rlevinson This function computes the autocorrelation coefficients using prediction polynomial method. Calling Sequence R = rlevinson(a, efinal) [R, U] = rlevinson(a, efinal) [R, U, kr] = rlevinson(a, efinal) [R, U, kr, e] = rlevinson(a, efinal) Parameters a: Input argument ,prediction polynomial coefficients. efinal: Input argument, final prediction error. R: Returns the auto-correlation coefficients. U: Returns upper triangular matrix of order length(a)*length(a). kr: Reflection coefficients. e: Prediction error. Description The reverse Levinson-Durbin recursion implements the step-down algorithm for solving the following symmetric Toeplitz system of linear equations for r, where r = [r(1) … r(p + 1)] and r(i)* denotes the complex conjugate of r(i). \begin{eqnarray} \begin{bmatrix} r(1) r(2)* - - r(p)* \\ r(2) r(1) - - r(p-1)* \\ - - - - - \\ - - - - - \\ - - - - - \\ r(p) r(p-1) - r(2) r(1) \end{bmatrix}\begin{bmatrix} a(2)\\ a(3)\\ .\\ .\\ .\\ a(p+1) \end{bmatrix}=\begin{bmatrix} -r(2)\\ -r(3)\\ .\\ .\\ .\\ -r(p+1) \end{bmatrix} \end{eqnarray} Input vector a represents the polynomial coefficients of this prediction error filter in descending powers of z. \begin{eqnarray} A(z)=1+a(2)^{z-1}+.............+a(n+1)^{z-p} \end{eqnarray} [r,u] = rlevinson(a,efinal) returns upper triangular matrix U from the UDU* decomposition \begin{eqnarray} R^{-1}=UE^{-1}U* \end{eqnarray} Examples See also abs mean