function h= hilbert1(f, varargin) //Analytic extension of real valued signal. //Calling Sequence // h= hilbert1(f) // h= hilbert1(f,N) // h= hilbert1(f,N,dim) //Parameters //f: real or complex valued scalar or vector //N: The result will have length N //dim : It analyses the input in this dimension //Description //h = hilbert (f) computes the extension of the real valued signal f to an analytic signal. If f is a matrix, the transformation is applied to each column. For N-D arrays, the transformation is applied to the first non-singleton dimension. // //real (h) contains the original signal f. imag (h) contains the Hilbert transform of f. // //hilbert1 (f, N) does the same using a length N Hilbert transform. The result will also have length N. // //hilbert1 (f, [], dim) or hilbert1 (f, N, dim) does the same along dimension dim. //Examples //## notice that the imaginary signal is phase-shifted 90 degrees // t=linspace(0,10,256); // z = hilbert1(sin(2*pi*0.5*t)); // grid on; plot(t,real(z),';real;',t,imag(z),';imag;'); funcprot(0); rhs= argn(2); if(rhs<1 | rhs>3) error("Wrong number of Input Arguments") end select(rhs) case 1 then h= callOctave("hilbert", f); case 2 then h= callOctave("hilbert", f, varargin(1)); case 3 then h= callOctave("hilbert", f, varargin(1), varargin(2)); end endfunction