function [psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type) //Calculates a Yule-Walker autoregressive (all-pole) model of the data "x" and computes the power spectrum of the model. //Calling Sequence //[psd,f_out] = pyulear(x,poles,freq,Fs,range,method,plot_type) //All but the first two arguments are optional and may be empty. //Parameters // x: [vector] sampled data // poles: [integer scalar] required number of poles of the AR model // freq: [real vector] frequencies at which power spectral density is calculated [integer scalar] number of uniformly distributed frequency values at which spectral density is calculated. [default=256] // Fs: [real scalar] sampling frequency (Hertz) [default=1] // range: 'half', 'onesided' : frequency range of the spectrum is from zero up to but not including sample_f/2. Power from negative frequencies is added to the positive side of the spectrum. 'whole', 'twosided' : frequency range of the spectrum is -sample_f/2 to sample_f/2, with negative frequencies stored in "wrap around" order after the positive frequencies; e.g. frequencies for a 10-point 'twosided' spectrum are 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 'shift', 'centerdc' : same as 'whole' but with the first half of the spectrum swapped with second half to put the zero-frequency value in the middle. (See "help fftshift". If "freq" is vector, 'shift' is ignored. If model coefficients "ar_coeffs" are real, the default range is 'half', otherwise default range is 'whole'. // method: 'fft': use FFT to calculate power spectral density. 'poly': calculate spectral density as a polynomial of 1/z N.B. this argument is ignored if the "freq" argument is a vector. The default is 'poly' unless the "freq" argument is an integer power of 2. // plot_type: 'plot', 'semilogx', 'semilogy', 'loglog', 'squared' or 'db' specifies the type of plot. The default is 'plot', which means linear-linear axes. 'squared' is the same as 'plot'. 'dB' plots "10*log10(psd)". This argument is ignored and a spectrum is not plotted if the caller requires a returned value. //Description //This function is being called from Octave. //This function is a wrapper for aryule and ar_psd. //See "help aryule" and "help ar_psd" for further details. //Examples //a = [1.0 -1.6216505 1.1102795 -0.4621741 0.2075552 -0.018756746]; //[psd,f_out] = pyulear(a,2); funcprot(0); lhs = argn(1) rhs = argn(2) if (rhs < 2 | rhs > 7) error("Wrong number of input arguments.") end select(rhs) case 2 then if(lhs==1) psd = callOctave("pyulear",x,poless) elseif(lhs==2) [psd,f_out] = callOctave("pyulear",x,poles) else error("Wrong number of output argments.") end case 3 then if(lhs==1) psd = callOctave("pyulear",x,poles,freq) elseif(lhs==2) [psd,f_out] = callOctave("pyulear",x,poles,freq) else error("Wrong number of output argments.") end case 4 then if(lhs==1) psd = callOctave("pyulear",x,poles,freq,Fs) elseif(lhs==2) [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs) else error("Wrong number of output argments.") end case 5 then if(lhs==1) psd = callOctave("pyulear",x,poles,freq,Fs,range) elseif(lhs==2) [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs,range) else error("Wrong number of output argments.") end case 6 then if(lhs==1) psd = callOctave("pyulear",x,poles,freq,Fs,range,method) elseif(lhs==2) [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs,range,method) else error("Wrong number of output argments.") end case 7 then if(lhs==1) psd = callOctave("pyulear",x,poles,freq,Fs,range,method,plot_type) elseif(lhs==2) [psd,f_out] = callOctave("pyulear",x,poles,freq,Fs,range,method,plot_type) else error("Wrong number of output argments.") end end endfunction