summaryrefslogtreecommitdiff
path: root/Documentation/blockdev/cciss.txt
diff options
context:
space:
mode:
authorSrikant Patnaik2015-01-11 12:28:04 +0530
committerSrikant Patnaik2015-01-11 12:28:04 +0530
commit871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch)
tree8718f573808810c2a1e8cb8fb6ac469093ca2784 /Documentation/blockdev/cciss.txt
parent9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff)
downloadFOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2
FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure.
Diffstat (limited to 'Documentation/blockdev/cciss.txt')
-rw-r--r--Documentation/blockdev/cciss.txt194
1 files changed, 194 insertions, 0 deletions
diff --git a/Documentation/blockdev/cciss.txt b/Documentation/blockdev/cciss.txt
new file mode 100644
index 00000000..b79d0a13
--- /dev/null
+++ b/Documentation/blockdev/cciss.txt
@@ -0,0 +1,194 @@
+This driver is for Compaq's SMART Array Controllers.
+
+Supported Cards:
+----------------
+
+This driver is known to work with the following cards:
+
+ * SA 5300
+ * SA 5i
+ * SA 532
+ * SA 5312
+ * SA 641
+ * SA 642
+ * SA 6400
+ * SA 6400 U320 Expansion Module
+ * SA 6i
+ * SA P600
+ * SA P800
+ * SA E400
+ * SA P400i
+ * SA E200
+ * SA E200i
+ * SA E500
+ * SA P700m
+ * SA P212
+ * SA P410
+ * SA P410i
+ * SA P411
+ * SA P812
+ * SA P712m
+ * SA P711m
+
+Detecting drive failures:
+-------------------------
+
+To get the status of logical volumes and to detect physical drive
+failures, you can use the cciss_vol_status program found here:
+http://cciss.sourceforge.net/#cciss_utils
+
+Device Naming:
+--------------
+
+If nodes are not already created in the /dev/cciss directory, run as root:
+
+# cd /dev
+# ./MAKEDEV cciss
+
+You need some entries in /dev for the cciss device. The MAKEDEV script
+can make device nodes for you automatically. Currently the device setup
+is as follows:
+
+Major numbers:
+ 104 cciss0
+ 105 cciss1
+ 106 cciss2
+ 105 cciss3
+ 108 cciss4
+ 109 cciss5
+ 110 cciss6
+ 111 cciss7
+
+Minor numbers:
+ b7 b6 b5 b4 b3 b2 b1 b0
+ |----+----| |----+----|
+ | |
+ | +-------- Partition ID (0=wholedev, 1-15 partition)
+ |
+ +-------------------- Logical Volume number
+
+The device naming scheme is:
+/dev/cciss/c0d0 Controller 0, disk 0, whole device
+/dev/cciss/c0d0p1 Controller 0, disk 0, partition 1
+/dev/cciss/c0d0p2 Controller 0, disk 0, partition 2
+/dev/cciss/c0d0p3 Controller 0, disk 0, partition 3
+
+/dev/cciss/c1d1 Controller 1, disk 1, whole device
+/dev/cciss/c1d1p1 Controller 1, disk 1, partition 1
+/dev/cciss/c1d1p2 Controller 1, disk 1, partition 2
+/dev/cciss/c1d1p3 Controller 1, disk 1, partition 3
+
+CCISS simple mode support
+-------------------------
+
+The "cciss_simple_mode=1" boot parameter may be used to prevent the driver
+from putting the controller into "performant" mode. The difference is that
+with simple mode, each command completion requires an interrupt, while with
+"performant mode" (the default, and ordinarily better performing) it is
+possible to have multiple command completions indicated by a single
+interrupt.
+
+SCSI tape drive and medium changer support
+------------------------------------------
+
+SCSI sequential access devices and medium changer devices are supported and
+appropriate device nodes are automatically created. (e.g.
+/dev/st0, /dev/st1, etc. See the "st" man page for more details.)
+You must enable "SCSI tape drive support for Smart Array 5xxx" and
+"SCSI support" in your kernel configuration to be able to use SCSI
+tape drives with your Smart Array 5xxx controller.
+
+Additionally, note that the driver will engage the SCSI core at init
+time if any tape drives or medium changers are detected. The driver may
+also be directed to dynamically engage the SCSI core via the /proc filesystem
+entry which the "block" side of the driver creates as
+/proc/driver/cciss/cciss* at runtime. This is best done via a script.
+
+For example:
+
+ for x in /proc/driver/cciss/cciss[0-9]*
+ do
+ echo "engage scsi" > $x
+ done
+
+Once the SCSI core is engaged by the driver, it cannot be disengaged
+(except by unloading the driver, if it happens to be linked as a module.)
+
+Note also that if no sequential access devices or medium changers are
+detected, the SCSI core will not be engaged by the action of the above
+script.
+
+Hot plug support for SCSI tape drives
+-------------------------------------
+
+Hot plugging of SCSI tape drives is supported, with some caveats.
+The cciss driver must be informed that changes to the SCSI bus
+have been made. This may be done via the /proc filesystem.
+For example:
+
+ echo "rescan" > /proc/scsi/cciss0/1
+
+This causes the driver to query the adapter about changes to the
+physical SCSI buses and/or fibre channel arbitrated loop and the
+driver to make note of any new or removed sequential access devices
+or medium changers. The driver will output messages indicating what
+devices have been added or removed and the controller, bus, target and
+lun used to address the device. It then notifies the SCSI mid layer
+of these changes.
+
+Note that the naming convention of the /proc filesystem entries
+contains a number in addition to the driver name. (E.g. "cciss0"
+instead of just "cciss" which you might expect.)
+
+Note: ONLY sequential access devices and medium changers are presented
+as SCSI devices to the SCSI mid layer by the cciss driver. Specifically,
+physical SCSI disk drives are NOT presented to the SCSI mid layer. The
+physical SCSI disk drives are controlled directly by the array controller
+hardware and it is important to prevent the kernel from attempting to directly
+access these devices too, as if the array controller were merely a SCSI
+controller in the same way that we are allowing it to access SCSI tape drives.
+
+SCSI error handling for tape drives and medium changers
+-------------------------------------------------------
+
+The linux SCSI mid layer provides an error handling protocol which
+kicks into gear whenever a SCSI command fails to complete within a
+certain amount of time (which can vary depending on the command).
+The cciss driver participates in this protocol to some extent. The
+normal protocol is a four step process. First the device is told
+to abort the command. If that doesn't work, the device is reset.
+If that doesn't work, the SCSI bus is reset. If that doesn't work
+the host bus adapter is reset. Because the cciss driver is a block
+driver as well as a SCSI driver and only the tape drives and medium
+changers are presented to the SCSI mid layer, and unlike more
+straightforward SCSI drivers, disk i/o continues through the block
+side during the SCSI error recovery process, the cciss driver only
+implements the first two of these actions, aborting the command, and
+resetting the device. Additionally, most tape drives will not oblige
+in aborting commands, and sometimes it appears they will not even
+obey a reset command, though in most circumstances they will. In
+the case that the command cannot be aborted and the device cannot be
+reset, the device will be set offline.
+
+In the event the error handling code is triggered and a tape drive is
+successfully reset or the tardy command is successfully aborted, the
+tape drive may still not allow i/o to continue until some command
+is issued which positions the tape to a known position. Typically you
+must rewind the tape (by issuing "mt -f /dev/st0 rewind" for example)
+before i/o can proceed again to a tape drive which was reset.
+
+There is a cciss_tape_cmds module parameter which can be used to make cciss
+allocate more commands for use by tape drives. Ordinarily only a few commands
+(6) are allocated for tape drives because tape drives are slow and
+infrequently used and the primary purpose of Smart Array controllers is to
+act as a RAID controller for disk drives, so the vast majority of commands
+are allocated for disk devices. However, if you have more than a few tape
+drives attached to a smart array, the default number of commands may not be
+enought (for example, if you have 8 tape drives, you could only rewind 6
+at one time with the default number of commands.) The cciss_tape_cmds module
+parameter allows more commands (up to 16 more) to be allocated for use by
+tape drives. For example:
+
+ insmod cciss.ko cciss_tape_cmds=16
+
+Or, as a kernel boot parameter passed in via grub: cciss.cciss_tape_cmds=8