summaryrefslogtreecommitdiff
path: root/ANDROID_3.4.5/drivers/cpufreq/cpufreq_ondemand.c
diff options
context:
space:
mode:
authorKevin2014-11-15 09:58:27 +0800
committerKevin2014-11-15 09:58:27 +0800
commit392e8802486cb573b916e746010e141a75f507e6 (patch)
tree50029aca02c81f087b90336e670b44e510782330 /ANDROID_3.4.5/drivers/cpufreq/cpufreq_ondemand.c
downloadFOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.gz
FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.tar.bz2
FOSSEE-netbook-kernel-source-392e8802486cb573b916e746010e141a75f507e6.zip
init android origin source code
Diffstat (limited to 'ANDROID_3.4.5/drivers/cpufreq/cpufreq_ondemand.c')
-rw-r--r--ANDROID_3.4.5/drivers/cpufreq/cpufreq_ondemand.c814
1 files changed, 814 insertions, 0 deletions
diff --git a/ANDROID_3.4.5/drivers/cpufreq/cpufreq_ondemand.c b/ANDROID_3.4.5/drivers/cpufreq/cpufreq_ondemand.c
new file mode 100644
index 00000000..836e9b06
--- /dev/null
+++ b/ANDROID_3.4.5/drivers/cpufreq/cpufreq_ondemand.c
@@ -0,0 +1,814 @@
+/*
+ * drivers/cpufreq/cpufreq_ondemand.c
+ *
+ * Copyright (C) 2001 Russell King
+ * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
+ * Jun Nakajima <jun.nakajima@intel.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/cpufreq.h>
+#include <linux/cpu.h>
+#include <linux/jiffies.h>
+#include <linux/kernel_stat.h>
+#include <linux/mutex.h>
+#include <linux/hrtimer.h>
+#include <linux/tick.h>
+#include <linux/ktime.h>
+#include <linux/sched.h>
+
+/*
+ * dbs is used in this file as a shortform for demandbased switching
+ * It helps to keep variable names smaller, simpler
+ */
+
+#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
+#define DEF_FREQUENCY_UP_THRESHOLD (80)
+#define DEF_SAMPLING_DOWN_FACTOR (1)
+#define MAX_SAMPLING_DOWN_FACTOR (100000)
+#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
+#define MICRO_FREQUENCY_UP_THRESHOLD (95)
+#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
+#define MIN_FREQUENCY_UP_THRESHOLD (11)
+#define MAX_FREQUENCY_UP_THRESHOLD (100)
+
+/*
+ * The polling frequency of this governor depends on the capability of
+ * the processor. Default polling frequency is 1000 times the transition
+ * latency of the processor. The governor will work on any processor with
+ * transition latency <= 10mS, using appropriate sampling
+ * rate.
+ * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
+ * this governor will not work.
+ * All times here are in uS.
+ */
+#define MIN_SAMPLING_RATE_RATIO (2)
+
+static unsigned int min_sampling_rate;
+
+#define LATENCY_MULTIPLIER (1000)
+#define MIN_LATENCY_MULTIPLIER (100)
+#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
+
+static void do_dbs_timer(struct work_struct *work);
+static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
+ unsigned int event);
+
+#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
+static
+#endif
+struct cpufreq_governor cpufreq_gov_ondemand = {
+ .name = "ondemand",
+ .governor = cpufreq_governor_dbs,
+ .max_transition_latency = TRANSITION_LATENCY_LIMIT,
+ .owner = THIS_MODULE,
+};
+
+/* Sampling types */
+enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
+
+struct cpu_dbs_info_s {
+ cputime64_t prev_cpu_idle;
+ cputime64_t prev_cpu_iowait;
+ cputime64_t prev_cpu_wall;
+ cputime64_t prev_cpu_nice;
+ struct cpufreq_policy *cur_policy;
+ struct delayed_work work;
+ struct cpufreq_frequency_table *freq_table;
+ unsigned int freq_lo;
+ unsigned int freq_lo_jiffies;
+ unsigned int freq_hi_jiffies;
+ unsigned int rate_mult;
+ int cpu;
+ unsigned int sample_type:1;
+ /*
+ * percpu mutex that serializes governor limit change with
+ * do_dbs_timer invocation. We do not want do_dbs_timer to run
+ * when user is changing the governor or limits.
+ */
+ struct mutex timer_mutex;
+};
+static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
+
+static unsigned int dbs_enable; /* number of CPUs using this policy */
+
+/*
+ * dbs_mutex protects dbs_enable in governor start/stop.
+ */
+static DEFINE_MUTEX(dbs_mutex);
+
+static struct dbs_tuners {
+ unsigned int sampling_rate;
+ unsigned int up_threshold;
+ unsigned int down_differential;
+ unsigned int ignore_nice;
+ unsigned int sampling_down_factor;
+ unsigned int powersave_bias;
+ unsigned int io_is_busy;
+} dbs_tuners_ins = {
+ .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
+ .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
+ .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
+ .ignore_nice = 0,
+ .powersave_bias = 0,
+};
+
+static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
+{
+ u64 idle_time;
+ u64 cur_wall_time;
+ u64 busy_time;
+
+ cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
+
+ busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
+ busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
+ busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
+ busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
+ busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
+ busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
+
+ idle_time = cur_wall_time - busy_time;
+ if (wall)
+ *wall = jiffies_to_usecs(cur_wall_time);
+
+ return jiffies_to_usecs(idle_time);
+}
+
+static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
+{
+ u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
+
+ if (idle_time == -1ULL)
+ return get_cpu_idle_time_jiffy(cpu, wall);
+ else
+ idle_time += get_cpu_iowait_time_us(cpu, wall);
+
+ return idle_time;
+}
+
+static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
+{
+ u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
+
+ if (iowait_time == -1ULL)
+ return 0;
+
+ return iowait_time;
+}
+
+/*
+ * Find right freq to be set now with powersave_bias on.
+ * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
+ * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
+ */
+static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
+ unsigned int freq_next,
+ unsigned int relation)
+{
+ unsigned int freq_req, freq_reduc, freq_avg;
+ unsigned int freq_hi, freq_lo;
+ unsigned int index = 0;
+ unsigned int jiffies_total, jiffies_hi, jiffies_lo;
+ struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
+ policy->cpu);
+
+ if (!dbs_info->freq_table) {
+ dbs_info->freq_lo = 0;
+ dbs_info->freq_lo_jiffies = 0;
+ return freq_next;
+ }
+
+ cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
+ relation, &index);
+ freq_req = dbs_info->freq_table[index].frequency;
+ freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
+ freq_avg = freq_req - freq_reduc;
+
+ /* Find freq bounds for freq_avg in freq_table */
+ index = 0;
+ cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
+ CPUFREQ_RELATION_H, &index);
+ freq_lo = dbs_info->freq_table[index].frequency;
+ index = 0;
+ cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
+ CPUFREQ_RELATION_L, &index);
+ freq_hi = dbs_info->freq_table[index].frequency;
+
+ /* Find out how long we have to be in hi and lo freqs */
+ if (freq_hi == freq_lo) {
+ dbs_info->freq_lo = 0;
+ dbs_info->freq_lo_jiffies = 0;
+ return freq_lo;
+ }
+ jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
+ jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
+ jiffies_hi += ((freq_hi - freq_lo) / 2);
+ jiffies_hi /= (freq_hi - freq_lo);
+ jiffies_lo = jiffies_total - jiffies_hi;
+ dbs_info->freq_lo = freq_lo;
+ dbs_info->freq_lo_jiffies = jiffies_lo;
+ dbs_info->freq_hi_jiffies = jiffies_hi;
+ return freq_hi;
+}
+
+static void ondemand_powersave_bias_init_cpu(int cpu)
+{
+ struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
+ dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
+ dbs_info->freq_lo = 0;
+}
+
+static void ondemand_powersave_bias_init(void)
+{
+ int i;
+ for_each_online_cpu(i) {
+ ondemand_powersave_bias_init_cpu(i);
+ }
+}
+
+/************************** sysfs interface ************************/
+
+static ssize_t show_sampling_rate_min(struct kobject *kobj,
+ struct attribute *attr, char *buf)
+{
+ return sprintf(buf, "%u\n", min_sampling_rate);
+}
+
+define_one_global_ro(sampling_rate_min);
+
+/* cpufreq_ondemand Governor Tunables */
+#define show_one(file_name, object) \
+static ssize_t show_##file_name \
+(struct kobject *kobj, struct attribute *attr, char *buf) \
+{ \
+ return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
+}
+show_one(sampling_rate, sampling_rate);
+show_one(io_is_busy, io_is_busy);
+show_one(up_threshold, up_threshold);
+show_one(sampling_down_factor, sampling_down_factor);
+show_one(ignore_nice_load, ignore_nice);
+show_one(powersave_bias, powersave_bias);
+
+/**
+ * update_sampling_rate - update sampling rate effective immediately if needed.
+ * @new_rate: new sampling rate
+ *
+ * If new rate is smaller than the old, simply updaing
+ * dbs_tuners_int.sampling_rate might not be appropriate. For example,
+ * if the original sampling_rate was 1 second and the requested new sampling
+ * rate is 10 ms because the user needs immediate reaction from ondemand
+ * governor, but not sure if higher frequency will be required or not,
+ * then, the governor may change the sampling rate too late; up to 1 second
+ * later. Thus, if we are reducing the sampling rate, we need to make the
+ * new value effective immediately.
+ */
+static void update_sampling_rate(unsigned int new_rate)
+{
+ int cpu;
+
+ dbs_tuners_ins.sampling_rate = new_rate
+ = max(new_rate, min_sampling_rate);
+
+ for_each_online_cpu(cpu) {
+ struct cpufreq_policy *policy;
+ struct cpu_dbs_info_s *dbs_info;
+ unsigned long next_sampling, appointed_at;
+
+ policy = cpufreq_cpu_get(cpu);
+ if (!policy)
+ continue;
+ dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
+ cpufreq_cpu_put(policy);
+
+ mutex_lock(&dbs_info->timer_mutex);
+
+ if (!delayed_work_pending(&dbs_info->work)) {
+ mutex_unlock(&dbs_info->timer_mutex);
+ continue;
+ }
+
+ next_sampling = jiffies + usecs_to_jiffies(new_rate);
+ appointed_at = dbs_info->work.timer.expires;
+
+
+ if (time_before(next_sampling, appointed_at)) {
+
+ mutex_unlock(&dbs_info->timer_mutex);
+ cancel_delayed_work_sync(&dbs_info->work);
+ mutex_lock(&dbs_info->timer_mutex);
+
+ schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work,
+ usecs_to_jiffies(new_rate));
+
+ }
+ mutex_unlock(&dbs_info->timer_mutex);
+ }
+}
+
+static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
+ const char *buf, size_t count)
+{
+ unsigned int input;
+ int ret;
+ ret = sscanf(buf, "%u", &input);
+ if (ret != 1)
+ return -EINVAL;
+ update_sampling_rate(input);
+ return count;
+}
+
+static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
+ const char *buf, size_t count)
+{
+ unsigned int input;
+ int ret;
+
+ ret = sscanf(buf, "%u", &input);
+ if (ret != 1)
+ return -EINVAL;
+ dbs_tuners_ins.io_is_busy = !!input;
+ return count;
+}
+
+static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
+ const char *buf, size_t count)
+{
+ unsigned int input;
+ int ret;
+ ret = sscanf(buf, "%u", &input);
+
+ if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
+ input < MIN_FREQUENCY_UP_THRESHOLD) {
+ return -EINVAL;
+ }
+ dbs_tuners_ins.up_threshold = input;
+ return count;
+}
+
+static ssize_t store_sampling_down_factor(struct kobject *a,
+ struct attribute *b, const char *buf, size_t count)
+{
+ unsigned int input, j;
+ int ret;
+ ret = sscanf(buf, "%u", &input);
+
+ if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
+ return -EINVAL;
+ dbs_tuners_ins.sampling_down_factor = input;
+
+ /* Reset down sampling multiplier in case it was active */
+ for_each_online_cpu(j) {
+ struct cpu_dbs_info_s *dbs_info;
+ dbs_info = &per_cpu(od_cpu_dbs_info, j);
+ dbs_info->rate_mult = 1;
+ }
+ return count;
+}
+
+static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
+ const char *buf, size_t count)
+{
+ unsigned int input;
+ int ret;
+
+ unsigned int j;
+
+ ret = sscanf(buf, "%u", &input);
+ if (ret != 1)
+ return -EINVAL;
+
+ if (input > 1)
+ input = 1;
+
+ if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
+ return count;
+ }
+ dbs_tuners_ins.ignore_nice = input;
+
+ /* we need to re-evaluate prev_cpu_idle */
+ for_each_online_cpu(j) {
+ struct cpu_dbs_info_s *dbs_info;
+ dbs_info = &per_cpu(od_cpu_dbs_info, j);
+ dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
+ &dbs_info->prev_cpu_wall);
+ if (dbs_tuners_ins.ignore_nice)
+ dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
+
+ }
+ return count;
+}
+
+static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
+ const char *buf, size_t count)
+{
+ unsigned int input;
+ int ret;
+ ret = sscanf(buf, "%u", &input);
+
+ if (ret != 1)
+ return -EINVAL;
+
+ if (input > 1000)
+ input = 1000;
+
+ dbs_tuners_ins.powersave_bias = input;
+ ondemand_powersave_bias_init();
+ return count;
+}
+
+define_one_global_rw(sampling_rate);
+define_one_global_rw(io_is_busy);
+define_one_global_rw(up_threshold);
+define_one_global_rw(sampling_down_factor);
+define_one_global_rw(ignore_nice_load);
+define_one_global_rw(powersave_bias);
+
+static struct attribute *dbs_attributes[] = {
+ &sampling_rate_min.attr,
+ &sampling_rate.attr,
+ &up_threshold.attr,
+ &sampling_down_factor.attr,
+ &ignore_nice_load.attr,
+ &powersave_bias.attr,
+ &io_is_busy.attr,
+ NULL
+};
+
+static struct attribute_group dbs_attr_group = {
+ .attrs = dbs_attributes,
+ .name = "ondemand",
+};
+
+/************************** sysfs end ************************/
+
+static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
+{
+ if (dbs_tuners_ins.powersave_bias)
+ freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
+ else if (p->cur == p->max)
+ return;
+
+ __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
+ CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
+}
+
+static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
+{
+ unsigned int max_load_freq;
+
+ struct cpufreq_policy *policy;
+ unsigned int j;
+
+ this_dbs_info->freq_lo = 0;
+ policy = this_dbs_info->cur_policy;
+
+ /*
+ * Every sampling_rate, we check, if current idle time is less
+ * than 20% (default), then we try to increase frequency
+ * Every sampling_rate, we look for a the lowest
+ * frequency which can sustain the load while keeping idle time over
+ * 30%. If such a frequency exist, we try to decrease to this frequency.
+ *
+ * Any frequency increase takes it to the maximum frequency.
+ * Frequency reduction happens at minimum steps of
+ * 5% (default) of current frequency
+ */
+
+ /* Get Absolute Load - in terms of freq */
+ max_load_freq = 0;
+
+ for_each_cpu(j, policy->cpus) {
+ struct cpu_dbs_info_s *j_dbs_info;
+ cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
+ unsigned int idle_time, wall_time, iowait_time;
+ unsigned int load, load_freq;
+ int freq_avg;
+
+ j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
+
+ cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
+ cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
+
+ wall_time = (unsigned int)
+ (cur_wall_time - j_dbs_info->prev_cpu_wall);
+ j_dbs_info->prev_cpu_wall = cur_wall_time;
+
+ idle_time = (unsigned int)
+ (cur_idle_time - j_dbs_info->prev_cpu_idle);
+ j_dbs_info->prev_cpu_idle = cur_idle_time;
+
+ iowait_time = (unsigned int)
+ (cur_iowait_time - j_dbs_info->prev_cpu_iowait);
+ j_dbs_info->prev_cpu_iowait = cur_iowait_time;
+
+ if (dbs_tuners_ins.ignore_nice) {
+ u64 cur_nice;
+ unsigned long cur_nice_jiffies;
+
+ cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
+ j_dbs_info->prev_cpu_nice;
+ /*
+ * Assumption: nice time between sampling periods will
+ * be less than 2^32 jiffies for 32 bit sys
+ */
+ cur_nice_jiffies = (unsigned long)
+ cputime64_to_jiffies64(cur_nice);
+
+ j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
+ idle_time += jiffies_to_usecs(cur_nice_jiffies);
+ }
+
+ /*
+ * For the purpose of ondemand, waiting for disk IO is an
+ * indication that you're performance critical, and not that
+ * the system is actually idle. So subtract the iowait time
+ * from the cpu idle time.
+ */
+
+ if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
+ idle_time -= iowait_time;
+
+ if (unlikely(!wall_time || wall_time < idle_time))
+ continue;
+
+ load = 100 * (wall_time - idle_time) / wall_time;
+
+ freq_avg = __cpufreq_driver_getavg(policy, j);
+ if (freq_avg <= 0)
+ freq_avg = policy->cur;
+
+ load_freq = load * freq_avg;
+ if (load_freq > max_load_freq)
+ max_load_freq = load_freq;
+ }
+
+ /* Check for frequency increase */
+ if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
+ /* If switching to max speed, apply sampling_down_factor */
+ if (policy->cur < policy->max)
+ this_dbs_info->rate_mult =
+ dbs_tuners_ins.sampling_down_factor;
+ dbs_freq_increase(policy, policy->max);
+ return;
+ }
+
+ /* Check for frequency decrease */
+ /* if we cannot reduce the frequency anymore, break out early */
+ if (policy->cur == policy->min)
+ return;
+
+ /*
+ * The optimal frequency is the frequency that is the lowest that
+ * can support the current CPU usage without triggering the up
+ * policy. To be safe, we focus 10 points under the threshold.
+ */
+ if (max_load_freq <
+ (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
+ policy->cur) {
+ unsigned int freq_next;
+ freq_next = max_load_freq /
+ (dbs_tuners_ins.up_threshold -
+ dbs_tuners_ins.down_differential);
+
+ /* No longer fully busy, reset rate_mult */
+ this_dbs_info->rate_mult = 1;
+
+ if (freq_next < policy->min)
+ freq_next = policy->min;
+
+ if (!dbs_tuners_ins.powersave_bias) {
+ __cpufreq_driver_target(policy, freq_next,
+ CPUFREQ_RELATION_L);
+ } else {
+ int freq = powersave_bias_target(policy, freq_next,
+ CPUFREQ_RELATION_L);
+ __cpufreq_driver_target(policy, freq,
+ CPUFREQ_RELATION_L);
+ }
+ }
+}
+
+static void do_dbs_timer(struct work_struct *work)
+{
+ struct cpu_dbs_info_s *dbs_info =
+ container_of(work, struct cpu_dbs_info_s, work.work);
+ unsigned int cpu = dbs_info->cpu;
+ int sample_type = dbs_info->sample_type;
+
+ int delay;
+
+ mutex_lock(&dbs_info->timer_mutex);
+
+ /* Common NORMAL_SAMPLE setup */
+ dbs_info->sample_type = DBS_NORMAL_SAMPLE;
+ if (!dbs_tuners_ins.powersave_bias ||
+ sample_type == DBS_NORMAL_SAMPLE) {
+ dbs_check_cpu(dbs_info);
+ if (dbs_info->freq_lo) {
+ /* Setup timer for SUB_SAMPLE */
+ dbs_info->sample_type = DBS_SUB_SAMPLE;
+ delay = dbs_info->freq_hi_jiffies;
+ } else {
+ /* We want all CPUs to do sampling nearly on
+ * same jiffy
+ */
+ delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
+ * dbs_info->rate_mult);
+
+ if (num_online_cpus() > 1)
+ delay -= jiffies % delay;
+ }
+ } else {
+ __cpufreq_driver_target(dbs_info->cur_policy,
+ dbs_info->freq_lo, CPUFREQ_RELATION_H);
+ delay = dbs_info->freq_lo_jiffies;
+ }
+ schedule_delayed_work_on(cpu, &dbs_info->work, delay);
+ mutex_unlock(&dbs_info->timer_mutex);
+}
+
+static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
+{
+ /* We want all CPUs to do sampling nearly on same jiffy */
+ int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
+
+ if (num_online_cpus() > 1)
+ delay -= jiffies % delay;
+
+ dbs_info->sample_type = DBS_NORMAL_SAMPLE;
+ INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
+ schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
+}
+
+static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
+{
+ cancel_delayed_work_sync(&dbs_info->work);
+}
+
+/*
+ * Not all CPUs want IO time to be accounted as busy; this dependson how
+ * efficient idling at a higher frequency/voltage is.
+ * Pavel Machek says this is not so for various generations of AMD and old
+ * Intel systems.
+ * Mike Chan (androidlcom) calis this is also not true for ARM.
+ * Because of this, whitelist specific known (series) of CPUs by default, and
+ * leave all others up to the user.
+ */
+static int should_io_be_busy(void)
+{
+#if defined(CONFIG_X86)
+ /*
+ * For Intel, Core 2 (model 15) andl later have an efficient idle.
+ */
+ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
+ boot_cpu_data.x86 == 6 &&
+ boot_cpu_data.x86_model >= 15)
+ return 1;
+#endif
+ return 0;
+}
+
+static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
+ unsigned int event)
+{
+ unsigned int cpu = policy->cpu;
+ struct cpu_dbs_info_s *this_dbs_info;
+ unsigned int j;
+ int rc;
+
+ this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
+
+ switch (event) {
+ case CPUFREQ_GOV_START:
+ if ((!cpu_online(cpu)) || (!policy->cur))
+ return -EINVAL;
+
+ mutex_lock(&dbs_mutex);
+
+ dbs_enable++;
+ for_each_cpu(j, policy->cpus) {
+ struct cpu_dbs_info_s *j_dbs_info;
+ j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
+ j_dbs_info->cur_policy = policy;
+
+ j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
+ &j_dbs_info->prev_cpu_wall);
+ if (dbs_tuners_ins.ignore_nice)
+ j_dbs_info->prev_cpu_nice =
+ kcpustat_cpu(j).cpustat[CPUTIME_NICE];
+ }
+ this_dbs_info->cpu = cpu;
+ this_dbs_info->rate_mult = 1;
+ ondemand_powersave_bias_init_cpu(cpu);
+ /*
+ * Start the timerschedule work, when this governor
+ * is used for first time
+ */
+ if (dbs_enable == 1) {
+ unsigned int latency;
+
+ rc = sysfs_create_group(cpufreq_global_kobject,
+ &dbs_attr_group);
+ if (rc) {
+ mutex_unlock(&dbs_mutex);
+ return rc;
+ }
+
+ /* policy latency is in nS. Convert it to uS first */
+ latency = policy->cpuinfo.transition_latency / 1000;
+ if (latency == 0)
+ latency = 1;
+ /* Bring kernel and HW constraints together */
+ min_sampling_rate = max(min_sampling_rate,
+ MIN_LATENCY_MULTIPLIER * latency);
+ dbs_tuners_ins.sampling_rate =
+ max(min_sampling_rate,
+ latency * LATENCY_MULTIPLIER);
+ dbs_tuners_ins.io_is_busy = should_io_be_busy();
+ }
+ mutex_unlock(&dbs_mutex);
+
+ mutex_init(&this_dbs_info->timer_mutex);
+ dbs_timer_init(this_dbs_info);
+ break;
+
+ case CPUFREQ_GOV_STOP:
+ dbs_timer_exit(this_dbs_info);
+
+ mutex_lock(&dbs_mutex);
+ mutex_destroy(&this_dbs_info->timer_mutex);
+ dbs_enable--;
+ mutex_unlock(&dbs_mutex);
+ if (!dbs_enable)
+ sysfs_remove_group(cpufreq_global_kobject,
+ &dbs_attr_group);
+
+ break;
+
+ case CPUFREQ_GOV_LIMITS:
+ mutex_lock(&this_dbs_info->timer_mutex);
+ if (policy->max < this_dbs_info->cur_policy->cur)
+ __cpufreq_driver_target(this_dbs_info->cur_policy,
+ policy->max, CPUFREQ_RELATION_H);
+ else if (policy->min > this_dbs_info->cur_policy->cur)
+ __cpufreq_driver_target(this_dbs_info->cur_policy,
+ policy->min, CPUFREQ_RELATION_L);
+ mutex_unlock(&this_dbs_info->timer_mutex);
+ break;
+ }
+ return 0;
+}
+
+static int __init cpufreq_gov_dbs_init(void)
+{
+ u64 idle_time;
+ int cpu = get_cpu();
+
+ idle_time = get_cpu_idle_time_us(cpu, NULL);
+ put_cpu();
+ if (idle_time != -1ULL) {
+ /* Idle micro accounting is supported. Use finer thresholds */
+ dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
+ dbs_tuners_ins.down_differential =
+ MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
+ /*
+ * In nohz/micro accounting case we set the minimum frequency
+ * not depending on HZ, but fixed (very low). The deferred
+ * timer might skip some samples if idle/sleeping as needed.
+ */
+ min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
+ } else {
+ /* For correct statistics, we need 10 ticks for each measure */
+ min_sampling_rate =
+ MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
+ }
+
+ return cpufreq_register_governor(&cpufreq_gov_ondemand);
+}
+
+static void __exit cpufreq_gov_dbs_exit(void)
+{
+ cpufreq_unregister_governor(&cpufreq_gov_ondemand);
+}
+
+
+MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
+MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
+MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
+ "Low Latency Frequency Transition capable processors");
+MODULE_LICENSE("GPL");
+
+#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
+fs_initcall(cpufreq_gov_dbs_init);
+#else
+module_init(cpufreq_gov_dbs_init);
+#endif
+module_exit(cpufreq_gov_dbs_exit);