// Copyright (C) 2018 - IIT Bombay - FOSSEE // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Original Source : https://octave.sourceforge.io/ // Modifieded by: Abinash Singh Under FOSSEE Internship // Last Modified on : 3 Feb 2024 // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in // FIXME: check invfreq.sci for todo's /* : [B,A] = invfreqz(H,F,nB,nA) ¶ : [B,A] = invfreqz(H,F,nB,nA,W) ¶ : [B,A] = invfreqz(H,F,nB,nA,W,iter,tol,'trace') ¶ Fit filter B(z)/A(z)to the complex frequency response H at frequency points F. A and B are real polynomial coefficients of order nA and nB. Optionally, the fit-errors can be weighted vs frequency according to the weights W. Note: all the guts are in invfreq.m H: desired complex frequency response F: normalized frequency (0 to pi) (must be same length as H) nA: order of the denominator polynomial A nB: order of the numerator polynomial B W: vector of weights (must be same length as F) */ // Dependencies // invfreq function [B, A, SigN] = invfreqz(H, F, nB, nA, W, iter, tol, tr, varargin) if nargin < 9 varargin = {}; if nargin < 8 tr = ''; if nargin < 7 tol = []; if nargin < 6 iter = []; if nargin < 5 W = ones(1,length(F)); end end end end end // now for the real work [B, A, SigN] = invfreq(H, F, nB, nA, W, iter, tol, tr, 'z', varargin); endfunction /* demo order = 9; //order of test filter //going to 10 or above leads to numerical instabilities and large errors fc = 1/2; // sampling rate / 4 n = 128; // frequency grid size // butterworth filter of order 9 and fc=0.5 B0 = [5.1819e-03 4.6637e-02 1.8655e-01 4.3528e-01 6.5292e-01 6.5292e-01 4.3528e-01 1.8655e-01 4.6637e-02 5.1819e-03]; A0 = [ 1.0000e+00 -8.6736e-16 1.2010e+00 -7.7041e-16 4.0850e-01 -1.7013e-16 4.2661e-02 -9.0155e-18 9.6666e-04 -5.3661e-20]; [H0, w] = freqz(B0, A0, n); Nn = (rand(size(w,1),size(w,2),'normal')+%i*rand(size(w,1),size(w,2),'normal'))/sqrt(2); [Bh, Ah, Sig0] = invfreqz(H0, w, order, order); [Hh, wh] = freqz(Bh, Ah, n); [BLS, ALS, SigLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "LS"); [HLS _ ] = freqz(BLS, ALS, n); [BTLS, ATLS, SigTLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "TLS"); [HTLS _ ]= freqz(BTLS, ATLS, n); [BMLS, AMLS, SigMLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "QR"); [HMLS _ ] = freqz(BMLS, AMLS, n); plot(w,[abs(H0) abs(Hh)]) xlabel("Frequency (rad/sample)"); ylabel("Magnitude"); legend('Original','Measured'); err = norm(H0-Hh); disp(sprintf('L2 norm of frequency response error = %f',err)); */ /* order = 9; fc = 1/2; n = 128; B0 = [5.1819e-03 4.6637e-02 1.8655e-01 4.3528e-01 6.5292e-01 6.5292e-01 4.3528e-01 1.8655e-01 4.6637e-02 5.1819e-03]; A0 = [ 1.0000e+00 -8.6736e-16 1.2010e+00 -7.7041e-16 4.0850e-01 -1.7013e-16 4.2661e-02 -9.0155e-18 9.6666e-04 -5.3661e-20]; [H0, w] = freqz(B0, A0, n); Nn = (randn(size(w,1),size(w,2))+i*randn(size(w,1),size(w,2)))/sqrt(2); [Bh, Ah, Sig0] = invfreqz(H0, w, order, order); [Hh, wh] = freqz(Bh, Ah, n); [BLS, ALS, SigLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "LS"); [HLS _ ] = freqz(BLS, ALS, n); [BTLS, ATLS, SigTLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "TLS"); [HTLS _ ]= freqz(BTLS, ATLS, n); [BMLS, AMLS, SigMLS] = invfreqz(H0+1e-5*Nn, w, order, order, [], [], [], [], "method", "QR"); [HMLS _ ] = freqz(BMLS, AMLS, n); plot(w,[abs(H0) abs(Hh)]) xlabel("Frequency (rad/sample)"); ylabel("Magnitude"); legend('Original','Measured'); err = norm(H0-Hh); disp(sprintf('L2 norm of frequency response error = %f',err)); */