summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/tsc.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-13 15:08:24 +0530
committerSrikant Patnaik2015-01-13 15:08:24 +0530
commit97327692361306d1e6259021bc425e32832fdb50 (patch)
treefe9088f3248ec61e24f404f21b9793cb644b7f01 /arch/x86/kernel/tsc.c
parent2d05a8f663478a44e088d122e0d62109bbc801d0 (diff)
parenta3a8b90b61e21be3dde9101c4e86c881e0f06210 (diff)
downloadFOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.gz
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.bz2
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.zip
dirty fix to merging
Diffstat (limited to 'arch/x86/kernel/tsc.c')
-rw-r--r--arch/x86/kernel/tsc.c1026
1 files changed, 1026 insertions, 0 deletions
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c
new file mode 100644
index 00000000..fc0a147e
--- /dev/null
+++ b/arch/x86/kernel/tsc.c
@@ -0,0 +1,1026 @@
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/timer.h>
+#include <linux/acpi_pmtmr.h>
+#include <linux/cpufreq.h>
+#include <linux/delay.h>
+#include <linux/clocksource.h>
+#include <linux/percpu.h>
+#include <linux/timex.h>
+
+#include <asm/hpet.h>
+#include <asm/timer.h>
+#include <asm/vgtod.h>
+#include <asm/time.h>
+#include <asm/delay.h>
+#include <asm/hypervisor.h>
+#include <asm/nmi.h>
+#include <asm/x86_init.h>
+
+unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
+EXPORT_SYMBOL(cpu_khz);
+
+unsigned int __read_mostly tsc_khz;
+EXPORT_SYMBOL(tsc_khz);
+
+/*
+ * TSC can be unstable due to cpufreq or due to unsynced TSCs
+ */
+static int __read_mostly tsc_unstable;
+
+/* native_sched_clock() is called before tsc_init(), so
+ we must start with the TSC soft disabled to prevent
+ erroneous rdtsc usage on !cpu_has_tsc processors */
+static int __read_mostly tsc_disabled = -1;
+
+int tsc_clocksource_reliable;
+/*
+ * Scheduler clock - returns current time in nanosec units.
+ */
+u64 native_sched_clock(void)
+{
+ u64 this_offset;
+
+ /*
+ * Fall back to jiffies if there's no TSC available:
+ * ( But note that we still use it if the TSC is marked
+ * unstable. We do this because unlike Time Of Day,
+ * the scheduler clock tolerates small errors and it's
+ * very important for it to be as fast as the platform
+ * can achieve it. )
+ */
+ if (unlikely(tsc_disabled)) {
+ /* No locking but a rare wrong value is not a big deal: */
+ return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
+ }
+
+ /* read the Time Stamp Counter: */
+ rdtscll(this_offset);
+
+ /* return the value in ns */
+ return __cycles_2_ns(this_offset);
+}
+
+/* We need to define a real function for sched_clock, to override the
+ weak default version */
+#ifdef CONFIG_PARAVIRT
+unsigned long long sched_clock(void)
+{
+ return paravirt_sched_clock();
+}
+#else
+unsigned long long
+sched_clock(void) __attribute__((alias("native_sched_clock")));
+#endif
+
+int check_tsc_unstable(void)
+{
+ return tsc_unstable;
+}
+EXPORT_SYMBOL_GPL(check_tsc_unstable);
+
+#ifdef CONFIG_X86_TSC
+int __init notsc_setup(char *str)
+{
+ printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
+ "cannot disable TSC completely.\n");
+ tsc_disabled = 1;
+ return 1;
+}
+#else
+/*
+ * disable flag for tsc. Takes effect by clearing the TSC cpu flag
+ * in cpu/common.c
+ */
+int __init notsc_setup(char *str)
+{
+ setup_clear_cpu_cap(X86_FEATURE_TSC);
+ return 1;
+}
+#endif
+
+__setup("notsc", notsc_setup);
+
+static int no_sched_irq_time;
+
+static int __init tsc_setup(char *str)
+{
+ if (!strcmp(str, "reliable"))
+ tsc_clocksource_reliable = 1;
+ if (!strncmp(str, "noirqtime", 9))
+ no_sched_irq_time = 1;
+ return 1;
+}
+
+__setup("tsc=", tsc_setup);
+
+#define MAX_RETRIES 5
+#define SMI_TRESHOLD 50000
+
+/*
+ * Read TSC and the reference counters. Take care of SMI disturbance
+ */
+static u64 tsc_read_refs(u64 *p, int hpet)
+{
+ u64 t1, t2;
+ int i;
+
+ for (i = 0; i < MAX_RETRIES; i++) {
+ t1 = get_cycles();
+ if (hpet)
+ *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
+ else
+ *p = acpi_pm_read_early();
+ t2 = get_cycles();
+ if ((t2 - t1) < SMI_TRESHOLD)
+ return t2;
+ }
+ return ULLONG_MAX;
+}
+
+/*
+ * Calculate the TSC frequency from HPET reference
+ */
+static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
+{
+ u64 tmp;
+
+ if (hpet2 < hpet1)
+ hpet2 += 0x100000000ULL;
+ hpet2 -= hpet1;
+ tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
+ do_div(tmp, 1000000);
+ do_div(deltatsc, tmp);
+
+ return (unsigned long) deltatsc;
+}
+
+/*
+ * Calculate the TSC frequency from PMTimer reference
+ */
+static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
+{
+ u64 tmp;
+
+ if (!pm1 && !pm2)
+ return ULONG_MAX;
+
+ if (pm2 < pm1)
+ pm2 += (u64)ACPI_PM_OVRRUN;
+ pm2 -= pm1;
+ tmp = pm2 * 1000000000LL;
+ do_div(tmp, PMTMR_TICKS_PER_SEC);
+ do_div(deltatsc, tmp);
+
+ return (unsigned long) deltatsc;
+}
+
+#define CAL_MS 10
+#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
+#define CAL_PIT_LOOPS 1000
+
+#define CAL2_MS 50
+#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
+#define CAL2_PIT_LOOPS 5000
+
+
+/*
+ * Try to calibrate the TSC against the Programmable
+ * Interrupt Timer and return the frequency of the TSC
+ * in kHz.
+ *
+ * Return ULONG_MAX on failure to calibrate.
+ */
+static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
+{
+ u64 tsc, t1, t2, delta;
+ unsigned long tscmin, tscmax;
+ int pitcnt;
+
+ /* Set the Gate high, disable speaker */
+ outb((inb(0x61) & ~0x02) | 0x01, 0x61);
+
+ /*
+ * Setup CTC channel 2* for mode 0, (interrupt on terminal
+ * count mode), binary count. Set the latch register to 50ms
+ * (LSB then MSB) to begin countdown.
+ */
+ outb(0xb0, 0x43);
+ outb(latch & 0xff, 0x42);
+ outb(latch >> 8, 0x42);
+
+ tsc = t1 = t2 = get_cycles();
+
+ pitcnt = 0;
+ tscmax = 0;
+ tscmin = ULONG_MAX;
+ while ((inb(0x61) & 0x20) == 0) {
+ t2 = get_cycles();
+ delta = t2 - tsc;
+ tsc = t2;
+ if ((unsigned long) delta < tscmin)
+ tscmin = (unsigned int) delta;
+ if ((unsigned long) delta > tscmax)
+ tscmax = (unsigned int) delta;
+ pitcnt++;
+ }
+
+ /*
+ * Sanity checks:
+ *
+ * If we were not able to read the PIT more than loopmin
+ * times, then we have been hit by a massive SMI
+ *
+ * If the maximum is 10 times larger than the minimum,
+ * then we got hit by an SMI as well.
+ */
+ if (pitcnt < loopmin || tscmax > 10 * tscmin)
+ return ULONG_MAX;
+
+ /* Calculate the PIT value */
+ delta = t2 - t1;
+ do_div(delta, ms);
+ return delta;
+}
+
+/*
+ * This reads the current MSB of the PIT counter, and
+ * checks if we are running on sufficiently fast and
+ * non-virtualized hardware.
+ *
+ * Our expectations are:
+ *
+ * - the PIT is running at roughly 1.19MHz
+ *
+ * - each IO is going to take about 1us on real hardware,
+ * but we allow it to be much faster (by a factor of 10) or
+ * _slightly_ slower (ie we allow up to a 2us read+counter
+ * update - anything else implies a unacceptably slow CPU
+ * or PIT for the fast calibration to work.
+ *
+ * - with 256 PIT ticks to read the value, we have 214us to
+ * see the same MSB (and overhead like doing a single TSC
+ * read per MSB value etc).
+ *
+ * - We're doing 2 reads per loop (LSB, MSB), and we expect
+ * them each to take about a microsecond on real hardware.
+ * So we expect a count value of around 100. But we'll be
+ * generous, and accept anything over 50.
+ *
+ * - if the PIT is stuck, and we see *many* more reads, we
+ * return early (and the next caller of pit_expect_msb()
+ * then consider it a failure when they don't see the
+ * next expected value).
+ *
+ * These expectations mean that we know that we have seen the
+ * transition from one expected value to another with a fairly
+ * high accuracy, and we didn't miss any events. We can thus
+ * use the TSC value at the transitions to calculate a pretty
+ * good value for the TSC frequencty.
+ */
+static inline int pit_verify_msb(unsigned char val)
+{
+ /* Ignore LSB */
+ inb(0x42);
+ return inb(0x42) == val;
+}
+
+static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
+{
+ int count;
+ u64 tsc = 0, prev_tsc = 0;
+
+ for (count = 0; count < 50000; count++) {
+ if (!pit_verify_msb(val))
+ break;
+ prev_tsc = tsc;
+ tsc = get_cycles();
+ }
+ *deltap = get_cycles() - prev_tsc;
+ *tscp = tsc;
+
+ /*
+ * We require _some_ success, but the quality control
+ * will be based on the error terms on the TSC values.
+ */
+ return count > 5;
+}
+
+/*
+ * How many MSB values do we want to see? We aim for
+ * a maximum error rate of 500ppm (in practice the
+ * real error is much smaller), but refuse to spend
+ * more than 50ms on it.
+ */
+#define MAX_QUICK_PIT_MS 50
+#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
+
+static unsigned long quick_pit_calibrate(void)
+{
+ int i;
+ u64 tsc, delta;
+ unsigned long d1, d2;
+
+ /* Set the Gate high, disable speaker */
+ outb((inb(0x61) & ~0x02) | 0x01, 0x61);
+
+ /*
+ * Counter 2, mode 0 (one-shot), binary count
+ *
+ * NOTE! Mode 2 decrements by two (and then the
+ * output is flipped each time, giving the same
+ * final output frequency as a decrement-by-one),
+ * so mode 0 is much better when looking at the
+ * individual counts.
+ */
+ outb(0xb0, 0x43);
+
+ /* Start at 0xffff */
+ outb(0xff, 0x42);
+ outb(0xff, 0x42);
+
+ /*
+ * The PIT starts counting at the next edge, so we
+ * need to delay for a microsecond. The easiest way
+ * to do that is to just read back the 16-bit counter
+ * once from the PIT.
+ */
+ pit_verify_msb(0);
+
+ if (pit_expect_msb(0xff, &tsc, &d1)) {
+ for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
+ if (!pit_expect_msb(0xff-i, &delta, &d2))
+ break;
+
+ /*
+ * Iterate until the error is less than 500 ppm
+ */
+ delta -= tsc;
+ if (d1+d2 >= delta >> 11)
+ continue;
+
+ /*
+ * Check the PIT one more time to verify that
+ * all TSC reads were stable wrt the PIT.
+ *
+ * This also guarantees serialization of the
+ * last cycle read ('d2') in pit_expect_msb.
+ */
+ if (!pit_verify_msb(0xfe - i))
+ break;
+ goto success;
+ }
+ }
+ printk("Fast TSC calibration failed\n");
+ return 0;
+
+success:
+ /*
+ * Ok, if we get here, then we've seen the
+ * MSB of the PIT decrement 'i' times, and the
+ * error has shrunk to less than 500 ppm.
+ *
+ * As a result, we can depend on there not being
+ * any odd delays anywhere, and the TSC reads are
+ * reliable (within the error).
+ *
+ * kHz = ticks / time-in-seconds / 1000;
+ * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
+ * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
+ */
+ delta *= PIT_TICK_RATE;
+ do_div(delta, i*256*1000);
+ printk("Fast TSC calibration using PIT\n");
+ return delta;
+}
+
+/**
+ * native_calibrate_tsc - calibrate the tsc on boot
+ */
+unsigned long native_calibrate_tsc(void)
+{
+ u64 tsc1, tsc2, delta, ref1, ref2;
+ unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
+ unsigned long flags, latch, ms, fast_calibrate;
+ int hpet = is_hpet_enabled(), i, loopmin;
+
+ local_irq_save(flags);
+ fast_calibrate = quick_pit_calibrate();
+ local_irq_restore(flags);
+ if (fast_calibrate)
+ return fast_calibrate;
+
+ /*
+ * Run 5 calibration loops to get the lowest frequency value
+ * (the best estimate). We use two different calibration modes
+ * here:
+ *
+ * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
+ * load a timeout of 50ms. We read the time right after we
+ * started the timer and wait until the PIT count down reaches
+ * zero. In each wait loop iteration we read the TSC and check
+ * the delta to the previous read. We keep track of the min
+ * and max values of that delta. The delta is mostly defined
+ * by the IO time of the PIT access, so we can detect when a
+ * SMI/SMM disturbance happened between the two reads. If the
+ * maximum time is significantly larger than the minimum time,
+ * then we discard the result and have another try.
+ *
+ * 2) Reference counter. If available we use the HPET or the
+ * PMTIMER as a reference to check the sanity of that value.
+ * We use separate TSC readouts and check inside of the
+ * reference read for a SMI/SMM disturbance. We dicard
+ * disturbed values here as well. We do that around the PIT
+ * calibration delay loop as we have to wait for a certain
+ * amount of time anyway.
+ */
+
+ /* Preset PIT loop values */
+ latch = CAL_LATCH;
+ ms = CAL_MS;
+ loopmin = CAL_PIT_LOOPS;
+
+ for (i = 0; i < 3; i++) {
+ unsigned long tsc_pit_khz;
+
+ /*
+ * Read the start value and the reference count of
+ * hpet/pmtimer when available. Then do the PIT
+ * calibration, which will take at least 50ms, and
+ * read the end value.
+ */
+ local_irq_save(flags);
+ tsc1 = tsc_read_refs(&ref1, hpet);
+ tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
+ tsc2 = tsc_read_refs(&ref2, hpet);
+ local_irq_restore(flags);
+
+ /* Pick the lowest PIT TSC calibration so far */
+ tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
+
+ /* hpet or pmtimer available ? */
+ if (ref1 == ref2)
+ continue;
+
+ /* Check, whether the sampling was disturbed by an SMI */
+ if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
+ continue;
+
+ tsc2 = (tsc2 - tsc1) * 1000000LL;
+ if (hpet)
+ tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
+ else
+ tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
+
+ tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
+
+ /* Check the reference deviation */
+ delta = ((u64) tsc_pit_min) * 100;
+ do_div(delta, tsc_ref_min);
+
+ /*
+ * If both calibration results are inside a 10% window
+ * then we can be sure, that the calibration
+ * succeeded. We break out of the loop right away. We
+ * use the reference value, as it is more precise.
+ */
+ if (delta >= 90 && delta <= 110) {
+ printk(KERN_INFO
+ "TSC: PIT calibration matches %s. %d loops\n",
+ hpet ? "HPET" : "PMTIMER", i + 1);
+ return tsc_ref_min;
+ }
+
+ /*
+ * Check whether PIT failed more than once. This
+ * happens in virtualized environments. We need to
+ * give the virtual PC a slightly longer timeframe for
+ * the HPET/PMTIMER to make the result precise.
+ */
+ if (i == 1 && tsc_pit_min == ULONG_MAX) {
+ latch = CAL2_LATCH;
+ ms = CAL2_MS;
+ loopmin = CAL2_PIT_LOOPS;
+ }
+ }
+
+ /*
+ * Now check the results.
+ */
+ if (tsc_pit_min == ULONG_MAX) {
+ /* PIT gave no useful value */
+ printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
+
+ /* We don't have an alternative source, disable TSC */
+ if (!hpet && !ref1 && !ref2) {
+ printk("TSC: No reference (HPET/PMTIMER) available\n");
+ return 0;
+ }
+
+ /* The alternative source failed as well, disable TSC */
+ if (tsc_ref_min == ULONG_MAX) {
+ printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
+ "failed.\n");
+ return 0;
+ }
+
+ /* Use the alternative source */
+ printk(KERN_INFO "TSC: using %s reference calibration\n",
+ hpet ? "HPET" : "PMTIMER");
+
+ return tsc_ref_min;
+ }
+
+ /* We don't have an alternative source, use the PIT calibration value */
+ if (!hpet && !ref1 && !ref2) {
+ printk(KERN_INFO "TSC: Using PIT calibration value\n");
+ return tsc_pit_min;
+ }
+
+ /* The alternative source failed, use the PIT calibration value */
+ if (tsc_ref_min == ULONG_MAX) {
+ printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
+ "Using PIT calibration\n");
+ return tsc_pit_min;
+ }
+
+ /*
+ * The calibration values differ too much. In doubt, we use
+ * the PIT value as we know that there are PMTIMERs around
+ * running at double speed. At least we let the user know:
+ */
+ printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
+ hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
+ printk(KERN_INFO "TSC: Using PIT calibration value\n");
+ return tsc_pit_min;
+}
+
+int recalibrate_cpu_khz(void)
+{
+#ifndef CONFIG_SMP
+ unsigned long cpu_khz_old = cpu_khz;
+
+ if (cpu_has_tsc) {
+ tsc_khz = x86_platform.calibrate_tsc();
+ cpu_khz = tsc_khz;
+ cpu_data(0).loops_per_jiffy =
+ cpufreq_scale(cpu_data(0).loops_per_jiffy,
+ cpu_khz_old, cpu_khz);
+ return 0;
+ } else
+ return -ENODEV;
+#else
+ return -ENODEV;
+#endif
+}
+
+EXPORT_SYMBOL(recalibrate_cpu_khz);
+
+
+/* Accelerators for sched_clock()
+ * convert from cycles(64bits) => nanoseconds (64bits)
+ * basic equation:
+ * ns = cycles / (freq / ns_per_sec)
+ * ns = cycles * (ns_per_sec / freq)
+ * ns = cycles * (10^9 / (cpu_khz * 10^3))
+ * ns = cycles * (10^6 / cpu_khz)
+ *
+ * Then we use scaling math (suggested by george@mvista.com) to get:
+ * ns = cycles * (10^6 * SC / cpu_khz) / SC
+ * ns = cycles * cyc2ns_scale / SC
+ *
+ * And since SC is a constant power of two, we can convert the div
+ * into a shift.
+ *
+ * We can use khz divisor instead of mhz to keep a better precision, since
+ * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
+ * (mathieu.desnoyers@polymtl.ca)
+ *
+ * -johnstul@us.ibm.com "math is hard, lets go shopping!"
+ */
+
+DEFINE_PER_CPU(unsigned long, cyc2ns);
+DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
+
+static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
+{
+ unsigned long long tsc_now, ns_now, *offset;
+ unsigned long flags, *scale;
+
+ local_irq_save(flags);
+ sched_clock_idle_sleep_event();
+
+ scale = &per_cpu(cyc2ns, cpu);
+ offset = &per_cpu(cyc2ns_offset, cpu);
+
+ rdtscll(tsc_now);
+ ns_now = __cycles_2_ns(tsc_now);
+
+ if (cpu_khz) {
+ *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
+ *offset = ns_now - mult_frac(tsc_now, *scale,
+ (1UL << CYC2NS_SCALE_FACTOR));
+ }
+
+ sched_clock_idle_wakeup_event(0);
+ local_irq_restore(flags);
+}
+
+static unsigned long long cyc2ns_suspend;
+
+void tsc_save_sched_clock_state(void)
+{
+ if (!sched_clock_stable)
+ return;
+
+ cyc2ns_suspend = sched_clock();
+}
+
+/*
+ * Even on processors with invariant TSC, TSC gets reset in some the
+ * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
+ * arbitrary value (still sync'd across cpu's) during resume from such sleep
+ * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
+ * that sched_clock() continues from the point where it was left off during
+ * suspend.
+ */
+void tsc_restore_sched_clock_state(void)
+{
+ unsigned long long offset;
+ unsigned long flags;
+ int cpu;
+
+ if (!sched_clock_stable)
+ return;
+
+ local_irq_save(flags);
+
+ __this_cpu_write(cyc2ns_offset, 0);
+ offset = cyc2ns_suspend - sched_clock();
+
+ for_each_possible_cpu(cpu)
+ per_cpu(cyc2ns_offset, cpu) = offset;
+
+ local_irq_restore(flags);
+}
+
+#ifdef CONFIG_CPU_FREQ
+
+/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
+ * changes.
+ *
+ * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
+ * not that important because current Opteron setups do not support
+ * scaling on SMP anyroads.
+ *
+ * Should fix up last_tsc too. Currently gettimeofday in the
+ * first tick after the change will be slightly wrong.
+ */
+
+static unsigned int ref_freq;
+static unsigned long loops_per_jiffy_ref;
+static unsigned long tsc_khz_ref;
+
+static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
+ void *data)
+{
+ struct cpufreq_freqs *freq = data;
+ unsigned long *lpj;
+
+ if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
+ return 0;
+
+ lpj = &boot_cpu_data.loops_per_jiffy;
+#ifdef CONFIG_SMP
+ if (!(freq->flags & CPUFREQ_CONST_LOOPS))
+ lpj = &cpu_data(freq->cpu).loops_per_jiffy;
+#endif
+
+ if (!ref_freq) {
+ ref_freq = freq->old;
+ loops_per_jiffy_ref = *lpj;
+ tsc_khz_ref = tsc_khz;
+ }
+ if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
+ (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
+ (val == CPUFREQ_RESUMECHANGE)) {
+ *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
+
+ tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
+ if (!(freq->flags & CPUFREQ_CONST_LOOPS))
+ mark_tsc_unstable("cpufreq changes");
+ }
+
+ set_cyc2ns_scale(tsc_khz, freq->cpu);
+
+ return 0;
+}
+
+static struct notifier_block time_cpufreq_notifier_block = {
+ .notifier_call = time_cpufreq_notifier
+};
+
+static int __init cpufreq_tsc(void)
+{
+ if (!cpu_has_tsc)
+ return 0;
+ if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+ return 0;
+ cpufreq_register_notifier(&time_cpufreq_notifier_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+ return 0;
+}
+
+core_initcall(cpufreq_tsc);
+
+#endif /* CONFIG_CPU_FREQ */
+
+/* clocksource code */
+
+static struct clocksource clocksource_tsc;
+
+/*
+ * We compare the TSC to the cycle_last value in the clocksource
+ * structure to avoid a nasty time-warp. This can be observed in a
+ * very small window right after one CPU updated cycle_last under
+ * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
+ * is smaller than the cycle_last reference value due to a TSC which
+ * is slighty behind. This delta is nowhere else observable, but in
+ * that case it results in a forward time jump in the range of hours
+ * due to the unsigned delta calculation of the time keeping core
+ * code, which is necessary to support wrapping clocksources like pm
+ * timer.
+ */
+static cycle_t read_tsc(struct clocksource *cs)
+{
+ cycle_t ret = (cycle_t)get_cycles();
+
+ return ret >= clocksource_tsc.cycle_last ?
+ ret : clocksource_tsc.cycle_last;
+}
+
+static void resume_tsc(struct clocksource *cs)
+{
+ clocksource_tsc.cycle_last = 0;
+}
+
+static struct clocksource clocksource_tsc = {
+ .name = "tsc",
+ .rating = 300,
+ .read = read_tsc,
+ .resume = resume_tsc,
+ .mask = CLOCKSOURCE_MASK(64),
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS |
+ CLOCK_SOURCE_MUST_VERIFY,
+#ifdef CONFIG_X86_64
+ .archdata = { .vclock_mode = VCLOCK_TSC },
+#endif
+};
+
+void mark_tsc_unstable(char *reason)
+{
+ if (!tsc_unstable) {
+ tsc_unstable = 1;
+ sched_clock_stable = 0;
+ disable_sched_clock_irqtime();
+ printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
+ /* Change only the rating, when not registered */
+ if (clocksource_tsc.mult)
+ clocksource_mark_unstable(&clocksource_tsc);
+ else {
+ clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
+ clocksource_tsc.rating = 0;
+ }
+ }
+}
+
+EXPORT_SYMBOL_GPL(mark_tsc_unstable);
+
+static void __init check_system_tsc_reliable(void)
+{
+#ifdef CONFIG_MGEODE_LX
+ /* RTSC counts during suspend */
+#define RTSC_SUSP 0x100
+ unsigned long res_low, res_high;
+
+ rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
+ /* Geode_LX - the OLPC CPU has a very reliable TSC */
+ if (res_low & RTSC_SUSP)
+ tsc_clocksource_reliable = 1;
+#endif
+ if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
+ tsc_clocksource_reliable = 1;
+}
+
+/*
+ * Make an educated guess if the TSC is trustworthy and synchronized
+ * over all CPUs.
+ */
+__cpuinit int unsynchronized_tsc(void)
+{
+ if (!cpu_has_tsc || tsc_unstable)
+ return 1;
+
+#ifdef CONFIG_SMP
+ if (apic_is_clustered_box())
+ return 1;
+#endif
+
+ if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
+ return 0;
+
+ if (tsc_clocksource_reliable)
+ return 0;
+ /*
+ * Intel systems are normally all synchronized.
+ * Exceptions must mark TSC as unstable:
+ */
+ if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
+ /* assume multi socket systems are not synchronized: */
+ if (num_possible_cpus() > 1)
+ return 1;
+ }
+
+ return 0;
+}
+
+
+static void tsc_refine_calibration_work(struct work_struct *work);
+static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
+/**
+ * tsc_refine_calibration_work - Further refine tsc freq calibration
+ * @work - ignored.
+ *
+ * This functions uses delayed work over a period of a
+ * second to further refine the TSC freq value. Since this is
+ * timer based, instead of loop based, we don't block the boot
+ * process while this longer calibration is done.
+ *
+ * If there are any calibration anomalies (too many SMIs, etc),
+ * or the refined calibration is off by 1% of the fast early
+ * calibration, we throw out the new calibration and use the
+ * early calibration.
+ */
+static void tsc_refine_calibration_work(struct work_struct *work)
+{
+ static u64 tsc_start = -1, ref_start;
+ static int hpet;
+ u64 tsc_stop, ref_stop, delta;
+ unsigned long freq;
+
+ /* Don't bother refining TSC on unstable systems */
+ if (check_tsc_unstable())
+ goto out;
+
+ /*
+ * Since the work is started early in boot, we may be
+ * delayed the first time we expire. So set the workqueue
+ * again once we know timers are working.
+ */
+ if (tsc_start == -1) {
+ /*
+ * Only set hpet once, to avoid mixing hardware
+ * if the hpet becomes enabled later.
+ */
+ hpet = is_hpet_enabled();
+ schedule_delayed_work(&tsc_irqwork, HZ);
+ tsc_start = tsc_read_refs(&ref_start, hpet);
+ return;
+ }
+
+ tsc_stop = tsc_read_refs(&ref_stop, hpet);
+
+ /* hpet or pmtimer available ? */
+ if (ref_start == ref_stop)
+ goto out;
+
+ /* Check, whether the sampling was disturbed by an SMI */
+ if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
+ goto out;
+
+ delta = tsc_stop - tsc_start;
+ delta *= 1000000LL;
+ if (hpet)
+ freq = calc_hpet_ref(delta, ref_start, ref_stop);
+ else
+ freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
+
+ /* Make sure we're within 1% */
+ if (abs(tsc_khz - freq) > tsc_khz/100)
+ goto out;
+
+ tsc_khz = freq;
+ printk(KERN_INFO "Refined TSC clocksource calibration: "
+ "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
+ (unsigned long)tsc_khz % 1000);
+
+out:
+ clocksource_register_khz(&clocksource_tsc, tsc_khz);
+}
+
+
+static int __init init_tsc_clocksource(void)
+{
+ if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
+ return 0;
+
+ if (tsc_clocksource_reliable)
+ clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
+ /* lower the rating if we already know its unstable: */
+ if (check_tsc_unstable()) {
+ clocksource_tsc.rating = 0;
+ clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
+ }
+
+ /*
+ * Trust the results of the earlier calibration on systems
+ * exporting a reliable TSC.
+ */
+ if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
+ clocksource_register_khz(&clocksource_tsc, tsc_khz);
+ return 0;
+ }
+
+ schedule_delayed_work(&tsc_irqwork, 0);
+ return 0;
+}
+/*
+ * We use device_initcall here, to ensure we run after the hpet
+ * is fully initialized, which may occur at fs_initcall time.
+ */
+device_initcall(init_tsc_clocksource);
+
+void __init tsc_init(void)
+{
+ u64 lpj;
+ int cpu;
+
+ x86_init.timers.tsc_pre_init();
+
+ if (!cpu_has_tsc)
+ return;
+
+ tsc_khz = x86_platform.calibrate_tsc();
+ cpu_khz = tsc_khz;
+
+ if (!tsc_khz) {
+ mark_tsc_unstable("could not calculate TSC khz");
+ return;
+ }
+
+ printk("Detected %lu.%03lu MHz processor.\n",
+ (unsigned long)cpu_khz / 1000,
+ (unsigned long)cpu_khz % 1000);
+
+ /*
+ * Secondary CPUs do not run through tsc_init(), so set up
+ * all the scale factors for all CPUs, assuming the same
+ * speed as the bootup CPU. (cpufreq notifiers will fix this
+ * up if their speed diverges)
+ */
+ for_each_possible_cpu(cpu)
+ set_cyc2ns_scale(cpu_khz, cpu);
+
+ if (tsc_disabled > 0)
+ return;
+
+ /* now allow native_sched_clock() to use rdtsc */
+ tsc_disabled = 0;
+
+ if (!no_sched_irq_time)
+ enable_sched_clock_irqtime();
+
+ lpj = ((u64)tsc_khz * 1000);
+ do_div(lpj, HZ);
+ lpj_fine = lpj;
+
+ use_tsc_delay();
+
+ if (unsynchronized_tsc())
+ mark_tsc_unstable("TSCs unsynchronized");
+
+ check_system_tsc_reliable();
+}
+
+#ifdef CONFIG_SMP
+/*
+ * If we have a constant TSC and are using the TSC for the delay loop,
+ * we can skip clock calibration if another cpu in the same socket has already
+ * been calibrated. This assumes that CONSTANT_TSC applies to all
+ * cpus in the socket - this should be a safe assumption.
+ */
+unsigned long __cpuinit calibrate_delay_is_known(void)
+{
+ int i, cpu = smp_processor_id();
+
+ if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
+ return 0;
+
+ for_each_online_cpu(i)
+ if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
+ return cpu_data(i).loops_per_jiffy;
+ return 0;
+}
+#endif