diff options
author | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
---|---|---|
committer | Srikant Patnaik | 2015-01-11 12:28:04 +0530 |
commit | 871480933a1c28f8a9fed4c4d34d06c439a7a422 (patch) | |
tree | 8718f573808810c2a1e8cb8fb6ac469093ca2784 /ANDROID_3.4.5/arch/arm/vfp/vfpmodule.c | |
parent | 9d40ac5867b9aefe0722bc1f110b965ff294d30d (diff) | |
download | FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.gz FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.tar.bz2 FOSSEE-netbook-kernel-source-871480933a1c28f8a9fed4c4d34d06c439a7a422.zip |
Moved, renamed, and deleted files
The original directory structure was scattered and unorganized.
Changes are basically to make it look like kernel structure.
Diffstat (limited to 'ANDROID_3.4.5/arch/arm/vfp/vfpmodule.c')
-rw-r--r-- | ANDROID_3.4.5/arch/arm/vfp/vfpmodule.c | 729 |
1 files changed, 0 insertions, 729 deletions
diff --git a/ANDROID_3.4.5/arch/arm/vfp/vfpmodule.c b/ANDROID_3.4.5/arch/arm/vfp/vfpmodule.c deleted file mode 100644 index 1ef803aa..00000000 --- a/ANDROID_3.4.5/arch/arm/vfp/vfpmodule.c +++ /dev/null @@ -1,729 +0,0 @@ -/* - * linux/arch/arm/vfp/vfpmodule.c - * - * Copyright (C) 2004 ARM Limited. - * Written by Deep Blue Solutions Limited. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ -#include <linux/types.h> -#include <linux/cpu.h> -#include <linux/cpu_pm.h> -#include <linux/hardirq.h> -#include <linux/kernel.h> -#include <linux/notifier.h> -#include <linux/signal.h> -#include <linux/sched.h> -#include <linux/smp.h> -#include <linux/init.h> -#include <linux/uaccess.h> -#include <linux/user.h> - -#include <asm/cp15.h> -#include <asm/cputype.h> -#include <asm/system_info.h> -#include <asm/thread_notify.h> -#include <asm/vfp.h> - -#include "vfpinstr.h" -#include "vfp.h" - -/* - * Our undef handlers (in entry.S) - */ -void vfp_testing_entry(void); -void vfp_support_entry(void); -void vfp_null_entry(void); - -void (*vfp_vector)(void) = vfp_null_entry; - -/* - * Dual-use variable. - * Used in startup: set to non-zero if VFP checks fail - * After startup, holds VFP architecture - */ -unsigned int VFP_arch; - -/* - * The pointer to the vfpstate structure of the thread which currently - * owns the context held in the VFP hardware, or NULL if the hardware - * context is invalid. - * - * For UP, this is sufficient to tell which thread owns the VFP context. - * However, for SMP, we also need to check the CPU number stored in the - * saved state too to catch migrations. - */ -union vfp_state *vfp_current_hw_state[NR_CPUS]; - -/* - * Is 'thread's most up to date state stored in this CPUs hardware? - * Must be called from non-preemptible context. - */ -static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread) -{ -#ifdef CONFIG_SMP - if (thread->vfpstate.hard.cpu != cpu) - return false; -#endif - return vfp_current_hw_state[cpu] == &thread->vfpstate; -} - -/* - * Force a reload of the VFP context from the thread structure. We do - * this by ensuring that access to the VFP hardware is disabled, and - * clear vfp_current_hw_state. Must be called from non-preemptible context. - */ -static void vfp_force_reload(unsigned int cpu, struct thread_info *thread) -{ - if (vfp_state_in_hw(cpu, thread)) { - fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); - vfp_current_hw_state[cpu] = NULL; - } -#ifdef CONFIG_SMP - thread->vfpstate.hard.cpu = NR_CPUS; -#endif -} - -/* - * Per-thread VFP initialization. - */ -static void vfp_thread_flush(struct thread_info *thread) -{ - union vfp_state *vfp = &thread->vfpstate; - unsigned int cpu; - - /* - * Disable VFP to ensure we initialize it first. We must ensure - * that the modification of vfp_current_hw_state[] and hardware - * disable are done for the same CPU and without preemption. - * - * Do this first to ensure that preemption won't overwrite our - * state saving should access to the VFP be enabled at this point. - */ - cpu = get_cpu(); - if (vfp_current_hw_state[cpu] == vfp) - vfp_current_hw_state[cpu] = NULL; - fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); - put_cpu(); - - memset(vfp, 0, sizeof(union vfp_state)); - - vfp->hard.fpexc = FPEXC_EN; - vfp->hard.fpscr = FPSCR_ROUND_NEAREST; -#ifdef CONFIG_SMP - vfp->hard.cpu = NR_CPUS; -#endif -} - -static void vfp_thread_exit(struct thread_info *thread) -{ - /* release case: Per-thread VFP cleanup. */ - union vfp_state *vfp = &thread->vfpstate; - unsigned int cpu = get_cpu(); - - if (vfp_current_hw_state[cpu] == vfp) - vfp_current_hw_state[cpu] = NULL; - put_cpu(); -} - -static void vfp_thread_copy(struct thread_info *thread) -{ - struct thread_info *parent = current_thread_info(); - - vfp_sync_hwstate(parent); - thread->vfpstate = parent->vfpstate; -#ifdef CONFIG_SMP - thread->vfpstate.hard.cpu = NR_CPUS; -#endif -} - -/* - * When this function is called with the following 'cmd's, the following - * is true while this function is being run: - * THREAD_NOFTIFY_SWTICH: - * - the previously running thread will not be scheduled onto another CPU. - * - the next thread to be run (v) will not be running on another CPU. - * - thread->cpu is the local CPU number - * - not preemptible as we're called in the middle of a thread switch - * THREAD_NOTIFY_FLUSH: - * - the thread (v) will be running on the local CPU, so - * v === current_thread_info() - * - thread->cpu is the local CPU number at the time it is accessed, - * but may change at any time. - * - we could be preempted if tree preempt rcu is enabled, so - * it is unsafe to use thread->cpu. - * THREAD_NOTIFY_EXIT - * - the thread (v) will be running on the local CPU, so - * v === current_thread_info() - * - thread->cpu is the local CPU number at the time it is accessed, - * but may change at any time. - * - we could be preempted if tree preempt rcu is enabled, so - * it is unsafe to use thread->cpu. - */ -static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) -{ - struct thread_info *thread = v; - u32 fpexc; -#ifdef CONFIG_SMP - unsigned int cpu; -#endif - - switch (cmd) { - case THREAD_NOTIFY_SWITCH: - fpexc = fmrx(FPEXC); - -#ifdef CONFIG_SMP - cpu = thread->cpu; - - /* - * On SMP, if VFP is enabled, save the old state in - * case the thread migrates to a different CPU. The - * restoring is done lazily. - */ - if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) - vfp_save_state(vfp_current_hw_state[cpu], fpexc); -#endif - - /* - * Always disable VFP so we can lazily save/restore the - * old state. - */ - fmxr(FPEXC, fpexc & ~FPEXC_EN); - break; - - case THREAD_NOTIFY_FLUSH: - vfp_thread_flush(thread); - break; - - case THREAD_NOTIFY_EXIT: - vfp_thread_exit(thread); - break; - - case THREAD_NOTIFY_COPY: - vfp_thread_copy(thread); - break; - } - - return NOTIFY_DONE; -} - -static struct notifier_block vfp_notifier_block = { - .notifier_call = vfp_notifier, -}; - -/* - * Raise a SIGFPE for the current process. - * sicode describes the signal being raised. - */ -static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) -{ - siginfo_t info; - - memset(&info, 0, sizeof(info)); - - info.si_signo = SIGFPE; - info.si_code = sicode; - info.si_addr = (void __user *)(instruction_pointer(regs) - 4); - - /* - * This is the same as NWFPE, because it's not clear what - * this is used for - */ - current->thread.error_code = 0; - current->thread.trap_no = 6; - - send_sig_info(SIGFPE, &info, current); -} - -static void vfp_panic(char *reason, u32 inst) -{ - int i; - - printk(KERN_ERR "VFP: Error: %s\n", reason); - printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", - fmrx(FPEXC), fmrx(FPSCR), inst); - for (i = 0; i < 32; i += 2) - printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n", - i, vfp_get_float(i), i+1, vfp_get_float(i+1)); -} - -/* - * Process bitmask of exception conditions. - */ -static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) -{ - int si_code = 0; - - pr_debug("VFP: raising exceptions %08x\n", exceptions); - - if (exceptions == VFP_EXCEPTION_ERROR) { - vfp_panic("unhandled bounce", inst); - vfp_raise_sigfpe(0, regs); - return; - } - - /* - * If any of the status flags are set, update the FPSCR. - * Comparison instructions always return at least one of - * these flags set. - */ - if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) - fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); - - fpscr |= exceptions; - - fmxr(FPSCR, fpscr); - -#define RAISE(stat,en,sig) \ - if (exceptions & stat && fpscr & en) \ - si_code = sig; - - /* - * These are arranged in priority order, least to highest. - */ - RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV); - RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); - RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); - RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); - RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); - - if (si_code) - vfp_raise_sigfpe(si_code, regs); -} - -/* - * Emulate a VFP instruction. - */ -static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) -{ - u32 exceptions = VFP_EXCEPTION_ERROR; - - pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); - - if (INST_CPRTDO(inst)) { - if (!INST_CPRT(inst)) { - /* - * CPDO - */ - if (vfp_single(inst)) { - exceptions = vfp_single_cpdo(inst, fpscr); - } else { - exceptions = vfp_double_cpdo(inst, fpscr); - } - } else { - /* - * A CPRT instruction can not appear in FPINST2, nor - * can it cause an exception. Therefore, we do not - * have to emulate it. - */ - } - } else { - /* - * A CPDT instruction can not appear in FPINST2, nor can - * it cause an exception. Therefore, we do not have to - * emulate it. - */ - } - return exceptions & ~VFP_NAN_FLAG; -} - -/* - * Package up a bounce condition. - */ -void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) -{ - u32 fpscr, orig_fpscr, fpsid, exceptions; - - pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); - - /* - * At this point, FPEXC can have the following configuration: - * - * EX DEX IXE - * 0 1 x - synchronous exception - * 1 x 0 - asynchronous exception - * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later - * 0 0 1 - synchronous on VFP9 (non-standard subarch 1 - * implementation), undefined otherwise - * - * Clear various bits and enable access to the VFP so we can - * handle the bounce. - */ - fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK)); - - fpsid = fmrx(FPSID); - orig_fpscr = fpscr = fmrx(FPSCR); - - /* - * Check for the special VFP subarch 1 and FPSCR.IXE bit case - */ - if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT) - && (fpscr & FPSCR_IXE)) { - /* - * Synchronous exception, emulate the trigger instruction - */ - goto emulate; - } - - if (fpexc & FPEXC_EX) { -#ifndef CONFIG_CPU_FEROCEON - /* - * Asynchronous exception. The instruction is read from FPINST - * and the interrupted instruction has to be restarted. - */ - trigger = fmrx(FPINST); - regs->ARM_pc -= 4; -#endif - } else if (!(fpexc & FPEXC_DEX)) { - /* - * Illegal combination of bits. It can be caused by an - * unallocated VFP instruction but with FPSCR.IXE set and not - * on VFP subarch 1. - */ - vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); - goto exit; - } - - /* - * Modify fpscr to indicate the number of iterations remaining. - * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates - * whether FPEXC.VECITR or FPSCR.LEN is used. - */ - if (fpexc & (FPEXC_EX | FPEXC_VV)) { - u32 len; - - len = fpexc + (1 << FPEXC_LENGTH_BIT); - - fpscr &= ~FPSCR_LENGTH_MASK; - fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); - } - - /* - * Handle the first FP instruction. We used to take note of the - * FPEXC bounce reason, but this appears to be unreliable. - * Emulate the bounced instruction instead. - */ - exceptions = vfp_emulate_instruction(trigger, fpscr, regs); - if (exceptions) - vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); - - /* - * If there isn't a second FP instruction, exit now. Note that - * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. - */ - if (fpexc ^ (FPEXC_EX | FPEXC_FP2V)) - goto exit; - - /* - * The barrier() here prevents fpinst2 being read - * before the condition above. - */ - barrier(); - trigger = fmrx(FPINST2); - - emulate: - exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); - if (exceptions) - vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); - exit: - preempt_enable(); -} - -static void vfp_enable(void *unused) -{ - u32 access; - - BUG_ON(preemptible()); - access = get_copro_access(); - - /* - * Enable full access to VFP (cp10 and cp11) - */ - set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11)); -} - -#ifdef CONFIG_CPU_PM -static int vfp_pm_suspend(void) -{ - struct thread_info *ti = current_thread_info(); - u32 fpexc = fmrx(FPEXC); - - /* if vfp is on, then save state for resumption */ - if (fpexc & FPEXC_EN) { - printk(KERN_DEBUG "%s: saving vfp state\n", __func__); - vfp_save_state(&ti->vfpstate, fpexc); - - /* disable, just in case */ - fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); - } else if (vfp_current_hw_state[ti->cpu]) { -#ifndef CONFIG_SMP - fmxr(FPEXC, fpexc | FPEXC_EN); - vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc); - fmxr(FPEXC, fpexc); -#endif - } - - /* clear any information we had about last context state */ - vfp_current_hw_state[ti->cpu] = NULL; - - return 0; -} - -static void vfp_pm_resume(void) -{ - /* ensure we have access to the vfp */ - vfp_enable(NULL); - - /* and disable it to ensure the next usage restores the state */ - fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); -} - -static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, - void *v) -{ - switch (cmd) { - case CPU_PM_ENTER: - vfp_pm_suspend(); - break; - case CPU_PM_ENTER_FAILED: - case CPU_PM_EXIT: - vfp_pm_resume(); - break; - } - return NOTIFY_OK; -} - -static struct notifier_block vfp_cpu_pm_notifier_block = { - .notifier_call = vfp_cpu_pm_notifier, -}; - -static void vfp_pm_init(void) -{ - cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block); -} - -#else -static inline void vfp_pm_init(void) { } -#endif /* CONFIG_CPU_PM */ - -/* - * Ensure that the VFP state stored in 'thread->vfpstate' is up to date - * with the hardware state. - */ -void vfp_sync_hwstate(struct thread_info *thread) -{ - unsigned int cpu = get_cpu(); - - if (vfp_state_in_hw(cpu, thread)) { - u32 fpexc = fmrx(FPEXC); - - /* - * Save the last VFP state on this CPU. - */ - fmxr(FPEXC, fpexc | FPEXC_EN); - vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN); - fmxr(FPEXC, fpexc); - } - - put_cpu(); -} - -/* Ensure that the thread reloads the hardware VFP state on the next use. */ -void vfp_flush_hwstate(struct thread_info *thread) -{ - unsigned int cpu = get_cpu(); - - vfp_force_reload(cpu, thread); - - put_cpu(); -} - -/* - * Save the current VFP state into the provided structures and prepare - * for entry into a new function (signal handler). - */ -int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp, - struct user_vfp_exc __user *ufp_exc) -{ - struct thread_info *thread = current_thread_info(); - struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; - int err = 0; - - /* Ensure that the saved hwstate is up-to-date. */ - vfp_sync_hwstate(thread); - - /* - * Copy the floating point registers. There can be unused - * registers see asm/hwcap.h for details. - */ - err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs, - sizeof(hwstate->fpregs)); - /* - * Copy the status and control register. - */ - __put_user_error(hwstate->fpscr, &ufp->fpscr, err); - - /* - * Copy the exception registers. - */ - __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err); - __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err); - __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err); - - if (err) - return -EFAULT; - - /* Ensure that VFP is disabled. */ - vfp_flush_hwstate(thread); - - /* - * As per the PCS, clear the length and stride bits for function - * entry. - */ - hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK); - return 0; -} - -/* Sanitise and restore the current VFP state from the provided structures. */ -int vfp_restore_user_hwstate(struct user_vfp __user *ufp, - struct user_vfp_exc __user *ufp_exc) -{ - struct thread_info *thread = current_thread_info(); - struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; - unsigned long fpexc; - int err = 0; - - /* Disable VFP to avoid corrupting the new thread state. */ - vfp_flush_hwstate(thread); - - /* - * Copy the floating point registers. There can be unused - * registers see asm/hwcap.h for details. - */ - err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs, - sizeof(hwstate->fpregs)); - /* - * Copy the status and control register. - */ - __get_user_error(hwstate->fpscr, &ufp->fpscr, err); - - /* - * Sanitise and restore the exception registers. - */ - __get_user_error(fpexc, &ufp_exc->fpexc, err); - - /* Ensure the VFP is enabled. */ - fpexc |= FPEXC_EN; - - /* Ensure FPINST2 is invalid and the exception flag is cleared. */ - fpexc &= ~(FPEXC_EX | FPEXC_FP2V); - hwstate->fpexc = fpexc; - - __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err); - __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err); - - return err ? -EFAULT : 0; -} - -/* - * VFP hardware can lose all context when a CPU goes offline. - * As we will be running in SMP mode with CPU hotplug, we will save the - * hardware state at every thread switch. We clear our held state when - * a CPU has been killed, indicating that the VFP hardware doesn't contain - * a threads VFP state. When a CPU starts up, we re-enable access to the - * VFP hardware. - * - * Both CPU_DYING and CPU_STARTING are called on the CPU which - * is being offlined/onlined. - */ -static int vfp_hotplug(struct notifier_block *b, unsigned long action, - void *hcpu) -{ - if (action == CPU_DYING || action == CPU_DYING_FROZEN) { - vfp_force_reload((long)hcpu, current_thread_info()); - } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN) - vfp_enable(NULL); - return NOTIFY_OK; -} - -/* - * VFP support code initialisation. - */ -static int __init vfp_init(void) -{ - unsigned int vfpsid; - unsigned int cpu_arch = cpu_architecture(); - - if (cpu_arch >= CPU_ARCH_ARMv6) - on_each_cpu(vfp_enable, NULL, 1); - - /* - * First check that there is a VFP that we can use. - * The handler is already setup to just log calls, so - * we just need to read the VFPSID register. - */ - vfp_vector = vfp_testing_entry; - barrier(); - vfpsid = fmrx(FPSID); - barrier(); - vfp_vector = vfp_null_entry; - - printk(KERN_INFO "VFP support v0.3: "); - if (VFP_arch) - printk("not present\n"); - else if (vfpsid & FPSID_NODOUBLE) { - printk("no double precision support\n"); - } else { - hotcpu_notifier(vfp_hotplug, 0); - - VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */ - printk("implementor %02x architecture %d part %02x variant %x rev %x\n", - (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, - (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT, - (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, - (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, - (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); - - vfp_vector = vfp_support_entry; - - thread_register_notifier(&vfp_notifier_block); - vfp_pm_init(); - - /* - * We detected VFP, and the support code is - * in place; report VFP support to userspace. - */ - elf_hwcap |= HWCAP_VFP; -#ifdef CONFIG_VFPv3 - if (VFP_arch >= 2) { - elf_hwcap |= HWCAP_VFPv3; - - /* - * Check for VFPv3 D16. CPUs in this configuration - * only have 16 x 64bit registers. - */ - if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1) - elf_hwcap |= HWCAP_VFPv3D16; - } -#endif - /* - * Check for the presence of the Advanced SIMD - * load/store instructions, integer and single - * precision floating point operations. Only check - * for NEON if the hardware has the MVFR registers. - */ - if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { -#ifdef CONFIG_NEON - if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100) - elf_hwcap |= HWCAP_NEON; -#endif - if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000) - elf_hwcap |= HWCAP_VFPv4; - } - } - return 0; -} - -late_initcall(vfp_init); |