summaryrefslogtreecommitdiff
path: root/arch/avr32/kernel/setup.c
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-13 15:08:24 +0530
committerSrikant Patnaik2015-01-13 15:08:24 +0530
commit97327692361306d1e6259021bc425e32832fdb50 (patch)
treefe9088f3248ec61e24f404f21b9793cb644b7f01 /arch/avr32/kernel/setup.c
parent2d05a8f663478a44e088d122e0d62109bbc801d0 (diff)
parenta3a8b90b61e21be3dde9101c4e86c881e0f06210 (diff)
downloadFOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.gz
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.tar.bz2
FOSSEE-netbook-kernel-source-97327692361306d1e6259021bc425e32832fdb50.zip
dirty fix to merging
Diffstat (limited to 'arch/avr32/kernel/setup.c')
-rw-r--r--arch/avr32/kernel/setup.c609
1 files changed, 609 insertions, 0 deletions
diff --git a/arch/avr32/kernel/setup.c b/arch/avr32/kernel/setup.c
new file mode 100644
index 00000000..b4247f47
--- /dev/null
+++ b/arch/avr32/kernel/setup.c
@@ -0,0 +1,609 @@
+/*
+ * Copyright (C) 2004-2006 Atmel Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/clk.h>
+#include <linux/init.h>
+#include <linux/initrd.h>
+#include <linux/sched.h>
+#include <linux/console.h>
+#include <linux/ioport.h>
+#include <linux/bootmem.h>
+#include <linux/fs.h>
+#include <linux/module.h>
+#include <linux/pfn.h>
+#include <linux/root_dev.h>
+#include <linux/cpu.h>
+#include <linux/kernel.h>
+
+#include <asm/sections.h>
+#include <asm/processor.h>
+#include <asm/pgtable.h>
+#include <asm/setup.h>
+#include <asm/sysreg.h>
+
+#include <mach/board.h>
+#include <mach/init.h>
+
+extern int root_mountflags;
+
+/*
+ * Initialize loops_per_jiffy as 5000000 (500MIPS).
+ * Better make it too large than too small...
+ */
+struct avr32_cpuinfo boot_cpu_data = {
+ .loops_per_jiffy = 5000000
+};
+EXPORT_SYMBOL(boot_cpu_data);
+
+static char __initdata command_line[COMMAND_LINE_SIZE];
+
+/*
+ * Standard memory resources
+ */
+static struct resource __initdata kernel_data = {
+ .name = "Kernel data",
+ .start = 0,
+ .end = 0,
+ .flags = IORESOURCE_MEM,
+};
+static struct resource __initdata kernel_code = {
+ .name = "Kernel code",
+ .start = 0,
+ .end = 0,
+ .flags = IORESOURCE_MEM,
+ .sibling = &kernel_data,
+};
+
+/*
+ * Available system RAM and reserved regions as singly linked
+ * lists. These lists are traversed using the sibling pointer in
+ * struct resource and are kept sorted at all times.
+ */
+static struct resource *__initdata system_ram;
+static struct resource *__initdata reserved = &kernel_code;
+
+/*
+ * We need to allocate these before the bootmem allocator is up and
+ * running, so we need this "cache". 32 entries are probably enough
+ * for all but the most insanely complex systems.
+ */
+static struct resource __initdata res_cache[32];
+static unsigned int __initdata res_cache_next_free;
+
+static void __init resource_init(void)
+{
+ struct resource *mem, *res;
+ struct resource *new;
+
+ kernel_code.start = __pa(init_mm.start_code);
+
+ for (mem = system_ram; mem; mem = mem->sibling) {
+ new = alloc_bootmem_low(sizeof(struct resource));
+ memcpy(new, mem, sizeof(struct resource));
+
+ new->sibling = NULL;
+ if (request_resource(&iomem_resource, new))
+ printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
+ mem->start, mem->end);
+ }
+
+ for (res = reserved; res; res = res->sibling) {
+ new = alloc_bootmem_low(sizeof(struct resource));
+ memcpy(new, res, sizeof(struct resource));
+
+ new->sibling = NULL;
+ if (insert_resource(&iomem_resource, new))
+ printk(KERN_WARNING
+ "Bad reserved resource %s (%08x-%08x)\n",
+ res->name, res->start, res->end);
+ }
+}
+
+static void __init
+add_physical_memory(resource_size_t start, resource_size_t end)
+{
+ struct resource *new, *next, **pprev;
+
+ for (pprev = &system_ram, next = system_ram; next;
+ pprev = &next->sibling, next = next->sibling) {
+ if (end < next->start)
+ break;
+ if (start <= next->end) {
+ printk(KERN_WARNING
+ "Warning: Physical memory map is broken\n");
+ printk(KERN_WARNING
+ "Warning: %08x-%08x overlaps %08x-%08x\n",
+ start, end, next->start, next->end);
+ return;
+ }
+ }
+
+ if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
+ printk(KERN_WARNING
+ "Warning: Failed to add physical memory %08x-%08x\n",
+ start, end);
+ return;
+ }
+
+ new = &res_cache[res_cache_next_free++];
+ new->start = start;
+ new->end = end;
+ new->name = "System RAM";
+ new->flags = IORESOURCE_MEM;
+
+ *pprev = new;
+}
+
+static int __init
+add_reserved_region(resource_size_t start, resource_size_t end,
+ const char *name)
+{
+ struct resource *new, *next, **pprev;
+
+ if (end < start)
+ return -EINVAL;
+
+ if (res_cache_next_free >= ARRAY_SIZE(res_cache))
+ return -ENOMEM;
+
+ for (pprev = &reserved, next = reserved; next;
+ pprev = &next->sibling, next = next->sibling) {
+ if (end < next->start)
+ break;
+ if (start <= next->end)
+ return -EBUSY;
+ }
+
+ new = &res_cache[res_cache_next_free++];
+ new->start = start;
+ new->end = end;
+ new->name = name;
+ new->sibling = next;
+ new->flags = IORESOURCE_MEM;
+
+ *pprev = new;
+
+ return 0;
+}
+
+static unsigned long __init
+find_free_region(const struct resource *mem, resource_size_t size,
+ resource_size_t align)
+{
+ struct resource *res;
+ unsigned long target;
+
+ target = ALIGN(mem->start, align);
+ for (res = reserved; res; res = res->sibling) {
+ if ((target + size) <= res->start)
+ break;
+ if (target <= res->end)
+ target = ALIGN(res->end + 1, align);
+ }
+
+ if ((target + size) > (mem->end + 1))
+ return mem->end + 1;
+
+ return target;
+}
+
+static int __init
+alloc_reserved_region(resource_size_t *start, resource_size_t size,
+ resource_size_t align, const char *name)
+{
+ struct resource *mem;
+ resource_size_t target;
+ int ret;
+
+ for (mem = system_ram; mem; mem = mem->sibling) {
+ target = find_free_region(mem, size, align);
+ if (target <= mem->end) {
+ ret = add_reserved_region(target, target + size - 1,
+ name);
+ if (!ret)
+ *start = target;
+ return ret;
+ }
+ }
+
+ return -ENOMEM;
+}
+
+/*
+ * Early framebuffer allocation. Works as follows:
+ * - If fbmem_size is zero, nothing will be allocated or reserved.
+ * - If fbmem_start is zero when setup_bootmem() is called,
+ * a block of fbmem_size bytes will be reserved before bootmem
+ * initialization. It will be aligned to the largest page size
+ * that fbmem_size is a multiple of.
+ * - If fbmem_start is nonzero, an area of size fbmem_size will be
+ * reserved at the physical address fbmem_start if possible. If
+ * it collides with other reserved memory, a different block of
+ * same size will be allocated, just as if fbmem_start was zero.
+ *
+ * Board-specific code may use these variables to set up platform data
+ * for the framebuffer driver if fbmem_size is nonzero.
+ */
+resource_size_t __initdata fbmem_start;
+resource_size_t __initdata fbmem_size;
+
+/*
+ * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
+ * use as framebuffer.
+ *
+ * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
+ * starting at yyy to be reserved for use as framebuffer.
+ *
+ * The kernel won't verify that the memory region starting at yyy
+ * actually contains usable RAM.
+ */
+static int __init early_parse_fbmem(char *p)
+{
+ int ret;
+ unsigned long align;
+
+ fbmem_size = memparse(p, &p);
+ if (*p == '@') {
+ fbmem_start = memparse(p + 1, &p);
+ ret = add_reserved_region(fbmem_start,
+ fbmem_start + fbmem_size - 1,
+ "Framebuffer");
+ if (ret) {
+ printk(KERN_WARNING
+ "Failed to reserve framebuffer memory\n");
+ fbmem_start = 0;
+ }
+ }
+
+ if (!fbmem_start) {
+ if ((fbmem_size & 0x000fffffUL) == 0)
+ align = 0x100000; /* 1 MiB */
+ else if ((fbmem_size & 0x0000ffffUL) == 0)
+ align = 0x10000; /* 64 KiB */
+ else
+ align = 0x1000; /* 4 KiB */
+
+ ret = alloc_reserved_region(&fbmem_start, fbmem_size,
+ align, "Framebuffer");
+ if (ret) {
+ printk(KERN_WARNING
+ "Failed to allocate framebuffer memory\n");
+ fbmem_size = 0;
+ } else {
+ memset(__va(fbmem_start), 0, fbmem_size);
+ }
+ }
+
+ return 0;
+}
+early_param("fbmem", early_parse_fbmem);
+
+/*
+ * Pick out the memory size. We look for mem=size@start,
+ * where start and size are "size[KkMmGg]"
+ */
+static int __init early_mem(char *p)
+{
+ resource_size_t size, start;
+
+ start = system_ram->start;
+ size = memparse(p, &p);
+ if (*p == '@')
+ start = memparse(p + 1, &p);
+
+ system_ram->start = start;
+ system_ram->end = system_ram->start + size - 1;
+ return 0;
+}
+early_param("mem", early_mem);
+
+static int __init parse_tag_core(struct tag *tag)
+{
+ if (tag->hdr.size > 2) {
+ if ((tag->u.core.flags & 1) == 0)
+ root_mountflags &= ~MS_RDONLY;
+ ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
+ }
+ return 0;
+}
+__tagtable(ATAG_CORE, parse_tag_core);
+
+static int __init parse_tag_mem(struct tag *tag)
+{
+ unsigned long start, end;
+
+ /*
+ * Ignore zero-sized entries. If we're running standalone, the
+ * SDRAM code may emit such entries if something goes
+ * wrong...
+ */
+ if (tag->u.mem_range.size == 0)
+ return 0;
+
+ start = tag->u.mem_range.addr;
+ end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;
+
+ add_physical_memory(start, end);
+ return 0;
+}
+__tagtable(ATAG_MEM, parse_tag_mem);
+
+static int __init parse_tag_rdimg(struct tag *tag)
+{
+#ifdef CONFIG_BLK_DEV_INITRD
+ struct tag_mem_range *mem = &tag->u.mem_range;
+ int ret;
+
+ if (initrd_start) {
+ printk(KERN_WARNING
+ "Warning: Only the first initrd image will be used\n");
+ return 0;
+ }
+
+ ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
+ "initrd");
+ if (ret) {
+ printk(KERN_WARNING
+ "Warning: Failed to reserve initrd memory\n");
+ return ret;
+ }
+
+ initrd_start = (unsigned long)__va(mem->addr);
+ initrd_end = initrd_start + mem->size;
+#else
+ printk(KERN_WARNING "RAM disk image present, but "
+ "no initrd support in kernel, ignoring\n");
+#endif
+
+ return 0;
+}
+__tagtable(ATAG_RDIMG, parse_tag_rdimg);
+
+static int __init parse_tag_rsvd_mem(struct tag *tag)
+{
+ struct tag_mem_range *mem = &tag->u.mem_range;
+
+ return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
+ "Reserved");
+}
+__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
+
+static int __init parse_tag_cmdline(struct tag *tag)
+{
+ strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
+ return 0;
+}
+__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
+
+static int __init parse_tag_clock(struct tag *tag)
+{
+ /*
+ * We'll figure out the clocks by peeking at the system
+ * manager regs directly.
+ */
+ return 0;
+}
+__tagtable(ATAG_CLOCK, parse_tag_clock);
+
+/*
+ * The board_number correspond to the bd->bi_board_number in U-Boot. This
+ * parameter is only available during initialisation and can be used in some
+ * kind of board identification.
+ */
+u32 __initdata board_number;
+
+static int __init parse_tag_boardinfo(struct tag *tag)
+{
+ board_number = tag->u.boardinfo.board_number;
+
+ return 0;
+}
+__tagtable(ATAG_BOARDINFO, parse_tag_boardinfo);
+
+/*
+ * Scan the tag table for this tag, and call its parse function. The
+ * tag table is built by the linker from all the __tagtable
+ * declarations.
+ */
+static int __init parse_tag(struct tag *tag)
+{
+ extern struct tagtable __tagtable_begin, __tagtable_end;
+ struct tagtable *t;
+
+ for (t = &__tagtable_begin; t < &__tagtable_end; t++)
+ if (tag->hdr.tag == t->tag) {
+ t->parse(tag);
+ break;
+ }
+
+ return t < &__tagtable_end;
+}
+
+/*
+ * Parse all tags in the list we got from the boot loader
+ */
+static void __init parse_tags(struct tag *t)
+{
+ for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
+ if (!parse_tag(t))
+ printk(KERN_WARNING
+ "Ignoring unrecognised tag 0x%08x\n",
+ t->hdr.tag);
+}
+
+/*
+ * Find a free memory region large enough for storing the
+ * bootmem bitmap.
+ */
+static unsigned long __init
+find_bootmap_pfn(const struct resource *mem)
+{
+ unsigned long bootmap_pages, bootmap_len;
+ unsigned long node_pages = PFN_UP(resource_size(mem));
+ unsigned long bootmap_start;
+
+ bootmap_pages = bootmem_bootmap_pages(node_pages);
+ bootmap_len = bootmap_pages << PAGE_SHIFT;
+
+ /*
+ * Find a large enough region without reserved pages for
+ * storing the bootmem bitmap. We can take advantage of the
+ * fact that all lists have been sorted.
+ *
+ * We have to check that we don't collide with any reserved
+ * regions, which includes the kernel image and any RAMDISK
+ * images.
+ */
+ bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);
+
+ return bootmap_start >> PAGE_SHIFT;
+}
+
+#define MAX_LOWMEM HIGHMEM_START
+#define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
+
+static void __init setup_bootmem(void)
+{
+ unsigned bootmap_size;
+ unsigned long first_pfn, bootmap_pfn, pages;
+ unsigned long max_pfn, max_low_pfn;
+ unsigned node = 0;
+ struct resource *res;
+
+ printk(KERN_INFO "Physical memory:\n");
+ for (res = system_ram; res; res = res->sibling)
+ printk(" %08x-%08x\n", res->start, res->end);
+ printk(KERN_INFO "Reserved memory:\n");
+ for (res = reserved; res; res = res->sibling)
+ printk(" %08x-%08x: %s\n",
+ res->start, res->end, res->name);
+
+ nodes_clear(node_online_map);
+
+ if (system_ram->sibling)
+ printk(KERN_WARNING "Only using first memory bank\n");
+
+ for (res = system_ram; res; res = NULL) {
+ first_pfn = PFN_UP(res->start);
+ max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
+ bootmap_pfn = find_bootmap_pfn(res);
+ if (bootmap_pfn > max_pfn)
+ panic("No space for bootmem bitmap!\n");
+
+ if (max_low_pfn > MAX_LOWMEM_PFN) {
+ max_low_pfn = MAX_LOWMEM_PFN;
+#ifndef CONFIG_HIGHMEM
+ /*
+ * Lowmem is memory that can be addressed
+ * directly through P1/P2
+ */
+ printk(KERN_WARNING
+ "Node %u: Only %ld MiB of memory will be used.\n",
+ node, MAX_LOWMEM >> 20);
+ printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
+#else
+#error HIGHMEM is not supported by AVR32 yet
+#endif
+ }
+
+ /* Initialize the boot-time allocator with low memory only. */
+ bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
+ first_pfn, max_low_pfn);
+
+ /*
+ * Register fully available RAM pages with the bootmem
+ * allocator.
+ */
+ pages = max_low_pfn - first_pfn;
+ free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
+ PFN_PHYS(pages));
+
+ /* Reserve space for the bootmem bitmap... */
+ reserve_bootmem_node(NODE_DATA(node),
+ PFN_PHYS(bootmap_pfn),
+ bootmap_size,
+ BOOTMEM_DEFAULT);
+
+ /* ...and any other reserved regions. */
+ for (res = reserved; res; res = res->sibling) {
+ if (res->start > PFN_PHYS(max_pfn))
+ break;
+
+ /*
+ * resource_init will complain about partial
+ * overlaps, so we'll just ignore such
+ * resources for now.
+ */
+ if (res->start >= PFN_PHYS(first_pfn)
+ && res->end < PFN_PHYS(max_pfn))
+ reserve_bootmem_node(NODE_DATA(node),
+ res->start,
+ resource_size(res),
+ BOOTMEM_DEFAULT);
+ }
+
+ node_set_online(node);
+ }
+}
+
+void __init setup_arch (char **cmdline_p)
+{
+ struct clk *cpu_clk;
+
+ init_mm.start_code = (unsigned long)_text;
+ init_mm.end_code = (unsigned long)_etext;
+ init_mm.end_data = (unsigned long)_edata;
+ init_mm.brk = (unsigned long)_end;
+
+ /*
+ * Include .init section to make allocations easier. It will
+ * be removed before the resource is actually requested.
+ */
+ kernel_code.start = __pa(__init_begin);
+ kernel_code.end = __pa(init_mm.end_code - 1);
+ kernel_data.start = __pa(init_mm.end_code);
+ kernel_data.end = __pa(init_mm.brk - 1);
+
+ parse_tags(bootloader_tags);
+
+ setup_processor();
+ setup_platform();
+ setup_board();
+
+ cpu_clk = clk_get(NULL, "cpu");
+ if (IS_ERR(cpu_clk)) {
+ printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
+ } else {
+ unsigned long cpu_hz = clk_get_rate(cpu_clk);
+
+ /*
+ * Well, duh, but it's probably a good idea to
+ * increment the use count.
+ */
+ clk_enable(cpu_clk);
+
+ boot_cpu_data.clk = cpu_clk;
+ boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
+ printk("CPU: Running at %lu.%03lu MHz\n",
+ ((cpu_hz + 500) / 1000) / 1000,
+ ((cpu_hz + 500) / 1000) % 1000);
+ }
+
+ strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
+ *cmdline_p = command_line;
+ parse_early_param();
+
+ setup_bootmem();
+
+#ifdef CONFIG_VT
+ conswitchp = &dummy_con;
+#endif
+
+ paging_init();
+ resource_init();
+}