//schurrc - Schur algorithm. //K = SCHURRC(R) computes the reflection coefficients from autocorrelation vector R. If R is a matrix, SCHURRC finds coefficients for each column of R, and returns them in the columns of K. //[K,E] = SCHURRC(R) returns the prediction error variance E. If R is a matrix, SCHURRC finds the error for each column of R, and returns them in the rows of E. //Modified to match matlab i/p and o/p and handle exceptions //Fixed bugs //by Debdeep Dey //////EXAMPLES: //m=linspace(1,100); //r = xcorr(m(1:5),'unbiased');.......autocorrelation vector //[k,e] = schurrc(r(5:$)) //EXPECTED OUTPUT //e =1.6212406 //k = - 0.9090909 0.2222222 0.2244898 0.2434211 function [k,e] = schurrc(R) narginchk(1,1,argn(2)); if(type(R)==10) then// R is a matrix of character strings w=R; [nr,nc]=size(R); if(nr==1 & nc==1) then R=ascii(R);//conversion to the corresponding asci values R=matrix(R,length(w));//reshaping the matrix else R=ascii(R); R=matrix(R,size(w));//reshaping the matrix end end if(type(R) > 1) then ///checking if R in not a matrix of real or complex numbers error('Input R is not a matrix') end if (min(size(R)) == 1) then R = R(:); end [m,n] = size(R); // Compute reflection coefficients for each column of the input matrix for j = 1:n X = R(:,j).'; // Schur's iterative algorithm on a row vector of autocorrelation values U = [0 X(2:m); X(1:m)]; for i = 2:m, U(2,:) = [0 U(2,1:m-1)]; k(i-1,j) = -U(1,i)/U(2,i); U = [1 k(i-1,j); conj(k(i-1,j)) 1]*U; end e(j,1) = U(2,$); end endfunction function narginchk(l,h,t) if tl then error("Too many input arguments"); end endfunction