diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /arch/powerpc/mm/hugetlbpage.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'arch/powerpc/mm/hugetlbpage.c')
-rw-r--r-- | arch/powerpc/mm/hugetlbpage.c | 921 |
1 files changed, 921 insertions, 0 deletions
diff --git a/arch/powerpc/mm/hugetlbpage.c b/arch/powerpc/mm/hugetlbpage.c new file mode 100644 index 00000000..fb05b123 --- /dev/null +++ b/arch/powerpc/mm/hugetlbpage.c @@ -0,0 +1,921 @@ +/* + * PPC Huge TLB Page Support for Kernel. + * + * Copyright (C) 2003 David Gibson, IBM Corporation. + * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor + * + * Based on the IA-32 version: + * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> + */ + +#include <linux/mm.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/hugetlb.h> +#include <linux/export.h> +#include <linux/of_fdt.h> +#include <linux/memblock.h> +#include <linux/bootmem.h> +#include <linux/moduleparam.h> +#include <asm/pgtable.h> +#include <asm/pgalloc.h> +#include <asm/tlb.h> +#include <asm/setup.h> + +#define PAGE_SHIFT_64K 16 +#define PAGE_SHIFT_16M 24 +#define PAGE_SHIFT_16G 34 + +unsigned int HPAGE_SHIFT; + +/* + * Tracks gpages after the device tree is scanned and before the + * huge_boot_pages list is ready. On non-Freescale implementations, this is + * just used to track 16G pages and so is a single array. FSL-based + * implementations may have more than one gpage size, so we need multiple + * arrays + */ +#ifdef CONFIG_PPC_FSL_BOOK3E +#define MAX_NUMBER_GPAGES 128 +struct psize_gpages { + u64 gpage_list[MAX_NUMBER_GPAGES]; + unsigned int nr_gpages; +}; +static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; +#else +#define MAX_NUMBER_GPAGES 1024 +static u64 gpage_freearray[MAX_NUMBER_GPAGES]; +static unsigned nr_gpages; +#endif + +static inline int shift_to_mmu_psize(unsigned int shift) +{ + int psize; + + for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) + if (mmu_psize_defs[psize].shift == shift) + return psize; + return -1; +} + +static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) +{ + if (mmu_psize_defs[mmu_psize].shift) + return mmu_psize_defs[mmu_psize].shift; + BUG(); +} + +#define hugepd_none(hpd) ((hpd).pd == 0) + +pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) +{ + pgd_t *pg; + pud_t *pu; + pmd_t *pm; + hugepd_t *hpdp = NULL; + unsigned pdshift = PGDIR_SHIFT; + + if (shift) + *shift = 0; + + pg = pgdir + pgd_index(ea); + if (is_hugepd(pg)) { + hpdp = (hugepd_t *)pg; + } else if (!pgd_none(*pg)) { + pdshift = PUD_SHIFT; + pu = pud_offset(pg, ea); + if (is_hugepd(pu)) + hpdp = (hugepd_t *)pu; + else if (!pud_none(*pu)) { + pdshift = PMD_SHIFT; + pm = pmd_offset(pu, ea); + if (is_hugepd(pm)) + hpdp = (hugepd_t *)pm; + else if (!pmd_none(*pm)) { + return pte_offset_kernel(pm, ea); + } + } + } + + if (!hpdp) + return NULL; + + if (shift) + *shift = hugepd_shift(*hpdp); + return hugepte_offset(hpdp, ea, pdshift); +} +EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte); + +pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) +{ + return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); +} + +static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, + unsigned long address, unsigned pdshift, unsigned pshift) +{ + struct kmem_cache *cachep; + pte_t *new; + +#ifdef CONFIG_PPC_FSL_BOOK3E + int i; + int num_hugepd = 1 << (pshift - pdshift); + cachep = hugepte_cache; +#else + cachep = PGT_CACHE(pdshift - pshift); +#endif + + new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); + + BUG_ON(pshift > HUGEPD_SHIFT_MASK); + BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); + + if (! new) + return -ENOMEM; + + spin_lock(&mm->page_table_lock); +#ifdef CONFIG_PPC_FSL_BOOK3E + /* + * We have multiple higher-level entries that point to the same + * actual pte location. Fill in each as we go and backtrack on error. + * We need all of these so the DTLB pgtable walk code can find the + * right higher-level entry without knowing if it's a hugepage or not. + */ + for (i = 0; i < num_hugepd; i++, hpdp++) { + if (unlikely(!hugepd_none(*hpdp))) + break; + else + hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; + } + /* If we bailed from the for loop early, an error occurred, clean up */ + if (i < num_hugepd) { + for (i = i - 1 ; i >= 0; i--, hpdp--) + hpdp->pd = 0; + kmem_cache_free(cachep, new); + } +#else + if (!hugepd_none(*hpdp)) + kmem_cache_free(cachep, new); + else + hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; +#endif + spin_unlock(&mm->page_table_lock); + return 0; +} + +/* + * These macros define how to determine which level of the page table holds + * the hpdp. + */ +#ifdef CONFIG_PPC_FSL_BOOK3E +#define HUGEPD_PGD_SHIFT PGDIR_SHIFT +#define HUGEPD_PUD_SHIFT PUD_SHIFT +#else +#define HUGEPD_PGD_SHIFT PUD_SHIFT +#define HUGEPD_PUD_SHIFT PMD_SHIFT +#endif + +pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) +{ + pgd_t *pg; + pud_t *pu; + pmd_t *pm; + hugepd_t *hpdp = NULL; + unsigned pshift = __ffs(sz); + unsigned pdshift = PGDIR_SHIFT; + + addr &= ~(sz-1); + + pg = pgd_offset(mm, addr); + + if (pshift >= HUGEPD_PGD_SHIFT) { + hpdp = (hugepd_t *)pg; + } else { + pdshift = PUD_SHIFT; + pu = pud_alloc(mm, pg, addr); + if (pshift >= HUGEPD_PUD_SHIFT) { + hpdp = (hugepd_t *)pu; + } else { + pdshift = PMD_SHIFT; + pm = pmd_alloc(mm, pu, addr); + hpdp = (hugepd_t *)pm; + } + } + + if (!hpdp) + return NULL; + + BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); + + if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) + return NULL; + + return hugepte_offset(hpdp, addr, pdshift); +} + +#ifdef CONFIG_PPC_FSL_BOOK3E +/* Build list of addresses of gigantic pages. This function is used in early + * boot before the buddy or bootmem allocator is setup. + */ +void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) +{ + unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); + int i; + + if (addr == 0) + return; + + gpage_freearray[idx].nr_gpages = number_of_pages; + + for (i = 0; i < number_of_pages; i++) { + gpage_freearray[idx].gpage_list[i] = addr; + addr += page_size; + } +} + +/* + * Moves the gigantic page addresses from the temporary list to the + * huge_boot_pages list. + */ +int alloc_bootmem_huge_page(struct hstate *hstate) +{ + struct huge_bootmem_page *m; + int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT); + int nr_gpages = gpage_freearray[idx].nr_gpages; + + if (nr_gpages == 0) + return 0; + +#ifdef CONFIG_HIGHMEM + /* + * If gpages can be in highmem we can't use the trick of storing the + * data structure in the page; allocate space for this + */ + m = alloc_bootmem(sizeof(struct huge_bootmem_page)); + m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; +#else + m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); +#endif + + list_add(&m->list, &huge_boot_pages); + gpage_freearray[idx].nr_gpages = nr_gpages; + gpage_freearray[idx].gpage_list[nr_gpages] = 0; + m->hstate = hstate; + + return 1; +} +/* + * Scan the command line hugepagesz= options for gigantic pages; store those in + * a list that we use to allocate the memory once all options are parsed. + */ + +unsigned long gpage_npages[MMU_PAGE_COUNT]; + +static int __init do_gpage_early_setup(char *param, char *val) +{ + static phys_addr_t size; + unsigned long npages; + + /* + * The hugepagesz and hugepages cmdline options are interleaved. We + * use the size variable to keep track of whether or not this was done + * properly and skip over instances where it is incorrect. Other + * command-line parsing code will issue warnings, so we don't need to. + * + */ + if ((strcmp(param, "default_hugepagesz") == 0) || + (strcmp(param, "hugepagesz") == 0)) { + size = memparse(val, NULL); + } else if (strcmp(param, "hugepages") == 0) { + if (size != 0) { + if (sscanf(val, "%lu", &npages) <= 0) + npages = 0; + gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; + size = 0; + } + } + return 0; +} + + +/* + * This function allocates physical space for pages that are larger than the + * buddy allocator can handle. We want to allocate these in highmem because + * the amount of lowmem is limited. This means that this function MUST be + * called before lowmem_end_addr is set up in MMU_init() in order for the lmb + * allocate to grab highmem. + */ +void __init reserve_hugetlb_gpages(void) +{ + static __initdata char cmdline[COMMAND_LINE_SIZE]; + phys_addr_t size, base; + int i; + + strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); + parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, + &do_gpage_early_setup); + + /* + * Walk gpage list in reverse, allocating larger page sizes first. + * Skip over unsupported sizes, or sizes that have 0 gpages allocated. + * When we reach the point in the list where pages are no longer + * considered gpages, we're done. + */ + for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { + if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) + continue; + else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) + break; + + size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); + base = memblock_alloc_base(size * gpage_npages[i], size, + MEMBLOCK_ALLOC_ANYWHERE); + add_gpage(base, size, gpage_npages[i]); + } +} + +#else /* !PPC_FSL_BOOK3E */ + +/* Build list of addresses of gigantic pages. This function is used in early + * boot before the buddy or bootmem allocator is setup. + */ +void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) +{ + if (!addr) + return; + while (number_of_pages > 0) { + gpage_freearray[nr_gpages] = addr; + nr_gpages++; + number_of_pages--; + addr += page_size; + } +} + +/* Moves the gigantic page addresses from the temporary list to the + * huge_boot_pages list. + */ +int alloc_bootmem_huge_page(struct hstate *hstate) +{ + struct huge_bootmem_page *m; + if (nr_gpages == 0) + return 0; + m = phys_to_virt(gpage_freearray[--nr_gpages]); + gpage_freearray[nr_gpages] = 0; + list_add(&m->list, &huge_boot_pages); + m->hstate = hstate; + return 1; +} +#endif + +int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) +{ + return 0; +} + +#ifdef CONFIG_PPC_FSL_BOOK3E +#define HUGEPD_FREELIST_SIZE \ + ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) + +struct hugepd_freelist { + struct rcu_head rcu; + unsigned int index; + void *ptes[0]; +}; + +static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); + +static void hugepd_free_rcu_callback(struct rcu_head *head) +{ + struct hugepd_freelist *batch = + container_of(head, struct hugepd_freelist, rcu); + unsigned int i; + + for (i = 0; i < batch->index; i++) + kmem_cache_free(hugepte_cache, batch->ptes[i]); + + free_page((unsigned long)batch); +} + +static void hugepd_free(struct mmu_gather *tlb, void *hugepte) +{ + struct hugepd_freelist **batchp; + + batchp = &__get_cpu_var(hugepd_freelist_cur); + + if (atomic_read(&tlb->mm->mm_users) < 2 || + cpumask_equal(mm_cpumask(tlb->mm), + cpumask_of(smp_processor_id()))) { + kmem_cache_free(hugepte_cache, hugepte); + return; + } + + if (*batchp == NULL) { + *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); + (*batchp)->index = 0; + } + + (*batchp)->ptes[(*batchp)->index++] = hugepte; + if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { + call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); + *batchp = NULL; + } +} +#endif + +static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, + unsigned long start, unsigned long end, + unsigned long floor, unsigned long ceiling) +{ + pte_t *hugepte = hugepd_page(*hpdp); + int i; + + unsigned long pdmask = ~((1UL << pdshift) - 1); + unsigned int num_hugepd = 1; + +#ifdef CONFIG_PPC_FSL_BOOK3E + /* Note: On fsl the hpdp may be the first of several */ + num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); +#else + unsigned int shift = hugepd_shift(*hpdp); +#endif + + start &= pdmask; + if (start < floor) + return; + if (ceiling) { + ceiling &= pdmask; + if (! ceiling) + return; + } + if (end - 1 > ceiling - 1) + return; + + for (i = 0; i < num_hugepd; i++, hpdp++) + hpdp->pd = 0; + + tlb->need_flush = 1; + +#ifdef CONFIG_PPC_FSL_BOOK3E + hugepd_free(tlb, hugepte); +#else + pgtable_free_tlb(tlb, hugepte, pdshift - shift); +#endif +} + +static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, + unsigned long addr, unsigned long end, + unsigned long floor, unsigned long ceiling) +{ + pmd_t *pmd; + unsigned long next; + unsigned long start; + + start = addr; + do { + pmd = pmd_offset(pud, addr); + next = pmd_addr_end(addr, end); + if (pmd_none(*pmd)) + continue; +#ifdef CONFIG_PPC_FSL_BOOK3E + /* + * Increment next by the size of the huge mapping since + * there may be more than one entry at this level for a + * single hugepage, but all of them point to + * the same kmem cache that holds the hugepte. + */ + next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); +#endif + free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, + addr, next, floor, ceiling); + } while (addr = next, addr != end); + + start &= PUD_MASK; + if (start < floor) + return; + if (ceiling) { + ceiling &= PUD_MASK; + if (!ceiling) + return; + } + if (end - 1 > ceiling - 1) + return; + + pmd = pmd_offset(pud, start); + pud_clear(pud); + pmd_free_tlb(tlb, pmd, start); +} + +static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, + unsigned long addr, unsigned long end, + unsigned long floor, unsigned long ceiling) +{ + pud_t *pud; + unsigned long next; + unsigned long start; + + start = addr; + do { + pud = pud_offset(pgd, addr); + next = pud_addr_end(addr, end); + if (!is_hugepd(pud)) { + if (pud_none_or_clear_bad(pud)) + continue; + hugetlb_free_pmd_range(tlb, pud, addr, next, floor, + ceiling); + } else { +#ifdef CONFIG_PPC_FSL_BOOK3E + /* + * Increment next by the size of the huge mapping since + * there may be more than one entry at this level for a + * single hugepage, but all of them point to + * the same kmem cache that holds the hugepte. + */ + next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); +#endif + free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, + addr, next, floor, ceiling); + } + } while (addr = next, addr != end); + + start &= PGDIR_MASK; + if (start < floor) + return; + if (ceiling) { + ceiling &= PGDIR_MASK; + if (!ceiling) + return; + } + if (end - 1 > ceiling - 1) + return; + + pud = pud_offset(pgd, start); + pgd_clear(pgd); + pud_free_tlb(tlb, pud, start); +} + +/* + * This function frees user-level page tables of a process. + * + * Must be called with pagetable lock held. + */ +void hugetlb_free_pgd_range(struct mmu_gather *tlb, + unsigned long addr, unsigned long end, + unsigned long floor, unsigned long ceiling) +{ + pgd_t *pgd; + unsigned long next; + + /* + * Because there are a number of different possible pagetable + * layouts for hugepage ranges, we limit knowledge of how + * things should be laid out to the allocation path + * (huge_pte_alloc(), above). Everything else works out the + * structure as it goes from information in the hugepd + * pointers. That means that we can't here use the + * optimization used in the normal page free_pgd_range(), of + * checking whether we're actually covering a large enough + * range to have to do anything at the top level of the walk + * instead of at the bottom. + * + * To make sense of this, you should probably go read the big + * block comment at the top of the normal free_pgd_range(), + * too. + */ + + do { + next = pgd_addr_end(addr, end); + pgd = pgd_offset(tlb->mm, addr); + if (!is_hugepd(pgd)) { + if (pgd_none_or_clear_bad(pgd)) + continue; + hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); + } else { +#ifdef CONFIG_PPC_FSL_BOOK3E + /* + * Increment next by the size of the huge mapping since + * there may be more than one entry at the pgd level + * for a single hugepage, but all of them point to the + * same kmem cache that holds the hugepte. + */ + next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); +#endif + free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, + addr, next, floor, ceiling); + } + } while (addr = next, addr != end); +} + +struct page * +follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) +{ + pte_t *ptep; + struct page *page; + unsigned shift; + unsigned long mask; + + ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); + + /* Verify it is a huge page else bail. */ + if (!ptep || !shift) + return ERR_PTR(-EINVAL); + + mask = (1UL << shift) - 1; + page = pte_page(*ptep); + if (page) + page += (address & mask) / PAGE_SIZE; + + return page; +} + +int pmd_huge(pmd_t pmd) +{ + return 0; +} + +int pud_huge(pud_t pud) +{ + return 0; +} + +struct page * +follow_huge_pmd(struct mm_struct *mm, unsigned long address, + pmd_t *pmd, int write) +{ + BUG(); + return NULL; +} + +static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, + unsigned long end, int write, struct page **pages, int *nr) +{ + unsigned long mask; + unsigned long pte_end; + struct page *head, *page, *tail; + pte_t pte; + int refs; + + pte_end = (addr + sz) & ~(sz-1); + if (pte_end < end) + end = pte_end; + + pte = *ptep; + mask = _PAGE_PRESENT | _PAGE_USER; + if (write) + mask |= _PAGE_RW; + + if ((pte_val(pte) & mask) != mask) + return 0; + + /* hugepages are never "special" */ + VM_BUG_ON(!pfn_valid(pte_pfn(pte))); + + refs = 0; + head = pte_page(pte); + + page = head + ((addr & (sz-1)) >> PAGE_SHIFT); + tail = page; + do { + VM_BUG_ON(compound_head(page) != head); + pages[*nr] = page; + (*nr)++; + page++; + refs++; + } while (addr += PAGE_SIZE, addr != end); + + if (!page_cache_add_speculative(head, refs)) { + *nr -= refs; + return 0; + } + + if (unlikely(pte_val(pte) != pte_val(*ptep))) { + /* Could be optimized better */ + *nr -= refs; + while (refs--) + put_page(head); + return 0; + } + + /* + * Any tail page need their mapcount reference taken before we + * return. + */ + while (refs--) { + if (PageTail(tail)) + get_huge_page_tail(tail); + tail++; + } + + return 1; +} + +static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, + unsigned long sz) +{ + unsigned long __boundary = (addr + sz) & ~(sz-1); + return (__boundary - 1 < end - 1) ? __boundary : end; +} + +int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, + unsigned long addr, unsigned long end, + int write, struct page **pages, int *nr) +{ + pte_t *ptep; + unsigned long sz = 1UL << hugepd_shift(*hugepd); + unsigned long next; + + ptep = hugepte_offset(hugepd, addr, pdshift); + do { + next = hugepte_addr_end(addr, end, sz); + if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) + return 0; + } while (ptep++, addr = next, addr != end); + + return 1; +} + +#ifdef CONFIG_PPC_MM_SLICES +unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, + unsigned long len, unsigned long pgoff, + unsigned long flags) +{ + struct hstate *hstate = hstate_file(file); + int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); + + return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); +} +#endif + +unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) +{ +#ifdef CONFIG_PPC_MM_SLICES + unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); + + return 1UL << mmu_psize_to_shift(psize); +#else + if (!is_vm_hugetlb_page(vma)) + return PAGE_SIZE; + + return huge_page_size(hstate_vma(vma)); +#endif +} + +static inline bool is_power_of_4(unsigned long x) +{ + if (is_power_of_2(x)) + return (__ilog2(x) % 2) ? false : true; + return false; +} + +static int __init add_huge_page_size(unsigned long long size) +{ + int shift = __ffs(size); + int mmu_psize; + + /* Check that it is a page size supported by the hardware and + * that it fits within pagetable and slice limits. */ +#ifdef CONFIG_PPC_FSL_BOOK3E + if ((size < PAGE_SIZE) || !is_power_of_4(size)) + return -EINVAL; +#else + if (!is_power_of_2(size) + || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) + return -EINVAL; +#endif + + if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) + return -EINVAL; + +#ifdef CONFIG_SPU_FS_64K_LS + /* Disable support for 64K huge pages when 64K SPU local store + * support is enabled as the current implementation conflicts. + */ + if (shift == PAGE_SHIFT_64K) + return -EINVAL; +#endif /* CONFIG_SPU_FS_64K_LS */ + + BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); + + /* Return if huge page size has already been setup */ + if (size_to_hstate(size)) + return 0; + + hugetlb_add_hstate(shift - PAGE_SHIFT); + + return 0; +} + +static int __init hugepage_setup_sz(char *str) +{ + unsigned long long size; + + size = memparse(str, &str); + + if (add_huge_page_size(size) != 0) + printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); + + return 1; +} +__setup("hugepagesz=", hugepage_setup_sz); + +#ifdef CONFIG_PPC_FSL_BOOK3E +struct kmem_cache *hugepte_cache; +static int __init hugetlbpage_init(void) +{ + int psize; + + for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { + unsigned shift; + + if (!mmu_psize_defs[psize].shift) + continue; + + shift = mmu_psize_to_shift(psize); + + /* Don't treat normal page sizes as huge... */ + if (shift != PAGE_SHIFT) + if (add_huge_page_size(1ULL << shift) < 0) + continue; + } + + /* + * Create a kmem cache for hugeptes. The bottom bits in the pte have + * size information encoded in them, so align them to allow this + */ + hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), + HUGEPD_SHIFT_MASK + 1, 0, NULL); + if (hugepte_cache == NULL) + panic("%s: Unable to create kmem cache for hugeptes\n", + __func__); + + /* Default hpage size = 4M */ + if (mmu_psize_defs[MMU_PAGE_4M].shift) + HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; + else + panic("%s: Unable to set default huge page size\n", __func__); + + + return 0; +} +#else +static int __init hugetlbpage_init(void) +{ + int psize; + + if (!mmu_has_feature(MMU_FTR_16M_PAGE)) + return -ENODEV; + + for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { + unsigned shift; + unsigned pdshift; + + if (!mmu_psize_defs[psize].shift) + continue; + + shift = mmu_psize_to_shift(psize); + + if (add_huge_page_size(1ULL << shift) < 0) + continue; + + if (shift < PMD_SHIFT) + pdshift = PMD_SHIFT; + else if (shift < PUD_SHIFT) + pdshift = PUD_SHIFT; + else + pdshift = PGDIR_SHIFT; + + pgtable_cache_add(pdshift - shift, NULL); + if (!PGT_CACHE(pdshift - shift)) + panic("hugetlbpage_init(): could not create " + "pgtable cache for %d bit pagesize\n", shift); + } + + /* Set default large page size. Currently, we pick 16M or 1M + * depending on what is available + */ + if (mmu_psize_defs[MMU_PAGE_16M].shift) + HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; + else if (mmu_psize_defs[MMU_PAGE_1M].shift) + HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; + + return 0; +} +#endif +module_init(hugetlbpage_init); + +void flush_dcache_icache_hugepage(struct page *page) +{ + int i; + void *start; + + BUG_ON(!PageCompound(page)); + + for (i = 0; i < (1UL << compound_order(page)); i++) { + if (!PageHighMem(page)) { + __flush_dcache_icache(page_address(page+i)); + } else { + start = kmap_atomic(page+i); + __flush_dcache_icache(start); + kunmap_atomic(start); + } + } +} |