levinson
Levinson-Durbin Recurssion Algorithm
Calling Sequence
a = levinson(r)
a = levinson(r,n)
[a,e] = levinson(r,n)
[a,e,k] = levinson(r,n)
Parameters
r
Real or complex deterministic autocorrelation sequence input
a
Coefficients of length(r)-1 order Autoregressive linear process
n
Order of autoregressive model (default value is length(r)-1 , if n is not given)
e
Prediction error of order n
k
Reflection coefficient vector of length n
Description
The Levinson-Durbin recursion algorithm is used for finding an all-pole IIR filter with a given deterministic autocorrelation sequence (r)
\begin{eqnarray}
H(z) = \frac{1}{1+a(2)z^{-1}+a(3)z^{-2} + ... +a(n+1)z^{-n}}
\end{eqnarray}
Examples
Estimate the coefficients of an autoregressive process given by equation
\begin{eqnarray}
x(n) = 0.1x(n-1) - 0.8x(n-2) + w(n)
\end{eqnarray}