Calculate the inverse Fast Hartley Transform of real input D
m= ifht (d) m= ifht (d,n) m= ifht (d,n,dim)
real or complex valued scalar or vector
Similar to the options of FFT function
Similar to the options of FFT function
Calculate the inverse Fast Hartley Transform of real input d. If d is a matrix, the inverse Hartley transform is calculated along the columns by default. The options n and dim are similar to the options of FFT function.
The forward and inverse Hartley transforms are the same (except for a scale factor of 1/N for the inverse hartley transform), but implemented using different functions.
The definition of the forward hartley transform for vector d, m[K] = 1/N \sum_{i=0}^{N-1} d[i]*(cos[K*2*pi*i/N] + sin[K*2*pi*i/N]), for 0 <= K < N. m[K] = 1/N \sum_{i=0}^{N-1} d[i]*CAS[K*i], for 0 <= K < N.