function varargout = spa(varargin) // Use spectral analysis to estimate frequency response // // Calling Sequence // frdData = spa(plantData,winSize,Freq) // Parameters // plantData : iddata type // winSize : non-neative integer number // Freq : frequency points to evaluate the response // frdData : frd type object // Description // spa function does the estimation of the frequency response of iddata of a plant using the spectral analysis. Hanning window is used in spectral // analysis. Default size of the window is minimum of the number of sample divided by 10 or 30. The default frquency point is %pi x (1:128)/(sampling time x 128). // Examples // a = [1 0.2];b = [0 0.2 0.3]; // sys = idpoly(a,b,'Ts',0.1) // u = idinput(1024,'PRBS',[0 1/20],[-1 1]) // y = sim(u,sys)+rand(1024,1) // plantData = iddata(y,u,0.1) // frdData = spa(plantData) // Authors // Bhushan Manjarekar, Ashutosh Kumar Bhargava [lhs , rhs] = argn(); if ( rhs < 1 || rhs > 3 ) then errmsg = msprintf(gettext("%s: Wrong number of input arguments" ),"spa"); error(errmsg) elseif typeof(varargin(1)) <> "iddata" then error(msprintf(gettext("%s:Plant data must be ""iddata"" type.\n"),"spa")) end plantData = varargin(1) windowSize = %F inputFreq = %F // ------------------------------------------------------------------------------ // arranging the plant data inputData = plantData.InputData; if ~size(inputData,"*") then error(msprintf(gettext("%s:Input data must be non-zero vector. \n"),"spa")) end outputData = plantData.OutputData if ~size(outputData,"*") then error(msprintf(gettext("%s:Output data must be non-zero vector. \n"),"spa")) end // ------------------------------------------------------------------------------ N = size(inputData,'r') nout = size(outputData,'c') nin = size(inputData,'c') if ~windowSize then windowSize = min(N/10, 30) end if inputFreq then else inputFreq = (1:128)/128 * %pi/plantData.Ts end M = windowSize Ryu = xcov(outputData,inputData,M,'biased') Ruu = xcov(inputData,inputData,M,'biased') Ryy = xcov(outputData,outputData,M,'biased') G = [];spect = []; for ii = 1:nout phiY = spaCalculation(inputFreq,Ryy,M) temp = phiY for jj = 1:nin phiYU = spaCalculation(inputFreq,Ryu,M)// sapply(freq, cov2spec, Ryu[i, j, ], M) phiU = spaCalculation(inputFreq,Ruu,M) G = [G phiYU./phiU] // pause temp = temp - phiYU .* conj(phiYU)./phiU end spect = [spect temp] end // disp(size(spect)) // disp(spect) frdData = frd(G',inputFreq',plantData.Ts,spect') varargout(1) = frdData endfunction function varargout = spaCalculation(varargin) inputFreq = varargin(1) xcovData = varargin(2) Mnumber = varargin(3) temp = [] win_l=window('hn',2*Mnumber+1) for ii = 1:size(inputFreq,'c') seq1 = exp(-(%i) * (-Mnumber:Mnumber) * inputFreq(ii)) data = (seq1.*win_l) data2 = sum(data.*xcovData') temp = [temp data2] end varargout(1) = temp endfunction