/* Description: Perform a Lagrange Multiplier (LM) test for conditional heteroscedasticity. For a linear regression model y = x * b + e perform a Lagrange Multiplier (LM) test of the null hypothesis of no conditional heteroscedascity against the alternative of CH(p). I.e., the model is y(t) = b(1) * x(t,1) + … + b(k) * x(t,k) + e(t), given y up to t-1 and x up to t, e(t) is N(0, h(t)) with h(t) = v + a(1) * e(t-1)^2 + … + a(p) * e(t-p)^2, and the null is a(1) == … == a(p) == 0. If the second argument is a scalar integer, k, perform the same test in a linear autoregression model of order k, i.e., with [1, y(t-1), …, y(t-k)] as the t-th row of x. Under the null, LM approximately has a chisquare distribution with p degrees of freedom and pval is the p-value (1 minus the CDF of this distribution at LM) of the test. If no output argument is given, the p-value is displayed. Calling Sequence [pval, lm] = arch_test (y, x, p) Parameters y: Array-like. Dependent variable of the regression model. x: Array-like. Independent variables of the regression model. If x is a scalar integer k, it represents the order of autoregression. p : Integer. Number of lagged squared residuals to include in the heteroscedasticity model. Returns: pval: Float. p-value of the LM test. lm: Float. Lagrange Multiplier test statistic.*/ Dependencies : ols, autoreg_matrix //helper function function cdf = chi2cdf ( X, n) df = resize_matrix ( n , size (X) , "" , n); [cdf,Q] = cdfchi ( "PQ" , X ,df); endfunction //main function function [pval, lm] = arch_test (y, x, p) nargin = argn(2) if (nargin ~= 3) error ("arch_test: 3 input arguments required"); end if (~ (isvector (y))) error ("arch_test: Y must be a vector"); end T = max(size(y)); y = matrix (y, T, 1); [rx, cx] = size (x); if ((rx == 1) && (cx == 1)) x = autoreg_matrix (y, x); elseif (~ (rx == T)) error ("arch_test: either rows (X) == length (Y), or X is a scalar"); end if (~ (isscalar (p) && (modulo (p, 1) == 0) && (p > 0))) error ("arch_test: P must be a positive integer"); end [b, v_b, e] = ols (y, x); Z = autoreg_matrix (e.^2, p); f = e.^2 / v_b - ones (T, 1); f = Z' * f; lm = f' * inv (Z'*Z) * f / 2; pval = 1 - chi2cdf (lm, p); endfunction