//Autoregressive all-pole model parameters — modified covariance method //Calling Sequence- //a = armcov(x,p) //[a,e] = armcov(x,p) //Parameters //x:input signal //p:order //a:output of an AR system driven by white noise //e:variance estimate //Description //This function uses the modified covariance method to fit a pth-order autoregressive (AR) model to the input signal x. //Example : //A = [1 -2.7607 3.8106 -2.6535 0.9238]; //y = filter(1,A,0.2*rand(1024,1,"normal")); //arcoeffs = armcov(y,4) //OUTPUT : // since "rand" function is used, output doesn't always remains same. It differs by some amount. // 1. - 2.7450144 3.7762385 - 2.6201362 0.9104109 0.9104109 function [ar_coeff, var_est] = armcov(data_in, order) checkNArgin(2,2, argn(2)); // function call method = 'modified'; [ar_coeff, var_est, msg] = arParEst(data_in, order, method); if ~isempty(msg) then error(msg); end endfunction function checkNArgin(min_argin, max_argin, num_of_argin) if num_of_argin < min_argin then error('Not enough input arguments') // Number of input arguments should be greater than min_argin end if num_of_argin > max_argin then error('Too many input arguments') // Number of input arguments should be lesserr than max_argin end endfunction