx_packets = 0; + __napi_schedule(&adapter->napi); + } + return IRQ_HANDLED; +} + +/** + * e1000_configure_msix - Configure MSI-X hardware + * + * e1000_configure_msix sets up the hardware to properly + * generate MSI-X interrupts. + **/ +static void e1000_configure_msix(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *rx_ring = adapter->rx_ring; + struct e1000_ring *tx_ring = adapter->tx_ring; + int vector = 0; + u32 ctrl_ext, ivar = 0; + + adapter->eiac_mask = 0; + + /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ + if (hw->mac.type == e1000_82574) { + u32 rfctl = er32(RFCTL); + rfctl |= E1000_RFCTL_ACK_DIS; + ew32(RFCTL, rfctl); + } + +#define E1000_IVAR_INT_ALLOC_VALID 0x8 + /* Configure Rx vector */ + rx_ring->ims_val = E1000_IMS_RXQ0; + adapter->eiac_mask |= rx_ring->ims_val; + if (rx_ring->itr_val) + writel(1000000000 / (rx_ring->itr_val * 256), + rx_ring->itr_register); + else + writel(1, rx_ring->itr_register); + ivar = E1000_IVAR_INT_ALLOC_VALID | vector; + + /* Configure Tx vector */ + tx_ring->ims_val = E1000_IMS_TXQ0; + vector++; + if (tx_ring->itr_val) + writel(1000000000 / (tx_ring->itr_val * 256), + tx_ring->itr_register); + else + writel(1, tx_ring->itr_register); + adapter->eiac_mask |= tx_ring->ims_val; + ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); + + /* set vector for Other Causes, e.g. link changes */ + vector++; + ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); + if (rx_ring->itr_val) + writel(1000000000 / (rx_ring->itr_val * 256), + hw->hw_addr + E1000_EITR_82574(vector)); + else + writel(1, hw->hw_addr + E1000_EITR_82574(vector)); + + /* Cause Tx interrupts on every write back */ + ivar |= (1 << 31); + + ew32(IVAR, ivar); + + /* enable MSI-X PBA support */ + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; + + /* Auto-Mask Other interrupts upon ICR read */ +#define E1000_EIAC_MASK_82574 0x01F00000 + ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); + ctrl_ext |= E1000_CTRL_EXT_EIAME; + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); +} + +void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) +{ + if (adapter->msix_entries) { + pci_disable_msix(adapter->pdev); + kfree(adapter->msix_entries); + adapter->msix_entries = NULL; + } else if (adapter->flags & FLAG_MSI_ENABLED) { + pci_disable_msi(adapter->pdev); + adapter->flags &= ~FLAG_MSI_ENABLED; + } +} + +/** + * e1000e_set_interrupt_capability - set MSI or MSI-X if supported + * + * Attempt to configure interrupts using the best available + * capabilities of the hardware and kernel. + **/ +void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) +{ + int err; + int i; + + switch (adapter->int_mode) { + case E1000E_INT_MODE_MSIX: + if (adapter->flags & FLAG_HAS_MSIX) { + adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ + adapter->msix_entries = kcalloc(adapter->num_vectors, + sizeof(struct msix_entry), + GFP_KERNEL); + if (adapter->msix_entries) { + for (i = 0; i < adapter->num_vectors; i++) + adapter->msix_entries[i].entry = i; + + err = pci_enable_msix(adapter->pdev, + adapter->msix_entries, + adapter->num_vectors); + if (err == 0) + return; + } + /* MSI-X failed, so fall through and try MSI */ + e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); + e1000e_reset_interrupt_capability(adapter); + } + adapter->int_mode = E1000E_INT_MODE_MSI; + /* Fall through */ + case E1000E_INT_MODE_MSI: + if (!pci_enable_msi(adapter->pdev)) { + adapter->flags |= FLAG_MSI_ENABLED; + } else { + adapter->int_mode = E1000E_INT_MODE_LEGACY; + e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); + } + /* Fall through */ + case E1000E_INT_MODE_LEGACY: + /* Don't do anything; this is the system default */ + break; + } + + /* store the number of vectors being used */ + adapter->num_vectors = 1; +} + +/** + * e1000_request_msix - Initialize MSI-X interrupts + * + * e1000_request_msix allocates MSI-X vectors and requests interrupts from the + * kernel. + **/ +static int e1000_request_msix(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + int err = 0, vector = 0; + + if (strlen(netdev->name) < (IFNAMSIZ - 5)) + snprintf(adapter->rx_ring->name, + sizeof(adapter->rx_ring->name) - 1, + "%s-rx-0", netdev->name); + else + memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); + err = request_irq(adapter->msix_entries[vector].vector, + e1000_intr_msix_rx, 0, adapter->rx_ring->name, + netdev); + if (err) + return err; + adapter->rx_ring->itr_register = adapter->hw.hw_addr + + E1000_EITR_82574(vector); + adapter->rx_ring->itr_val = adapter->itr; + vector++; + + if (strlen(netdev->name) < (IFNAMSIZ - 5)) + snprintf(adapter->tx_ring->name, + sizeof(adapter->tx_ring->name) - 1, + "%s-tx-0", netdev->name); + else + memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); + err = request_irq(adapter->msix_entries[vector].vector, + e1000_intr_msix_tx, 0, adapter->tx_ring->name, + netdev); + if (err) + return err; + adapter->tx_ring->itr_register = adapter->hw.hw_addr + + E1000_EITR_82574(vector); + adapter->tx_ring->itr_val = adapter->itr; + vector++; + + err = request_irq(adapter->msix_entries[vector].vector, + e1000_msix_other, 0, netdev->name, netdev); + if (err) + return err; + + e1000_configure_msix(adapter); + + return 0; +} + +/** + * e1000_request_irq - initialize interrupts + * + * Attempts to configure interrupts using the best available + * capabilities of the hardware and kernel. + **/ +static int e1000_request_irq(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + int err; + + if (adapter->msix_entries) { + err = e1000_request_msix(adapter); + if (!err) + return err; + /* fall back to MSI */ + e1000e_reset_interrupt_capability(adapter); + adapter->int_mode = E1000E_INT_MODE_MSI; + e1000e_set_interrupt_capability(adapter); + } + if (adapter->flags & FLAG_MSI_ENABLED) { + err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, + netdev->name, netdev); + if (!err) + return err; + + /* fall back to legacy interrupt */ + e1000e_reset_interrupt_capability(adapter); + adapter->int_mode = E1000E_INT_MODE_LEGACY; + } + + err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, + netdev->name, netdev); + if (err) + e_err("Unable to allocate interrupt, Error: %d\n", err); + + return err; +} + +static void e1000_free_irq(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + + if (adapter->msix_entries) { + int vector = 0; + + free_irq(adapter->msix_entries[vector].vector, netdev); + vector++; + + free_irq(adapter->msix_entries[vector].vector, netdev); + vector++; + + /* Other Causes interrupt vector */ + free_irq(adapter->msix_entries[vector].vector, netdev); + return; + } + + free_irq(adapter->pdev->irq, netdev); +} + +/** + * e1000_irq_disable - Mask off interrupt generation on the NIC + **/ +static void e1000_irq_disable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + ew32(IMC, ~0); + if (adapter->msix_entries) + ew32(EIAC_82574, 0); + e1e_flush(); + + if (adapter->msix_entries) { + int i; + for (i = 0; i < adapter->num_vectors; i++) + synchronize_irq(adapter->msix_entries[i].vector); + } else { + synchronize_irq(adapter->pdev->irq); + } +} + +/** + * e1000_irq_enable - Enable default interrupt generation settings + **/ +static void e1000_irq_enable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + if (adapter->msix_entries) { + ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); + ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); + } else { + ew32(IMS, IMS_ENABLE_MASK); + } + e1e_flush(); +} + +/** + * e1000e_get_hw_control - get control of the h/w from f/w + * @adapter: address of board private structure + * + * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that + * the driver is loaded. For AMT version (only with 82573) + * of the f/w this means that the network i/f is open. + **/ +void e1000e_get_hw_control(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl_ext; + u32 swsm; + + /* Let firmware know the driver has taken over */ + if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { + swsm = er32(SWSM); + ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); + } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { + ctrl_ext = er32(CTRL_EXT); + ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); + } +} + +/** + * e1000e_release_hw_control - release control of the h/w to f/w + * @adapter: address of board private structure + * + * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that the + * driver is no longer loaded. For AMT version (only with 82573) i + * of the f/w this means that the network i/f is closed. + * + **/ +void e1000e_release_hw_control(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl_ext; + u32 swsm; + + /* Let firmware taken over control of h/w */ + if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { + swsm = er32(SWSM); + ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); + } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { + ctrl_ext = er32(CTRL_EXT); + ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); + } +} + +/** + * @e1000_alloc_ring - allocate memory for a ring structure + **/ +static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, + struct e1000_ring *ring) +{ + struct pci_dev *pdev = adapter->pdev; + + ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, + GFP_KERNEL); + if (!ring->desc) + return -ENOMEM; + + return 0; +} + +/** + * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) + * @tx_ring: Tx descriptor ring + * + * Return 0 on success, negative on failure + **/ +int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + int err = -ENOMEM, size; + + size = sizeof(struct e1000_buffer) * tx_ring->count; + tx_ring->buffer_info = vzalloc(size); + if (!tx_ring->buffer_info) + goto err; + + /* round up to nearest 4K */ + tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); + tx_ring->size = ALIGN(tx_ring->size, 4096); + + err = e1000_alloc_ring_dma(adapter, tx_ring); + if (err) + goto err; + + tx_ring->next_to_use = 0; + tx_ring->next_to_clean = 0; + + return 0; +err: + vfree(tx_ring->buffer_info); + e_err("Unable to allocate memory for the transmit descriptor ring\n"); + return err; +} + +/** + * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) + * @rx_ring: Rx descriptor ring + * + * Returns 0 on success, negative on failure + **/ +int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_buffer *buffer_info; + int i, size, desc_len, err = -ENOMEM; + + size = sizeof(struct e1000_buffer) * rx_ring->count; + rx_ring->buffer_info = vzalloc(size); + if (!rx_ring->buffer_info) + goto err; + + for (i = 0; i < rx_ring->count; i++) { + buffer_info = &rx_ring->buffer_info[i]; + buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, + sizeof(struct e1000_ps_page), + GFP_KERNEL); + if (!buffer_info->ps_pages) + goto err_pages; + } + + desc_len = sizeof(union e1000_rx_desc_packet_split); + + /* Round up to nearest 4K */ + rx_ring->size = rx_ring->count * desc_len; + rx_ring->size = ALIGN(rx_ring->size, 4096); + + err = e1000_alloc_ring_dma(adapter, rx_ring); + if (err) + goto err_pages; + + rx_ring->next_to_clean = 0; + rx_ring->next_to_use = 0; + rx_ring->rx_skb_top = NULL; + + return 0; + +err_pages: + for (i = 0; i < rx_ring->count; i++) { + buffer_info = &rx_ring->buffer_info[i]; + kfree(buffer_info->ps_pages); + } +err: + vfree(rx_ring->buffer_info); + e_err("Unable to allocate memory for the receive descriptor ring\n"); + return err; +} + +/** + * e1000_clean_tx_ring - Free Tx Buffers + * @tx_ring: Tx descriptor ring + **/ +static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_buffer *buffer_info; + unsigned long size; + unsigned int i; + + for (i = 0; i < tx_ring->count; i++) { + buffer_info = &tx_ring->buffer_info[i]; + e1000_put_txbuf(tx_ring, buffer_info); + } + + netdev_reset_queue(adapter->netdev); + size = sizeof(struct e1000_buffer) * tx_ring->count; + memset(tx_ring->buffer_info, 0, size); + + memset(tx_ring->desc, 0, tx_ring->size); + + tx_ring->next_to_use = 0; + tx_ring->next_to_clean = 0; + + writel(0, tx_ring->head); + writel(0, tx_ring->tail); +} + +/** + * e1000e_free_tx_resources - Free Tx Resources per Queue + * @tx_ring: Tx descriptor ring + * + * Free all transmit software resources + **/ +void e1000e_free_tx_resources(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct pci_dev *pdev = adapter->pdev; + + e1000_clean_tx_ring(tx_ring); + + vfree(tx_ring->buffer_info); + tx_ring->buffer_info = NULL; + + dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, + tx_ring->dma); + tx_ring->desc = NULL; +} + +/** + * e1000e_free_rx_resources - Free Rx Resources + * @rx_ring: Rx descriptor ring + * + * Free all receive software resources + **/ +void e1000e_free_rx_resources(struct e1000_ring *rx_ring) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct pci_dev *pdev = adapter->pdev; + int i; + + e1000_clean_rx_ring(rx_ring); + + for (i = 0; i < rx_ring->count; i++) + kfree(rx_ring->buffer_info[i].ps_pages); + + vfree(rx_ring->buffer_info); + rx_ring->buffer_info = NULL; + + dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, + rx_ring->dma); + rx_ring->desc = NULL; +} + +/** + * e1000_update_itr - update the dynamic ITR value based on statistics + * @adapter: pointer to adapter + * @itr_setting: current adapter->itr + * @packets: the number of packets during this measurement interval + * @bytes: the number of bytes during this measurement interval + * + * Stores a new ITR value based on packets and byte + * counts during the last interrupt. The advantage of per interrupt + * computation is faster updates and more accurate ITR for the current + * traffic pattern. Constants in this function were computed + * based on theoretical maximum wire speed and thresholds were set based + * on testing data as well as attempting to minimize response time + * while increasing bulk throughput. This functionality is controlled + * by the InterruptThrottleRate module parameter. + **/ +static unsigned int e1000_update_itr(struct e1000_adapter *adapter, + u16 itr_setting, int packets, + int bytes) +{ + unsigned int retval = itr_setting; + + if (packets == 0) + return itr_setting; + + switch (itr_setting) { + case lowest_latency: + /* handle TSO and jumbo frames */ + if (bytes/packets > 8000) + retval = bulk_latency; + else if ((packets < 5) && (bytes > 512)) + retval = low_latency; + break; + case low_latency: /* 50 usec aka 20000 ints/s */ + if (bytes > 10000) { + /* this if handles the TSO accounting */ + if (bytes/packets > 8000) + retval = bulk_latency; + else if ((packets < 10) || ((bytes/packets) > 1200)) + retval = bulk_latency; + else if ((packets > 35)) + retval = lowest_latency; + } else if (bytes/packets > 2000) { + retval = bulk_latency; + } else if (packets <= 2 && bytes < 512) { + retval = lowest_latency; + } + break; + case bulk_latency: /* 250 usec aka 4000 ints/s */ + if (bytes > 25000) { + if (packets > 35) + retval = low_latency; + } else if (bytes < 6000) { + retval = low_latency; + } + break; + } + + return retval; +} + +static void e1000_set_itr(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u16 current_itr; + u32 new_itr = adapter->itr; + + /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ + if (adapter->link_speed != SPEED_1000) { + current_itr = 0; + new_itr = 4000; + goto set_itr_now; + } + + if (adapter->flags2 & FLAG2_DISABLE_AIM) { + new_itr = 0; + goto set_itr_now; + } + + adapter->tx_itr = e1000_update_itr(adapter, + adapter->tx_itr, + adapter->total_tx_packets, + adapter->total_tx_bytes); + /* conservative mode (itr 3) eliminates the lowest_latency setting */ + if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) + adapter->tx_itr = low_latency; + + adapter->rx_itr = e1000_update_itr(adapter, + adapter->rx_itr, + adapter->total_rx_packets, + adapter->total_rx_bytes); + /* conservative mode (itr 3) eliminates the lowest_latency setting */ + if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) + adapter->rx_itr = low_latency; + + current_itr = max(adapter->rx_itr, adapter->tx_itr); + + switch (current_itr) { + /* counts and packets in update_itr are dependent on these numbers */ + case lowest_latency: + new_itr = 70000; + break; + case low_latency: + new_itr = 20000; /* aka hwitr = ~200 */ + break; + case bulk_latency: + new_itr = 4000; + break; + default: + break; + } + +set_itr_now: + if (new_itr != adapter->itr) { + /* + * this attempts to bias the interrupt rate towards Bulk + * by adding intermediate steps when interrupt rate is + * increasing + */ + new_itr = new_itr > adapter->itr ? + min(adapter->itr + (new_itr >> 2), new_itr) : + new_itr; + adapter->itr = new_itr; + adapter->rx_ring->itr_val = new_itr; + if (adapter->msix_entries) + adapter->rx_ring->set_itr = 1; + else + if (new_itr) + ew32(ITR, 1000000000 / (new_itr * 256)); + else + ew32(ITR, 0); + } +} + +/** + * e1000_alloc_queues - Allocate memory for all rings + * @adapter: board private structure to initialize + **/ +static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) +{ + int size = sizeof(struct e1000_ring); + + adapter->tx_ring = kzalloc(size, GFP_KERNEL); + if (!adapter->tx_ring) + goto err; + adapter->tx_ring->count = adapter->tx_ring_count; + adapter->tx_ring->adapter = adapter; + + adapter->rx_ring = kzalloc(size, GFP_KERNEL); + if (!adapter->rx_ring) + goto err; + adapter->rx_ring->count = adapter->rx_ring_count; + adapter->rx_ring->adapter = adapter; + + return 0; +err: + e_err("Unable to allocate memory for queues\n"); + kfree(adapter->rx_ring); + kfree(adapter->tx_ring); + return -ENOMEM; +} + +/** + * e1000_clean - NAPI Rx polling callback + * @napi: struct associated with this polling callback + * @budget: amount of packets driver is allowed to process this poll + **/ +static int e1000_clean(struct napi_struct *napi, int budget) +{ + struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); + struct e1000_hw *hw = &adapter->hw; + struct net_device *poll_dev = adapter->netdev; + int tx_cleaned = 1, work_done = 0; + + adapter = netdev_priv(poll_dev); + + if (adapter->msix_entries && + !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) + goto clean_rx; + + tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); + +clean_rx: + adapter->clean_rx(adapter->rx_ring, &work_done, budget); + + if (!tx_cleaned) + work_done = budget; + + /* If budget not fully consumed, exit the polling mode */ + if (work_done < budget) { + if (adapter->itr_setting & 3) + e1000_set_itr(adapter); + napi_complete(napi); + if (!test_bit(__E1000_DOWN, &adapter->state)) { + if (adapter->msix_entries) + ew32(IMS, adapter->rx_ring->ims_val); + else + e1000_irq_enable(adapter); + } + } + + return work_done; +} + +static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 vfta, index; + + /* don't update vlan cookie if already programmed */ + if ((adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && + (vid == adapter->mng_vlan_id)) + return 0; + + /* add VID to filter table */ + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + index = (vid >> 5) & 0x7F; + vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); + vfta |= (1 << (vid & 0x1F)); + hw->mac.ops.write_vfta(hw, index, vfta); + } + + set_bit(vid, adapter->active_vlans); + + return 0; +} + +static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 vfta, index; + + if ((adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && + (vid == adapter->mng_vlan_id)) { + /* release control to f/w */ + e1000e_release_hw_control(adapter); + return 0; + } + + /* remove VID from filter table */ + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + index = (vid >> 5) & 0x7F; + vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); + vfta &= ~(1 << (vid & 0x1F)); + hw->mac.ops.write_vfta(hw, index, vfta); + } + + clear_bit(vid, adapter->active_vlans); + + return 0; +} + +/** + * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + /* disable VLAN receive filtering */ + rctl = er32(RCTL); + rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); + ew32(RCTL, rctl); + + if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { + e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); + adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; + } + } +} + +/** + * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + /* enable VLAN receive filtering */ + rctl = er32(RCTL); + rctl |= E1000_RCTL_VFE; + rctl &= ~E1000_RCTL_CFIEN; + ew32(RCTL, rctl); + } +} + +/** + * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl; + + /* disable VLAN tag insert/strip */ + ctrl = er32(CTRL); + ctrl &= ~E1000_CTRL_VME; + ew32(CTRL, ctrl); +} + +/** + * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl; + + /* enable VLAN tag insert/strip */ + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_VME; + ew32(CTRL, ctrl); +} + +static void e1000_update_mng_vlan(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + u16 vid = adapter->hw.mng_cookie.vlan_id; + u16 old_vid = adapter->mng_vlan_id; + + if (adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { + e1000_vlan_rx_add_vid(netdev, vid); + adapter->mng_vlan_id = vid; + } + + if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) + e1000_vlan_rx_kill_vid(netdev, old_vid); +} + +static void e1000_restore_vlan(struct e1000_adapter *adapter) +{ + u16 vid; + + e1000_vlan_rx_add_vid(adapter->netdev, 0); + + for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) + e1000_vlan_rx_add_vid(adapter->netdev, vid); +} + +static void e1000_init_manageability_pt(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 manc, manc2h, mdef, i, j; + + if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) + return; + + manc = er32(MANC); + + /* + * enable receiving management packets to the host. this will probably + * generate destination unreachable messages from the host OS, but + * the packets will be handled on SMBUS + */ + manc |= E1000_MANC_EN_MNG2HOST; + manc2h = er32(MANC2H); + + switch (hw->mac.type) { + default: + manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); + break; + case e1000_82574: + case e1000_82583: + /* + * Check if IPMI pass-through decision filter already exists; + * if so, enable it. + */ + for (i = 0, j = 0; i < 8; i++) { + mdef = er32(MDEF(i)); + + /* Ignore filters with anything other than IPMI ports */ + if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) + continue; + + /* Enable this decision filter in MANC2H */ + if (mdef) + manc2h |= (1 << i); + + j |= mdef; + } + + if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) + break; + + /* Create new decision filter in an empty filter */ + for (i = 0, j = 0; i < 8; i++) + if (er32(MDEF(i)) == 0) { + ew32(MDEF(i), (E1000_MDEF_PORT_623 | + E1000_MDEF_PORT_664)); + manc2h |= (1 << 1); + j++; + break; + } + + if (!j) + e_warn("Unable to create IPMI pass-through filter\n"); + break; + } + + ew32(MANC2H, manc2h); + ew32(MANC, manc); +} + +/** + * e1000_configure_tx - Configure Transmit Unit after Reset + * @adapter: board private structure + * + * Configure the Tx unit of the MAC after a reset. + **/ +static void e1000_configure_tx(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *tx_ring = adapter->tx_ring; + u64 tdba; + u32 tdlen, tarc; + + /* Setup the HW Tx Head and Tail descriptor pointers */ + tdba = tx_ring->dma; + tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); + ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); + ew32(TDBAH, (tdba >> 32)); + ew32(TDLEN, tdlen); + ew32(TDH, 0); + ew32(TDT, 0); + tx_ring->head = adapter->hw.hw_addr + E1000_TDH; + tx_ring->tail = adapter->hw.hw_addr + E1000_TDT; + + /* Set the Tx Interrupt Delay register */ + ew32(TIDV, adapter->tx_int_delay); + /* Tx irq moderation */ + ew32(TADV, adapter->tx_abs_int_delay); + + if (adapter->flags2 & FLAG2_DMA_BURST) { + u32 txdctl = er32(TXDCTL(0)); + txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | + E1000_TXDCTL_WTHRESH); + /* + * set up some performance related parameters to encourage the + * hardware to use the bus more efficiently in bursts, depends + * on the tx_int_delay to be enabled, + * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time + * hthresh = 1 ==> prefetch when one or more available + * pthresh = 0x1f ==> prefetch if internal cache 31 or less + * BEWARE: this seems to work but should be considered first if + * there are Tx hangs or other Tx related bugs + */ + txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; + ew32(TXDCTL(0), txdctl); + } + /* erratum work around: set txdctl the same for both queues */ + ew32(TXDCTL(1), er32(TXDCTL(0))); + + if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { + tarc = er32(TARC(0)); + /* + * set the speed mode bit, we'll clear it if we're not at + * gigabit link later + */ +#define SPEED_MODE_BIT (1 << 21) + tarc |= SPEED_MODE_BIT; + ew32(TARC(0), tarc); + } + + /* errata: program both queues to unweighted RR */ + if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { + tarc = er32(TARC(0)); + tarc |= 1; + ew32(TARC(0), tarc); + tarc = er32(TARC(1)); + tarc |= 1; + ew32(TARC(1), tarc); + } + + /* Setup Transmit Descriptor Settings for eop descriptor */ + adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; + + /* only set IDE if we are delaying interrupts using the timers */ + if (adapter->tx_int_delay) + adapter->txd_cmd |= E1000_TXD_CMD_IDE; + + /* enable Report Status bit */ + adapter->txd_cmd |= E1000_TXD_CMD_RS; + + hw->mac.ops.config_collision_dist(hw); +} + +/** + * e1000_setup_rctl - configure the receive control registers + * @adapter: Board private structure + **/ +#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ + (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) +static void e1000_setup_rctl(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 rctl, rfctl; + u32 pages = 0; + + /* Workaround Si errata on 82579 - configure jumbo frame flow */ + if (hw->mac.type == e1000_pch2lan) { + s32 ret_val; + + if (adapter->netdev->mtu > ETH_DATA_LEN) + ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); + else + ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); + + if (ret_val) + e_dbg("failed to enable jumbo frame workaround mode\n"); + } + + /* Program MC offset vector base */ + rctl = er32(RCTL); + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | + E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | + (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + + /* Do not Store bad packets */ + rctl &= ~E1000_RCTL_SBP; + + /* Enable Long Packet receive */ + if (adapter->netdev->mtu <= ETH_DATA_LEN) + rctl &= ~E1000_RCTL_LPE; + else + rctl |= E1000_RCTL_LPE; + + /* Some systems expect that the CRC is included in SMBUS traffic. The + * hardware strips the CRC before sending to both SMBUS (BMC) and to + * host memory when this is enabled + */ + if (adapter->flags2 & FLAG2_CRC_STRIPPING) + rctl |= E1000_RCTL_SECRC; + + /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ + if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { + u16 phy_data; + + e1e_rphy(hw, PHY_REG(770, 26), &phy_data); + phy_data &= 0xfff8; + phy_data |= (1 << 2); + e1e_wphy(hw, PHY_REG(770, 26), phy_data); + + e1e_rphy(hw, 22, &phy_data); + phy_data &= 0x0fff; + phy_data |= (1 << 14); + e1e_wphy(hw, 0x10, 0x2823); + e1e_wphy(hw, 0x11, 0x0003); + e1e_wphy(hw, 22, phy_data); + } + + /* Setup buffer sizes */ + rctl &= ~E1000_RCTL_SZ_4096; + rctl |= E1000_RCTL_BSEX; + switch (adapter->rx_buffer_len) { + case 2048: + default: + rctl |= E1000_RCTL_SZ_2048; + rctl &= ~E1000_RCTL_BSEX; + break; + case 4096: + rctl |= E1000_RCTL_SZ_4096; + break; + case 8192: + rctl |= E1000_RCTL_SZ_8192; + break; + case 16384: + rctl |= E1000_RCTL_SZ_16384; + break; + } + + /* Enable Extended Status in all Receive Descriptors */ + rfctl = er32(RFCTL); + rfctl |= E1000_RFCTL_EXTEN; + + /* + * 82571 and greater support packet-split where the protocol + * header is placed in skb->data and the packet data is + * placed in pages hanging off of skb_shinfo(skb)->nr_frags. + * In the case of a non-split, skb->data is linearly filled, + * followed by the page buffers. Therefore, skb->data is + * sized to hold the largest protocol header. + * + * allocations using alloc_page take too long for regular MTU + * so only enable packet split for jumbo frames + * + * Using pages when the page size is greater than 16k wastes + * a lot of memory, since we allocate 3 pages at all times + * per packet. + */ + pages = PAGE_USE_COUNT(adapter->netdev->mtu); + if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) + adapter->rx_ps_pages = pages; + else + adapter->rx_ps_pages = 0; + + if (adapter->rx_ps_pages) { + u32 psrctl = 0; + + /* + * disable packet split support for IPv6 extension headers, + * because some malformed IPv6 headers can hang the Rx + */ + rfctl |= (E1000_RFCTL_IPV6_EX_DIS | + E1000_RFCTL_NEW_IPV6_EXT_DIS); + + /* Enable Packet split descriptors */ + rctl |= E1000_RCTL_DTYP_PS; + + psrctl |= adapter->rx_ps_bsize0 >> + E1000_PSRCTL_BSIZE0_SHIFT; + + switch (adapter->rx_ps_pages) { + case 3: + psrctl |= PAGE_SIZE << + E1000_PSRCTL_BSIZE3_SHIFT; + case 2: + psrctl |= PAGE_SIZE << + E1000_PSRCTL_BSIZE2_SHIFT; + case 1: + psrctl |= PAGE_SIZE >> + E1000_PSRCTL_BSIZE1_SHIFT; + break; + } + + ew32(PSRCTL, psrctl); + } + + /* This is useful for sniffing bad packets. */ + if (adapter->netdev->features & NETIF_F_RXALL) { + /* UPE and MPE will be handled by normal PROMISC logic + * in e1000e_set_rx_mode */ + rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ + E1000_RCTL_BAM | /* RX All Bcast Pkts */ + E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ + + rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ + E1000_RCTL_DPF | /* Allow filtered pause */ + E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ + /* Do not mess with E1000_CTRL_VME, it affects transmit as well, + * and that breaks VLANs. + */ + } + + ew32(RFCTL, rfctl); + ew32(RCTL, rctl); + /* just started the receive unit, no need to restart */ + adapter->flags &= ~FLAG_RX_RESTART_NOW; +} + +/** + * e1000_configure_rx - Configure Receive Unit after Reset + * @adapter: board private structure + * + * Configure the Rx unit of the MAC after a reset. + **/ +static void e1000_configure_rx(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *rx_ring = adapter->rx_ring; + u64 rdba; + u32 rdlen, rctl, rxcsum, ctrl_ext; + + if (adapter->rx_ps_pages) { + /* this is a 32 byte descriptor */ + rdlen = rx_ring->count * + sizeof(union e1000_rx_desc_packet_split); + adapter->clean_rx = e1000_clean_rx_irq_ps; + adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; + } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { + rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); + adapter->clean_rx = e1000_clean_jumbo_rx_irq; + adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; + } else { + rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); + adapter->clean_rx = e1000_clean_rx_irq; + adapter->alloc_rx_buf = e1000_alloc_rx_buffers; + } + + /* disable receives while setting up the descriptors */ + rctl = er32(RCTL); + if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) + ew32(RCTL, rctl & ~E1000_RCTL_EN); + e1e_flush(); + usleep_range(10000, 20000); + + if (adapter->flags2 & FLAG2_DMA_BURST) { + /* + * set the writeback threshold (only takes effect if the RDTR + * is set). set GRAN=1 and write back up to 0x4 worth, and + * enable prefetching of 0x20 Rx descriptors + * granularity = 01 + * wthresh = 04, + * hthresh = 04, + * pthresh = 0x20 + */ + ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); + ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); + + /* + * override the delay timers for enabling bursting, only if + * the value was not set by the user via module options + */ + if (adapter->rx_int_delay == DEFAULT_RDTR) + adapter->rx_int_delay = BURST_RDTR; + if (adapter->rx_abs_int_delay == DEFAULT_RADV) + adapter->rx_abs_int_delay = BURST_RADV; + } + + /* set the Receive Delay Timer Register */ + ew32(RDTR, adapter->rx_int_delay); + + /* irq moderation */ + ew32(RADV, adapter->rx_abs_int_delay); + if ((adapter->itr_setting != 0) && (adapter->itr != 0)) + ew32(ITR, 1000000000 / (adapter->itr * 256)); + + ctrl_ext = er32(CTRL_EXT); + /* Auto-Mask interrupts upon ICR access */ + ctrl_ext |= E1000_CTRL_EXT_IAME; + ew32(IAM, 0xffffffff); + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); + + /* + * Setup the HW Rx Head and Tail Descriptor Pointers and + * the Base and Length of the Rx Descriptor Ring + */ + rdba = rx_ring->dma; + ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); + ew32(RDBAH, (rdba >> 32)); + ew32(RDLEN, rdlen); + ew32(RDH, 0); + ew32(RDT, 0); + rx_ring->head = adapter->hw.hw_addr + E1000_RDH; + rx_ring->tail = adapter->hw.hw_addr + E1000_RDT; + + /* Enable Receive Checksum Offload for TCP and UDP */ + rxcsum = er32(RXCSUM); + if (adapter->netdev->features & NETIF_F_RXCSUM) + rxcsum |= E1000_RXCSUM_TUOFL; + else + rxcsum &= ~E1000_RXCSUM_TUOFL; + ew32(RXCSUM, rxcsum); + + if (adapter->hw.mac.type == e1000_pch2lan) { + /* + * With jumbo frames, excessive C-state transition + * latencies result in dropped transactions. + */ + if (adapter->netdev->mtu > ETH_DATA_LEN) { + u32 rxdctl = er32(RXDCTL(0)); + ew32(RXDCTL(0), rxdctl | 0x3); + pm_qos_update_request(&adapter->netdev->pm_qos_req, 55); + } else { + pm_qos_update_request(&adapter->netdev->pm_qos_req, + PM_QOS_DEFAULT_VALUE); + } + } + + /* Enable Receives */ + ew32(RCTL, rctl); +} + +/** + * e1000e_write_mc_addr_list - write multicast addresses to MTA + * @netdev: network interface device structure + * + * Writes multicast address list to the MTA hash table. + * Returns: -ENOMEM on failure + * 0 on no addresses written + * X on writing X addresses to MTA + */ +static int e1000e_write_mc_addr_list(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + struct netdev_hw_addr *ha; + u8 *mta_list; + int i; + + if (netdev_mc_empty(netdev)) { + /* nothing to program, so clear mc list */ + hw->mac.ops.update_mc_addr_list(hw, NULL, 0); + return 0; + } + + mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC); + if (!mta_list) + return -ENOMEM; + + /* update_mc_addr_list expects a packed array of only addresses. */ + i = 0; + netdev_for_each_mc_addr(ha, netdev) + memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); + + hw->mac.ops.update_mc_addr_list(hw, mta_list, i); + kfree(mta_list); + + return netdev_mc_count(netdev); +} + +/** + * e1000e_write_uc_addr_list - write unicast addresses to RAR table + * @netdev: network interface device structure + * + * Writes unicast address list to the RAR table. + * Returns: -ENOMEM on failure/insufficient address space + * 0 on no addresses written + * X on writing X addresses to the RAR table + **/ +static int e1000e_write_uc_addr_list(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + unsigned int rar_entries = hw->mac.rar_entry_count; + int count = 0; + + /* save a rar entry for our hardware address */ + rar_entries--; + + /* save a rar entry for the LAA workaround */ + if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) + rar_entries--; + + /* return ENOMEM indicating insufficient memory for addresses */ + if (netdev_uc_count(netdev) > rar_entries) + return -ENOMEM; + + if (!netdev_uc_empty(netdev) && rar_entries) { + struct netdev_hw_addr *ha; + + /* + * write the addresses in reverse order to avoid write + * combining + */ + netdev_for_each_uc_addr(ha, netdev) { + if (!rar_entries) + break; + e1000e_rar_set(hw, ha->addr, rar_entries--); + count++; + } + } + + /* zero out the remaining RAR entries not used above */ + for (; rar_entries > 0; rar_entries--) { + ew32(RAH(rar_entries), 0); + ew32(RAL(rar_entries), 0); + } + e1e_flush(); + + return count; +} + +/** + * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set + * @netdev: network interface device structure + * + * The ndo_set_rx_mode entry point is called whenever the unicast or multicast + * address list or the network interface flags are updated. This routine is + * responsible for configuring the hardware for proper unicast, multicast, + * promiscuous mode, and all-multi behavior. + **/ +static void e1000e_set_rx_mode(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + + /* Check for Promiscuous and All Multicast modes */ + rctl = er32(RCTL); + + /* clear the affected bits */ + rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); + + if (netdev->flags & IFF_PROMISC) { + rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + /* Do not hardware filter VLANs in promisc mode */ + e1000e_vlan_filter_disable(adapter); + } else { + int count; + + if (netdev->flags & IFF_ALLMULTI) { + rctl |= E1000_RCTL_MPE; + } else { + /* + * Write addresses to the MTA, if the attempt fails + * then we should just turn on promiscuous mode so + * that we can at least receive multicast traffic + */ + count = e1000e_write_mc_addr_list(netdev); + if (count < 0) + rctl |= E1000_RCTL_MPE; + } + e1000e_vlan_filter_enable(adapter); + /* + * Write addresses to available RAR registers, if there is not + * sufficient space to store all the addresses then enable + * unicast promiscuous mode + */ + count = e1000e_write_uc_addr_list(netdev); + if (count < 0) + rctl |= E1000_RCTL_UPE; + } + + ew32(RCTL, rctl); + + if (netdev->features & NETIF_F_HW_VLAN_RX) + e1000e_vlan_strip_enable(adapter); + else + e1000e_vlan_strip_disable(adapter); +} + +static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 mrqc, rxcsum; + int i; + static const u32 rsskey[10] = { + 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0, + 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe + }; + + /* Fill out hash function seed */ + for (i = 0; i < 10; i++) + ew32(RSSRK(i), rsskey[i]); + + /* Direct all traffic to queue 0 */ + for (i = 0; i < 32; i++) + ew32(RETA(i), 0); + + /* + * Disable raw packet checksumming so that RSS hash is placed in + * descriptor on writeback. + */ + rxcsum = er32(RXCSUM); + rxcsum |= E1000_RXCSUM_PCSD; + + ew32(RXCSUM, rxcsum); + + mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | + E1000_MRQC_RSS_FIELD_IPV4_TCP | + E1000_MRQC_RSS_FIELD_IPV6 | + E1000_MRQC_RSS_FIELD_IPV6_TCP | + E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); + + ew32(MRQC, mrqc); +} + +/** + * e1000_configure - configure the hardware for Rx and Tx + * @adapter: private board structure + **/ +static void e1000_configure(struct e1000_adapter *adapter) +{ + struct e1000_ring *rx_ring = adapter->rx_ring; + + e1000e_set_rx_mode(adapter->netdev); + + e1000_restore_vlan(adapter); + e1000_init_manageability_pt(adapter); + + e1000_configure_tx(adapter); + + if (adapter->netdev->features & NETIF_F_RXHASH) + e1000e_setup_rss_hash(adapter); + e1000_setup_rctl(adapter); + e1000_configure_rx(adapter); + adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); +} + +/** + * e1000e_power_up_phy - restore link in case the phy was powered down + * @adapter: address of board private structure + * + * The phy may be powered down to save power and turn off link when the + * driver is unloaded and wake on lan is not enabled (among others) + * *** this routine MUST be followed by a call to e1000e_reset *** + **/ +void e1000e_power_up_phy(struct e1000_adapter *adapter) +{ + if (adapter->hw.phy.ops.power_up) + adapter->hw.phy.ops.power_up(&adapter->hw); + + adapter->hw.mac.ops.setup_link(&adapter->hw); +} + +/** + * e1000_power_down_phy - Power down the PHY + * + * Power down the PHY so no link is implied when interface is down. + * The PHY cannot be powered down if management or WoL is active. + */ +static void e1000_power_down_phy(struct e1000_adapter *adapter) +{ + /* WoL is enabled */ + if (adapter->wol) + return; + + if (adapter->hw.phy.ops.power_down) + adapter->hw.phy.ops.power_down(&adapter->hw); +} + +/** + * e1000e_reset - bring the hardware into a known good state + * + * This function boots the hardware and enables some settings that + * require a configuration cycle of the hardware - those cannot be + * set/changed during runtime. After reset the device needs to be + * properly configured for Rx, Tx etc. + */ +void e1000e_reset(struct e1000_adapter *adapter) +{ + struct e1000_mac_info *mac = &adapter->hw.mac; + struct e1000_fc_info *fc = &adapter->hw.fc; + struct e1000_hw *hw = &adapter->hw; + u32 tx_space, min_tx_space, min_rx_space; + u32 pba = adapter->pba; + u16 hwm; + + /* reset Packet Buffer Allocation to default */ + ew32(PBA, pba); + + if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { + /* + * To maintain wire speed transmits, the Tx FIFO should be + * large enough to accommodate two full transmit packets, + * rounded up to the next 1KB and expressed in KB. Likewise, + * the Rx FIFO should be large enough to accommodate at least + * one full receive packet and is similarly rounded up and + * expressed in KB. + */ + pba = er32(PBA); + /* upper 16 bits has Tx packet buffer allocation size in KB */ + tx_space = pba >> 16; + /* lower 16 bits has Rx packet buffer allocation size in KB */ + pba &= 0xffff; + /* + * the Tx fifo also stores 16 bytes of information about the Tx + * but don't include ethernet FCS because hardware appends it + */ + min_tx_space = (adapter->max_frame_size + + sizeof(struct e1000_tx_desc) - + ETH_FCS_LEN) * 2; + min_tx_space = ALIGN(min_tx_space, 1024); + min_tx_space >>= 10; + /* software strips receive CRC, so leave room for it */ + min_rx_space = adapter->max_frame_size; + min_rx_space = ALIGN(min_rx_space, 1024); + min_rx_space >>= 10; + + /* + * If current Tx allocation is less than the min Tx FIFO size, + * and the min Tx FIFO size is less than the current Rx FIFO + * allocation, take space away from current Rx allocation + */ + if ((tx_space < min_tx_space) && + ((min_tx_space - tx_space) < pba)) { + pba -= min_tx_space - tx_space; + + /* + * if short on Rx space, Rx wins and must trump Tx + * adjustment or use Early Receive if available + */ + if (pba < min_rx_space) + pba = min_rx_space; + } + + ew32(PBA, pba); + } + + /* + * flow control settings + * + * The high water mark must be low enough to fit one full frame + * (or the size used for early receive) above it in the Rx FIFO. + * Set it to the lower of: + * - 90% of the Rx FIFO size, and + * - the full Rx FIFO size minus one full frame + */ + if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) + fc->pause_time = 0xFFFF; + else + fc->pause_time = E1000_FC_PAUSE_TIME; + fc->send_xon = true; + fc->current_mode = fc->requested_mode; + + switch (hw->mac.type) { + case e1000_ich9lan: + case e1000_ich10lan: + if (adapter->netdev->mtu > ETH_DATA_LEN) { + pba = 14; + ew32(PBA, pba); + fc->high_water = 0x2800; + fc->low_water = fc->high_water - 8; + break; + } + /* fall-through */ + default: + hwm = min(((pba << 10) * 9 / 10), + ((pba << 10) - adapter->max_frame_size)); + + fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ + fc->low_water = fc->high_water - 8; + break; + case e1000_pchlan: + /* + * Workaround PCH LOM adapter hangs with certain network + * loads. If hangs persist, try disabling Tx flow control. + */ + if (adapter->netdev->mtu > ETH_DATA_LEN) { + fc->high_water = 0x3500; + fc->low_water = 0x1500; + } else { + fc->high_water = 0x5000; + fc->low_water = 0x3000; + } + fc->refresh_time = 0x1000; + break; + case e1000_pch2lan: + fc->high_water = 0x05C20; + fc->low_water = 0x05048; + fc->pause_time = 0x0650; + fc->refresh_time = 0x0400; + if (adapter->netdev->mtu > ETH_DATA_LEN) { + pba = 14; + ew32(PBA, pba); + } + break; + } + + /* + * Disable Adaptive Interrupt Moderation if 2 full packets cannot + * fit in receive buffer. + */ + if (adapter->itr_setting & 0x3) { + if ((adapter->max_frame_size * 2) > (pba << 10)) { + if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { + dev_info(&adapter->pdev->dev, + "Interrupt Throttle Rate turned off\n"); + adapter->flags2 |= FLAG2_DISABLE_AIM; + ew32(ITR, 0); + } + } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { + dev_info(&adapter->pdev->dev, + "Interrupt Throttle Rate turned on\n"); + adapter->flags2 &= ~FLAG2_DISABLE_AIM; + adapter->itr = 20000; + ew32(ITR, 1000000000 / (adapter->itr * 256)); + } + } + + /* Allow time for pending master requests to run */ + mac->ops.reset_hw(hw); + + /* + * For parts with AMT enabled, let the firmware know + * that the network interface is in control + */ + if (adapter->flags & FLAG_HAS_AMT) + e1000e_get_hw_control(adapter); + + ew32(WUC, 0); + + if (mac->ops.init_hw(hw)) + e_err("Hardware Error\n"); + + e1000_update_mng_vlan(adapter); + + /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ + ew32(VET, ETH_P_8021Q); + + e1000e_reset_adaptive(hw); + + if (!netif_running(adapter->netdev) && + !test_bit(__E1000_TESTING, &adapter->state)) { + e1000_power_down_phy(adapter); + return; + } + + e1000_get_phy_info(hw); + + if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && + !(adapter->flags & FLAG_SMART_POWER_DOWN)) { + u16 phy_data = 0; + /* + * speed up time to link by disabling smart power down, ignore + * the return value of this function because there is nothing + * different we would do if it failed + */ + e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); + phy_data &= ~IGP02E1000_PM_SPD; + e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); + } +} + +int e1000e_up(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + /* hardware has been reset, we need to reload some things */ + e1000_configure(adapter); + + clear_bit(__E1000_DOWN, &adapter->state); + + if (adapter->msix_entries) + e1000_configure_msix(adapter); + e1000_irq_enable(adapter); + + netif_start_queue(adapter->netdev); + + /* fire a link change interrupt to start the watchdog */ + if (adapter->msix_entries) + ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); + else + ew32(ICS, E1000_ICS_LSC); + + return 0; +} + +static void e1000e_flush_descriptors(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + if (!(adapter->flags2 & FLAG2_DMA_BURST)) + return; + + /* flush pending descriptor writebacks to memory */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); + + /* execute the writes immediately */ + e1e_flush(); + + /* + * due to rare timing issues, write to TIDV/RDTR again to ensure the + * write is successful + */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); + + /* execute the writes immediately */ + e1e_flush(); +} + +static void e1000e_update_stats(struct e1000_adapter *adapter); + +void e1000e_down(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + u32 tctl, rctl; + + /* + * signal that we're down so the interrupt handler does not + * reschedule our watchdog timer + */ + set_bit(__E1000_DOWN, &adapter->state); + + /* disable receives in the hardware */ + rctl = er32(RCTL); + if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) + ew32(RCTL, rctl & ~E1000_RCTL_EN); + /* flush and sleep below */ + + netif_stop_queue(netdev); + + /* disable transmits in the hardware */ + tctl = er32(TCTL); + tctl &= ~E1000_TCTL_EN; + ew32(TCTL, tctl); + + /* flush both disables and wait for them to finish */ + e1e_flush(); + usleep_range(10000, 20000); + + e1000_irq_disable(adapter); + + del_timer_sync(&adapter->watchdog_timer); + del_timer_sync(&adapter->phy_info_timer); + + netif_carrier_off(netdev); + + spin_lock(&adapter->stats64_lock); + e1000e_update_stats(adapter); + spin_unlock(&adapter->stats64_lock); + + e1000e_flush_descriptors(adapter); + e1000_clean_tx_ring(adapter->tx_ring); + e1000_clean_rx_ring(adapter->rx_ring); + + adapter->link_speed = 0; + adapter->link_duplex = 0; + + if (!pci_channel_offline(adapter->pdev)) + e1000e_reset(adapter); + + /* + * TODO: for power management, we could drop the link and + * pci_disable_device here. + */ +} + +void e1000e_reinit_locked(struct e1000_adapter *adapter) +{ + might_sleep(); + while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) + usleep_range(1000, 2000); + e1000e_down(adapter); + e1000e_up(adapter); + clear_bit(__E1000_RESETTING, &adapter->state); +} + +/** + * e1000_sw_init - Initialize general software structures (struct e1000_adapter) + * @adapter: board private structure to initialize + * + * e1000_sw_init initializes the Adapter private data structure. + * Fields are initialized based on PCI device information and + * OS network device settings (MTU size). + **/ +static int __devinit e1000_sw_init(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + + adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; + adapter->rx_ps_bsize0 = 128; + adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; + adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; + adapter->tx_ring_count = E1000_DEFAULT_TXD; + adapter->rx_ring_count = E1000_DEFAULT_RXD; + + spin_lock_init(&adapter->stats64_lock); + + e1000e_set_interrupt_capability(adapter); + + if (e1000_alloc_queues(adapter)) + return -ENOMEM; + + /* Explicitly disable IRQ since the NIC can be in any state. */ + e1000_irq_disable(adapter); + + set_bit(__E1000_DOWN, &adapter->state); + return 0; +} + +/** + * e1000_intr_msi_test - Interrupt Handler + * @irq: interrupt number + * @data: pointer to a network interface device structure + **/ +static irqreturn_t e1000_intr_msi_test(int irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 icr = er32(ICR); + + e_dbg("icr is %08X\n", icr); + if (icr & E1000_ICR_RXSEQ) { + adapter->flags &= ~FLAG_MSI_TEST_FAILED; + wmb(); + } + + return IRQ_HANDLED; +} + +/** + * e1000_test_msi_interrupt - Returns 0 for successful test + * @adapter: board private struct + * + * code flow taken from tg3.c + **/ +static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + int err; + + /* poll_enable hasn't been called yet, so don't need disable */ + /* clear any pending events */ + er32(ICR); + + /* free the real vector and request a test handler */ + e1000_free_irq(adapter); + e1000e_reset_interrupt_capability(adapter); + + /* Assume that the test fails, if it succeeds then the test + * MSI irq handler will unset this flag */ + adapter->flags |= FLAG_MSI_TEST_FAILED; + + err = pci_enable_msi(adapter->pdev); + if (err) + goto msi_test_failed; + + err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, + netdev->name, netdev); + if (err) { + pci_disable_msi(adapter->pdev); + goto msi_test_failed; + } + + wmb(); + + e1000_irq_enable(adapter); + + /* fire an unusual interrupt on the test handler */ + ew32(ICS, E1000_ICS_RXSEQ); + e1e_flush(); + msleep(100); + + e1000_irq_disable(adapter); + + rmb(); + + if (adapter->flags & FLAG_MSI_TEST_FAILED) { + adapter->int_mode = E1000E_INT_MODE_LEGACY; + e_info("MSI interrupt test failed, using legacy interrupt.\n"); + } else { + e_dbg("MSI interrupt test succeeded!\n"); + } + + free_irq(adapter->pdev->irq, netdev); + pci_disable_msi(adapter->pdev); + +msi_test_failed: + e1000e_set_interrupt_capability(adapter); + return e1000_request_irq(adapter); +} + +/** + * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored + * @adapter: board private struct + * + * code flow taken from tg3.c, called with e1000 interrupts disabled. + **/ +static int e1000_test_msi(struct e1000_adapter *adapter) +{ + int err; + u16 pci_cmd; + + if (!(adapter->flags & FLAG_MSI_ENABLED)) + return 0; + + /* disable SERR in case the MSI write causes a master abort */ + pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); + if (pci_cmd & PCI_COMMAND_SERR) + pci_write_config_word(adapter->pdev, PCI_COMMAND, + pci_cmd & ~PCI_COMMAND_SERR); + + err = e1000_test_msi_interrupt(adapter); + + /* re-enable SERR */ + if (pci_cmd & PCI_COMMAND_SERR) { + pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); + pci_cmd |= PCI_COMMAND_SERR; + pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); + } + + return err; +} + +/** + * e1000_open - Called when a network interface is made active + * @netdev: network interface device structure + * + * Returns 0 on success, negative value on failure + * + * The open entry point is called when a network interface is made + * active by the system (IFF_UP). At this point all resources needed + * for transmit and receive operations are allocated, the interrupt + * handler is registered with the OS, the watchdog timer is started, + * and the stack is notified that the interface is ready. + **/ +static int e1000_open(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + struct pci_dev *pdev = adapter->pdev; + int err; + + /* disallow open during test */ + if (test_bit(__E1000_TESTING, &adapter->state)) + return -EBUSY; + + pm_runtime_get_sync(&pdev->dev); + + netif_carrier_off(netdev); + + /* allocate transmit descriptors */ + err = e1000e_setup_tx_resources(adapter->tx_ring); + if (err) + goto err_setup_tx; + + /* allocate receive descriptors */ + err = e1000e_setup_rx_resources(adapter->rx_ring); + if (err) + goto err_setup_rx; + + /* + * If AMT is enabled, let the firmware know that the network + * interface is now open and reset the part to a known state. + */ + if (adapter->flags & FLAG_HAS_AMT) { + e1000e_get_hw_control(adapter); + e1000e_reset(adapter); + } + + e1000e_power_up_phy(adapter); + + adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; + if ((adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) + e1000_update_mng_vlan(adapter); + + /* DMA latency requirement to workaround jumbo issue */ + if (adapter->hw.mac.type == e1000_pch2lan) + pm_qos_add_request(&adapter->netdev->pm_qos_req, + PM_QOS_CPU_DMA_LATENCY, + PM_QOS_DEFAULT_VALUE); + + /* + * before we allocate an interrupt, we must be ready to handle it. + * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt + * as soon as we call pci_request_irq, so we have to setup our + * clean_rx handler before we do so. + */ + e1000_configure(adapter); + + err = e1000_request_irq(adapter); + if (err) + goto err_req_irq; + + /* + * Work around PCIe errata with MSI interrupts causing some chipsets to + * ignore e1000e MSI messages, which means we need to test our MSI + * interrupt now + */ + if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { + err = e1000_test_msi(adapter); + if (err) { + e_err("Interrupt allocation failed\n"); + goto err_req_irq; + } + } + + /* From here on the code is the same as e1000e_up() */ + clear_bit(__E1000_DOWN, &adapter->state); + + napi_enable(&adapter->napi); + + e1000_irq_enable(adapter); + + adapter->tx_hang_recheck = false; + netif_start_queue(netdev); + + adapter->idle_check = true; + pm_runtime_put(&pdev->dev); + + /* fire a link status change interrupt to start the watchdog */ + if (adapter->msix_entries) + ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); + else + ew32(ICS, E1000_ICS_LSC); + + return 0; + +err_req_irq: + e1000e_release_hw_control(adapter); + e1000_power_down_phy(adapter); + e1000e_free_rx_resources(adapter->rx_ring); +err_setup_rx: + e1000e_free_tx_resources(adapter->tx_ring); +err_setup_tx: + e1000e_reset(adapter); + pm_runtime_put_sync(&pdev->dev); + + return err; +} + +/** + * e1000_close - Disables a network interface + * @netdev: network interface device structure + * + * Returns 0, this is not allowed to fail + * + * The close entry point is called when an interface is de-activated + * by the OS. The hardware is still under the drivers control, but + * needs to be disabled. A global MAC reset is issued to stop the + * hardware, and all transmit and receive resources are freed. + **/ +static int e1000_close(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct pci_dev *pdev = adapter->pdev; + int count = E1000_CHECK_RESET_COUNT; + + while (test_bit(__E1000_RESETTING, &adapter->state) && count--) + usleep_range(10000, 20000); + + WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); + + pm_runtime_get_sync(&pdev->dev); + + napi_disable(&adapter->napi); + + if (!test_bit(__E1000_DOWN, &adapter->state)) { + e1000e_down(adapter); + e1000_free_irq(adapter); + } + e1000_power_down_phy(adapter); + + e1000e_free_tx_resources(adapter->tx_ring); + e1000e_free_rx_resources(adapter->rx_ring); + + /* + * kill manageability vlan ID if supported, but not if a vlan with + * the same ID is registered on the host OS (let 8021q kill it) + */ + if (adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN) + e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); + + /* + * If AMT is enabled, let the firmware know that the network + * interface is now closed + */ + if ((adapter->flags & FLAG_HAS_AMT) && + !test_bit(__E1000_TESTING, &adapter->state)) + e1000e_release_hw_control(adapter); + + if (adapter->hw.mac.type == e1000_pch2lan) + pm_qos_remove_request(&adapter->netdev->pm_qos_req); + + pm_runtime_put_sync(&pdev->dev); + + return 0; +} +/** + * e1000_set_mac - Change the Ethernet Address of the NIC + * @netdev: network interface device structure + * @p: pointer to an address structure + * + * Returns 0 on success, negative on failure + **/ +static int e1000_set_mac(struct net_device *netdev, void *p) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct sockaddr *addr = p; + + if (!is_valid_ether_addr(addr->sa_data)) + return -EADDRNOTAVAIL; + + memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); + memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); + + e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); + + if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { + /* activate the work around */ + e1000e_set_laa_state_82571(&adapter->hw, 1); + + /* + * Hold a copy of the LAA in RAR[14] This is done so that + * between the time RAR[0] gets clobbered and the time it + * gets fixed (in e1000_watchdog), the actual LAA is in one + * of the RARs and no incoming packets directed to this port + * are dropped. Eventually the LAA will be in RAR[0] and + * RAR[14] + */ + e1000e_rar_set(&adapter->hw, + adapter->hw.mac.addr, + adapter->hw.mac.rar_entry_count - 1); + } + + return 0; +} + +/** + * e1000e_update_phy_task - work thread to update phy + * @work: pointer to our work struct + * + * this worker thread exists because we must acquire a + * semaphore to read the phy, which we could msleep while + * waiting for it, and we can't msleep in a timer. + **/ +static void e1000e_update_phy_task(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, update_phy_task); + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + e1000_get_phy_info(&adapter->hw); +} + +/* + * Need to wait a few seconds after link up to get diagnostic information from + * the phy + */ +static void e1000_update_phy_info(unsigned long data) +{ + struct e1000_adapter *adapter = (struct e1000_adapter *) data; + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + schedule_work(&adapter->update_phy_task); +} + +/** + * e1000e_update_phy_stats - Update the PHY statistics counters + * @adapter: board private structure + * + * Read/clear the upper 16-bit PHY registers and read/accumulate lower + **/ +static void e1000e_update_phy_stats(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + s32 ret_val; + u16 phy_data; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + + /* + * A page set is expensive so check if already on desired page. + * If not, set to the page with the PHY status registers. + */ + hw->phy.addr = 1; + ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, + &phy_data); + if (ret_val) + goto release; + if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { + ret_val = hw->phy.ops.set_page(hw, + HV_STATS_PAGE << IGP_PAGE_SHIFT); + if (ret_val) + goto release; + } + + /* Single Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); + if (!ret_val) + adapter->stats.scc += phy_data; + + /* Excessive Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); + if (!ret_val) + adapter->stats.ecol += phy_data; + + /* Multiple Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); + if (!ret_val) + adapter->stats.mcc += phy_data; + + /* Late Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); + if (!ret_val) + adapter->stats.latecol += phy_data; + + /* Collision Count - also used for adaptive IFS */ + hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); + if (!ret_val) + hw->mac.collision_delta = phy_data; + + /* Defer Count */ + hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); + if (!ret_val) + adapter->stats.dc += phy_data; + + /* Transmit with no CRS */ + hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); + if (!ret_val) + adapter->stats.tncrs += phy_data; + +release: + hw->phy.ops.release(hw); +} + +/** + * e1000e_update_stats - Update the board statistics counters + * @adapter: board private structure + **/ +static void e1000e_update_stats(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + struct pci_dev *pdev = adapter->pdev; + + /* + * Prevent stats update while adapter is being reset, or if the pci + * connection is down. + */ + if (adapter->link_speed == 0) + return; + if (pci_channel_offline(pdev)) + return; + + adapter->stats.crcerrs += er32(CRCERRS); + adapter->stats.gprc += er32(GPRC); + adapter->stats.gorc += er32(GORCL); + er32(GORCH); /* Clear gorc */ + adapter->stats.bprc += er32(BPRC); + adapter->stats.mprc += er32(MPRC); + adapter->stats.roc += er32(ROC); + + adapter->stats.mpc += er32(MPC); + + /* Half-duplex statistics */ + if (adapter->link_duplex == HALF_DUPLEX) { + if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { + e1000e_update_phy_stats(adapter); + } else { + adapter->stats.scc += er32(SCC); + adapter->stats.ecol += er32(ECOL); + adapter->stats.mcc += er32(MCC); + adapter->stats.latecol += er32(LATECOL); + adapter->stats.dc += er32(DC); + + hw->mac.collision_delta = er32(COLC); + + if ((hw->mac.type != e1000_82574) && + (hw->mac.type != e1000_82583)) + adapter->stats.tncrs += er32(TNCRS); + } + adapter->stats.colc += hw->mac.collision_delta; + } + + adapter->stats.xonrxc += er32(XONRXC); + adapter->stats.xontxc += er32(XONTXC); + adapter->stats.xoffrxc += er32(XOFFRXC); + adapter->stats.xofftxc += er32(XOFFTXC); + adapter->stats.gptc += er32(GPTC); + adapter->stats.gotc += er32(GOTCL); + er32(GOTCH); /* Clear gotc */ + adapter->stats.rnbc += er32(RNBC); + adapter->stats.ruc += er32(RUC); + + adapter->stats.mptc += er32(MPTC); + adapter->stats.bptc += er32(BPTC); + + /* used for adaptive IFS */ + + hw->mac.tx_packet_delta = er32(TPT); + adapter->stats.tpt += hw->mac.tx_packet_delta; + + adapter->stats.algnerrc += er32(ALGNERRC); + adapter->stats.rxerrc += er32(RXERRC); + adapter->stats.cexterr += er32(CEXTERR); + adapter->stats.tsctc += er32(TSCTC); + adapter->stats.tsctfc += er32(TSCTFC); + + /* Fill out the OS statistics structure */ + netdev->stats.multicast = adapter->stats.mprc; + netdev->stats.collisions = adapter->stats.colc; + + /* Rx Errors */ + + /* + * RLEC on some newer hardware can be incorrect so build + * our own version based on RUC and ROC + */ + netdev->stats.rx_errors = adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.ruc + adapter->stats.roc + + adapter->stats.cexterr; + netdev->stats.rx_length_errors = adapter->stats.ruc + + adapter->stats.roc; + netdev->stats.rx_crc_errors = adapter->stats.crcerrs; + netdev->stats.rx_frame_errors = adapter->stats.algnerrc; + netdev->stats.rx_missed_errors = adapter->stats.mpc; + + /* Tx Errors */ + netdev->stats.tx_errors = adapter->stats.ecol + + adapter->stats.latecol; + netdev->stats.tx_aborted_errors = adapter->stats.ecol; + netdev->stats.tx_window_errors = adapter->stats.latecol; + netdev->stats.tx_carrier_errors = adapter->stats.tncrs; + + /* Tx Dropped needs to be maintained elsewhere */ + + /* Management Stats */ + adapter->stats.mgptc += er32(MGTPTC); + adapter->stats.mgprc += er32(MGTPRC); + adapter->stats.mgpdc += er32(MGTPDC); +} + +/** + * e1000_phy_read_status - Update the PHY register status snapshot + * @adapter: board private structure + **/ +static void e1000_phy_read_status(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_phy_regs *phy = &adapter->phy_regs; + + if ((er32(STATUS) & E1000_STATUS_LU) && + (adapter->hw.phy.media_type == e1000_media_type_copper)) { + int ret_val; + + ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); + ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); + ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); + ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); + ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); + ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); + ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); + ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); + if (ret_val) + e_warn("Error reading PHY register\n"); + } else { + /* + * Do not read PHY registers if link is not up + * Set values to typical power-on defaults + */ + phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); + phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | + BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | + BMSR_ERCAP); + phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | + ADVERTISE_ALL | ADVERTISE_CSMA); + phy->lpa = 0; + phy->expansion = EXPANSION_ENABLENPAGE; + phy->ctrl1000 = ADVERTISE_1000FULL; + phy->stat1000 = 0; + phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); + } +} + +static void e1000_print_link_info(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl = er32(CTRL); + + /* Link status message must follow this format for user tools */ + printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", + adapter->netdev->name, + adapter->link_speed, + adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", + (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : + (ctrl & E1000_CTRL_RFCE) ? "Rx" : + (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); +} + +static bool e1000e_has_link(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + bool link_active = false; + s32 ret_val = 0; + + /* + * get_link_status is set on LSC (link status) interrupt or + * Rx sequence error interrupt. get_link_status will stay + * false until the check_for_link establishes link + * for copper adapters ONLY + */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + if (hw->mac.get_link_status) { + ret_val = hw->mac.ops.check_for_link(hw); + link_active = !hw->mac.get_link_status; + } else { + link_active = true; + } + break; + case e1000_media_type_fiber: + ret_val = hw->mac.ops.check_for_link(hw); + link_active = !!(er32(STATUS) & E1000_STATUS_LU); + break; + case e1000_media_type_internal_serdes: + ret_val = hw->mac.ops.check_for_link(hw); + link_active = adapter->hw.mac.serdes_has_link; + break; + default: + case e1000_media_type_unknown: + break; + } + + if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && + (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { + /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ + e_info("Gigabit has been disabled, downgrading speed\n"); + } + + return link_active; +} + +static void e1000e_enable_receives(struct e1000_adapter *adapter) +{ + /* make sure the receive unit is started */ + if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && + (adapter->flags & FLAG_RX_RESTART_NOW)) { + struct e1000_hw *hw = &adapter->hw; + u32 rctl = er32(RCTL); + ew32(RCTL, rctl | E1000_RCTL_EN); + adapter->flags &= ~FLAG_RX_RESTART_NOW; + } +} + +static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + /* + * With 82574 controllers, PHY needs to be checked periodically + * for hung state and reset, if two calls return true + */ + if (e1000_check_phy_82574(hw)) + adapter->phy_hang_count++; + else + adapter->phy_hang_count = 0; + + if (adapter->phy_hang_count > 1) { + adapter->phy_hang_count = 0; + schedule_work(&adapter->reset_task); + } +} + +/** + * e1000_watchdog - Timer Call-back + * @data: pointer to adapter cast into an unsigned long + **/ +static void e1000_watchdog(unsigned long data) +{ + struct e1000_adapter *adapter = (struct e1000_adapter *) data; + + /* Do the rest outside of interrupt context */ + schedule_work(&adapter->watchdog_task); + + /* TODO: make this use queue_delayed_work() */ +} + +static void e1000_watchdog_task(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, watchdog_task); + struct net_device *netdev = adapter->netdev; + struct e1000_mac_info *mac = &adapter->hw.mac; + struct e1000_phy_info *phy = &adapter->hw.phy; + struct e1000_ring *tx_ring = adapter->tx_ring; + struct e1000_hw *hw = &adapter->hw; + u32 link, tctl; + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + link = e1000e_has_link(adapter); + if ((netif_carrier_ok(netdev)) && link) { + /* Cancel scheduled suspend requests. */ + pm_runtime_resume(netdev->dev.parent); + + e1000e_enable_receives(adapter); + goto link_up; + } + + if ((e1000e_enable_tx_pkt_filtering(hw)) && + (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) + e1000_update_mng_vlan(adapter); + + if (link) { + if (!netif_carrier_ok(netdev)) { + bool txb2b = true; + + /* Cancel scheduled suspend requests. */ + pm_runtime_resume(netdev->dev.parent); + + /* update snapshot of PHY registers on LSC */ + e1000_phy_read_status(adapter); + mac->ops.get_link_up_info(&adapter->hw, + &adapter->link_speed, + &adapter->link_duplex); + e1000_print_link_info(adapter); + /* + * On supported PHYs, check for duplex mismatch only + * if link has autonegotiated at 10/100 half + */ + if ((hw->phy.type == e1000_phy_igp_3 || + hw->phy.type == e1000_phy_bm) && + (hw->mac.autoneg == true) && + (adapter->link_speed == SPEED_10 || + adapter->link_speed == SPEED_100) && + (adapter->link_duplex == HALF_DUPLEX)) { + u16 autoneg_exp; + + e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); + + if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) + e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); + } + + /* adjust timeout factor according to speed/duplex */ + adapter->tx_timeout_factor = 1; + switch (adapter->link_speed) { + case SPEED_10: + txb2b = false; + adapter->tx_timeout_factor = 16; + break; + case SPEED_100: + txb2b = false; + adapter->tx_timeout_factor = 10; + break; + } + + /* + * workaround: re-program speed mode bit after + * link-up event + */ + if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && + !txb2b) { + u32 tarc0; + tarc0 = er32(TARC(0)); + tarc0 &= ~SPEED_MODE_BIT; + ew32(TARC(0), tarc0); + } + + /* + * disable TSO for pcie and 10/100 speeds, to avoid + * some hardware issues + */ + if (!(adapter->flags & FLAG_TSO_FORCE)) { + switch (adapter->link_speed) { + case SPEED_10: + case SPEED_100: + e_info("10/100 speed: disabling TSO\n"); + netdev->features &= ~NETIF_F_TSO; + netdev->features &= ~NETIF_F_TSO6; + break; + case SPEED_1000: + netdev->features |= NETIF_F_TSO; + netdev->features |= NETIF_F_TSO6; + break; + default: + /* oops */ + break; + } + } + + /* + * enable transmits in the hardware, need to do this + * after setting TARC(0) + */ + tctl = er32(TCTL); + tctl |= E1000_TCTL_EN; + ew32(TCTL, tctl); + + /* + * Perform any post-link-up configuration before + * reporting link up. + */ + if (phy->ops.cfg_on_link_up) + phy->ops.cfg_on_link_up(hw); + + netif_carrier_on(netdev); + + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->phy_info_timer, + round_jiffies(jiffies + 2 * HZ)); + } + } else { + if (netif_carrier_ok(netdev)) { + adapter->link_speed = 0; + adapter->link_duplex = 0; + /* Link status message must follow this format */ + printk(KERN_INFO "e1000e: %s NIC Link is Down\n", + adapter->netdev->name); + netif_carrier_off(netdev); + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->phy_info_timer, + round_jiffies(jiffies + 2 * HZ)); + + if (adapter->flags & FLAG_RX_NEEDS_RESTART) + schedule_work(&adapter->reset_task); + else + pm_schedule_suspend(netdev->dev.parent, + LINK_TIMEOUT); + } + } + +link_up: + spin_lock(&adapter->stats64_lock); + e1000e_update_stats(adapter); + + mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; + adapter->tpt_old = adapter->stats.tpt; + mac->collision_delta = adapter->stats.colc - adapter->colc_old; + adapter->colc_old = adapter->stats.colc; + + adapter->gorc = adapter->stats.gorc - adapter->gorc_old; + adapter->gorc_old = adapter->stats.gorc; + adapter->gotc = adapter->stats.gotc - adapter->gotc_old; + adapter->gotc_old = adapter->stats.gotc; + spin_unlock(&adapter->stats64_lock); + + e1000e_update_adaptive(&adapter->hw); + + if (!netif_carrier_ok(netdev) && + (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) { + /* + * We've lost link, so the controller stops DMA, + * but we've got queued Tx work that's never going + * to get done, so reset controller to flush Tx. + * (Do the reset outside of interrupt context). + */ + schedule_work(&adapter->reset_task); + /* return immediately since reset is imminent */ + return; + } + + /* Simple mode for Interrupt Throttle Rate (ITR) */ + if (adapter->itr_setting == 4) { + /* + * Symmetric Tx/Rx gets a reduced ITR=2000; + * Total asymmetrical Tx or Rx gets ITR=8000; + * everyone else is between 2000-8000. + */ + u32 goc = (adapter->gotc + adapter->gorc) / 10000; + u32 dif = (adapter->gotc > adapter->gorc ? + adapter->gotc - adapter->gorc : + adapter->gorc - adapter->gotc) / 10000; + u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; + + ew32(ITR, 1000000000 / (itr * 256)); + } + + /* Cause software interrupt to ensure Rx ring is cleaned */ + if (adapter->msix_entries) + ew32(ICS, adapter->rx_ring->ims_val); + else + ew32(ICS, E1000_ICS_RXDMT0); + + /* flush pending descriptors to memory before detecting Tx hang */ + e1000e_flush_descriptors(adapter); + + /* Force detection of hung controller every watchdog period */ + adapter->detect_tx_hung = true; + + /* + * With 82571 controllers, LAA may be overwritten due to controller + * reset from the other port. Set the appropriate LAA in RAR[0] + */ + if (e1000e_get_laa_state_82571(hw)) + e1000e_rar_set(hw, adapter->hw.mac.addr, 0); + + if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) + e1000e_check_82574_phy_workaround(adapter); + + /* Reset the timer */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, + round_jiffies(jiffies + 2 * HZ)); +} + +#define E1000_TX_FLAGS_CSUM 0x00000001 +#define E1000_TX_FLAGS_VLAN 0x00000002 +#define E1000_TX_FLAGS_TSO 0x00000004 +#define E1000_TX_FLAGS_IPV4 0x00000008 +#define E1000_TX_FLAGS_NO_FCS 0x00000010 +#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 +#define E1000_TX_FLAGS_VLAN_SHIFT 16 + +static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb) +{ + struct e1000_context_desc *context_desc; + struct e1000_buffer *buffer_info; + unsigned int i; + u32 cmd_length = 0; + u16 ipcse = 0, tucse, mss; + u8 ipcss, ipcso, tucss, tucso, hdr_len; + + if (!skb_is_gso(skb)) + return 0; + + if (skb_header_cloned(skb)) { + int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); + + if (err) + return err; + } + + hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); + mss = skb_shinfo(skb)->gso_size; + if (skb->protocol == htons(ETH_P_IP)) { + struct iphdr *iph = ip_hdr(skb); + iph->tot_len = 0; + iph->check = 0; + tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, + 0, IPPROTO_TCP, 0); + cmd_length = E1000_TXD_CMD_IP; + ipcse = skb_transport_offset(skb) - 1; + } else if (skb_is_gso_v6(skb)) { + ipv6_hdr(skb)->payload_len = 0; + tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, + &ipv6_hdr(skb)->daddr, + 0, IPPROTO_TCP, 0); + ipcse = 0; + } + ipcss = skb_network_offset(skb); + ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; + tucss = skb_transport_offset(skb); + tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; + tucse = 0; + + cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | + E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); + + i = tx_ring->next_to_use; + context_desc = E1000_CONTEXT_DESC(*tx_ring, i); + buffer_info = &tx_ring->buffer_info[i]; + + context_desc->lower_setup.ip_fields.ipcss = ipcss; + context_desc->lower_setup.ip_fields.ipcso = ipcso; + context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); + context_desc->upper_setup.tcp_fields.tucss = tucss; + context_desc->upper_setup.tcp_fields.tucso = tucso; + context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); + context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); + context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; + context_desc->cmd_and_length = cpu_to_le32(cmd_length); + + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + + i++; + if (i == tx_ring->count) + i = 0; + tx_ring->next_to_use = i; + + return 1; +} + +static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_context_desc *context_desc; + struct e1000_buffer *buffer_info; + unsigned int i; + u8 css; + u32 cmd_len = E1000_TXD_CMD_DEXT; + __be16 protocol; + + if (skb->ip_summed != CHECKSUM_PARTIAL) + return 0; + + if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) + protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; + else + protocol = skb->protocol; + + switch (protocol) { + case cpu_to_be16(ETH_P_IP): + if (ip_hdr(skb)->protocol == IPPROTO_TCP) + cmd_len |= E1000_TXD_CMD_TCP; + break; + case cpu_to_be16(ETH_P_IPV6): + /* XXX not handling all IPV6 headers */ + if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) + cmd_len |= E1000_TXD_CMD_TCP; + break; + default: + if (unlikely(net_ratelimit())) + e_warn("checksum_partial proto=%x!\n", + be16_to_cpu(protocol)); + break; + } + + css = skb_checksum_start_offset(skb); + + i = tx_ring->next_to_use; + buffer_info = &tx_ring->buffer_info[i]; + context_desc = E1000_CONTEXT_DESC(*tx_ring, i); + + context_desc->lower_setup.ip_config = 0; + context_desc->upper_setup.tcp_fields.tucss = css; + context_desc->upper_setup.tcp_fields.tucso = + css + skb->csum_offset; + context_desc->upper_setup.tcp_fields.tucse = 0; + context_desc->tcp_seg_setup.data = 0; + context_desc->cmd_and_length = cpu_to_le32(cmd_len); + + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + + i++; + if (i == tx_ring->count) + i = 0; + tx_ring->next_to_use = i; + + return 1; +} + +#define E1000_MAX_PER_TXD 8192 +#define E1000_MAX_TXD_PWR 12 + +static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, + unsigned int first, unsigned int max_per_txd, + unsigned int nr_frags, unsigned int mss) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct pci_dev *pdev = adapter->pdev; + struct e1000_buffer *buffer_info; + unsigned int len = skb_headlen(skb); + unsigned int offset = 0, size, count = 0, i; + unsigned int f, bytecount, segs; + + i = tx_ring->next_to_use; + + while (len) { + buffer_info = &tx_ring->buffer_info[i]; + size = min(len, max_per_txd); + + buffer_info->length = size; + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + buffer_info->dma = dma_map_single(&pdev->dev, + skb->data + offset, + size, DMA_TO_DEVICE); + buffer_info->mapped_as_page = false; + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) + goto dma_error; + + len -= size; + offset += size; + count++; + + if (len) { + i++; + if (i == tx_ring->count) + i = 0; + } + } + + for (f = 0; f < nr_frags; f++) { + const struct skb_frag_struct *frag; + + frag = &skb_shinfo(skb)->frags[f]; + len = skb_frag_size(frag); + offset = 0; + + while (len) { + i++; + if (i == tx_ring->count) + i = 0; + + buffer_info = &tx_ring->buffer_info[i]; + size = min(len, max_per_txd); + + buffer_info->length = size; + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, + offset, size, DMA_TO_DEVICE); + buffer_info->mapped_as_page = true; + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) + goto dma_error; + + len -= size; + offset += size; + count++; + } + } + + segs = skb_shinfo(skb)->gso_segs ? : 1; + /* multiply data chunks by size of headers */ + bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; + + tx_ring->buffer_info[i].skb = skb; + tx_ring->buffer_info[i].segs = segs; + tx_ring->buffer_info[i].bytecount = bytecount; + tx_ring->buffer_info[first].next_to_watch = i; + + return count; + +dma_error: + dev_err(&pdev->dev, "Tx DMA map failed\n"); + buffer_info->dma = 0; + if (count) + count--; + + while (count--) { + if (i == 0) + i += tx_ring->count; + i--; + buffer_info = &tx_ring->buffer_info[i]; + e1000_put_txbuf(tx_ring, buffer_info); + } + + return 0; +} + +static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_tx_desc *tx_desc = NULL; + struct e1000_buffer *buffer_info; + u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; + unsigned int i; + + if (tx_flags & E1000_TX_FLAGS_TSO) { + txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | + E1000_TXD_CMD_TSE; + txd_upper |= E1000_TXD_POPTS_TXSM << 8; + + if (tx_flags & E1000_TX_FLAGS_IPV4) + txd_upper |= E1000_TXD_POPTS_IXSM << 8; + } + + if (tx_flags & E1000_TX_FLAGS_CSUM) { + txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + txd_upper |= E1000_TXD_POPTS_TXSM << 8; + } + + if (tx_flags & E1000_TX_FLAGS_VLAN) { + txd_lower |= E1000_TXD_CMD_VLE; + txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); + } + + if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) + txd_lower &= ~(E1000_TXD_CMD_IFCS); + + i = tx_ring->next_to_use; + + do { + buffer_info = &tx_ring->buffer_info[i]; + tx_desc = E1000_TX_DESC(*tx_ring, i); + tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); + tx_desc->lower.data = + cpu_to_le32(txd_lower | buffer_info->length); + tx_desc->upper.data = cpu_to_le32(txd_upper); + + i++; + if (i == tx_ring->count) + i = 0; + } while (--count > 0); + + tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); + + /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ + if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) + tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); + + /* + * Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + + tx_ring->next_to_use = i; + + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_tdt_wa(tx_ring, i); + else + writel(i, tx_ring->tail); + + /* + * we need this if more than one processor can write to our tail + * at a time, it synchronizes IO on IA64/Altix systems + */ + mmiowb(); +} + +#define MINIMUM_DHCP_PACKET_SIZE 282 +static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, + struct sk_buff *skb) +{ + struct e1000_hw *hw = &adapter->hw; + u16 length, offset; + + if (vlan_tx_tag_present(skb)) { + if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && + (adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) + return 0; + } + + if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) + return 0; + + if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) + return 0; + + { + const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); + struct udphdr *udp; + + if (ip->protocol != IPPROTO_UDP) + return 0; + + udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); + if (ntohs(udp->dest) != 67) + return 0; + + offset = (u8 *)udp + 8 - skb->data; + length = skb->len - offset; + return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); + } + + return 0; +} + +static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + + netif_stop_queue(adapter->netdev); + /* + * Herbert's original patch had: + * smp_mb__after_netif_stop_queue(); + * but since that doesn't exist yet, just open code it. + */ + smp_mb(); + + /* + * We need to check again in a case another CPU has just + * made room available. + */ + if (e1000_desc_unused(tx_ring) < size) + return -EBUSY; + + /* A reprieve! */ + netif_start_queue(adapter->netdev); + ++adapter->restart_queue; + return 0; +} + +static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) +{ + if (e1000_desc_unused(tx_ring) >= size) + return 0; + return __e1000_maybe_stop_tx(tx_ring, size); +} + +#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1) +static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, + struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_ring *tx_ring = adapter->tx_ring; + unsigned int first; + unsigned int max_per_txd = E1000_MAX_PER_TXD; + unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; + unsigned int tx_flags = 0; + unsigned int len = skb_headlen(skb); + unsigned int nr_frags; + unsigned int mss; + int count = 0; + int tso; + unsigned int f; + + if (test_bit(__E1000_DOWN, &adapter->state)) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + if (skb->len <= 0) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + mss = skb_shinfo(skb)->gso_size; + /* + * The controller does a simple calculation to + * make sure there is enough room in the FIFO before + * initiating the DMA for each buffer. The calc is: + * 4 = ceil(buffer len/mss). To make sure we don't + * overrun the FIFO, adjust the max buffer len if mss + * drops. + */ + if (mss) { + u8 hdr_len; + max_per_txd = min(mss << 2, max_per_txd); + max_txd_pwr = fls(max_per_txd) - 1; + + /* + * TSO Workaround for 82571/2/3 Controllers -- if skb->data + * points to just header, pull a few bytes of payload from + * frags into skb->data + */ + hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); + /* + * we do this workaround for ES2LAN, but it is un-necessary, + * avoiding it could save a lot of cycles + */ + if (skb->data_len && (hdr_len == len)) { + unsigned int pull_size; + + pull_size = min_t(unsigned int, 4, skb->data_len); + if (!__pskb_pull_tail(skb, pull_size)) { + e_err("__pskb_pull_tail failed.\n"); + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + len = skb_headlen(skb); + } + } + + /* reserve a descriptor for the offload context */ + if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) + count++; + count++; + + count += TXD_USE_COUNT(len, max_txd_pwr); + + nr_frags = skb_shinfo(skb)->nr_frags; + for (f = 0; f < nr_frags; f++) + count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), + max_txd_pwr); + + if (adapter->hw.mac.tx_pkt_filtering) + e1000_transfer_dhcp_info(adapter, skb); + + /* + * need: count + 2 desc gap to keep tail from touching + * head, otherwise try next time + */ + if (e1000_maybe_stop_tx(tx_ring, count + 2)) + return NETDEV_TX_BUSY; + + if (vlan_tx_tag_present(skb)) { + tx_flags |= E1000_TX_FLAGS_VLAN; + tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); + } + + first = tx_ring->next_to_use; + + tso = e1000_tso(tx_ring, skb); + if (tso < 0) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + if (tso) + tx_flags |= E1000_TX_FLAGS_TSO; + else if (e1000_tx_csum(tx_ring, skb)) + tx_flags |= E1000_TX_FLAGS_CSUM; + + /* + * Old method was to assume IPv4 packet by default if TSO was enabled. + * 82571 hardware supports TSO capabilities for IPv6 as well... + * no longer assume, we must. + */ + if (skb->protocol == htons(ETH_P_IP)) + tx_flags |= E1000_TX_FLAGS_IPV4; + + if (unlikely(skb->no_fcs)) + tx_flags |= E1000_TX_FLAGS_NO_FCS; + + /* if count is 0 then mapping error has occurred */ + count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss); + if (count) { + netdev_sent_queue(netdev, skb->len); + e1000_tx_queue(tx_ring, tx_flags, count); + /* Make sure there is space in the ring for the next send. */ + e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2); + + } else { + dev_kfree_skb_any(skb); + tx_ring->buffer_info[first].time_stamp = 0; + tx_ring->next_to_use = first; + } + + return NETDEV_TX_OK; +} + +/** + * e1000_tx_timeout - Respond to a Tx Hang + * @netdev: network interface device structure + **/ +static void e1000_tx_timeout(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + /* Do the reset outside of interrupt context */ + adapter->tx_timeout_count++; + schedule_work(&adapter->reset_task); +} + +static void e1000_reset_task(struct work_struct *work) +{ + struct e1000_adapter *adapter; + adapter = container_of(work, struct e1000_adapter, reset_task); + + /* don't run the task if already down */ + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) && + (adapter->flags & FLAG_RX_RESTART_NOW))) { + e1000e_dump(adapter); + e_err("Reset adapter\n"); + } + e1000e_reinit_locked(adapter); +} + +/** + * e1000_get_stats64 - Get System Network Statistics + * @netdev: network interface device structure + * @stats: rtnl_link_stats64 pointer + * + * Returns the address of the device statistics structure. + **/ +struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, + struct rtnl_link_stats64 *stats) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + memset(stats, 0, sizeof(struct rtnl_link_stats64)); + spin_lock(&adapter->stats64_lock); + e1000e_update_stats(adapter); + /* Fill out the OS statistics structure */ + stats->rx_bytes = adapter->stats.gorc; + stats->rx_packets = adapter->stats.gprc; + stats->tx_bytes = adapter->stats.gotc; + stats->tx_packets = adapter->stats.gptc; + stats->multicast = adapter->stats.mprc; + stats->collisions = adapter->stats.colc; + + /* Rx Errors */ + + /* + * RLEC on some newer hardware can be incorrect so build + * our own version based on RUC and ROC + */ + stats->rx_errors = adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.ruc + adapter->stats.roc + + adapter->stats.cexterr; + stats->rx_length_errors = adapter->stats.ruc + + adapter->stats.roc; + stats->rx_crc_errors = adapter->stats.crcerrs; + stats->rx_frame_errors = adapter->stats.algnerrc; + stats->rx_missed_errors = adapter->stats.mpc; + + /* Tx Errors */ + stats->tx_errors = adapter->stats.ecol + + adapter->stats.latecol; + stats->tx_aborted_errors = adapter->stats.ecol; + stats->tx_window_errors = adapter->stats.latecol; + stats->tx_carrier_errors = adapter->stats.tncrs; + + /* Tx Dropped needs to be maintained elsewhere */ + + spin_unlock(&adapter->stats64_lock); + return stats; +} + +/** + * e1000_change_mtu - Change the Maximum Transfer Unit + * @netdev: network interface device structure + * @new_mtu: new value for maximum frame size + * + * Returns 0 on success, negative on failure + **/ +static int e1000_change_mtu(struct net_device *netdev, int new_mtu) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; + + /* Jumbo frame support */ + if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && + !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { + e_err("Jumbo Frames not supported.\n"); + return -EINVAL; + } + + /* Supported frame sizes */ + if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || + (max_frame > adapter->max_hw_frame_size)) { + e_err("Unsupported MTU setting\n"); + return -EINVAL; + } + + /* Jumbo frame workaround on 82579 requires CRC be stripped */ + if ((adapter->hw.mac.type == e1000_pch2lan) && + !(adapter->flags2 & FLAG2_CRC_STRIPPING) && + (new_mtu > ETH_DATA_LEN)) { + e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n"); + return -EINVAL; + } + + while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) + usleep_range(1000, 2000); + /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ + adapter->max_frame_size = max_frame; + e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); + netdev->mtu = new_mtu; + if (netif_running(netdev)) + e1000e_down(adapter); + + /* + * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN + * means we reserve 2 more, this pushes us to allocate from the next + * larger slab size. + * i.e. RXBUFFER_2048 --> size-4096 slab + * However with the new *_jumbo_rx* routines, jumbo receives will use + * fragmented skbs + */ + + if (max_frame <= 2048) + adapter->rx_buffer_len = 2048; + else + adapter->rx_buffer_len = 4096; + + /* adjust allocation if LPE protects us, and we aren't using SBP */ + if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || + (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) + adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + + ETH_FCS_LEN; + + if (netif_running(netdev)) + e1000e_up(adapter); + else + e1000e_reset(adapter); + + clear_bit(__E1000_RESETTING, &adapter->state); + + return 0; +} + +static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, + int cmd) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct mii_ioctl_data *data = if_mii(ifr); + + if (adapter->hw.phy.media_type != e1000_media_type_copper) + return -EOPNOTSUPP; + + switch (cmd) { + case SIOCGMIIPHY: + data->phy_id = adapter->hw.phy.addr; + break; + case SIOCGMIIREG: + e1000_phy_read_status(adapter); + + switch (data->reg_num & 0x1F) { + case MII_BMCR: + data->val_out = adapter->phy_regs.bmcr; + break; + case MII_BMSR: + data->val_out = adapter->phy_regs.bmsr; + break; + case MII_PHYSID1: + data->val_out = (adapter->hw.phy.id >> 16); + break; + case MII_PHYSID2: + data->val_out = (adapter->hw.phy.id & 0xFFFF); + break; + case MII_ADVERTISE: + data->val_out = adapter->phy_regs.advertise; + break; + case MII_LPA: + data->val_out = adapter->phy_regs.lpa; + break; + case MII_EXPANSION: + data->val_out = adapter->phy_regs.expansion; + break; + case MII_CTRL1000: + data->val_out = adapter->phy_regs.ctrl1000; + break; + case MII_STAT1000: + data->val_out = adapter->phy_regs.stat1000; + break; + case MII_ESTATUS: + data->val_out = adapter->phy_regs.estatus; + break; + default: + return -EIO; + } + break; + case SIOCSMIIREG: + default: + return -EOPNOTSUPP; + } + return 0; +} + +static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) +{ + switch (cmd) { + case SIOCGMIIPHY: + case SIOCGMIIREG: + case SIOCSMIIREG: + return e1000_mii_ioctl(netdev, ifr, cmd); + default: + return -EOPNOTSUPP; + } +} + +static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) +{ + struct e1000_hw *hw = &adapter->hw; + u32 i, mac_reg; + u16 phy_reg, wuc_enable; + int retval = 0; + + /* copy MAC RARs to PHY RARs */ + e1000_copy_rx_addrs_to_phy_ich8lan(hw); + + retval = hw->phy.ops.acquire(hw); + if (retval) { + e_err("Could not acquire PHY\n"); + return retval; + } + + /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ + retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); + if (retval) + goto release; + + /* copy MAC MTA to PHY MTA - only needed for pchlan */ + for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { + mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); + hw->phy.ops.write_reg_page(hw, BM_MTA(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, + (u16)((mac_reg >> 16) & 0xFFFF)); + } + + /* configure PHY Rx Control register */ + hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); + mac_reg = er32(RCTL); + if (mac_reg & E1000_RCTL_UPE) + phy_reg |= BM_RCTL_UPE; + if (mac_reg & E1000_RCTL_MPE) + phy_reg |= BM_RCTL_MPE; + phy_reg &= ~(BM_RCTL_MO_MASK); + if (mac_reg & E1000_RCTL_MO_3) + phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) + << BM_RCTL_MO_SHIFT); + if (mac_reg & E1000_RCTL_BAM) + phy_reg |= BM_RCTL_BAM; + if (mac_reg & E1000_RCTL_PMCF) + phy_reg |= BM_RCTL_PMCF; + mac_reg = er32(CTRL); + if (mac_reg & E1000_CTRL_RFCE) + phy_reg |= BM_RCTL_RFCE; + hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); + + /* enable PHY wakeup in MAC register */ + ew32(WUFC, wufc); + ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); + + /* configure and enable PHY wakeup in PHY registers */ + hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); + hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); + + /* activate PHY wakeup */ + wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; + retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); + if (retval) + e_err("Could not set PHY Host Wakeup bit\n"); +release: + hw->phy.ops.release(hw); + + return retval; +} + +static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake, + bool runtime) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 ctrl, ctrl_ext, rctl, status; + /* Runtime suspend should only enable wakeup for link changes */ + u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; + int retval = 0; + + netif_device_detach(netdev); + + if (netif_running(netdev)) { + int count = E1000_CHECK_RESET_COUNT; + + while (test_bit(__E1000_RESETTING, &adapter->state) && count--) + usleep_range(10000, 20000); + + WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); + e1000e_down(adapter); + e1000_free_irq(adapter); + } + e1000e_reset_interrupt_capability(adapter); + + retval = pci_save_state(pdev); + if (retval) + return retval; + + status = er32(STATUS); + if (status & E1000_STATUS_LU) + wufc &= ~E1000_WUFC_LNKC; + + if (wufc) { + e1000_setup_rctl(adapter); + e1000e_set_rx_mode(netdev); + + /* turn on all-multi mode if wake on multicast is enabled */ + if (wufc & E1000_WUFC_MC) { + rctl = er32(RCTL); + rctl |= E1000_RCTL_MPE; + ew32(RCTL, rctl); + } + + ctrl = er32(CTRL); + /* advertise wake from D3Cold */ + #define E1000_CTRL_ADVD3WUC 0x00100000 + /* phy power management enable */ + #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 + ctrl |= E1000_CTRL_ADVD3WUC; + if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) + ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; + ew32(CTRL, ctrl); + + if (adapter->hw.phy.media_type == e1000_media_type_fiber || + adapter->hw.phy.media_type == + e1000_media_type_internal_serdes) { + /* keep the laser running in D3 */ + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; + ew32(CTRL_EXT, ctrl_ext); + } + + if (adapter->flags & FLAG_IS_ICH) + e1000_suspend_workarounds_ich8lan(&adapter->hw); + + /* Allow time for pending master requests to run */ + e1000e_disable_pcie_master(&adapter->hw); + + if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { + /* enable wakeup by the PHY */ + retval = e1000_init_phy_wakeup(adapter, wufc); + if (retval) + return retval; + } else { + /* enable wakeup by the MAC */ + ew32(WUFC, wufc); + ew32(WUC, E1000_WUC_PME_EN); + } + } else { + ew32(WUC, 0); + ew32(WUFC, 0); + } + + *enable_wake = !!wufc; + + /* make sure adapter isn't asleep if manageability is enabled */ + if ((adapter->flags & FLAG_MNG_PT_ENABLED) || + (hw->mac.ops.check_mng_mode(hw))) + *enable_wake = true; + + if (adapter->hw.phy.type == e1000_phy_igp_3) + e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); + + /* + * Release control of h/w to f/w. If f/w is AMT enabled, this + * would have already happened in close and is redundant. + */ + e1000e_release_hw_control(adapter); + + pci_disable_device(pdev); + + return 0; +} + +static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) +{ + if (sleep && wake) { + pci_prepare_to_sleep(pdev); + return; + } + + pci_wake_from_d3(pdev, wake); + pci_set_power_state(pdev, PCI_D3hot); +} + +static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, + bool wake) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + /* + * The pci-e switch on some quad port adapters will report a + * correctable error when the MAC transitions from D0 to D3. To + * prevent this we need to mask off the correctable errors on the + * downstream port of the pci-e switch. + */ + if (adapter->flags & FLAG_IS_QUAD_PORT) { + struct pci_dev *us_dev = pdev->bus->self; + int pos = pci_pcie_cap(us_dev); + u16 devctl; + + pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); + pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, + (devctl & ~PCI_EXP_DEVCTL_CERE)); + + e1000_power_off(pdev, sleep, wake); + + pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); + } else { + e1000_power_off(pdev, sleep, wake); + } +} + +#ifdef CONFIG_PCIEASPM +static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) +{ + pci_disable_link_state_locked(pdev, state); +} +#else +static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) +{ + int pos; + u16 reg16; + + /* + * Both device and parent should have the same ASPM setting. + * Disable ASPM in downstream component first and then upstream. + */ + pos = pci_pcie_cap(pdev); + pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16); + reg16 &= ~state; + pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16); + + if (!pdev->bus->self) + return; + + pos = pci_pcie_cap(pdev->bus->self); + pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16); + reg16 &= ~state; + pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16); +} +#endif +static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) +{ + dev_info(&pdev->dev, "Disabling ASPM %s %s\n", + (state & PCIE_LINK_STATE_L0S) ? "L0s" : "", + (state & PCIE_LINK_STATE_L1) ? "L1" : ""); + + __e1000e_disable_aspm(pdev, state); +} + +#ifdef CONFIG_PM +static bool e1000e_pm_ready(struct e1000_adapter *adapter) +{ + return !!adapter->tx_ring->buffer_info; +} + +static int __e1000_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u16 aspm_disable_flag = 0; + u32 err; + + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) + aspm_disable_flag = PCIE_LINK_STATE_L0S; + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) + aspm_disable_flag |= PCIE_LINK_STATE_L1; + if (aspm_disable_flag) + e1000e_disable_aspm(pdev, aspm_disable_flag); + + pci_set_power_state(pdev, PCI_D0); + pci_restore_state(pdev); + pci_save_state(pdev); + + e1000e_set_interrupt_capability(adapter); + if (netif_running(netdev)) { + err = e1000_request_irq(adapter); + if (err) + return err; + } + + if (hw->mac.type == e1000_pch2lan) + e1000_resume_workarounds_pchlan(&adapter->hw); + + e1000e_power_up_phy(adapter); + + /* report the system wakeup cause from S3/S4 */ + if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { + u16 phy_data; + + e1e_rphy(&adapter->hw, BM_WUS, &phy_data); + if (phy_data) { + e_info("PHY Wakeup cause - %s\n", + phy_data & E1000_WUS_EX ? "Unicast Packet" : + phy_data & E1000_WUS_MC ? "Multicast Packet" : + phy_data & E1000_WUS_BC ? "Broadcast Packet" : + phy_data & E1000_WUS_MAG ? "Magic Packet" : + phy_data & E1000_WUS_LNKC ? + "Link Status Change" : "other"); + } + e1e_wphy(&adapter->hw, BM_WUS, ~0); + } else { + u32 wus = er32(WUS); + if (wus) { + e_info("MAC Wakeup cause - %s\n", + wus & E1000_WUS_EX ? "Unicast Packet" : + wus & E1000_WUS_MC ? "Multicast Packet" : + wus & E1000_WUS_BC ? "Broadcast Packet" : + wus & E1000_WUS_MAG ? "Magic Packet" : + wus & E1000_WUS_LNKC ? "Link Status Change" : + "other"); + } + ew32(WUS, ~0); + } + + e1000e_reset(adapter); + + e1000_init_manageability_pt(adapter); + + if (netif_running(netdev)) + e1000e_up(adapter); + + netif_device_attach(netdev); + + /* + * If the controller has AMT, do not set DRV_LOAD until the interface + * is up. For all other cases, let the f/w know that the h/w is now + * under the control of the driver. + */ + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_get_hw_control(adapter); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int e1000_suspend(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + int retval; + bool wake; + + retval = __e1000_shutdown(pdev, &wake, false); + if (!retval) + e1000_complete_shutdown(pdev, true, wake); + + return retval; +} + +static int e1000_resume(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (e1000e_pm_ready(adapter)) + adapter->idle_check = true; + + return __e1000_resume(pdev); +} +#endif /* CONFIG_PM_SLEEP */ + +#ifdef CONFIG_PM_RUNTIME +static int e1000_runtime_suspend(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (e1000e_pm_ready(adapter)) { + bool wake; + + __e1000_shutdown(pdev, &wake, true); + } + + return 0; +} + +static int e1000_idle(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (!e1000e_pm_ready(adapter)) + return 0; + + if (adapter->idle_check) { + adapter->idle_check = false; + if (!e1000e_has_link(adapter)) + pm_schedule_suspend(dev, MSEC_PER_SEC); + } + + return -EBUSY; +} + +static int e1000_runtime_resume(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (!e1000e_pm_ready(adapter)) + return 0; + + adapter->idle_check = !dev->power.runtime_auto; + return __e1000_resume(pdev); +} +#endif /* CONFIG_PM_RUNTIME */ +#endif /* CONFIG_PM */ + +static void e1000_shutdown(struct pci_dev *pdev) +{ + bool wake = false; + + __e1000_shutdown(pdev, &wake, false); + + if (system_state == SYSTEM_POWER_OFF) + e1000_complete_shutdown(pdev, false, wake); +} + +#ifdef CONFIG_NET_POLL_CONTROLLER + +static irqreturn_t e1000_intr_msix(int irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (adapter->msix_entries) { + int vector, msix_irq; + + vector = 0; + msix_irq = adapter->msix_entries[vector].vector; + disable_irq(msix_irq); + e1000_intr_msix_rx(msix_irq, netdev); + enable_irq(msix_irq); + + vector++; + msix_irq = adapter->msix_entries[vector].vector; + disable_irq(msix_irq); + e1000_intr_msix_tx(msix_irq, netdev); + enable_irq(msix_irq); + + vector++; + msix_irq = adapter->msix_entries[vector].vector; + disable_irq(msix_irq); + e1000_msix_other(msix_irq, netdev); + enable_irq(msix_irq); + } + + return IRQ_HANDLED; +} + +/* + * Polling 'interrupt' - used by things like netconsole to send skbs + * without having to re-enable interrupts. It's not called while + * the interrupt routine is executing. + */ +static void e1000_netpoll(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + switch (adapter->int_mode) { + case E1000E_INT_MODE_MSIX: + e1000_intr_msix(adapter->pdev->irq, netdev); + break; + case E1000E_INT_MODE_MSI: + disable_irq(adapter->pdev->irq); + e1000_intr_msi(adapter->pdev->irq, netdev); + enable_irq(adapter->pdev->irq); + break; + default: /* E1000E_INT_MODE_LEGACY */ + disable_irq(adapter->pdev->irq); + e1000_intr(adapter->pdev->irq, netdev); + enable_irq(adapter->pdev->irq); + break; + } +} +#endif + +/** + * e1000_io_error_detected - called when PCI error is detected + * @pdev: Pointer to PCI device + * @state: The current pci connection state + * + * This function is called after a PCI bus error affecting + * this device has been detected. + */ +static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, + pci_channel_state_t state) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + netif_device_detach(netdev); + + if (state == pci_channel_io_perm_failure) + return PCI_ERS_RESULT_DISCONNECT; + + if (netif_running(netdev)) + e1000e_down(adapter); + pci_disable_device(pdev); + + /* Request a slot slot reset. */ + return PCI_ERS_RESULT_NEED_RESET; +} + +/** + * e1000_io_slot_reset - called after the pci bus has been reset. + * @pdev: Pointer to PCI device + * + * Restart the card from scratch, as if from a cold-boot. Implementation + * resembles the first-half of the e1000_resume routine. + */ +static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u16 aspm_disable_flag = 0; + int err; + pci_ers_result_t result; + + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) + aspm_disable_flag = PCIE_LINK_STATE_L0S; + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) + aspm_disable_flag |= PCIE_LINK_STATE_L1; + if (aspm_disable_flag) + e1000e_disable_aspm(pdev, aspm_disable_flag); + + err = pci_enable_device_mem(pdev); + if (err) { + dev_err(&pdev->dev, + "Cannot re-enable PCI device after reset.\n"); + result = PCI_ERS_RESULT_DISCONNECT; + } else { + pci_set_master(pdev); + pdev->state_saved = true; + pci_restore_state(pdev); + + pci_enable_wake(pdev, PCI_D3hot, 0); + pci_enable_wake(pdev, PCI_D3cold, 0); + + e1000e_reset(adapter); + ew32(WUS, ~0); + result = PCI_ERS_RESULT_RECOVERED; + } + + pci_cleanup_aer_uncorrect_error_status(pdev); + + return result; +} + +/** + * e1000_io_resume - called when traffic can start flowing again. + * @pdev: Pointer to PCI device + * + * This callback is called when the error recovery driver tells us that + * its OK to resume normal operation. Implementation resembles the + * second-half of the e1000_resume routine. + */ +static void e1000_io_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + e1000_init_manageability_pt(adapter); + + if (netif_running(netdev)) { + if (e1000e_up(adapter)) { + dev_err(&pdev->dev, + "can't bring device back up after reset\n"); + return; + } + } + + netif_device_attach(netdev); + + /* + * If the controller has AMT, do not set DRV_LOAD until the interface + * is up. For all other cases, let the f/w know that the h/w is now + * under the control of the driver. + */ + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_get_hw_control(adapter); + +} + +static void e1000_print_device_info(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct net_device *netdev = adapter->netdev; + u32 ret_val; + u8 pba_str[E1000_PBANUM_LENGTH]; + + /* print bus type/speed/width info */ + e_info("(PCI Express:2.5GT/s:%s) %pM\n", + /* bus width */ + ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : + "Width x1"), + /* MAC address */ + netdev->dev_addr); + e_info("Intel(R) PRO/%s Network Connection\n", + (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); + ret_val = e1000_read_pba_string_generic(hw, pba_str, + E1000_PBANUM_LENGTH); + if (ret_val) + strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); + e_info("MAC: %d, PHY: %d, PBA No: %s\n", + hw->mac.type, hw->phy.type, pba_str); +} + +static void e1000_eeprom_checks(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + int ret_val; + u16 buf = 0; + + if (hw->mac.type != e1000_82573) + return; + + ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); + le16_to_cpus(&buf); + if (!ret_val && (!(buf & (1 << 0)))) { + /* Deep Smart Power Down (DSPD) */ + dev_warn(&adapter->pdev->dev, + "Warning: detected DSPD enabled in EEPROM\n"); + } +} + +static int e1000_set_features(struct net_device *netdev, + netdev_features_t features) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + netdev_features_t changed = features ^ netdev->features; + + if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) + adapter->flags |= FLAG_TSO_FORCE; + + if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | + NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | + NETIF_F_RXALL))) + return 0; + + if (changed & NETIF_F_RXFCS) { + if (features & NETIF_F_RXFCS) { + adapter->flags2 &= ~FLAG2_CRC_STRIPPING; + } else { + /* We need to take it back to defaults, which might mean + * stripping is still disabled at the adapter level. + */ + if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) + adapter->flags2 |= FLAG2_CRC_STRIPPING; + else + adapter->flags2 &= ~FLAG2_CRC_STRIPPING; + } + } + + netdev->features = features; + + if (netif_running(netdev)) + e1000e_reinit_locked(adapter); + else + e1000e_reset(adapter); + + return 0; +} + +static const struct net_device_ops e1000e_netdev_ops = { + .ndo_open = e1000_open, + .ndo_stop = e1000_close, + .ndo_start_xmit = e1000_xmit_frame, + .ndo_get_stats64 = e1000e_get_stats64, + .ndo_set_rx_mode = e1000e_set_rx_mode, + .ndo_set_mac_address = e1000_set_mac, + .ndo_change_mtu = e1000_change_mtu, + .ndo_do_ioctl = e1000_ioctl, + .ndo_tx_timeout = e1000_tx_timeout, + .ndo_validate_addr = eth_validate_addr, + + .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, + .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, +#ifdef CONFIG_NET_POLL_CONTROLLER + .ndo_poll_controller = e1000_netpoll, +#endif + .ndo_set_features = e1000_set_features, +}; + +/** + * e1000_probe - Device Initialization Routine + * @pdev: PCI device information struct + * @ent: entry in e1000_pci_tbl + * + * Returns 0 on success, negative on failure + * + * e1000_probe initializes an adapter identified by a pci_dev structure. + * The OS initialization, configuring of the adapter private structure, + * and a hardware reset occur. + **/ +static int __devinit e1000_probe(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct net_device *netdev; + struct e1000_adapter *adapter; + struct e1000_hw *hw; + const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; + resource_size_t mmio_start, mmio_len; + resource_size_t flash_start, flash_len; + static int cards_found; + u16 aspm_disable_flag = 0; + int i, err, pci_using_dac; + u16 eeprom_data = 0; + u16 eeprom_apme_mask = E1000_EEPROM_APME; + + if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) + aspm_disable_flag = PCIE_LINK_STATE_L0S; + if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) + aspm_disable_flag |= PCIE_LINK_STATE_L1; + if (aspm_disable_flag) + e1000e_disable_aspm(pdev, aspm_disable_flag); + + err = pci_enable_device_mem(pdev); + if (err) + return err; + + pci_using_dac = 0; + err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); + if (!err) { + err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); + if (!err) + pci_using_dac = 1; + } else { + err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); + if (err) { + err = dma_set_coherent_mask(&pdev->dev, + DMA_BIT_MASK(32)); + if (err) { + dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); + goto err_dma; + } + } + } + + err = pci_request_selected_regions_exclusive(pdev, + pci_select_bars(pdev, IORESOURCE_MEM), + e1000e_driver_name); + if (err) + goto err_pci_reg; + + /* AER (Advanced Error Reporting) hooks */ + pci_enable_pcie_error_reporting(pdev); + + pci_set_master(pdev); + /* PCI config space info */ + err = pci_save_state(pdev); + if (err) + goto err_alloc_etherdev; + + err = -ENOMEM; + netdev = alloc_etherdev(sizeof(struct e1000_adapter)); + if (!netdev) + goto err_alloc_etherdev; + + SET_NETDEV_DEV(netdev, &pdev->dev); + + netdev->irq = pdev->irq; + + pci_set_drvdata(pdev, netdev); + adapter = netdev_priv(netdev); + hw = &adapter->hw; + adapter->netdev = netdev; + adapter->pdev = pdev; + adapter->ei = ei; + adapter->pba = ei->pba; + adapter->flags = ei->flags; + adapter->flags2 = ei->flags2; + adapter->hw.adapter = adapter; + adapter->hw.mac.type = ei->mac; + adapter->max_hw_frame_size = ei->max_hw_frame_size; + adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); + + mmio_start = pci_resource_start(pdev, 0); + mmio_len = pci_resource_len(pdev, 0); + + err = -EIO; + adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); + if (!adapter->hw.hw_addr) + goto err_ioremap; + + if ((adapter->flags & FLAG_HAS_FLASH) && + (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { + flash_start = pci_resource_start(pdev, 1); + flash_len = pci_resource_len(pdev, 1); + adapter->hw.flash_address = ioremap(flash_start, flash_len); + if (!adapter->hw.flash_address) + goto err_flashmap; + } + + /* construct the net_device struct */ + netdev->netdev_ops = &e1000e_netdev_ops; + e1000e_set_ethtool_ops(netdev); + netdev->watchdog_timeo = 5 * HZ; + netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); + strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); + + netdev->mem_start = mmio_start; + netdev->mem_end = mmio_start + mmio_len; + + adapter->bd_number = cards_found++; + + e1000e_check_options(adapter); + + /* setup adapter struct */ + err = e1000_sw_init(adapter); + if (err) + goto err_sw_init; + + memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); + memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); + memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); + + err = ei->get_variants(adapter); + if (err) + goto err_hw_init; + + if ((adapter->flags & FLAG_IS_ICH) && + (adapter->flags & FLAG_READ_ONLY_NVM)) + e1000e_write_protect_nvm_ich8lan(&adapter->hw); + + hw->mac.ops.get_bus_info(&adapter->hw); + + adapter->hw.phy.autoneg_wait_to_complete = 0; + + /* Copper options */ + if (adapter->hw.phy.media_type == e1000_media_type_copper) { + adapter->hw.phy.mdix = AUTO_ALL_MODES; + adapter->hw.phy.disable_polarity_correction = 0; + adapter->hw.phy.ms_type = e1000_ms_hw_default; + } + + if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) + e_info("PHY reset is blocked due to SOL/IDER session.\n"); + + /* Set initial default active device features */ + netdev->features = (NETIF_F_SG | + NETIF_F_HW_VLAN_RX | + NETIF_F_HW_VLAN_TX | + NETIF_F_TSO | + NETIF_F_TSO6 | + NETIF_F_RXHASH | + NETIF_F_RXCSUM | + NETIF_F_HW_CSUM); + + /* Set user-changeable features (subset of all device features) */ + netdev->hw_features = netdev->features; + netdev->hw_features |= NETIF_F_RXFCS; + netdev->priv_flags |= IFF_SUPP_NOFCS; + netdev->hw_features |= NETIF_F_RXALL; + + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) + netdev->features |= NETIF_F_HW_VLAN_FILTER; + + netdev->vlan_features |= (NETIF_F_SG | + NETIF_F_TSO | + NETIF_F_TSO6 | + NETIF_F_HW_CSUM); + + netdev->priv_flags |= IFF_UNICAST_FLT; + + if (pci_using_dac) { + netdev->features |= NETIF_F_HIGHDMA; + netdev->vlan_features |= NETIF_F_HIGHDMA; + } + + if (e1000e_enable_mng_pass_thru(&adapter->hw)) + adapter->flags |= FLAG_MNG_PT_ENABLED; + + /* + * before reading the NVM, reset the controller to + * put the device in a known good starting state + */ + adapter->hw.mac.ops.reset_hw(&adapter->hw); + + /* + * systems with ASPM and others may see the checksum fail on the first + * attempt. Let's give it a few tries + */ + for (i = 0;; i++) { + if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) + break; + if (i == 2) { + e_err("The NVM Checksum Is Not Valid\n"); + err = -EIO; + goto err_eeprom; + } + } + + e1000_eeprom_checks(adapter); + + /* copy the MAC address */ + if (e1000e_read_mac_addr(&adapter->hw)) + e_err("NVM Read Error while reading MAC address\n"); + + memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); + memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); + + if (!is_valid_ether_addr(netdev->perm_addr)) { + e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); + err = -EIO; + goto err_eeprom; + } + + init_timer(&adapter->watchdog_timer); + adapter->watchdog_timer.function = e1000_watchdog; + adapter->watchdog_timer.data = (unsigned long) adapter; + + init_timer(&adapter->phy_info_timer); + adapter->phy_info_timer.function = e1000_update_phy_info; + adapter->phy_info_timer.data = (unsigned long) adapter; + + INIT_WORK(&adapter->reset_task, e1000_reset_task); + INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); + INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); + INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); + INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); + + /* Initialize link parameters. User can change them with ethtool */ + adapter->hw.mac.autoneg = 1; + adapter->fc_autoneg = true; + adapter->hw.fc.requested_mode = e1000_fc_default; + adapter->hw.fc.current_mode = e1000_fc_default; + adapter->hw.phy.autoneg_advertised = 0x2f; + + /* ring size defaults */ + adapter->rx_ring->count = 256; + adapter->tx_ring->count = 256; + + /* + * Initial Wake on LAN setting - If APM wake is enabled in + * the EEPROM, enable the ACPI Magic Packet filter + */ + if (adapter->flags & FLAG_APME_IN_WUC) { + /* APME bit in EEPROM is mapped to WUC.APME */ + eeprom_data = er32(WUC); + eeprom_apme_mask = E1000_WUC_APME; + if ((hw->mac.type > e1000_ich10lan) && + (eeprom_data & E1000_WUC_PHY_WAKE)) + adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; + } else if (adapter->flags & FLAG_APME_IN_CTRL3) { + if (adapter->flags & FLAG_APME_CHECK_PORT_B && + (adapter->hw.bus.func == 1)) + e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B, + 1, &eeprom_data); + else + e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A, + 1, &eeprom_data); + } + + /* fetch WoL from EEPROM */ + if (eeprom_data & eeprom_apme_mask) + adapter->eeprom_wol |= E1000_WUFC_MAG; + + /* + * now that we have the eeprom settings, apply the special cases + * where the eeprom may be wrong or the board simply won't support + * wake on lan on a particular port + */ + if (!(adapter->flags & FLAG_HAS_WOL)) + adapter->eeprom_wol = 0; + + /* initialize the wol settings based on the eeprom settings */ + adapter->wol = adapter->eeprom_wol; + device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); + + /* save off EEPROM version number */ + e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); + + /* reset the hardware with the new settings */ + e1000e_reset(adapter); + + /* + * If the controller has AMT, do not set DRV_LOAD until the interface + * is up. For all other cases, let the f/w know that the h/w is now + * under the control of the driver. + */ + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_get_hw_control(adapter); + + strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); + err = register_netdev(netdev); + if (err) + goto err_register; + + /* carrier off reporting is important to ethtool even BEFORE open */ + netif_carrier_off(netdev); + + e1000_print_device_info(adapter); + + if (pci_dev_run_wake(pdev)) + pm_runtime_put_noidle(&pdev->dev); + + return 0; + +err_register: + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_release_hw_control(adapter); +err_eeprom: + if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) + e1000_phy_hw_reset(&adapter->hw); +err_hw_init: + kfree(adapter->tx_ring); + kfree(adapter->rx_ring); +err_sw_init: + if (adapter->hw.flash_address) + iounmap(adapter->hw.flash_address); + e1000e_reset_interrupt_capability(adapter); +err_flashmap: + iounmap(adapter->hw.hw_addr); +err_ioremap: + free_netdev(netdev); +err_alloc_etherdev: + pci_release_selected_regions(pdev, + pci_select_bars(pdev, IORESOURCE_MEM)); +err_pci_reg: +err_dma: + pci_disable_device(pdev); + return err; +} + +/** + * e1000_remove - Device Removal Routine + * @pdev: PCI device information struct + * + * e1000_remove is called by the PCI subsystem to alert the driver + * that it should release a PCI device. The could be caused by a + * Hot-Plug event, or because the driver is going to be removed from + * memory. + **/ +static void __devexit e1000_remove(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + bool down = test_bit(__E1000_DOWN, &adapter->state); + + /* + * The timers may be rescheduled, so explicitly disable them + * from being rescheduled. + */ + if (!down) + set_bit(__E1000_DOWN, &adapter->state); + del_timer_sync(&adapter->watchdog_timer); + del_timer_sync(&adapter->phy_info_timer); + + cancel_work_sync(&adapter->reset_task); + cancel_work_sync(&adapter->watchdog_task); + cancel_work_sync(&adapter->downshift_task); + cancel_work_sync(&adapter->update_phy_task); + cancel_work_sync(&adapter->print_hang_task); + + if (!(netdev->flags & IFF_UP)) + e1000_power_down_phy(adapter); + + /* Don't lie to e1000_close() down the road. */ + if (!down) + clear_bit(__E1000_DOWN, &adapter->state); + unregister_netdev(netdev); + + if (pci_dev_run_wake(pdev)) + pm_runtime_get_noresume(&pdev->dev); + + /* + * Release control of h/w to f/w. If f/w is AMT enabled, this + * would have already happened in close and is redundant. + */ + e1000e_release_hw_control(adapter); + + e1000e_reset_interrupt_capability(adapter); + kfree(adapter->tx_ring); + kfree(adapter->rx_ring); + + iounmap(adapter->hw.hw_addr); + if (adapter->hw.flash_address) + iounmap(adapter->hw.flash_address); + pci_release_selected_regions(pdev, + pci_select_bars(pdev, IORESOURCE_MEM)); + + free_netdev(netdev); + + /* AER disable */ + pci_disable_pcie_error_reporting(pdev); + + pci_disable_device(pdev); +} + +/* PCI Error Recovery (ERS) */ +static struct pci_error_handlers e1000_err_handler = { + .error_detected = e1000_io_error_detected, + .slot_reset = e1000_io_slot_reset, + .resume = e1000_io_resume, +}; + +static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), + board_80003es2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), + board_80003es2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), + board_80003es2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), + board_80003es2lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, + + { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ +}; +MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); + +#ifdef CONFIG_PM +static const struct dev_pm_ops e1000_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume) + SET_RUNTIME_PM_OPS(e1000_runtime_suspend, + e1000_runtime_resume, e1000_idle) +}; +#endif + +/* PCI Device API Driver */ +static struct pci_driver e1000_driver = { + .name = e1000e_driver_name, + .id_table = e1000_pci_tbl, + .probe = e1000_probe, + .remove = __devexit_p(e1000_remove), +#ifdef CONFIG_PM + .driver = { + .pm = &e1000_pm_ops, + }, +#endif + .shutdown = e1000_shutdown, + .err_handler = &e1000_err_handler +}; + +/** + * e1000_init_module - Driver Registration Routine + * + * e1000_init_module is the first routine called when the driver is + * loaded. All it does is register with the PCI subsystem. + **/ +static int __init e1000_init_module(void) +{ + int ret; + pr_info("Intel(R) PRO/1000 Network Driver - %s\n", + e1000e_driver_version); + pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n"); + ret = pci_register_driver(&e1000_driver); + + return ret; +} +module_init(e1000_init_module); + +/** + * e1000_exit_module - Driver Exit Cleanup Routine + * + * e1000_exit_module is called just before the driver is removed + * from memory. + **/ +static void __exit e1000_exit_module(void) +{ + pci_unregister_driver(&e1000_driver); +} +module_exit(e1000_exit_module); + + +MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); +MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); + +/* netdev.c */ diff --git a/drivers/net/ethernet/intel/e1000e/nvm.c b/drivers/net/ethernet/intel/e1000e/nvm.c new file mode 100644 index 00000000..a969f1af --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/nvm.c @@ -0,0 +1,643 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000.h" + +/** + * e1000_raise_eec_clk - Raise EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Enable/Raise the EEPROM clock bit. + **/ +static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd | E1000_EECD_SK; + ew32(EECD, *eecd); + e1e_flush(); + udelay(hw->nvm.delay_usec); +} + +/** + * e1000_lower_eec_clk - Lower EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Clear/Lower the EEPROM clock bit. + **/ +static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd & ~E1000_EECD_SK; + ew32(EECD, *eecd); + e1e_flush(); + udelay(hw->nvm.delay_usec); +} + +/** + * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM + * @hw: pointer to the HW structure + * @data: data to send to the EEPROM + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the EEPROM. So, the value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + u32 mask; + + mask = 0x01 << (count - 1); + if (nvm->type == e1000_nvm_eeprom_spi) + eecd |= E1000_EECD_DO; + + do { + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + ew32(EECD, eecd); + e1e_flush(); + + udelay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + + mask >>= 1; + } while (mask); + + eecd &= ~E1000_EECD_DI; + ew32(EECD, eecd); +} + +/** + * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM + * @hw: pointer to the HW structure + * @count: number of bits to shift in + * + * In order to read a register from the EEPROM, we need to shift 'count' bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the data out + * "DO" bit. During this "shifting in" process the data in "DI" bit should + * always be clear. + **/ +static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + eecd = er32(EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data <<= 1; + e1000_raise_eec_clk(hw, &eecd); + + eecd = er32(EECD); + + eecd &= ~E1000_EECD_DI; + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_eec_clk(hw, &eecd); + } + + return data; +} + +/** + * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * @hw: pointer to the HW structure + * @ee_reg: EEPROM flag for polling + * + * Polls the EEPROM status bit for either read or write completion based + * upon the value of 'ee_reg'. + **/ +s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ + u32 attempts = 100000; + u32 i, reg = 0; + + for (i = 0; i < attempts; i++) { + if (ee_reg == E1000_NVM_POLL_READ) + reg = er32(EERD); + else + reg = er32(EEWR); + + if (reg & E1000_NVM_RW_REG_DONE) + return 0; + + udelay(5); + } + + return -E1000_ERR_NVM; +} + +/** + * e1000e_acquire_nvm - Generic request for access to EEPROM + * @hw: pointer to the HW structure + * + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 e1000e_acquire_nvm(struct e1000_hw *hw) +{ + u32 eecd = er32(EECD); + s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + + ew32(EECD, eecd | E1000_EECD_REQ); + eecd = er32(EECD); + + while (timeout) { + if (eecd & E1000_EECD_GNT) + break; + udelay(5); + eecd = er32(EECD); + timeout--; + } + + if (!timeout) { + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); + e_dbg("Could not acquire NVM grant\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000_standby_nvm - Return EEPROM to standby state + * @hw: pointer to the HW structure + * + * Return the EEPROM to a standby state. + **/ +static void e1000_standby_nvm(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + + if (nvm->type == e1000_nvm_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + e1e_flush(); + udelay(nvm->delay_usec); + eecd &= ~E1000_EECD_CS; + ew32(EECD, eecd); + e1e_flush(); + udelay(nvm->delay_usec); + } +} + +/** + * e1000_stop_nvm - Terminate EEPROM command + * @hw: pointer to the HW structure + * + * Terminates the current command by inverting the EEPROM's chip select pin. + **/ +static void e1000_stop_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + eecd = er32(EECD); + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + /* Pull CS high */ + eecd |= E1000_EECD_CS; + e1000_lower_eec_clk(hw, &eecd); + } +} + +/** + * e1000e_release_nvm - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void e1000e_release_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + e1000_stop_nvm(hw); + + eecd = er32(EECD); + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); +} + +/** + * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write + * @hw: pointer to the HW structure + * + * Setups the EEPROM for reading and writing. + **/ +static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + u8 spi_stat_reg; + + if (nvm->type == e1000_nvm_eeprom_spi) { + u16 timeout = NVM_MAX_RETRY_SPI; + + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + ew32(EECD, eecd); + e1e_flush(); + udelay(1); + + /* + * Read "Status Register" repeatedly until the LSB is cleared. + * The EEPROM will signal that the command has been completed + * by clearing bit 0 of the internal status register. If it's + * not cleared within 'timeout', then error out. + */ + while (timeout) { + e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + hw->nvm.opcode_bits); + spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); + if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) + break; + + udelay(5); + e1000_standby_nvm(hw); + timeout--; + } + + if (!timeout) { + e_dbg("SPI NVM Status error\n"); + return -E1000_ERR_NVM; + } + } + + return 0; +} + +/** + * e1000e_read_nvm_eerd - Reads EEPROM using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eerd = 0; + s32 ret_val = 0; + + /* + * A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + e_dbg("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + for (i = 0; i < words; i++) { + eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + + E1000_NVM_RW_REG_START; + + ew32(EERD, eerd); + ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + if (ret_val) + break; + + data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); + } + + return ret_val; +} + +/** + * e1000e_write_nvm_spi - Write to EEPROM using SPI + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using SPI interface. + * + * If e1000e_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u16 widx = 0; + + /* + * A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + e_dbg("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + while (widx < words) { + u8 write_opcode = NVM_WRITE_OPCODE_SPI; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_standby_nvm(hw); + + /* Send the WRITE ENABLE command (8 bit opcode) */ + e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + nvm->opcode_bits); + + e1000_standby_nvm(hw); + + /* + * Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((nvm->address_bits == 8) && (offset >= 128)) + write_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + nvm->address_bits); + + /* Loop to allow for up to whole page write of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_eec_bits(hw, word_out, 16); + widx++; + + if ((((offset + widx) * 2) % nvm->page_size) == 0) { + e1000_standby_nvm(hw); + break; + } + } + } + + usleep_range(10000, 20000); +release: + nvm->ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_pba_string_generic - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + **/ +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size) +{ + s32 ret_val; + u16 nvm_data; + u16 pba_ptr; + u16 offset; + u16 length; + + if (pba_num == NULL) { + e_dbg("PBA string buffer was null\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + /* + * if nvm_data is not ptr guard the PBA must be in legacy format which + * means pba_ptr is actually our second data word for the PBA number + * and we can decode it into an ascii string + */ + if (nvm_data != NVM_PBA_PTR_GUARD) { + e_dbg("NVM PBA number is not stored as string\n"); + + /* we will need 11 characters to store the PBA */ + if (pba_num_size < 11) { + e_dbg("PBA string buffer too small\n"); + return E1000_ERR_NO_SPACE; + } + + /* extract hex string from data and pba_ptr */ + pba_num[0] = (nvm_data >> 12) & 0xF; + pba_num[1] = (nvm_data >> 8) & 0xF; + pba_num[2] = (nvm_data >> 4) & 0xF; + pba_num[3] = nvm_data & 0xF; + pba_num[4] = (pba_ptr >> 12) & 0xF; + pba_num[5] = (pba_ptr >> 8) & 0xF; + pba_num[6] = '-'; + pba_num[7] = 0; + pba_num[8] = (pba_ptr >> 4) & 0xF; + pba_num[9] = pba_ptr & 0xF; + + /* put a null character on the end of our string */ + pba_num[10] = '\0'; + + /* switch all the data but the '-' to hex char */ + for (offset = 0; offset < 10; offset++) { + if (pba_num[offset] < 0xA) + pba_num[offset] += '0'; + else if (pba_num[offset] < 0x10) + pba_num[offset] += 'A' - 0xA; + } + + return 0; + } + + ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + + if (length == 0xFFFF || length == 0) { + e_dbg("NVM PBA number section invalid length\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + /* check if pba_num buffer is big enough */ + if (pba_num_size < (((u32)length * 2) - 1)) { + e_dbg("PBA string buffer too small\n"); + return -E1000_ERR_NO_SPACE; + } + + /* trim pba length from start of string */ + pba_ptr++; + length--; + + for (offset = 0; offset < length; offset++) { + ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + pba_num[offset * 2] = (u8)(nvm_data >> 8); + pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); + } + pba_num[offset * 2] = '\0'; + + return 0; +} + +/** + * e1000_read_mac_addr_generic - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + **/ +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) +{ + u32 rar_high; + u32 rar_low; + u16 i; + + rar_high = er32(RAH(0)); + rar_low = er32(RAL(0)); + + for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8)); + + for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8)); + + for (i = 0; i < ETH_ALEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return 0; +} + +/** + * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); + if (ret_val) { + e_dbg("NVM Read Error\n"); + return ret_val; + } + checksum += nvm_data; + } + + if (checksum != (u16)NVM_SUM) { + e_dbg("NVM Checksum Invalid\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000e_update_nvm_checksum_generic - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); + if (ret_val) { + e_dbg("NVM Read Error while updating checksum.\n"); + return ret_val; + } + checksum += nvm_data; + } + checksum = (u16)NVM_SUM - checksum; + ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); + if (ret_val) + e_dbg("NVM Write Error while updating checksum.\n"); + + return ret_val; +} + +/** + * e1000e_reload_nvm_generic - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000e_reload_nvm_generic(struct e1000_hw *hw) +{ + u32 ctrl_ext; + + udelay(10); + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); +} diff --git a/drivers/net/ethernet/intel/e1000e/param.c b/drivers/net/ethernet/intel/e1000e/param.c new file mode 100644 index 00000000..16adeb94 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/param.c @@ -0,0 +1,523 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include <linux/netdevice.h> +#include <linux/module.h> +#include <linux/pci.h> + +#include "e1000.h" + +/* + * This is the only thing that needs to be changed to adjust the + * maximum number of ports that the driver can manage. + */ + +#define E1000_MAX_NIC 32 + +#define OPTION_UNSET -1 +#define OPTION_DISABLED 0 +#define OPTION_ENABLED 1 + +#define COPYBREAK_DEFAULT 256 +unsigned int copybreak = COPYBREAK_DEFAULT; +module_param(copybreak, uint, 0644); +MODULE_PARM_DESC(copybreak, + "Maximum size of packet that is copied to a new buffer on receive"); + +/* + * All parameters are treated the same, as an integer array of values. + * This macro just reduces the need to repeat the same declaration code + * over and over (plus this helps to avoid typo bugs). + */ + +#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } +#define E1000_PARAM(X, desc) \ + static int __devinitdata X[E1000_MAX_NIC+1] \ + = E1000_PARAM_INIT; \ + static unsigned int num_##X; \ + module_param_array_named(X, X, int, &num_##X, 0); \ + MODULE_PARM_DESC(X, desc); + +/* + * Transmit Interrupt Delay in units of 1.024 microseconds + * Tx interrupt delay needs to typically be set to something non-zero + * + * Valid Range: 0-65535 + */ +E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay"); +#define DEFAULT_TIDV 8 +#define MAX_TXDELAY 0xFFFF +#define MIN_TXDELAY 0 + +/* + * Transmit Absolute Interrupt Delay in units of 1.024 microseconds + * + * Valid Range: 0-65535 + */ +E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay"); +#define DEFAULT_TADV 32 +#define MAX_TXABSDELAY 0xFFFF +#define MIN_TXABSDELAY 0 + +/* + * Receive Interrupt Delay in units of 1.024 microseconds + * hardware will likely hang if you set this to anything but zero. + * + * Valid Range: 0-65535 + */ +E1000_PARAM(RxIntDelay, "Receive Interrupt Delay"); +#define MAX_RXDELAY 0xFFFF +#define MIN_RXDELAY 0 + +/* + * Receive Absolute Interrupt Delay in units of 1.024 microseconds + * + * Valid Range: 0-65535 + */ +E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); +#define MAX_RXABSDELAY 0xFFFF +#define MIN_RXABSDELAY 0 + +/* + * Interrupt Throttle Rate (interrupts/sec) + * + * Valid Range: 100-100000 or one of: 0=off, 1=dynamic, 3=dynamic conservative + */ +E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); +#define DEFAULT_ITR 3 +#define MAX_ITR 100000 +#define MIN_ITR 100 + +/* + * IntMode (Interrupt Mode) + * + * Valid Range: varies depending on kernel configuration & hardware support + * + * legacy=0, MSI=1, MSI-X=2 + * + * When MSI/MSI-X support is enabled in kernel- + * Default Value: 2 (MSI-X) when supported by hardware, 1 (MSI) otherwise + * When MSI/MSI-X support is not enabled in kernel- + * Default Value: 0 (legacy) + * + * When a mode is specified that is not allowed/supported, it will be + * demoted to the most advanced interrupt mode available. + */ +E1000_PARAM(IntMode, "Interrupt Mode"); +#define MAX_INTMODE 2 +#define MIN_INTMODE 0 + +/* + * Enable Smart Power Down of the PHY + * + * Valid Range: 0, 1 + * + * Default Value: 0 (disabled) + */ +E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down"); + +/* + * Enable Kumeran Lock Loss workaround + * + * Valid Range: 0, 1 + * + * Default Value: 1 (enabled) + */ +E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround"); + +/* + * Write Protect NVM + * + * Valid Range: 0, 1 + * + * Default Value: 1 (enabled) + */ +E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]"); + +/* + * Enable CRC Stripping + * + * Valid Range: 0, 1 + * + * Default Value: 1 (enabled) + */ +E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \ + "the CRC"); + +struct e1000_option { + enum { enable_option, range_option, list_option } type; + const char *name; + const char *err; + int def; + union { + struct { /* range_option info */ + int min; + int max; + } r; + struct { /* list_option info */ + int nr; + struct e1000_opt_list { int i; char *str; } *p; + } l; + } arg; +}; + +static int __devinit e1000_validate_option(unsigned int *value, + const struct e1000_option *opt, + struct e1000_adapter *adapter) +{ + if (*value == OPTION_UNSET) { + *value = opt->def; + return 0; + } + + switch (opt->type) { + case enable_option: + switch (*value) { + case OPTION_ENABLED: + e_info("%s Enabled\n", opt->name); + return 0; + case OPTION_DISABLED: + e_info("%s Disabled\n", opt->name); + return 0; + } + break; + case range_option: + if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { + e_info("%s set to %i\n", opt->name, *value); + return 0; + } + break; + case list_option: { + int i; + struct e1000_opt_list *ent; + + for (i = 0; i < opt->arg.l.nr; i++) { + ent = &opt->arg.l.p[i]; + if (*value == ent->i) { + if (ent->str[0] != '\0') + e_info("%s\n", ent->str); + return 0; + } + } + } + break; + default: + BUG(); + } + + e_info("Invalid %s value specified (%i) %s\n", opt->name, *value, + opt->err); + *value = opt->def; + return -1; +} + +/** + * e1000e_check_options - Range Checking for Command Line Parameters + * @adapter: board private structure + * + * This routine checks all command line parameters for valid user + * input. If an invalid value is given, or if no user specified + * value exists, a default value is used. The final value is stored + * in a variable in the adapter structure. + **/ +void __devinit e1000e_check_options(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + int bd = adapter->bd_number; + + if (bd >= E1000_MAX_NIC) { + e_notice("Warning: no configuration for board #%i\n", bd); + e_notice("Using defaults for all values\n"); + } + + { /* Transmit Interrupt Delay */ + static const struct e1000_option opt = { + .type = range_option, + .name = "Transmit Interrupt Delay", + .err = "using default of " + __MODULE_STRING(DEFAULT_TIDV), + .def = DEFAULT_TIDV, + .arg = { .r = { .min = MIN_TXDELAY, + .max = MAX_TXDELAY } } + }; + + if (num_TxIntDelay > bd) { + adapter->tx_int_delay = TxIntDelay[bd]; + e1000_validate_option(&adapter->tx_int_delay, &opt, + adapter); + } else { + adapter->tx_int_delay = opt.def; + } + } + { /* Transmit Absolute Interrupt Delay */ + static const struct e1000_option opt = { + .type = range_option, + .name = "Transmit Absolute Interrupt Delay", + .err = "using default of " + __MODULE_STRING(DEFAULT_TADV), + .def = DEFAULT_TADV, + .arg = { .r = { .min = MIN_TXABSDELAY, + .max = MAX_TXABSDELAY } } + }; + + if (num_TxAbsIntDelay > bd) { + adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; + e1000_validate_option(&adapter->tx_abs_int_delay, &opt, + adapter); + } else { + adapter->tx_abs_int_delay = opt.def; + } + } + { /* Receive Interrupt Delay */ + static struct e1000_option opt = { + .type = range_option, + .name = "Receive Interrupt Delay", + .err = "using default of " + __MODULE_STRING(DEFAULT_RDTR), + .def = DEFAULT_RDTR, + .arg = { .r = { .min = MIN_RXDELAY, + .max = MAX_RXDELAY } } + }; + + if (num_RxIntDelay > bd) { + adapter->rx_int_delay = RxIntDelay[bd]; + e1000_validate_option(&adapter->rx_int_delay, &opt, + adapter); + } else { + adapter->rx_int_delay = opt.def; + } + } + { /* Receive Absolute Interrupt Delay */ + static const struct e1000_option opt = { + .type = range_option, + .name = "Receive Absolute Interrupt Delay", + .err = "using default of " + __MODULE_STRING(DEFAULT_RADV), + .def = DEFAULT_RADV, + .arg = { .r = { .min = MIN_RXABSDELAY, + .max = MAX_RXABSDELAY } } + }; + + if (num_RxAbsIntDelay > bd) { + adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; + e1000_validate_option(&adapter->rx_abs_int_delay, &opt, + adapter); + } else { + adapter->rx_abs_int_delay = opt.def; + } + } + { /* Interrupt Throttling Rate */ + static const struct e1000_option opt = { + .type = range_option, + .name = "Interrupt Throttling Rate (ints/sec)", + .err = "using default of " + __MODULE_STRING(DEFAULT_ITR), + .def = DEFAULT_ITR, + .arg = { .r = { .min = MIN_ITR, + .max = MAX_ITR } } + }; + + if (num_InterruptThrottleRate > bd) { + adapter->itr = InterruptThrottleRate[bd]; + + /* + * Make sure a message is printed for non-special + * values. And in case of an invalid option, display + * warning, use default and got through itr/itr_setting + * adjustment logic below + */ + if ((adapter->itr > 4) && + e1000_validate_option(&adapter->itr, &opt, adapter)) + adapter->itr = opt.def; + } else { + /* + * If no option specified, use default value and go + * through the logic below to adjust itr/itr_setting + */ + adapter->itr = opt.def; + + /* + * Make sure a message is printed for non-special + * default values + */ + if (adapter->itr > 40) + e_info("%s set to default %d\n", opt.name, + adapter->itr); + } + + adapter->itr_setting = adapter->itr; + switch (adapter->itr) { + case 0: + e_info("%s turned off\n", opt.name); + break; + case 1: + e_info("%s set to dynamic mode\n", opt.name); + adapter->itr = 20000; + break; + case 3: + e_info("%s set to dynamic conservative mode\n", + opt.name); + adapter->itr = 20000; + break; + case 4: + e_info("%s set to simplified (2000-8000 ints) mode\n", + opt.name); + break; + default: + /* + * Save the setting, because the dynamic bits + * change itr. + * + * Clear the lower two bits because + * they are used as control. + */ + adapter->itr_setting &= ~3; + break; + } + } + { /* Interrupt Mode */ + static struct e1000_option opt = { + .type = range_option, + .name = "Interrupt Mode", +#ifndef CONFIG_PCI_MSI + .err = "defaulting to 0 (legacy)", + .def = E1000E_INT_MODE_LEGACY, + .arg = { .r = { .min = 0, + .max = 0 } } +#endif + }; + +#ifdef CONFIG_PCI_MSI + if (adapter->flags & FLAG_HAS_MSIX) { + opt.err = kstrdup("defaulting to 2 (MSI-X)", + GFP_KERNEL); + opt.def = E1000E_INT_MODE_MSIX; + opt.arg.r.max = E1000E_INT_MODE_MSIX; + } else { + opt.err = kstrdup("defaulting to 1 (MSI)", GFP_KERNEL); + opt.def = E1000E_INT_MODE_MSI; + opt.arg.r.max = E1000E_INT_MODE_MSI; + } + + if (!opt.err) { + dev_err(&adapter->pdev->dev, + "Failed to allocate memory\n"); + return; + } +#endif + + if (num_IntMode > bd) { + unsigned int int_mode = IntMode[bd]; + e1000_validate_option(&int_mode, &opt, adapter); + adapter->int_mode = int_mode; + } else { + adapter->int_mode = opt.def; + } + +#ifdef CONFIG_PCI_MSI + kfree(opt.err); +#endif + } + { /* Smart Power Down */ + static const struct e1000_option opt = { + .type = enable_option, + .name = "PHY Smart Power Down", + .err = "defaulting to Disabled", + .def = OPTION_DISABLED + }; + + if (num_SmartPowerDownEnable > bd) { + unsigned int spd = SmartPowerDownEnable[bd]; + e1000_validate_option(&spd, &opt, adapter); + if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) + && spd) + adapter->flags |= FLAG_SMART_POWER_DOWN; + } + } + { /* CRC Stripping */ + static const struct e1000_option opt = { + .type = enable_option, + .name = "CRC Stripping", + .err = "defaulting to Enabled", + .def = OPTION_ENABLED + }; + + if (num_CrcStripping > bd) { + unsigned int crc_stripping = CrcStripping[bd]; + e1000_validate_option(&crc_stripping, &opt, adapter); + if (crc_stripping == OPTION_ENABLED) { + adapter->flags2 |= FLAG2_CRC_STRIPPING; + adapter->flags2 |= FLAG2_DFLT_CRC_STRIPPING; + } + } else { + adapter->flags2 |= FLAG2_CRC_STRIPPING; + adapter->flags2 |= FLAG2_DFLT_CRC_STRIPPING; + } + } + { /* Kumeran Lock Loss Workaround */ + static const struct e1000_option opt = { + .type = enable_option, + .name = "Kumeran Lock Loss Workaround", + .err = "defaulting to Enabled", + .def = OPTION_ENABLED + }; + + if (num_KumeranLockLoss > bd) { + unsigned int kmrn_lock_loss = KumeranLockLoss[bd]; + e1000_validate_option(&kmrn_lock_loss, &opt, adapter); + if (hw->mac.type == e1000_ich8lan) + e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, + kmrn_lock_loss); + } else { + if (hw->mac.type == e1000_ich8lan) + e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, + opt.def); + } + } + { /* Write-protect NVM */ + static const struct e1000_option opt = { + .type = enable_option, + .name = "Write-protect NVM", + .err = "defaulting to Enabled", + .def = OPTION_ENABLED + }; + + if (adapter->flags & FLAG_IS_ICH) { + if (num_WriteProtectNVM > bd) { + unsigned int write_protect_nvm = WriteProtectNVM[bd]; + e1000_validate_option(&write_protect_nvm, &opt, + adapter); + if (write_protect_nvm) + adapter->flags |= FLAG_READ_ONLY_NVM; + } else { + if (opt.def) + adapter->flags |= FLAG_READ_ONLY_NVM; + } + } + } +} diff --git a/drivers/net/ethernet/intel/e1000e/phy.c b/drivers/net/ethernet/intel/e1000e/phy.c new file mode 100644 index 00000000..c4befb3d --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/phy.c @@ -0,0 +1,3324 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2012 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000.h" + +static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); +static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); +static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); +static s32 e1000_wait_autoneg(struct e1000_hw *hw); +static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg); +static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set); +static u32 e1000_get_phy_addr_for_hv_page(u32 page); +static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read); + +/* Cable length tables */ +static const u16 e1000_m88_cable_length_table[] = { + 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; +#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ + ARRAY_SIZE(e1000_m88_cable_length_table) + +static const u16 e1000_igp_2_cable_length_table[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, + 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, + 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, + 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, + 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, + 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, + 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, + 124}; +#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ + ARRAY_SIZE(e1000_igp_2_cable_length_table) + +#define BM_PHY_REG_PAGE(offset) \ + ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) +#define BM_PHY_REG_NUM(offset) \ + ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ + (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ + ~MAX_PHY_REG_ADDRESS))) + +#define HV_INTC_FC_PAGE_START 768 +#define I82578_ADDR_REG 29 +#define I82577_ADDR_REG 16 +#define I82577_CFG_REG 22 +#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) +#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */ +#define I82577_CTRL_REG 23 + +/* 82577 specific PHY registers */ +#define I82577_PHY_CTRL_2 18 +#define I82577_PHY_STATUS_2 26 +#define I82577_PHY_DIAG_STATUS 31 + +/* I82577 PHY Status 2 */ +#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 +#define I82577_PHY_STATUS2_MDIX 0x0800 +#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 +#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 + +/* I82577 PHY Control 2 */ +#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400 +#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200 + +/* I82577 PHY Diagnostics Status */ +#define I82577_DSTATUS_CABLE_LENGTH 0x03FC +#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 + +/* BM PHY Copper Specific Control 1 */ +#define BM_CS_CTRL1 16 + +#define HV_MUX_DATA_CTRL PHY_REG(776, 16) +#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400 +#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004 + +/** + * e1000e_check_reset_block_generic - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Read the PHY management control register and check whether a PHY reset + * is blocked. If a reset is not blocked return 0, otherwise + * return E1000_BLK_PHY_RESET (12). + **/ +s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) +{ + u32 manc; + + manc = er32(MANC); + + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : 0; +} + +/** + * e1000e_get_phy_id - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +s32 e1000e_get_phy_id(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = 0; + u16 phy_id; + u16 retry_count = 0; + + if (!phy->ops.read_reg) + return 0; + + while (retry_count < 2) { + ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); + if (ret_val) + return ret_val; + + phy->id = (u32)(phy_id << 16); + udelay(20); + ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); + if (ret_val) + return ret_val; + + phy->id |= (u32)(phy_id & PHY_REVISION_MASK); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + + if (phy->id != 0 && phy->id != PHY_REVISION_MASK) + return 0; + + retry_count++; + } + + return 0; +} + +/** + * e1000e_phy_reset_dsp - Reset PHY DSP + * @hw: pointer to the HW structure + * + * Reset the digital signal processor. + **/ +s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) +{ + s32 ret_val; + + ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); + if (ret_val) + return ret_val; + + return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); +} + +/** + * e1000e_read_phy_reg_mdic - Read MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + if (offset > MAX_PHY_REG_ADDRESS) { + e_dbg("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* + * Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + ew32(MDIC, mdic); + + /* + * Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + udelay(50); + mdic = er32(MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + e_dbg("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + e_dbg("MDI Error\n"); + return -E1000_ERR_PHY; + } + *data = (u16) mdic; + + /* + * Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + udelay(100); + + return 0; +} + +/** + * e1000e_write_phy_reg_mdic - Write MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + if (offset > MAX_PHY_REG_ADDRESS) { + e_dbg("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* + * Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = (((u32)data) | + (offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + ew32(MDIC, mdic); + + /* + * Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + udelay(50); + mdic = er32(MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + e_dbg("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + e_dbg("MDI Error\n"); + return -E1000_ERR_PHY; + } + + /* + * Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + udelay(100); + + return 0; +} + +/** + * e1000e_read_phy_reg_m88 - Read m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000e_write_phy_reg_m88 - Write m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_set_page_igp - Set page as on IGP-like PHY(s) + * @hw: pointer to the HW structure + * @page: page to set (shifted left when necessary) + * + * Sets PHY page required for PHY register access. Assumes semaphore is + * already acquired. Note, this function sets phy.addr to 1 so the caller + * must set it appropriately (if necessary) after this function returns. + **/ +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) +{ + e_dbg("Setting page 0x%x\n", page); + + hw->phy.addr = 1; + + return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); +} + +/** + * __e1000e_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + s32 ret_val = 0; + + if (!locked) { + if (!hw->phy.ops.acquire) + return 0; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000e_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000e_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000e_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores the + * retrieved information in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000e_read_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000e_read_phy_reg_igp_locked - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000e_read_phy_reg_igp(hw, offset, data, true); +} + +/** + * e1000e_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + s32 ret_val = 0; + + if (!locked) { + if (!hw->phy.ops.acquire) + return 0; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000e_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & + offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000e_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000e_write_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000e_write_phy_reg_igp_locked - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. + * Assumes semaphore already acquired. + **/ +s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000e_write_phy_reg_igp(hw, offset, data, true); +} + +/** + * __e1000_read_kmrn_reg - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then reads the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release any acquired semaphores before exiting. + **/ +static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + u32 kmrnctrlsta; + + if (!locked) { + s32 ret_val = 0; + + if (!hw->phy.ops.acquire) + return 0; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + ew32(KMRNCTRLSTA, kmrnctrlsta); + e1e_flush(); + + udelay(2); + + kmrnctrlsta = er32(KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + if (!locked) + hw->phy.ops.release(hw); + + return 0; +} + +/** + * e1000e_read_kmrn_reg - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset using the + * kumeran interface. The information retrieved is stored in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000e_read_kmrn_reg_locked - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the kumeran interface. The + * information retrieved is stored in data. + * Assumes semaphore already acquired. + **/ +s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, true); +} + +/** + * __e1000_write_kmrn_reg - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then write the data to PHY register + * at the offset using the kumeran interface. Release any acquired semaphores + * before exiting. + **/ +static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + u32 kmrnctrlsta; + + if (!locked) { + s32 ret_val = 0; + + if (!hw->phy.ops.acquire) + return 0; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + ew32(KMRNCTRLSTA, kmrnctrlsta); + e1e_flush(); + + udelay(2); + + if (!locked) + hw->phy.ops.release(hw); + + return 0; +} + +/** + * e1000e_write_kmrn_reg - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to the PHY register at the offset + * using the kumeran interface. Release the acquired semaphore before exiting. + **/ +s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000e_write_kmrn_reg_locked - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Write the data to PHY register at the offset using the kumeran interface. + * Assumes semaphore already acquired. + **/ +s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, true); +} + +/** + * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link + * @hw: pointer to the HW structure + * + * Sets up Carrier-sense on Transmit and downshift values. + **/ +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; + + /* Enable downshift */ + phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; + + return e1e_wphy(hw, I82577_CFG_REG, phy_data); +} + +/** + * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock + * and downshift values are set also. + **/ +s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* For BM PHY this bit is downshift enable */ + if (phy->type != e1000_phy_bm) + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* + * Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* + * Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift on BM (disabled by default) */ + if (phy->type == e1000_phy_bm) + phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; + + ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if ((phy->type == e1000_phy_m88) && + (phy->revision < E1000_REVISION_4) && + (phy->id != BME1000_E_PHY_ID_R2)) { + /* + * Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((phy->revision == 2) && + (phy->id == M88E1111_I_PHY_ID)) { + /* 82573L PHY - set the downshift counter to 5x. */ + phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + } + ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { + /* Set PHY page 0, register 29 to 0x0003 */ + ret_val = e1e_wphy(hw, 29, 0x0003); + if (ret_val) + return ret_val; + + /* Set PHY page 0, register 30 to 0x0000 */ + ret_val = e1e_wphy(hw, 30, 0x0000); + if (ret_val) + return ret_val; + } + + /* Commit the changes. */ + ret_val = e1000e_commit_phy(hw); + if (ret_val) { + e_dbg("Error committing the PHY changes\n"); + return ret_val; + } + + if (phy->type == e1000_phy_82578) { + ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* 82578 PHY - set the downshift count to 1x. */ + phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; + phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; + ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + return 0; +} + +/** + * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for + * igp PHY's. + **/ +s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + ret_val = e1000_phy_hw_reset(hw); + if (ret_val) { + e_dbg("Error resetting the PHY.\n"); + return ret_val; + } + + /* + * Wait 100ms for MAC to configure PHY from NVM settings, to avoid + * timeout issues when LFS is enabled. + */ + msleep(100); + + /* disable lplu d0 during driver init */ + ret_val = e1000_set_d0_lplu_state(hw, false); + if (ret_val) { + e_dbg("Error Disabling LPLU D0\n"); + return ret_val; + } + /* Configure mdi-mdix settings */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (phy->mdix) { + case 1: + data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->mac.autoneg) { + /* + * when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. + */ + if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + + /* Set auto Master/Slave resolution process */ + ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~CR_1000T_MS_ENABLE; + ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); + if (ret_val) + return ret_val; + } + + ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? + ((data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : + e1000_ms_auto; + + switch (phy->ms_type) { + case e1000_ms_force_master: + data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + data |= CR_1000T_MS_ENABLE; + data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + data &= ~CR_1000T_MS_ENABLE; + default: + break; + } + ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); + } + + return ret_val; +} + +/** + * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation + * @hw: pointer to the HW structure + * + * Reads the MII auto-neg advertisement register and/or the 1000T control + * register and if the PHY is already setup for auto-negotiation, then + * return successful. Otherwise, setup advertisement and flow control to + * the appropriate values for the wanted auto-negotiation. + **/ +static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg = 0; + + phy->autoneg_advertised &= phy->autoneg_mask; + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + + /* + * Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* + * First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | + NWAY_AR_100TX_HD_CAPS | + NWAY_AR_10T_FD_CAPS | + NWAY_AR_10T_HD_CAPS); + mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); + + e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_HALF) { + e_dbg("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_FULL) { + e_dbg("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_HALF) { + e_dbg("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_FULL) { + e_dbg("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (phy->autoneg_advertised & ADVERTISE_1000_HALF) + e_dbg("Advertise 1000mb Half duplex request denied!\n"); + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { + e_dbg("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* + * Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- + * negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* + * Flow control (Rx & Tx) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: + /* + * Rx Flow control is enabled, and Tx Flow control is + * disabled, by a software over-ride. + * + * Since there really isn't a way to advertise that we are + * capable of Rx Pause ONLY, we will advertise that we + * support both symmetric and asymmetric Rx PAUSE. Later + * (in e1000e_config_fc_after_link_up) we will disable the + * hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: + /* + * Tx Flow control is enabled, and Rx Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: + /* + * Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) + ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); + + return ret_val; +} + +/** + * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + * @hw: pointer to the HW structure + * + * Performs initial bounds checking on autoneg advertisement parameter, then + * configure to advertise the full capability. Setup the PHY to autoneg + * and restart the negotiation process between the link partner. If + * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_ctrl; + + /* + * Perform some bounds checking on the autoneg advertisement + * parameter. + */ + phy->autoneg_advertised &= phy->autoneg_mask; + + /* + * If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (phy->autoneg_advertised == 0) + phy->autoneg_advertised = phy->autoneg_mask; + + e_dbg("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + e_dbg("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + e_dbg("Restarting Auto-Neg\n"); + + /* + * Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + /* + * Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (phy->autoneg_wait_to_complete) { + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + e_dbg("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + + hw->mac.get_link_status = true; + + return ret_val; +} + +/** + * e1000e_setup_copper_link - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +s32 e1000e_setup_copper_link(struct e1000_hw *hw) +{ + s32 ret_val; + bool link; + + if (hw->mac.autoneg) { + /* + * Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* + * PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + e_dbg("Forcing Speed and Duplex\n"); + ret_val = e1000_phy_force_speed_duplex(hw); + if (ret_val) { + e_dbg("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* + * Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, + &link); + if (ret_val) + return ret_val; + + if (link) { + e_dbg("Valid link established!!!\n"); + hw->mac.ops.config_collision_dist(hw); + ret_val = e1000e_config_fc_after_link_up(hw); + } else { + e_dbg("Unable to establish link!!!\n"); + } + + return ret_val; +} + +/** + * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Waits for link and returns + * successful if link up is successful, else -E1000_ERR_PHY (-2). + **/ +s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000e_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* + * Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + e_dbg("IGP PSCR: %X\n", phy_data); + + udelay(1); + + if (phy->autoneg_wait_to_complete) { + e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); + + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + e_dbg("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Resets the PHY to commit the + * changes. If time expires while waiting for link up, we reset the DSP. + * After reset, TX_CLK and CRS on Tx must be set. Return successful upon + * successful completion, else return corresponding error code. + **/ +s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + /* + * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + e_dbg("M88E1000 PSCR: %X\n", phy_data); + + ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000e_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Reset the phy to commit changes. */ + ret_val = e1000e_commit_phy(hw); + if (ret_val) + return ret_val; + + if (phy->autoneg_wait_to_complete) { + e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); + + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) { + if (hw->phy.type != e1000_phy_m88) { + e_dbg("Link taking longer than expected.\n"); + } else { + /* + * We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, + 0x001d); + if (ret_val) + return ret_val; + ret_val = e1000e_phy_reset_dsp(hw); + if (ret_val) + return ret_val; + } + } + + /* Try once more */ + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + if (hw->phy.type != e1000_phy_m88) + return 0; + + ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* + * Resetting the phy means we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock from + * the reset value of 2.5MHz. + */ + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* + * In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex + * @hw: pointer to the HW structure + * + * Forces the speed and duplex settings of the PHY. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + ret_val = e1e_rphy(hw, PHY_CONTROL, &data); + if (ret_val) + return ret_val; + + e1000e_phy_force_speed_duplex_setup(hw, &data); + + ret_val = e1e_wphy(hw, PHY_CONTROL, data); + if (ret_val) + return ret_val; + + /* Disable MDI-X support for 10/100 */ + ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + data &= ~IFE_PMC_AUTO_MDIX; + data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); + if (ret_val) + return ret_val; + + e_dbg("IFE PMC: %X\n", data); + + udelay(1); + + if (phy->autoneg_wait_to_complete) { + e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); + + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + e_dbg("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + return 0; +} + +/** + * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + * @hw: pointer to the HW structure + * @phy_ctrl: pointer to current value of PHY_CONTROL + * + * Forces speed and duplex on the PHY by doing the following: disable flow + * control, force speed/duplex on the MAC, disable auto speed detection, + * disable auto-negotiation, configure duplex, configure speed, configure + * the collision distance, write configuration to CTRL register. The + * caller must write to the PHY_CONTROL register for these settings to + * take affect. + **/ +void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl; + + /* Turn off flow control when forcing speed/duplex */ + hw->fc.current_mode = e1000_fc_none; + + /* Force speed/duplex on the mac */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~E1000_CTRL_SPD_SEL; + + /* Disable Auto Speed Detection */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Disable autoneg on the phy */ + *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; + + /* Forcing Full or Half Duplex? */ + if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { + ctrl &= ~E1000_CTRL_FD; + *phy_ctrl &= ~MII_CR_FULL_DUPLEX; + e_dbg("Half Duplex\n"); + } else { + ctrl |= E1000_CTRL_FD; + *phy_ctrl |= MII_CR_FULL_DUPLEX; + e_dbg("Full Duplex\n"); + } + + /* Forcing 10mb or 100mb? */ + if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { + ctrl |= E1000_CTRL_SPD_100; + *phy_ctrl |= MII_CR_SPEED_100; + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + e_dbg("Forcing 100mb\n"); + } else { + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + *phy_ctrl |= MII_CR_SPEED_10; + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + e_dbg("Forcing 10mb\n"); + } + + hw->mac.ops.config_collision_dist(hw); + + ew32(CTRL, ctrl); +} + +/** + * e1000e_set_d3_lplu_state - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + return ret_val; + + if (!active) { + data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); + if (ret_val) + return ret_val; + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP02E1000_PM_D3_LPLU; + ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); + if (ret_val) + return ret_val; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); + } + + return ret_val; +} + +/** + * e1000e_check_downshift - Checks whether a downshift in speed occurred + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns 1 + * + * A downshift is detected by querying the PHY link health. + **/ +s32 e1000e_check_downshift(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + switch (phy->type) { + case e1000_phy_m88: + case e1000_phy_gg82563: + case e1000_phy_bm: + case e1000_phy_82578: + offset = M88E1000_PHY_SPEC_STATUS; + mask = M88E1000_PSSR_DOWNSHIFT; + break; + case e1000_phy_igp_2: + case e1000_phy_igp_3: + offset = IGP01E1000_PHY_LINK_HEALTH; + mask = IGP01E1000_PLHR_SS_DOWNGRADE; + break; + default: + /* speed downshift not supported */ + phy->speed_downgraded = false; + return 0; + } + + ret_val = e1e_rphy(hw, offset, &phy_data); + + if (!ret_val) + phy->speed_downgraded = (phy_data & mask); + + return ret_val; +} + +/** + * e1000_check_polarity_m88 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); + + if (!ret_val) + phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_check_polarity_igp - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY port status register, and the + * current speed (since there is no polarity at 100Mbps). + **/ +s32 e1000_check_polarity_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data, offset, mask; + + /* + * Polarity is determined based on the speed of + * our connection. + */ + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + offset = IGP01E1000_PHY_PCS_INIT_REG; + mask = IGP01E1000_PHY_POLARITY_MASK; + } else { + /* + * This really only applies to 10Mbps since + * there is no polarity for 100Mbps (always 0). + */ + offset = IGP01E1000_PHY_PORT_STATUS; + mask = IGP01E1000_PSSR_POLARITY_REVERSED; + } + + ret_val = e1e_rphy(hw, offset, &data); + + if (!ret_val) + phy->cable_polarity = (data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_check_polarity_ife - Check cable polarity for IFE PHY + * @hw: pointer to the HW structure + * + * Polarity is determined on the polarity reversal feature being enabled. + **/ +s32 e1000_check_polarity_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + /* + * Polarity is determined based on the reversal feature being enabled. + */ + if (phy->polarity_correction) { + offset = IFE_PHY_EXTENDED_STATUS_CONTROL; + mask = IFE_PESC_POLARITY_REVERSED; + } else { + offset = IFE_PHY_SPECIAL_CONTROL; + mask = IFE_PSC_FORCE_POLARITY; + } + + ret_val = e1e_rphy(hw, offset, &phy_data); + + if (!ret_val) + phy->cable_polarity = (phy_data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_wait_autoneg - Wait for auto-neg completion + * @hw: pointer to the HW structure + * + * Waits for auto-negotiation to complete or for the auto-negotiation time + * limit to expire, which ever happens first. + **/ +static s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 i, phy_status; + + /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ + for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { + ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_AUTONEG_COMPLETE) + break; + msleep(100); + } + + /* + * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation + * has completed. + */ + return ret_val; +} + +/** + * e1000e_phy_has_link_generic - Polls PHY for link + * @hw: pointer to the HW structure + * @iterations: number of times to poll for link + * @usec_interval: delay between polling attempts + * @success: pointer to whether polling was successful or not + * + * Polls the PHY status register for link, 'iterations' number of times. + **/ +s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success) +{ + s32 ret_val = 0; + u16 i, phy_status; + + for (i = 0; i < iterations; i++) { + /* + * Some PHYs require the PHY_STATUS register to be read + * twice due to the link bit being sticky. No harm doing + * it across the board. + */ + ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); + if (ret_val) + /* + * If the first read fails, another entity may have + * ownership of the resources, wait and try again to + * see if they have relinquished the resources yet. + */ + udelay(usec_interval); + ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_LINK_STATUS) + break; + if (usec_interval >= 1000) + mdelay(usec_interval/1000); + else + udelay(usec_interval); + } + + *success = (i < iterations); + + return ret_val; +} + +/** + * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY + * @hw: pointer to the HW structure + * + * Reads the PHY specific status register to retrieve the cable length + * information. The cable length is determined by averaging the minimum and + * maximum values to get the "average" cable length. The m88 PHY has four + * possible cable length values, which are: + * Register Value Cable Length + * 0 < 50 meters + * 1 50 - 80 meters + * 2 80 - 110 meters + * 3 110 - 140 meters + * 4 > 140 meters + **/ +s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, index; + + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return 0; +} + +/** + * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, i, agc_value = 0; + u16 cur_agc_index, max_agc_index = 0; + u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; + static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { + IGP02E1000_PHY_AGC_A, + IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, + IGP02E1000_PHY_AGC_D + }; + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + /* + * Getting bits 15:9, which represent the combination of + * coarse and fine gain values. The result is a number + * that can be put into the lookup table to obtain the + * approximate cable length. + */ + cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) + return -E1000_ERR_PHY; + + /* Remove min & max AGC values from calculation. */ + if (e1000_igp_2_cable_length_table[min_agc_index] > + e1000_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (e1000_igp_2_cable_length_table[max_agc_index] < + e1000_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; + } + + agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + + e1000_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + + /* Calculate cable length with the error range of +/- 10 meters. */ + phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0; + phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return 0; +} + +/** + * e1000e_get_phy_info_m88 - Retrieve PHY information + * @hw: pointer to the HW structure + * + * Valid for only copper links. Read the PHY status register (sticky read) + * to verify that link is up. Read the PHY special control register to + * determine the polarity and 10base-T extended distance. Read the PHY + * special status register to determine MDI/MDIx and current speed. If + * speed is 1000, then determine cable length, local and remote receiver. + **/ +s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + if (phy->media_type != e1000_media_type_copper) { + e_dbg("Phy info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + e_dbg("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy->polarity_correction = (phy_data & + M88E1000_PSCR_POLARITY_REVERSAL); + + ret_val = e1000_check_polarity_m88(hw); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + ret_val = e1000_get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + /* Set values to "undefined" */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000e_get_phy_info_igp - Retrieve igp PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + e_dbg("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = true; + + ret_val = e1000_check_polarity_igp(hw); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + ret_val = e1000_get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_ife - Retrieves various IFE PHY states + * @hw: pointer to the HW structure + * + * Populates "phy" structure with various feature states. + **/ +s32 e1000_get_phy_info_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + e_dbg("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); + if (ret_val) + return ret_val; + phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE) + ? false : true; + + if (phy->polarity_correction) { + ret_val = e1000_check_polarity_ife(hw); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced */ + phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + } + + ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false; + + /* The following parameters are undefined for 10/100 operation. */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + + return 0; +} + +/** + * e1000e_phy_sw_reset - PHY software reset + * @hw: pointer to the HW structure + * + * Does a software reset of the PHY by reading the PHY control register and + * setting/write the control register reset bit to the PHY. + **/ +s32 e1000e_phy_sw_reset(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_ctrl; + + ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= MII_CR_RESET; + ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + udelay(1); + + return ret_val; +} + +/** + * e1000e_phy_hw_reset_generic - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u32 ctrl; + + if (phy->ops.check_reset_block) { + ret_val = phy->ops.check_reset_block(hw); + if (ret_val) + return 0; + } + + ret_val = phy->ops.acquire(hw); + if (ret_val) + return ret_val; + + ctrl = er32(CTRL); + ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); + e1e_flush(); + + udelay(phy->reset_delay_us); + + ew32(CTRL, ctrl); + e1e_flush(); + + udelay(150); + + phy->ops.release(hw); + + return e1000_get_phy_cfg_done(hw); +} + +/** + * e1000e_get_cfg_done - Generic configuration done + * @hw: pointer to the HW structure + * + * Generic function to wait 10 milli-seconds for configuration to complete + * and return success. + **/ +s32 e1000e_get_cfg_done(struct e1000_hw *hw) +{ + mdelay(10); + + return 0; +} + +/** + * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY + * @hw: pointer to the HW structure + * + * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. + **/ +s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) +{ + e_dbg("Running IGP 3 PHY init script\n"); + + /* PHY init IGP 3 */ + /* Enable rise/fall, 10-mode work in class-A */ + e1e_wphy(hw, 0x2F5B, 0x9018); + /* Remove all caps from Replica path filter */ + e1e_wphy(hw, 0x2F52, 0x0000); + /* Bias trimming for ADC, AFE and Driver (Default) */ + e1e_wphy(hw, 0x2FB1, 0x8B24); + /* Increase Hybrid poly bias */ + e1e_wphy(hw, 0x2FB2, 0xF8F0); + /* Add 4% to Tx amplitude in Gig mode */ + e1e_wphy(hw, 0x2010, 0x10B0); + /* Disable trimming (TTT) */ + e1e_wphy(hw, 0x2011, 0x0000); + /* Poly DC correction to 94.6% + 2% for all channels */ + e1e_wphy(hw, 0x20DD, 0x249A); + /* ABS DC correction to 95.9% */ + e1e_wphy(hw, 0x20DE, 0x00D3); + /* BG temp curve trim */ + e1e_wphy(hw, 0x28B4, 0x04CE); + /* Increasing ADC OPAMP stage 1 currents to max */ + e1e_wphy(hw, 0x2F70, 0x29E4); + /* Force 1000 ( required for enabling PHY regs configuration) */ + e1e_wphy(hw, 0x0000, 0x0140); + /* Set upd_freq to 6 */ + e1e_wphy(hw, 0x1F30, 0x1606); + /* Disable NPDFE */ + e1e_wphy(hw, 0x1F31, 0xB814); + /* Disable adaptive fixed FFE (Default) */ + e1e_wphy(hw, 0x1F35, 0x002A); + /* Enable FFE hysteresis */ + e1e_wphy(hw, 0x1F3E, 0x0067); + /* Fixed FFE for short cable lengths */ + e1e_wphy(hw, 0x1F54, 0x0065); + /* Fixed FFE for medium cable lengths */ + e1e_wphy(hw, 0x1F55, 0x002A); + /* Fixed FFE for long cable lengths */ + e1e_wphy(hw, 0x1F56, 0x002A); + /* Enable Adaptive Clip Threshold */ + e1e_wphy(hw, 0x1F72, 0x3FB0); + /* AHT reset limit to 1 */ + e1e_wphy(hw, 0x1F76, 0xC0FF); + /* Set AHT master delay to 127 msec */ + e1e_wphy(hw, 0x1F77, 0x1DEC); + /* Set scan bits for AHT */ + e1e_wphy(hw, 0x1F78, 0xF9EF); + /* Set AHT Preset bits */ + e1e_wphy(hw, 0x1F79, 0x0210); + /* Change integ_factor of channel A to 3 */ + e1e_wphy(hw, 0x1895, 0x0003); + /* Change prop_factor of channels BCD to 8 */ + e1e_wphy(hw, 0x1796, 0x0008); + /* Change cg_icount + enable integbp for channels BCD */ + e1e_wphy(hw, 0x1798, 0xD008); + /* + * Change cg_icount + enable integbp + change prop_factor_master + * to 8 for channel A + */ + e1e_wphy(hw, 0x1898, 0xD918); + /* Disable AHT in Slave mode on channel A */ + e1e_wphy(hw, 0x187A, 0x0800); + /* + * Enable LPLU and disable AN to 1000 in non-D0a states, + * Enable SPD+B2B + */ + e1e_wphy(hw, 0x0019, 0x008D); + /* Enable restart AN on an1000_dis change */ + e1e_wphy(hw, 0x001B, 0x2080); + /* Enable wh_fifo read clock in 10/100 modes */ + e1e_wphy(hw, 0x0014, 0x0045); + /* Restart AN, Speed selection is 1000 */ + e1e_wphy(hw, 0x0000, 0x1340); + + return 0; +} + +/* Internal function pointers */ + +/** + * e1000_get_phy_cfg_done - Generic PHY configuration done + * @hw: pointer to the HW structure + * + * Return success if silicon family did not implement a family specific + * get_cfg_done function. + **/ +static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_cfg_done) + return hw->phy.ops.get_cfg_done(hw); + + return 0; +} + +/** + * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex + * @hw: pointer to the HW structure + * + * When the silicon family has not implemented a forced speed/duplex + * function for the PHY, simply return 0. + **/ +static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) +{ + if (hw->phy.ops.force_speed_duplex) + return hw->phy.ops.force_speed_duplex(hw); + + return 0; +} + +/** + * e1000e_get_phy_type_from_id - Get PHY type from id + * @phy_id: phy_id read from the phy + * + * Returns the phy type from the id. + **/ +enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) +{ + enum e1000_phy_type phy_type = e1000_phy_unknown; + + switch (phy_id) { + case M88E1000_I_PHY_ID: + case M88E1000_E_PHY_ID: + case M88E1111_I_PHY_ID: + case M88E1011_I_PHY_ID: + phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ + phy_type = e1000_phy_igp_2; + break; + case GG82563_E_PHY_ID: + phy_type = e1000_phy_gg82563; + break; + case IGP03E1000_E_PHY_ID: + phy_type = e1000_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy_type = e1000_phy_ife; + break; + case BME1000_E_PHY_ID: + case BME1000_E_PHY_ID_R2: + phy_type = e1000_phy_bm; + break; + case I82578_E_PHY_ID: + phy_type = e1000_phy_82578; + break; + case I82577_E_PHY_ID: + phy_type = e1000_phy_82577; + break; + case I82579_E_PHY_ID: + phy_type = e1000_phy_82579; + break; + default: + phy_type = e1000_phy_unknown; + break; + } + return phy_type; +} + +/** + * e1000e_determine_phy_address - Determines PHY address. + * @hw: pointer to the HW structure + * + * This uses a trial and error method to loop through possible PHY + * addresses. It tests each by reading the PHY ID registers and + * checking for a match. + **/ +s32 e1000e_determine_phy_address(struct e1000_hw *hw) +{ + u32 phy_addr = 0; + u32 i; + enum e1000_phy_type phy_type = e1000_phy_unknown; + + hw->phy.id = phy_type; + + for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { + hw->phy.addr = phy_addr; + i = 0; + + do { + e1000e_get_phy_id(hw); + phy_type = e1000e_get_phy_type_from_id(hw->phy.id); + + /* + * If phy_type is valid, break - we found our + * PHY address + */ + if (phy_type != e1000_phy_unknown) + return 0; + + usleep_range(1000, 2000); + i++; + } while (i < 10); + } + + return -E1000_ERR_PHY_TYPE; +} + +/** + * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address + * @page: page to access + * + * Returns the phy address for the page requested. + **/ +static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) +{ + u32 phy_addr = 2; + + if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000e_write_phy_reg_bm - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, false); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* + * Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000e_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000e_read_phy_reg_bm - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, false); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* + * Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000e_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000e_read_phy_reg_bm2 - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, false); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000e_write_phy_reg_bm2 - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, false); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers + * @hw: pointer to the HW structure + * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG + * + * Assumes semaphore already acquired and phy_reg points to a valid memory + * address to store contents of the BM_WUC_ENABLE_REG register. + **/ +s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val; + u16 temp; + + /* All page select, port ctrl and wakeup registers use phy address 1 */ + hw->phy.addr = 1; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + e_dbg("Could not set Port Control page\n"); + return ret_val; + } + + ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); + if (ret_val) { + e_dbg("Could not read PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* + * Enable both PHY wakeup mode and Wakeup register page writes. + * Prevent a power state change by disabling ME and Host PHY wakeup. + */ + temp = *phy_reg; + temp |= BM_WUC_ENABLE_BIT; + temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); + + ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); + if (ret_val) { + e_dbg("Could not write PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* + * Select Host Wakeup Registers page - caller now able to write + * registers on the Wakeup registers page + */ + return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); +} + +/** + * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs + * @hw: pointer to the HW structure + * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG + * + * Restore BM_WUC_ENABLE_REG to its original value. + * + * Assumes semaphore already acquired and *phy_reg is the contents of the + * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by + * caller. + **/ +s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val = 0; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + e_dbg("Could not set Port Control page\n"); + return ret_val; + } + + /* Restore 769.17 to its original value */ + ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); + if (ret_val) + e_dbg("Could not restore PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + + return ret_val; +} + +/** + * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to read or write + * @read: determines if operation is read or write + * @page_set: BM_WUC_PAGE already set and access enabled + * + * Read the PHY register at offset and store the retrieved information in + * data, or write data to PHY register at offset. Note the procedure to + * access the PHY wakeup registers is different than reading the other PHY + * registers. It works as such: + * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 + * 2) Set page to 800 for host (801 if we were manageability) + * 3) Write the address using the address opcode (0x11) + * 4) Read or write the data using the data opcode (0x12) + * 5) Restore 769.17.2 to its original value + * + * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and + * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). + * + * Assumes semaphore is already acquired. When page_set==true, assumes + * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack + * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). + **/ +static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set) +{ + s32 ret_val; + u16 reg = BM_PHY_REG_NUM(offset); + u16 page = BM_PHY_REG_PAGE(offset); + u16 phy_reg = 0; + + /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ + if ((hw->mac.type == e1000_pchlan) && + (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) + e_dbg("Attempting to access page %d while gig enabled.\n", + page); + + if (!page_set) { + /* Enable access to PHY wakeup registers */ + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) { + e_dbg("Could not enable PHY wakeup reg access\n"); + return ret_val; + } + } + + e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); + + /* Write the Wakeup register page offset value using opcode 0x11 */ + ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); + if (ret_val) { + e_dbg("Could not write address opcode to page %d\n", page); + return ret_val; + } + + if (read) { + /* Read the Wakeup register page value using opcode 0x12 */ + ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + data); + } else { + /* Write the Wakeup register page value using opcode 0x12 */ + ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + *data); + } + + if (ret_val) { + e_dbg("Could not access PHY reg %d.%d\n", page, reg); + return ret_val; + } + + if (!page_set) + ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + + return ret_val; +} + +/** + * e1000_power_up_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_up_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + e1e_rphy(hw, PHY_CONTROL, &mii_reg); + mii_reg &= ~MII_CR_POWER_DOWN; + e1e_wphy(hw, PHY_CONTROL, mii_reg); +} + +/** + * e1000_power_down_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_down_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + e1e_rphy(hw, PHY_CONTROL, &mii_reg); + mii_reg |= MII_CR_POWER_DOWN; + e1e_wphy(hw, PHY_CONTROL, mii_reg); + usleep_range(1000, 2000); +} + +/** + * e1000e_commit_phy - Soft PHY reset + * @hw: pointer to the HW structure + * + * Performs a soft PHY reset on those that apply. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000e_commit_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.commit) + return hw->phy.ops.commit(hw); + + return 0; +} + +/** + * e1000_set_d0_lplu_state - Sets low power link up state for D0 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D0 + * and SmartSpeed is disabled when active is true, else clear lplu for D0 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d0_lplu_state) + return hw->phy.ops.set_d0_lplu_state(hw, active); + + return 0; +} + +/** + * __e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphore before exiting. + **/ +static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + data, true); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores + * the retrieved information in data. Release the acquired semaphore + * before exiting. + **/ +s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, false, false); +} + +/** + * e1000_read_phy_reg_hv_locked - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, true, false); +} + +/** + * e1000_read_phy_reg_page_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired and page already set. + **/ +s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, true, true); +} + +/** + * __e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + &data, false); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + /* + * Workaround MDIO accesses being disabled after entering IEEE + * Power Down (when bit 11 of the PHY Control register is set) + */ + if ((hw->phy.type == e1000_phy_82578) && + (hw->phy.revision >= 1) && + (hw->phy.addr == 2) && + ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) { + u16 data2 = 0x7EFF; + ret_val = e1000_access_phy_debug_regs_hv(hw, + (1 << 6) | 0x3, + &data2, false); + if (ret_val) + goto out; + } + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); + +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register at the offset. + * Release the acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, false, false); +} + +/** + * e1000_write_phy_reg_hv_locked - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired. + **/ +s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, true, false); +} + +/** + * e1000_write_phy_reg_page_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired and page already set. + **/ +s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, true, true); +} + +/** + * e1000_get_phy_addr_for_hv_page - Get PHY address based on page + * @page: page to be accessed + **/ +static u32 e1000_get_phy_addr_for_hv_page(u32 page) +{ + u32 phy_addr = 2; + + if (page >= HV_INTC_FC_PAGE_START) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to be read or written + * @read: determines if operation is read or write + * + * Reads the PHY register at offset and stores the retreived information + * in data. Assumes semaphore already acquired. Note that the procedure + * to access these regs uses the address port and data port to read/write. + * These accesses done with PHY address 2 and without using pages. + **/ +static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read) +{ + s32 ret_val; + u32 addr_reg = 0; + u32 data_reg = 0; + + /* This takes care of the difference with desktop vs mobile phy */ + addr_reg = (hw->phy.type == e1000_phy_82578) ? + I82578_ADDR_REG : I82577_ADDR_REG; + data_reg = addr_reg + 1; + + /* All operations in this function are phy address 2 */ + hw->phy.addr = 2; + + /* masking with 0x3F to remove the page from offset */ + ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); + if (ret_val) { + e_dbg("Could not write the Address Offset port register\n"); + return ret_val; + } + + /* Read or write the data value next */ + if (read) + ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); + else + ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); + + if (ret_val) + e_dbg("Could not access the Data port register\n"); + + return ret_val; +} + +/** + * e1000_link_stall_workaround_hv - Si workaround + * @hw: pointer to the HW structure + * + * This function works around a Si bug where the link partner can get + * a link up indication before the PHY does. If small packets are sent + * by the link partner they can be placed in the packet buffer without + * being properly accounted for by the PHY and will stall preventing + * further packets from being received. The workaround is to clear the + * packet buffer after the PHY detects link up. + **/ +s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 data; + + if (hw->phy.type != e1000_phy_82578) + return 0; + + /* Do not apply workaround if in PHY loopback bit 14 set */ + e1e_rphy(hw, PHY_CONTROL, &data); + if (data & PHY_CONTROL_LB) + return 0; + + /* check if link is up and at 1Gbps */ + ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); + if (ret_val) + return ret_val; + + data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_MASK; + + if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_1000)) + return 0; + + msleep(200); + + /* flush the packets in the fifo buffer */ + ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC | + HV_MUX_DATA_CTRL_FORCE_SPEED); + if (ret_val) + return ret_val; + + return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); +} + +/** + * e1000_check_polarity_82577 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); + + if (!ret_val) + phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. + **/ +s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000e_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + udelay(1); + + if (phy->autoneg_wait_to_complete) { + e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); + + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + e_dbg("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000_get_phy_info_82577 - Retrieve I82577 PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + e_dbg("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = true; + + ret_val = e1000_check_polarity_82577(hw); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false; + + if ((data & I82577_PHY_STATUS2_SPEED_MASK) == + I82577_PHY_STATUS2_SPEED_1000MBPS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return 0; +} + +/** + * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY + * @hw: pointer to the HW structure + * + * Reads the diagnostic status register and verifies result is valid before + * placing it in the phy_cable_length field. + **/ +s32 e1000_get_cable_length_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, length; + + ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); + if (ret_val) + return ret_val; + + length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> + I82577_DSTATUS_CABLE_LENGTH_SHIFT; + + if (length == E1000_CABLE_LENGTH_UNDEFINED) + ret_val = -E1000_ERR_PHY; + + phy->cable_length = length; + + return 0; +} |