summaryrefslogtreecommitdiff
path: root/arx.sci
diff options
context:
space:
mode:
Diffstat (limited to 'arx.sci')
-rw-r--r--arx.sci110
1 files changed, 110 insertions, 0 deletions
diff --git a/arx.sci b/arx.sci
new file mode 100644
index 0000000..0289cc8
--- /dev/null
+++ b/arx.sci
@@ -0,0 +1,110 @@
+
+// Estimates Discrete time ARX model
+// A(q)y(t) = B(q)u(t) + e(t)
+// Current version uses random initial guess
+//
+
+// Authors: Ashutosh,Harpreet,Inderpreet
+// Updated(12-6-16)
+function sys = arx(varargin)
+ [lhs , rhs] = argn();
+ if ( rhs < 2 ) then
+ errmsg = msprintf(gettext("%s: Unexpected number of input arguments : %d provided while should be 2"), "arx", rhs);
+ error(errmsg)
+ end
+
+ z = varargin(1)
+ if typeof(z) == 'iddata' then
+ Ts = z.Ts;unit = z.TimeUnit
+ z = [z.OutputData z.InputData]
+ elseif typeof(z) == 'constant' then
+ Ts = 1;unit = 'seconds'
+ end
+ if ((~size(z,2)==2) & (~size(z,1)==2)) then
+ errmsg = msprintf(gettext("%s: input and output data matrix should be of size (number of data)*2"), "arx");
+ error(errmsg);
+ end
+
+ if (~isreal(z)) then
+ errmsg = msprintf(gettext("%s: input and output data matrix should be a real matrix"), "arx");
+ error(errmsg);
+ end
+
+ n = varargin(2)
+ if (size(n,"*")<2| size(n,"*")>3) then
+ errmsg = msprintf(gettext("%s: The order and delay matrix [na nb nk] should be of size [2 3]"), "arx");
+ error(errmsg);
+ end
+
+ if (size(find(n<0),"*") | size(find(((n-floor(n))<%eps)== %f))) then
+ errmsg = msprintf(gettext("%s: values of order and delay matrix [na nb nk] should be nonnegative integer number "), "arx");
+ error(errmsg);
+ end
+
+ na = n(1); nb = n(2); //nk = n(3); //nf = n(4);
+//
+ if (size(n,"*") == 2) then
+ nk = 1
+ else
+ nk = n(3);
+ end
+
+ // storing U(k) , y(k) and n data in UDATA,YDATA and NDATA respectively
+ YDATA = z(:,1);
+ UDATA = z(:,2);
+ NDATA = size(UDATA,"*");
+ function e = G(p,m)
+ e = YDATA - _objfunarx(UDATA,YDATA,p,na,nb,nk);
+ endfunction
+ tempSum = na+nb
+ p0 = linspace(0.1,0.9,tempSum)';
+ [var,errl] = lsqrsolve(p0,G,size(UDATA,"*"));
+ err = (norm(errl)^2);
+ opt_err = err;
+ resid = G(var,[]);
+
+ a = 1-poly([var(nb+1:nb+na)]',"q","coeff");
+ b = poly([repmat(0,nk,1);var(1:nb)]',"q","coeff");
+ a = (poly([1,-coeff(a)],'q','coeff'))
+ t = idpoly(coeff(a),coeff(b),1,1,1,Ts)
+
+ // estimating the other parameters
+ [temp1,temp2,temp3] = predict(z,t)
+ [temp11,temp22,temp33] = pe(z,t)
+
+ estData = calModelPara(temp1,temp1,n(1)+n(2))
+ //pause
+ t.Report.Fit.MSE = estData.MSE
+ t.Report.Fit.FPE = estData.FPE
+ t.Report.Fit.FitPer = estData.FitPer
+ t.Report.Fit.AIC = estData.AIC
+ t.Report.Fit.AICc = estData.AICc
+ t.Report.Fit.nAIC = estData.nAIC
+ t.Report.Fit.BIC = estData.BIC
+ t.TimeUnit = unit
+ sys = t
+
+endfunction
+
+function yhat = _objfunarx(UDATA,YDATA,x,na,nb,nk)
+ x=x(:)
+ q = poly(0,'q')
+ tempSum = nb+na
+ // making polynomials
+ b = poly([repmat(0,nk,1);x(1:nb)]',"q","coeff");
+ a = 1 - poly([x(nb+1:nb+na)]',"q","coeff")
+ aSize = coeff(a);bSize = coeff(b)
+ maxDelay = max([length(aSize) length(bSize)])
+ yhat = [YDATA(1:maxDelay)]
+ for k=maxDelay+1:size(UDATA,"*")
+ tempB = 0
+ for ii = 1:size(bSize,'*')
+ tempB = tempB + bSize(ii)*UDATA(k-ii+1)
+ end
+ tempA = 0
+ for ii = 1:size(aSize,"*")
+ tempA = tempA + aSize(ii)*YDATA(k-ii)
+ end
+ yhat = [yhat; [ tempA+tempB ]];
+ end
+endfunction