diff options
author | Kevin | 2014-11-15 09:58:27 +0800 |
---|---|---|
committer | Kevin | 2014-11-15 09:58:27 +0800 |
commit | 392e8802486cb573b916e746010e141a75f507e6 (patch) | |
tree | 50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/fs/xfs/xfs_trans_buf.c | |
download | FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2 FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip |
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/fs/xfs/xfs_trans_buf.c')
-rw-r--r-- | ANDROID_3.4.5/fs/xfs/xfs_trans_buf.c | 830 |
1 files changed, 830 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/fs/xfs/xfs_trans_buf.c b/ANDROID_3.4.5/fs/xfs/xfs_trans_buf.c new file mode 100644 index 00000000..1302d1d9 --- /dev/null +++ b/ANDROID_3.4.5/fs/xfs/xfs_trans_buf.c @@ -0,0 +1,830 @@ +/* + * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_types.h" +#include "xfs_bit.h" +#include "xfs_log.h" +#include "xfs_inum.h" +#include "xfs_trans.h" +#include "xfs_sb.h" +#include "xfs_ag.h" +#include "xfs_mount.h" +#include "xfs_bmap_btree.h" +#include "xfs_alloc_btree.h" +#include "xfs_ialloc_btree.h" +#include "xfs_dinode.h" +#include "xfs_inode.h" +#include "xfs_buf_item.h" +#include "xfs_trans_priv.h" +#include "xfs_error.h" +#include "xfs_rw.h" +#include "xfs_trace.h" + +/* + * Check to see if a buffer matching the given parameters is already + * a part of the given transaction. + */ +STATIC struct xfs_buf * +xfs_trans_buf_item_match( + struct xfs_trans *tp, + struct xfs_buftarg *target, + xfs_daddr_t blkno, + int len) +{ + struct xfs_log_item_desc *lidp; + struct xfs_buf_log_item *blip; + + len = BBTOB(len); + list_for_each_entry(lidp, &tp->t_items, lid_trans) { + blip = (struct xfs_buf_log_item *)lidp->lid_item; + if (blip->bli_item.li_type == XFS_LI_BUF && + blip->bli_buf->b_target == target && + XFS_BUF_ADDR(blip->bli_buf) == blkno && + XFS_BUF_COUNT(blip->bli_buf) == len) + return blip->bli_buf; + } + + return NULL; +} + +/* + * Add the locked buffer to the transaction. + * + * The buffer must be locked, and it cannot be associated with any + * transaction. + * + * If the buffer does not yet have a buf log item associated with it, + * then allocate one for it. Then add the buf item to the transaction. + */ +STATIC void +_xfs_trans_bjoin( + struct xfs_trans *tp, + struct xfs_buf *bp, + int reset_recur) +{ + struct xfs_buf_log_item *bip; + + ASSERT(bp->b_transp == NULL); + + /* + * The xfs_buf_log_item pointer is stored in b_fsprivate. If + * it doesn't have one yet, then allocate one and initialize it. + * The checks to see if one is there are in xfs_buf_item_init(). + */ + xfs_buf_item_init(bp, tp->t_mountp); + bip = bp->b_fspriv; + ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); + ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); + ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); + if (reset_recur) + bip->bli_recur = 0; + + /* + * Take a reference for this transaction on the buf item. + */ + atomic_inc(&bip->bli_refcount); + + /* + * Get a log_item_desc to point at the new item. + */ + xfs_trans_add_item(tp, &bip->bli_item); + + /* + * Initialize b_fsprivate2 so we can find it with incore_match() + * in xfs_trans_get_buf() and friends above. + */ + bp->b_transp = tp; + +} + +void +xfs_trans_bjoin( + struct xfs_trans *tp, + struct xfs_buf *bp) +{ + _xfs_trans_bjoin(tp, bp, 0); + trace_xfs_trans_bjoin(bp->b_fspriv); +} + +/* + * Get and lock the buffer for the caller if it is not already + * locked within the given transaction. If it is already locked + * within the transaction, just increment its lock recursion count + * and return a pointer to it. + * + * If the transaction pointer is NULL, make this just a normal + * get_buf() call. + */ +xfs_buf_t * +xfs_trans_get_buf(xfs_trans_t *tp, + xfs_buftarg_t *target_dev, + xfs_daddr_t blkno, + int len, + uint flags) +{ + xfs_buf_t *bp; + xfs_buf_log_item_t *bip; + + if (flags == 0) + flags = XBF_LOCK | XBF_MAPPED; + + /* + * Default to a normal get_buf() call if the tp is NULL. + */ + if (tp == NULL) + return xfs_buf_get(target_dev, blkno, len, + flags | XBF_DONT_BLOCK); + + /* + * If we find the buffer in the cache with this transaction + * pointer in its b_fsprivate2 field, then we know we already + * have it locked. In this case we just increment the lock + * recursion count and return the buffer to the caller. + */ + bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); + if (bp != NULL) { + ASSERT(xfs_buf_islocked(bp)); + if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { + xfs_buf_stale(bp); + XFS_BUF_DONE(bp); + } + + /* + * If the buffer is stale then it was binval'ed + * since last read. This doesn't matter since the + * caller isn't allowed to use the data anyway. + */ + else if (XFS_BUF_ISSTALE(bp)) + ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); + + ASSERT(bp->b_transp == tp); + bip = bp->b_fspriv; + ASSERT(bip != NULL); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + bip->bli_recur++; + trace_xfs_trans_get_buf_recur(bip); + return (bp); + } + + /* + * We always specify the XBF_DONT_BLOCK flag within a transaction + * so that get_buf does not try to push out a delayed write buffer + * which might cause another transaction to take place (if the + * buffer was delayed alloc). Such recursive transactions can + * easily deadlock with our current transaction as well as cause + * us to run out of stack space. + */ + bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK); + if (bp == NULL) { + return NULL; + } + + ASSERT(!bp->b_error); + + _xfs_trans_bjoin(tp, bp, 1); + trace_xfs_trans_get_buf(bp->b_fspriv); + return (bp); +} + +/* + * Get and lock the superblock buffer of this file system for the + * given transaction. + * + * We don't need to use incore_match() here, because the superblock + * buffer is a private buffer which we keep a pointer to in the + * mount structure. + */ +xfs_buf_t * +xfs_trans_getsb(xfs_trans_t *tp, + struct xfs_mount *mp, + int flags) +{ + xfs_buf_t *bp; + xfs_buf_log_item_t *bip; + + /* + * Default to just trying to lock the superblock buffer + * if tp is NULL. + */ + if (tp == NULL) { + return (xfs_getsb(mp, flags)); + } + + /* + * If the superblock buffer already has this transaction + * pointer in its b_fsprivate2 field, then we know we already + * have it locked. In this case we just increment the lock + * recursion count and return the buffer to the caller. + */ + bp = mp->m_sb_bp; + if (bp->b_transp == tp) { + bip = bp->b_fspriv; + ASSERT(bip != NULL); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + bip->bli_recur++; + trace_xfs_trans_getsb_recur(bip); + return (bp); + } + + bp = xfs_getsb(mp, flags); + if (bp == NULL) + return NULL; + + _xfs_trans_bjoin(tp, bp, 1); + trace_xfs_trans_getsb(bp->b_fspriv); + return (bp); +} + +#ifdef DEBUG +xfs_buftarg_t *xfs_error_target; +int xfs_do_error; +int xfs_req_num; +int xfs_error_mod = 33; +#endif + +/* + * Get and lock the buffer for the caller if it is not already + * locked within the given transaction. If it has not yet been + * read in, read it from disk. If it is already locked + * within the transaction and already read in, just increment its + * lock recursion count and return a pointer to it. + * + * If the transaction pointer is NULL, make this just a normal + * read_buf() call. + */ +int +xfs_trans_read_buf( + xfs_mount_t *mp, + xfs_trans_t *tp, + xfs_buftarg_t *target, + xfs_daddr_t blkno, + int len, + uint flags, + xfs_buf_t **bpp) +{ + xfs_buf_t *bp; + xfs_buf_log_item_t *bip; + int error; + + if (flags == 0) + flags = XBF_LOCK | XBF_MAPPED; + + /* + * Default to a normal get_buf() call if the tp is NULL. + */ + if (tp == NULL) { + bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); + if (!bp) + return (flags & XBF_TRYLOCK) ? + EAGAIN : XFS_ERROR(ENOMEM); + + if (bp->b_error) { + error = bp->b_error; + xfs_buf_ioerror_alert(bp, __func__); + xfs_buf_relse(bp); + return error; + } +#ifdef DEBUG + if (xfs_do_error) { + if (xfs_error_target == target) { + if (((xfs_req_num++) % xfs_error_mod) == 0) { + xfs_buf_relse(bp); + xfs_debug(mp, "Returning error!"); + return XFS_ERROR(EIO); + } + } + } +#endif + if (XFS_FORCED_SHUTDOWN(mp)) + goto shutdown_abort; + *bpp = bp; + return 0; + } + + /* + * If we find the buffer in the cache with this transaction + * pointer in its b_fsprivate2 field, then we know we already + * have it locked. If it is already read in we just increment + * the lock recursion count and return the buffer to the caller. + * If the buffer is not yet read in, then we read it in, increment + * the lock recursion count, and return it to the caller. + */ + bp = xfs_trans_buf_item_match(tp, target, blkno, len); + if (bp != NULL) { + ASSERT(xfs_buf_islocked(bp)); + ASSERT(bp->b_transp == tp); + ASSERT(bp->b_fspriv != NULL); + ASSERT(!bp->b_error); + if (!(XFS_BUF_ISDONE(bp))) { + trace_xfs_trans_read_buf_io(bp, _RET_IP_); + ASSERT(!XFS_BUF_ISASYNC(bp)); + XFS_BUF_READ(bp); + xfsbdstrat(tp->t_mountp, bp); + error = xfs_buf_iowait(bp); + if (error) { + xfs_buf_ioerror_alert(bp, __func__); + xfs_buf_relse(bp); + /* + * We can gracefully recover from most read + * errors. Ones we can't are those that happen + * after the transaction's already dirty. + */ + if (tp->t_flags & XFS_TRANS_DIRTY) + xfs_force_shutdown(tp->t_mountp, + SHUTDOWN_META_IO_ERROR); + return error; + } + } + /* + * We never locked this buf ourselves, so we shouldn't + * brelse it either. Just get out. + */ + if (XFS_FORCED_SHUTDOWN(mp)) { + trace_xfs_trans_read_buf_shut(bp, _RET_IP_); + *bpp = NULL; + return XFS_ERROR(EIO); + } + + + bip = bp->b_fspriv; + bip->bli_recur++; + + ASSERT(atomic_read(&bip->bli_refcount) > 0); + trace_xfs_trans_read_buf_recur(bip); + *bpp = bp; + return 0; + } + + /* + * We always specify the XBF_DONT_BLOCK flag within a transaction + * so that get_buf does not try to push out a delayed write buffer + * which might cause another transaction to take place (if the + * buffer was delayed alloc). Such recursive transactions can + * easily deadlock with our current transaction as well as cause + * us to run out of stack space. + */ + bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); + if (bp == NULL) { + *bpp = NULL; + return (flags & XBF_TRYLOCK) ? + 0 : XFS_ERROR(ENOMEM); + } + if (bp->b_error) { + error = bp->b_error; + xfs_buf_stale(bp); + XFS_BUF_DONE(bp); + xfs_buf_ioerror_alert(bp, __func__); + if (tp->t_flags & XFS_TRANS_DIRTY) + xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); + xfs_buf_relse(bp); + return error; + } +#ifdef DEBUG + if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { + if (xfs_error_target == target) { + if (((xfs_req_num++) % xfs_error_mod) == 0) { + xfs_force_shutdown(tp->t_mountp, + SHUTDOWN_META_IO_ERROR); + xfs_buf_relse(bp); + xfs_debug(mp, "Returning trans error!"); + return XFS_ERROR(EIO); + } + } + } +#endif + if (XFS_FORCED_SHUTDOWN(mp)) + goto shutdown_abort; + + _xfs_trans_bjoin(tp, bp, 1); + trace_xfs_trans_read_buf(bp->b_fspriv); + + *bpp = bp; + return 0; + +shutdown_abort: + /* + * the theory here is that buffer is good but we're + * bailing out because the filesystem is being forcibly + * shut down. So we should leave the b_flags alone since + * the buffer's not staled and just get out. + */ +#if defined(DEBUG) + if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) + xfs_notice(mp, "about to pop assert, bp == 0x%p", bp); +#endif + ASSERT((bp->b_flags & (XBF_STALE|XBF_DELWRI)) != + (XBF_STALE|XBF_DELWRI)); + + trace_xfs_trans_read_buf_shut(bp, _RET_IP_); + xfs_buf_relse(bp); + *bpp = NULL; + return XFS_ERROR(EIO); +} + + +/* + * Release the buffer bp which was previously acquired with one of the + * xfs_trans_... buffer allocation routines if the buffer has not + * been modified within this transaction. If the buffer is modified + * within this transaction, do decrement the recursion count but do + * not release the buffer even if the count goes to 0. If the buffer is not + * modified within the transaction, decrement the recursion count and + * release the buffer if the recursion count goes to 0. + * + * If the buffer is to be released and it was not modified before + * this transaction began, then free the buf_log_item associated with it. + * + * If the transaction pointer is NULL, make this just a normal + * brelse() call. + */ +void +xfs_trans_brelse(xfs_trans_t *tp, + xfs_buf_t *bp) +{ + xfs_buf_log_item_t *bip; + + /* + * Default to a normal brelse() call if the tp is NULL. + */ + if (tp == NULL) { + ASSERT(bp->b_transp == NULL); + xfs_buf_relse(bp); + return; + } + + ASSERT(bp->b_transp == tp); + bip = bp->b_fspriv; + ASSERT(bip->bli_item.li_type == XFS_LI_BUF); + ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); + ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + + trace_xfs_trans_brelse(bip); + + /* + * If the release is just for a recursive lock, + * then decrement the count and return. + */ + if (bip->bli_recur > 0) { + bip->bli_recur--; + return; + } + + /* + * If the buffer is dirty within this transaction, we can't + * release it until we commit. + */ + if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) + return; + + /* + * If the buffer has been invalidated, then we can't release + * it until the transaction commits to disk unless it is re-dirtied + * as part of this transaction. This prevents us from pulling + * the item from the AIL before we should. + */ + if (bip->bli_flags & XFS_BLI_STALE) + return; + + ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); + + /* + * Free up the log item descriptor tracking the released item. + */ + xfs_trans_del_item(&bip->bli_item); + + /* + * Clear the hold flag in the buf log item if it is set. + * We wouldn't want the next user of the buffer to + * get confused. + */ + if (bip->bli_flags & XFS_BLI_HOLD) { + bip->bli_flags &= ~XFS_BLI_HOLD; + } + + /* + * Drop our reference to the buf log item. + */ + atomic_dec(&bip->bli_refcount); + + /* + * If the buf item is not tracking data in the log, then + * we must free it before releasing the buffer back to the + * free pool. Before releasing the buffer to the free pool, + * clear the transaction pointer in b_fsprivate2 to dissolve + * its relation to this transaction. + */ + if (!xfs_buf_item_dirty(bip)) { +/*** + ASSERT(bp->b_pincount == 0); +***/ + ASSERT(atomic_read(&bip->bli_refcount) == 0); + ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); + ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); + xfs_buf_item_relse(bp); + } + + bp->b_transp = NULL; + xfs_buf_relse(bp); +} + +/* + * Mark the buffer as not needing to be unlocked when the buf item's + * IOP_UNLOCK() routine is called. The buffer must already be locked + * and associated with the given transaction. + */ +/* ARGSUSED */ +void +xfs_trans_bhold(xfs_trans_t *tp, + xfs_buf_t *bp) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); + ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + + bip->bli_flags |= XFS_BLI_HOLD; + trace_xfs_trans_bhold(bip); +} + +/* + * Cancel the previous buffer hold request made on this buffer + * for this transaction. + */ +void +xfs_trans_bhold_release(xfs_trans_t *tp, + xfs_buf_t *bp) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); + ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + ASSERT(bip->bli_flags & XFS_BLI_HOLD); + + bip->bli_flags &= ~XFS_BLI_HOLD; + trace_xfs_trans_bhold_release(bip); +} + +/* + * This is called to mark bytes first through last inclusive of the given + * buffer as needing to be logged when the transaction is committed. + * The buffer must already be associated with the given transaction. + * + * First and last are numbers relative to the beginning of this buffer, + * so the first byte in the buffer is numbered 0 regardless of the + * value of b_blkno. + */ +void +xfs_trans_log_buf(xfs_trans_t *tp, + xfs_buf_t *bp, + uint first, + uint last) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); + ASSERT(bp->b_iodone == NULL || + bp->b_iodone == xfs_buf_iodone_callbacks); + + /* + * Mark the buffer as needing to be written out eventually, + * and set its iodone function to remove the buffer's buf log + * item from the AIL and free it when the buffer is flushed + * to disk. See xfs_buf_attach_iodone() for more details + * on li_cb and xfs_buf_iodone_callbacks(). + * If we end up aborting this transaction, we trap this buffer + * inside the b_bdstrat callback so that this won't get written to + * disk. + */ + XFS_BUF_DONE(bp); + + ASSERT(atomic_read(&bip->bli_refcount) > 0); + bp->b_iodone = xfs_buf_iodone_callbacks; + bip->bli_item.li_cb = xfs_buf_iodone; + + xfs_buf_delwri_queue(bp); + + trace_xfs_trans_log_buf(bip); + + /* + * If we invalidated the buffer within this transaction, then + * cancel the invalidation now that we're dirtying the buffer + * again. There are no races with the code in xfs_buf_item_unpin(), + * because we have a reference to the buffer this entire time. + */ + if (bip->bli_flags & XFS_BLI_STALE) { + bip->bli_flags &= ~XFS_BLI_STALE; + ASSERT(XFS_BUF_ISSTALE(bp)); + XFS_BUF_UNSTALE(bp); + bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL; + } + + tp->t_flags |= XFS_TRANS_DIRTY; + bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; + bip->bli_flags |= XFS_BLI_LOGGED; + xfs_buf_item_log(bip, first, last); +} + + +/* + * This called to invalidate a buffer that is being used within + * a transaction. Typically this is because the blocks in the + * buffer are being freed, so we need to prevent it from being + * written out when we're done. Allowing it to be written again + * might overwrite data in the free blocks if they are reallocated + * to a file. + * + * We prevent the buffer from being written out by clearing the + * B_DELWRI flag. We can't always + * get rid of the buf log item at this point, though, because + * the buffer may still be pinned by another transaction. If that + * is the case, then we'll wait until the buffer is committed to + * disk for the last time (we can tell by the ref count) and + * free it in xfs_buf_item_unpin(). Until it is cleaned up we + * will keep the buffer locked so that the buffer and buf log item + * are not reused. + */ +void +xfs_trans_binval( + xfs_trans_t *tp, + xfs_buf_t *bp) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + + trace_xfs_trans_binval(bip); + + if (bip->bli_flags & XFS_BLI_STALE) { + /* + * If the buffer is already invalidated, then + * just return. + */ + ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); + ASSERT(XFS_BUF_ISSTALE(bp)); + ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); + ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF)); + ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); + ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); + ASSERT(tp->t_flags & XFS_TRANS_DIRTY); + return; + } + + /* + * Clear the dirty bit in the buffer and set the STALE flag + * in the buf log item. The STALE flag will be used in + * xfs_buf_item_unpin() to determine if it should clean up + * when the last reference to the buf item is given up. + * We set the XFS_BLF_CANCEL flag in the buf log format structure + * and log the buf item. This will be used at recovery time + * to determine that copies of the buffer in the log before + * this should not be replayed. + * We mark the item descriptor and the transaction dirty so + * that we'll hold the buffer until after the commit. + * + * Since we're invalidating the buffer, we also clear the state + * about which parts of the buffer have been logged. We also + * clear the flag indicating that this is an inode buffer since + * the data in the buffer will no longer be valid. + * + * We set the stale bit in the buffer as well since we're getting + * rid of it. + */ + xfs_buf_stale(bp); + bip->bli_flags |= XFS_BLI_STALE; + bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); + bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; + bip->bli_format.blf_flags |= XFS_BLF_CANCEL; + memset((char *)(bip->bli_format.blf_data_map), 0, + (bip->bli_format.blf_map_size * sizeof(uint))); + bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; + tp->t_flags |= XFS_TRANS_DIRTY; +} + +/* + * This call is used to indicate that the buffer contains on-disk inodes which + * must be handled specially during recovery. They require special handling + * because only the di_next_unlinked from the inodes in the buffer should be + * recovered. The rest of the data in the buffer is logged via the inodes + * themselves. + * + * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be + * transferred to the buffer's log format structure so that we'll know what to + * do at recovery time. + */ +void +xfs_trans_inode_buf( + xfs_trans_t *tp, + xfs_buf_t *bp) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + + bip->bli_flags |= XFS_BLI_INODE_BUF; +} + +/* + * This call is used to indicate that the buffer is going to + * be staled and was an inode buffer. This means it gets + * special processing during unpin - where any inodes + * associated with the buffer should be removed from ail. + * There is also special processing during recovery, + * any replay of the inodes in the buffer needs to be + * prevented as the buffer may have been reused. + */ +void +xfs_trans_stale_inode_buf( + xfs_trans_t *tp, + xfs_buf_t *bp) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + + bip->bli_flags |= XFS_BLI_STALE_INODE; + bip->bli_item.li_cb = xfs_buf_iodone; +} + +/* + * Mark the buffer as being one which contains newly allocated + * inodes. We need to make sure that even if this buffer is + * relogged as an 'inode buf' we still recover all of the inode + * images in the face of a crash. This works in coordination with + * xfs_buf_item_committed() to ensure that the buffer remains in the + * AIL at its original location even after it has been relogged. + */ +/* ARGSUSED */ +void +xfs_trans_inode_alloc_buf( + xfs_trans_t *tp, + xfs_buf_t *bp) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + + bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; +} + + +/* + * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of + * dquots. However, unlike in inode buffer recovery, dquot buffers get + * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). + * The only thing that makes dquot buffers different from regular + * buffers is that we must not replay dquot bufs when recovering + * if a _corresponding_ quotaoff has happened. We also have to distinguish + * between usr dquot bufs and grp dquot bufs, because usr and grp quotas + * can be turned off independently. + */ +/* ARGSUSED */ +void +xfs_trans_dquot_buf( + xfs_trans_t *tp, + xfs_buf_t *bp, + uint type) +{ + xfs_buf_log_item_t *bip = bp->b_fspriv; + + ASSERT(bp->b_transp == tp); + ASSERT(bip != NULL); + ASSERT(type == XFS_BLF_UDQUOT_BUF || + type == XFS_BLF_PDQUOT_BUF || + type == XFS_BLF_GDQUOT_BUF); + ASSERT(atomic_read(&bip->bli_refcount) > 0); + + bip->bli_format.blf_flags |= type; +} |