function [h, a]= intfilt(R, L, freqmult) // This function estimate Interpolated FIR Filter Design. // Calling Sequence // h=intfilt(R,L,freqmult) // [h a]=intfilt(R,L,freqmult) // Parameters // R: Samples. It should be numeric // L: bandlimited interpolation samples. It must be nonzero. // freqmult: bandlimitedness of ALPHA times the Nyquist frequency, IT can be numeric or character ('B' or 'L', B is length // (N+1)*L-1 for N odd and (N+1)*L for N even) // h: linear phase FIR filter. // Examples // h=intfilt(20,10,'l') // h=intfilt(20,10,1) // // See also // Authors // Jitendra Singh if or(type(R)==10) | or(type(L)==10) then error ('Argument R and L must be numeric.') else if argn(2)==3 then if type(freqmult)==10 then typ=freqmult; n=L; else freqmult=double(freqmult); typ='b'; end end if freqmult==0 then h=repmat(%nan,[1,(2*R*L-1)]) a=1; else //typ(1)=='b' | typ(1)=='B' if convstr(typ(1), 'u') =='B' then n=2*R*L-1; if freqmult==1 then M=[R R 0 0]; F= [0 1/(2*R) 1/(2*R) 0.5]; else M=R*[1 1]; if type(freqmult)==10 then F=[0 98/2/R]; else F=[0 freqmult/2/R] end for f=(1/R):(1/R):.5, if type(freqmult)==10 then F=[F f-(98/2/R) f+(98/2/R)]; else F=[F f-(freqmult/2/R) f+(freqmult/2/R)]; end M=[M 0 0]; end; if (F(length(F))>.5), F(length(F))=.5; end; end N=n-1; F=F*2; M=M if (max(F)>1) | (min(F)<0) error('Frequencies in F must be in range [0,1]') end if ((length(F)-fix(length(F)./2).*2)~=0) error('Argument F should of even length'); end if (length(F) ~= length(M)) error('The input arguments F & A must have same length'); end W = ones(length(F)/2,1); ftype = ''; ftype = 0; differ = 0; N = N+1; F=F(:)/2; M=M(:); W=sqrt(W(:)); dF = diff(F); if (length(F) ~= length(W)*2) error('There should be one weight per band.'); end if or(dF<0), error('F frequency must be increasing') end if and(dF(2:2:length(dF)-1)==0) & length(dF) > 1, band = 1; else band = 0; end if and((W-W(1))==0) weights = 1; else weights = 0; end L=(N-1)/2; Nodd = N-fix(N./2).*2; if ~Nodd m=(0:L)+.5; else m=(0:L); end k=m'; need_matrix = (~band) | (~weights); if need_matrix I1=k(:,ones(size(m,1),size(m,2)))+m(ones(size(k,1),size(k,2)),:); I2=k(:,ones(size(m,1),size(m,2)))-m(ones(size(k,1),size(k,2)),:); G=zeros(size(I1,1),size(I1,2)); end if Nodd k=k(2:length(k)); b0=0; end; b=zeros(size(k,1),size(k,2)); dd=diff(F); if or(dd==0) & R==1 then h=repmat(%nan,[1,n]) a=1 else for s=1:2:length(F), m=(M(s+1)-M(s))/(F(s+1)-F(s)); b1=M(s)-m*F(s); if Nodd b0 = b0 + (b1*(F(s+1)-F(s)) + m/2*(F(s+1)*F(s+1)-F(s)*F(s)))* abs(W((s+1)/2)^2) ; end b=b(:) b = b+(m/(4*%pi*%pi)*(cos(2*%pi*k*F(s+1))-cos(2*%pi*k*F(s)))./(k.*k))* abs(W((s+1)/2)^2); b = b' + (F(s+1)*(m*F(s+1)+b1)*sinf(2*k*F(s+1))- F(s)*(m*F(s)+b1)*sinf(2*k*F(s)))* abs(W((s+1)/2)^2); if need_matrix mat=matrix((.5*F(s+1)*(sinf(2*I1*F(s+1))+sinf(2*I2*F(s+1)))- .5*F(s)*(sinf(2*I1*F(s))+sinf(2*I2*F(s))) ) * abs(W((s+1)/2)^2),size(G,1),size(G,2)) ; mat=mat'; G=G+mat; end end; if Nodd b=[b0; b']; end; if need_matrix a=G\b; else a=(W(1)^2)*4*b; if Nodd a(1) = a(1)/2; end end if Nodd h=[a(L+1:-1:2)/2; a(1); a(2:L+1)/2].'; else h=.5*[flipud(a); a].'; end; end; //typ(1)=='l' | typ(1)=='L' elseif convstr(typ(1), 'u') =='L' then if n==0 then h=ones(1,R) return end t=0:n*R+1; l=ones(n+1,length(t)); for i=1:n+1 for j=1:n+1 if (j~=i) then l(i,:)=l(i,:).*(t/R-j+1)/(i-j); end end end h=zeros(1,(n+1)*R); for i=0:R-1 for j=0:n h(j*R+i+1)=l((n-j)+1,round((n-1)/2*R+i+1)); end end if h(1) == 0, h(1) = []; end else error ('This type of filter is not recognized.') end a=1; end end endfunction ////// Supplementary function function y=sinf(x) for i=1:length(x) if x(i)==0 then y(i)=1; else y(i)=sin(%pi*x(i))/(%pi*x(i)); end end y=y'; endfunction