//This function calculates coefficients of an autoregressive (AR) model of complex data //Calling Sequence //a = arburg(x, poles) //a = arburg(x, poles, criterion) //[a, v] = arburg(...) //[a, v, k] = arburg(...) //Parameters //x: vector of real or complex numbers, of length > 2 //poles: positive integer value < length(x) - 2 //criterion: string value, takes in "AKICc", "KIC", "AICc", "AIC" and "FPE", default it not using a model-selection criterion //a: list of P+1 autoregression coefficients. //v: mean square of residual noise from the whitening operation of the Burg lattice filter //k: reflection coefficients defining the lattice-filter embodiment of the model //Description //This function calculates coefficients of an autoregressive (AR) model of complex data x using the whitening lattice-filter method of Burg. //The first argument is the data sampled. The second argument is the number of poles in the model (or limit in case a criterion is supplied). //The third parameter takes in the criterion to limit the number of poles. The acceptable values are "AIC", "AKICc", "KIC", "AICc" which are based on information theory. //Examples //arburg([1,2,3,4,5],2) // ans = // // 1. - 1.8639053 0.9571006 //************************************************************************************* //-------------------version1 (using callOctave / errored)----------------------------- //************************************************************************************* //function varargout = arburg( x, poles, criterion ) //funcprot(0); //rhs = argn(2) //lhs = argn(1) //if(lhs>3) //error("Wrong number of output arguments.") //elseif(rhs<2) //error("Wrong number of input arguments.") //end // // select(lhs) // case 1 then // if(rhs==2) // a = callOctave("arburg",x,poles) // elseif(rhs==3) // a = callOctave("arburg",x,poles,criterion) // end // case 2 then // if(rhs==2) // [a,v] = callOctave("arburg",x,poles) // elseif(rhs==3) // [a,v] = callOctave("arburg",x,poles,criterion) // end // case 3 then // if(rhs==2) // [a,v,k] = callOctave("arburg",x,poles) // elseif(rhs==3) // [a,v,k] = callOctave("arburg",x,poles,criterion) // end // end //endfunction // //************************************************************************************* //-----------------------------version2 (pure scilab code)----------------------------- //************************************************************************************* function varargout = arburg( x, poles, criterion ) funcprot(0); // Check arguments [nargout nargin ] = argn() ; if ( nargin < 2 ) error( 'arburg(x,poles): Need at least 2 args.' ); elseif ( ~isvector(x) | length(x) < 3 ) error( 'arburg: arg 1 (x) must be vector of length >2.' ); elseif ( ~isscalar(poles) | ~isreal(poles) | fix(poles)~=poles | poles<=0.5) error( 'arburg: arg 2 (poles) must be positive integer.' ); elseif ( poles >= length(x)-2 ) // lattice-filter algorithm requires "poles0 error( 'arburg: arg 2 (poles) must be less than length(x)-2.' ); elseif ( nargin>2 & ~isempty(criterion) & ... (~(type(criterion) == 10 ) | size(criterion,1)~=1 ) ) error( 'arburg: arg 3 (criterion) must be string.' ); else // // Set the model-selection-criterion flags. // is_AKICc, isa_KIC and is_corrected are short-circuit flags if ( nargin > 2 & ~isempty(criterion) ) is_AKICc = strcmp(criterion,'AKICc'); // AKICc isa_KIC = is_AKICc | strcmp(criterion,'KIC'); // KIC or AKICc is_corrected = is_AKICc | strcmp(criterion,'AICc'); // AKICc or AICc use_inf_crit = is_corrected | isa_KIC | strcmp(criterion,'AIC'); use_FPE = strcmp(criterion,'FPE'); if ( ~use_inf_crit & ~use_FPE ) error( 'arburg: value of arg 3 (criterion) not recognized' ); end else use_inf_crit = 0; use_FPE = 0; end // // f(n) = forward prediction error // b(n) = backward prediction error // Storage of f(n) and b(n) is a little tricky. Because f(n) is always // combined with b(n-1), f(1) and b(N) are never used, and therefore are // not stored. Not storing unused data makes the calculation of the // reflection coefficient look much cleaner :) // N.B. {initial v} = {error for zero-order model} = // {zero-lag autocorrelation} = E(x*conj(x)) = x*x'/N // E = expectation operator N = length(x); k = []; if ( size(x,1) > 1 ) // if x is column vector f = x(2:N); b = x(1:N-1); v = real(x'*x) / N; else // if x is row vector f = x(2:N).'; b = x(1:N-1).'; v = real(x*x') / N; end // new_crit/old_crit is the mode-selection criterion new_crit = abs(v); old_crit = 2 * new_crit; for p = 1:poles // // new reflection coeff = -2* E(f.conj(b)) / ( E(f^2)+E(b(^2) ) last_k= -2 * (b' * f) / ( f' * f + b' * b); // Levinson-Durbin recursion for residual new_v = v * ( 1.0 - real(last_k * conj(last_k)) ); if ( p > 1 ) // // Apply the model-selection criterion and break out of loop if it // increases (rather than decreases). // Do it before we update the old model "a" and "v". // // * Information Criterion (AKICc, KIC, AICc, AIC) if ( use_inf_crit ) old_crit = new_crit; // AKICc = log(new_v)+p/N/(N-p)+(3-(p+2)/N)*(p+1)/(N-p-2); // KIC = log(new_v)+ 3 *(p+1)/N; // AICc = log(new_v)+ 2 *(p+1)/(N-p-2); // AIC = log(new_v)+ 2 *(p+1)/N; // -- Calculate KIC, AICc & AIC by using is_AKICc, is_KIC and // is_corrected to "short circuit" the AKICc calculation. // The extra 4--12 scalar arithmetic ops should be quicker than // doing if...elseif...elseif...elseif...elseif. new_crit = log(new_v) + is_AKICc*p/N/(N-p) + ... (2+isa_KIC-is_AKICc*(p+2)/N) * (p+1) / (N-is_corrected*(p+2)); if ( new_crit > old_crit ) break; end // // (FPE) Final prediction error elseif ( use_FPE ) old_crit = new_crit; new_crit = new_v * (N+p+1)/(N-p-1); if ( new_crit > old_crit ) break; end end // Update model "a" and "v". // Use Levinson-Durbin recursion formula (for complex data). a = [ prev_a + last_k .* conj(prev_a(p-1:-1:1)) last_k ]; else // if( p==1 ) a = last_k; end k = [ k; last_k ]; v = new_v; if ( p < poles ) prev_a = a; // calculate new prediction errors (by recursion): // f(p,n) = f(p-1,n) + k * b(p-1,n-1) n=2,3,...n // b(p,n) = b(p-1,n-1) + conj(k) * f(p-1,n) n=2,3,...n // remember f(p,1) is not stored, so don't calculate it; make f(p,2) // the first element in f. b(p,n) isn't calculated either. nn = N-p; new_f = f(2:nn) + last_k * b(2:nn); b = b(1:nn-1) + conj(last_k) * f(1:nn-1); f = new_f; end end varargout(1) = [1,a]; varargout(2) = v; if ( nargout>=3 ) varargout(3) = k; end end endfunction